当前位置: 仪器信息网 > 行业主题 > >

晶相结构研究

仪器信息网晶相结构研究专题为您整合晶相结构研究相关的最新文章,在晶相结构研究专题,您不仅可以免费浏览晶相结构研究的资讯, 同时您还可以浏览晶相结构研究的相关资料、解决方案,参与社区晶相结构研究话题讨论。

晶相结构研究相关的资讯

  • 北京生物结构前沿研究中心成立
    p style="text-indent: 2em text-align: justify margin-top: 15px "4月21日,由北京市政府支持,北京市科委推动的北京生物结构前沿研究中心在清华大学正式成立。中国科学院院士、清华大学教授施一公担任该中心主任。北京市副市长隋振江、北京市科委主任许强、清华大学副校长尤政等共同为中心揭牌。/pp style="text-indent: 2em text-align: justify margin-top: 15px "成立仪式上,施一公介绍,为保持我国在结构生物学领域的领先优势,在保留结构生物学高精尖创新中心的基础上,北京市政府加大投入,成立了北京生物结构前沿研究中心。目前该中心拥有17位核心研究员,2位合作研究员,未来将积极探索科学研究和拔尖创新人才培养的新模式和新机制,促进重大成果产出。/pp style="text-indent: 2em text-align: justify margin-top: 15px "尤政表示,北京生物结构前沿研究中心的建设,必将提升我国生命科学水平,助力全球生命学科及健康事业的发展。/pp style="text-indent: 2em text-align: justify margin-top: 15px "隋振江希望施一公团队利用高精尖中心和前沿研究中心两个优势,为推动首都高质量发展和服务创新型国家建设作出贡献。/pp style="text-indent: 2em text-align: justify margin-top: 15px "北京生物结构前沿研究中心将以引领性基础理论创新、颠覆性先进技术创新和战略性重大成果创新为总体目标,以汇集和培养顶尖创新人才为动力,以探索具有中国特色的新型人才培养和科研创新的机制体制为使命,助力北京建设成世界领先的前沿科学中心。/ppbr//p
  • 扫描透射电镜研究发现固态物质新结构
    p  中国科学院金属研究所研究员陈春林与日本东京大学教授Yuichi Ikuhara、重庆大学副教授尹德强等人合作,在陶瓷材料中发现了区别于晶体、准晶体和非晶体的固态物质新结构一维有序结构(或称为一维有序晶体)。/pp  固态物质按其微观结构的对称性可分为三大类:晶体、准晶体和非晶体。晶体具有旋转对称性和平移对称性,其原子有规则地在三维空间呈周期性重复排列。准晶体具有旋转对称性,但不具有平移对称性。准晶体的原子排列具有长程有序,但不具有三维平移周期性。非晶体不具有旋转对称性和平移对称性,其原子排列不具有长程有序。以上是发现准晶体以后,人们对固态物质结构的普遍认识。/pp  strong陈春林等人利用扫描透射电子显微术与第一性原理理论计算相结合的方法,在MgO和Nd2O3薄膜材料中发现了一维有序晶体/strong,更新了人们对固态物质结构的认识。该结构仅在一个方向上保留了晶体的平移对称性和周期性,在其他方向上其原子呈现无序排列,形成了具有一维平移周期性的长程有序结构。构成一维有序晶体的结构单元的原子排列与重位点阵倾转晶界的结构单元非常类似。研究表明,尽管MgO晶体是能隙为7.4 eV的绝缘体,MgO一维有序晶体则是能隙为3.2eV的宽带半导体。一维有序晶体的发现表明固态物质结构的种类比人们的已有认知更加丰富,并且新结构的物理性质与相应常见结构类型具有显著差异。/pp  该项研究得到中科院前沿科学重点研究项目、国家自然科学基金与国家青年千人计划等的资助。相关成果于12月10日在《自然-材料》(Nature Materials)上在线发表。/pp    /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/a6156720-4898-4aae-8502-60e0cf6bf38b.jpg" title="1.png" alt="1.png" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//pp style="text-align: left "  span style="color: rgb(0, 0, 0) "图1 一维有序晶体的原子结构示意图。MgO一维有序晶体可由MgO晶界结构单元组合而成。/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/741f2e4a-0118-41df-bb7f-74d99be22ea3.jpg" title="2.png" alt="2.png" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//ppspan style="text-align: left " /spanspan style="color: rgb(0, 0, 0) "span style="text-align: left " /spanspan style="text-align: left "图2 形成于三叉晶界区域的MgO一维有序晶体的ABF STEM像(见区域I和II)。MgO一维有序晶体由许多六边形结构单元构成(彩色阴影所示),其原子排列与MgOΣ5 (210)[001]晶界结构单元类似。/span/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/a509e4ef-abf9-4570-91f0-ece9446a2cc6.jpg" title="3.png" alt="3.png" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "图3 DFT理论计算与STEM-EELS分析确定MgO一维有序晶体的原子与电子结构。MgO晶体是能隙为7.4 eV的绝缘体,MgO一维有序晶体则是能隙为3.2eV的宽带半导体。/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/86a73063-886d-4be0-81c8-17cbac93a2da.jpg" title="4.png" alt="4.png" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "图4 Nd2O3薄膜材料中的一维有序晶体。Nd2O3一维有序晶体由许多六边形结构单元构成(彩色阴影所示),其原子排列与Nd2O3Σ9 (221) 晶界结构单元类似。/span/p
  • 中科院研究发展出结构无损的高质量冷冻电镜晶态冰样品
    近日,Structure在线发表了中国科学院生物物理研究所章新政课题组完成的研究论文(Addressing Compressive Deformation of Proteins Embedded in Crystalline Ice)。该研究发现了晶态冰包埋的冷冻电镜样品会产生收缩形变,且形变随降温速率的增加而减少,并从晶态冰形成的降温速率出发发展了新型的无收缩形变的立方晶系晶态冰样品制备方法。   该工作发现结构无损的立方晶系晶态冰样品不仅消除了电子束诱导的快速漂移现象,而且显示出明显优于普通冷冻电镜玻璃态冰样品的数据质量,进一步为冷冻电镜实现原子分辨率奠定了基础。   大量实验数据证明,低降温速率制备的冷冻电镜样品有助于恢复数据采集时样品的束诱导漂移,但降温速率过低经常导致晶态冰的形成。传统认为晶态冰在生物样品冷冻过程中会对其结构造成破坏,故在冷冻电镜样品制备过程中一直避免使用。晶态冰的形成具体对蛋白质产生了什么破坏尚不清楚。   课题组系统性地将蛋白质在不同条件下包埋在晶态冰中,并通过冷冻电镜技术解析了晶态冰中的蛋白质三维结构。研究发现,在低降温速率形成的晶态冰中,蛋白质结构会产生收缩形变(图a),且收缩量和蛋白质本身性质相关,越为刚性的蛋白质收缩量越小。另外,在一些蛋白质柔性区域,低降温速率晶态冰中的蛋白质存在密度畸变的问题(图a)。同时,二者随着晶态冰降温速率的增加显著变小,甚至无法探测(图b)。基于上述发现,研究发展了结构无损的立方晶系晶态冰样品的制备方法。通过该方法制备得到的晶态冰样品,其三维重构和玻璃态冰样品一致,不会对蛋白质结构造成可检测的破坏,且成像质量显著提高,不仅没有束诱导漂移(图c),而且显著提高蛋白样品的分辨率。同样条件下,B-因子反映了样品的信噪比(图d),人源去铁-铁蛋白晶态冰样品的B因子显著好于玻璃态冰样品。此外,在醛缩酶和谷氨酸脱氢酶上B因子也获得显著提升。   研究工作得到国家自然科学基金、国家重点研发计划、中科院战略性先导科技专项(B类)和中科院前沿科学重点研究计划的支持。冷冻电镜晶态冰样品性质。a、与玻璃态病毒样颗粒(VLP)样品(粉色)相比晶态冰样品(绿色)产生收缩形变,且严重形变时密度图出现断裂。b、提高降温速率,晶态冰样品的收缩形变减弱。c、在人源去铁-铁蛋白,醛缩酶和谷氨酸脱氢酶上,晶态冰样品恢复束诱导的快速漂移,前几帧样品分辨率明显恢复。d、B因子曲线斜率越大代表数据质量越好。与玻璃态冰样品(蓝色)相比,人源去铁-铁蛋白晶态冰样品(红色)有更好的B因子,展现出更高的数据质量。
  • 冷冻电镜:结构生物学研究的利器——访中国科学院生物物理所朱平研究员
    4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。  在这项研究当中,朱平研究员长期从事冷冻电镜三维重构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。  日前,仪器信息网编辑特别采访了从事冷冻电镜(注:下文提到的冷冻电镜特指300kV和200kV场发射冷冻透射电子显微镜)应用研究的朱平研究员,请他为我们介绍了自己与冷冻电镜结缘的故事,以及冷冻电镜的特点和应用情况,希望使广大网友能对冷冻电镜有更多的了解。中国科学院生物物理所朱平研究员  因对三维重构技术的喜爱,与冷冻电镜结缘  Instrument:朱老师,您好!首先请您为我们介绍一下您和冷冻电镜结缘的故事。  朱平:其实我并不是生物专业出身,我的本科是在浙江大学学习金属材料热处理,1990年毕业后,我被保送到西安交通大学断裂疲劳国家重点实验室读硕士研究生,博士研究生期间又到清华大学机械系开始学习焊接专业,研究焊接接头断口分析,当时有一个很热门的研究方向是断裂表面的分形研究,断裂表面的分形维数和断裂性能被认为是密切相关的。开始我们只是做断口轮廓线的分形研究,但发现由于断裂表面不是各向同性的,不同的方向可能会对应不同的分形维数,所以我们就尝试利用扫描电镜立体对照相方法将断裂表面三维形貌重构出来,来研究断裂面的二维分形维数。  博士毕业后我在清华做了一年讲师,由于对电镜三维重构比较感兴趣,我就据此联系国外的进一步研究机会。恰好这时美国佛罗里达州立大学一个研究艾滋病毒结构的实验室需要做电镜三维重构的人员,于是我就将在材料研究中积累的关于电镜和三维重构的知识转到了对生物样品的研究,从而有机会开始接触冷冻电镜。  Instrument:到美国佛罗里达州立大学后,您主要开展了哪些方面的研究工作?  朱平:当时,我所在的实验室是比较早开始艾滋病毒表面包膜蛋白结构重构研究的单位。开始我们只是想通过电镜技术来研究艾滋病毒表面很重要的一个包膜蛋白gp120的结构。后来,研究者发现虽然不同的艾滋病毒抗体具有毒株特异性,但有几种抗体它们对于多种艾滋病毒都有中和活性,所以我们也开始研究这些广谱中和抗体的结构特点。  在最初的研究中,我们主要利用普通电镜,通过负染色方法研究表达纯化出来的艾滋病毒表面包膜蛋白gp120以及它们与不同的中和抗体形成的复合物的结构。后来我们的研究发现这些包膜蛋白在真实病毒表面的三维结构及分布对艾滋病毒的感染非常重要,所以就转向研究整个艾滋病毒颗粒及表面蛋白的三维结构。我们是最早将电子断层成像方法应用于艾滋病毒三维结构重构的研究组,并利用负染色电子断层成像方法获得了艾滋病毒表面的包膜蛋白的一个高清晰三聚体结构和分布图,发在美国科学院院刊上。由于负染色法对病毒结构影响很大,虽然观察到了艾滋病毒表面的gp120蛋白的结构为三聚体,但同时结构信息损失也很多。所以之后我们逐渐开始采用冷冻电镜电子断层成像法来开展研究,并做出了一个艾滋病毒冷冻电镜三维重构图像,于2006年在Nature上发表了一篇文章,也产生了较大影响。  Instrument:2008年您以&ldquo 百人计划&rdquo 身份加入到生物物理所生物大分子国家重点实验室,请问促使您回国发展以及加入生物物理所的原因主要有哪些?  朱平:在美国待了几年后,我也有了回国工作的念头,于是就开始和国内的相关研究单位联系。结构生物学研究是生物物理所的传统优势研究学科,所里也非常看好冷冻电镜在结构生物学研究方面的发展前景,已经在采购相应的设备,可以说这里有一个非常好的平台。  回国后,我们依然做一些艾滋病毒及疫苗的研究工作,同时也开展一些其他病毒的研究,如高对称性病毒的高分辨结构解析等。  另外,回国后我参加了以&ldquo 千人计划&rdquo 身份回国的许瑞明老师主持的科技部的一个&ldquo 973&rdquo 项目,其中我负责的一个课题就是利用冷冻电镜研究染色质的结构。后来,李国红老师回国,我们一起开始做染色质的冷冻电镜三维重构研究。  冷冻电镜是结构生物学研究的重要手段,但入门和上手都有一定难度  Instrument:请问和普通电镜技术相比,冷冻电镜在生物研究当中有哪些特点和优势?  朱平:普通电镜主要用于观察样品形貌,要看到原子分辨率的细节很难做到 另外制样方法如染色、固定等对样品的结构破坏很严重。而冷冻电镜可以将样品瞬间冻成玻璃态,冷冻速度平均可达以几万摄氏度每秒,这样样品所有的结构细节则都被保留下来。但是由于没有经过染色,直接观察样品的衬度就会差很多,所以需要三维重构来慢慢挖掘它的结构信息。  另外,结构生物学研究当中最常用的方法蛋白质晶体学的一个很大的瓶颈就是样品结晶,如将蛋白质产生结晶,需要各种各样的条件 此外在生物体中蛋白质往往不是单独起作用,而是多个蛋白质结合到一起的超大分子复合体,这样的超大分子复合物要长晶体就更难。但冷冻电镜不需要长晶体,直接将样品冰冻即可进行分析。300kV Titan Krios场发射冷冻透射电子显微镜  Instrument:目前,国际上冷冻电镜研究的热点主要集中在哪些方面?  朱平:这两年冷冻电镜的应用主要集中在结构生物学研究,分析的样品类型从病毒、核糖体扩展到了其它蛋白。冷冻电镜三维重构早期比较多的应用是病毒分析,因为病毒结构比较对称,可以得到比较高的分辨率。近年来,随着仪器硬件及软件性能的提升,冷冻电镜结构解析的分辨率越来越高,现在我们可以做到近原子级别的分辨率。对于一些不对称的样品也能获得比较高的分辨率,所以冷冻电镜三维重构在其它蛋白质的结构分析研究上也比较热。  Instrument:冷冻电镜技术应用的难点有哪些?要让冷冻电镜更好的在科学研究当中发挥作用,需要哪些积累?  朱平:冷冻电镜的操作程序比较多,入门和上手都有一定的难度。先从制样来说,单冷冻这一步,就有许多的玄机在其中。冻的冰层太厚,电子束穿不过去,冰层太薄又会被完全蒸发 而冷冻的速度如果慢了就会形成冰晶,冰晶遇到电子束发生衍射,我们就无法观察到样品 此外,环境的变化,如空气的温度和湿度变化,甚至每次使用的滤纸如果不同都会对制样效果有影响。  在照片的拍摄中,要调节好电镜的状态,掌握照相的细节,这样才能拿出一张好的二维冷冻电镜照片。如,电子束照射在样品表面时,如果调节不好很可能就把样品轰坏了。所以需要调焦,找准位置,然后慢慢放大。得到好的二维照片后,接着还有一大堆的图像处理工作。  当然现在软件自动化程度更高了,仪器的操作也比以前容易了。比如制样,有专门的制样设备,通过计算机控制温度、湿度、滤纸吸收的时间长短,使制样的可重复性高了很多。不过要使用好电镜,还是有许多的经验在其中。北京大学丁明孝老师正在组织国内优秀的专家撰写一部电镜实验操作手册,虽然这本书以普通电镜为主,但其中至少会有一章来介绍冷冻电镜的基本情况,以及如何使用好冷冻电镜,希望更多的人了解这一技术。  Instrument:请问目前我国冷冻电镜的研究和应用水平怎么样?  朱平:近年来,为推动我国生物学快速发展,国家不断加大投资力度。一方面引进了不少人才,另外在仪器配置方面,我国不少单位已经或将要建设国际一流的冷冻电镜设备平台,如清华大学、生物物理所、北京大学、上海生命科学研究院等。  其实十几年前,我们就有很多优秀的电镜人才,只是国家没有这么大的投入。就是在&ldquo 小米加步枪&rdquo 的条件下,他们也做的非常好。现在我们的高端电镜配置已在世界前列,但人才依然是最重要的,目前国内在冷冻电镜研究方面确实也没有那么多的人才,希望有更多的年轻人被培养出来。  科学的竞争也很残酷,团队合作才能走得更快更远  Instrument:最后,请问对于在高水平期刊上发表文章,您有哪些心得体会,以及团队合作在科学研究当中的重要性。  朱平:一是要有好的项目,好的科学问题 二要有好的设备 三要有好的团队 最后还要坚持。首先要敢于挑战科学难题,另外也要敢于面对挑战中的困难,要耐得住性子去做,要有长时间做不出来的准备。我们这个项目,前后花了5年时间,期间遇到了很多的困难。  在30nm染色质结构解析研究中,不同的研究组分工合作,发挥各自的特长也是我们这个项目的重要特点。在我们的研究当中,染色质样品的组装非常重要,我们需要均一的样品,否则电镜状态再好,再会调节操作和计算处理,也无法获取样品真正的结构信息。  我对组装染色质样品没有太多的经验,而李国红老师长期从事30nm染色质及表观遗传调控方面的研究,但冷冻电镜三维重构也需要一个较为长期的积累和经验,面对30nm染色质这么一个复杂的超大分子复合体,其结构解析有很多技术上的困难和挑战,若要让李老师重头来学电镜也不是很容易的事。还有许瑞明老师参加了我们很多的项目讨论,给了我们很多的鼓励,这也很重要。  科学的竞争也很残酷,我们知道世界上还有其他的团队也在做同样的研究,而我们能够先做出来,一个重要的因素就是我们是几个团队一起在做。采访编辑:秦丽娟  附录:朱平研究员个人简历  1986.9-1990.6 浙江大学 学士  1990.9-1993.6 西安交通大学 硕士  1993.9-1997.6 清华大学 博士  1997.7-1998.12清华大学 讲师  1999.3-2008.5 美国佛罗里达州立大学生物系 博士后、助理研究员、副研究员(Non tenure-track faculty系列)  2008.6-至今  中国科学院生物物理研究所课题组长、&ldquo 百人计划&rdquo 研究员
  • 陈宇航研究员团队在植物SLAC1冷冻电镜结构研究中取得进展
    气孔是植物与外界环境进行物质和信息交换的窗口。气孔通过感应和解码多种外界环境信号如干旱、CO2和臭氧等,介导植物对外界环境的适应过程。此外,气孔还是病原微生物的入侵通道,参与植物抗病的免疫响应。气孔控制植物CO2摄取和水分蒸腾散失,其开闭受到高度严格的调控。因此,植物气孔感应重要外界信号分子的机理解析对作物抗旱、粮食稳产和解决水资源短缺具有重要意义。 气孔由特化的护卫细胞形成,通过解码各种不同的外界环境信号,整合为护卫细胞的膨压变化来调控气孔开闭。护卫细胞膨压变化主要通过胞内离子跨膜转运实现,受到多个不同信号通路调控。两种关键离子通道SLAC1和QUAC1位于多个调控通路的交汇点,分别介导护卫细胞慢型(S)和快型(R)阴离子电流。护卫细胞阴离子外流是启动气孔关闭的关键步骤,其如何感知、解码和响应不同外界环境信号的分子机理和动态过程尚不清楚。 中国科学院遗传与发育生物学研究所研究员陈宇航研究组通过冷冻电镜技术解析了高等植物SLAC1的三维结构,并进一步应用电生理学技术系统地鉴定了SLAC1通道的关键磷酸化位点,为阐明SLAC1激活的分子机理奠定了基础。相关研究成果以Structure and activity of SLAC1 channels for stomatal signaling in leaves为题,发表在PNAS上。论文第一作者为陈宇航研究组学生邓亚楠。论文通讯作者为遗传发育所陈宇航、哥伦比亚大学教授Wayne Hendrickson和Oliver Clarke。研究工作获得遗传发育所研究员谢旗、汪迎春和博士黄夏禾,生物物理所博士王权等的帮助,并得到中科院战略性先导科技专项、国家重点研发计划和国家自然科学基金项目的资助。 控制气孔关闭关键离子通道SLAC1冷冻电镜结构和电生理学研究A. 气孔开关调控的分子网络;B. SLAC1单颗粒冷冻电镜研究;C. SLAC1三维结构;D. SLAC1关键磷酸化位点的电生理学分析
  • 施一公研究组在《科学》发表论文报道3.6埃酵母剪接体冷冻电镜结构并阐述RNA剪接的分子结构基础
    p  8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻a href="http://www.instrument.com.cn/zc/1139.html" target="_blank" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "电镜/span/a)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院闫创业博士、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/b202201c-2ed2-4d9c-a084-73f2641f7e4b.jpg" title="基因剪接的分子机制示意图。.jpg"//pp style="text-align: center "剪接体复合物的三维结构。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/b44dc927-7a91-4726-88a1-355193597e07.jpg" title="剪接体复合物的三维结构。.jpg"/br//pp style="text-align: center "基因剪接的分子机制示意图。/pp  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。/pp  附论文链接:/pp  a href="http://m.sciencemag.org/content/early/2015/08/19/science.aac7629" _src="http://m.sciencemag.org/content/early/2015/08/19/science.aac7629"http://m.sciencemag.org/content/early/2015/08/19/science.aac7629/a/pp  a href="http://m.sciencemag.org/content/early/2015/08/19/science.aac8159" _src="http://m.sciencemag.org/content/early/2015/08/19/science.aac8159"http://m.sciencemag.org/content/early/2015/08/19/science.aac8159/a/pp 相关新闻:/pp  a href="http://www.instrument.com.cn/news/20150821/170416.shtml" target="_blank" title=""冷冻电镜助力施一公发表诺奖级别研究成果/a /p
  • 高宁研究组与香港科技大学戴碧瓘研究组共同在《自然》发文揭示真核生物DNA复制解旋酶高分辨三维结构
    p  2015年7月29日,清华大学高宁研究组和香港科技大学戴碧瓘教授研究组共同在《自然》(Nature)杂志上以长文形式在线发表了题为《真核生物DNA复制解旋酶MCM复合物的3.8埃分辨率结构》(Structure of the Eukaryotic Minichromosome Maintenance Complex at 3.8 埃)的研究论文,首次报道了真核生物DNA复制起始与延伸过程中DNA解旋酶核心组分MCM2-7复合物的3.8埃高分辨率冷冻a href="http://www.instrument.com.cn/zc/1139.html" target="_self" title="" style="color: rgb(84, 141, 212) text-decoration: underline "span style="color: rgb(84, 141, 212) "strong电镜/strong/span/a结构,并以此为基础对DNA复制起始时MCM2-7复合物的作用机理进行了分析。该论文是清华大学国家蛋白质基础设施(北京)建立以来,完全利用此平台进行数据收集及处理而发表的首篇世界顶级杂志科研论文。《自然》杂志同期刊发了“News & Views”评论文章重点推荐介绍了这项工作。/pp  遗传信息载体DNA在细胞内的复制受到严格的调控。双链DNA的复制包括解旋和复制两个过程,复制起始的一个关键步骤是DNA解旋酶的结合和激活。MCM2-7复合物负责在DNA复制起始和延伸阶段进行双链DNA的解螺旋。DNA复制异常会导致基因组的不稳定,与多种人类恶性肿瘤的发生、发展具有密切的关系 作为DNA复制解旋酶的核心组分,MCM2-7本身的基因突变或异常表达也与很多人类疾病密切相关。例如,MCM4基因的突变可以导致小鼠乳腺癌的发生。/pp  由于MCM2-7复合物功能机制的重要性,在过去三十年里,相关领域研究人员对其进行了大量的功能和结构方面的研究。由于其结构的复杂性,针对MCM2-7复合物的高分辨三维结构解析一直停滞不前,已成为其功能研究的重要限制因素。2013年下半年开始,高宁研究组和香港科技大学戴碧瓘研究组合作,利用清华大学冷冻电镜平台对MCM2-7双六聚体复合物以及与相关功能因子结合的复合物进行结构解析。初期主要是利用负染电镜和冷冻电镜的方法对相关复合物进行分析。2014年下半年,Titan Krios电镜更换新一代的K2相机后,在之前条件优化的基础上,该课题获得了关键性突破,进而解析来自酵母菌分裂间期G1期MCM2-7双六聚体复合物近原子分辨率的三维结构。结构分析表明,两个MCM2-7单六聚体呈二次对称,并相对于中心轴线有一定角度的倾斜和扭转,在中心形成一个扭曲的中央通道。四层结构域组成的环状结构限制了中央通道的大小,使之具有了完美匹配双螺旋DNA的直径(图)。这些结构分析表明MCM2-7复合物直接参与了复制起始时的DNA最初解链过程。这一高分辨率的结构为真核生物特异的解旋酶家族蛋白复合物的组装、激活和调控的研究提供了一个全新视点,为指导此复合物的功能研究奠定了良好的基础。/pp  清华大学生命学院2015届博士李宁宁和香港科技大学的翟元梁博士为该论文的共同第一作者。高宁研究员、香港科技大学的戴碧瓘教授及翟元梁博士为共同通讯作者。生命学院的杨茂君教授参与了原子模型的搭建工作,冷冻电镜平台的雷建林博士、2015届博士张一小和2012级博士生李婉秋参与了冷冻电镜数据收集工作。论文还得到了生命学院王佳伟研究员和李雪明研究员在数据处理及分析等方面的建议和协助。该研究获得了科技部、国家自然科学基金委、香港研究资助局以及香港科技大学的经费支持。/pp  高宁研究员2008年底加入清华大学生命科学学院,2009-2010期间主要参与生命学院冷冻电镜实验平台的搭建,一直致力于利用冷冻电镜三维重构技术研究蛋白质的生物合成、降解和核糖体的组装成熟、蛋白翻译的调控等重要生物过程,取得了一系列重要研究成果。先后在《Nature Structural & Molecular Biology》(2014),《PloS Biology》(2014),《Protein & Cell》(2014),《Nucleic Acids Research》(2013, 2013, 2014),《J Biol Chem》(2013)及《PNAS》(2011)等杂志发表多篇通讯作者研究论文,阐述了蛋白生物合成和降解中的多种调控机制。由于高宁研究员近年来的系统性研究成果,先后获得了多项人才基金(自然基金委优秀青年基金2014、北京市青年英才计划2013),以及自然基金委面上项目和科技部重大研究计划的支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201507/insimg/824f43e4-52c1-4c01-9a16-e3b1a654cbed.jpg" title="1.jpg"//ppbr//pp  MCM2-7双六聚体复合物高分辨率冷冻电镜结构及中央孔道结构示意图。梯状为双链DNA。/pp  文章链接:/pp  a href="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14685.html" _src="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14685.html"http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14685.html/a/pp  评论文章:/pp  a href="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14643.html" _src="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14643.html"http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14643.html/a/p
  • 近30年的坚守,高温拉曼光谱与熔体结构研究走在国际前沿——访上海大学尤静林教授
