当前位置: 仪器信息网 > 行业主题 > >

静态光散射

仪器信息网静态光散射专题为您整合静态光散射相关的最新文章,在静态光散射专题,您不仅可以免费浏览静态光散射的资讯, 同时您还可以浏览静态光散射的相关资料、解决方案,参与社区静态光散射话题讨论。

静态光散射相关的论坛

  • 静态光散射中的比折射率增量

    用静态光散射测量胶束分子量时需要一个参数——比折射率增量(dn/dc),于是我就用Wyatt公司的Optilab DSP进行测量。浓度范围是0.1~1 wt %Triton x-114水溶液,15度。但得到的结果只有0.0002,折射率基本不变,文献中类似表面活性剂的dn/dc大约在0.13左右,0.0002肯定不对。这是什么原因呢?因为Triton X-114很容易形成胶束(cmc为0.2mM,浊点温度22左右)?dn/dc是不是只在浓度比较小时才有意义呢?

  • Postnova推出脱机的和在线-脱机两用的21角度静态激光散射仪

    如题,在PN3621型21角度激光散射检测器的基础之上,德国Postnova分析仪器公司推出了完全脱机型、脱机-在线两用型21角度激光散射仪!即日起,我们上海积利科学仪器有限公司将为国内用户提供这两款静态激光散射仪产品。并且,现有客户的已经装机了的PN3621型在线MALS检测器,也可以升级为在线-脱机两用型激光散射仪,但是需要另付费。

  • 聊一聊激光散射

    由于场流分离仪FFF可以分析的样品种类繁多,既有溶解型的高分子材料,又有分散型的纳米-微米材料,因此,很难找到合适的标准物质来做标准曲线,特别是纳米-微米材料的标样,目前基本都是进口的,价格昂贵,限制了其使用,就不如采购动、静态激光散射检测器来的划算了。因此,激光散射仪器,几乎成了FFF的标准配置了。实际使用中,还是动态激光散射粒度仪/粒度检测器DLS应用更加广泛一些,而且,多数进口品牌的DLS仪器都可以估算分子量的,也是有参考意义的数据,因此更合算了。关于激光散射检测器MALS/DLS的原理,此处不再赘述,感兴趣的朋友可以参看我们相关的帖子,以及动、静态激光散射的相关资料、教材课本等。我们主要讨论的是,MALS/DLS在FFF上的应用,特别是与FFF仪器的在线直接联用的配置问题。为了是更广大的用户能够买得起、用得起FFF仪器,德国postnova公司不仅仅在其软件NovaFFF上下了很大功夫,使该软件在不带静态多角激光散射检测器MALS的情况下,就具有dn/dc值的输入与输出功能,从而方便了那些已经有了HPLC/GPC上的RI检测器的用户,使其无需再配置购买专用的、带dn/dc值输入输出功能及软件的RI检测器了,从而可以方便准确地测试和计算绝对分子量了。需要指出的是,虽然绝大多数HPLC仪器上的RI检测器使用的是红外波长的光源,在dn/dc值的测试的时候,是会产生一些误差的——MALS均使用可见光区的波长的光源,但是,针对不同的应用,这一误差也是不同的,大部分情况下,误差是可以接受的、可以容忍的,不是很大,呵呵。