当前位置: 仪器信息网 > 行业主题 > >

晶体材料

仪器信息网晶体材料专题为您整合晶体材料相关的最新文章,在晶体材料专题,您不仅可以免费浏览晶体材料的资讯, 同时您还可以浏览晶体材料的相关资料、解决方案,参与社区晶体材料话题讨论。

晶体材料相关的资讯

  • 深紫外非线性光学晶体材料研究获进展
    深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两者之间达到一个微妙的平衡。目前,已知的深紫外非线性光学晶体几乎都是硼酸盐,基于磷酸盐的深紫外材料极为少见且非线性光学效应较弱。  在国家基金委优秀青年基金及科技部&ldquo 973&rdquo 重大研究计划等项目的支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室罗军华课题组引入较大尺寸的碱土金属和碱金属阳离子到磷酸盐中,成功构建了两个不含对称中心的新型磷酸盐化合物RbBa2(PO3)5和Rb2Ba3(P2O7)2。其中,RbBa2(PO3)5兼具深紫外磷酸盐中最短的紫外吸收边(163 nm)和最大的粉末倍频效应(1.4倍KDP),从而在这两者之间实现了很好的平衡。同时,RbBa2(PO3)5在1064 nm处相位匹配,同成分熔融,易于晶体生长,这使得RbBa2(PO3)5作为深紫外非线性光学材料具有潜在应用前景。此外,该课题组与中科院理化技术研究所林哲帅研究员合作对相关磷酸盐的光学性质作了理论计算,发现随着磷氧结构基元中[PO4]3-单元聚合程度的提高,相应磷氧结构基元的微观非线性光学系数增大 在RbBa2(PO3)5晶体结构中,[PO4]3-单元共顶点连接形成无限的一维[PO3]&infin 链,从而使RbBa2(PO3)5显示出较大的非线性光学活性,这一工作为设计具有高非线性光学活性的深紫外磷酸盐材料提供了新思路。相关研究成果发表在了《美国化学会志》(J. Am. Chem. Soc.,2014, DOI: 10.1021/ja504319x)上。  最近,该课题组在非线性光学材料探索及其倍频机制研究方面取得了一系列进展,相关成果见Nat. Comm., 2014, 5:4019DOI: 10.1038/ncomms5019 Inorg. Chem., 2014, 53, 2521 J. Mater. Chem. C, 2013, 1, 2906 RSC Adv., 2013, 3, 14000等。此前,该课题组在相关极性分子光电功能晶体材料研究方面取得了重要进展,相关成果见Adv. Mater.,2013, 25, 4159 Angew. Chem. Int. Ed., 2012, 51, 3871 Adv. Funct.Mater.,2012, 22, 4855等。  福建物构所深紫外非线性光学晶体材料研究获进展
  • XRT 在半导体材料晶体缺陷表征中的应用介绍
    XRT 在半导体材料晶体缺陷表征中的应用介绍‍半导体(semiconductor)指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。按照半导体材料发展历程和材料本征禁带宽度,习惯上按照如下方法进行分类:第一代半导体材料主要是指硅(Si)、锗(Ge)这类半导体材料,主要兴起于二十世纪五十年代,其兴起也带动了以集成电路为核心的微电子产业的快速发展,并被广泛的应用于消费电子、通信、光伏、军事以及航空航天等多个领域。就应用和市场需求量而言,半导体Si材料仍是半导体行业中体量最大的,产品规格以8-12英寸为主。第二代半导体材料是以砷化镓(GaAs)、磷化铟(InP)为主的化合物半导体,其主要被用于制作高频、高速以及大功率电子器件,在卫星通讯、移动通讯以及光通讯等领域有较为广泛的应用。相比于第一代半导体而言,化合物半导体长晶和加工工艺复杂,产品附加值要高一些,产品规格以3-6英寸为主,国内部分厂家可以提供8英寸晶圆。第三代半导体材料包括了以碳化硅(SiC)、氮化镓(GaN)为代表的宽禁带化合物半导体。相比于第一代及第二代半导体材料,第三代半导体材料在耐高温、耐高压、高频工作,以及承受大电流等多个方面具备明显的优势,因而更适合于制作高温、高频、抗辐射及大功率器件,在电力电子器件、微波射频等领域的应用优势更为明显。产品规格以2-6英寸为主。图1不同半导体材料禁带宽度及应用[1]在半导体材料制备和应用过程中,对于晶体缺陷的要求与控制是十分重要的。因为晶体缺陷的类型、大小和多少直接决定了半导体器件性能的优劣和使用稳定性等性能指标。所以,无论是在晶体长晶环节还是晶片加工及晶圆外延等环节,都要进行晶体/晶圆缺陷检查,确保使用在器件上芯片是满足设计要求的。晶圆中常见的缺陷主要有如下几类,参见图2[2]。点缺陷:在三维空间各方向上尺寸都很小的缺陷。空位、间隙原子、替位原子等;线缺陷:在两个方向上尺寸很小,而另一个方向上尺寸较大的缺陷。如位错,刃型位错和螺型位错;面缺陷:在一个方向上尺寸很小,在另外两个方向上尺寸较大的缺陷。如晶界、相界、表面等。体缺陷:杂质沉积、孔洞及析出相等。图2 半导体材料中常见晶体缺陷对于上述提到的四类半导体材料缺陷中,第一类缺陷属于原子层面的缺陷,通常是从掺杂及长晶工艺优化等角度去进行改进。通常不作为生产过程控制的主要参数,一般选择用其他方法进行测量,如采用FTIR方法可以测量Si晶体中代位C原子和间隙氧原子的浓度。第二到四类缺陷,则需要在加工环节进行100%直接或间接检测,确保所生产晶圆/芯片缺陷指标满足订单要求。对于这类缺陷传统方法就是采用腐蚀性化学药液(如熔融的KOH)对晶、体/圆进行腐蚀。在腐蚀过程中由于晶体有缺陷的区域会优先腐蚀,无缺陷区域则腐蚀速度相对较慢,所以在规定腐蚀时间后在晶圆表面会有腐蚀坑(Etch Pit)出现,这是一种破坏性的检测方法。腐蚀好的晶圆在显微镜下对这些腐蚀坑识别和计数,就可以得到该晶体的缺陷信息, 图3 为SiC 晶圆通过KOH腐蚀得到缺陷照片,缺陷主要有刃型位错、螺型位错和微管等[2]。图3 SiC 晶片腐蚀后缺陷形貌[3]对于半导体晶圆,上述传统缺陷表征方法最大的问题就是破坏性的,检测后的晶圆无法继续使用只能做报废处理。对于像第二代和第三代半导体材料而言,晶体生长技术要求水平较高,成品和晶圆数量受晶棒长度及其他加工方式限制而良率相对不高。像国内部分企业SiC 晶棒成品长度一般在20mm左右。如果按照单片晶圆成品厚度约在0.5mm,除去切割和研磨、抛光损耗,基本上0.8mm才能出一片合格晶圆。如果在晶棒头、尾各取一片晶圆去做缺陷检测,则有约8%的成本损耗。所以很多半导体厂家都希望有一种可以用于半导体晶体材料缺陷的表征的无损检测技术。日本理学株式会社(www.rigaku.com)作为全球著名的X-Ray 仪器制造商,自1923年以来,理学公司一直专注于X射线仪器领域的研发和生产。该公司生产制造的XRT (X-ray Topography)检测系统则是利用X射线的布拉格衍射原理和晶格畸变(缺陷)造成特征峰宽化和强度变化等特性,再结合理学公司开发的X射线形貌技术,可以对晶体内缺陷进行成像。这种XRT检测技术最大的优点就是无损检测,在不破坏晶圆的情况下实现2-12英寸半导体晶体中线缺陷、面缺陷和体缺陷的检测和表征。图4 XRT设备实物图图5 XRT 缺陷表征原理示意图[3]工作模式:XRT主要有反射成像和透射成像两种模式,反射模式是Cu靶,透射模式则是Mo靶,参见图6。透射模式成像后可以进行3D重构和成像,参见图7 SiC晶圆缺陷图片。图6 XRT 反射模式和透射模式[3]图7 SiC 晶圆缺陷表征[3]系统软件介绍:该仪器标配的图像分析软件可以对检测样品内的缺陷进行统计,给出缺陷数量和分布信息,参见图8。图 8 XRT 标配软件数据结果界面[3]后续我们会针对XRT在不同半导体材料检测和应用案例刊发几期相关介绍,敬请期待。附:[1] 第三代半导体-氮化镓(GaN) 技术洞察报告,P3 [2] 理学XRT 内部资料;[3] 理学XRT公开彩页.
  • 约稿|锂离子电池材料晶体结构分析技术探讨
    p style="text-indent: 2em "span style="text-indent: 2em "据Technavio最新报告数据,锂离子电池全球市场规模在2020-2024年期间有可能增长478.1亿美元,且市场的增长动力将在预测期内加速。/spanbr//pp style="text-indent: 2em "无论是锂电实验室研究,还是商业化锂电失效分析,锂电材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。/pp style="text-indent: 2em "锂电材料晶体结构表征手段主要包括 X 射线衍射技术(XRD)、扩展 X 射线吸收精细谱(EXAFS)、中子衍射(neutron diffraction)、核磁共振(NMR)、电镜(EM)、拉曼散射(Raman)等。/pp style="text-indent: 2em "XRD是目前应用最为广泛的研究晶体结构的技术。而马尔文帕纳科(Malvern Panalytical )便是国内XRD市场主流品牌之一,近日,仪器信息网有幸邀请马尔文帕纳科分享了针对锂电材料晶体结构分析技术的探讨及技术展望。/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) font-size: 18px "istrong专题约稿|锂离子电池材料晶体结构分析技术探讨/strong/i/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "——“锂电检测技术系列——晶体结构分析技术”专题约稿/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "作者:马尔文帕纳科(Malvern Panalytical )/span/pp style="text-indent: 2em "strongInstrument:/strong贵司在锂电材料晶体结构分析方面,可以提供哪些仪器技术?有哪些技术优势?/pp style="text-indent: 2em "strongMalvern Panalytical:/strong锂电检测领域,马尔文帕纳科不仅可以提供电池检测需要的精密仪器,同时,还可以为相关用户获取高质量数据提供专业技术支持。具体而言,即针对不同的电池类型提供对应的解决方案。比如针对生产软包电池,马尔文帕纳科可以提供硬射线(银靶)的高端解决方案;针对原位充放电过程,使用马尔文帕纳科先进的GaliPIX探测器可以每30秒在线测量一次,对铜到银的辐射达100%的接收效率,捕捉到原位充放电过程中晶体相变的细节,进而了解电池相变引起的膨胀和收缩。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/31848243-1328-476c-8df2-fc26e7dbdc18.jpg" title="1.png" alt="1.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "装载了电池样品的Empyrean衍射仪/span/pp style="text-indent: 2em "上图是马尔文帕纳科荷兰实验室对电池进行分析使用的仪器照片和电池样品照片。该仪器使用银靶辐射作为入射光源,光管发出的发散X射线需经过入射光路专用的银靶聚焦光反射镜反射,转化为焦点在探测器上的高强度聚焦光束,电池样品垂直固定在样品台上,光束穿透样品发生衍射,衍射光路使用CdTe重元素半导体感应芯片的GaliPIX3D矩阵探测器采集衍射信号,整套光路为透射几何。实测电池样品为商用方型手机电池。充放电循环设置为3.2-4.2V,1/3C-rate,共4循环。单次衍射扫描总时间为5分钟,实验总计14小时。/pp style="text-indent: 2em "如果用户没有软包电池的样品台,马尔文帕纳科可以为用户提供一个纽扣电池结构的原位充放电样品池,测试您的正负极材料。同时也可以提供加热和冷却选项。不同类型电池样品的解决方案如下表:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 302px " src="https://img1.17img.cn/17img/images/202005/uepic/1ef962a3-2486-4f22-bb67-36e136d13e1e.jpg" title="2.png" alt="2.png" width="600" height="302" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "马尔文帕纳科的主要优势是提供高质量数据,以及切实有效的解决方案,有助于用户电池材料研究及加工工艺改善,或帮助科研用户发表高质量文章。/span/pp style="text-indent: 2em "strongInstrument:/strong strong锂电检测领域主要用户分布于哪些领域?有哪些典型用户?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong马尔文帕纳科用户广泛分布在工业及学术领域。工业领域方面,中国电池行业非常成熟,如比亚迪、CATL等遍布全球的知名公司都是马尔文帕纳科的用户,工业领域通过使用马尔文帕纳科的新技术系统,不断提升电池的质量和性能。学术领域,主要是小规模开发新技术的用户,中国高校处于电池研究的前沿,研究人员正在利用马尔文帕纳科的系统来不断进行新材料的研究开发。/pp style="text-indent: 2em "strongInstrument/strong:strong贵公司针对锂电材料晶体结构分析开发了哪些应用解决方案?/strong/pp style="text-indent: 2em "strongMalvern Panalytical:/strong 马尔文帕纳科的Empyrean XRD平台以其优异性能和灵活性而闻名于世。结合马尔文帕纳科HighScore Plus软件,可以用于专门定制分析电池材料,用户可以从合成阶段到组装电池全流程分析电池材料。利用对应的解决方案,用户可以研究创新正极材料的晶体结构,可以测量合成石墨负极的石墨化程度,可以研究加热或冷却时这些材料的变化;对于组装好的电池,还可以原位测量和分析失效原因,并将这些失效与底层的晶体结构变化联系起来。同时,马尔文帕纳科不仅提供硬件和软件方案,还将提供专业知识和技术支持。