    p style="text-indent: 2em "span style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai "高温拉曼光谱技术作为拉曼技术之一,为高温工艺过程、地质学和材料制备等领域的结构研究与应用提供了一种新的原位检测手段,因此,越来越受到业界重视。/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "在这一研究领域,有一个“标签”人物必须一提,那就是省部共建高品质特殊钢冶金与制备国家重点实验室常务副主任、上海大学材料科学与工程学院教授尤静林。尤静林教授在国内较早地开展了高温拉曼光谱技术的研究与应用,尤其结合熔体结构研究等方面填补了国内空白,达到国际前沿水平。/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "近日,仪器信息网特别走进尤静林教授实验室,请他回顾了与高温拉曼技术、熔体结构研究相伴近三十年的故事,并谈论了对国产仪器技术与应用现状的一些看法。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 316px " src="https://img1.17img.cn/17img/images/202004/uepic/ad4eb3f9-638d-4392-9141-0b498f0f7051.jpg" title="01.jpg" alt="01.jpg" width="450" height="316" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "访谈中的尤静林教授/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 0, 255) "谈科研:相伴近三十年,高温拉曼技术与熔体结构研究/span/h1p style="text-indent: 2em "span style="color: rgb(0, 0, 0) "strong高温熔体结构研究填补国内空白/strong/span/pp style="text-indent: 2em "尤静林团队科研工作主要包含仪器检测技术及高温熔体结构研究两方面。仪器检测技术包括原子光谱、拉曼光谱,涉及一些辉光放电光谱、原子吸收和发射光谱、红外光谱等,主要精力集中在极端条件的分子检测方法,比如高温拉曼光谱技术。高温熔体结构研究则集中在研究高温条件下,无机熔体在熔融状态下的结构状态。/pp style="text-indent: 2em "国内从事高温熔体结构研究的人员并不多,冶金、地质及晶体学领域研究人员略有涉及,但也只是理论研究或实验室检测,涉及到熔体结构层次的研究比较少,可以说尤静林团队的研究工作填补了国内熔体结构研究领域的这一空白。/pp style="text-indent: 2em "strong熔体液态结构研究同样具有重要意义/strong/pp style="text-indent: 2em "尤教授认为,高温熔体在液态条件下,具有丰富的结构,对这些结构的研究非常有意义,显然,物质在高温液态下的结构比在固态结构要复杂得多。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 264px " src="https://img1.17img.cn/17img/images/202004/uepic/16004674-4b21-4217-8a9b-f9b30c7ee154.jpg" title="2.jpg" alt="2.jpg" width="450" height="264" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "熔体结构与性能研究实验室/span/pp style="text-indent: 2em "以冶金领域为例,炼钢实质是炼渣。钢铁产品中不需要的杂质,可以通过炉渣吸收,借助化学反应或化学平衡去除杂质,也可以通过化学平衡,在金属液中添加一些有益元素,最终改善钢铁产品的成分和质量。所有这些操作都是在高温状态下进行的,所以有必要在熔体中对炉渣进行相应研究,这就需要使用高温拉曼技术手段了。/pp style="text-indent: 2em "不止冶金领域,熔体结构研究涵盖诸多领域,尤静林团队和其他领域研究者有着广泛合作,比如地质领域方面,与中国地质大学的莫宣学院士团队合作;晶体学领域方面,与中科院北京理化技术研究所吴以成院士、中科院上海硅酸盐研究所仲维卓研究院、研究所山东大学于锡玲教授、中科院合肥分院物质结构研究所殷绍唐研究员等合作。span style="text-indent: 2em " /span/pp style="text-indent: 2em "strong对高温拉曼光谱技术近三十年的坚守/strong/pp style="text-indent: 2em text-align: left "尤静林与高温拉曼的结缘要追溯到27年前:1993年,上海大学材料科学与工程学院采购了第一台拉曼光谱仪——HORIBA的U1000 ,1994年,巧合之下,刚留校不久的尤静林负责了这台仪器;1998年,在当时还没有ICCD情况下,尤教授使用类似ICCD原理但自己搭建的“组合装置”,在这台U1000上测出了摄氏1750度的高温拉曼光谱。/pp style="text-indent: 0em text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 270px " src="https://img1.17img.cn/17img/images/202004/uepic/dfa7bdef-2a67-4973-9f87-725499c566b2.jpg" title="3.jpg" alt="3.jpg" width="450" height="270" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "尤静林教授演示高温拉曼检测操作/span/pp style="text-indent: 2em "一路走来,尽管感兴趣和从事高温拉曼光谱技术研究的科研人员不算少数,但能坚持下来的却并不多。这是因为,实验中一旦涉及较高温度,对实验仪器、条件等的稳定性要求都会比较高,此外科研工作者操作难度也会大大增加。常温条件下,做实验若出现问题,通常可以不考虑时间,多做几遍即可,但高温条件下,如果高温炉或电脑出现一点问题,都会导致系列实验戛然而止,而实验中断后,一切实验条件可能都要重新再做,这对于长期伏案于实验室的科研工作者来说是很崩溃的。另外,高温拉曼在实际应用中也会遭遇很多麻烦,比如黑体辐射背景干扰,样品高温挥发导致观测过程像“戴着眼镜进浴室”,视野模糊不清,加热炉炉丝损耗的高成本等挑战。/pp style="text-indent: 2em "在这样的科研背景下,尤静林教授始终保持着一位纯粹的科研人的本色,不畏艰难,执着坚守,默默深耕近30年,让人感佩。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="font-size: 18px color: rgb(0, 0, 255) "谈技术:不简单的高温拉曼/span/strong/h1p style="text-indent: 2em "strong高温拉曼光谱技术发展与应用/strong/pp style="text-indent: 2em "尤静林团队是国内最早一批从事高温拉曼相关研究的科研人员,当时俄罗斯、美国、法国等也同时开展了相关研究工作。国际上,是尤静林团队首次将ICCD (增强型电荷耦合装置)探测器与高温拉曼结合的。ICCD具有电子开关作用,可以同步脉冲激光的步调,有脉冲时,电子开关同步打开接受信号;没有激光脉冲时则关闭,这样就大大提升了拉曼光谱信号,削弱了黑体辐射,起到去除黑体辐射背景干扰的作用。/pp style="text-indent: 2em "谈到ICCD与高温拉曼的结合,尤静林回顾了与HORIBA成功合作的往事。2003年,尤静林看到有关原子光谱与ICCD结合的技术后,产生了将高温拉曼光谱仪与ICCD结合的想法,并转达给HORIBA,希望其能做技术尝试。几个月后,HORIBA法国尝试成功,尤静林也很快选购了ICCD,同时在2004年又采购了HORIBA第二套光谱设备(HR800)。/pp style="text-indent: 2em " 有了ICCD的助攻,配合纳秒级脉冲激光,确保了检测的稳定和便捷,结合了多个不同功能的高温热台,使该技术迅速应用在包括硅铝酸盐、硼酸盐、磷酸盐、氟铝酸盐等多种高温无机熔体或熔盐的拉曼光谱温致结构变化实测和反应过程原位跟踪研究中,成为高温熔体结构重要和有效的实验验证手段。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 484px " src="https://img1.17img.cn/17img/images/202004/uepic/8c5aa61c-b84c-4e0d-91b8-cdccf29f66cf.jpg" title="4.jpg" alt="4.jpg" width="300" height="484" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "ICCD和拉曼光谱HR EVOLUTION联用/span/pp style="text-indent: 2em "尤静林表示,高温拉曼光谱技术应用面很广,比如高温熔融状态下,核反应堆研究对拉曼等检测手段需求呈上升趋势。结合拉曼共焦技术,利用空间分辨能力,成为应用于高温熔体晶体生长边界层的一支利剑,具有比其它方法如高温X-射线散射技术和核磁共振谱的显著的优势。还有如焦炭制备过程、地质岩浆探测等,相比以往冷却下来再观测,高温原位观测则可以实时真实地研究其结构及其变化过程。/pp style="text-indent: 2em "strong为何要使用高温拉曼技术?“高温”与常规拉曼区别?/strong/pp style="text-indent: 2em "尤静林表示,许多使用拉曼光谱技术的科研人员都会涉及到变温拉曼的需求,比如说300度、500度、800度、1000度,有的甚至是1500度。变温时,如果是温度低于摄氏1000度,那目前常规拉曼光谱仪完全可以胜任。但如果超过摄氏1000度,常规的拉曼光谱仪就有了自身局限性。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 167px " src="https://img1.17img.cn/17img/images/202004/uepic/68980b54-a977-4f99-9baa-af676575273b.jpg" title="5.png" alt="5.png" width="600" height="167" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "拉曼光谱HR evolution的2种加热台/span/pp style="text-indent: 2em "出现局限性是什么原因呢?当温度超过1000度时,高温黑体辐射背景,就会成为一个压倒性的强光背景,把拉曼信号掩盖掉。这样就无法采集到拉曼信号。所以我们非常需要研发出一种技术手段,能够把强大黑体辐射背景去除并提取出拉曼信号,这是高温拉曼技术的核心所在。/pp style="text-indent: 2em "strong相比高温核磁、高温XRD等,高温拉曼的技术优势?/strong/pp style="text-indent: 2em "针对高温液态熔体结构的,除了高温拉曼光谱技术,还有高温X射线散射技术和高温核磁共振谱等,但相比之下,高温拉曼技术有哪些优势?/pp style="text-indent: 2em "尤静林表示,高温X射线散射也可以实现原位测量,温度也能做到摄氏1500度甚至1600度。但它获取的信息量比较有限。对于熔融无序态,高温X射线散射可以给出第一近邻的键长、化学键、配位数等信息,再远的位置很难再获取其它有效信息。虽然通过统计方法可以拟合一些宏观性质,但对于理解熔体微观结构还远不够。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/202004/uepic/5e23a7a5-54d3-4c4b-8169-7f4f76d53609.jpg" title="6.jpg" alt="6.jpg" width="450" height="253" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "尤静林教授讲解随笔/span/pp style="text-indent: 2em "高温核磁共振技术的弱点在于,当样品熔融到了液态时,该技术对结构捕捉的灵敏度就很差,会将液态的快速动态结构信息平均化,所以测到的信息实际上是被扭曲了,信息量就大打折扣。/pp style="text-indent: 2em "而高温拉曼光谱技术却是一种较有效的方法。它不仅可以获取键长、配位数信息、不同配位数的团簇信息,以及通过定量获得对应的微结构种类含量等,还可以提供更丰富的结构信息,对理解熔体结构和进行相关计算机结构模拟比较研究等提供更多可能。/pp style="text-indent: 2em "strong计算机模拟技术不可少/strong/pp style="text-indent: 2em "由于熔融结构的高温拉曼技术研究开展较早,对应的拉曼光谱没有可以参考的数据库,尤静林团队便不得不同时开展了“解释”谱图的工作——计算机模拟。尤静林团队利用工作站,通过分子动力学方法、从头计算分子动力学和密度泛函理论等方法进行结构模拟和光谱模拟,用以比较解读实测的拉曼光谱,二十多年的实践,计算机模拟方面的工作也获得了很好的效果。同时,尤静林团队还开发出了结构和光谱模拟方法,也与许多合作单位开放共享。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="font-size: 18px color: rgb(0, 0, 255) "谈实验室:仪器设备、教书育人那些事/span/strong/h1p style="text-indent: 2em "strong科学仪器助力研究功不可没/strong/pp style="text-indent: 2em "科研成果离不开先进科学仪器的助力,而尤静林教授对实验室那些仪器设备都有着深厚的感情。比如实验室的首个ICP是1993年采购,使用16年后,2009年扩大规模才买了第二套ICP,第二套使用到现在也已经10余年,仪器状态却维持相当好的状态。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 115px " src="https://img1.17img.cn/17img/images/202004/uepic/5b831515-2010-485f-b139-3be3a19be328.jpg" title="7.png" alt="7.png" width="600" height="115" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "实验室先后采购的三台HORIBA拉曼光谱仪/spanspan style="color: rgb(127, 127, 127) "(左至右:U1000、HR 800、HR evolution)/span/pp style="text-indent: 2em "说起拉曼光谱,尤静林教授更是如数家珍。实验室先后在1993年、2004年、2019年采购了三台HORIBA的拉曼光谱(涵盖了HORIBA拉曼产品的三代logo)。尤静林表示,第一台拉曼光谱U1000的光栅依然保持得很好,近期计划把它更新一下,再重新使用起来。另外两台拉曼光谱仪都在正常使用中,尤其2019年安装完毕的HR evolution,配置了最新一代ICCD,十分便捷高温条件下的测试。配置卤素灯热源,理论上温度可以达到摄氏1800度,常规在1700度左右。对于更高温度的测试要求,比如核反应堆相关实验,实验室正在制作气旋的悬浮样品装置,利用激光加热可以达到摄氏2000度以上。/pp style="text-indent: 2em "strong主张团队新人从“经营”实验室开始/strong/pp style="text-indent: 2em "作为一名老师,尤静林教授对学生教导有方,关爱有加,因此,他在学生中有着很高的口碑。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/202004/uepic/c70219dd-08ba-4e2d-abbf-71aba67d02bc.jpg" title="8.jpg" alt="8.jpg" width="450" height="253" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "实验室一角/span/pp style="text-indent: 2em "尤静林经常对刚进团队的博士、硕士同学们说,进入团队先不要忙着学东西,而要先走进实验室,在实验室“沉浸”一段时间,不做事情没关系,关键是要多问多看多观察,多向师哥师姐请教。在这样的氛围中“沉浸”一两个月,新人就能渐渐融入实验室的环境氛围,就会熟悉和理解许多实验细节和习惯,学会沟通交流,增强实验操作的自信,渐渐在科研工作中独当一面。/pp style="text-indent: 2em "strong主张开放,给学生更多成长空间/strong/pp style="text-indent: 2em "尤静林很珍惜师生缘分,在学习生活中,一直努力让学生获得最好的发展。/pp style="text-indent: 2em "尤静林向仪器信息网回顾了两个硕士生的故事。当时团队有两个硕士生都很努力,也十分优秀,尤静林为鼓励二人继续硕博连读,主动承担了他们博士期间三年的学费。两位学生也没有辜负尤静林的期望,顺利博士毕业,获得优秀成果,并继续从事博士后研究工作。回想起这件事情,尤静林十分愉快,虽然学费都是从自己工资中拿出来,但觉得十分值得。因为一方面成就了学生,另一方面也发展了自己的团队,科研工作也获得了良好的推进。尤静林教授认为,为人为师,不要计较太多,老师开放一点,给学生更多发展空间,让其获得成长,其实师生都能受益。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="font-size: 18px color: rgb(0, 0, 255) "谈观点:拉曼技术大有可为,国产仪器还要努把力/span/strong/h1p style="text-indent: 2em "strong拉曼光谱技术未来大有可为/strong/pp style="text-indent: 2em "关于拉曼技术的未来发展趋势,尤静林谈了三个方面的发展:/pp style="text-indent: 2em "首先,拉曼光谱技术的分辨率会越来越高,向近场发展。这将测试不断推向一个更小的空间;还可以通过与其他检测方法结合,使空间分辨率进一步提升。/pp style="text-indent: 2em "其次,超快速扫描。减短扫描时间是一个很大优势,比如实验现场测试量较多时,提高扫描速率,所获得的有效信息量会大大提升,从而提高了信息的层次。/pp style="text-indent: 2em "最后,拉曼光谱技术将在更多极端条件领域有很大的应用潜力,比如海底海水环境、太空等高温、高压环境下的研究。这些研究领域中,拉曼技术都是很好的“候选人”。比如拉曼光谱可以实现更好的“原位”检测,以探头形式实现样品与仪器超远距离分离操作,从几厘米甚至到几米。再比如二十多年前,美国曾将一辆卡车搭建了一个大型可移动的拉曼光谱,采用高能量的激光照射云彩,用大尺寸的反射镜收集会聚散射光,虽然效率可能不高,但足以体现了拉曼光谱仪可以进行远距测量的极大灵活性。/pp style="text-indent: 2em "strong拉曼技术很普及,但很多人没有把它“用”好/strong/pp style="text-indent: 2em "当下,拉曼光谱技术已经成为一项相对普及的技术,拉曼光谱仪是许多高校院所的基本和标配仪器设备。尤静林认为,许多人其实只是在“用”仪器,他们没有对仪器本身或测出来的数据进行更多的思考。目前的状况,有的实验室仪器使用频率很高,许多同行也都去使用,而有的实验室仪器却在闲置!其实我们的仪器需要匹配一支队伍,这支队伍必须非常热衷于对仪器的维护建设、对样品的思考,以及对数据结果的认知、分析与理解。/pp style="text-indent: 2em "strong国产仪器前景看好,但当下还要努把力/strong/pp style="text-indent: 2em "作为中国物理学会光散射专业委员会副主任委员,尤静林也谈了对国产仪器的看法。每年国内采购进口的仪器金额都以数亿元计,且许多仪器品类是进口垄断的,除了需要花费更高的价格,一些相关科研技术也会受到制约,所以国产仪器必须要成长起来。/pp style="text-indent: 2em "一台仪器的生产牵涉到原材料、核心部件、各个工艺细节等,是一个复杂的系统过程。所有零部件都采用国产还有很长的路要走。但还是要踏出第一步,我们可以先学习,从一些简单的做起,比如直接利用国外的部件来组装,甚至公司设置在国外,实现逐步成长,这些必须要尽快做。/pp style="text-indent: 2em "另外,尤静林认为国家应该重视重要的科学仪器设备的国产化,应给予大力扶持,比如选择共性仪器(如拉曼光谱共性就比较大)进行集中力量扶持,培养专门的科研团队,或配置专业的研究机构,集中力量进行技术攻关及产业化。/pp style="text-indent: 2em "strong后记/strong/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "走出尤静林教授实验室,留给笔者印象最深的就是尤静林教授的坚守与开放,看似矛盾,却是大智慧。因为坚守,他可以不断蓄力研究,保持领先;因为开放,他成就了一批又一批专业人才,研究领域后继有人。相信在尤静林教授等人的带领下,我国的高温拉曼光谱与熔体结构研究定会不断超越,开拓新的图景,造福人类。/span/p
  • Nature Communications:AFM-IR研究铁电纳米晶极化所罗门环结构
    所罗门环是数学扭结理论中的一个重要拓扑结构,它由两个分量和四个交叉点组成。最近人们发现,这种拓扑结构可以通过化学和生物分子的自组织形成。本研究中来自北京理工大学和清华大学的学者首次在BiFeO3铁电纳米晶体中观察到了极化所罗门环,并且极化所罗门环和中心型四瓣畴之间的拓扑相变可以通过电场可逆调控。AFM-IR测量结果显示两种拓扑极性结构具有不同的太赫兹红外吸收行为,这一特征可以用于设计具有纳米级分辨率的红外显示器。相关成果以Polar Solomon rings in ferroelectric nanocrystals为题,发表在Nature Communications上。在本项研究中,作者采用了几种先进的理论和实验方法,包括压电力显微镜,相场模拟分析和纳米红外技术来验证BiFeO3纳米晶的拓扑结构,电场可逆调控和红外吸收特性。图1所示,采用压电力显微镜,作者在自组装BiFeO3纳米晶中观察到极化所罗门拓扑畴结构,该结构由两个三维涡旋环组成:R+ 4 ,R-3 ,R+ 2 ,R-1(蓝色环)和R- 4 ,R+ 3 ,R- 2,R+ 1(红色环);两个涡旋相互扭抱,在三维空间共有四个交点。通过相场模拟分析(图2),作者表征了极化所罗门环的拓扑特性。通过计算纳米岛各层中畴结构的三维极化分布,验证了纳米岛极化所罗门环的存在,并通过计算极化缠绕数验证其拓扑特性。进一步的测试表明,通过施加外部电场,BiFeO3铁电纳米晶体的畴可以在极化所罗门环和中心型四瓣畴之间可逆地转变(图3)。未施加偏压下,纳米晶的极化畴呈所罗门环结构;-4V偏压下,环形结构消失,出现中心型四瓣畴结构;施加2V翻转偏压后,中心型筹结构又转变为所罗门环结构;增加偏压至3V,所罗门环结构转变为中心收敛的筹结构;继续施加翻转偏压-2V后,又变回所罗门环结构。通过AFM-IR探索了极化所罗门环结构与中心型四瓣畴结构不同的太赫兹红外光吸收性能(图4)。AFM-IR光谱显示两种筹结构在1100cm-1处存在出宽的吸收带,对应O-Fe-O键的倍频信号。向上和向下的四元域对该波段吸收更强,所罗门环吸收较弱。1100cm-1处的AFM-IR成像也证实了具有不同拓扑结构的BiFeO3纳米晶体的相对吸收强度的差异。铁电纳米晶筹结构对红外光的吸收取决于极化方向与红外光偏振方向的相对角度,以及畴壁的体积分数。所罗门环和中心型筹结构与红外光平行或反平行,吸收都较强。但所罗门环的畴壁的体积分数更大,畴壁对红外波段不活跃,因此,在所罗门环中观察到的光吸收最弱。在进一步的实验中(图5),选择具有极化所罗门环的大面积BiFeO3纳米晶体阵列作为弱的红外光吸收基体,向纳米晶体交替施加电压以产生交替的中心型畴和所罗门环。高分辨率红外图像清楚的显示出交替的强吸收和弱吸收。证实了所罗门环和中心型畴之间的可逆相变。通过外加电场调控BiFeO3纳米晶阵列畴结构类型,在纳米红外吸收图像中显示出”BIT”字样。本研究在实验和计算上证实了极化所罗门环的存在和电学调控,AFM-IR验证了两种筹结构不同的光吸收响应,这种具有不同光吸收特性的新型可控拓扑极化结构,可能为红外显示器的设计铺平道路。
  • 高分子表征技术专题——X射线晶体结构解析技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!X射线晶体结构解析技术在高分子表征研究中的应用X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer作者:扈健,王梦梵,吴婧华作者机构:青岛科技大学 教育部/山东橡塑重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029作者简介:扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究. 扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究.摘要高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.AbstractBecause of complicated multi-scale structure for the polymer material, studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challenge in the polymer science. For the crystalline polymer, crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers, which gives the detailed information of molecular chain conformation, chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology, and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method, the crystal structure of newly synthesized crystalline polymers can be analyzed, which may help us recognize crystal phase transition and hierarchical structure evolution by the external force, and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering, electron diffraction, nuclear magnetic resonance, vibrational spectroscopy and computer simulation, the crystal structure of polymers with higher reliability can be established, leading us to the highly quantitative discussion from the molecular level. For this purpose, the study of polymer crystal structure is still on the way, and the contents may be helpful for the beginners and researchers.关键词结晶性高分子  晶体结构  X射线衍射  结构与性能KeywordsCrystalline polymer  Crystal structure  X-ray diffraction method  Structure and property 目前已知的高分子中,大约70%的都是结晶性高分子,它们在日常生活和高端领域有着大量的应用. 结晶性高分子受分子链结构不规整、链缠结和链间相互作用等效应的影响,很难像小分子一样完全结晶,通常也被称作半结晶性高分子[1-3]. 高分子结构具有多尺度复杂性,其各级结构通常包括聚合物链结构、晶体(胞)结构、晶胞堆砌结构、晶区与非晶区堆砌结构以及球晶中片晶结构等,各级结构都有可能影响着高分子相态及形貌,进而影响高分子材料的性能. 而其中,晶体结构的确定是研究结晶性高分子的基础,所以建立高质量的结晶性高分子的晶体结构是非常必要的[4,5].近几十年来,随着各类表征技术和计算机模拟等领域的快速发展,大量的高分子晶体结构被建立或者修正. 确定结晶性高分子在单元晶胞基础上的晶体结构信息,最传统和经典的方法是广角X射线衍射法,并且结合红外光谱、拉曼光谱、核磁共振谱、中子散射以及高分辨电子衍射等技术能够得到更为准确的晶体结构. 这些技术的进步和运用不仅有助于分析聚合物的晶体结构,而且也提供了新方法去研究更为复杂的高分子材料. 基于晶体结构的建立,我们可以研究高分子的各级结构以及在外场作用下各种相态之间的演变规律,对阐明聚合物材料微观结构与物理性能之间的关系都具有重要意义[6,7].1高分子X射线晶体结构解析法X射线是一种波长为埃(1 Å = 10-10 m)级的电磁波,由于其波长的数量级与晶体点阵中原子间距一致,晶体点阵可以成为X射线发生衍射效应的光栅,而衍射图会随晶体点阵的变化而变化,因此X射线适用于晶体结构解析. 从20世纪30年代开始,X射线衍射法对聚合物科学领域的发展就起到了重要的作用,例如通过X射线衍射方法确定了各类合成或天然高分子的纤维周期均为几个Å到几十个Å,这也证明了一根聚合物分子链可以贯穿多个晶胞. 