对于动态光散射DLS,postnova公司则专门开发了一款设备:PN9020型多功能标准化接口扩展板,用于将马尔文公司、美国布鲁克海文公司(brookheaven)的台式机的、在线的动态激光散射粒度仪/粒度检测器DLS,接入到我们postnova的各型场流仪当中,从而实现台式机的在线直接联用。其电路部分的信号传输路径是:从(手动或自动)进样器传输出来一路电信号给PN9020接口板,再通过这个接口板传输给Malvern的各型DLS台式机,或者是传输给布鲁克海文的在线DLS检测器,从而给其一个启动信号,使其纵坐标开始计时(保留时间)。目前,Malvern的多数激光粒度仪DLS都有了流动模式的软件了,因此使用较为方便;而brookheaven的在线DLS检测器,就更方便了,本身就有软件的,只是需要另开一个软件窗口。PN9020型接口板,极大地拓展了场流仪的应用客户群,使得许多已经有了台式DLS的客户,都可以再采购postnova的FFF仪器,而不必再另购一台在线的DLS了。不仅如此,在FFF上使用知名大厂家的DLS仪器,也保证了分析效果:由于我们主要的竞争对手,实际上是代理德国superon公司的AF4,因此才把他们自己的静态激光散射检测器接入到AF4中,并且采用了在90度角加一个动态发生器之类的机器就算是DLS的配置方案,表面上看似高大上,其实这个90度另加的动态DLS,肯定是远远赶不上Malvern和Brookheaven公司的专门的动态粒度仪/粒度检测器DLS的,这俩厂家的DLS,早就采用了先进的光纤技术了,而光纤技术在动态激光散射领域的应用效果,也即:灵敏度、稳定性,要远远好于竞争对手使用的光电二极管式取光。此外,专用的DLS,也具有更加强大的测试功能、计算功能。最后,Malvern和Brookheaven的DLS,是一台独立的仪器,跟静态光散射MALS无关的,既可以与MALS一起使用,也可以单独使用;反观竞争对手那边,在90度角上加动态,不仅仅性能大打折扣,而且使用也不方便、不灵活,静态MALS不开机,动态DLS使不了啊,呵呵。我们的主要竞争对手,总是“忽悠”客户采购他们的多角激光散射检测器外加90度角的动态,这样的配置,实际上对于许多搞纳米材料表征的用户来说,就是浪费钱了,因为基本用不上静态光散射MALS,但是又不得不买,因为没有静态MALS的主机,90度加动态的也就不可能有了。原本花较少钱就能解决的分析功能,不得不花很多钱来解决。[b]这背后的根本原因,就是竞争对手他们没有类似我们的PN9020型接口板的设备、无法接入别的厂家的或者是他们自己的DLS台式机!所以,归纳总结一下,竞争对手这种配置,不仅仅使得已经有了台式DLS仪器的用户无法发挥已有设备的用途以节省采购费用,还使得那些无需测试分析绝对分子量的用户也不得不购买静态光散射MALS !也就是说,甭管你测不测绝对分子量,只要你测纳米尺寸,你就得买在纳米尺寸测试方面基本用不上的静态光散射MALS,否则动态DLS也使不了。这等于是绑架了用户啊![/b]