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 146px " src="https://img1.17img.cn/17img/images/202005/uepic/c86492d7-c700-41de-9ef7-79f6185b453e.jpg" title="3.png" alt="3.png" width="600" height="146" border="0" vspace="0"//pp style="text-align: center "span style="text-indent: 0em "解决方案免费获取链接:/spanspan style="text-indent: 0em text-decoration: underline "a href="https://www.instrument.com.cn/application/Solution-926077.html" target="_blank" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 0em color: rgb(0, 176, 240) "链接/span/a/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 151px " src="https://img1.17img.cn/17img/images/202005/uepic/5dbe84d2-b164-421b-b6d0-c26224560fdb.jpg" title="4.png" alt="4.png" width="600" height="151" border="0" vspace="0"//pp style="text-align: center "span style="text-indent: 0em "解决方案免费获取链接:/spana href="https://www.instrument.com.cn/application/Solution-926219.html" target="_blank" style="text-indent: 0em color: rgb(0, 176, 240) "链接/a/pp style="text-indent: 2em "strongInstrument/strongstrong:近两年来,贵公司在锂电领域的业界表现如何?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong锂离子电池领域,马尔文帕纳科是X射线衍射解决方案的技术领导者。中国70%的大型电池厂家使用马尔文帕纳科的激光粒度仪与X射线系统来表征电池材料粒度及粒度分布与晶体结构。在研究中,马尔文帕纳科的原位XRD解决方案与GaliPIX探测器设置了很高的基准,该基准也是目前市场上其他产品无法企及的。/pp style="text-indent: 2em "strongInstrument:/strongstrong贵公司如何看待锂电市场为仪器企业带来的机遇?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong随着锂离子电池市场的快速发展,特别是在中国,仪器制造商的前景十分广阔。整体的仪器市场会有高增长的同时,对仪器质量和服务支持的需求也会很高。因此,只有拥有良好基础并做好充足准备的公司才能更好的把握锂电发展带来的机遇。/pp style="text-indent: 2em "strongInstrument:/strongstrong贵公司将采取哪些措施加强对锂电领域的拓展?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong马尔文帕纳科将完全以客户为中心,不断扩展马尔文帕纳科的服务支持和专家网络。由于电池技术仍在不断发展,马尔文帕纳科将不断调整已有的解决方案,以应对新技术引入带来的挑战,使马尔文帕纳科的客户能够缩短开发过程,并在工业规模扩大期间获得正确的解决方案。/pp style="text-indent: 2em "strong附1:马尔文帕纳科X射线衍射仪产品系列/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 267px " src="https://img1.17img.cn/17img/images/202005/uepic/50b4685a-3b98-40a3-a9bb-2f7f932d2190.jpg" title="5.png" alt="5.png" width="500" height="267" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "Empyrean 锐影系列多功能X射线衍射仪/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 161px " src="https://img1.17img.cn/17img/images/202005/uepic/23284c83-b66f-4f81-bb0c-91b0c5e5ce59.jpg" title="6.png" alt="6.png" width="500" height="161" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Aeris 系列台式X射线衍射仪/span/pp style="text-indent: 2em "strong附2:/strongspan style="text-indent: 2em " /spanspan style="color: rgb(0, 0, 0) "strong style="text-indent: 2em color: rgb(255, 0, 0) font-family: 宋体, " arial="" margin:="" padding:=""锂电检测系类专题约稿征集中/strong/span/pdiv class="ContL" id="newContent" style="margin: 0px padding: 0px color: rgb(68, 68, 68) line-height: 26px " arial="" white-space:=""p style="margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em "span style="margin: 0px padding: 0px text-indent: 2em "为促进锂电检测技术发展,近期,器信息网结合锂离子电池检测项目品类,从2019年起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) "(锂电检测系列专题内容约稿征集进行中,欢迎投稿:/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline "15311451191,yanglz@instrument.com.cn/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) ")/span/ptable border="0" cellspacing="0" cellpadding="0" style="margin: 0px padding: 0px font-family: Arial, tahoma font-size: 12px " align="center"tbody style="margin: 0px padding: 0px "tr class="firstRow" style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "系列序号/span/strong/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "专题链接/span/strong/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "1/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——电性能检测技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian1" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "2/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——形貌分析技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian2" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "3/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——成分分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian3" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "4/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——晶体结构分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "5/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月上线/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "5/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——X射线光电子能谱分析技术/span/p/tdtd rowspan="2" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "即将上线/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "6/span/p/tdtd width="359" style="margin: 0px word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablep style="margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em "br//p/div
  • Advanced Materials | 新型二维原子晶体材料Si9C15的构筑
    碳元素与硅元素同属第四主族,其原子最外层有四个未配对电子,可形成四根共价键。例如金刚石与单晶硅分别是碳原子和硅原子以sp3杂化方式与临近的四个原子成键形成的稳定结构。原则上,碳原子和硅原子可以以任意的比例互换,组成SixCy的一大类具有闪锌矿结构的晶体材料。理论预言表明,二维的SixCy晶体可以以蜂窝状结构稳定存在,随着碳硅比例的不同具有大范围可调节的带隙,从而产生丰富的物理化学性质,引起了研究人员广泛的关注。然而,自然界中的硅原子并不喜欢sp2杂化方式的平面二维结构,碳硅化合物晶体多数不存在像石墨一样的层状体材料。因此,常规的机械剥离方法并不适用于制备二维碳化硅材料。已有的实验报道包括利用液相剥离和扫描透射电子显微镜电子束诱导等手段获取准二维SiC和SiC2材料,然而这些材料存在着厚度不均一、尺寸太小以及无法集成等问题。因此,发展一种新的实验手段获取高质量、大尺寸的单晶二维碳化硅材料具有重要意义。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧研究团队利用组内自主设计研发的分子束外延-低温扫描隧道显微镜联合系统,对石墨烯硅插层技术进行了优化,并将其应用于二维碳化硅材料的构筑,成功在钌和铑两种单晶表面生长出大面积、高质量、单晶的单层Si9C15材料。他们首先在金属钌(铑)单晶表面生长获得高质量单层石墨烯,然后在石墨烯上沉积过量的硅,在1400 K高温下退火得到了厘米量级的单层碳化硅材料(图一)。他们进一步结合扫描隧道显微镜、扫描透射电子显微镜、X射线光电子能谱等表征手段和第一性原理计算,确定该二维材料是组分为Si9C15的翘曲蜂窝状结构(图二,图三)。蜂窝状结构由碳-碳六元环和碳-硅六元环组成,每个碳-碳六元环被十二个碳-硅六元环所包围。扫描隧道谱显示该二维材料表现出半导体特征,能隙为1.9eV(图四)。值得一提的是,单层Si9C15晶体具有较好的空气稳定性。制备的二维单晶样品在直接暴露空气72小时后重新传入超高真空腔体,在870 K退火1小时之后可以看到晶体结构几乎没有受到破坏(图五)。该项研究首次获得了大面积、高质量的单晶二维碳化硅材料。计算结果还显示在不同晶格常数的金属单晶衬底上有可能生长出不同碳硅比的二维材料,揭开了利用外延生长获取二维碳化硅材料的序幕。相关成果以“Experimental realization of atomic monolayer Si9C15”为题发表于Advanced Materials上。该工作与中国科学院大学的周武教授和国家纳米中心的张礼智研究员进行了合作。博士高兆艳、博士生徐文鹏、博士后高艺璇和博士后Roger Guzman为论文共同第一作者,李更、张礼智、周武和高鸿钧为共同通讯作者。该工作得到科技部(2019YFA0308500, 2018YFA0305700, 2018YFA0305800)、国家自然科学基金(61888102,51991340,52072401)、中国科学院(YSBR-003)和北京杰出青年科学家计划(BJJWZYJH01201914430039)等的支持。文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202204779 图一:单层Si9C15材料的获取。图二:二维Si9C15材料的原子构型图三:STEM图像证实二维Si9C15材料的存在。图四:二维Si9C15材料的电子结构。图五:二维Si9C15材料具有较好的空气稳定性。【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位领域内专家,围绕纳米材料热点研究方向,从成分分析、形貌分析、粒度分析、结构分析以及表界面分析等主流分析和表征技术带来精彩报告。会议涉及热点研究方向:电极材料、医药材料、多铁/铁电材料、电子敏感材料、超宽禁带半导体材料......会议包含表征与检测技术:冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱、磁纳米粒子成像、拉曼光谱、X射线三维成像......为纳米材料工作者及相关专业技术人员提供线上学术与技术交流的平台,帮助大家迅速掌握纳米材料主流分析和表征技术,共同提高纳米材料研究及应用水平。(点击此处进入会议官网,免费报名参会)