随着近几十年同步辐射技术的应用,拓宽了X射线的波长范围,更短的波长可以使我们获得更多倒易空间的坐标信息,灵敏度更高的探测器可以帮助我们更细致观测相变的动力学以及其他行为. 另外,通过分子模拟软件进行数据分析,建立模型以及能量最小化等已经普遍用于X射线衍射法解析或精修晶体结构. 1.1X射线衍射法基本原理解析晶体结构的衍射原理和方法学主要是20世纪初期建立的,包括布拉格定律、晶体学对称、群论以及从实空间到倒易空间的傅里叶变换等等. 很多书籍对这些方法都有着详尽的描述,这里对几个重要的概念和原理进行简要的概述[8~11].1.1.1Bragg和Polanyi公式Bragg公式:如图1所示,当一束单色X射线非垂直入射晶体后,从晶体中的原子散射出的X射线在一定条件下彼此会发生干涉, 满足下列方程:其中λ为入射光波长,d为晶面间距,θ为入射光与晶面的夹角.Fig. 1Bragg' s condition.Polanyi公式: 如图2(a)所示,当一束波长为λ的X射线垂直入射在一维线性点阵时(例如单轴取向的纤维样品),其等同周期为I, 当满足Polanyi方程公式时,散射出的X射线间会产生强烈的衍射:其中Φm为第m层衍射的仰角. 结晶高分子中分子链排列时以相同结构单元重复出现的周期长度被称为等同周期(identity period)或者纤维周期(fiber period),图2(b)为全同聚丁烯-1的(3/1)螺旋构象,可以利用Polanyi公式从二维X射线纤维图中计算等同周期.Fig. 2(a) Polanyi' s condition (b) Identity period ofit-PB-1.1.1.2倒易空间倒易点阵是根据晶体结构的周期性抽象出来的三维空间坐标,是一种简单实用的数学工具来描述晶体衍射,X射线衍射的图样实际上是晶体倒易点阵的对应而不是正点阵的直接映像. 正点阵与倒易点阵是互易的,倒易晶格中越大的晶面指数(hkl),在实晶格中就对应越小的晶面间距. 如图3(a)所示,假设晶体点阵中的单位矢量为a1,a2和a3,和它对应的倒易点阵的单位矢量为a1*,a2*和a3*,其关系如下式:其中晶胞体积V=a1 × ( a2 × a3),a1*垂直于a2和a3,a2*垂直于a1和a3,a3*垂直于a1和a2,其长度是相应晶面间距的倒数的向量.Fig. 3(a) Relationship between real space and reciprocal space (b) Reciprocal lattice and vector.倒易晶格中的任一点称作倒易点,倒易点阵的阵点与晶体学平面的矢量相关,每一组晶面(hkl)都对应一个倒易点. 从倒易空间原点指向倒易点的矢量被称为倒易矢量Hhkl,如图3(b)所示,其关系如下:其中指标(h,k,l)就是实空间中的晶面指数,h,k,l均为整数. 倒易矢量Hhkl垂直于正点阵中的(hkl)晶面,并且矢量的长度等于其对应晶面间距的倒数|Hhkl|=1/dhkl.1.1.3Ewald球Bragg方程指出,当散射矢量等于某倒易点阵矢量时就具备发生衍射的基础,如果把Bragg方程进行变形可得到公式(5):以1/λ为半径画一个球面,C点为圆心,CP为散射X射线,球面与O点相切,只要倒易点阵与球面相交就可以满足Bragg方程而发生衍射现象,这个反射球就被称为Ewald球,如图4所示.Fig. 4Relationship between Ewald sphere of radius 1/λ and reciprocal lattice. 根据图中的几何关系OP = 1/d,假设O点为倒易空间原点,OP即为倒易散射矢量,P点与倒易空间点阵的交点即为(hkl)晶面指数. 转动晶体的同时倒易点阵亦发生转动,从而会使不同的倒易点与Ewald球的表面相交. Ewald球直径的大小与X射线波长成反比,衍射点数量取决于Ewald球与倒易空间的交点的数目,实验可探测衍射的最小d值取决于Ewald球的直径2/λ,在实际测试中,可以减小入射光波长以增加可观测的衍射点数量.如图5所示,对于单轴取向的样品,拉伸方向平行于c轴方向,而a轴和b轴仍然是随机取向,所以倒易空间的(hkl)点呈同心圆分布,这一系列同心圆与Ewald反射球的交点就构成了一系列的hk0,hk1,hk2… hkl的倒易格子的平面. 通常定义(hk0)层为赤道线方向,沿拉伸方向的(00l)为子午线方向.Fig. 5The relationship among Ewald sphere, circular distribution of reciprocal lattice points and a diffraction pattern on a flat photographic film.1.1.4X射线衍射强度X射线的衍射强度Intensity公式如下:其中K是比例因子,m是多重性因子,p为极化因子,L是Lorentz因子,A是吸光因子,F为结构因子. 其中需要强调的是结构因子F,它是由晶体结构决定的,和晶胞中原子的种类和位置相关.如图6所示,一束平行X射线经过电子A和B分别发生散射,假设A到B的距离为r,S0和S分别为入射和散射单位矢量,其光程差为:其中b即为散射矢量,与图4中OP矢量一致.Fig. 6Sketch of classic scattering experiment.一个原子中的核外电子云呈球形分布,对环绕中心的所有可能实空间矢量的干涉进行积分可以得到一个原子周围的电子产生的相干散射:这个公式就是ρ(r)的傅里叶变换,其中ρ(r)是原子的散射因子.晶体中原子的周期排列决定了晶体中的一切都是周期的,相当于一种周期函数,这种周期函数的实质就是晶胞中的电子密度分布函数,倒易晶格就是实晶格的傅里叶变换. 晶格对X射线的散射为晶格中每个原子散射的加和,每个原子的散射强度是其位置的函数,加和前必须考虑每个原子相对于原点的位相差.r为实空间中的原子位置矢量,设r = xna1 + yna2 + zna3,b为倒易空间的倒易矢量,b = Hhkl = ha1* + ka2* + la3*,根据倒易空间的性质可以得出公式:通过此公式可以看出结构因子和原子坐标位置相关,这也就决定了系统消光现象,也就是说在不同晶系中不是所有衍射点都会出现,可以通过计算结构因子来判断.另外由于衍射强度正比于|Funit cell|2,在晶体计算过程中,衍射峰的绝对强度意义不大,但是衍射峰的相对强度对最后晶体结构的确定影响很大.1.1.5分子链排列方式和空间群一根分子链一般包含内旋转相互作用、非键接原子间相互作用、静电作用、键长伸缩和键角变形作用以及氢键作用等. 在晶格中分子链排列大多遵循2个原则:最稳定的空间螺旋构象以及最密堆砌.晶体学中的空间群是三维周期性的晶体变换成它自身的对称操作(平移,点操作以及这两者的组合)的集合,一共有230种空间群. 空间群是点阵、平移群(滑移面和螺旋轴)和点群的组合. 230个空间群是由14个Bravais点阵与32个晶体点群系统组合而成[12].我们挑选比较简单的空间群操作进行比较直观的说明,如图7所示,若一个右旋向上的分子链(图7(a)中Ru),通过以箭头方向为旋转轴做180°转动,可以得到右旋向下的分子链(图7(a)中Rd),如果空间中只有这一种对称操作,那么这种空间为P2;又若Ru分子链通过镜面对称操作可以得到左旋向上的分子链(图7(b)中Lu),如果空间中只有这一种对称操作,那么这种空间为Pm;若空间群中同时包含以上2种对称操作,且镜面法线方向与对称轴垂直,也就是说在此晶胞内就同时存在右旋向上Ru,右旋向下Rd,左旋向上Lu,左旋向下Ld 4种分子链构象,那么这种空间群为 P2/m,如图7(c)所示.Fig. 7Introduction of different operation in the space group.1.2其他方法简介1.2.1振动光谱法振动光谱法通常包括红外及拉曼光谱,其可以提供分子链构象,晶体对称性等信息[8]. 虽然通过X射线衍射法进行晶体结构解析时可以得到晶区高分子链的构象信息,但无法获知分子间作用力的信息,而有时分子间作用力在晶体结构的形成起到很重要的作用.1.2.2中子衍射法X射线衍射是X射线与电子相互作用,它在不同原子上的散射强度与原子序数成正比,对高分子而言通常都给出主链的信息,而中子衍射法是中子与原子核相互作用,其衍射强度随原子序数的增加不会有序的增大,主要与原子的种类有关,因此中子衍射法可以确定晶体结构中轻元素的位置. 很多力学性能的各向异性通常受侧链的氢原子影响很大,结合X射线衍射和中子衍射法能得到更为准确的晶体结构[13,14].1.2.3电子衍射法电子衍射法可以给出聚合物单晶的形貌信息并且可以得到相应电子衍射图进行结构分析[15]. 但是通常电子衍射法得到衍射点数量较少,而且容易产生次级衍射,样品容易被电子束破坏.1.2.4固体核磁共振谱法固体NMR适用于解析固态高聚物的本体结构、链构象、结晶、相容性以及分子动力学等[16,17]. 谱峰的化学位移(chemical shift)是固体核磁波谱的主要信息,它依赖于分子的局部电子云环境. 电子云结构对分子构象的变化非常灵敏,是研究多晶型的重要依据. 但固体核磁法很难给出晶体的直接结构,常作为X射线衍射法的补充.2X射线衍射测试方法及技巧对于聚合物而言很难培养出0.1 mm以上的单晶,所以测试大多数采用的都是多晶样品. 相较于小分子和低分子量的化合物而言,高分子结晶区的尺寸通常只有几百个Å,晶格内分子链排列不完善,衍射点的数量较少并且衍射点尺寸较宽,大角度范围衍射点强度衰减非常严重,要得到高质量的数据和非常可信的结构解析结果是比较困难的,从样品制备到测试以及后续分析的每一个环节都需要仔细的处理.图8为X射线衍射法解析高分子晶体结构的具体步骤.Fig. 8Schematic illustration of crystal structure analysis of polymer by X-ray diffraction method.2.1样品制备对于X射线衍射法解析晶体结构而言,非取向的样品有很多衍射峰是重合的,不利于进行结构分析,所以要想得到尽可能多的衍射点,最主要的就是制备尽可能高取向度和高结晶度的且具有单一晶型的样品. 下面给出了几种不同制样方法.2.1.1单轴取向样品通常利用高分子粉末或粒料样品,将其在溶液溶解后浇铸成膜或者熔融温度以上热压成膜. 所得到的高分子膜可以再通过加热熔融后淬冷到冰水或者液氮中,会得到有利于进行后续的拉伸的完全非晶或者低结晶度的样品. 而后利用单轴拉伸仪将薄膜或者纤维牵伸至最大倍数,最后将拉伸的样品在适当温度退火处理,以达到最大结晶度. 在此过程中为了防止样品回缩,样品两端始终要处于固定或者夹紧的状态. 另外, 高分子在不同的制样条件下可能得到不同晶型的样品,因此在制样之前要掌握高分子不同晶型的制备条件,避免得到不同晶型共存的样品. 例如聚乳酸在高温(120 °C)结晶会得到α相,在100 °C以下结晶会得到δ(α' )相[18]. 全同聚丁烯-1在熔融温度附近拉伸可以得到晶型Ⅱ,室温拉伸得到晶型I[19].2.1.2双重取向样品图9所示的是制备双重取向样品的方法,首先对聚合物样品进行单轴拉伸,然后将拉伸后的样品利用双辊挤压的方法可以得到双重取向的样品,如果把样品切成一个小方块,可以从3个方向进行测试,可将其分别定义为through,edge和end方向.图10所示为无规聚乙烯醇(at-PVA)的单轴取向和双重取向样品的二维广角X射线衍射图[20]. 对单轴拉伸的无规聚乙烯醇样品进行双辊挤压后,如图10(b)所示,可以看到through和edge方向的二维衍射图,和单轴取向的二维图比较相似,但是through方向的(11¯1)晶面信息在edge方向就几乎消失[20]. 这里面比较重要的是end方向的衍射图,因为对于单轴取向的样品而言,从end方向观测通常得到的是非取向的衍射环. 而利用双重取向法,可以使a轴和b轴分别取向,如果X射线的入射方向沿着c轴也就是分子链的方向,从end方向就可以得到不同的a轴和b轴方向上的信息,对其指标化后可以确定相应的晶胞参数,利用此方法也可以从end方向原位观测结构演变的信息.Fig. 9Method of doubly-oriented sample.Fig. 10X-ray diffraction patterns ofat-PVA sample for the (a) uniaxially-oriented and (b) doubly-oriented sample (Reprinted with permission from Ref.[20] Copyright (2020) American Chemical Society).另外,在实际操作中,有时实验室合成的聚合物的量较少,大家也常采用剪切[21~25]、熔体拉伸以及浓溶液拔丝[26,27]的方法. 根据不同高分子的特点,还可以利用凝胶拉伸法[28~30]以及电磁场取向[31,32]等方法,得到高取向度的样品用于晶体结构解析.2.2二维广角X射线衍射图的数据采集2.2.1光源的选择实验室常用的金属靶材料为波长1.54 Å铜靶(Cu)和波长为0.71 Å钼靶(Mo),根据布拉格公式可知,利用波长小的靶材,有利于得到更多的布拉格衍射峰的数目. 与实验室光源相比,同步辐射光源强且准直性好,并且由于同步辐射光源波长能够实现连续可调,可根据测试需求选择最优波长.图11分别选用同步辐射光源和钼靶X射线衍射图进行对比,当选择波长为0.3282 Å的同步辐射光源时,可以得到接近700个衍射点,这种高质量的数据对得到高可信赖度的晶体结构非常重要[33].Fig. 112D-WAXD patterns ofα crystal form of PLLA measuring with different incident λ (Reprinted with permission from Ref.[ 33] Copyright (2011) American Chemical Society).2.2.2探测器的选择根据衍射谱图的维度区分,可以将X射线探测器分为零维,一维和二维三类探测器. 在进行晶体结构测试时选择圆筒形成像板(image plate)的二维探测器较多,其适合做静态结构测试,像素点尺寸100 μm × 100 μm,特点是尺寸大,采集信号范围广,缺点是测试耗时比较长. 目前普遍流行的硅元素阵列二维探测器(Pilatus),其特点是采集数据速度快,对原位测试时间分辨的结晶和相变行为非常有效,但是由于其像素点尺寸(172 μm × 172 μm)偏大,探测器分段等制约因素,不适用于做高分子晶体结构分析的研究.在实际测试过程中,为了得到高质量的衍射点,通常在测试时对样品使用低温氮气进行持续冷却吹扫,这是因为低温可以抑制晶格内原子振动,使晶体结构更趋于完善.2.3高分子晶体结构解析2.3.1计算纤维周期通常定义c轴是沿着链轴方向,计算纤维周期I也就确定了c轴信息.图12(b)和12(d)为分别利用Rigaku公司的X射线衍射仪(Rapid II)的圆筒成像板(image plate)和Xenocs公司的X射线衍射仪(Xeuss 2.0)的平板探测器(Pilatus 300K)得到的高取向聚乙烯的二维X射线衍射图. 我们利用国内实验室常用的平板探测器为例来计算聚乙烯的晶胞参数等信息,测试的曝光时间为1 h,Pilatus 300K的像素点尺寸为0.172 mm × 0.172 mm,测试中相机距离R=127.1 mm,光源是铜靶(λ=1.54189 Å),ϕ为衍射的仰角,根据图12(a)以及12(c)的示意图可以得到下面的公式:Fig. 12(a) Schemes of the X-ray fiber diffraction patterns recorded on a cylindrical photographic film (b) 2D-WAXD pattern of polyethylene by imaging plate (c) Schemes of the X-ray fiber diffraction patterns recorded on a flat photographic film (d) 2D-WAXD pattern of polyethylene by Pilatus 300K.ym为第m层层线到赤道线的距离,R为样品到探测器的距离. 如图12(c)所示,根据平面探测器的特点,找到第一层所有衍射点中心位置连成一条双曲线,读出双曲线最低点的坐标位置,计算到中心点的实际距离,确定第一层到中心点y1值. 结合Polanyi公式,可以计算出聚乙烯的纤维周期I= 2.54 Å. 如果有更多的层能被观测到,我们需要对所有层到赤道线计算出来纤维周期求平均值. 对于聚乙烯,其分子链结构为平面锯齿型,C ― C键长为1.54 Å,键角大约109.5°,通过计算得到的I= 2Rsin(φ/2) = 2.52 Å,与X射线法计算的等同周期结果相一致.2.3.2确定晶系和计算晶胞参数从平面探测器得到二维数据后,读出所有衍射峰坐标,然后把平面直角坐标系(x,y)的衍射峰坐标转换为倒易空间下的柱面坐标系(ξ,ζ). 其(ξ,ζ)与倒易矢量以及(x,y)的空间关系如图13所示.Fig. 13(a) Cylindrical coordinates of reciprocal lattice (b) Relation between cylindrical coordinates (ξ,ζ) and rectangular coordinates (x,y).对于平面探测器其转换关系如下:其中D为样品到探测器的距离,λ为入射X射线的波长.对于圆筒形成像板,可利用下面的公式进行转换:其中R为圆筒成像板的半径.图12(d)中一共有16个衍射峰,每一个二维图的峰位置(x,y)即对应一个ξ值,赤道线和第一层总共对应8个ξ值,其值根据公式(11)转换后如表1所示.如图14所示,分别在L0和L1层建立的坐标系下以ξ值为半径画圆. 这时我们需要寻找合适的晶胞参数在倒易空间坐标系下进行标定,以保证所有的倒易晶格都与以ξ为半径的圆有交点. 一般采用尝试法,其原则是从简单晶系比如正交或者四方晶系开始寻找,从数值较小的晶面开始尝试,要保证所有层的所有倒易晶格都能落在圆周上,然后对其衍射峰进行指标化. 确定晶系后,我们可以利用不同的晶面信息分别计算a和b值,以及α,β和γ等晶胞参数的信息. 最后得到聚乙烯属于正交晶系,晶胞参数为a=7.44 Å,b=4.95 Å,c=2.54 Å.Fig. 14Reciprocal lattice and indexing of reflections for the equatorial and first layers of PE.2.3.3估算晶胞内分子链的数量其中ρ为晶体密度,M为重复单元相对分子质量,V为晶胞体积. 对聚乙烯来说,其所属晶系为正交晶系,重复单元分子摩尔质量M= CH2=14 g/mol,晶胞体积V=a×b×c= 7.44 × 4.95 ×2.54 = 93.543 Å3. 实验测得的晶体密度ρ= 0.98 g/cm3,所以晶胞内的分子链个数为Z=ρVNA/M= 3.93,Z取整数,大约4根分子链在一个晶胞内.2.3.4晶体对称性的消光法则计算由前面可知X射线衍射的强度跟结构因子|Funit cell|2成正比,可以利用公式(14)进行计算. 例如聚乙烯为平面锯齿链结构,c轴方向为二重螺旋轴,2个碳原子C1和C2的坐标分别为(x,y,z)和(-x, -y,z+0.5),如图15所示,对于00l层的衍射,根据公式(9)可以得到下式:Fig. 152-screw axis of zigzag chain.当l为偶数的时候,Funit cell≠0;当l为奇数的时候,Funit cell=0,所以根据消光法则,晶面(001),(003)… 层的衍射观测不到.2.3.5计算模拟(Cerius 2)借助计算机强大的图形处理功能,可以对X射线衍射,电子衍射以及中子衍射等数据进行模拟计算,直观地在三维空间观测分子的结构特征, 我们主要通过软件Cerius 2的Crystal Builder (晶体建立模块)进行模拟计算,通过实验数据和模拟的结构模型对比确定晶体结构[34]. 进行能量最小化用到的力场模型通常选用COMPASS力场,模型的构建采用了全原子模型,能够模拟出更准确的高分子的结构与性质.图16(a)和16(b)分别是全同聚丁烯-1晶型I的二维X射线衍射图和利用晶体结构模型计算模拟得到的二维X射线衍射图[19].Fig. 162-Dimensional X-ray diffraction pattern of orientedit-PB-1 form I sample taken at room temperature: (a) the observed data and (b) the calculated diagram using the crystal structure (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).一般的操作步骤是,首先输入分子结构的重复单元,输入计算得到晶胞参数信息,利用COMPASS力场进行能量最小化. 找出尽可能多的候选空间群,计算稳定的分子结构,对所有可能的候选模型与实验数据进行对比.图17(A)就是对全同聚丁烯-1的晶型I提出的所有可能候选空间群. 把二维衍射图转换成一维数据,需要从赤道线开始,对每一层的衍射点进行逐层积分,与模拟所得的一维衍射数据进行对比,模拟的数据要尽可能真实地反映实测数据,以保证所有层的衍射峰的峰位置与峰相对强度一致,从而确定最佳的候选空间群.图17(B)为全同聚丁烯-1晶型I的不同计算机模拟和实验数据的一维积分曲线对比图. 最后通过调整相关参数使体系能量最小化,得到最稳定的晶体结构模型.Fig. 17(A) Various possibilities of the crystal structure model ofit-PB-1 form I (B) Comparison of the observed X-ray layer line profiles ofit-PB-1 crystal form I with those calculated for the three possible space groups (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).其他如Materials studio软件中的也包含COMPASS Ⅱ,Forcite Plus(各种通用力场)等模块,可以对建立的晶体结构进行弹性力常数,晶格能等物理性质的计算和预测,也可以进行动力学模拟研究动态过程.2.3.6可信赖因子把X射线衍射数据得到的所有衍射峰积分强度和确定的模型计算得到的衍射峰强度按公式(15)进行计算,求出可信赖因子R. 对单晶结构来说,R 0.05,如果 R值是0.1左右,说明得到的高分子晶体结构非常好,如果R 0.2,得到的晶体结构被认为是可以接受的模型. 2.3.7输出最终结构图18是全同聚丁烯-1晶型I的最终晶体结构模型,分别对应a轴和b轴,以及a轴和c轴方向示意图[19]. 晶体结构模型确定后,可以输出每一个晶面对应的(hkl)值,晶面间距,实验和模拟的强度对比值以及原子分数坐标等信息.Fig. 18Crystal structure ofit-PB-1 form I (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).3典型进展和应用近些年来大量的高分子晶体结构被建立或者精修. 下面概述近些年来,主要通过X射线衍射法建立的晶体结构在高分子表征领域内的进展和典型应用.3.1晶体结构解析在高分子复合体中的应用通常情况下,大多研究单一组分高分子样品的结晶行为以及结构分析. 但高分子领域也存在大量的共结晶现象,例如高分子立构复合体[35~44]、高分子与多碘离子[20, 45~50]形成的复合体等,在这些情况下,晶体结构解析会变得相对复杂.以高分子-多碘复合体为例,诸多高分子都可以与多碘离子形成复合体,最具代表性的包括淀粉-碘复合体及聚乙烯醇(PVA)-碘复合体等. 高分子碘复合体赋予了高分子诸多新的特性,例如导电性、光学特性和抗菌性等. 这些特性与复合体的晶态结构密切相关,而相关的研究至今也已经持续了近百年.高分子碘复合体的晶体结构解析与纯结晶高分子体系有所不同,因为碘原子相对于碳原子有较大的质量,从而碘原子的X射线原子散射系数远远大于碳原子,因此在二维X射线衍射图中一般只能观测到由于多碘离子在空间有序排列而出现的衍射点,而高分子主链部分的衍射信息则无法或极难观测到. 如图19所示,图19(a)为PVA单轴取向纤维的二维X射线衍射图,图19(b)~19(e)分别为PVA在不同浓度的碘溶液中浸泡不同时间后所形成的PVA-碘复合体二维X射线衍射图,可以看出,随碘溶液浓度的升高与浸泡时间的延长(即:随PVA样品中碘离子浓度的升高),PVA晶体的X射线衍射点逐渐变弱(绿色箭头所示),而PVA碘复合体结晶的衍射则逐渐变强[45]. 在此需要再次申明,PVA碘复合体X射线衍射图中的衍射强度主要由碘离子提供.Fig. 192D X-ray diffraction patterns measured for the uniaxially oriented PVA samples dipped in the KI/I2 solutions with different concentrations for the different time. The vertical direction is parallel to the drawn direction. (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).在进行结构分析之前,需要注意到在图19中衍射图的子午方向上出现很强的平行横向条纹(streak line),这种情况是由于柱状碘离子沿取向轴方向的排列高度是随机的,以图20说明,图20(a)为单独多碘离子模型的计算X射线衍射图,图20(b)为多碘离子平行但高度随机分布的计算X射线衍射图,图20(c)为PVA-多碘离子复合体样品测试所得X射线衍射图,可以看出,计算与实际测试所得的X射线衍射图具有很好的对应性,均表现为沿子午线方向的平行横向条纹衍射,说明在复合体中多碘离子沿取方向排布具有随机性.Fig. 20Simulation of X-ray diffuse scatterings observed for PVA-iodine complex: (a) isolated I3-, (b) randomly arrayed I3- ions, and (c) actually observed pattern (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).通过X射线研究结晶结构完全依赖于衍射信号,因此通过高分子-碘复合体的X射线衍射图只能确定碘离子的空间位置,但很难确定高分子链的排布,这也为高分子-多碘复合体的结构解析造成了一定的困难. 这种情况下,我们需要首先建立高分子基体的结晶模型,而后结合多碘离子的空间排布对复合体进行结构分析,从而建立复合体的结构模型,如图21所示.图21(a)为PVA结构模型,图21(b)为PVA多碘复合体结构模型.Fig. 21Crystal structures of (a) the original PVA and (b) the complex II. The large circles (purple color) are iodine atoms. The smaller circles (green color) are potassium atoms (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).进一步确认PVA与PVA-碘复合体晶体结构的空间关系,采用X射线垂直于分子链方向入射模式(end-pattern)进行研究,结果如图22所示,PVA碘复合体与PVA晶体中PVA分子链具有不同的空间排布模式. 以此上结果为根据,我们可以建立PVA与PVA碘复合体结构的关联性,这也可以为进一步分析复合体的形成过程提供理论支撑.Fig. 22Spatial relation of the crystal orientation between PVA and complex II derived from the X-ray end pattern (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).又如聚乳酸立构复合体的研究,在对其进行结构分析时,既要考虑PLLA与PDLA分子链的空间排布位置,也需要考虑2种分子链的相对比例,因为在2种分子链不同比例的情况下也可以形成同样结构的复合体晶体. Tashiro等[44]在前人工作的基础上,进一步研究了PLA立构复合体的晶体结构,提出了全新的PLLA和PDLA在立构复合体晶体中的随机排列模型(Random Packing Model),如图23所示,并以此来解释当 PLLA与PDLA分子链不等量时也能形成立构复合体的问题.Fig. 23The random packing model of R and L chain stems within PLLA/PDLA stereocomplex (Reprinted with permission from Ref.[42] Copyright (2017) American Chemical Society).3.2在高分子材料极限力学性能预测方面的应用结晶高分子材料的表观力学性能往往与其结晶区的力学性能直接相关,也就是说随着结晶度的提高,高分子的力学性能也会随之增强. 而现如今绝大多数高分子材料的极限力学性能尚没有被真正地发挥出来,究其原因,一方面我们对于高分子材料认知以及其制备手段仍需进一步发展,另一方面我们也需要对高分子的极限力学性能进行预测以指导高分子材料产品的发展方向.取向高分子的受力过程可以简化为沿高分子链方向上的受力,因此高分子链的组成与构型构象会直接影响高分子的力学性能[51~56]. 以PLLA的α相为例,通过计算,其分子链在受力过程中主要发生主链沿轴向的扭转[52]. 高分子链的在晶格中的形态也是结晶结构解析中必不可少的信息. 因此在结晶结构解析成功建立的同时,如图24所示,可以使用得到的分子链结构此对晶体的力学性能进行预测.Fig. 24Molecular deformation calculated for PLLAα form chain subjected to a hypothetically large tensile force of 30 GPa (Reprinted with permission from Ref.