  • 【讨论】动态光散射击法测定粒度时探测器的角度与数量

    动态光散射击法测定粒度时探测器的角度与数量是影响其测定精确度用范围的重要指标,我想了解如下问题:1\是不是角度越大检测下限越小?2\大于90度的检测角时,检测器与光源是不是在样品的同一测,如果不是,这个90度是如何定义的?3\不管是静态光散射还是静态光散射,颗粒越小则散射角越大?4\检测器的数量以几个为宜?角度如何分布最好?5\马尔文的仪器有173度的,但只用一个检测器 别的仪器有多少度的?用几个检测器?期待大家的解释谢谢!

  • 【原创大赛】光散射检测器与传统校正仪器的联接

    [align=center][/align][align=center][/align][align=center][b]凝胶渗透色谱中光散射检测器与传统校正仪器的联用[/b][/align][align=center][/align][align=center][/align][u] [/u][align=center][/align]鉴于《中国药典分析检测技术指南》(2017-07-01版)最新版关于体积排阻色谱法即GPC/SEC方法中,添加了“激光光散射检测器为分子量型检测器……在溶液中,散射光的强度及其对散射角和溶液浓度的依赖性与溶质的分子量、分子尺寸、和形态有关。’可不使用分子量对照品,直接测定。 “可见光散射检测器是测量分子量、分子尺寸和形态有力的手段之一,而且其具备天然的优点,推而广之,势在必行。[align=center][/align]但是,对于有些实验室来说,已经具备带有RI检测器等传统校正仪器用户来讲,是否必须重新购买新设备呢?其实不然,我们可以对原有仪器做深入分析,适当的改造,添加一台单独的光散射检测器便可以组成新的联用系统。本文试着以Waters系统加Malvern小角光散射检测器,Agilent系统加MALS检测器为例,来说明怎么样连接升级。[align=center][/align][align=center][/align][b]光散射原理以及检测器的特点:[/b][align=center][/align]光散射一般情况下分三种方式。第一种是Static Light Scattering即静态光散射,也称为弹性,Rayleigh,或者经典的光散射。与入射光的波长相同。通过对散射光强度的角度和浓度依赖性的测量,获得散射分子量的大小和分布等信息。第二种是Dynamic Light Scattering即动态光散射,动态光散射得到散射粒子的扩散系数,进而可以计算粒子的流体力学体积。第三种是Raman Scattering即拉曼散射,散射发生在与入射波不同的波长上,可以提供某些结构信息。在这里,我们主要讨论的是SLS检测器的联用。静态光散射中的最基本公式就是Rayleigh方程:[align=center][/align][align=center][/align][align=center][/align]对于小分子而言,(即Rg小于入射光波长的1/40,对于大部分激光光源而言小于10nm),形状因子P(θ)≈1.0,高分子的散射光是均匀的。此时各个角度散射光能力相同,这种情形下90度角是检测的最佳检测角度,即使用RALS。对于大分子而言, 高分子的形状因子P(q)不能忽略,且导致散射光的不均匀性,需要利用小角光散射LALS或者多角光散射MALS。[align=center][/align][align=center][/align][b]仪器联用的四个基本点:[/b][align=center][/align]第一,trigger触发信号的发出和接收[align=center][/align][list=1][*]手动进样模式下,直接在进样阀多数为六通阀,也有八通阀的情况的输出端子接到检测器的trigger正、负上;[*]自动进样模式下,多数仪器具备remoter连接,请确认是在泵系统上,还是自动进样系统上。并且注意是否添加外置放大信号器(如果需要添加的,往往需要在发出端的控制软件上,添加第三方事件);[*]自动进样模式下,有明确的外接触发信号的,直接连接到检测器接收端;[/list][align=center][/align]第二,RI或者UV信号的输出和输入[align=center][/align][list=1][*]主板上带有模拟输出芯片的,标有明确的输出端子,直接接到检测器的输入端,注意正负和接地;[*]需要添加第三方的数模转换器,方可完成输出和输入;具体型号,大多数情况下咨询厂家工程师即可获取;[*]当输出端子和输入端不匹配时,需要验证后,改变端子的接头再进行连接;[/list][align=center][/align]第三,软件的兼容问题:[align=center][/align][list=1][*]购买检测器提供的软件;[*]购买兼容不同仪器的软件,市场上基于Calibraty系统兼容性的软件性能较高;[*]数据导出后,经过计算再导入;[/list][align=center][/align]第四,管路的连接和适用性测试:[align=center][/align][list=1][*]使用外径为1/16’ S,S的连接管路,接头均为标准接头连接;[*]内径选择需要根据泵后进样前,进样阀后色谱柱前,色谱柱后检测器前,检测器与检测器之间的不同连接来选择;[*]检测器器的连接顺序:a,是否破坏样品;b,流通池是否具备耐压性;c,流通池流出端是否有变径,d,是否需要并联[/list][align=center][/align][b]联用系统举例:[/b][align=center][/align][list=1][*]alliance of Waters与 TDA of Malvern联用:[/list][align=center][/align][align=center][/align]Alliance是waters公司经典的一款设备,但是只配有RI检测器。我们按照上述所描述进行了仪器连接。需要说明的是因为配有粘度检测器,可以按照UV-LS-RI-VIS顺序连接,但是由于2414 RI的waste出口变径变大问题,采取了RI与VIS并联的措施,也达到了较好的效果。[align=center][/align][align=center][/align][list=1][*]1290 system of Agilent 与 MALS of Viscotek联用:[/list][align=center][/align] MALS与1290联用也达到了预想的效果,得到了较好的数据。需要说明的是1,RI和UV数据均可以输入到MALS;2,在MALS之前一定要添加一个LS filter防止污染检测器,保证良好的基线水平。 [align=center][/align][align=center][/align] MALS与1290联用也达到了预想的效果,得到了较好的数据。需要说明的是1,RI和UV数据均可以输入到MALS;2,在MALS之前一定要添加一个LS filter防止污染检测器,保证良好的基线水平。