  • 宁波材料所氧化物薄膜晶体管人工光电突触研究取得进展
    人工视觉智能技术在安全、医疗和服务等领域颇有应用潜力。然而,随着网络化和信息化的发展,基于冯诺依曼构架的现有视觉系统因功耗问题难以实时处理海量激增的视觉数据。仿生人类视觉的光电突触器件可集图像信息采集、存储和处理于一体,有效解决现有视觉系统存在的时效性、功耗等问题。非晶氧化物半导体薄膜晶体管(TFT)作为传统电子器件在显示、电子电路等领域已实现产业化应用。因此,基于氧化物TFT的创新器件在产业工艺兼容性、与后端电路的在板集成等方面优势明显,在仿生人类视觉神经突触器件的研发方面,亟待解决如可见光响应弱、频率高效选择性、不同波段信号串扰等一些关键科学和技术问题。   中国科学院宁波材料技术与工程研究所功能薄膜与智构器件团队阐明了非晶氧化物半导体器件中与氧空位息息相关的突触权重调控的微观机理,为提高可见光响应奠定了理论基础,设计了背沟道修饰pn异质结的光电突触TFT,有效耦合了三端器件的栅压调控和两端器件的内建电场调控功能,兼具高光电响应、易集成、低功耗等优势。   近期,该团队携手福州大学教授张海忠团队,设计了基于InP量子点/InSnZnO的光电TFT的仿生视觉传感器,将氧化物半导体优异的电传输特性和InP量子点良好的宽光谱响应特性有机结合,使器件具有优异的栅极可控性和可见光响应特性,通过简单控制栅极偏置实现初始状态的调控,仿生模拟了人眼暗视和明视环境下适应功能的切换。该工作构建的TFT阵列在感知红绿蓝三原色字母时均表现出逼真的环境自适应特征。此外,基于该光电传感阵列的三层衍射神经网络用于手写数字识别模拟,准确率可达93%。该研究为开发环境适应性人工视觉系统开辟了新途径,并对神经形态光电子器件的研发具有启发性意义。   相关研究成果发表在《先进功能材料》(Advanced Functional Materials,DOI: 10.1002/adfm.202305959)上。研究工作得到国家自然科学基金和宁波市重大科技攻关项目等的支持。人眼明暗适应过程与氧化物光电薄膜晶体管光电流变化过程的类比演
  • 新一代高功率激光浮区法单晶炉助力哈尔滨工业大学 极端材料晶体生长实验及相关研究
    Quantum Design公司近期推出了激光浮区法单晶生长系统,该系统传承日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更均匀的能量分布和更加稳定的性能,其优越的技术性能将助力同行学者和专家的晶体生长工作!浮区法单晶生长技术因其在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛应用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合端材料(诸如:高饱和蒸汽压、高熔点材料及高热导率材料等),以及常规浮区法单晶炉难以胜任的单晶生长工作!跟传统的激光浮区法单晶生长系统相比,Quantum Design公司推出的新一代激光浮区法单晶炉系统具有以下技术优势:■ 功率更高,能量密度更大,加热效率更高■ 采用技术五路激光设计,确保熔区能量分布更加均匀■ 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力■ 采用了特的实时温度集成控制系统新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束 5束激光功率 2KW熔区高温 ~3000℃*测温范围 900℃~3500℃温度稳定性 +/-1℃晶体生长控制大位移距离 150mm*晶体生长大直径 8mm*晶体生长大速度/转速 300 mm/hour 100rpm晶体生长监控 高清摄像头晶体生长控制 PC控制其它 占地面积 D140 xW210 x H200 (cm)* 具体取决于材料及实验条件哈尔滨工业大学科学工程专项建设指挥部暨空间基础科学研究中心致力于各种高熔点、易挥发的超导、磁性、铁电、热电等材料的单晶生长实验及相关物性研究,近日,我司再次同院校哈尔滨工业大学合作,顺利完成新一代高功率激光浮区法单晶炉设备采购订单,推动单晶生长工作迈向更高的台阶,我们也将一如既往,秉承精益求精的研发、设计和加工理念,为用户提供优质的技术和服务,助力用户科研事业更上一层楼!RIKEN(CEMS)设计的五束激光发生器原型机实物图 采用新一代激光浮区法单晶炉系统生长出的部分单晶体应用案例: Sr2RuO4 SmB6 Ba2Co2Fe12O22Y3Fe5O12 * 以上单晶图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供
  • 丹东百特新年首场技术交流会:全国高纯粉体与晶体材料创新发展论坛
    2021年1月7日,全国高纯粉体与晶体材料创新发展论坛于美丽的海滨城市珠海顺利召开。此次会议不仅吸引了业界数位知名企业家与各个高校的师生参与交流,而且也邀请了多位技术专家现场分享各自的经验与心得,大家在会上为中国高纯粉体与晶体材料的创新发展畅所欲言,各抒己见。 丹东百特仪器有限公司技术总监李雪冰博士在论坛上与大家分享了“高纯粉体在粒度测试中遇到的问题和对未来的展望”,粉体的品质对晶体材料的品质极其重要,但由于在产业上缺乏统一的标准,人们在检测原料时不仅会因为不同检测技术上的差异而感到困惑,也会因为粉体材料在微观和宏观形态上的差异而无法判断数据是否可靠。报告中,李雪冰博士强调了确立产业化检验标准的必要性,提出检测时不能只重视数据漂亮与否,而是要与应用端挂钩,了解真正工业需求的观点。幽默风趣的报告方式、切身实际的问题解答赢得阵阵热烈的掌声。 会场之外的仪器展示也精彩纷呈。百特销售总监丛丽华女士热情地给参观者讲解百特激光粒度仪的突出性能和操作方法。Bettersize 3000 plus的亮相也是格外引人瞩目,这款联合了激光衍射法和动态图像法的粒度粒形分析系统,不仅能给用户提供全面的粒度大小分布报告,也能提供每一个颗粒形貌的具体参数,这种粒度粒形二合一的系统,是高纯粉体与晶体材料颗粒分析的理想选择。 在本次论坛上,主办方还举行了粉体圈会员的授牌仪式,丹东百特仪器有限公司以其在行业中的卓越影响力被评为钻石会员。在新的一年里,百特将与粉体圈及颗粒界的朋友一道,为中国颗粒测试技术更上一层楼,为中国颗粒测试技术赶超世界前列水平而不懈努力。
  • X射线晶体成像仪助加拿大开发出寻找碳捕获材料新方法
    为高效率、低能耗捕碳材料的设计提供了可靠手段  加拿大卡尔加里大学和渥太华大学科学家成功利用X射线晶体成像仪和计算机模拟手段,对被称为“棒球手套”的捕碳材料如何捕捉二氧化碳分子进行了观察和分析。科学家认为,该项成果为设计定制一种高效率、低能耗的捕碳新材料指明了研究方向。相关文章发表在最新出版的《科学》杂志上。   目前采用的二氧化碳捕获方法是将二氧化碳气体注入氨溶液中。该项技术的弱点在于氨溶液吸收二氧化碳后,还需要释放二氧化碳以便进行储存,在释放二氧化碳时,溶液需要加热到100摄氏度,这要耗去大量的能源和水资源。据估算,燃煤发电厂如果使用该项技术捕获储存二氧化碳,需要消耗其四分之一的发电量。  因此,找到一种既可轻松捕获二氧化碳,还可在低能耗和节水条件下轻松释放出二氧化碳的新型材料,对于捕获二氧化碳技术的实际应用意义非常重大。加拿大科学家的研究发现正是为找到这种新型材料指明了方向,并提供了实验方法和计算机模拟方法。  参与研究工作的科学家将捕捉二氧化碳形象地比作棒球手套与棒球之间的关系,在此将球比作二氧化碳,而将手套比作可捕获二氧化碳的材料。对于不同大小的球,需要不同尺寸的手套,才能更好地匹配,以便球手能够更加容易接到来球。卡尔加里大学化学教授乔治斯密祖介绍说,他们使用X射线结晶成像仪直接实验成像,并通过计算机模型计算,确定了二氧化碳分子的确切位置,并可以清晰观察到“手套”材料的各个“手指”如何合力将二氧化碳分子固定在其位置上。  渥太华大学负责计算机模拟研究的科学家表示,该项发现的另一个特别之处在于,实验结果和计算机模拟结果之间表现出非常好的一致性。因此,其计算机模拟方法现在就可以更令人放心地应用于发现和预知材料的捕碳性能,特别是在实验室制作某种捕碳材料之前,可先在计算机上进行模拟。  研究人员认为,该项研究成果最终可得到多方面的应用,既可帮助燃煤发电厂降低二氧化碳排放,还可帮助去除非常规天然气资源中的二氧化碳成分。
  • 宁波材料所在高迁、高稳氧化物薄膜晶体管方面取得研究进展
    由于跟非晶硅面板制程兼容,非晶氧化物InGaZnO(IGZO)自从在实验室被发现后,很快进入了显示驱动工业应用,如AMLCD、AMOLED、LTPO 面板驱动。以IGZO 为代表的非晶氧化物薄膜晶体管(TFT)在较高的迁移率 (10 cm2/Vs 左右)、低温大面积制程(可至G8面板以上)、低的关态电流(约比低温多晶硅TFT低1000倍)等方面具有独特的优势。然而,伴随着显示技术的快速发展,现有显示驱动无法匹配新型高品质显示的迫切需求。具体而言,伴随着显示面板大面积化(75 Inch)、超高清化(8K)和高帧频(240 Hz)的发展趋势及未来Micro-LED等高性能显示的涌现,客观上要求TFT器件在保持较低关态电流这一优势的同时,器件场效应迁移率要大于40 cm2/Vs,并兼具较好的性能稳定性。鉴于此,中国科学院宁波材料技术与工程研究所功能薄膜与智构器件团队的梁凌燕、曹鸿涛研究员基于InSnZnO(ITZO)半导体材料,围绕靶材-薄膜-工艺-器件研究链条开展科研攻关,阐明了靶材质量、源漏电极工艺、稀土掺杂及金属诱导工艺等对ITZO-TFT性能的影响规律,为后续实现高迁、高稳的TFT器件打下了坚实基础。系列工作发表在IEEE EDL. 42, 529-532(2021)、Appl. Phys. Lett. 119, 212102 (2021)、IEEE TED. 69, 152-155 (2022)、ACS Appl. Electron. Mater. 2023, 10.1021/acsaelm.2c01673。近期,该团队携手中山大学的刘川教授和相关企业提出了高电子迁移率输运层和光电子弛豫层的叠层设计,将迁移率和稳定性的关联/矛盾关系进行了解耦,器件迁移率和稳定性(特别是光照和偏压稳定性)分别与输运层和弛豫层各自的物性及厚度相关联,由此实现了高迁移率(40 cm2V-1s-1,归一化饱和输出电流225 μA)和高稳定性(NBIS/PBTS △Vth = -1.64/0.76 V),器件性能水平极具竞争力,解决了目前氧化物TFTs普遍存在的输运和稳定性难以兼顾的难题。根据氧化物半导体输运的渗流理论以及经典的载流子扩散机制对实验结果进行了模拟,理论预测跟实验结果相吻合,验证了本设计的有效性和可行性。此外,器件的输运层和弛豫层厚度均超过20 nm,容易实现大面积均匀性,具有很好的工业导入前景。研究结果发表在Adv. Sci. 2023, 2300373. 10.1002/advs.202300373。上述工作得到了国家重点研发计划(2021YFB3600701)、国家自然科学基金(62274167)、中科院重点部署(ZDRW-XX-2022-2)等项目的支持。TFT应用中的木桶效应以及电子输运/光电子弛豫叠层设计解决策略与成效
  • 蔡司首款晶体学CT系统隆重上市
    扩展了无损衍射衬度断层扫描成像解决方案德国耶拿,2021年3月24日作为无损3D成像系统性能的引领者,蔡司发布了全新微米CT(microCT)系统Xradia CrystalCT™ ,为工业和科研实验室实现各种金属和合金、增材制造、陶瓷和药物样品等多晶材料的三维晶体学成像提供解决方案。蔡司微米CT(microCT)系统Xradia CrystalCT的研发基于传统CT而设计,旨在提供衍射衬度断层扫描(DCT)成像,也是首次在全球范围内将DCT技术商业化。它使得研究人员能够将三维晶体学信息和吸收衬度断层扫描数据有机的结合。蔡司Xradia CrystalCT是蔡司与实验室衍射成像先驱Xnovo Technology ApS合作开发,并提供DCT成像的最新Xradia平台。 蔡司Xradia CrystalCT是搭建在微米CT上的商业化实验室衍射衬度断层成像(DCT)系统。与传统的破坏性三维晶体学成像方法相比,无缝的大体积晶粒成像让实验数据量更具代表性。高级的采集模式可实现自由拼接扫描以快速准确地获取三维晶粒数据。先进的数据采集模式通过免拼接的扫描方式,可快速准确地得到三维晶粒数据。大尺寸样品的成像能力降低了实验室中的很多限制,可实现更多样品类型的分析和更少的样品准备时间,从而缩短了整体分析时间。更快地采集速度可缩短样品运行时间,从而提高实验室分析效率。对金属等材料的晶体结构进行成像并量化材料内部晶体学取向的能力有助于理解和优化材料性能。微米CT非破坏性成像的特性促进了对原位显微结构演变的理解,可控外场环境中,例如热处理,力学加工以及模拟环境对材料行为的影响。这些研究有助于评估新型、更轻巧和更坚固的先进材料的性能和耐久性,并解决诸如功能性、安全性和改进的经济性等问题。在蔡司3D X射线显微镜Xradia 620 Versa上提供的DCT成像功能的扩展模块之前,DCT成像只能在同步辐射光源上实现。蔡司Xradia CrystalCT除了作为一个DCT平台之外,它还是一个优秀的微米CT成像系统,它是建立在高度成熟稳定的蔡司Xradia Versa基础上,为一系列3D成像需求提供出色的分辨率和图像质量。利用蔡司Xradia CrystalCT对铝铜合金进行了结合衍射衬度和吸收衬度的多模块成像和分析。图片展示了使用CrystalCT对材料进行多模式成像表征。三维渲染图是衍射衬度成像和吸收衬度成像的叠加演示,其中衍射衬度成像是依据铝晶粒的晶体学取向进行着色,吸收衬度成像中铜富集的相显示高对比度颗粒和偏析浸润的晶界。 来源: M. Kobayashi, 丰桥技术科学大学, 日本Al-4wt%Cu拉伸样品的三维晶粒图像,其测试区域截面尺寸(长)为1.25 mm,(宽)为1.0 mm,(厚)为0.5 mm。使用高纵横比的黄金角螺旋扫描模式(helical phyllotaxis HART)。蔡司 X射线显微镜负责人Daniel Sims表示:借助CrystalCT,我们将Xradia Versa平台多年来的创新和优势带给更广泛的受众。迎合市场需求的CrystalCT产品提供了一系列被证实成熟可靠的3D成像性能。此外,我们的客户还可以额外享受投资保护,因为平台具有高度可扩展性和广泛的附加功能,随着业务和实验室需求的扩大,可以升级到蔡司顶级Versa机型。Xnovo公司CEO Erik Lauridsen说:“我们很自豪能够支持下一代基于实验室的衍射成像技术,现在该技术将得到更广泛的应用。借助在数据重建和分析方面成熟的专业知识,我们能够将DCT方法应用到微焦点计算断层扫描平台上。而蔡司的微米CT系统为该应用提供了理想的环境。”