[52] Copyright (2012) American Chemical Society).计算过程一般为:首先通过计算所得分子链在晶胞中的形态,进而计算出弹性常数张量矩阵(elastic constants tensor matrix)及柔度张量矩阵 (compliance tensor matrix) (图25),基于这2个矩阵通过进一步的计算可以得到高分子链在垂直分子链主轴平面方向上的理论杨氏模量以及线性压缩率(linear compressibility),如图26中所示为计算所得聚甲醛(POM)与PLLAα相的理论杨氏模量以及线性压缩率[46]. 以此,可以建立结晶性高分子材料的结构与力学性能之间的关系.Fig. 25Elastic constants tensor matrix and compliance tensor matrix of PLLAα form.Fig. 26Comparison in the calculated anisotropy of Young' s modulus and linear compressibility in the plane perpendicular to the chain axis among the PLLAα and δ forms and polyoxymethylene (POM) crystal (Reprinted with permission from Ref.[52] Copyright (2015) American Chemical Society).Tasaki等[54~56]研究了一系列不同亚甲基序列芳香族聚酯,发现链构象在偶数和奇数序列中有非常大的区别,如图27(a)和27(b)所示.图27(c)说明随着―CH2序列的增加,重复周期也随之呈线性增加,亚甲基序列长度可以对聚酯杨氏模量进行调控,亚甲基单元为5~6时,其杨氏模量达到最小值. 这一理论计算结果与使用X射线测试所得的杨氏模量值具有高度的吻合性,如图27(d)所示.Fig. 27Chain conformation with different mGTs (a) odd number (b) even number (c) repeating period of mGT on the number of methylene units m, and (d) comparation of the crystalline Young' s modulusEc of arylate polyester chains on the number of methylene segmental units by X-ray observed values and calculated values (Reprinted with permission from Ref.[56] Copyright (2014) Elsevier Ltd.).3.3高分子在外场作用下结构转变解析中的应用很多半结晶性高分子在外场作用下会发生结晶结构的转变,对于相转变过程中的结构演变研究是相变研究的基础和难点. 借助于晶体结构解析技术可以对相变过程进行预测.例如Tashiro等[19]分别对全同聚丁烯-1晶型Ⅱ和晶型I分别进行了晶体结构的精修,通过对2种晶型的所有空间群和衍射数据进行对比,发现P3¯低对称性空间群比高对称性R3c 空间群更适合晶型I,而晶型Ⅱ的空间群为P4b¯2,在2种结构中,向上的链和向下的链都是统计学上各有50%几率分布在晶胞内, 晶型I如图18所示. 随后通过电子衍射原位研究晶型Ⅱ到I的固-固转变过程,发现两相共有(110)晶面,相邻分子链会在转变中向相反方向移动,类似一种soft mode的转变模式,如图28所示,晶型Ⅱ晶格内相邻的分子链可以通过向相反的方向移动,最终在新的位置稳定,最终转换为晶型I. 以上相变过程的机理分析都是在基于it-PB-1晶体结构解析的基础上.Fig. 28Concrete structural change in the phase transition from form II to form I ofit-PB-1. In the route (a) the (11/3) helical conformation is kept up to the stage of the formation of hexagonally packed structure as a transient state. (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).又如聚乳酸存在α相、δ(α' )相、β相及γ相,围绕这些晶态结构的研究也一直是PLA研究中最重要的一环[18,33, 57~60]. 除γ相一般是由外延生长结晶法(epitaxial crystallization)得到外,其他几种晶相都是与通用PLA密切相关的. 随测试手段的不断进步,α相、δ(α' )相、β相的晶体结构的迷雾逐渐被揭开,从而为α→δ(α' )→β相的相转变及PLA立构复合体形成的研究提供了理论支持. Wasanasuk等[33,52,58,59]在一系列工作中利用同步辐射X射线及中子散射装置深入解析了α及δ(α' )相的晶体结构,如图29所示,其中PLA分子链在α相中以这一种准有序的(10/3)螺旋构象状态排列在晶胞单元中,而在δ(α' )中的(10/3)螺旋构象则更加无序. 而后,Wang等[60]对PLA的β相的晶体结构重新进行了系统的解析,对前人的解析结果进行了修正,并结合Wasanasuk等的研究结果对α→δ(α' )→β的在拉伸过程中相转变机理进行了探究,如图30所示.Fig. 29Helical conformations of the molecular chains of PLLAα form and δ form and the regular chain conformation (Reprinted with permission from Ref.[52] Copyright (2012) American Chemical Society).Fig. 30A schematic illustration of the tension-induced phase transition from theα form with a large single domain to the β form with the aggregated domains of smaller size via the δ form of the structurally disordered structure and smaller domains (Reprinted with permission from Ref.[60] Copyright (2017) American Chemical Society). 4总结与展望本文介绍了X射线衍射法在高分子晶体结构解析中的基本原理及实验方法和技巧等内容,概述了近些年来X射线衍射法在高分子晶体结构解析领域进展和相关应用. 在静态解析方面,介绍了高分子复合物的晶体结构的最新进展,通过对新合成高分子的晶体结构的解析或者传统高分子结构的重新修正,进而利用晶体结构的相关参数可以对材料的力学性能进行计算和预测. 动态研究方面,基于更为精确的晶体结构的建立,可以帮助我们从晶胞尺度基础上理解外场作用下高分子结晶和相变等过程,探明结构演变的机制. 对结晶性高分子来说,建立可信赖的高分子晶体结构在高分子研究领域都是必不可少的内容.如前文所说,现有高分子晶体结构的建立大多依赖于X射线衍射法,但X射线衍射法受限于衍射点数量少且比较弥散等因素的影响,要得到非常可靠的结构是很困难的. 随着同步辐射技术的发展以及高分辨率和灵敏度的探测器的进步,例如最新的EIGER探测器分辨率达到了75 µm × 75 µm,可以更有利于从静态和动态等方面研究高分子的晶体结构及外场下演变过程. 并且把振动光谱、核磁共振法、电子衍射、中子衍射以及计算机模拟的方法相结合,可以使我们从不同角度去揭示和理解高分子晶体结构信息. 在最新的文献中,Tashiro指出[14],利用X射线衍射以及中子衍射技术的结合,可以给出晶体结构中重原子和轻原子的位置信息,得到更为精确的晶体结构. 随着表征手段和计算机领域的不断进步,建立更加准确高分子晶体结构可以使我们更深刻理解高分子各级结构的复杂性,也有利于阐明高分子材料的结构与性能之间的关系.参考文献1Strobl G.The Physics of Polymers.3th ed .New York:Springer,2007.166-2222Piorkowska E,Rutledge G C.Handbook of Polymer Crystallization.Hoboken, New Jersey:John Wiley & Sons, Inc,2013.31-673Hu Wenbing(胡文兵).Principles of Polymer Crystallization(高分子结晶学原理).Beijing(北京):Chemical Industry Press(化学工业出版社),2013.1-15.doi:10.1007/978-3-7091-0670-9_104Vasile C.Handbook of Polyolefins.2nd ed .New York:Marcel Dekker, Inc,2000.175-1825Lotz B,Miyoshi T,Cheng S Z D.Macromolecules.2017,50(16):5995-6025.doi:10.1021/acs.macromol.7b009076Tashiro K,Kobayashi M,Tadokoro H,Fukada E.Macromolecules,1980,13(3):691-698.doi:10.1021/ma60075a0407Men Y,Li L.Polymer Crystallization,2019,2(2):e10067.doi:10.1002/pcr2.100678Tadokoro H.Structure of Crystalline Polymers.Malabar.Florida:Robert E. Krieger Publishing Company,1990.19-1789Rosa C D,Auriemma F.Crystals and Crystalline in Polymers.Hoboken, New Jersey:John Wiley & Sons, Inc,2014.88-18410Alexander L L.X-ray Diffraction Methods in Polymer Science.New York:John Wiley & Sons, Inc,196911Mo Zhishen(莫志深),Zhang Hongfang(张宏放),Zhang Jidong(张吉东).Structure of Crystalline Polymers by X-Ray Diffraction(晶态聚合物结构与X射线衍射).2nd ed .Beijing(北京):Science Press(科学出版社),2010.146-206.doi:10.1016/j.carbpol.2010.05.00812Hohn T.International Table for Crystallography.5th ed .Netherlands:Springer,200613Wilson C C.Single Crystal Neutron Diffraction from Molecular Materials.Singapore:World Sci. Pub. Co. Pte. Ltd,2000.doi:10.1142/402914Tashiro K,Kusaka K,Hosoya T,Ohhara T,Hanesaka M,Yoshizawa Y,Yamamoto H,Niimura N,Tanaka I,Kurihara K,Kuroki R,Tamada T.Macromolecules,2018,51(11):3911-3922.doi:10.1021/acs.macromol.8b0065015Dorset D L.Structural Electron Crystallography.New York:Springer Science+Business Media,1995.95-133.doi:10.1007/978-1-4757-6621-9_416Hodgkinson P.Prog Nucl Magn Reson Spectrosc,2020,118-119:10-53.doi:10.1016/j.pnmrs.2020.03.00117Mehring M.Principles of High Resolution NMR in Solids.2nd ed .New York:Springer-Verlag Berlin Heidelberg,1983.1‒62.doi:10.1007/978-3-642-68756-3_218Zhang J,Tashiro K,Tsuji H,Domb A J.Macromolecules,2008,41:1352-1357.doi:10.1021/ma070607119Tashiro K,Hu J,Wang H,Hanesaka M,Saiani A.Macromolecules,2016,49(4):1392-1404.doi:10.1021/acs.macromol.5b0278520Tashiro K,Kusaka K,Yamamoto H,Hanesaka M.Macromolecules,2020,53(15):6656-6671.doi:10.1021/acs.macromol.0c0083921Ru J F,Yang S G,Zhou D,Yin H M,Lei J,Li Z M.Macromolecules,2016,49(10):3826-3837.doi:10.1021/acs.macromol.6b0059522Li X J,Zhong G J,Li Z M.Chinese J Polym Sci,2010,28(3):357-366.doi:10.1007/s10118-010-9015-z23Chen Y H,Yang H Q,Yang S,Zhang Q Y,Li Z M.Chinese J Polym Sci,2017,35(12):1540-1551.doi:10.1007/s10118-017-1990-x24Wang Y,Na B,Zhang Q,Tan H,Xiao Y,Li L B,Fu Q.J Mater Sci,2005,40(24):6409-6415.doi:10.1007/s10853-005-1746-925Yang S G,Chen Y H,Deng B W,Lei J,Li L B,Li Z M.Macromolecules,2017,50(12):4807-4816.doi:10.1021/acs.macromol.7b0004126Petermann J,Gohil R M.J Mater Sci,1979,14:2260-2264.doi:10.1007/bf0068843527Li L,Xin R,Li H H,Sun X L,Ren Z J,Huang Q G,Yan S K.Macromolecules,2020,53(19):8487-8493.doi:10.1021/acs.macromol.0c0145628Yoshiharu N,Shigenori K,Masahisa W,Takeshi O.Macromolecules,1997,30(20):6395-6397.doi:10.1021/ma970503y29Sikorski P,Hori R,Masahisa W.Biomacromolecules,2009,10(5):1100-1105.doi:10.1021/bm801251e30Yoshiharu N,Yasutomo N,Masahisa W.Macromolecules,2011,44(4):950-957.doi:10.1021/ma102240r31Davis G T,Mckinney J E,Broadhurst M G,Roth S C.J Appl Phys,1978,49(10):4998-5002.doi:10.1063/1.32444632Sugiyama J,Chanzy H,Maret G.Macromolecules,1992,25(16):4232-4234.doi:10.1021/ma00042a03233Wasanasuk K,Tashiro K,Hanesaka M,Ohhara T,Kurihara K,Kuroki R,Tamada T,Ozeki T,Kanamoto T.Macromolecules,2011,44(16):6441-6452.doi:10.1021/ma200662434Sun H.J Phys Chem B,1998,102:7338-7364.doi:10.1021/jp980939v35Shao J,Liu Y L,Xiang S,Bian X C,Sun J R,Li G,Chen X S,Hou H Q.Chinese J Polym Sci,2015,33(12):1713-1720.doi:10.1007/s10118-015-1715-y36Zhang Xiuqin(张秀芹),Xiong Zujiang(熊祖江),Liu Guoming(刘国明),Yin Yongai(尹永爱),Wang Rui(王锐),Wang Dujin(王笃金).Acta Polymerica Sinica (高分子学报),2014, (8):1048-1055.doi:10.11777/j.issn1000-3304.2014.1344437Li Xiaolu(李晓露),Wang Rui(王锐),Yang Chunfang(杨春芳),Dong Zhenfeng(董振峰),Zhang Xiuqin(张秀芹),Wang Dujin(王笃金),Wang Deyi(王德义).Acta Polymerica Sinica(高分子学报),2018, (5):598-606.doi:10.11777/j.issn1000-3304.2017.1719738Zhou W,Wang K,Wang S,Yuan S,Chen W,Konishi T,Miyoshi T.ACS Macro Lett,2018,7(6):667-671.doi:10.1021/acsmacrolett.8b0029739Chen W,Wang S,Zhang W,Ke Y,Hong Y L,Miyoshi T.ACS Macro Lett,2015,4(11):1264-1267.doi:10.1021/acsmacrolett.5b0068540Pan P,Yang J,Shan G,Bao Y,Weng Z,Cao A,Yazawa K,Inoue Y.Macromolecules,2012,45(1):189-197.doi:10.1021/ma201906a原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20258&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2020.20258
  • 施一公研究组在《自然》发表论文报道人体γ-分泌酶3.4埃冷冻电镜结构
    p  2015年8月18日,清华大学生命学院施一公教授领导的研究团队于《自然》(Nature)在线发表题为《人源γ-分泌酶的原子分辨率结构》(An atomic structure of human γ-secretase)的文章,报道了分辨率高达3.4埃的人体γ-分泌酶的电镜结构,并且基于结构分析研究了γ-分泌酶致病突变体的功能,为理解γ-分泌酶的工作机制以及阿尔茨海默症(Alzheimer’s disease, AD)的发病机理提供了重要基础。/pp  阿尔兹海默症是一类神经退行性疾病,又称老年痴呆症,是当今世界面临的最为严峻的老年神经退行性疾病之一。临床表现为脑组织切片中出现淀粉样斑块,神经元逐渐死亡,认知和记忆能力受损,病人逐渐丧失独立生活能力,最后脑功能严重受损直至死亡。美国前总统里根和英国前首相撒切尔夫人都罹患该疾病。统计结果表明,在65岁以上人群中,其发病率高达10%,在85岁以上人群中,发病率更是达到30-50% 我国目前患该病的人口高达500万,约占世界患者总数的四分之一,并且由于预防治疗手段不足,缺乏特效药物,该疾病逐渐有发病年龄提前,发病人数增加的趋势,不但给病人及家属造成极大痛苦,也同时为社会带来沉重负担。/pp  尽管如此,阿尔兹海默症的发病机理尚有待揭示。目前研究已知β-淀粉样沉淀(β-amyloid)是该病的标志性症状之一。而β-淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ-分泌酶(γ-secretase)。γ-分泌酶由四个跨膜蛋白亚基组成,分别为Presenilin(PS1)、Pen-2、Aph-1和Nicastrin。其中,编码PS1蛋白的基因中有200多个突变与AD病人相关,而PS1正是行使酶切功能的关键活性亚基。这些突变有可能导致PS1功能异常而引起阿尔兹海默症的发生。γ-分泌酶在阿尔兹海默症的发病中扮演着重要角色,很多药物的研发直接以γ-分泌酶作为靶点,希望通过调节其活性来治疗疾病。三维结构信息的缺失和突变致病机理的不明使得药物研发受到很大限制,所以获取其三维结构至关重要。但是γ-分泌酶是一个膜整合蛋白复合体,此前预测跨膜螺旋达到19个,其三维结构研究一直存在很多困难,瓶颈是获得性质良好适合结构生物学研究的重组蛋白复合体。/pp  施一公教授2006年在清华大学建设实验室之初,就将揭示阿尔兹海默症的发病机理作为重点研究方向,其中一个主要环节是解析γ-分泌酶的高分辨率结构,揭示Presenilin突变体的致病机理。他们经过长期不懈的努力,积累了大量经验教训,终于在近年取得一系列重要突破:/pp  2012年12月,施一公研究组在《自然》(Li et al, Nature)报道PS1细菌同源蛋白PSH的晶体结构,并根据同源性首次构建了PS1的结构模型,揭示了PS1的结构折叠,并在结构上初步分析了在阿尔茨海默症病人中发现的PS1突变位点 /pp  2014年6月,施一公研究组与英国MRC分子生物学实验室白晓晨博士和Sjors Scheres研究员合作在《自然》报道了分辨率为4.5埃的γ-分泌酶复合物电镜结构,观察到了其跨膜区域呈马蹄形排布的结构,但是受限于分辨率,无法准确区分各个亚基的具体排布(Lu et al, Nature) /pp  2014年9月,施一公研究组在《美国科学院院刊》(PNAS)发表文章,报道了其中一个亚基Nicastrin同源蛋白胞外结构域的高分辨率晶体结构,推测了Nicastrin在底物招募过程中可能的机制,并且根据同源性构建了人源Nicastrin 胞外结构域的结构,结合该结构与此前解析的PSH晶体结构和4.5埃分辨率电镜结构,他们在γ-分泌酶跨膜区辨认出了PS1,并进一步推测了该复合物近20个跨膜螺旋的组装模式,但该结论仍需高分辨率的结构验证(Xie et al, PNAS) /pp  2015年3月,施一公研究组在PNAS发表论文,报道PS1的细菌同源蛋白PSH具有与γ-分泌酶类似的底物切割活性,并且其酶活也受到γ-分泌酶小分子抑制剂的抑制,并解析了该抑制剂与PSH的复合物结构,揭示了其抑制位点,从而使得PSH可以作为一个研究成本相对低廉的替代品来进行γ-分泌酶调控小分子的初步筛选(Dang et al, PNAS) /pp  2015年4月,施一公研究组在PNAS发表论文,报道人源γ-分泌酶4.3埃的冷冻电镜三维结构。与一年之前的4.5埃结构相比,尽管分辨率只提高0.2埃,但是跨膜区密度质量有了极大提高。此外他们在PS1的N端连接T4-溶菌酶蛋白,从而准确定位出PS1的第一个跨膜螺旋,并在此基础上判断出四个亚基,验证了在2014年PNAS文章中推测的组装方式。此外,他们利用性质非常缓和的去污剂制备样品,证明电镜观察到的结构并未因蛋白纯化和冷冻制备而受到影响。这个结构也是清华大学电镜平台的K2电子探测相机自2014年暑期正常运转之后解析出的最小分子量的结构(Sun et al, PNAS) /pp  最新发表的Nature论文是施一公研究组与英国研究组合作的延续,在获得纯度好、性质均一的蛋白样品的基础上,通过收集更多的数据、大量的计算和升级的分类方法,计算构建出了3.4埃的原子分辨率的γ-分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内,分别为跨膜区TM2-5以及TM6-9。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ-分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同,因此对于已有的阿尔兹海默症的发病机理提出了一些新的探讨。/pp  这项新的研究结果首次在世界上展示了γ-分泌酶的原子分辨率结构,并且在结构信息的基础上分析了人们关心的γ-分泌酶中催化亚基PS1上的致病性的突变,研究了突变体的生化活性,对于更进一步了解γ-分泌酶切割底物的机制以及研究阿尔兹海默症的发病机理具有极为重大的意义,也为开发潜在的治疗阿尔兹海默症的高效药物提供了重要的分子基础。/pp  在清华大学生命学院隋森芳院士指导下获得博士学位后在英国MRC分子生物学实验室从事博士后研究的白晓晨博士、清华大学生命学院博士后闫创业与博士生杨光辉为本文共同第一作者。本工作获得了科技部、国家自然科学基金委以及生命科学联合中心的经费支持。/pp  相关论文链接:/pp  http://www.nature.com/nature/journal/v493/n7430/abs/nature11801.html/pp  http://www.nature.com/nature/journal/v512/n7513/full/nature13567.html/pp  http://www.pnas.org/content/111/37/13349.short/pp  http://www.pnas.org/content/112/11/3344.short/pp  http://www.pnas.org/content/112/19/6003.long/pp  http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14892.html/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/fee42244-dc1a-40b8-9ec8-5cc5f99ec51b.jpg" title="图1:人体γ-secretase3.4埃三维结构.jpg"//pp style="text-align: center "图1:人体γ-secretase3.4埃三维结构/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/b3509646-2d0a-4abf-a2f4-48693029778e.jpg" title="图2: PS1与阿尔茨海默病相关突变的结构和生化分析.jpg"//pp/pp style="text-align: center "图2: PS1与阿尔茨海默病相关突变的结构和生化分析/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/9562dd10-55db-4e59-8b1e-9078925d812b.jpg" title="图3:γ-secretase四个亚基跨膜区间的相互作用.jpg"//pp/pp style="text-align: center "图3:γ-secretase四个亚基跨膜区间的相互作用/p
  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。水溶液中硼酸的氟化路径示意图该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • iCEM 2017特邀报告: 冷冻电镜技术及其在超大分子机器结构与功能研究中的应用
    p style="TEXT-ALIGN: center"strong第三届电镜网络会议(iCEM 2017)特邀报告/strong/pp style="TEXT-ALIGN: center"strong冷冻电镜技术及其在超大分子机器结构与功能研究中的应用/strong/pp style="TEXT-ALIGN: center"img style="HEIGHT: 330px WIDTH: 220px" alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201762213123.jpg"//pp /pp style="TEXT-ALIGN: center"strong丛尧 研究员/strong/pp style="TEXT-ALIGN: center"strong中科院上海生科院生化与细胞研究所,国家蛋白质科学中心(上海)/strong/ppstrong 报告摘要:/strong/pp 冷冻电镜技术近年来取得巨大进步,成为重要的结构生物学研究方法。本报告将介绍冷冻电镜基础知识,尤其是电镜图像处理的基础及其流程。并介绍冷冻电镜技术在蛋白子质量控制大分子机器及其他超大分子复合体结构与功能研究中的应用。 /pp /ppstrong 报告人简介:/strong/pp 丛尧,中科院上海生化与细胞研究所研究员、博士生导师,兼任国家蛋白质科学中心(上海)冷冻电镜系统副总设计师,获中科院& ldquo 百人计划& rdquo 和国家& ldquo 优秀青年& rdquo 基金资助。近年来在基于冷冻电镜的蛋白质质量控制大分子机器TRiC及蛋白酶体的近原子分辨率结构解析与功能诠释方面取得重要进展,并在婴幼儿手足口病致病病毒的抗体和疫苗发展的结构研究方面取得系列成果,建立了创新性电镜二维图像对中方法,并已广泛应用于冷冻电镜单颗粒三维重构之中。在emNat Struc Mol Biol/em, emCell Research/em, emEMBO J/em, emPLoS Pathogens/em,emNature/em, emeLife/em等国际一流期刊发表学术论文34篇,引用近千次,单篇引用达115次。文章获emCell Research/em及 F1000专评,入选emJ Virology/em杂志亮点文章。受邀担任上海生物物理学会电镜专业委员会主任,中国电子显微镜学会理事,中国生物物理学会冷冻电子显微学分会理事和分子生物物理专业委员会理事,浙江大学冷冻电镜中心第一届学术委员会专家委员,及emBiophysics Reports/em杂志编委,多次应邀做国际学术报告。/pp /pp  strong报告时间:2017年6月23日下午/strong/pp strong 立即免费报名:a title="" href="http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target="_blank"http://www.instrument.com.cn/webinar/meetings/iCEM2017//a/strong/pp /p