  • 基于动态光散射原理的纳米粒度仪的研制

    基于动态光散射原理的纳米粒度仪的研制

    基于动态光散射原理的纳米粒度仪的研制任中京, 陈栋章 (济南微纳颗粒技术有限公司, 济南)摘要:介绍了基于动态光散射原理的纳米粒度仪的工作原理和设计, 重点讲述了我公司自研制的CR128数字相关器的设计原理与性能特点, 以及利用该器件成功研制出的winner801光子相关纳米粒度仪的特性。关键词.. 纳米粒度仪;动态光散射(DLS);光子相关谱(PCS);数字相关器纳米颗粒的尺度一般在1-100nm之间, 是介于原子、分子和固体体相之间的物质状态。由于纳米颗粒具有尺寸小、比表面积大和量子尺寸效应, 使它具有不同于常规固体的新特性。在纳米态下, 颗粒尺寸更是对其性质有着强烈的影响, 纳米材料的粒度大小是衡量纳米材料最重要的参数之一。而常规的基于静态光散射原理的激光粒度仪的测量下限己接近极限, 但仍旧不能对纳米颗粒的粒度测试得出理想的结果甚至无能为力。光子相关光谱(Photon Correlation Spectroscopy,简称PCS)法已被证明是一种适于测量纳米及亚微米颗粒粒度的有效方法。PCS技术也成为动态光散射(Dynamic Light Scattering, 简称DLS) 技术, 主要是研究散射光在某一固定空间位置的涨落现象。其颗粒粒度测量原理建立在颗粒的布朗运动基础之上。由于颗粒的布朗运动, 一定角度下的散射光强将相对于某一平均值随机涨落。PCS技术就是通过这种涨落变化的快慢间接地得到相关颗粒粒度的信息。1 动态光散射基本原理基于动态光散射原理的颗粒粒度测试基本原理如图1.1所示。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441893_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441894_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441895_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441897_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441898_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441899_388_3.jpg最后再对四路基线求其平均值用于数据分析, 以免突变的光强引起光强自相关函数发生畸变。在如上的算法的基础上, 我们所研制的C R 12 8 数字相关器采用F PG A 技术, 以硬件方式实现。如图2 .1所示, 主要由取样时间发生器、取样时间、光子计数器、12 8 相关运算模块、基线运算模块、相关数据存储器、数据输出及控制电路组成。其工作原理为:选取适当的取样时间, 并在该时间段内将输入的光子数连续计数, 并将计数结果进行128 路自相关运算及基线

  • 动态光散射原理的介绍以及应用

    动态光散射原理的介绍以及应用

    动态光散射Dynamic Light Scattering (DLS),也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering,测量光强的波动随时间的变化。动态光散射技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表现方法。随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不具有测量Zeta电位、大分子的分子量等的能力,还具具备测量颗粒粒径的功能。微纳研制的winner802光子相关纳米粒度仪就是采用的动态光散射原理,用来测量颗粒粒径大小的。也是国内第一家企业采用动态光散射原理来研制的纳米激光粒度仪,其动态光散射原理建立在分散在液体颗粒的布朗运动基础之上,颗粒越小运动越快,反之,颗粒越大,运动越慢。具有不干扰,不破坏颗粒体系原有状态的特点,从而保证了测试结果的真实性。采用HAMAMATSU高性能光电倍增管和微纳研制的高速数字相关器作为核心部件,通过测试某一个角度的散射光的变化并求出自相关函数(即扩散系数),根据stokes-Einstein方程计算出颗粒粒径及分布。http://ng1.17img.cn/bbsfiles/images/2017/01/201701211120_01_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701211120_01_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701211120_01_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701211120_01_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701211120_02_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701211120_02_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701211120_02_388_3.jpg

  • 什么是激光粒度仪测量中的重复散射现象?