  • 蓝菲光学的成套医疗成像测试设备改善了基于闪烁晶体的荧光成像
    日前,英国豪迈旗下美国蓝菲光学(labsphere.com.cn)为某医疗设备制造商定制了一整套医疗成像测试设备,得到用户的盛赞。这是继在医疗内窥镜、激光医疗之后蓝菲光学又一次在医疗成像设备领域的成功探索。 测试对象一:闪烁晶体当前,高端医学影像技术,计算机断层扫描(CT)、X摄片和计算机断层显像(PET)等已广泛应用于生物医疗产业,这些医疗设备的光学成像都有一个共同特点即都是利用闪烁晶体成像。${Figure 1}荧光成像示例闪烁晶体是指在高能射线(如X射线,γ射线)或者其他放射性粒子激发下会发出荧光脉冲(闪烁光)的物质。广泛用于天体物理、高能物理、石油测井、医学成像、安检设备和国防安全等领域。随着应用的更高要求,对闪烁晶体的综合性能要求越来越高,进一步设计、发现、开发和生长具有高密度、优良光学均匀性、高光产额、快衰减、高稳定性、低成本等综合性能优良的闪烁晶体是闪烁材料研究的重点,同时如何准确地测量闪烁晶体的性能也是研究的重点之一。通常,在评价闪烁晶体的性能时需要测试其透光率、激发发射谱、光输出、发光强度及发光不均匀性等。蓝菲光学作为拥有近40年的光谱分析测试经验,是业内为数不多的可以提供绝对光谱辐射通量溯源的企业,也是除美国NIST外少数拥有可以在1%不确定度范围内测试30-3000流明的4π/2π标准卤钨灯实验室的单位。蓝菲光学的光谱分析测试系统可以测试紫外-可见-近红外波段的光谱及辐射通量以及待测物的反射和透射率,公司拥有全球知名的漫反射材料具有较好的漫反射特性和朗伯特性,可以保证所有测试数据溯源到NIST。搭配蓝菲光学高端光谱仪CDS 3020/3030可以瞬时捕捉光谱数据,轻松实现快速、准确测量,帮助晶体研发人员准确、高效地判断闪烁晶体的光学性能。${Figure 2} illumia plus 光谱测试设备 测试对象二:成像传感器校准我们知道高能射线发出的光人们是看不见的,当它照射到闪烁晶体上会发出荧光(可见光波段),利用传感器去捕捉发出的荧光从而成像,这样医生就可以透视生物体的情况。因此传感器的成像质量对医生观测生物体情况来说也至关重要。蓝菲光学为成像设备的测试和校准提供了数以千计的均匀光源系统,所有均匀光源系统采用蓝菲光学的高漫反射涂层,可达近似100%的漫反射,出光口的均匀性均可达99%,提供可溯源至NIST的辐射度、亮度、照度及出口均匀度校准报告。针对闪烁晶体发出荧光特性,蓝菲光学定制了与闪烁晶体同波段的单色均匀光源用以校准传感器。${Figure 3} CMOS检测同国外相比,国内闪烁晶体方面的生长和性能研究结合得还不够紧密,高性能的闪烁晶体的研制方面还十分薄弱。蓝菲光学拥有近40年的光谱分析检测技术以及超过15年的临床诊断分析仪OEM制造经验,拥有专利技术的漫反射材料为医疗领域提供了多种OEM解决方案,可以为国内闪烁晶体以及医学成像技术的发展提供准确的性能检测。利用蓝菲光学的在光学检测和校准方面的先进技术可以帮助改善光源以及成像质量,促进国内闪烁晶体及光医学成像研究的进步。
  • 美终裁中国产晶体硅光伏电池存在倾销和补贴
    华盛顿10月10日电 美国商务部10日作出终裁,认定中国向美国出口的晶体硅光伏电池及组件存在倾销和补贴行为,这基本为美国针对此类产品征收反倾销和反补贴关税(“双反”)扫清了道路。  美国商务部当天最终裁定,中国晶体硅光伏电池及组件的生产商或出口商在美国销售此类产品时存在倾销行为,倾销幅度为18.32%至249.96%。同时,还裁定中国输美的此类产品接受了14.78%至15.97%不等的补贴。  根据这一终裁结果,倾销幅度从今年5月份初裁的最低31.14%下调至18.32%,最高幅度不变 补贴幅度则大大高于初裁的2.9%至4.73%。  按照美方贸易救济程序,除美国商务部外,此案还需美国国际贸易委员会作出终裁。根据目前日程,美国国际贸易委员会定于今年11月23日左右作出终裁。如果美国国际贸易委员会也作出肯定性终裁,即认定从中国进口的此类产品给美国相关产业造成实质性损害或威胁,美国商务部将要求海关对相关产品征收“双反”关税。  根据美国商务部公布的数据,2011年美国从中国进口了价值约为31亿美元的晶体硅光伏电池及组件。  美国智库人士与相关行业协会多次警告,美国通过征收“双反”关税来保护本土企业,将付出沉重代价。美国廉价太阳能联合会估算,若美方对来自中国的光伏电池及组件征收100%的惩罚性关税,将在未来3年内损失5万个工作岗位。  这是今年以来美国对中国发起的又一项贸易救济行动,此前美国方面连续对中国产品发起“双反”和“337调查”。中国商务部多次表示,希望美国政府恪守反对贸易保护主义承诺,共同维护自由、开放、公正的国际贸易环境,以更加理性的方法妥善处理贸易摩擦。  美终裁对华光伏产品征34%-47%关税  《纽约时报》报道,美国商务部发布最终裁决,决定对大多数从中国进口的太阳能板和太阳能电池产品征收大约34%到接近47%的关税。  对大多数中国太阳能企业而言,这一惩罚比奥巴马政府今年早些时候的判决更为严苛。
  • 郭建刚:新时代“晶体人”
    晶体学,这个最初为窥探物质原子结构和排列方式而形成的一门学科——至今有100余年历史,且已获颁23项诺贝尔奖。然而,这门学科的基础研究犹如科学界的一门“古老手艺”,人才渐缺、关注渐少。  郭建刚是个“逆行者”。这个中国科学院物理研究所“80后”研究员执着地相信:百余年来沉淀下的晶体学知识在当今依然具有强大生命力,“认识全新物质体系,要回到最根本、最基础的结构。虽越基础、越困难,但也越重要。”  传统科学与新月的碰撞  正如月球研究,晶体科学就提供了新视角,而后获得了新发现。  2020年,我国嫦娥五号从月球背面带回1731克的月壤样品。经过激烈地竞争答辩,郭建刚所在的先进材料与结构分析实验室获得了1.5克的月壤样品。  拿到珍贵的最新月壤样品,郭建刚抑制不住内心地兴奋,这是他的研究课题第一次触及“太空”。  “月球土壤与我们在地面上看到的土壤类似,是一些矿石经过不断风化,逐渐变成细碎的土壤。”郭建刚介绍。  与大多形态形貌研究不同,他们想借助自身优势,在更深、更细处探索未知,剖析月壤内部结构与原子分布状态,试图“见微知著”,了解太阳风化和月球演变等。  装在白色透明小瓶里,月壤犹如碳粉一般,呈黑色粉末状。郭建刚首先要做的是“挑样”——在数十万个颗粒中挑出微米级大小的晶体,这是项考验耐心的技术活。  晶体的大小约等于一根头发丝直径,郭建刚站在手套箱前、紧盯着显微镜,寻找着在特殊灯光照射下反射亮光的晶体,然后屏住呼吸,利用一根纤细挑样针的静电效应,小心翼翼“粘”出。  他和学生两人一组,反复这一连串动作,每次需要持续3小时。为保证安静环境,他们常常在深夜工作,结束时身体僵直、眼睛酸胀、几近“崩溃”。  实验室窗台上的几盆被拔“秃头”的仙人球见证着他们的付出,他们需要使用仙人球的刺来“粘”住微米级晶体,放置在四圆衍射仪和高分辨透射电镜上测试晶体结构。  郭建刚知道,我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。挑选样品的质量,在一定程度上或许决定了能否把握住这次机会,因此,必须仔细再仔细。  郭建刚和团队在月壤样品中找到了铁橄榄石、辉石和长石等晶体,经过测试,在铁橄榄石表面发现了非常薄的氧化硅非晶层,这其中包裹着大小为2到12纳米的晶体颗粒,通过系统的电子衍射及指标化、高分辨原子相和化学价态分析,确认它们是氧化亚铁,并非此前在其他月壤样品中发现的金属铁颗粒。  他们还在铁橄榄石中还观察到了分层的边缘结构,这种特殊的微结构首次在月球土壤中看到。  扎实的数据得到了美国行星之父、匹兹堡大学地质与行星科学系教授Bruce Hapke的肯定:“这种橄榄石晶体的边缘结构是独特的。”  “我们确认了铁橄榄石在太空风化作用下出现了分步分解现象。通过表面微结构和微区晶体结构分析,我们首次在铁橄榄石的边缘确认了氧化亚铁的存在,表明矿物在风化过程中,经历了一个中间态,而非一步到金属游离铁,这将有利于进一步理解月球矿物的演变历史。”郭建刚说。  越基础,越重要  2008年,从吉林大学硕士毕业,郭建刚来到物理所跟随陈小龙研究员攻读博士学位。在团队里,他感受到的第一个研究“逻辑”就是,要想得到或利用一个材料,首先要想办法弄清楚材料最基本的晶体结构,理解原子之间的排布与结合方式。  “是什么、为什么、能做些什么,这是我们要探索全新体系时要回答的三个基本问题。”他至今记得,博士期间,按照这条“底层逻辑”,做出了第一个让他惊奇的超导新材料。从此,他便更加热爱晶体科学。  “晶体,尤其是超导这类单晶,非常重要,在电力运输、磁悬浮等有着广泛应用,若原子微观结构不清楚,很难理解和优化其物性,离应用就更远了。”郭建刚说。  的确,对物质晶体结构的了解,有助于在物质内部微观结构、原子水平的基础上,阐明物质各种性能,并为改善材料的性能、探索新型材料和促进材料科学的发展提供重要科学依据。  10余年来,郭建刚一直牢记着这个“逻辑”。他以探索电磁功能材料和生长晶体为主要方向,以理解晶体结构为出发点,研究材料的物性和晶体结构之间的关系,取得了诸多重要成果。  2010年,还在读博期间,郭建刚在国际上最早制备出了碱金属钾插层铁硒超导体系,其最高超导转变温度为30 K,创造了当时常压下FeSe基化合物超导转变温度的最高纪录。  该成果开辟了国际铁基超导研究的新领域,所开创的研究方向‘Alkali-doped iron selenide superconductors’被汤森路透《2013研究前沿》和《2014研究前沿》列为物理学10个最活跃前沿领域之首和第7名,将其发展成了与铁砷基并列的第二类铁基高温超导体。  他成功地解决了较小尺寸碱金属钾插层铁硒的难点,制备出了纯相的钠插层铁硒超导体,进一步将超导转变温度提高至37 K。  弄清晶体结构,会大大缩短新型材料探索时间、加速解决实际问题。  郭建刚介绍,用传统方法合成一个新材料,需要不断地试,因为不知道哪些组分、温度等合适,试的足够多,可能会碰到一个新的,但试错法效率低、成本高。而弄清楚了晶体结构,就能了解某一类材料中物性的决定性单元(也称功能基元),再以此为基础,发展新的材料体系,“比如要制备一个新材料,有3个组分,通过晶体结构分析,我们能发现决定材料物性的功能基元,就能够以相应的物性为导向,高效地探索新材料和新效应。”  即以不同功能基元为基础,调控基元的排列方式,或通过调控功能基元里配位的原子种类和数目来改变其电子结构,制备新高温超导晶体体和诱导新效应。  基于这一思路,由陈小龙牵头,郭建刚作为第2完成人所承担的挑战性课题“基于结构基元的新电磁材料和新效应的发现”,荣获2020年度国家自然科学二等奖,这项成果解决了由功能基元出发、高效探索新材料和新效应的若干关键科学问题,推动了无机功能材料科学的研究与发展。  肩负重任的新生力量  在先进材料与结构分析实验室,作为青年科学家的郭建刚,肩负延续学科发展与服务国家需求新的重任。  “老一辈科学家的事迹和精神始终鼓舞着我。”郭建刚说。“陆学善院士和梁敬魁院士分别是中国著名的晶体物理学家和晶体物化学家,导师陈小龙除了在晶体结构分析和单晶生长具有深厚的学术功底,也是推动碳化硅晶体从基础研究到产业化的先行者之一。  让郭建刚感触最深的是,老师们总是以一丝不苟的态度,对待基础研究,即使看似很小的工作也做得非常扎实、严谨。  他一直记得陆学善先生和梁敬魁先生的一个科研故事,上世纪60年代,梁敬魁回国来到物理所,与陆学善合作开展了铜-金二元体系超结构研究,为了达到合金的平衡态,需要诸多工艺,单是退火处理这一个工艺过程,就需要六个月或者一年时间。他们耐住寂寞,几年之后,获得了一系列长周期的超结构相,其中有的是国外研究者已经研究多年,却始终没有观察到的现象。  “在很多人看来,这样的研究方法可能比较‘原始’,但恰是这种方法,为科研打下了扎实的基础,产出了诸多原创性成果。”郭建刚说,耐心、潜心是他从老先生那里学到的科学精神。  在郭建刚看来,今天,研究组在晶体生长领域产生了多项引领性的工作,尤其在碳化硅宽禁带半导体生长与新功能晶体材料探索方面,都是在多年的基础研究积累上取得的。  碳化硅是一种重要的宽禁带半导体,具有高热导率、高击穿场强等特性和优势,是制作高温、高频、大功率、高压以及抗辐射电子器件的理想材料,在军工、航天、电力电子和固态照明等领域具有重要的应用,是当前全球半导体材料产业的前沿之一和国内“十四五”规划重点攻关的半导体材料之一。  然而,一直以来,用于应用研究的大尺寸单晶存在较多难以突破的关键科学和技术问题,严重影响器件性能,诸多关键技术和设备面临着国外封锁。  近年来,针对相关难题,在陈小龙的带领下,郭建刚在扎根基础研究的同时,与团队共同推动研究成果产业转化,获得了2020年度中国科学院科技促进发展奖。  “最大的挑战是基础研究领域的突破,在晶体研究领域,我们还需要更细致、更系统和更‘原始’的研究。”郭建刚深知,基础科学问题的突破将会极大地提高晶体的质量和应用范围,给学术和产业界带来巨大变革,但攀登科学高峰这条路必定不轻松,还好,有热爱,可抵漫长岁月。
  • 日立高新SU8010观察氧化铝晶体上外延生长的氧化铁晶体
    本例是氧化铝晶体上外延生长的氧化铁晶体的观察例。这个样品是给陶瓷品上彩用的颜料(红褐色),主要成分是刚玉(Al2O3)和氧化铁(Fe2O3)。为了弄明白它为什么能成长出如此漂亮的结构和其生长原理,用SEM进行观察就变得非常重要。  左图是用Upper探头拍的背散射电子的照片,通过成分对比度可以判断出Al2O3的周围存在着Fe2O3。另外,对Al2O3处放大后(右图)可以发现很细微的台阶结构。本例采用日立高新SU8010场发射扫描电子显微镜进行观察,关于此仪器请参考:http://www.instrument.com.cn/netshow/SH102446/C138451.htm 关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合n性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • 耐上千摄氏度高温的光子晶体问世