  • 合肥研究院等在拓扑磁结构的转变研究中取得进展
    近期,中国科学院合肥物质科学研究院强磁场中心研究团队等利用透射电镜定量电子全息磁成像技术,在单轴手性磁体Cr1/3NbS2中发现了磁孤子向磁斯格明子的拓扑相变。相关研究成果发表在Advanced Materials上。拓扑磁结构是构筑新型磁存储器的基本单元。在手性磁体中,拓扑磁结构的形成和自旋构型取决于Dzyaloshinskii-Moriya(DM)相互作用的类型。例如在单轴手性磁体中(如Cr1/3NbS2),会形成周期可调的磁孤子;在立方非中心对称的手性磁体中(如FeGe、Mn1.4PtSn),会形成磁斯格明子或反斯格明子。具有不同自旋构型的拓扑磁结构之间可以发生转换,例如斯格明子和麦韧、斯格明子和反斯格明子、斯格明子和磁泡等。在单一材料中,利用两种不同类型的拓扑磁结构分别存储二进制数据“0”和“1”,对于拓扑磁存储器件的构筑具有实际意义。然而,由于DM(Dzyaloshinskii–Moriya)作用类型不同,手性磁孤子和斯格明子之间的拓扑转换一直受到限制。针对这一问题,研究团队利用几何边界限域效应,通过对磁孤子两端磁结构的调制,打破了DM作用的限制,在单轴手性磁体Cr1/3NbS2中实现了磁孤子向磁斯格明子的拓扑相变;利用透射电镜电子全息磁成像技术,发现新形成的斯格明子是长度可调的,并且上下末端由两个拓扑荷为1/2的麦韧组成,拓扑磁结构的总拓扑荷为单位1。研究人员在实验上也发现了这一拓扑相变的厚度依赖性,表明偶极-偶极相互作用在相变过程中发挥了重要作用,与微磁模拟的结果一致。这一发现丰富了拓扑磁结构家族,对于构筑新型磁电子学器件具有重要意义。上述研究工作得到国家自然科学基金、国家重点研发计划、中科院战略性先导科技专项等项目的支持。DM作用类型与对应的拓扑磁结构(左);电子全息技术揭示单轴手性磁体Cr1/3NbS2中发现的磁斯格明子(右)
  • 低温强磁场磁力显微镜与共聚焦显微镜在微结构缺陷研究中的科研成果
    凝聚态物理研究中常会遇到微结构与纳米尺寸的结构。为了研究缺陷与控制缺陷,不仅需要精密测量仪器,同时要求大量精力的投入。德国attocube公司为前沿的研究提供了可行性良好的技术,公司产品既包含成套的测量系统也有精密的组件。下面,您可以发现三个令人兴奋的应用案例,案例展示了结合精密仪器与辛勤奋斗带来的高质量的研究成果。 磁场驱动的磁畴结构变化研究 近,挪威科技大学Erik Folven的课题组使用了德国attocube公司的attoAFM I低温强磁场原子力磁力显微镜研究了闭环低温恒温器attoDRY1000内的拓扑缺陷,该拓扑缺陷研究有助于材料的磁畴状态变化的进一步理解。通过具有原子尺寸与磁化的原子力显微镜探针在薄膜表面的扫描可以测量垂直平面的来源于样品本身的杂散磁场,该技术具有灵敏度高的特点。因此,磁畴壁与磁场缺陷等自旋结构的物理性质都可以被深入研究。在5K低温下测试的MFM(磁力显微镜)图像数据(图1)加深了对于微米尺寸磁畴状态转变的理解,同时测试后的样品依然具有高度稳定性。该成果可能为控制与转变微米甚至纳米磁体打开了一个新的方向。 图1:MFM测试磁畴结构随磁场变化的结果(图片来源:Appl. Phys. Lett. 112, 042401 (2018)) 耦合单个缺陷与纳米线 基于attoDRY1000低温恒温器与attoCFM I(低温强磁场共聚焦显微镜),马里兰大学的EdoWaks成功耦合了单层二硒化钨(WSe2)中的量子发射器与银纳米线的表面等离激元。结果显示量子发射器与银纳米线等离激元的平均耦合效率是26% ± 11%。该展示的实验技术(图2)可以组建结合不同种类等离激元结构与基于各种二维半导体材料中单分子缺陷发射器的耦合系统。 此测量系统可用于超快单光子源等应用方向,为超紧凑等离激元电路的研究铺平了道路。 图2:耦合WSe2中量子发射器与银纳米线中等离激元(图片来源:Nano Lett., 2017, 17 (11), pp 6564–6568) ANPz30位移台在强磁场扫描探针显微镜中的实践来自于荷兰拉德堡德大学强磁场实验室的Benjamin Bryant 与Lisa Rossi与同校的扫描探针显微镜课题组的Alex Khajetoorians合作,成功地创新设计了一套用于液氦温度与超强磁场(38T)的扫描探针显微镜。超强磁场使用了水冷降温的比特磁体:水冷降温会引入使扫描探针显微镜难操作的振动噪音。图3:ANPz30位移台,强磁场兼容原子力显微镜(图片来源: Review of Scientific Instruments 89, 113706 (2018))ANPz30纳米位移台被用于控制原子力显微镜的悬臂初步逼近样品表面。模块化设计的Attocube公司的位移台不仅易于更换,也具有兼容不同悬臂或者样品托的灵活性。由于位移台紧凑与坚固的设计,振动噪音被大大的降低。噪音是比特磁体端环境中扫描探针显微镜起到关键性影响因素。
  • 质谱技术在靶向蛋白组学及脂质结构分析研究进展
    p style="text-align: justify "  美国威斯康星大学麦迪逊分校的李灵军教授在《美国质谱学会杂志》上发表了题为" Faces of Mass Spectrometry”的文章。/pp style="text-align: justify text-indent: 2em "strong进展1:/strong/pp  本月,李教授的团队在分析化学杂志上发表了一篇文章“HOTMAQ: A Multiplexed Absolute Quantification Method for Targeted Proteomics”。/pp style="text-align: center "img title="1111111.webp.jpg" alt="1111111.webp.jpg" src="https://img1.17img.cn/17img/images/201902/uepic/04527389-10d7-4d2c-9392-40078abb0c71.jpg"//pp style="text-align: justify "  靶向蛋白组学中的绝对定量研究由于复杂背景下的低特异性、有限的分析通量及广泛的动态范围等诸多因素而具有挑战性。为解决这些问题,其课题组开发了一个混合offset-triggered多路复用绝对量化(HOTMAQ)方法。此方法结合了具有成本效益的质量差异和等压标签,能够在MS1前体扫描中同步构建内部标准曲线,在MS2水平上实时识别多肽,并在同步前体选择(SPS)-MS3光谱中对目标蛋白进行质量偏移触发的精确定量。这种方法将目标定量蛋白质组学的分析通量提高了12倍。采用HOTMAQ策略对临床前阿尔茨海默病候选蛋白生物标志物进行高精度验证。HOTMAQ的高通量和定量性能,加上样品的灵活性,使其广泛应用于靶向肽组学、蛋白质组学和磷蛋白组学的研究中。/pp style="text-align: justify text-indent: 2em "strong进展2:/strong/pp style="text-align: justify "  清华大学欧阳证和瑕瑜教授与普渡大学学者共同在《自然通讯》上发表“Online photochemical derivatization enables comprehensive mass spectrometric analyses of unsaturated phospholipid isomers” 文章。/pp style="text-align: center "img width="600" height="304" title="22222222.webp.jpg" style="width: 600px height: 304px " alt="22222222.webp.jpg" src="https://img1.17img.cn/17img/images/201902/uepic/f219c925-a096-478e-a956-d221f5b56fbd.jpg" border="0" vspace="0"//pp style="text-align: justify "  质谱技术是脂质结构分析的主要工具,但如何在不饱和脂质中有效定位碳碳双键(C=C)以区分C=C位异构体仍是一个难题。本文通过Paterno-Buchi反应与液相色谱-串联质谱联用在线C=C衍生化,开发了大型的脂质分析平台。这为脂质C=C位异构体提供了丰富的信息,揭示了牛肝脏中200多种不饱和甘油磷脂的C=C位,鉴定出55组C=C位异构体。通过对乳腺癌患者和2型糖尿病患者血浆样本的分析,其课题组发现C=C同分异构体的比例受个体丰度的影响较小,这说明同分异构体比例可能用于脂类生物标志物的发现。/pp /p
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 中国科大在笼目结构超导体研究中获进展
    中国科学技术大学合肥微尺度物质科学国家研究中心、物理学院、中科院强耦合量子材料物理重点实验室陈仙辉、吴涛和王震宇等组成的研究团队,在笼目结构(kagome)超导体研究中取得重要进展。科研团队在笼目超导体CsV3Sb5中观测到电荷密度波序在低温下演化为由three state Potts模型所描述的电子向列相。该向列相的发现为理解笼目结构超导体中电荷密度波与超导电性之间的反常竞争提供了重要实验证据,并为进一步研究关联电子体系中与非常规超导电性密切相关的交织序(intertwined orders)提供了新的研究方向。2月9日,相关研究成果以Charge-density-wave-driven electronic nematicity in a kagome superconductor为题,以Accelerated Article Preview形式,在线发表在《自然》(Nature)上 。   电子向列相是一种由电子自由度旋转对称性的自发破缺而产生的电子有序态,广泛存在于高温超导体、量子霍尔绝缘体等电子体系。电子向列相与高温超导电性之间存在紧密联系,被认为是一种与高温超导相关联的交织序,是高温超导的理论研究中重要的科学问题和研究热点。探索具有新结构的超导材料体系,从而进一步探究超导与各种交织序的关联是当前领域的重要研究方向,其中一类备受关注的体系为二维笼目结构。理论预测在范霍夫奇点(van Hove singularities)掺杂附近,二维笼目体系可呈现出新奇的超导电性和丰富的电子有序态,但长期以来缺乏合适的材料体系来实现其关联物理。近年来,笼目超导体CsV3Sb5的发现为该方向的探索提供了新的研究体系。中国科大超导研究团队前期研究揭示了该体系中面内三重调制(triple-Q)的电荷密度波态【Physical Review X, 11, 031026 (2021)】以及电荷密度波与超导电性在压力下的反常竞争关系【Nature Communications, 12, 3645 (2021)】。   在上述研究的基础上,科研团队充分结合扫描隧道显微镜、核磁共振以及弹性电阻三种实验技术,针对CsV3Sb5中的电荷密度波态的演化展开了细致研究。研究显示,体系在进入超导态之前,三重调制电荷密度波态会进一步地演化为一种热力学稳定的电子向列相,并确定转变温度在35开尔文左右。该电子向列相与之前在高温超导体中观测到的电子向列不同:高温超导体中的电子向列相是Ising类型的向列相,具有Z2对称性;而在笼目超导CsV3Sb5中发现的电子向列相具有Z3对称性,在理论上被three state Potts模型所描述,因而也被称为“Potts”向列相。有趣的是,这种新型的电子向列相最近在双层转角石墨烯体系中也被观察到。   这些发现在笼目结构超导体中揭示了一种新型的电子向列相,并为理解这类体系中超导与电荷密度波之间的竞争提供了实验证据。之前的扫描隧道谱研究表明,CsV3Sb5体系中可能存在超导电性与电荷密度波序相互交织而形成的配对密度波态(Pair density wave state,PDW)。在超导转变温度之上发现的电子向列序,可以被理解成一种与PDW相关的交织序,该研究为理解高温超导体中的PDW提供了重要的线索和思路。如何理解笼目结构超导体中超导电性及其交织序的形成机制仍需要进一步的实验与理论研究。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省及中国科大创新团队项目的支持。      论文链接
  • 福建物构所3D打印仿生结构研究获进展
    具有复合特征的仿生结构因独特的机械性能,为各种工程应用开发设计优异性能的结构提供了设计思路。然而,在仿生制造和设计这些复杂精细结构时,在模具成型和复杂结构验证等方面常常受到加工条件限制。3D打印可快速制造各种复杂结构,为仿生结构的设计、制造和验证提供了新方法。   中国科学院福建物质结构研究所研究员吴立新团队面向轻量化3D打印结构在鞋业和汽车等领域的应用开展研究。受自然界生物结构兼具刚度和柔韧性的特征启发,科研人员通过分级弯曲和拉伸主导的结构来设计混合架构的晶格。   进一步,该工作使用纯树脂及高二氧化硅固含的复合材料,采用3D打印方式制备了以上晶格结构,并将结果与理论分析数据进行比较以验证设计合理性。结果表明,该结构设计比单一晶格拓扑结构的模量和应变能量密度提高了7倍。添加填料进一步将结构的刚度提高12倍以上,且减少了结构屈曲。此外,该工作还评估了带有石墨烯基涂层表面的混合晶格设计特性。该研究设计的晶格结构具有良好的弹性恢复能力,且功能化特性也得到了拓展。   相关研究成果发表在Additive Manufacturing上。研究工作得到福建省“揭榜挂帅”重大专项和闽都创新实验室自主部署关键技术攻关项目的支持。   之前,科研人员将3D打印用于防滑鞋底设计。仿照树蛙等动物的足底结构进行仿生设计,结合材料研发和有限元计算,通过3D打印获得在潮湿表面仍有良好摩擦力的结构。上述成果表明,3D打印可用于具有优异性能的仿生结构制造和验证。仿生(a)兼具刚硬和韧性结构来设计(b)分级弯曲和拉伸主导的混合晶格结构
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用ApplicationsofTransmissionElectronMicroscopyinStudyofMultiscaleStructuresofPolymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科作者机构:青岛科技大学橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生.青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教.获“国家青年科学基金”资助.主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能.因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域.本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractTheperformanceandfunctionalityofpolymericmaterialsdependstronglyonthemultiscalestructures.Whilethechemicalstructureofapolymerdeterminesitsbasicpropertyandfunctionality,thestructuresatdifferentscalesinsolidstatecanchangetheperformanceandevenenablethepolymerspecialfunctions.Forexample,themodulusofhighlyorientedultrahighmolecularweightpolyethyleneisthreeordersofmagnitudehigherthanthatofitsnon-orientedcounterpart.Forthepolymorphicpoly(vinylidenefluoride),specialpiezoelectricandferroelectricfunctionscanbeendowedbycrystallizingitintheβandγcrystalmodifications.Therefore,itisofgreatsignificancetodisclosethestructureformationmechanismofpolymersatalllevels,torealizethepreciseregulationofthemandtocorrelatethemwiththeirperformance.Thisleadstothestudyofpolymerstructureatvariedscalesandtherelatedstructure-propertyrelationshipaveryimportantresearchfieldofpolymerphysics.Hereinthispaper,wewillfocusontheapplicationoftransmissionelectronmicroscopyinthestudyofdifferenthierarchstructuresofpolymers,includingabriefintroductionoftheworkingprincipleoftransmissionelectronmicroscopy,specialtechniquesusedforsamplepreparationandforinstrumentoperationtogethigh-qualityexperimentaldata,analysisoftheresultsandcorrelationofthemtodifferentstructures.关键词聚合物  透射电子显微镜  样品制备  仪器操作  结构解释KeywordsPolymer  Transmissionelectronmicroscopy  Samplepreparation  Instrumentoperation  Structureexplanation 聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性.首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能.例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5].对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能.以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90MPa和10MPa,分子链高度取向后,模量增加到90GPa,增幅为3个数量级,强度(3GPa)也增加了近300%[6].另外,有机光电材料的性能也与分子链排列方式密切相关[7~12].对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20].由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关.因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据.经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势.如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等.相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42].当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59].例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775nm)和c-轴(0.777nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54].透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60].例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献.然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术.实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察.为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜.如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积.基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰.另外,考虑到人眼的分辨本领大概为0.1mm,而光学显微镜的极限分辨率为0.2μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2μm放大到人眼能分辨的0.1mm.由此可见,要观察更细微结构需要提高显微镜的分辨率.根据瑞利准则,光学显微镜的分辨本领可表示为:Fig.1Sketchillustratingtheworkingprincipleofopticalmicroscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA=nsinα.可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26×V−−√式表示,根据该公式,100kV和200kV电压加速电子束的波长分别为0.00387nm和0.00274nm,经相对论修正后变为0.0037nm和0.00251nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发.如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objectivelens)以及投影镜(projectionlens)均由磁透镜替代了光学显微镜的玻璃透镜.另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜.例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig.2Sketchillustratingtheworkingprincipleofelectronmicroscope.Fig.3Sketchshowsdifferentelectronsgeneratedafterinteractionoftheincidentelectronswiththeatomsinthesample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1µm的水.因此,要求电镜观察用样品非常薄,在200nm以内,最好控制在30~50nm.用于高分辨成像的样品需更薄,最好为10nm左右.因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性.一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构.另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品.基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法.下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的.支撑膜的厚度一般为10nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现.如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60℃干燥后便可投入使用.根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5wt%~1.5wt%范围内.对有经验的学者而言,滤纸捞膜法更简洁.如图4(b)所示,用浓度为0.5wt%~1.5wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig.4Sketchillustratingthewaysforpreparingnitrocellulose(NC)supportingmembraneusedinelectronmicroscopyexperiments.(a)SedimentationoftheNCmembraneoncoppergrids.(b)FilterpaperfishingofcoppergridssupportedbytheNCmembrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得.如图5(a)所示,将沉浸于0.1wt%~0.2wt%PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig.5AdiagramillustratingthepreparationofPVFsupportfilmthroughdippingacleanglassslideintoitschloroformsolution(a)andthenfloatingthethinPVFlayerontothesurfaceofdistilledwater(b).2.1.3无定型碳支撑膜制备上述硝化纤维素和聚乙烯醇缩甲醛支撑膜的制备方法无需专用设备,但在后续的聚合物样品制备过程中会有困难.例如:需要高温处理的样品,高温处理过程会破坏支撑膜,即便是常温下聚合物溶液的沉积过程中,若所用溶剂为共溶剂,支撑膜也会被破坏.因此,最理想、最常用的支撑膜是无定型碳膜,它具有耐高温、耐溶剂、高模量等优点.用无定型碳固定聚合物薄膜的最简单办法是直接对要观察的聚合物样品表面真空沉积薄层碳,以确保聚合物样品在电子束下稳定.需要指出的是,由此获得的聚合物样品不适用于需进一步处理样品,原因是直接表面沉积的碳膜对聚合物的结构有固定能力,如表面沉积碳膜的取向聚合物薄膜熔融重结晶仍保持原有取向结构[64~67].实际上,制备碳支撑膜的简单方法是在硝化纤维素和聚乙烯醇缩甲醛支撑膜表面真空沉积薄层碳,以此获得支撑膜可直接使用,也可以溶解除去硝化纤维素和聚乙烯醇缩甲醛后使用.当然,无定型碳支撑膜的传统制法是在光洁的载玻片或新剥离的云母表面真空沉积无定型碳,获得连续的无定型碳膜后,用刀片将其分割成3mm×3mm的小片,通过图5(b)所示的方式漂浮转移到蒸馏水表面,然后用镊子夹住铜网自下而上捞起即可用作支撑膜.2.2聚合物样品制备2.2.1微粒材料的电镜样品制备方法用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a)悬浮法.对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b)微量喷雾法.用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集.为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上.微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c)干撒法.对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(d)空中沉积法.将浮游性好的微粒材料置于真空罩的放气阀处,通过注入大气使其猛烈飞溅而雾化,这样微粒便能缓慢、均匀地沉降到预先放在底部带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(e)硝化纤维素包埋法.将适量的微粒混合在1.5wt%的硝化纤维素溶液中,使其分散均匀,然后浇注在蒸馏水表面,当溶液向周围展开时,颗粒也随之分布于膜层内,所成膜转移到铜网上便可用于电镜观察.(f)糊状法.对处于油脂等介质中的微粒,可以取其少许糊状物轻涂于有支持膜的铜网上,用适当的溶剂逐渐清洗糊状物,将含适量糊状物的铜网干燥后用于电镜观察.2.2.2块状材料的电镜样品制备方法在加工条件-形态结构-性能关系的研究中,对块状高分子制品材料微观结构的电镜观察通常是借助超薄切片获得电子束能够穿透的薄片样品,颗粒状样品也可以通过环氧树脂包埋后进行超薄切片.对块状高分子材料表面微观结构的研究还可以采用复型法制备样品,包括一次和二次复型法.如图6(a)所示,一次复型是首先对需观察的块状样品表面进行重金属投影,然后真空蒸涂一层15~25nm厚的碳膜,再将聚丙烯酸的水溶液涂在碳膜上,待聚丙烯酸的水溶液干燥后,将聚丙烯酸膜从样品表面剥离并反向(即与样品的接触面朝上)置于蒸馏水表面,反复几次更换蒸馏水将聚丙烯酸完全溶解掉后,捞在铜网上即可用电镜观察.