    激光粒度仪测量是接收和识别颗粒对激光造成的散射光来实现的,复散射现象是散射光在传播过程中又遇到其他颗粒并二次或多次散射的现象。 根据米氏散射理论,一定粒径的颗粒产生固定角度的散射光,直接接收和识别这些散射光将得到与之对应的、准确的颗粒直径。如果接收和识别的是复散射光信号,将得到错误的结果,同时降低系数的分辨力。将悬浮颗粒的浓度控制在系统允许的最佳范围内,复散射现象可以将至最低。一般的,粒度分布测量是通过系统识别和接收光信号来实现的。而光型号的强弱又是悬浮液中的颗粒个数决定的。激光粒度仪测试中,悬浮液中颗粒浓度越高,散射光信号越强,但随之而来的复散射现象同时加剧,影响测量结果;反之悬浮液中的颗粒浓度越低,虽然复现象得到缓解,但信噪比下降,所以粒度分布测量过程中合适的颗粒浓度很重要。合理控制浓度,也会会控制复散射现象。在激光粒度的测试中,软件的修正也是非常重要。微纳独创的无约束自由拟合技术,不受任何函数限制,可真实反映颗粒的分布状态。针对激光粒度仪测量中的复散射,软件也可以根据测试样品的浓度对复散射现象进行修正,以达到最准确的测试结果。

  • 【资料】激光动态光散射仪操作手册

    一、动态光散射仪的工作原理 动态光散射技术(dynamiclightscattering,DLS)是指通过测量样品散射光强度起伏的变化来得出样品颗粒大小信息的一种技术。之所以称为“动态”是因为样品中的分子不停地做布朗运动,正是这种运动使散射光产生多普勒频移。动态光散射技术的工作原理可以简述为以下几个步骤:首先根据散射光的变化,即多普勒频移测得溶液中分子的扩散系数D,再由D=KT/6πηr可求出分子的流体动力学半径r,(式中K为玻尔兹曼常数,T为绝对温度,η为溶液的粘滞系数),根据已有的分子半径-分子量模型,就可以算出分子量的大小。 光在传播时若碰到颗粒,一部分光会被吸收,一部分会被散射掉。如果分子静止不动,散射光发生弹性散射时,能量频率均不变。但由于分子不停地在做杂乱无章的布朗运动,所以,当产生散射光的分子朝向监测器运动时,相当于把散射的光子往监测器送了一段距离,使光子较分子静止时产生的散射光要早到达监测器,也就是在监测器看来散射光的频率增高了;如果产生散射的分子逆向监测器运动,相当于把散射光子往远离监测器的方向拉了一把,结果使散射光的频率降低。日常生活中,但我们听到救护车由远而近时,声音的频率越来越高,也是同样的道理。实际上我们可以根据声音频率变化的快慢来判断救护车运动的速度。 光散射技术就是根据这种微小的频率变化来测量溶液中分子的扩散速度。由D=KT/6πηr可知,当扩散速度一定时,由于实验时溶剂一定,温度是确定的,所以扩散的快慢只与流体动力学半径有关。蛋白质多方面的性质都直接和它的大小相关。因此,光散射广泛应用与蛋白质及其它大分子的理化性质研究。