    据美国物理学家组织网近日报道,美国麻省理工学院(MIT)的一个研究小组找到了一种采用金属钨或钽制造出可耐受1200摄氏度高温的光子晶体途径。这种材料可广泛应用于智能手机、红外线化学探测器和传感器、深度探索太空的宇宙飞船等供电装置。相关论文刊登在最新一期的《美国国家科学院院刊》上。  光子晶体指能对光作出反应的特殊晶格,可影响光子运动的规则光学结构,类似于半导体晶体对于电子行为的影响。其晶格尺寸与光波的波长相当,是不同折射率的电介质材料在空间呈周期性排列构成的晶体结构。  MIT军用纳米技术研究所工程师赛拉诺维奇表示,几乎完全可以采用标准的微细加工技术和现有设备将这种新型耐高温、二维光子晶体制造成计算机芯片。与早期制造的高温光子晶体的方法相比,采用新方法制造出的材料具有“更高性能、简单操作、坚固耐用”等特点,适合低成本的大规模生产。  美国国家航空航天局也对这种材料很感兴趣,因为它具有为深度探索太空提供永续动力的潜力。完成这样的任务通常利用少量的放射性物质的能量,采用放射性同位素热电源(RTG)。例如,计划在今年夏天抵达火星的“好奇”号探测器使用的就是RTG系统,可以连续不间断作业多年,而不像太阳能供电站,到了冬天就会出现发电不足的情况。  这种耐高温光子晶体应用前景十分广阔,可用于太阳能光热转换或太阳能光化学转换装置、放射性同位素的供电设备、氮氢化合物发电机或工业领域电厂余热回收的配套设施等。但制造这种材料还存在许多障碍,高温会导致晶体蒸发、扩散、腐蚀、开裂、熔化或快速化学反应。为了克服这些挑战,MIT的研究小组正在对高纯度的钨在结构上进行专门精密的几何设计,以避免材料在被加热时损坏。  该材料还可以取代电池,为便携式电子设备有效供电,采用丁烷作燃料运行热光生电机产生能量,作业时间比电池长10倍。
  • 半导体晶体生长设备供应商南京晶升装备29号上会
    南京晶升装备股份有限公司(以下简称“晶升装备”)9月21日正式发布上会稿,9月29号上会。晶升装备聚焦于半导体领域,向半导体材料厂商及其他材料客户提供半导体级单晶硅炉、碳化硅单晶炉等定制化的晶体生长设备。其产品半导体级单晶硅炉下游行业为硅片厂商,下游应用行业具有技术壁垒高、研发周期长、资金投入大、下游验证周期长等特点,市场集中度较高。根据 Omdia 统计1,全球硅片市场份额主要被日本信越化学、日本胜高、中国台湾环球晶圆、 德国世创和韩国 SK 五大企业占据,五大企业占全球硅片市场份额约为 90%,由于国内半导体硅片行业起步较晚,国内硅片市场份额不足 10%,相对较低,增速及进口替代空间巨大。中国大陆半导体硅片厂商技术发展相对落后,国内主要硅片厂商以生产 200mm(8英寸)及以下抛光片、外延片为主,300mm(12英寸)产能规模占比相对较低,仅有沪硅产业(上海新昇)、TCL 中环(中环股份)、立昂微(金瑞泓)、奕斯伟等少数厂商可实现12 英寸半导体级硅片批量供应。目前国内自产12英寸产能仅为54万片/月,总需求为150万片/月至200 万片/月,自产供给和需求之间存在较大差距,主要依赖进口。从全球趋势来看,由于成本和制程等原因,国内12 英寸需求也将越来越大。因此,12英寸半导体级硅片成为未来国内硅片市场主要增长点,带动上游晶体生长设备行业实现规模化增长。晶升装备在三轮问询回复中表示,公司已于2018年率先实现了12英寸半导体级单晶硅炉国产化。虽然产品设备规格指标参数、晶体生长控制指标参数与国外厂商基本处于同一技术水平,但因产业应用时间较短,验证经验相对不足,目前与国外厂商的竞争中还处于相对劣势。以国内12英寸硅片龙头企业沪硅产业(上海新昇)为例,其采购国外厂商S-TECH Co., Ltd半导体级单晶硅炉产品占采购同类产品比例超过85%,采购晶升装备12英寸半导体级单晶硅炉产品占采购同类产品比例约为10%-15%。然而,相比国内厂商,晶升装备具有先发及领先优势。其12英寸半导体级单晶硅炉产品技术水平、市场地位及市场占有率国内领先,随着产业应用时间及下游认证的逐步推进,晶升装备将在半导体级单晶硅炉国产化替代进程中具备较强的竞争优势。根据三轮问询回复,目前晶升装备在半导体级单晶硅炉的国内竞争对手主要为晶盛机电及连城数控。晶盛机电及连城数控的的晶体生长设备下游应用领域主要为光伏级硅片领域,晶升装备产品聚焦于半导体级单晶硅炉领域。晶升装备的12英寸半导体级单晶硅炉已实现为国内领先半导体硅片企业沪硅产业(上海新昇)、立昂微(金瑞泓)的批量化销售。其产品的定制化能力、可应用制程工艺、下游量产进度较国内竞争对手具有领先性。晶升装备根据国内硅片行业整体预计新增产能对公司半导体级单晶硅炉市场空间进行测算,预计未来2-3年,公司半导体级单晶硅炉市场空间可达约9-29亿元。
  • 联影开建世界最大高端医械晶体生产基地
    在科创板过会、研发取得重大突破的联影医疗又有大动作!6月18日上午,2022年常州国家高新区重点项目集中签约“拿地即开工”仪式上,联影高端医学影像设备及核心部件项目等总投资103.4亿元的12个重点项目落地。随着“健康中国”已上升为国家战略,我国大健康市场快速扩容、高端医学影像行业支持力度增加以及新冠疫情的常态化防控等因素都促进了对医学影像设备的潜在需求,经过十余年国产医学影像设备技术的发展以及相关核心部件公关,国产品牌的进口替代趋势愈发明显,进口品牌的市场份额呈现下降趋势。据了解,联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力,项目建成后,将成为世界上最大的高端医疗设备晶体生产基地,这将极大地满足国内医学影像设备需求。01、要建世界最大高端医疗设备晶体生产基地围绕《新材料产业发展指南》明确的十大重点领域,力争到2020年在关键领域建立20家左右。“医疗器械材料生产应用示范平台”即此前工信部按照国家新材料产业发展总体规划,在“生物医药 和高性能医疗器械材料”领域部署的国家级应用示范平台。LYSO/LSO晶体在核医学设备、高能物理、油井钻探、安全检查、环境检查等领域应用广泛,是目前全球最重要和最理想的射线探测器材料之一。当前,我国正推动大型医疗设备国产化,为打破国外材料供应商对国内医疗设备厂商的垄断供应局面,进一步完善国产高端医疗设备的研发、生产体系,LYSO/LSO晶体等闪烁晶体材料的国产化是重要环节。而在影像产业链中,核心部件主要涉及闪烁晶体、液氦、X射线球管、高压发生器、探测器等。闪烁晶体是能够与X射线、伽玛射线、带电粒子等粒子发生作用,将粒子沉积在闪烁晶体中的动能转换为可见光光子的透明晶体。硅酸钇镥(LYSO)稀土闪烁晶体作为PET探测器的核心部件,占到PET/CT整机成本的40%-50%,与溴化镧稀土闪烁晶体同为最具商业价值的新材料。国产PET/CT无论是关键技术还是核心材料,均已不逊色国外品牌,甚至在一些“卡脖子”的原材料方面也取得了突破性进展,2019年,联影医疗联合下游企业——上海新漫晶体,通过上海市工业强基项目“符合PET/CT需求的大尺寸晶体的开发与产业化”的持续攻关,制定晶体性能指标要求,承担晶体性能检测、效果验证等工作,实现了LYSO 晶体的国产化,解决了国产PET/CT对进口晶体的依赖问题。现在,上海新漫系联影重要子公司,为公司提供分子影像产品重要原材料LYSO闪烁晶体。除了晶体制造技术,联影公司还掌握探测器技术、数据传输和处理技术、产品设计和制造能力等,在高端医疗影像设备研发及产业化中联影展现更大雄心,在刚过科创板的招股书中:联影要新建高端智能制造工厂,购置和安装必要的产线生产设备、自动化升级设备、自动控制设备、立体仓库和物流设备以及搭建厂区智能化系统,建成后主要用于生产高端XR、CT、PET/CT、MR和PET/MR等系列产品;新建生产研发楼;新建配套综合楼以及其他配套设施。RT在研产品 CT在研产品2018 年,联影医疗uRT-linac 506c 获NMPA 医疗器械技术审评中心第三类医疗器械认证,是世界首款一体化CT 直线加速器。目前联影医疗在放疗领域的前沿性、关键性技术的掌握情况如下:联影医疗对加速管、多叶光栅已实现自研自产,并结合治疗床技术,精密剂量控制系统,治疗计划系统,肿瘤信息系统等方面形成技术基础。未来联影医疗在放疗领域核心部件的布局规划主要包括下一代功率源系统、加速管系统、新一代多叶光栅等。经过多年的经营积累,常州联影已具备包括MR、CT、DR和RT在内的高端医学影像设备上游机加工和整机生产能力。此次,常州联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力。项目建成后,将成为世界上最大的高端医疗设备晶体生产基地。02、揭秘联影常州基地重大项目建设,是经济发展的“稳定器”。二季度,常州强保障、优服务,启动“拿地即开工”攻坚行动,保障重大项目快开工、快推进、快投产,以项目之“进”撑经济发展之“稳”。在科技创新的加持下,常州产业发展的韧性得以进一步加强:全国每五台工业机器人中,就有一台是“常州造”;动力电池年产值国内第一,占全国份额的三分之一、全省的三分之二;智能制造装备、新型碳材料产业集群进入“国家队”… … 瞄准“国际化智造名城、长三角 中轴枢纽”发展定位,常州正在智能制造上找准定位、增强特色、拉长长板。2022年,常州国家高新区确立实施173个重点项目,年内计划投资367亿元。今年以来,常州高新区全面深化“招推服一体化”改革,最大程度压缩审批时限,在签订土地出让合同的当天即同步下发“四证五书”,实现从拿地到开工“零时差”。本次集中签约项目共24个:包括总投资30亿元重大项目1个,精品外资项目5个,高端智造产业及生产性服务业项目12个,科技人才项目6个。在此次签约仪式上,新北区代区长石旭涌为12个拿地即开工项目代表:联影(常州)二期项目负责人颁发了证书。据了解,今年二季度,常州国家高新区共有40个开工重点项目,总投资达231.6亿元。联影(常州)医疗科技有限公司是全球单体规模最大的全线高端医疗设备生产基地。联影(常州)项目总占地面积340亩,一期用地162亩,建筑面积91505平方米,总投资15亿元,建成后形成年产数字平板X射线成像系统3600套、CT系统500套、分子影像系统(磁共振成像)720套、放射治疗仪系统400套的生产能力。2020年销售额为9.92亿元,纳税额为1.3亿元。联影自落户常州高新区以来,始终保持高质量发展态势,取得了很好的发展。新冠疫情期间,联影在第一时间驰援武汉,更是展现出了让人称赞的“中国速度”。据介绍,从小年夜到年初五,按计划生产的移动DR15台,CT530系列设备10台,已基本按需完成。后续,仍保质保量供应。去年1月19日上午,常州国家高新区与联影医疗技术集团举行项目签约仪式,联影医疗技术集团决定在常州高新区投资30亿元,建设二期新项目,作为全国获得国家专利金奖和商标金奖仅有的两家企业之一,上海联影医疗科技股份有限公司在投资联影(常州)一期项目基础上,今年投资建设的二期项目正式启动,此次联影高端医学影像设备及核心部件项目要建成的世界最大高端医疗设备晶体生产基地便在该期项目中。联影(常州)医疗科技有限公司总经理严全良感慨道:“联影(常州)一期项目在整个报建、生产过程中,得到了市、区、镇各级政府的大力支持和帮助!原本至少近70个工作日的审批过程,缩短为1个工作日,真正做到了‘拿地即开工’。政府部门高效的审批,让我们企业真正实现了‘少走路’、‘少等待’,帮助我们项目‘早开工、早投产’”。03、差异化定位、区域化分工构建的全球化产能格局形成上海联影医疗科技股份有限公司成立于2011年3 月,是联影医疗技术集团的总部,研发中心辐射全球,主要从事高端医学影像诊断产品、放射治疗产品及高端生命科学仪器的设计、研发、生产和销售,并提供配套智能化、信息化解决方案,主打高端医疗设备市场,有国内唯一设计、研发、制造医用1.5T、3.0T超导磁体等全线产品的能力。2020年,联影医疗在武汉全面布局,总投资约50亿元,占地20余万平方米的联影医疗武汉总部基地一期已正式启用,是全球高端医疗设备行业规模最大,最具特色的研发、生产、运营中心。同时,联影智能武汉分部、UIHCloud联影云总部也“安家”于此。联影武汉总部基地智能制造中心该基地投用后,到2028年,将实现高端医疗设备本土化生产和销售,预计年收入百亿元。联影医疗将在武汉重点打造联影高端医疗设备研发及智能制造中心,自主研发生产手术机器人、医疗可穿戴设备等先进医疗装备。常州是一个世界级加工基地,联影认为整个产业链的把控才能确保产品的质量,才能确保最优的性价比利用一流设备,从原材料精加工到模具都是自己做。此外联影在美国德州还拥有休士顿研发基地,并称未来在国外还会建更多生产基地,进入世界市场。去年9月24日,虹桥国际开放枢纽重大项目集中开工长宁区分会场活动,在联影智慧医疗产业园项目建设工地举行,联影智慧医疗产业园是此次5个集中开工的参与项目之一。联影医疗科技智慧医疗总部项目位于广顺北路临华路,用地面积约2.99万平方米,地上建筑面积约9.45万平方米,地下建筑面积约8万平方米。园区主要包括联影智慧医疗全球总部、中国智慧医学影像研究院及智慧影像产业基地、智慧医疗亚洲体验中心及旗舰店、联影互联网医院管理中心、联影全国基层医疗升级指导培训中心和共建关键学科专家工作室中心,将建成具备集团优势、生态优势和运营团队优势的产业集聚区。据文汇报报道,未来五年联影智慧医疗预期年收入100亿元,团队接近5000人,服务覆盖国内大部分地区,带动医疗大健康领域人工智能技术设备创新和医疗健康产业的产融结合服务创新,催生1000亿元产业规模,助力长宁相关产业发展。联影医疗产业化示范基地二期效果图今年1月6日,联影医疗产业化示范基地二期项目作为嘉定新城今年首批6个重大项目之一正式启动建设。此次启动建设的联影医疗产业化示范基地二期,将建成为全球规模领先的、国际一流的现代化、智能化高端医疗装备研发生产基地。据悉,联影医疗产业化示范基地二期项目总投资31.26亿元,总建筑面积约42万平方米,将建设成为集技术研发、智能制造、国际交流培训、全球品牌展示、生活服务、中央公园等功能于一体的智慧园区,可容纳8000-10000人。园区将由曾设计上海中心大厦的全球顶尖建筑设计公司Gensler设计,预计2024年底竣工。此次,大手笔打造的“超级工厂”将作为公司全球研发总部,新基地对标国际最高水平,加速下一代产品与技术研发创新,推动PET/MR、PET-CT、MR、CT、XR等全线高端医疗装备、核心部件与先进技术从研发到产业化的进程,推动“卡脖子”技术自主可控。新基地还将打造数智化超级工厂,借助工业物联网、大数据、人工智能等前沿技术,将实现生产制造、仓储、物流等各环节生产要素全面感知和控制,以自动化、智能化、精密化的生产及运营管理,大幅提升全线高端产品全球供给能力与速度。由此,上海总部基地、常州工厂、武汉基地、美国基地几大基地之间也将构建起差异化定位、区域化分工的全球化产能格局。两月前,万众瞩目的联影医疗终于过会了!融资金额高达124.8亿元,市值有望破千亿,这也是科创板市场2022年以来IPO规模最大的上市企业。募集资金用于下一代产品研发、高端医疗影像设备产业化基金项目等,提前规划“多中心、分级次”的生产基地战略布局,新建生产基地,将有力提升公司品牌的全球影响力。
  • KBr溴化钾人工晶体的概念是什么?