二次复型,如图6(b)所示,是在刻蚀处理过的块状样品表面滴上适量的丙酮溶剂,使其均匀铺开并及时将略大于样品的醋酸纤维素(AC)薄膜粘贴到样品表面,借助溶剂使AC薄膜软化,轻压AC薄膜记录样品的微细结构,待溶剂完全挥发后,将AC薄膜剥离样品,在印痕面投影重金属和蒸涂碳膜,然后用丁酮将AC薄膜完全溶除,即可得到与样品表面结构完全一致的碳复型膜.Fig.6Sketchesshowingthesingle(a)anddouble(b)duplicationprocessesforrecordingsurfacemicrostructuresofbigblockmaterialsusedinelectronmicroscopyexperiments.2.2.3高分子薄膜的直接制备方法可溶性高分子材料,特别是样品拥有量很少时,可采用稀溶液制样.其中,稀溶液结晶是获得高分子单晶的常用方法,通常是高温配置聚合物的极稀溶液(~0.1wt%),降至适合温度静置结晶,然后用铜网在溶液中捞取单晶进行观察.为高效获取聚合物单晶,人们经常采用自晶种(self-seeding)技术[68,69],即将高温配置的聚合物极稀溶液降至室温,获得大量聚合物晶体,再次加热到适当温度溶解大部分晶体后降至适合温度静置,这样借助残留晶核诱导结晶能够获得大尺寸高分子单晶.聚合物超薄膜可用溶液浇铸(solutioncastfilm)或甩膜(spincoating)等方法直接获得,即将浓度合适的聚合物稀溶液滴在液面(如甘油或磷酸),静止或快速转动基体表面(如载玻片或新剥离的云母)蒸发成膜.甩膜法是最常用制样方法,广为人知,此处不再赘述.溶液浇铸制样的过程如下,使用甘油或磷酸浴,加热至合适温度,将盛满洁净甘油或磷酸的烧杯置于高温浴中,待温度平衡后,将聚合物液滴滴在烧杯中的甘油或磷酸表面成膜,用滤纸沿烧杯壁插入甘油或磷酸中,缓慢倾斜提起聚合物膜,然后将捞取聚合物薄膜的滤纸平放在蒸馏水表面冲洗净甘油或磷酸,由此获得的聚合物薄膜转移至铜网后即可用于电镜观察.以此获得聚合物膜的厚度由溶液浓度控制,聚合物稀溶液的浓度通常在0.3wt%~0.5wt%范围内.成膜质量及聚合物的形态结构与成膜温度和溶剂性质及其挥发速度有关.确定最佳温度的最有效方法是先将甘油或磷酸浴加热到一定温度,在停止加热的缓慢冷却过程中,不断重复上述的浇注过程,直至获得理想的聚合物薄膜,此时的油浴温度即是最佳成膜温度.实验表明,全同聚丙烯(iPP)的最佳成膜条件为0.3wt%二甲苯稀溶液在110℃左右的甘油表面浇注成膜[70].高分子的取向薄膜可以通过熔体拉伸(melt-drawtechnique)[71]、摩擦成膜(frictiontransfertechnique)[72,73]或固相拉伸[74]等方法获得.如图7(a)所示,熔体拉伸法是将聚合物溶液均匀浇注在预热的玻璃板上,待溶剂挥发后,用转动的滚筒将玻璃板上的聚合物熔体拉起,图7(a)下侧是由此获得的高取向聚乙烯(PE)的电镜明场像和电子衍射图,薄膜厚度取决于溶液浓度和拉伸速率,取向程度及结构由拉伸速率和温度控制.摩擦成膜法是一定压力下将块状聚合物材料在预热的玻璃板上快速滑动(图7(b)),在玻璃表面留下高取向聚合物超薄膜,由此制得的聚合物膜可直接采用2.2.2节中描述的聚丙烯酸脱膜法从玻璃表面脱落,转移到铜网上进行电镜观察.图7(b)中给出了聚四氟乙烯(PTFE)摩擦高取向膜的电镜明场像和电子衍射图,其优点是无需溶剂,缺点是需要样品量比较大.固相拉伸方法是将聚合物溶液浇注在韧性好的聚合物载体上,待溶剂挥发后,拉伸聚合物载体至一定延伸率后,溶去载体聚合物即可得到取向的聚合物薄膜.另外,我们发展了聚丙烯酸辅助的聚合物超薄膜拉伸技术,具体操作是在聚合物超薄膜表面浇注聚丙烯酸水溶液,待聚丙烯酸水溶液凝固到能够拉伸的程度进行不同程度的拉伸.以高取向见同聚丙烯(sPP)超薄膜(50~60nm)的拉伸形变过程电镜跟踪研究为例[74,75],研究表明sPP存在多种晶型,如图8(a)和8(b)所示的晶型I和晶型Ⅲ,固相拉伸导致晶型I向晶型Ⅲ转变,高温(~100℃)退火则可实现晶型Ⅲ向晶型I的转变‍.利用我们发明的方法,成功实现了sPP超薄膜拉伸过程晶型I-Ⅲ转变的电镜跟踪研究.结果表明,拉伸50%时(图8(c))部分晶型I转变为晶型Ⅲ,进一步拉伸至100%时,晶型I和Ⅲ依然共存(图8(d)),但晶型Ⅱ的含量明显高于晶型I,在拉伸150%时,晶型I的衍射点消失(图8(e)),说明应变λ为2.5时,sPP完成晶型I-Ⅲ转变.Fig.7Sketchesillustratingthemelt-draw(a)andfriction-transfer(b)techniquesforpreparinghighlyorientedpolymerultrathinfilms,andthecorrespondingBFimagesandelectrondiffractionpatternsoftheresultantPEthinfilms.Thewhitearrowsindicatethedrawandslidingdirectionsduringfilmpreparation.Fig.8ElectrondiffractionpatternsofhighlyorientedformI(a)andformⅢ(b)syndiotacticpolypropyleneultrathinfilms(50-60nminthickness).ThebottompanelshowsitsI-Ⅲphasetransitionduringstretchingoftheultrathinfilmwiththehelpofincompletelysolidifiedpoly(acrylicacid)todifferentdrawratiosof(c)1.5,(d)2.0,and(e)2.5.Thewhitearrowindicatesthestretchingdirection.(ReprintedwithpermissionfromRef.‍[74] Copyright(2001)KluwerAcademicPublishers).2.2.4高分子薄膜热处理方法尽管上述方法制备的聚合物薄膜能够直接用于电镜实验,许多研究还需对所获膜做进一步处理,如研究结晶温度对聚合物形态结构影响时,需将聚合物薄膜在不同温度熔融重结晶.对聚合物薄膜熔融处理的一种简单、实用方法是对新剥离的云母片表面真空蒸涂薄层碳膜,将聚合物膜置于碳膜上进行相应处理,然后将云母边缘剪除,用图5(b)的方式漂膜后,转移到铜网表面用于电镜观察.图9是碳膜表面间同聚丁烯-1(sPB-1)膜60℃熔融15min30℃等温结晶几周后获得单晶的明场和电子衍射图[76].Fig.9BFelectronmicrograph(a)andcorrespondingelectrondiffractionpattern(b)ofansPB-1filmpreparedbycastingofa0.1wt%xylenesolutiononacarbon-coatedmicasurface,whichwasheat-treatedafterevaporationofthesolventat60℃for15minandthenisothermallycrystallizedat30℃forseveralweeks.(ReprintedwithpermissionfromRef.‍[76] Copyright(2001)AmericanChemicalSociety).2.2.5增加高分子薄膜衬度的方法透射电镜利用透过样品的弹性及非弹性散射电子成像,图像的衬度(又称反差)取决于试样对入射电子的散射过程.根据波动理论,入射电子波(也即电子束)经过试样后产生透过电子波和散射电子波,依靠波函数的振幅和相位传递样品的结构信息,因此能产生振幅衬度和相位衬度.在样品厚度大于10nm时,振幅衬度成像起主要作用.振幅衬度又分衍射衬度和质量厚度衬度,其中衍射衬度也称为Bragg衬度,只存在于晶体样品,是指当某晶面与入射电子束间夹角满足Bragg条件时,由于衍射现象使经过样品并通过物镜光阑的电子束强度降低而产生的反差.衍射衬度受限于聚合物晶体的辐照寿命,如图10所示,高取向PE薄膜晶体破坏前存在衍射反差(图10(a)),但晶体有序结构被电子束破坏后,全部衍射反差消失(图10(b)).质量厚度衬度也叫吸收衬度,起因是试样不同部位的质量厚度(即电子密度乘以样品厚度)差异,造成电子束通过物镜光阑到达像平面的强度不同,因此产生像的明暗差别.如图10所示,PE片晶区因质量厚度大而暗,质量厚度小的非晶区较片晶区明亮.Fig.10BFelectronmicrographsofhighlyorientedPEthinfilmbefore(a)andafter(b)destructionofthecrystals.Therectanglesdemonstratethesameplaceoftherecordedimages,whiletheellipsesillustratethedisappearanceofthediffractioncontrastafterdestructionofthecrystals.相位衬度是透过样品的散射与未散射电子波间的相位差在成像过程中的体现,当样品厚度小于10nm且被观察的结构细节小于2nm时,如高分辨电子显微成像,电子束经过样品后的振幅变化不大,相位衬度对成像起主要作用.由于肉眼对相位衬度完全不敏感,通常是将相位反差转变为振幅反差,实现肉眼辨别,这会在电镜观察技巧处详细介绍.从上述描述可以看到,电镜的成像衬度主要来自经样品后的振幅变化,聚合物材料的电子密度差异很小,致使聚合物样品的电镜明场像反差不够强,因此发展了一些增加聚合物样品衬度的方法,如染色和重金属投影等.染色是将电子密度高的重金属原子引入聚合物的某些区域,使这些区域的电子密度大幅度提高来增大衬度,在对生物大分子的电镜研究中经常使用.常用染色剂有四氧化锇(OsO4)和四氧化钌(RuO4)2种,其作用机制分别为化学反应和物理渗透.如图11(a)所示,四氧化锇染色是利用其与―C=C―双键、―OH以及―NH2基团间的化学反应,使被染色的聚合物材料中含有重金属锇,使样品的明场成像衬度明显提高.图11(b)是经四氧化锇染色的高抗冲聚苯乙烯(HIPS)样品的电镜明场像,基于四氧化锇与HIPS中接枝丁二烯链的反应,使重金属饿键接到丁二烯链上,因而清晰地区分了聚苯乙烯基体、分散的聚丁二烯微区以及聚丁二烯微区中的聚苯乙烯微区,呈现了蜂窝状的相中相结构,说分散在聚苯乙烯基体中的聚丁二烯微区中同样包含了聚苯乙烯更小微区.四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透能力,使不同聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高.图11(c)和11(d)给出了iPP超薄膜四氧化钌染色前(图11(c))、后(图11(d))的电镜明场像[70],因为四氧化钌渗入iPP非晶区的能力强,导致染色前后iPP片晶结构的衬度反转,即染色前的iPP黑色片晶,染色后变为白色线条.Fig.11(a)thereactionbetween―C=C―doublebondsandOsO4.(b)AnelectronmicrographofHIPSthinfilmstainedbyOsO4,whichshowsthehoneycombstructuresofpolybutadienedomainsdispersedinthepolystyrenematrix.TheBFelectronmicrographsofiPPthinfilmbefore(c)andafter(d)RuO4staining.(Part(c)isreprintedwithpermissionfromRef.‍[70] Copyright(2013)ElsevierScienceLtd.).重金属投影在复型法制备聚合物样品时必须使用(2.2.2节),目的也是增加反差.其原理如图12(a)所示,利用样品的表面起伏,通过小角度(15°~30°)溅射铂金(Pt)或金(Au),使样品凸起部位的电子密度显著增加,而处于凹陷部位的阴影区电子密度保持不变,以此突显样品的微细结构.图12(b)和12(c)分别是Pt投影和非投影间同丙烯-丁烯-1共聚物(sPPBu)单晶的电镜明场像[77,78],显然Pt投影的图像更清晰,除平躺(flat-on)单晶外,还展示了一些侧立(edge-on)微细片晶结构.Fig.12AsketchshowsthePtorAushadowingprocess(a)andtheBFelectronmicrographsofsPPBusinglecrystalswith(b)andwithout(c)Ptshadowing(Part(c)isreprintedwithpermissionfromRef.‍[77] Copyright(2002)AmericanChemicalSociety).3电镜观察技术电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.本节将简要介绍电镜观察聚合物样品的一些常用技巧.3.1明暗场观察与成像电镜能够结合明场像、暗场像和电子衍射结果诠释聚合物结构.其中,电子衍射与X-射线衍射原理完全一致,只是所用的电子束光源波长(100kV加速电压时为0.0037nm,200kV加速电压时为0.00251nm)比X-射线的波长(0.154nm)短很多,感兴趣的读者可参阅该系列专辑的X-射线衍射一文[79].明、暗场像利用不同的透过光成像获取,如图13(a)所示,直接利用透过样品的弹性和非弹性散射电子成像即可获得明场像.暗场像只能通过选取满足某晶面衍射的特定光成像而获得,常用的操作方法如下:在衍射模式下,获取样品的电子衍射图,确定想了解的某个晶面结构信息后,加入物镜光阑,通过偏移物镜光阑到只能观察到感兴趣的晶面衍射点时(图13(b)),退出衍射光阑,即可获得相应晶面的暗场像.在保持物镜光阑居中的情况下,也可以通过倾斜入射电子束,使感兴趣晶面的衍射点呈现在物镜光阑的中心位置(图13(c)),退出衍射光阑获得相应晶面的暗场像.对设有特殊物镜光阑的电镜设备,通过狭缝物镜光阑选择拟观察的晶面衍射点或衍射环(图13(d)),能够在不倾斜入射光和偏置物镜光阑的前提下直接获得暗场像.无论采取何种方式暗场观察,设置成像条件后,移动样品寻找到理想的位置迅速取图便可得到高质量的暗场像.Fig.13SketchesshowingBFimaging(a)andDFimagingbyoffsetobjectiveaperture(b),tiltingofincidentlight(c),oruseofspecialobjectiveaperture(d).3.2防止样品抖动及破碎电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.避免样品破碎的办法是使用支撑膜,2.1节描述的所有支撑膜对防止聚合物超薄膜破碎均有很好效果,但防止样品抖动最好采用高模量无定型碳支撑膜.在无支撑膜的条件下,选择大目数四方孔铜网制备样品,观察铜网角落部位的样品区域也能够一定程度的降低抖动和避免破碎.3.3邻位聚焦技术聚合物晶体在电子束下的存活寿命非常短,通常只有几秒钟,也给记录聚合物晶态样品的真实形态结构带来困难,解决这一问题的常用方法是低剂量电子束下观察.正常条件下观察时,人们发展了邻位聚焦技术.操作程序是先在低放大倍数、低光照剂量下选择适合观察的样品区域,然后在所需放大倍率、正常光照条件进行聚焦,尽管聚焦过程破坏了样品的原有结构(图14(a)),将样品移动到邻近的位置,并迅速拍摄图像即可清晰记录样品的固有结构,如图14(b)所示.图14(c)给出了取向聚乙烯薄膜横跨聚焦区及其临近区域的电子显微镜暗场像,由于晶体结构在聚焦过程被破坏,聚焦区未显示任何结构信息,邻近区域却很好展示了平行排列的取向片晶结构.Fig.14BFelectronmicrographsofasolutioncastiPPthinfilmrecordedattheareausedforfocusing(a)andanadjacentfresharea(b).(c)ADFelectronmicrographofamelt-drawnPEorientedthinfilmtakenattheboundarybetweentheareausedforfocusingandanadjacentfresharea.3.4欠焦成像技术因聚合物样品的成像衬度很低,发展了染色和重金属投影增加聚合物样品衬度的方法,但2种方法均有存在一些问题.例如:重金属投影需要相应设备,且使样品制备过程繁琐,而染色剂对人体有害,因此建议慎用.实际上,在电镜观察聚合物样品时,也有提高聚合物样品成像衬度的技巧,也就是此处要阐述的欠焦成像技术.2.2.5节提到,电子显微像的衬度包括振幅衬度和相位衬度,但肉眼对相位衬度不敏感,需要将相位反差转变为振幅反差才能实现肉眼辨别,这种由相位变化引起的振幅反差称为“位相反差”(简称相差),在电镜观察过程中,相差可通过欠焦成像技术实现.图15给出了取向PE薄膜同一位置在不同聚焦程度下拍摄的明场电子显微像.由图15可以看到,正焦条件拍摄的图像(图15(a))最不清晰,离焦(欠焦:图15(b),过焦:图15(c))状态成像的反差反而好,且适当欠焦时图像(图15(b))清晰度最好.造成这一现象的原因是离焦状态在样品质量密度突变区域的周围会出现费涅耳环(Fresnelring),如图15的右下角样品空缺处所示,费涅耳环在欠焦和过焦时分别以亮、暗线勾画区域边缘,使图像更加清晰,因此欠焦成像提高反差的技术被有效利用.采用欠焦而非过焦成像的原因是:(1)基于人眼睛的马赫效应,即生理上的反差抑制习惯,费涅耳亮环可使图像更清晰;(2)过焦成像可能会产生假象,如图16所示.图16实际上给出是微纤样品不同聚焦程度的明场电子显微像,很明显,正焦时(图16(a))结构相对模糊,欠焦时(图16(b))结构变得清晰,虽然过焦时(图16(c))结构也很清晰,但因过焦量太大使真实的微纤结构变为管状结构,造成失真.在欠焦成像操作过程中,首先通过电镜的聚焦辅助功能(如摇摆聚焦功能)获得正交状态,然后逆时针旋转聚焦钮至所需的欠焦状态,并在此状态下进行图像记录.最佳欠焦程度取决于样品的结构尺寸,根据像传递理论,离焦量ρz产生的相差结构约为:d~(2λρz)1/2,也就是说,最佳欠焦量为ρz~d2/2λ,其中:d为样品结构空间距离,λ为电子束波长,由此确定的欠焦量通常为十几个微米.实际操作过程中,可选择合适的参照目标进行聚焦,如图15中的样品空白边缘和图16中箭头所指的杂质等,所选参照目标最清晰时即为最佳欠焦状态.Fig.15BFelectronmicrographsofahighlyorientedPEthinfilmtakeninthesameareaunder(a)focus,(b)defocus,and(c)overfocusconditions.Fig.16BFelectronmicrographsofmicrofibrilstakeninthesameareaasdemonstratedbythearrowsunder(a)focus,(b)defocus,and(c)overfocusconditions.透射电子显微镜不仅能通过明场和暗场像直观展示聚合物材料的微观结构,而且能结合电子衍射关联微细结构与相应的晶体结构与取向行为等.这一节扼要阐述利用透射电子显微镜能够获得的一些结构信息.4.1晶型分析大部分聚合物存在多种晶型,不同类型晶体具有不同的结晶习性,产生不同的形态结构,从而结合明场观察到的形态结构和电子衍射确定的晶体类型被广泛用于不同晶体的结晶行为研究.另外,聚合物的不同晶型间可以发生相转变,有时仅靠明场像无法获取晶体种类的信息.以iPB-1为例[80~91],它存在六方晶型I和I' ,四方晶型Ⅱ和正交晶型Ⅲ,正常情况下结晶首先形成亚稳态晶型Ⅱ,然后室温自发、缓慢地固相转变为晶型I.由于固相转变过程不改变形态结构,电镜明场像在任何时间均给出相似的微观结构,然而电子衍射跟踪不同时刻样品的晶体结构表明,晶型Ⅱ-I固相转变在不断发生.对95℃等温结晶iPB样品的电子衍射研究发现,其晶型Ⅱ-I固相转变可持续近3个月,因此能够获得晶型Ⅱ和I共存的电子衍射图(参见文献[89]的图2(a)).通过对相应电子衍射图的分析发现,转变前后晶型Ⅱ与晶型I拥有相同的(110)衍射方向,说明iPB的相转变沿晶型Ⅱ的(110)晶面发生,从而分子水平揭示了晶型Ⅱ-I转变机理,也为晶型Ⅱ单晶转变晶型I孪晶提供了合理解释.另外,明场观察到的晶型Ⅱ板条状结构和超薄膜高温结晶直接获得的晶型I的六边形结构很好说明了iPB-1晶型Ⅱ和I因晶格对称性不同造成的不同结晶习性.4.2晶体暴露面分析在获取聚合物形态和晶体结构信息的基础上,如需知道聚合物晶体最快生长轴以及聚合物间的特殊相互作用面,还要确定聚合物晶态薄膜的暴露面,即薄膜样品表面对应的晶面.如图17所示,以正交晶型为例,如果所有晶体的结晶学b-和c-轴在膜平面内,a-轴则垂直于bc面,在这种情况下,晶态聚合物薄膜具有固定暴露面,即为(100)晶面(图17(a)).假如所有晶体的结晶学b-或c-轴垂直于膜平面,则可确定其(010)或(001)为固定暴露面(见图17(b)和17(c)).由于聚合物薄膜通常由大量微晶聚集构成,存在每个微晶的结晶学a-、b-和c-轴指向不同的现象.例如:聚合物纤维,其分子链(即结晶学c-轴)沿纤维轴高度取向,但结晶学a-或b-轴在垂直于c-轴的平面任意取向,聚合物薄膜的类似结构(图17(d))说明其没有固定暴露面.聚合物晶态薄膜的暴露面可通过对相应电子衍射结果分析来获取[88],具体做法如图18所示,在相应的电子衍射图中,任意选取2个不应出现在同一方向的衍射点,用2个衍射点的米勒指数(Millerindex),即h、k和l,构成一个三维矩阵,矩阵的第一行为h、k和l,第二、三行分别为两个衍射点对应的h、k和l值,用h1、k1、l1和h2、k2、l2表示,移除该矩阵的第一行(即h、k、l行)以及h(或k或l)对应的列后产生3个独立的二维矩阵,这些二维矩阵的绝对值约化后便是暴露面的h(或k或l)值,即暴露面米勒指数.以溶液浇注iPP薄膜为例,图19是其明场和电子衍射图[92],从明场图可观察到支化的片晶结构,而电子衍射图出现了(001)、(101)和(200)衍射点,这3个衍射点不会出现在同一方向,均可用来确定其晶体的暴露面,根据图18描述的过程,选择任意2个衍射点都会得到暴露面为(010)晶面,也就是说其a-和c-轴在膜平面内,b-轴垂直于膜平面.考虑到聚合物超薄膜结晶,结晶学c-轴和其最快生长轴通常在膜平面内,由此得出iPP最快生长轴为a-轴的结论.对具有诱导附生结晶能力的聚合物体系,根据暴露面分析结果,能够确定2种聚合物的实际接触面[93,94].如iPP与全同聚苯乙烯(iPS)附生结晶的有利相互作用面分别是iPP的(100)和iPS的(110)晶面[95].Fig.17Diagramillustraxposurelatticeplaneofpolymercrystalsinthinfilmsample.Fig.18Diagramillustratingthedeterminationprocessofexposureplaneofpolymerthinfilms.Fig.19Aphasecontrastbrightfieldtransmissionelectronmicrograph(a),itscorrespondingelectrondiffractionpattern(b)andasketchofitwithindexingofthereflectionspots(c)ofasolutioncastiPPthinfilm(ReprintedwithpermissionfromRef.‍[92] Copyright(2013)ChineseChemicalSociety).4.3晶体取向分析电子衍射能够提供聚合物晶体取向的准确信息[95~99].图20(a)和20(b)分别给出了表面蒸涂碳膜的熔体拉伸PE膜及其150℃熔融15min后128℃重结晶2h的明场像和电子衍射图,从明场像可以看到热处理前后并未改变平行排列的、高度取向的片晶结构,热处理前后的电子衍射图却非常不同,用4.2节描述确定晶体暴露面的方法分析图20(a)和20(b)中的衍射图发现,热处理前,选择图20(a)中所标注的不同衍射点会得出的不同结论.例如:(002)和(110)衍射点确定的暴露面为(110),(002)和(200)衍射点确定的暴露面为(100),(002)和(200)衍射点给出的暴露面是(010)晶面.然而,热处理后,选择图20(b)中任何2个标定的衍射点得到的暴露面均为(100)晶面.上述结果似乎难以理解,但实际上它准确给出了热处理前后PE熔体拉伸膜的不同晶体取向结构.热处理前的衍射结果说明熔体拉伸制备的PE膜为单轴取向结构(又称为纤维取向结构),分子链(c-轴)沿拉伸方向取向,但a-轴和b-轴在垂直于c-轴的平面内无规取向.热处理后的衍射结果证明表面蒸涂碳膜固定了熔体拉伸PE膜的原有分子链取向,但熔融重结晶过程中其最快生长轴(b-轴)落于膜平面内,从而产生c-轴和b-轴均在膜平面内且c-轴沿拉伸方向排列的双轴取向结构.Fig.20ElectronmicrographsandcorrespondingelectrondiffractionpatternsofvacuumcarboncoatedPEmelt-drawnfilms(a)aspreparedand(b)aftermeltingat150℃for15minandthenrecrystallizedat128℃for2h.Arrowsindicatethedrawingdirectionduringfilmpreparation.为精准确定晶体取向结构,有时需要通过单轴或双轴倾斜样品获取转轴电子衍射图[100,101].样品倾转首先需要确定绕那个轴旋转,并使旋转轴沿样品杆轴取向.例如:欲绕c-轴旋转,需将c-轴调整到与样品杆轴平行状态,然后单轴旋转样品杆即可改变a-和b-轴的取向,使不同晶面满足Bragg衍射条件,从而产生衍射,如b-轴在膜平面时出现相应的(0kl),而a-轴在膜平面时出现相应的(h0l).同理,双轴倾转需要先经单轴倾斜调整好垂直于样品杆轴另一个方向的旋转轴后才能进行另一个方向倾转,使要观察的晶面满足Bragg衍射条件.由于大尺寸聚合物单晶不易获得,且晶体在电子束轰击稳定性极差,获取聚合物转轴电子衍射比较困难,特别是双轴倾转,需要很强的操作技巧.4.4晶体缺陷分析图21给出了sPP和sPB-1不同晶型的晶胞结构示意图,可以看出sPP晶型I属于面心晶胞结构(图21(a)),而sPB-1晶型I为体心晶胞结构(图21(d)),sPP晶型Ⅱ具有与sPB-1晶型I类似的体心晶胞结构(图21(b)),sPB-1晶型I' 则采取与sPP晶型I类似的堆砌方式(图21(c)).由于晶体中sPP与sPB-1的分子链均呈反式-反式-旁式-旁式(ttgg)螺旋链构象结构,sPP和sPB-1能够共晶,即sPP和sPB-1分子链均可排入对方的晶胞中.因此,我们对sPP、sPB-1和及其共聚物sPPBu的单晶结构进行了研究.结果发现,如图22所示,纯sPP(图22(a))[77]和sPB-1(图22(f))[76,102]单晶均为其相应的晶型I结构.sPPBu共聚物的单晶结构取决于2个组分的共聚比[77,78],含少量丁烯-1组分(sPPBu具有与sPP完全相同的堆砌结构(图22(b)),当丁烯-1组分含量为9.9mol%时,sPPBu单晶的衍射与sPP单晶类似(图22(c)),但在h20衍射层(相对于sPB-1为h10层)出现衍射条带,该衍射条带在丁烯-1组分含量为34.7mol%时更加明显(图22(d)),在丁烯-1组分超过90mol%后,sPPBu采取与sPB-1相同的结晶方式堆砌(图22(e)).衍射条带的出现说明sPPBu单晶有结构缺陷[103],根据其出现位置(sPP的h20衍射层或sPB-1的h10层)能够明确缺陷的存在形式和给出合理解释[104].如图23所示,图中分别用A、B、C、D描绘了sPP的晶型I、Ⅱ以及sPBu的晶型I' 和I晶胞结构,富含丙烯的sPPBu结晶倾向于形成sPP的晶型I结构(A),但其某一排分子链沿b-轴方向的b/4位移后产生sPP的晶型Ⅱ结构(B)或sPBu的晶型I结构(C).对富含丁烯的sPPBu而言,易于形成sPBu的晶型I结构(C),此时的b-轴方向b/2位移则导致sPP的晶型I结构(A)或sPBu的晶型I' 结构(D)的产生.在同一个单晶中上述不同晶体结构类型的存在表现为单晶的缺陷,使其电子衍射出现条带结构.Fig.21ChainpackingmodelsofformIsPP(a),formⅡsPP(b),formI' sPB-1(c)andformIsPB-1(d).Inpart(c),thesymbolR/LindicatestheexistenceofstructuredisorderinformI' sPB-1withright(R)andleft(L)handedhelices,thatis,therightandlefthandedchainscanbefoundwiththesameprobabilityineachsiteofunitcell.(ReprintedwithpermissionfromRef.[78] Copyright(2010)AmericanChemicalSociety).Fig.22ElectrondiffractionpatternsofsPPBusinglecrystalscontaining0mol%(a),2.6mol%(b),9.9mol%(c),34.7mol%(d),98.6mol%(e)and100mol%1-butenecomponent(f)(ReprintedwithpermissionfromRefs.[77,78] Copyright(2002,2010)AmericanChemicalSociety).Fig.23sPPBuchainpackingmodelsasafunctionofbutane-1concentration.TheunitcellsoftheB-centeredformIofsPP(A),theC-centeredisochiralformⅡofsPP(B),theC-centeredisochiralformIofsPB-1(C)andB-centeredformI' ofsPB-1(D)areindicated.Forpropene-richcopolymersb/4shiftdefectsproducelocalarrangementofchainsasintheC-centeredformⅡofsPP(B)orformIsPB-1(C)inaprevailingmodeofpackingoftheB-centeredformIofsPP(A).Athighbutenecontent,b/4shiftdefectsproducelocalarrangementofchainsasintheB-centeredformI(A)ofsPPandformI' ofsPB-1(D)inaprevailingmodeofpackingoftheC-centeredformIofsPB-1(C)andformⅡofsPP(B).