  • 【原创大赛】趣谈凝胶渗透色谱GPC/SEC – 检测篇II之光散射

    【原创大赛】趣谈凝胶渗透色谱GPC/SEC – 检测篇II之光散射

    [list][*][b]凝胶初辟本相对,打破传统需散射[/b][/list]终于写到了光散射部分,辉博士还是很兴奋的,毕竟搞了这些年色谱和光散射,很多陈谷子烂芝麻的往事和经验。静态光散射原理的发展快有一个世纪了吧,这项技术和GPC开始联用可以追溯到上个世纪八十年代,那是很多种新技术百花齐放、争相斗艳的年代。当然百花齐放不意味着每一朵花都能盛开到最后。国外很多公司设计出基于静态光散射和色谱连用技术的设备,有基于多角度外推的技术MALS(multi angle light scattering),也有基于小角度直接检测的技术LALS (low angle light scattering)。后来,呵呵,后来故事太多了,有些公司被收购,有些公司消失了,还有一些公司成长成为业内的翘楚!博士对于开发这些技术的先驱们一直充满了崇敬之情,因为如果不是当年他们面对困难所付出的勇气和努力,对了还有智慧(智慧最重要,呵呵),就没有今天我们坐在这里侃侃而谈。前面谈到单RI检测器通过校正只能得到相对分子量信息,对于想要了解高分子真实性能的科研工作者,这是远远不够的。在线光静态散射技术,不需要通过标准样品进行色谱柱校正,可以直接检测绝对分子量的结果,而高分子的绝对分子量直接决定了高分子的物理性能。在这一部分,我们聊聊在线光散射技术的原理和其功能。在线静态光散射检测器通常和RI检测器在GPC中连用,某些行业中,如蛋白质检测,光散射则和紫外检测器连用也经常用到。[b]静态光散射原理[/b][img=,578,325]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060943550725_4845_3200617_3.png!w578x325.jpg[/img]当一束光撞击到大分子或者颗粒的时候,一部分光会被吸收,并被重新向各个方向发射出去。当一个光子撞击到大分子的时候,光子的部分能量会引发大分子内部的偶极震荡。这部分能量随后以光的形式,向各个方向被重新发射出去。我们每天都可以见到这种现象,例如白云,日落,或者灰尘经过一束阳光或者投影。光散射方面的定律可以帮助我们测量很多和大分子相关的物理量。瑞利理论描述了散射光强度与大分子的尺寸和分子量的关系,定义了发生散射的大分子和颗粒对散射光的强度的影响[img=,230,74]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060944369098_7516_3200617_3.png!w230x74.jpg[/img]其中C为样品的浓度,θ为测量的角度(散射角),Rθ 为θ角方向的瑞利散射比(散射光与入射光的强度比),Mw 为重均分子量,A2 为第二维里系数,K和Pθ的定义式为[img=,191,65]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060945059868_192_3200617_3.png!w191x65.jpg[/img]其中λ0 为真空中激光的波长,NA 为阿伏加德罗常数,n0 为溶剂的折光指数,dn/dc为样品在溶剂中的折光指数随浓度增量[img=,253,54]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060945425178_8444_3200617_3.png!w253x54.jpg[/img]其中Rg 为大分子的旋转均方半径。瑞利散射方程阐述了一定的角度下散射光强度与几个因素有关,其中包扩分子量和分子尺寸,请注意是两个未知数哦。同时也可以发现,较大的分子量和分子尺寸会产生更强的散射光。散射光强的增加与分子量的增加成线性关系,但是不与分子尺寸成线性关系。[b]散射光的角度依赖性[/b]当分子具有较大的尺寸的时候,散射光的强度会随着散射角度的不同发生变化,这就是角度依赖性。瑞利散射方程中,P[sub]θ[/sub]是高分子的形状因子,是未知项,不同的光散射技术对它的处理也不相同。我们再次看看P[sub]θ[/sub]的定义:[img=,253,54]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060946211678_3558_3200617_3.png!w253x54.jpg[/img]其中n[sub]0[/sub]为溶剂的示差折光指数,R[sub]g[/sub]为大分子的旋转均方半径,λ[sub]0[/sub]为激光在真空中的波长,θ为散射角。从定义式中可知,1/P[sub]θ[/sub]受很多参数的影响,既包扩样品也包括实验条件,如溶剂的示差折光指数(n[sub]0[/sub]),激光在真空中的波长(λ[sub]0[/sub])散射角(θ)和大分子的旋转均方半径(Rg)。