    傅里叶红外光谱仪测试样品时不可缺少的就是溴化钾光谱纯(碎晶/粉末),而在实验室做红外测样实验高消耗品之一的溴化钾光谱纯,再次恒创立达为各位大咖普及一下关于溴化钾KBr材料的相关知识。 KBr溴化钾人工晶体概念 我国晶体生长有着悠久的历史,早在春秋战国甚至更早的时期,就有煮海为盐、炼制丹药等晶体生长的时间活动,而同时,世界上随着炼金术的兴起与发展,人工晶体生长,特别是人工晶体气相生长在全世界都有发现。 进入二十世纪后,人工晶体生长才有飞跃式的发展,不仅体现在人工晶体生长理论、人工晶体生长技术上,而且,发现了一大批极有价值的新晶体,为科学进步和人类生活水平提高做出了巨大贡献。 人工晶体生长的水平主要表现在技艺和科学两个方面,其中,晶体生长技术在晶体的研究中占有极重要的地位。晶体是在物相转变的情况下形成的。 由于晶体可以从气相、液相和固相中生长,而不同的晶体材料又有不同的生长条件,加上应用对晶体的要求有时十分苛刻,这样就造成了晶体生长方法的多样性以及生长设备和技术的复杂性:从高真空到超高压,从低温到等离子体高温,从精密检测生长参数到微机自动监控生长过程,从高纯原料到超净环境......,晶体生长技术几乎动用了现代实验技术中一切重要手段,并长出了大量支撑现代科学技术发展的高品质晶体。 人工晶体生长,是物质在一定的热力学条件下相变成为晶体的过程。晶体生长多数是控制生长条件,使生长的原料从液态(熔体或溶液)转变为固态,成为单晶体。也有从气体状态生长晶体的方法。目前,已经发展出来诸如水溶液法、提拉法等许多不同的人工晶体生长方法和技术,用于不同性质的晶体的生长。 晶体生长是一个由小到大的过程,在一个合适的介质条件下,晶体生长有三个阶段:首先是介质达到过饱和,过冷却,或者融熔阶段,其次是成核,即晶核形成阶段,最终是晶体生长阶段。晶核是晶体的萌芽状态。下面是四溴化碳中添加红色燃料杂质后形成枝晶的过程。
  • KBr溴化钾人工晶体是如何生长的?
    据2020年6月19日本司动态新闻发布关于KBr溴化钾人工晶体的概念是什么?受到很多大咖的关注。借此要求我司会履行为大咖们续写关于溴化钾相关知识,为大咖们在选择仪器或者仪器耗材时做好准备。 今天恒创小编深入解读一下KBr溴化钾人工晶体生长过程是怎样的呢? 所谓生长,对于生物体而言,就是一个从小到大,从幼稚到成熟的过程。生物体生长需要养料,需要空气、阳光等环境。同样,对于“晶体的生长”,也是一个晶体从小到大的不断变化的过程,也需要养料(原料)和合适的环境,如生长炉、合适的温度等。 不同的生物体的生存环境、生长发育各不相同,同样,对于晶体而言,不同的晶体有不同的生长过程,需要不同的生长条件,有相应的不同的晶体生长技术和方法,其晶体生长的过程和要求也有所不同。 下面,我们将以提拉法晶体生长为例,介绍晶体生长的过程。 提拉法是一种从熔融原料中生长晶体的方法,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。提拉法生长晶体的过程大致分为多晶料烧结(含称料、混料、烧料、二次烧结等)、提拉晶体(含化料、下籽晶、放肩、生长等)以及晶体出炉几个步骤。对于上述晶体生长的概念和过程,您可以在后面的页面后找到详细的描述。
  • 3D打印新技术精细“雕刻”光子晶体
    五彩缤纷的蝴蝶翅膀、光鲜靓丽的孔雀羽毛、闪耀着金属光泽的昆虫甲壳……点缀着这些大自然奇妙杰作的并非普通色素,而是光与光子晶体结构发生散射、干涉、衍射等作用后形成的结构色。光子晶体是由不同折射率介质周期性排列而形成的光学超材料,也被称为光学半导体。通过设计和制造光子晶体材料及相关器件来控制光子运动,并在此基础上进一步实现光子晶体材料的各种应用,是人们长久以来的梦想。近日,中国科学院化学研究所绿色印刷院重点实验室研究员宋延林、副研究员吴磊等研究人员组成的研究团队利用连续数字光处理(DLP)3D打印技术,实现了具有明亮结构色的三维光子晶体结构制备,为创新结构色制备方法及扩展3D打印的应用开创了新的途径。创新方法,让光子晶体精准“生长”光子晶体作为未来光子产业发展的基础性材料,其独特的三维光学控制能力使其在集成光学元件、光子晶体光纤及高密度光学数据储存等领域都有广阔的应用前景。3D打印技术近年来的成熟发展,也使其成为最好的光子晶体制备手段之一。宋延林向记者介绍,虽然近年来有一些将3D打印技术应用于多种图案化光子晶体制备的案例,但普通的3D打印技术因为墨水中树脂的光固化速度和纳米粒子组装速度的差异,存在结构色效果较差、打印精度较低、难以实现复杂三维结构等问题。上述方法制备的多种图案化光子晶体具有表面形貌粗糙和保真度较差等缺陷,难以被广泛应用于光学器件中。要实现高精度、高保真的光子晶体结构3D打印,就必须要开拓出新的方法。此次研究中,研究团队使用了连续数字光处理3D打印技术。与常见的将原材料层层挤出、堆叠而成的3D打印技术不同,连续数字光处理3D打印技术基于光敏树脂材料在紫外线照射下会快速固化的特性,利用紫外线光束在光敏树脂溶液中雕刻形成3D结构。此次研究团队所采用的连续数字光处理3D打印方法主要的打印步骤如下:首先,在透明基板上滴上墨水,将墨水上方的成型平面缓缓下降,与墨水进行接触;接下来,通过基板下方的光束将打印图案照射在墨水上;之后,受到紫外线照射的墨水会凝固成预先设计好的形状。一滴滴小小的墨水被“雕刻”为一个3D光子晶体结构,其整个产生的过程仿佛是从基板上“生长”出来。宋延林表示,研究团队所采用的连续数字光处理3D打印技术主要在两方面上取得了重要改进。在打印模式上,市面上的光固化连续数字光处理3D打印技术大都是层层打印,打印速度较慢。研究团队研发出的低黏附光固化界面,让液滴与基底之间的粘附力极低,打印过程没有任何“拖泥带水”,能够实现迅速连续打印成型,极大地提升了打印的速度。在成型方式上,市面上的光固化连续数字光处理3D打印技术通常要采用液槽来盛装大量液态树脂。采用液槽来盛装大量液态树脂的方式导致在连续打印过程中,不该固化的区域因为受到照射而固化,不仅造成原材料的大量浪费,也降低了连续打印过程中的稳定性及分辨率。研究团队摒弃了液槽,而是以单墨滴为成型单元,通过控制固化过程中气、固、液三相接触线,显著减少了液体树脂在固化结构表面的残留。同时,以单墨滴为成型单元还降低了界面粘附,增加了液体内部树脂的流动,显著提高了3D打印的精度和稳定性。克服困难,逐个击破墨水难题除了创新打印方式,此次研究中,研究团队对打印所需的墨水也进行了大胆革新。“我们这次研究中最困难的环节就是打印墨水的开发。”宋延林表示。针对上述问题,研究团队创造性地研发出了利用氢键辅助的胶体颗粒墨水,赋予了打印结构高质量的结构色与光子晶体特性。研究团队研发的墨水由三部分组成:实现三维结构构建的光固化单体和光引发剂、保证结构色的纳米颗粒、减少光散射的添加剂。在单体的选择和引发剂合成上,考虑到环保要求,研究团队合成的墨水为水性体系。但由于目前广泛使用的引发剂大多为油溶性,少数水溶性的引发剂又与3D打印所采用的光波波长不匹配,光引发效率较低。为了能够得到较高光引发效率的水溶性引发剂,团队查阅了大量文献并进行了反复的摸索实验,最终成功合成出了水溶性的光引发剂。除了引发剂,光固化单体的选择更加至关重要。宋延林表示,合格的光固化单体必须满足既能实现三维结构化,又不能在打印过程中引起聚合物和纳米颗粒的相分离的条件。论文第一作者张虞表示,“最终我们找到了丙烯酰胺这种适合的单体。”选定单体后,还需确定光固化单体与纳米颗粒的比例。如果光固化单体较少,就会无法打印。反之,如果光固化单体太多,则会影响纳米颗粒的运动和分散,进而影响结构色的质量。团队经过大量实验,对多种不同的比例组合反复尝试,最终确定了最佳比例。最后,为了减少光的散射对打印过程的影响,尽可能地提高打印结构的色彩饱和度,在添加剂的选择上,团队尝试了包括碳纳米管、碳纳米纤维以及黑色墨水等多种材料。但上述材料均存在种种缺陷,研究团队最终将经过特殊处理的炭黑作为添加剂。前景广阔,让结构色“五彩斑斓”在此次研究中,研究团队发现,视角、胶体颗粒粒径以及打印速度等因素都会影响3D结构色的呈现。当胶体颗粒粒径和打印速度不变时,随着视角增加,结构色蓝移,即从橙色转变为黄绿色,最后转变为蓝紫色。这种视角依赖的特性,使得连续数字光处理3D打印技术在个性化珠宝配饰及装饰、艺术创作等领域有着比较广阔的应用前景。除了视角变化会影响结构色的呈现外,当打印速度固定时,控制固定胶体颗粒粒径、调节打印速度,都可以得到覆盖可见光范围的系列结构色。采用顺序切片、依次投影、分段打印的方式,还可使同一物体结构上呈现出多种结构色。除了实现“信手拈来”般地制备结构色,研究团队利用此种连续数字光处理3D打印技术制备出的多种具有光滑内外表面、低光学损耗及颜色选择性的线性光传输和非线性光传输3D结构,也验证了该方法在制造高效光学传输器件方面的独特优势。宋延林表示,未来研究团队会在光子晶体功能器件的制备方面继续进行新的探索。
  • 化学所在金属配合物低维晶体方面取得新进展
    p 低维有机晶态材料具有规整度高和结构缺陷少的特点,是揭示材料本征特性和构筑高性能光电器件的最佳选择之一,近年来在有机半导体电子学和纳米光子学等方面取得重要应用。考虑有机分子的组装特点,通常使用具有较强分子间作用力的平面型有机分子来制备高规整度的低维晶体。相比较,钌、铱等过渡金属配合物虽然被广泛用于多种光电领域,但因其溶解性较差和分子结构非平面型的特点,相关低维晶态材料的可控制备鲜有报道。/pp style="text-align: justify " 在国家自然科学基金委和中国科学院先导项目支持下,中科院化学研究所光化学实验室姚建年/钟羽武研究团队近年来在光功能金属配合物的设计合成与光电性能方面开展了系统性工作(J. Am. Chem. Soc.2015, 137, 4058 Angew. Chem. Int. Ed.2015, 54, 9192 Coord. Chem. Rev.2016, 312, 22 Sci. China Chem.2017, 5, 583)。在此基础上,他们近期选取两种结构和溶解度相似的金属铱、钌光功能配合物作为能量给、受体,制备了双组份均匀掺杂或异质结纳米棒晶体,实现高效三线态能量转移和微纳尺度下多级组装过程的原位观察(J. Am. Chem. Soc.2018, 140, 4269-4278)。/pp style="text-align: justify " 最近,科研人员通过溶液再沉淀法成功制备了甲基化苯基吡啶金属铱配合物的高质量一维管状微纳晶体,并进一步通过晶体掺杂,得到了两种不同铱配合物的二元能量转移晶体,实现聚集发光淬灭(ACQ)受体的光放大和微纳尺度温度响应功能。研究表明,当受体的掺杂量为0.2%时,此类晶体可以实现接近80%的三线态能量转移效率和800倍以上的受体磷光放大。在常温时,晶体表现出受体的红色磷光,固态量子产率达到40%。随着温度的降低,晶体的激子能量转移受到抑制,给体的绿色发光重新被激活,实现微纳尺度下发光颜色变化的原位调控与温敏监测。该工作表明了过渡金属配合物在低维晶体制备与光功能方面的独特应用,并为三线态激子能量转移的机制研究提供重要信息(Angew. Chem. Int. Ed.2018, 57, 7820-7825)。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/e32021df-136a-457d-afb5-bfd3ccfeb16d.jpg" title="3.jpg"//pp style="text-align: center "图:基于金属配合物低维晶体的光放大与温度响应/ppbr//p
  • 我国科学家创制极化激元晶体管