(ReprintedwithpermissionfromRef.‍[78] Copyright(2010)AmericanChemicalSociety).5总结与展望透射电子显微镜集明、暗场观察以及电子衍射技术于一体,能直观展示样品的微细结构与形态,并准确关联晶态结构和晶体取向,是材料微观结构表征不可或缺的仪器设备.由于电子束的弱穿透能力,只能观察厚度在几十纳米的样品,聚合物超薄膜因电子束轰击下不稳定和非常低的结构反差给电镜研究聚合物样品带来很大困难.因此,经长期的研究探索与发展,开发了系列电镜用于聚合物结构研究的技术手段,包括制样方法、观察技巧等.针对聚合物超薄膜电子束轰击抖动和破碎等不稳定问题,人们发掘了用硝化纤维素、聚乙烯醇缩甲醛和真空蒸涂无定型碳等薄膜支撑样品的方法,特别是在样品表面直接真空沉积的高模量无定型碳膜能够确保样品不抖动、不破碎,但该方法不能用于需进一步处理样品的固定.当然,在不使用支撑膜的条件下,采用大目数四方孔铜网制备样品,选择铜网角落部位的样品观察,对降低样品抖动和避免样品破碎也有较好效果.针对电子束轰击聚合物超薄膜真实结构破坏问题,如聚合物晶体在电子束下的寿命仅有几秒钟,常用的解决方法是低剂量电子束下观察.在正常条件观察时,人们巧妙地发展了邻位聚焦技巧.即在需观察部位的邻近处完成聚焦、亮度和成像时间等的调整,然后移至观察部位迅速记录图像.针对聚合物材料非常低的结构反差,人们在制样方面发明了钌酸和锇酸染色以及铂金或金重金属投影等提高聚合物样品衬度的办法,在观察技巧方面发展了欠焦成像技术.上述各种特殊技术的发展,使电镜在聚合物微观结构研究中得到了广泛应用.电镜除能直观展示聚合物的微细结构外,结合暗场和电子衍射技术能够准确关联相关微观结构中晶体结构、晶体取向以及晶体缺陷存在方式等,已经对高分子科学领域的发展做出了重要贡献,如聚乙烯单晶的电镜研究结果为高分子结晶折叠链模型的建立提供了坚实依据,推动了高分子结晶理论的快速发展.基于电镜在聚合物微观结构研究中的重要作用,电镜仪器本身也得到了不断发展,如超低温样品室和低剂量辐照模式的使用为聚合物材料的高分辨成像提供了条件[105,106],样品倾转和三维结构重构技术的结合拓展了电镜在聚合物三维微观结构研究方面的应用[107,108].聚合物电子显微术在其本身低辐照损伤、高精度原位观察以及与其他技术联用(如光谱技术)等方面的进一步发展无疑会对高分子科学领域的快速发展做出更大的贡献.作者简介:闫寿科,男,1963年生.1996年中国科学院长春应用化学研究所获得博士学位.1997~2001年德国多特蒙德大学从事科研工作.2001~2008年中国科学院化学研究所,研究员.2008年至今北京化工大学,教授.2018年至今青岛科技大学,教授.曾获“中国科学院百人计划”、“国家杰出青年科学基金”资助.主要研究方向是高分子材料多层次结构和结构调控及其结构-性能关系.参考文献1LiuY,LiC,RenZ,YanS,BryceMR.NatRevMater,2018,3(4):18020.doi:10.1038/natrevmats.2018.202MemonWA,LiJ,FangQ,RenZ,YanS,SunX.JPhysChemB,2019,123(33):7233-7239.doi:10.1021/acs.jpcb.9b035223WangJ,LiuY,HuaL,WangT,DongH,LiH,SunX,RenZ,YanS.ACSApplPolymMater,2021,3(4):2098-2108.doi:10.1021/acsapm.1c001444Deng,LF,ZhangXX,ZhouD,TangJH,LeiJ,LiJF,LiZM.ChineseJPolymSci,2020,38(7):715-729.doi:10.1007/s10118-020-2397-75HuaLei(华磊),YanShouke(闫寿科),RenZhongjie(任忠杰).ActaPolymericaSinica(高分子学报),2020,51(5):457-468.doi:10.11777/j.issn1000-3304.2020.192246SmithP,LemstraPJ.MaterSci,1980,15(2):505-514.doi:10.1007/bf023968027LovingerAJ.Science,1983,220(4602):1115-1121.doi:10.1126/science.220.4602.11158DongH,LiH,WangE,YanS,ZhangJ,YangC,TakahashiI,NakashimaH,TorimitsuK,HuW.JPhysChemB,2009,113(13):4176-4180.doi:10.1021/jp811374h9DongH,LiH,WangE,WeiZ,XuW,HuW,YanS.Langmuir,2008,24(23):13241-13244.doi:10.1021/la802609410LiuL,RenZ,XiaoC,DongD,YanS,HuW,WangZ.OrgElectron,2016,35:186-192.doi:10.1016/j.orgel.2016.05.01711LiuL,RenZ,XiaoC,HeB,DongH,YanS,HuW,WangZ.ChemCommun,2016,52(27):4902-4905.doi:10.1039/c6cc01148a12SunD,LiY,RenZ,BryceMR,LiH,YanS.ChemSci,2014,5(8):3240-3245.doi:10.1039/c4sc01068j13ZhaoC,HongY,ChuX,DongY,HuZ,SunX,YanS.MaterTodayEnergy,2021,20(2):100678.doi:10.1016/j.mtener.2021.10067814WangM,WangS,HuJ,LiH,RenZ,SunX,WangH,YanS.Macromolecules,2020,53(14):5971-5979.doi:10.1021/acs.macromol.0c0110615LiuJ,ZhaoQ,DongY,SunX,HuZ,DongH,HuW,YanS.ACSApplMaterInterfaces,2020:12(26):29818-29825.doi:10.1021/acsami.0c0680916TangZ,YangS,WangH,SunX,RenZ,LiH,YanS.Polymer,2020,194(24):122409.doi:10.1016/j.polymer.2020.12240917SongT,WangS,WangH,SunX,LiH,YanS.IndEngChemRes,2020,59(8):3438-3445.doi:10.1021/acs.iecr.9b0643218MiC,GaoN,LiH,LiuJ,SunX,YanS.ACSApplPolymMater,2019,1(8):1971-1978.doi:10.1021/acsapm.9b0006019MiC,RenZ,LiH,YanS,SunX.IndEngChemRes,2019,58(17):7389-7396.doi:10.1021/acs.iecr.8b0554520ElyashevichGK,KuryndinIS,DmitrievIY,LavrentyevVK,SaprykinaNN,BukošekV.ChineseJPolymSci,2019,37(12):1283-1289.doi:10.1007/s10118-019-2284-221MenY,RiegerJ,HomeyerJ.Macromolecules,2004,37(25):9481-9488.doi:10.1021/ma048274k22DuanY,ZhangJ,ShenD,YanS.Macromolecules,2003,36(13):4874-4879.doi:10.1021/ma034008f23ZhangY,LuY,DuanY,ZhangJ,YanS,ShenD.JPolymSciPhysEd,2004,42(24):4440-4447.doi:10.1002/polb.2030624ZhangJ,DuanY,ShenD,YanS,NodaI,OzakiY.Macromolecules,2004,37(9):3292-3298.doi:10.1021/ma049910h25SunX,PiF,ZhangJ,TakahashiI,Wang,F,YanS,OzakiY.JPhysChemB,2011,115(9):1950-1957.doi:10.1021/jp110003m26HuJ,HanL,ZhangT,DuanY,ZhangJ.ChineseJPolymSci,2019,37(3):253-257.doi:10.1007/s10118-019-2184-527LiH,HouL,WuP.ChineseJPolymSci,2021,39(8):975-983.doi:10.1007/s10118-021-2571-628LiH,RussellT,WangD.ChineseJPolymSci,2021,39(6):651-658.doi:10.1007/s10118-021-2567-229WangY,JiangZ,FuL,LuY,MenY.Macromolecules,2013,46(19):7874-7879.doi:10.1021/ma401326g30LinY,LiX,MengL,ChenX,LvF,ZhangQ,ZhangR,LiL.Macromolecules,2018,51(7):2690-2705.doi:10.1021/acs.macromol.8b0025531WanR,SunX,RenZ,LiH,YanS.Materials,2020,13(24):5655.doi:10.3390/ma1324565532SunX,GuoL,SatoH,OzakiY,YanS,TakahashiI.Polymer,2011,52(17):3865-3870.doi:10.1016/j.polymer.2011.06.02433SuR,WangK,ZhaoP,ZhangQ,DuR,FuQ,LiL,LiL.Polymer,2007,48(15):4529-4536.doi:10.1016/j.polymer.2007.06.00134ZhuH,LvY,ShiD,LiYG,MiaoWJ,WangZB.ChineseJPolymSci,2020,38(9):1015-1024.doi:10.1007/s10118-020-2427-535KangXW,LiuD,ZhangP,KangM,ChenF,YuanQX,ZhaoXL,SongYZ,SongLX.ChineseJPolymSci,2020,38(9):1006-1014.doi:10.1007/s10118-020-2402-136ChenP,ZhaoH,XiaZ,ZhangQ,WangD,MengL,ChenW.ChineseJPolymSci,2021,39(1):102-112.doi:10.1007/s10118-020-2458-y37AleksandrovAI,AleksandrovIA,ShevchenkoVG,OzerinAN.ChineseJPolymSci,2021,39(5):601-609.doi:10.1007/s10118-021-2511-538GaoM,RenZ,YanS,SunJ,ChenX.JPhysChemB,2012,116(32):9832-9837.doi:10.1021/jp304137839LiL,ZhangS,XueM,SunX,RenZ,LiH,HuangQ,YanS.Langmuir,2019,35(34):11167-11174.doi:10.1021/acs.langmuir.9b0181440HuJ,XinR,HouC,YanS,LiuJ.ChineseJPolymSci,2019,37(7):693-699.doi:10.1007/s10118-019-2226-z41SunX,LiH,ZhangX,WangD,SchultzJM,YanS.Macromolecules,2010,43(1):561-564.doi:10.1021/ma901978442StockerW,SchumacherM,GraffS,LangJ,WittmannJC,LovingerAJ,LotzB.Macromolecules,1994,27(23):6948-6955.doi:10.1021/ma00101a03643JiangS,DuanY,LiL,YanD,YanS.Polymer,2004,45(18):6365-6374.doi:http://202.98.16.49/handle/322003/1510944LiH,LiuD,BuX,ZhouZ,RenZ,SunX,ReiterR,YanS,ReiterG.Macromolecules,2020,53(1):346-354.doi:10.1021/acs.macromol.9b0202145LiL,HuJ,LiY,HuangQ,SunX,YanS.Macromolecules,2020,53(5):1745-1751.doi:10.1021/acs.macromol.9b0259846WangH,SchultzJM,YanS.Polymer,2007,48(12):3530-3539.doi:10.1016/j.polymer.2007.03.07947LiL,XinR,LiH,SunX,RenZ,HuangQ,YanS.Macromolecules,2020,53(19):8487-8493.doi:10.1021/acs.macromol.0c0145648HouC,WanR,SunX,RenZ,LiH,YanS.PolymCryst,2020,3(5):e10157.doi:10.1002/pcr2.1015749LiH,SunX,YanS,SchultzJM.Macromolecules,2008,41(13):5062-5064.doi:10.1021/ma702725g50ZhangLL,MiaoWK,RenLJ,YanYK,WangW.ChineseJPolymSci,2021,39(6):716-724.doi:10.1007/s10118-021-2520-451NieY,GaoH,YuM,HuZ,ReiterG,HuW.Polymer,54(13):2013,3402-340752LiJ,LiH,YanS,SunX.ACSApplMaterInterfaces,2021,13(2):2944-2951.doi:10.1021/acsami.0c1919953DuanY,LiuJ,SatoH,ZhangJ,TsujiH,OzakiY,YanS.Biomacromolecules,2006,7(10):2728-2735.doi:10.1021/bm060043t54ZhouH,JiangS,YanS.JPhysChemB,2011,115(46):13449-13454.doi:10.1021/jp205755r55ChangH,ZhangJ,LiL,WangZ,YangC,TakahashiI,OzakiY,YanS.Macromolecules,2010,43(1):362-366.doi:10.1021/ma902235f56XinR,WangS,ZengC,JiA,ZhangJ,RenZ,JiangW,WangZ,YanS.ACSOmega,2020,5(1):843-850.doi:10.1021/acsomega.9b0367557JiangT,WanP,RenZ,YanS.ACSApplMaterInterfaces,2019,11(41):38169-38176.doi:10.1021/acsami.9b1333658LiuJ,WangJ,LiH,ShenD,ZhangJ,OzakiY,YanS.JPhysChemB,2006,110(2):738-742.doi:10.1021/jp053369p59ChuXiao(初笑),YanShouke(闫寿科),SunXiaoli(孙晓丽).ActaPolymericaSinica(高分子学报),2021,52(6):634-646.doi:10.11777/j.issn1000-3304.2021.2103660ZhouW,WengX,JinS,RastogiS,LovingerAJ,LotzB,ChengSZD.Macromolecules,2003,36(25):9485-9491.doi:10.1021/ma030312x61KellerA.PhilosophicalMagazine,1957,2(21):1171-1175.doi:10.1080/1478643570824274662FischerEWZ.Naturforsch,1957,12a:753-754.doi:10.1021/ac60131a71063TillPHJ.JPolymSci,1957,24(106):301-306.doi:10.1002/pol.1957.120241061664YanS.Macromolecules,2003,36(2):339-345.doi:10.1021/ma021387o65MaL,ZhouZ,ZhangJ,SunX,LiH,ZhangJ,YanS.Macromolecules,2017,50(9):3582-3589.doi:10.1021/acs.macromol.7b0029966MaL,ZhangJ,MemonMA,SunX,LiH,YanS.PolymChem,2015,6(43):7524-7532.doi:10.1039/c5py01083g67YanS,PetermannJ.Polymer,2000,41(17):6679-668163.doi:10.1016/s0032-3861(00)00109-968LiuX,WeiQS,ChaiLG,ZhouJJ,HuoH,YanDD,YanSK,XuJ,LiL.ChineseJPolymSci,2017,35(1):78-86.doi:10.1007/s10118-017-1872-269ChaiLG,LiuX,SunXL,LiL,YanSK.PolymChem,2016,7(10):1892-1898.doi:10.1039/c5py02037a70LiuQ,SunX,LiH,YanS.Polymer,2013,54(17):4404-4421.doi:10.1016/j.polymer.2013.04.06671HuJ,XinR,HouC,YanS.MacromolChemPhys,2019,220(5):1800478.doi:10.1002/macp.20180047872WittmannJC,SmithP.Nature,1991,352(6334):414-417.doi:10.1038/352414a073ChaiL,ZhouH,SunX,LiH,YanS.ChineseJPolymSci,2016,34(4):513-522.doi:10.1007/s10118-016-1770-z74BonnetM,YanS,PetermannJ,ZhangB,YangD.JMaterSci,2001,36(2):635-641.doi:10.1023/a:100486832028775LoosJ,SchauwienoldAM,YanS,PetermannJ.PolymBull,1997,38(2):185-189.doi:10.1007/s00289005003676ZhangB,YangD,DeRosaC,YanS.PetermannJ.Macromolecules,2001,34(15):5221-5223.doi:10.1021/ma010036r77ZhangB,YangD,DeRosaC,YanS.Macromolecules,2002,35(12):4646-4652.doi:10.1021/ma011975m78JiangS,LiH,DeRosaC,AuriemmaF,YanS.Macromolecules,2010,43(3):1449-1454.doi:10.1021/ma902389479HuJian(扈健),WangMengfan(王梦梵),WuJinghua(吴婧华).ActaPolymericaSinica(高分子学报),2021,52(10):1390-1405.doi:10.11777/j.issn1000-3304.2020.2025880QiaoY,MenY.Macromolecules,2017,50(14):5490-5497.doi:10.1021/acs.macromol.7b0077181QiaoY,WangQ,MenY.Macromolecules,2016,49(14):5126-5136.doi:10.1021/acs.macromol.6b0086282QiaoY,WangH,MenY.Macromolecules,2018,51(6):2232-2239.doi:10.1021/acs.macromol.7b0248183LiuP,MenY.Macromolecules,2021,54(2):858-865.doi:10.1021/acs.macromol.0c0217184XinR,WangS,GuoZ,LiY,HuJ,SunX,XueM,ZhangJ,YanS.Macromolecules,2020,53(8):3090-3096.doi:10.1021/acs.macromol.0c0041485XinR,GuoZ,LiY,SunX,XueM,ZhangJ,YanS.Macromolecules,2019,52(19):7175-7182.doi:10.1021/acs.macromol.9b0157486XinR,ZhangJ,SunX,LiH,RenZ,YanS.Polymers,2018,10(5):556.doi:10.3390/polym1005055687SuF,LiX,ZhouW,ZhuS,JiY,WangZ,QiZ,LiL.Macromolecules,2013,46(18):7399-7405.doi:10.1021/ma400952r88ZhangB,YangD,YanS.JPolymSciPhysEd,2002,40(23):2641-2645.doi:10.1002/polb.1032789QiuX,AzharU,LiJ,HuangD,JiangS.ChineseJPolymSci,2019,37(7):633-636.doi:10.1007/s10118-019-2273-590MaYP,ZhengWP,LiuCG,ShaoHF,NieHR,HeAH.ChineseJPolymSci,2020,38(2):164-173.doi:10.1007/s10118-020-2337-691ZhangZ,ChenX,ZhangC,Liu,CT,WangZ,LiuYP.ChineseJPolymSci,2020,38(8):888-897.doi:10.1007/s10118-020-2409-792WuJ,ZhouH,LiuQ,YanS.ChineseJPolymSci,2013,31(6):841-852.doi:10.1007/s10118-013-1269-993WangJ,LiuY,ZouD,RenZ,LinJ,LiuX,YanS.Macromolecules,2021,54(9):4342-4350.doi:10.1021/acs.macromol.0c0281594LiY,GuoZ,XueM,YanS.Macromolecules,2019,52(11):4232-4239.doi:10.1021/acs.macromol.9b0062795GuoZ,YuanC,SongC,XinR,HouC,HuJ,LiH,SunX,RenZ,YanS.Macromolecules,2021,54(16):7564-7571.doi:10.1021/acs.macromol.1c0142996WangJ,LiuY,LiH,YanS,SunX,TuD,GuoX,RenZ.MaterChemFront,2020,4(2):661-668.doi:10.1039/c9qm00684b97GuoZ,XinR,HuJ,LiY,SunX,YanS.Macromolecules,2019,52(24):9657-9664.doi:10.1021/acs.macromol.9b0202398LiJ,XueM,XueN,LiH,ZhangL,RenZ,YanS,SunX.Langmuir,2019,35(24):7841-7847.doi:10.1021/acs.langmuir.9b0040299GuoZ,LiS,LiuX,ZhangJ,LiH,SunX,RenZ,YanS.JPhysChemB,2018,122(40):9425-9433.doi:10.1021/acs.jpcb.8b08193100LotzB.Macromolecules,2014,47(21):7612-7624.doi:10.1021/ma5009868101LiC,JinS,WengX,GeJ,ZhangD,BaiF,HarrisF,ChengS,YanD,HeT,LotzB,ChienL.Macromolecules,2002,35(14):5475-5482.doi:10.1021/ma0204453102GuanG,ZhangJ,SunX,LiH,YanS,LotzB.MacromolRapidCommun,2018,39(20):1800353.doi:10.1002/marc.201800353103LovingerAJ,DavisDD,LotzB.Macromolecules,1991,24(2):552-560.doi:10.1021/ma00002a033104LovingerAJ.JApplPhys,1981,52(10):5934-5938.doi:10.1063/1.328522105BrinkmannM,RannouP.Macromolecules,2009,42(4):1125-1130.doi:10.6342/NTU.2009.02410106TosakaM,KamijoT,TsujiM,KohjiyaS,OgawaT,IsodaS,KobayashiT.Macromolecules,2000,33(26):9666-9672.doi:10.1021/ma001495f107JinnaiH,SpontakRJ,NishiT.Macromolecules,2010,43(4):1675-1688.doi:10.1021/ma902035p108JinnaiH,NishikawaY,IkeharaT,ToshioN.AdvPolymSci,2004,170:115-167.doi:10.1007/12_2006_102原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21251&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21251
  • Hf 掺杂BiSbTe3 结构与热电性能研究
    Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的.Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的.2.2 电学性能样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从图中可以看出,所有样品的Seebeck 系数均为负值,具有电子导电的特征,这说明样品为n 型半导体.Hf 掺杂后,其绝对值有明显增加,特别是在300 -Hf 掺杂BiSbTe3 结构与热电性能研究刘福生,敖伟琴,罗锐敏,冯学文,张文华,李均钦(深圳大学材料学院,深圳市特种功能材料重点实验室,深圳518060)摘要:以高纯町、Bi 、Sb 和Te 为原料,在1000ce 下,经10 h 氧气保护熔融状态下反应,冷却球磨制粉,再在氮气保护下进行热压(450ce , 20 MPa) ,成功制备出一系列不同Hf 掺杂量的Hf2x ( Bi ,Sb) 2 -2xTe3化合物.X 射线粉末衍射Rietveld 分析说明, Hf 在结构中占据6c 品位,以替代(Bi , Sb) 的形式进入品格.Hf 掺杂引起BiSbTe3 的Seebeck 系数增大,电导率降低.功率因子在375 K 时达最大值526&mu W/mK2 &bull 关键词:热电性能 给 Bi2Te3 Seebeck 系数 功率因子中图分类号: TB 39 文献标识码:ABi2Te 3 及其固溶体合金是研究最早,也是目前发展最为成熟的热电材料之一. 目前使用的大多数热电制冷元件均采用这类材料.研究表明Bi 2 Te 3 能分别与Bi2 Se 3 和Sb2 Te3 在整个组分范围内形成连续固溶体,通过这种方式能使材料的热电优值得到明显提高[1J 另一种提高Bi2 Te 3 基热电性能的方式是对Bi 位原子进行掺杂,以提高声子散射,降低热导率.已有学者分别对Sn[2 J 、Pb[3 J 、Ga[4 J 和CU[5 J 等掺杂的Bi2 Te3 基化合物的性能与微结构进行研究,其热电性能有不同程度的提高. Hf 是稀土元素后的第一个元素,也是一种非常重要的热电元素,其原子量大,且其原子、离子及共价半径比稀土元素小,有利于掺杂提高声子散射,对Hf 掺杂的Bil凶b3 结构与性能进行研究有重要意义.1 实验方法采用纯度为99.99 £ 3毛给( Hf) 、锦(Sb) 、铭( Bi) 及纯度为99.999 £ 3毛的暗(Te) 为原料,按Hi&mu Bi ,Sb ) 2 -2xTe3 (x =0 -- o. 05 )化学计算比进行称量,每个试样重6 g. 将配备好的试样装入石英管并抽真空(真空度低于6 X 10 -3 Pa) 后,充入高纯氧气(约0.2 MPa) 封管,然后置入装有Si02 粉末的增塌中,得石英管竖立,置于箱式高温炉中,在1000ce下,经10 h 氧气保护熔融状态下反应,再经96 h 缓慢冷却至室温.理后的样品再经过球磨,热压烧结(450ce , 20 MPa). 样品结构分析采用Br此er - Axs D8 Advance 18kW 转靶X 线粉末衍射仪(CuK&alpha ) 进行.样品的Seebeck 系数与电导率的测量在ZEM -2 型热电性能测试仪上进行.2 结果与讨论2.1 X 射线粉未衍射分析热压后样品的X 射线粉末衍射(XRD) 图谱如图1 所示.从图中可以看出,不同掺杂量的样品具有相同的衍射峰分布,为Bi2 Te3 型(空间群:R-3m) 结构的单相样品,未发现与Hf 有关的杂相衍射峰,说明Hf 成功地掺入了BiSbTe 3 的结构中.对样品的衍射图谱Rietveld 精修结果如表1 所示.Bi2Te 3 基化合物晶体结构沿C 轴方向看,可视为六方层状结构,同一层上具有相同的原子,按六方排列,各层按:&hellip Tel - Bi - Te2- Bi - Tel · · · Tel- Bi - Te2- Bi - Tel ...顺序排列,二个邻近的Tel原子层间以范德华力结合,层间距约为0.25 nm ,上下二层各3 个Tel 原子形成空的八面体空隙,可为填充掺杂提供条件.其他层之间以共价键结合[6 J &bull Bi 原子填充在由Tel 和Te2 二层原子组成的八面体空隙中.根据该结构特征,掺杂原子在结构中的占位有两种方式:一是占据Tel 原子组成的八面体空隙(3b 晶位) ,二是替代Bi 原子的位置(6c 晶位) .一般倾向于认为两种位置均可占有.根据精修的晶体结构结果,若Hf 填充在3b 晶位,其与Tel 原子的间距约为0.284 nm , Hf 与Te 的原子半径分别为0.216 nm 与0.146 nm ,且该位置的结合力为范德华力, Hf 在该位置的填充必将使晶体结构发生明显畸变,随着Hf 掺杂量的增加, Hf2x( Bi ,Sb) 2 -2x Te3 的晶胞参数将会产生明显且急剧的增加.但Rietveld 精修结果表明,晶胞参数随Hf 掺杂量的增加仅产生微小变化.由于Hf 与Bi、饨的共价半径差别较小,本文认为Hf 在结构中主要替代(Bi , Sb) ,对晶胞参数的影响较小.2.2 电学性能样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从图中可以看出,所有样品的Seebeck 系数均为负值,具有电子导电的特征,这说明样品为n 型半导体.Hf 掺杂后,其绝对值有明显增加,特别是在300 -Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的.500 K 间, Seebeck 系数随温度的升高先升后降,这种变化关系与Bi2 Te3 基合金的常规变化规律一致:在o -lOOce 范围内,随温度升高,载流子的浓度增加,但是载流子间的散射作用显著增强,并起主导作用, &alpha 出现增大趋势 在温度大于100ce 后,进入本征激发范围,载流子浓度迅速增加,引起Seebeck系数急剧降低.对于(Bi , Sb ) 2 Te 3 单晶,由于Te 的少量挥发,引起结构中Bi 或者Sb 占据Te 的空位[6] ,产生空穴,因此( Bi ,Sb ) 2 Te3 单晶表现为P型半导体.对于热压合成的( Bi , Sb ) 2 Te3 多晶体,由于在熔融制备及球磨及热压过程中的表面氧化,氧的溶入会在结构中产生施主能级[叫 而且在球磨的形变作用下,将会产生更多的Te 空穴, Te 空穴也起施主的作用[8] ,因此热压制备的(Bi ,Sb) 2Te 3 多晶体比( Bi ,Sb ) 2Te3 单晶有高浓度的施主,从而呈现n 型半导体的特征. Hf 是一种变价元素,可以为+2 、+3 及+4 价,在( Bi , Sb ) 2Te 3 中Hf 可能以低价形式存在,产生空穴,降低了电子浓度.可能由于氧及Te 空位浓度差异的共同影响,不同的掺杂量间不呈现规律性.电导率(&sigma ) 的测量结果如图3 所示,电导率的变化规律与Seebeck 系数正好相反, Hf 掺杂降低了样品的电导率,电导率随着温度的升高而增加.这也体现了电导率与Seebeck 系数之间的本质联系.2.3功率因子功率因子用&alpha 2&sigma ( 功率因子)衡量热电性能,其计算结果如图4. 结果表明, Hf2x ( Bi , Sb ) 2 -2xTe3 的功率因子在375 K 时有一个最大值,当x = 0.02 时,为526&mu W/mK2 ,是未掺杂BiSbTe3 功率因子(为316&mu W/mK 2 ) 的1.66 倍.该数值略低于赵新兵等[9J采用溶剂热方法制备的纳米Bi 2 Te 3 的功率因子(为620&mu W/mK 2 , 393 K).采用气氛熔炼加热压的方法,成功制备出纯相Hf认Bi , Sb) 2 -2x Te3 热电材料. Hf 在结构中占据6c晶位,即以替代(Bi , Sb) 的形式进入晶格.由于表面氧化及球磨效应的共同作用,Hf 掺杂的BiSbTe3为n 型半导体, Hf 掺杂引起BiSbTe3 的Seebeck系数增大,电导率略有降低.功率因子在375K 时有一个最大值为526&mu W/mK2 &bull
  • 网络讲座:二维材料界面结构与性质的原子力探针显微学研究(4)- 界面插层结构
    Interfacial Structures and Properties of 2D Materials with Atomic Force Microscopy(4)- Intercalated Structures讲座内容简介: 近年来,由于其潜在的巨大应用价值,关于二维层状材料的基础和应用研究方兴未艾,核心工作是理解和控制其多种多样的有趣性质。之前的研究工作主要集中在二维材料的面内结构,多种多样的层间相互作用在调控其力学、电学、热学以及光学等性质方面也有重要作用。虽然已有许多实验和理论研究工作来表征和理解这些界面结构,但对于界面行为是如何影响其物理与化学行为的仍然不是特别清楚。一个重要原因是,内部界面结构的直接微观成像和性质研究在实验技术上是相对比较困难的。石墨烯内部界面水分子插层的高分辨成像研究 在之前,报告人已经针对的AFM的基础知识、基本模式以及功能化AFM探测模式进行了介绍。本系列报告,将基于我们在原子力显微术的技术研究工作,利用多种先进原子力显微术针对二维材料的本征界面、异质界面以及材料/基底界面开展的研究工作。在每次报告中,我们首先将在较为详细地介绍主要使用的先进AFM模式的基本原理、技术实现及其相关应用。在此基础上,介绍我们利用该AFM模式所开展的关于二维材料界面结构与性质方面的研究工作。希望通过本系列报告有助于相关AFM使用者能够利用比较复杂的AFM功能模式开展研究工作。 本次报告是《二维材料界面结构与性质的原子力探针显微学研究》系列的第四次报告。在本次报告中,将介绍我们通过发展和利用多频原子力显微术,针对二维材料体系的内部界面插层结构等的高分辨成像表征和力学性质探测开展的一些工作。 #主讲人介绍 程志海,中国人民大学物理学系教授,博士生导师,基金委优青,中国仪器仪表学会显微仪器分会理事,中国硅酸盐学会微纳米分会理事。2007年,在中国科学院物理研究所纳米物理与器件实验室获凝聚态物理博士学位。2011年8月-2017年8月,国家纳米科学中心(中科院纳米标准与检测重点实验室),任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”(技术百人计划)和首届“卓越青年科学家”,卢嘉锡青年人才奖获得者,青年创新促进会会员并获首届“学科交叉与创新奖”等。目前,主要工作集中在先进原子力探针显微分析技术方法及其在低维材料与表界面物理等领域的应用基础研究。网络讲座时间:北京时间 2021年11月29日 上午10:00-上午11:00申请方法:请关注“Park原子力显微镜”公众号查看首页内容,即可参与。
  • 我国首台“超级显微镜”散裂中子源建成 用于研究物质微观结构
    p  3月25日,中国散裂中子源25日通过了中国科学院组织的工艺鉴定和验收。建成后的中国散裂中子源成为中国首台、世界第四台脉冲型散裂中子源,填补了国内脉冲中子应用领域的空白,为我国材料科学技术、生命科学、资源环境、新能源等方面的基础研究和高新技术开发提供强有力的研究手段,对满足国家重大战略需求、解决前沿科学问题具有重要意义。/pp  中国散裂中子源建在广东省东莞市,是我国“十一五”国家重大科技基础设施。工艺鉴定验收专家委员会评价:中国散裂中子源性能全部达到或优于国家发展和改革委员会批复的验收指标。装置整体设计科学合理,研制设备质量精良,调试速度快于国外的散裂中子源。靶站最高中子效率达到国际先进水平。/pp  中国散裂中子源就像一台“超级显微镜”,用于研究物质微观结构,在材料科学技术、生命科学、物理学、化学化工、资源环境、新能源等诸多领域具有广泛应用前景。/pp  通过自主创新和集成创新,中国散裂中子源在加速器、靶站、谱仪方面取得了一系列重大技术成果。设备国产化率超过90%,显著提升了我国在磁铁、电源、探测器及电子学等领域相关产业技术水平和自主创新能力,使我国在强流质子加速器和中子散射领域实现了重大跨越,技术和综合性能进入国际同类装置先进行列。例如:国内首次研制成功25Hz交流谐振励磁的大型二极和四极磁铁及电源,交流磁场精度达到同类装置国际领先水平 自主研制成功液氢慢化器,通过靶—慢化器 —反射体紧凑耦合的物理和工程设计,保证靶站高中子效率等。/pp  中国散裂中子源由中国科学院高能物理研究所承建,共建单位为物理研究所,于 2011年9月开工建设,工期6.5年,总投资约23亿元,主要建设内容包括一台直线加速器、一台快循环同步加速器、一个靶站,以及一期三台供中子散射实验用的中子谱仪,是各种高、精、尖设备组成的整体。/pp  此前,中国散裂中子源已经获得了一些阶段性成果。如,2017年8月,中国散裂中子源首次打靶成功并获得中子束流。首期三台中子谱仪,即通用粉末衍射仪、小角散射仪和多功能反射仪,都顺利完成样品实验。通用粉末衍射仪已经完成了两个高水平的用户实验。/pp  中国散裂中子源建成后,将充分发挥一期三台谱仪在材料科学、生命科学、凝聚态物理和化学等领域的作用,为用户提供国际先进的研究平台。/p
  • 蛋白质结构研究大装置安家上海
    园区微晶体结构研究站 园区荧光激发细胞分选仪 海科路园区设施 科研人员研究大分子复合体  7月28日上午,全球生命科学领域首个综合性大科学装置——蛋白质科学研究(上海)设施(以下简称“上海设施”)在上海通过国家验收。中国科学院院长白春礼、上海市市长杨雄、国家发改委副主任林念修等出席验收会。  据介绍,作为国家重大科技基础设施项目之一的上海设施,主要围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业的发展需求,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化。目前已建成用于蛋白质结构研究的9大技术系统。  验收委员会认为,上海设施建成了国际一流的蛋白质科学研究支撑体系,是全球生命科学领域以各种大型科学仪器和先进技术集成为核心的首个综合性大科学装置,其总体指标达到国际先进水平,部分指标达到国际领先水平。  白春礼表示,建设设施不是最终的目的,吸引全国和全世界的优秀科学家来从事高水平科研工作、产出重大科技成果才是应该致力追求的目标。上海设施要成立设施科技委员会和用户委员会,建立科学民主开放的课题遴选制度,不断扩大设施开放共享。  据统计,上海设施2014年5月开放试运行,截至2015年7月,各系统累计运行5万多小时,共执行用户课题500多个 服务60多家单位,以中科院和高校科研机构为主,覆盖北京、上海、香港等地 同时吸引了一批国际药企和国内外优秀科学家开展前沿课题研究。用户使用上海设施的设备和服务做出了一系列重要成果,有多项研究成果发表在Nature、PNAS等高水平国际学术刊物上。
  • 马秀良研究员就铁电拓扑结构研究接受Nature Index专访
    钙钛矿型铁电氧化物具有外场可控的极化,可作为信息存储和逻辑器件。拓扑极化结构自身的拓扑保护性,使其在信息处理、传输、存储等方面具有重要的应用价值。然而,铁电材料中的极化拓扑结构一般都包含本体对称性不允许的连续极化旋转。如何突破铁电极化与晶格应变的相互制约,实现极化反转与晶格应变的有效调控,获得有望用于超高密度信息存储的结构单元,是当今铁电材料领域面临的一个基础性科学难题。  2015年,马秀良研究团队利用具有亚埃尺度分辨能力的像差校正电子显微术,在超薄PbTiO3铁电薄膜中不仅发现通量全闭合畴结构及其新奇的原子构型图谱,而且观察到由顺时针和逆时针闭合结构交替排列所构成的大尺度周期性阵列(Science 2015)。在此基础上,美国伯克利国家实验室Ramesh院士领导的课题组发现了具有涡旋特征的通量全闭合结构(Nature 2016)以及与唐云龙博士合作发现了斯格明子晶格(Nature 2019)。最近,马秀良研究团队又相继在铁电材料中发现半子及半子晶格(Nature Materials 2020)以及周期性电极化波(Science Advances 2021)。  针对铁电拓扑结构目前的研究现状、未来发展方向、科学研究的原动力、电子显微技术的作用、物质结构的再认识、新材料的探索等诸多话题,2021年5月,马秀良研究员和Ramesh院士同时接受了自然指数(Nature Index)的视频专访。该访谈的简要内容于2021年7月1日刊登在《自然》(Nature)上。  2014年11月开始发布的自然指数(Nature Index)是依托于具有重要影响力的国际学术期刊,统计各高校、科研院所(国家)在国际上最具影响力的研究型学术期刊上发表论文信息的数据库。自然指数现已发展成为国际公认的,能够衡量机构、国家和地区在科学领域的高质量研究产出与合作情况的重要指标,在全球范围内具有一定的影响力。(a) 斯格明子中的三维极化示意图;(b)会聚型和发散型半子交替排列所形成的周期性半子晶格示意图。
  • 新型二维铁电材料铁电畴结构的调控研究获进展
    铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小的晶格失配的基材,而在二维层状材料中,许多具有不同结构特性的层可以被堆叠并用于铁电异质结构器件,不受基底的限制,从而提供了广泛的铁电特性可调性。某些二维层状材料已在实验或理论上被报道为铁电材料,包括薄层SnTe、In2Se3、CuInP2S6、1T单层MoS2、双层或三层WTe2、铋氧氯化物和化学功能化的二维材料等。然而,目前对二维材料铁电畴结构的调控及铁电-反铁电相变等方面缺乏系统性研究,在范德华层状材料中实现连续的铁电域可调性和铁电-反铁电相转变仍是挑战。   近日,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星团队与中国人民大学教授季威团队、南方科技大学副教授林君浩团队、松山湖材料实验室副研究员韩梦娇合作,在新型二维铁电材料铁电畴结构的调控方面取得进展。该团队发现了一种具有室温本征面内铁电极化的新型二维材料Bi2TeO5,并观测到由插层铁电畴壁诱导的铁电畴大小、形状调控机制以及由此产生的铁电相到反铁电相的转变。科研人员采用CVD法合成新型的超薄室温二维铁电材料Bi2TeO5,通过压电力显微测(PFM)证实该材料存在面内的铁电畴结构,结合电子衍射及原子尺度的能谱分析和第一性原理计算结果对其结构进行解析,结合像差校正透射电镜对亚埃尺度的离子位移进行分析(图1)。对Bi2TeO5中畴结构的进一步研究发现,样品中存在大量的条状畴结构。原子尺度结构分析和计算结果表明,由于Bi/Te插层的存在,有效降低了畴壁的应变能,从而使得180°畴壁的条状畴能够稳定(图2)。研究表明,通过调控前驱体中Bi2O3和Te的比例可以有效实现180°铁电畴宽度的调控及实现铁电-反铁电相的反转(图3、图4)。此外,Bi/Te插层的引入除了能够改变铁电畴的大小,同时可以对畴壁的方向进行调控(图5)。   本研究对Bi2TeO5室温面内铁电性的报道丰富了本征二维铁电材料体系。原子插层作为新的调控单元对铁电畴大小及方向的调控,以及由此产生的铁电-反铁电相变,为二维铁电材料畴结构及相结构的调控提供了新思路,并为在未来纳米器件领域的应用奠定了新的材料基础。相关研究成果以Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite为题,发表在《自然-通讯》(Nature Communications)上。图1.二维层状铁电材料Bi2TeO5的CVD生长及结构表征。a、二维层状Bi2TeO5的光镜图;b-c、样品的表面形貌及对应的面内PFM图像;d-f、不同方向Bi2TeO5的结构模型以及铁电极化的产生;g-I、Bi2TeO5的原子尺度结构表征及对应的极化分布。图2.Bi/Te插层诱导的180°铁电畴的形成。a、Bi2TeO5中典型条状180°铁电畴的面内PFM;b、180°铁电畴壁的原子尺度HAADF-STEM图;c-e、180°铁电畴壁处铁电离子位移(DBi)及晶格畸变(晶格转角θ)的原子尺度分析;f、弛豫后180°铁电畴的结构模型。图3.插层对畴宽度的调控及铁电相到反铁电相的转变。a-d、具有不同周期的180°畴HAADF-STEM图像;e-h、分别为对应图a-d中的离子位移分布。图4.插层诱导的反铁电相。a、具有反铁电性样品的PFM;b-d、反铁电样品中的原子尺度极化分布及晶格畸变分析;e、弛豫后的反铁电相结构模型。图5.畴壁台阶的形成及插层对畴壁取向的影响。a-b、样品中扇形铁电畴的面内PFM图像;c、扇形铁电畴边缘处大量台阶形成的倾斜畴壁面;d-e、畴壁台阶的原子尺度HAADF-STEM图像及对应的离子位移分析;f、弛豫后的畴壁台阶结构模型;g、Te和O浓度对畴壁台阶形成焓的影响。
  • 一种新型拉胀结构的可调面内力学性能研究
    拉胀超材料是20世纪90年代起迅速发展起来的一类功能和结构一体化的多孔材料。与常规材料不同,拉胀超材料承受单轴拉伸(压缩)载荷时,在与载荷垂直的方向发生膨胀(收缩)而表现出负泊松比效应。由于这种特殊的变形,拉胀超材料相较于传统多孔材料具有更优越的性能,如超常弹性常数、抗压痕性、抗冲击性、抗断裂韧性、渗透可变性以及能量吸收性能等。此外,拉胀超材料还表现出曲面同向性的独特物理性能。手性拉胀结构是一种典型的二维拉胀蜂窝结构,其元胞结构由中心圆环和与之相切的肋杆组成,根据切点数目的不同,手性拉胀材料可分为三节点、四节点和六节点结构。手性拉胀结构在变形时其形状可以平稳改变,且具有优异的面外力学性能,在制备柔性器件和吸能装置领域具有很大的潜力。但是在较大形变下,这些常规的手性结构极难实现其他泊松比值,通常其拉胀性能也会迅速衰减。有研究发现,将手性拉胀结构中心圆环替换成桁架(即missing rib type auxetics)结构可在大形变下保持更加稳定的负泊松比效应,且有望用于更多的工程应用中。但目前多数的研究都是聚焦在静态力学性能的变化及机理探索,而实际应用中,拉胀材料既要承受静态载荷也要承受动态载荷,在这些条件下,手性材料的断裂韧性、抗疲劳性、吸收能量等性能研究鲜有报道。图1.(a)标准型ATMr拉胀结构;(b)增强型ATMr拉胀结构近日西南石油大学朱一林和江松辉、广西大学卢福聪以及南京工业大学任鑫提出了一种新型的拉胀结构并对其在静态载荷以及动态载荷下可调节的负泊松比及刚度进行了研究并分析。这种增强型ATMr(anti-tera-missing rib)拉胀结构,由4个最小重复单元构成,重复单元则是由2个曲折纽带包围着作为加固元素的中心1个正方形组成,如图1(b)。为了确定可调的力学性能并为实际应用提供指导,研究团队基于卡氏定理建立了小变形机制下的力学模型。模拟结果表明,通过调整结构的几何形状,可以得到在−1到0范围内的泊松比值。通过分析泊松比和相对密度随几何参数的变化规律,发现这种增强型ATMr结构比非拉胀结构具有更高的刚度和更低的相对密度。有限元分析结果与理论推导结果吻合度很高。另外, 针对大应变范围下负泊松比的变化进行了研究并揭示了该结构的拉胀变形机制。结果发现,其拉胀性能主要来自于中心的旋转和外围纽带的弯曲,其可调的负泊松比可通过结构参数的调整获得,且不同的结构参数产生不同的旋转有效性。 图2 不同结构参数(q=1.5/2.5/3.5)下有效泊松比与应变的关系图3 数值计算分析和实验分析的等效泊松比范围. 左:标准型ATMr拉胀结构 右: 增强型ATMr拉胀结构此外,研究团队通过实验和数值模拟验证了所提出的结构应用于非线性基材实现可控拉胀的可行性:利用微尺度3D打印机(nanoArchP150,摩方精密)制备了具有增强型ATMr结构单元的哑铃状样条,样条最薄处截面尺寸为0.15mm×1.0mm。经过实验分析,非线性弹性材料具有与线性弹性材料相近的拉胀性能,如图4所示。图4. 线性(实线)和非线性(虚线)弹性材料的有效泊松比值得注意的是,此研究工作中对新型结构进行了动态和静态负载实验分析,这些都将在实际工程应用中具有理论指导意义。研究成果以题为“A novel enhanced anti-tetra-missing rib auxetic structure with tailorable in-plane mechanical properties”发表在《Engineering Structures》期刊上。
  • 朱永元课题组在无规铁电畴结构倍频成像研究方面取得进展
    p  最近,南京大学物理学院朱永元教授课题组和现代工程与应用科学学院秦亦强教授、张超副教授团队通力合作在非线性光学成像领域取得了进展,提出了一种利用二次谐波直接观测无规铁电畴结构的新型方法,并在理论和实验上得到了验证。该研究工作已被Physical Review Letters接收发表。https://journals.aps.org/prl/accepted /0d078Y9fQbc1326161359af1b887f1ccd67a15544/pp  铁电材料由于其压电、热电和光电方面的特殊性质而在许多研究领域中有着广泛的应用。微观结构决定宏观功能,因此对铁电畴结构的表征技术逐渐成为一个热点课题。经过几十年的发展,包括电子显微镜、线性光学成像和非线性光学成像等方法,已经广泛地运用于观测畴结构。然而这些方法在实际研究和应用中仍存在一定局限性,比如说线性光学方法由于正负畴的折射率相同,需要先对样品腐蚀来改变畴壁周围的相关特性,这就对会样品造成损伤 再比如基于Talbot和Cherenkov效应的一些非线性光学方法,只适用于周期结构或者是需要配合焦点扫描的手段才能成像,无法直接对一般的无规畴结构进行观测。/pp  利用铁电畴畴壁在非线性成像过程中的特殊衍射性质,研究人员提出了一种简单的非线性成像方法,能够直接并实时地观测二维无规铁电畴结构。该工作主要分为理论和实验两部分。理论上主要从衍射方程出发,对铁电畴畴壁的二次谐波衍射特性进行了理论分析,给出了一对正负畴的倍频传输场强分布的解析解,发现畴壁处的倍频像始终呈暗场。通过进一步的理论分析,发现畴壁的倍频像线宽在一定区域内与传播距离的平方根成正比,与正常的远场衍射过程(一次方)相比畴壁像的展宽得到了极大的抑制,为直接成像提供了可能性。在此基础上,将单一畴结构推广到复杂的无规则畴结构,进一步通过数值仿真模拟二次谐波成像证实了传输过程中畴界的近似无衍射性质。该工作的实验部分主要以钽酸锂为例,用900nm的飞秒激光打到样品上,在CCD中可以直接收集到450nm的倍频畴结构像,其中畴界显示为暗场。结果表明,可以在百微米范围内连续观测到畴结构的清晰倍频像,其中衍射效应确实得到了很好的抑制。/pp style="text-align: center"img style="width: 450px height: 395px " src="http://img1.17img.cn/17img/images/201803/insimg/4b6fb467-d658-4138-87df-9c7fb65a66bb.jpg" title="1.jpg" height="395" hspace="0" border="0" vspace="0" width="450"//pp  这种基于二次谐波的观测方法不需要大型的显微镜设备,也不需要焦点扫描,可以用来无损地实时观测不规则畴结构,其成像质量还有望通过计算机后期数据处理进一步提升,为实现铁电畴的高分辨率成像提供了可能,具有很高的潜在应用价值。/pp  论文第一作者是现代工程与应用科学学院2014级直博生陆蓉儿,张超副教授和秦亦强教授为本文的共同通讯作者。朱永元教授给予本文精细的指导。南京大学是论文唯一署名单位。现代工程与应用科学学院张勇教授、物理学院洪煦昊工程师对实验提供了大力支持。感谢刘冬梅博士、魏敦钊博士生及刘昂博士生的帮助。该研究由国家重点研发计划 (2017YFA0303700)、国家自然科学基金、江苏省科学基金项目资助完成,同时感谢人工微结构科学与技术协同创新中心、江苏省高等教育机构优势学科等平台与项目的大力支持。/p
  • 研究提出新型光电存储结构设计及实现技术
    松山湖材料实验室研究员梅增霞和博士朱锐联合其他合作者,提出了一种基于光敏介质的全新光电存储器件结构。相关成果近日发表于《自然–通讯》,并被推荐为Feature Article。光电存储器件是将光的信息转换为电信号并进行存储的一类新型器件。相比于传统的闪存器件,额外的控制端——光的加入赋予了光电存储器件新的调控维度,因此会带来一些新的、迷人的器件特性。当前光电存储器件的研究仍处于起步阶段,主要存在着编程电压高( 20 V)、编程光功率大( 1mW cm-2)和可移植性差等问题。该研究提出了一种基于光敏介质的全新光电存储器件结构。借鉴闪存的结构,在保留浮栅的同时,研究人员用传统的栅介质层取代了隧穿介质层,将光敏层放到了上面常规介质层的位置——通过光脉冲调控光敏介质层的绝缘特性和光敏特性即可实现数据的擦写和存储;另外,在该结构中只需提供一个小的栅压去明确光生载流子的运动方向即可,因此光生载流子的存储利用率也得到了极大的提高。该设计完全改变了传统闪存结构中载流子注入/离开浮栅的方式和方向,因此巧妙摆脱了器件性能对沟道层的依赖。可以看到,该创新设计可从根本原理上解决器件能耗高和移植性差等问题。光敏介质层的选择和可控制备是实现该设计的核心。研究人员基于多年的氧化物半导体材料及器件研究经验,选择了非晶氧化镓作为光敏介质层制备了最终的光电存储器件。器件的最大操作电压和光功率密度均实现了大幅度的降低(4V和160 mW cm-2),同时也实现了优异的多态存储和疲劳特性等器件性能。该研究创新的器件结构和工作机制可以移植到与光刻工艺兼容的任何晶体管上,如应用到Si基晶体管上,以实现高性能固态存储;应用到有机或二维材料基晶体管上,以实现柔性存储;还可用于同时兼顾传感和存储的多功能传感研究领域。
  • 可控生长InSb纳米低维结构及其高质量量子器件研究获进展
    窄带InSb半导体材料以高电子迁移率、大朗德g因子和强大的Rashba自旋轨道耦合特征而著称,成为自旋电子学、红外探测、热电以及复合半导体-超导器件中的新型量子比特和拓扑量子比特的材料候选者。   由InSb制成的低维纳米结构如纳米线或2D InSb纳米结构(或量子阱),也因丰富的量子现象、优异的可调控性而颇具潜力。然而,InSb量子阱由于大晶格常数,较难在绝缘基板上外延生长。解决这些问题的方法之一是自下而上独立生长出无缺陷的纳米结构。通过气-液-固(VLS)生长出的2D InSb纳米片结构具有非常高的晶体质量,显示出单晶或接近单晶的优异特性,而在以往研究中其生长过程几乎均是起源于单个催化剂种子颗粒,因而位置、产量和方向几乎没有控制。   荷兰埃因霍温理工大学与中国科学院物理研究所/北京凝聚态物理国家研究中心HX-Q02组特聘研究员沈洁等合作,开发出通过金属有机气相外延(MOVPE)在预定位置以预设数量(频率)和固定取向/排列生长2D InSb纳米结构的新方法(可控生长),并利用低温电输运测量其制备而成的量子器件,观察到不同晶体结构对应的特征结构。   在这一方法中,通过在基底上制备V型槽切口,并精确控制成对从倾斜且相对的{111}B面生长的纳米线进行合并来形成纳米片。纳米片状形态和晶体结构由两根纳米线的相对取向决定。TEM等分析表明,存在与不同晶界排列相关的三种不同的纳米片形态——无晶界(I型)、Σ3-晶界(II型)、Σ9-晶界(III型)。后续的器件制备和输运测量表明,I型、II型在输运上表现出良好的性质,有较好的量子霍尔效应,出现了量子化平台,也有较高的场效应迁移率。   与之相对,III型纳米线因特殊晶界的存在,出现了明显的迁移率降低和较差的量子霍尔行为,且在偏压谱中被观察到象征势垒的零偏压电导谷。这归因于Σ9晶界带来的势垒对输运性质的影响。   研究表明,通过这种方法制备的I型和II型纳米片表现出有潜力的输运特性,适用于各种量子器件。尤其是这种生长方案使得InSb纳米线与InSb纳米片一起生长,具有预定的位置和方向,并可创建复杂的阴影几何形状与纳米线网络形状。   这一旦与超导体的定向沉积相结合,便可用最少的制备步骤产生高质量InSb超导体复合量子器件,为拓扑量子比特和新型复合量子比特提供器件平台。此外,与通过分子束外延(MBE)生长的InSb纳米片相比,采用这一方法生长的InSb纳米片更薄,更有助于量子化现象的出现和增加可调控性。   2月8日,相关研究成果以Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、北京市科技新星计划和综合极端条件实验装置的支持。图1.(a)InSb纳米线和纳米片基底的示意图。在InP(100)晶圆上制作v型槽切口(“沟槽”),暴露出(111)B面。金颗粒在InP(111)B切面预先确定的位置上进行曝光制备,InSb纳米线在其上生长。通过在相反的InP(111)B切面上沉积Au颗粒,InSb纳米线将合并,形成(e)纳米桥和(f)纳米片。图2.三种类型的InSb纳米片的晶体取向与最终形貌的关系图4.三种纳米片的低温电输运测量。(a-c)显示了两端电导作为背门电压Vbg和磁场B的函数,即朗道扇形图。插图中显示的是假彩色SEM图像。纳米薄片被Al电极(蓝色)接触,Σ3和Σ9晶界分别用黄色和红色虚线标记。(d-f)为(a-c)在4T、8T和11T处扇图的截线,显示量子化平台存在与否。(g-i)为三种类型纳米片低磁场下微分电导dI/dV与Vbias和Vbg的函数关系,可以看出(i)中存在与晶界对应的零偏压电导谷。(j)由三种不同类型的纳米片制成的8个器件的场效应迁移率,显示三类纳米线不同的迁移率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制