    纳米尺度的光电融合是未来高性能信息器件的重要发展路线。如何在微纳甚至原子尺度对光进行精准操控是其中的关键的科学问题。中国科学院国家纳米科学中心研究员戴庆研究团队率先提出利用极化激元作为光电互联媒介的新思路,充分发挥它对光的高压缩和易调控优势,不仅有望实现高效光电互联,而且可以提供额外的信息处理能力,从而进一步提升光电融合系统的性能。   该团队通过十多年的努力,实现了极化激元的高效激发和长程传输。在此基础上,研究设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。研究表明该晶体管可实现光正负折射的动态调控,类似电子晶体管能切换(1,0)两个高低电位,为构筑与非门等光逻辑单元奠定了重要基础。该研究充分发挥了不同材料的纳米光子学特性,从而突破了传统结构光学方案如使用人工结构(超材料和光子晶体等)在波段、损耗、压缩和调控等方面的性能瓶颈。   与电子相比,光子具有速度快、能耗低、容量高等优势,被寄予未来大幅提升信息处理能力的厚望。因此,光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。光电互联(电-光-电转换)是光电融合主的基础,相当于光电两条高速公路交汇的收费站。而现有硅基光电集成方案存在效率低(依赖多次光电效应)、体积大(光模块无法突破衍射极限)等问题,制约光电器件之间的信息流转。然而,光子不携带电荷且光的传输受限于光学衍射极限,相比于能轻易通过电学调控的电子,对光子的纳米尺度局域和操控并不容易。   极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式(表面波)。它具有优异的光场压缩能力,可轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。   戴庆团队以攻克高速光电互联这一世界技术难题为目标,提出以纳米材料的表面波(极化激元)为媒介,实现高效光电互联的新思路。构筑光-极化激元-电转换路径相当于将高速公路的收费站改造成立交桥,具有显著优势:一是效率高,光/电激发材料表面波的效率相比光电效应提升潜力巨大;二是集成度高,光波转化成材料表面波可将波长压缩百倍轻松突破衍射极限,从而显著提升光模块集成度;三是算力强,材料表面波具有光子性质可进行高效并行计算,从而将现有光电融合的“光传输、电计算”拓展成为“光传输、电计算+光计算”,实现“1+12”的效果。   戴庆提出,我们利用电学栅压对极化激元这种光波的折射行为实现了动态调控,使其从常规的正折射转变到奇异的负折射。这好比可以像操纵电子一样操纵光子,为将来高性能光电融合器件与系统的发展提供重要促进作用。这一研究在应用上面向光电融合器件大规模集成缺乏高效、紧凑光电互联方式的重大需求,在科学上为解决突破衍射极限下高效光电调制的难题提供了新思路。   2月10日,相关研究成果以Gate-tunable negative refraction of mid-infrared polaritons为题,发表在《科学》(Science)上。该论文审稿人评价道,这证实了一项非常规的物理现象,为研究纳米尺度的光操控提供了崭新的平台。图示极化激元晶体管的基本原理,通过在氧化钼上覆盖石墨烯构筑范德华异质结,天线激发极化激元传输穿过界面后形成负折射。极化激元晶体管的光学显微镜照片
  • 芯片上“长”出原子级薄晶体管
    美国麻省理工学院一个跨学科团队开发出一种低温生长工艺,可直接在硅芯片上有效且高效地“生长”二维(2D)过渡金属二硫化物(TMD)材料层,以实现更密集的集成。这项技术可能会让芯片密度更高、功能更强大。相关论文发表在最新一期《自然纳米技术》杂志上。这项技术绕过了之前与高温和材料传输缺陷相关的问题,缩短了生长时间,并允许在较大的8英寸晶圆上形成均匀的层,这使其成为商业应用的理想选择。新兴的人工智能应用,如产生人类语言的聊天机器人,需要更密集、更强大的计算机芯片。但半导体芯片传统上是用块状材料制造的,这种材料是方形的三维(3D)结构,因此堆叠多层晶体管以实现更密集的集成非常困难。然而,由超薄2D材料制成的晶体管,每个只有大约三个原子的厚度,堆叠起来可制造更强大的芯片。让2D材料直接在硅片上生长是一个重大挑战,因为这一过程通常需要大约600℃的高温,而硅晶体管和电路在加热到400℃以上时可能会损坏。新开发的低温生长过程则不会损坏芯片。过去,研究人员在其他地方培育2D材料后,再将它们转移到芯片或晶片上。这往往会导致缺陷,影响最终器件和电路的性能。此外,在晶片规模上顺利转移材料也极其困难。相比之下,这种新工艺可在8英寸晶片上生长出一层光滑、高度均匀的层。这项新技术还能显著减少“种植”这些材料所需的时间。以前的方法需要一天多的时间才能生长出一层2D材料,而新方法可在不到一小时内在8英寸晶片上生长出均匀的TMD材料层。研究人员表示,他们所做的就像建造一座多层建筑。传统情况下,只有一层楼无法容纳很多人。但有了更多楼层,这座建筑将容纳更多的人。得益于他们正在研究的异质集成,有了硅作为第一层,他们就可在顶部直接集成许多层的2D材料。
  • 我科学家发现一种新型光学晶体
    本报北京2月28日电 2月19日的《自然》杂志,以《中国藏匿的晶体》为题,用3页篇幅对中科院理化技术研究所陈创天院士率领的团队,发现并生长出一种最新的光学晶体———氟代硼铍酸钾(KBBF)晶体进行了详细报道,并称“中国实验室成为这种具有重大科学价值的晶体的唯一来源,它表明中国在材料科学领域实力日益增强”。  KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个“中国产”非线性光学晶体。《自然》杂志称:“其他国家在晶体生长方面的研究,目前看来还无法缩小与中国的差距。”  陈创天团队经过18年研究,采用“局域自发成核生长技术”,突破大尺寸KBBF晶体生长的技术瓶颈,生长出迄今为止尺寸最大的透明块状KBBF单晶,并结合他们发明的非线性光学晶体的棱镜耦合专利技术,成功制作出KBBF晶体厚度为2.3毫米的光接触棱镜耦合器件,保证了产生深紫外激光的实用性和精密化性能。这项技术为193纳米光刻技术系统中所需要的全固态光源奠定了基础。目前,该技术已获中国、美国和日本发明专利授权。  KBBF晶体能够缩短激光的波长,装备该晶体的各种激光器能发出具有极窄频宽的紫外光波,可测量固体电子能级的分辨率达到360微电子伏特 并可用于建造超高分辨率光电子能谱仪、超导测量、光刻技术等前沿科学研究,对未来的微纳米加工、生物医学、激光电视等将产生深远影响。
  • 中国科学家创制全波段相位匹配晶体
    激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。   该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然-光子学》在线发表。   非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,其中利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相位匹配波长的差值表征。   团队前期在特邀综述(Angew. Chem. Int. Ed. 2020, 59, 20302-20317)中提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?近期,该团队创制了一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并以此为指导获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率0.02%,依然可以实现倍频激光输出,验证了其全波段相位匹配特性,使该晶体成为目前首例实现了全波段双折射相位匹配的紫外/深紫外非线性光学晶体材料。研究结果表明,宽的相位匹配波长范围使GFB晶体透光范围得到充分应用,可实现1064 nm激光器二、三、四、五倍频高效、大能量输出,有望满足半导体晶圆检测等领域的重大需求。更重要的是,GFB可采用水溶液法生长出高质量、超大尺寸晶体,使其有望成为应用于大科学装置的新晶体材料。   今年是习近平总书记视察中国科学院并提出“四个率先”目标要求十周年。十年来,新疆理化所认真贯彻落实习近平总书记重要指示精神,面向国家重大需求,在新型光电功能晶体材料等重要技术领域取得了一系列科研成果。下一步,新疆理化所将持续开展相关晶体材料、器件及激光光源应用的攻关研究,力争产出更多原创性、引领性重大创新成果。GFB晶体器件利用GFB晶体进行激光实验
  • 新疆理化所创制全波段相位匹配晶体
    短波紫外全固态相干光源具有光子能量强、可实用化与精密化、光谱分辨率高等特点,在激光精密加工、信息通讯、前沿科学和航空航天领域颇具应用价值。获得全固态短波紫外激光的核心部件是非线性光学晶体。在非线性光学过程中,若使基频光的能量源源不断地转换到倍频光,需要保持基频光激发的二次极化谐波和倍频光在晶体中位置时刻相同,但由于晶体的本征色散导致基频光和倍频光的折射率不同,进而导致两束光在晶体中群速度不同,无法实现倍频光的持续增长,此为相位失配。因此,在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,如晶体各向异性的双折射相位匹配技术、晶体内部自发畴结构的随机准相位匹配技术和人工微结构准相位匹配技术等。其中,利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该技术利用各向异性晶体的双折射特性,使一定偏振的基频光沿晶体的特定方向入射,或者改变晶体的温度,实现角度或者温度相位匹配,即使基频光和倍频光在晶体中特定方向传播时的折射率相同。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相片匹配波长的差值表征(λcutoff-λPM)。中国科学院新疆理化技术研究所晶体材料研究中心致力于新型紫外、深紫外非线性光学晶体的设计与合成。该团队前期基于领域前沿进展的研究和对非线性光学晶体双折射相位匹配现状的剖析,在特邀综述中首次提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?若该假设在晶体中得以实现,将为晶体在整个透过范围内均实现双折射相位匹配提供新途径和新思路。近期,该团队创制一类新非线性光学晶体即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,从折射率的微观表达及双折射色散曲线、折射率色散曲线和相位匹配等光学条件等角度出发,给出两种独立的全波段相位匹配晶体的评价参数,并将此评价参数应用于一些经典的非线性光学晶体材料,讨论以此参数评估晶体相位匹配波长损失的可行性和普适性。基于此,研究获得一例非线性光学晶体(GFB)。实验通过多级变频的方案或光参量技术方案,研究晶体在整个透过范围内的直接倍频输出能力,并基于相位匹配器件已经实现193.2-266 nm紫外/深紫外可调谐激光输出,验证其该晶体全波段相位匹配能力,使该晶体成为目前首例且唯一一例实现了全波段双折射相位匹配的紫外/深紫外倍频晶体材料。该材料193.2 nm处晶体透过率0.02%,依然可以实现倍频激光输出,验证了其全波段相位匹配特性。该晶体具有优异的线性和非线性光学性能,如短紫外截止边(~193 nm),大有效倍频系数(deff = 1.42 pm/V)、短相位匹配波长(~194 nm)和高抗激光损伤阈值(BBO@ 266/532 nm, 8 ns, 10 Hz)等,是颇具应用前景的266 nm激光用非线性光学晶体材料。相关研究成果以全文形式发表在《自然光子学》(Nature Photonics)上。研究工作得到科技部,国家自然科学基金委员会和中国科学院等的支持。GFB晶体结构、微观性能分析及晶体照片
  • 可在P型与N型间转换的新式晶体管问世
    据美国物理学家组织网12月21日(北京时间)报道,德国科学家研制出一种新式的通用晶体管,其既可当p型晶体管又可当n型晶体管使用,最新晶体管有望让电子设备更紧凑 科学家们也可用其设计出新式电路。相关研究发表在最新一期的《纳米快报》杂志上。  目前,大部分电子设备都包含两类不同的场效应晶体管:使用电子作为载荷子的n型和使用空穴作为载荷子的p型。这两种晶体管一般不会相互转化。而德累斯顿工业大学和德奇梦达公司携手研制的新式晶体管可通过电信号对其编程,让其自我重新装配,游走于n型晶体管和p型晶体管之间。  新晶体管由单条金属—半导体—金属结构组成的纳米线嵌于一个二氧化硅外壳中构成。从纳米线一端流出的电子或空穴通过两个门到达纳米线的另一端。这两个门采用不同方式控制电子或空穴的流动:一个门通过选择使用电子或空穴来控制晶体管的类型 另一个门则通过调谐纳米线的导电性来控制电子或空穴。  传统晶体管通过在制造过程中掺杂不同元素来确定其是p型还是n型,而新式晶体管不需要在制造过程中掺杂任何元素,通过在一个门上施加外部电压即可重新配置晶体管的类型。施加的电压会使门附近的肖特基结阻止电子或空穴流过设备,如果电子被阻止,空穴能流动,那么,晶体管就是p型,反之则是n型。  研究人员解释道,使这种再配置能起作用的关键是调谐分别通过肖特基结(每个门一个)的电子流动情况,模拟显示,纳米线的几何形状在这方面起关键作用。  尽管该研究还处于初期阶段,但新式晶体管展示出了极佳的电学特性。比如,与传统纳米线场效应晶体管相比,其开/闭比更高,且漏电更少。该研究的领导者沃尔特韦伯表示:“除采用人造纳米线外,采用目前先进的硅半导体制造技术也可以制造出这种晶体管,还可以用到自对准技术,大大提高工作频率和速度。”  接下来,科学家们计划通过改变材料的组成来改进新式晶体管的性能,并制造出由其运行的电路。他们表示,最大的挑战是,在将其与其他晶体管结合在一起时,如何将额外的门信号整合进来。
  • “科学人生•百年”院士风采丨陈创天:让中国晶体享誉全球
    中科院学部成立60多年来,先后选聘产生了1499名中国科学院院士。包括诺贝尔物理学奖获得者杨振宁院士,国家最高科学技术奖获得者吴孟超院士、吴良镛院士等。“科学强国”栏目将持续刊登这些院士的故事,展现他们的人生风采。    人物小档案  陈创天  (1937年2月18日—2018年10月31日)  出生于浙江奉化, 是我国著名的材料学家。长期从事晶体材料的研究,引领和带动了我国非线性光学晶体学科发展。曾任中国科学院福建物质结构研究所副所长,中国科学院理化技术研究所晶体中心主任,1990年当选为第三世界科学院院士,2003年当选为中国科学院院士。  无论是KBBF、LSBO,还是BBO、LBO,这些被国际市场誉为“中国晶体”的先进材料面世,都离不开一个人,他就是“中国晶体之父”——陈创天院士。  在他长达半个世纪的科研生涯中,人们看到的是中国非线性光学晶体的发展史。由他带领的研究团队发现、培育出来的多种非线性晶体,在国际上享誉盛名,推动了非线性光学晶体的实用化和商业化,促进了激光技术的发展,奠定了我国非线性光学晶体在国际上的领先地位。  他就是人工晶体学界的学术泰斗陈创天。  对于科学研究,陈创天曾直言:“要投身于科学事业,首先就要下定决心,把此生无私地奉献给科学,奉献给祖国,奉献给人民。”  师从名师,立志科研为国  1937年2月18日,陈创天出生在浙江省奉化市大桥镇斗门头村的一个知识分子家庭。新中国成立后,为了支援东北建设,陈创天告别就读的奉化中学,随着做会计师的父亲迁至辽宁省沈阳市,1954年,初中毕业后考入重点中学沈阳二中读高中。  陈创天从小对数学有着特殊的爱好。进入沈阳二中后,最感兴趣的也是数学、物理两门课。陈创天记得物理老师在课上讲“以太”论时,说引力场是一种物质。通过这种物质,物体之间会产生引力。这种理论当时曾引起争论,说是引力场处于真空,不能认为是通过物质相互作用才得以实现。但这种当时颇为新奇的观点恰在陈创天的脑中挥之不去。陈创天琢磨着,两个物体之间的相互作用怎么能不通过中间介质来实现呢?正是这种好奇心,促使陈创天跟物理打上了交道。  1956年8月,陈创天以优异成绩考入北京大学物理系物理学专业。谈起北大6年的求学经历,陈创天庆幸自己遇到了好老师。上世纪50年代,北京大学物理系集中了一大批名扬海内外的著名学者。这里浓厚的科学研究氛围成为陈创天学习的沃土,也让他更加确定自己的人生追求和科研探索信念,立志成为中国科学事业的栋梁,为中国科学技术赶上国际先进水平而努力奋斗一生。  1962年,陈创天大学毕业。北大物理系把陈创天推荐给我国著名物理化学家、教育家卢嘉锡院士,前往中国科学院设在福建省福州市的华东物质结构研究所(中国科学院福建物质结构研究所)工作。  当时的华东物质结构研究所是研究化学的,主要研究微观结构和宏观性能之间的关系。时任所长的卢嘉锡对陈创天说,到这里工作,就要了解化学方面的情况,掌握化学知识。于是,在卢嘉锡的指导下,陈创天又开始了长达3年化学方面的学习,自学了结构化学、量子化学、群表示理论等等,在理论化学方面打下了坚实的基础。1965年,经过慎重考虑,陈创天选择非线性光学材料结构和性能之间的关系作为研究方向,并得到卢嘉锡的支持。  经历过战乱的颠沛流离,陈创天有着百折不挠的科研精神。这是他在科研工作中最宝贵的精神,为他日后在非线性晶体领域的发明研究奠定了坚实的基础。  国际领先,发现培育“中国牌”晶体  当一束单色光通过各种形状的光学玻璃时,除去光的方向会改变外,此束光的颜色是不会发生改变的,这是经典光学,即线性光学理论。但是当一束亮度很高的单色激光,通过一块空间结构没有对称中心的单晶体时,此单色激光在通过晶体后,将会产生两种不同颜色的激光,此种现象就是非线性光学现象,此种晶体就是非线性光学晶体。因此,非线性光学晶体也就是光波的变频器件。一种非线性光学晶体的变频能力,也就是一种颜色的激光转变为另外一种颜色激光的能力,是由该晶体的空间结构所决定的。我国科学家首次在国际上解决了这个问题,并发现了许多种非线性光学晶体,这些晶体具有很强的使一种颜色的激光变成另外一种颜色激光的能力。由此,我国这一领域的研究在国际上处于领先水平。其中,陈创天的身影频频出现。  1968年,陈创天提出国际上著名的非线性光学效应的阴离子基团理论,被国内外晶体研究领域的科学家接受并成功地用于指导新型非线性光学材料的探索研究。基于他在非线性光学研究的贡献,陈创天被任命为非线性学科材料研究组的组长。  1980年,陈创天团队宣布研制出领先世界的BBO晶体,被国际同行誉为“中国牌”的晶体。这是中国在光学领域的一项重大突破,也让中国一跃而上成为世界光学领域的领先者。  这块小小BBO晶体为陈创天和他的科研团队带来多项国内外的科技大奖。然而荣誉背后,陈创天并没有止步于此,在发现和培育出BBO晶体后,他再次带领团队钻进实验室,研究更有价值的晶体。  功夫不负有心人,1987年,陈创天和他的研究团队发现并生长出第二块“中国牌”非线性光学晶体LBO。与BBO相比,LBO紫外截止波长紫移到150纳米。LBO有适当的硬度和良好的机械加工性能,潮解性能良好,已经能够长出大尺寸、高质量的单晶。消息很快获得国际激光科技界和工业界的认可,新成果在激光工业界得到广泛应用。  2001年,陈创天带领的研究团队在KBBF单晶生长技术上获得突破,并发明了KBBF晶体棱镜耦合技术,获得中、美、日专利授权,保障了中国在深紫外固体激光方面的国际垄断地位。  2006年,中科院物理所与理化所合作,在国际上首次成功地建造了真空紫外激光角分辨光电子能谱仪,可同时测定电子的能量和动量。仪器的核心部件就是能产生177.3纳米相干光的KBBF棱镜耦合器件。由于其不可替代的关键作用,在国际市场供不应求。  2009年2月,国际著名的科学杂志《自然》的记者经过对多国专家走访和行业调研后,发表了一篇题为《中国藏起了这种晶体》的文章,文中感叹:“一个中国实验室成为一种具有重大科学价值的晶体的惟一来源。”而这个实验室就是中科院院士陈创天领导的北京人工晶体研究与发展中心实验室,这个“具有重大科学价值的晶体”就是中国首个对国外实行技术禁运的产品KBBF非线性光学晶体。  直到2016年,美国先进光学晶体公司才研制出KBBF晶体,打破了中国对该晶体技术的长期封锁。  陈创天曾说:“当你为世界的科学事业,为祖国的科学事业做出别人做不出的贡献时,你才会有最大的幸福感。我一生中所遇到的最大幸福,就是看到了BBO晶体所产生的最强烈的紫外光,LBO晶体所产生的最耀眼的绿光和KBBF单晶所产生的震撼人心的深紫外相干光。这种幸福感是任何数量的金钱所买不到的。”  2018年10月31日,82岁的陈创天因病医治无效,在北京逝世。然而他的科学精神,将永远激励着材料领域研究者们不断前行。
  • 打破空白局面,KRS-5红外晶体实现国产
    红外光谱作为“分子的指纹”,可用于分子结构和物质化学组成的研究,被广泛应用在药品质量监测、油品鉴别、工业大气空间特性测定等领域,而绘出红外光谱的红外光谱仪也就成了科学家们的重点青睐对象。其中,红外光学窗片则是该仪器中必不可少的器件,其品质的好坏直接影响红外光谱仪的性能。现有的红外光学材料能同时应用于中红外、远红外两个波段的材料较少。目前应用最为广泛的红外窗片是溴化钾和氯化钠,但这两种材料均存在潮解问题,大大限制了其应用。表1所示为几种常用的傅立叶红外光谱仪窗片,与其他材料对比,KRS-5窗片因有相当宽的红外透射范围和不易潮解的特点脱颖而出。窗片名称性能透射波长KRS-5窗片不易潮解,耐高气压,强度高0.5~40μm氯化钠窗片容易潮解,适合测试无水样品0.2~15μm溴化钾窗片容易潮解,适合测试无水样品0.2~15μm氟化钙窗片不易潮解,耐一定温度200℃1~11μm石英窗片不易潮解,耐高压,耐高温190nm~4.5μm硫化锌窗片不易潮解,耐高压1~14μm表1 常见傅立叶红外光谱仪窗片材料对比KRS-5,又名溴碘化铊,是溴化铊和碘化铊的混合结晶体,呈橘红色,如图1所示,不易潮解,对红外线有较好的透过性,尤其在空气中能透过相当宽的红外线波段,在波长为0.6~40μm的区域内,其透过率可达70%以上,是一种性能优良的红外材料,可用于制作红外光学零件,窗片、透镜、组合物镜、棱镜等。图1 KRS-5晶体由于KRS-5晶体的生产工艺技术难度较高,该晶体的生产和应用主要集中在海外,且价格比较昂贵,此前国内一直处于空白状态。不过现在,这个空白已经被北京滨松光子技术股份有限公司(简称北京滨松)所填补。北京滨松一直致力于晶体的开发生产,并已完成多种闪烁晶体的研发并实现稳定生产。凭借多年的经验,近期成功研制出KRS-5晶体,性能与国外同类产品相当,且价格方面相比国外晶体具有很大的优势。图2 北京滨松公司KRS-5与国外同类产品透过率对比除可供应常规规格产品外,北京滨松还可根据用户具体需求提供定制服务,如加工各种薄片、方形棱镜、纽扣状晶体、锥形晶体等,同时也可以提供KRS-5窗片的研磨、抛光等处理。图3 北京滨松公司KRS-5样品北京滨松是滨松光子学株式会社(简称滨松公司)与北京核仪器厂于1988年共同投资兴建的,是国内著名的以光电探测为核心的高新技术企业。滨松公司在华的全资子公司——滨松光子学(商贸)中国有限公司(简称滨松中国)负责北京滨松产品在国内的商务活动。如希望对KRS-5有进一步了解,敬请联系我们。
  • 新疆理化所在新型紫外非线性光学晶体研究中取得进展
    固体紫外激光器广泛应用于商业和科学领域。非线性光学材料能够对激光器输出的特定波长的激光进行激光频率的转换和拓展,颇具应用价值。例如,利用非线性光学材料进行的Nd:YAG激光辐射的四次谐波产生是输出266 nm紫外激光的有效方式。合成紫外非线性光学材料需要满足苛刻的性能要求,因而在材料设计中存在挑战。 既往研究提出了氟导向材料设计策略,以在硼酸盐体系中探索具有优异性能的双折射和非线性光学材料。向硼酸盐中引入氟可以有效地丰富结构化学和调控光学性能。LiB3O5(LBO)晶体是重要的非线性光学材料,并得到广泛应用,但遗憾的是其小的双折射导致LBO晶体无法实现1064 nm激光的直接四倍频输出。是否可以通过调整晶体结构来增大LBO的双折射,从而达到更短的相位匹配波长?   近期,中国科学院新疆理化技术研究所晶体材料研究中心通过化学合成制备得到氟硼酸盐晶体LiNaB6O9F2。LiNaB6O9F2具有由[B6O11F2]基本构建模块组成的二互穿3[B6O9F2]∞三维网络,这是首次在氟硼酸盐体系中观察到。LiNaB6O9F2在深紫外截止边,大的倍频响应(1.1 × KDP),合适的双折射(0.067@1064 nm)之间实现了更好的平衡。随着氟的引入,LiNaB6O9F2展示出氟导向性能优化,包括比LBO更大的双折射(0.067@1064 nm之于LBO的0.040@1064 nm),比LBO更短的相位匹配波长(210 nm之于LBO的277 nm)。该工作丰富了氟硼酸盐的结构化学,证明了氟导向策略是探索具有优良光学性能的非线性光学晶体的可行方法。   相关研究成果以全文Research Article形式,发表在Advanced Optical Materials上。研究工作得到国家自然科学基金和中科院等的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制