这意味着对于大分子,散射光的强度与测试角度相关,这就是角度依赖性。产生角度依赖性的原因,是当分子的尺寸增加后,散射光的光子彼此之间会发生干涉等相互作用,如下图[img=,690,234]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060947188008_3081_3200617_3.png!w690x234.jpg[/img][list][*]各向同性的散射体的尺寸相对于激光的波长来说较小,各向散射光均匀分布。各向异性散射体的尺寸相对于入射激光的波长明显较大,各个方向的散射光强度不等。[*]当大分子的尺寸相对于激光的波长来说较小的时候,如上,散射的形式表现为单点散射,这时各个方向的散射光的强度相同,这样的大分子被称为各向同性散射体。[/list]当大分子的尺寸相对于激光的波长来说明显变大的时候,分子的尺寸和结构开始变得重要。来自激光的光子会在大分子中的不同部位发生散射。这种情况与大分子的Rg有关。这些发生散射的光子彼此之间相互作用,导致测量的光强受观测位置影响。这样的大分子被称为各向异性散射体。在各向异性散射中,所有的相互作用都是造成衰减的,因此散射光的强度相比于各向同性的散射是降低的。如果我们用这个散射强度去计算分子量,我们就会得到偏低的结果。那么怎么办呢?瑞利散射方程告诉我们如果可以在0度角测量散射光强度,那么sin[sup]2[/sup](θ/2)就等于0,1/P[sub]θ[/sub]的值就是1。不过由于0度存在强度很高的入射激光,所以我们很难分辨出单独的0度角高分子散射光的强度。由于不能够直接在0度角测量,我们需要一种替代的手段。于是就出现了市场上的两种技术,即多角光散射MALS和小角光散射LALS。万变不离其宗,他们的目的都是为了检测0度角附近的散射光强,从而得到准确的大分子的分子量的信息,只不过,MALS利用的是外推的方式,LALS直接在0度角附近检测而免除了外推的过程。总结:[list][*]Rg小于12nm(~入射激光波长1/40)的分子,散射光表现为各向同性,几乎不表现出角度依赖性,那么这时候任何角度检测的结果都是正确的,不需要多角MALS也不需要小角LALS,实际上一个单90度角得到的结果是非常好的[*]Rg大于12nm(~入射激光波长1/40)的分子,散射光表现出各向异性,散射光的强度与散射角有关,需要0度角的散射光强来准确计算分子量,此时需要多角MALS或者小角LALS技术[/list][b] 旋转均方半径Rg的计算[/b][img=,690,357]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060948475418_2265_3200617_3.png!w690x357.jpg[/img][align=center][b]Guinier图表示KC/R[sub]θ[/sub]对应sin[sup]2[/sup](θ/2)的函数关系。其截距为1/Mw,起始部分的斜率与Rg有关[/b][/align][b] [/b][list][*]Rg可以从角度依赖性曲线(Guinier 图)中起始部分的斜率中计算[*]必须要足够显著的角度依赖性来计算曲线的斜率[/list]曲线起始部分的斜率可以表示为[img=,139,51]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060949118845_5780_3200617_3.png!w139x51.jpg[/img]Rg可以从这个公式中得到,然而,对于较小的大分子,曲线的斜率可能非常小,甚至淹没在噪音当中。只有当大分子的尺寸相对入射光波长非常显著的时候,曲线的斜率才会被精确的计算,从而获得可信的Rg。入射波长为633nm激光可以计算的Rg的下限约为12nm左右。但是,绝对的下限可能高于或低于12nm,这与样品,溶剂和测试条件都有关系。很多MALS仪器制造商提出的Rg下限为10nm(甚至更低),这通常是对于标准样品或者具有较高dn/dc或者浓度的样品的理想情况。实际使用的过程中,很多样品无法达到这样的下限。另外极端条件如样品的dn/dc很低或者不在理想条件下,其Rg的下限都会远高于12nm的理论值。[b] GPC/SEC与静态光散射连用[/b][img=,690,60]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060949352365_2620_3200617_3.png!w690x60.jpg[/img]GPC/SEC可以使我们轻松的将光散射数据和浓度检测器提供的数据联系起来进行计算。最常用的浓度检测器是示差折光检测器RI或者紫外检测器UV。现在常用的静态光散射仪器有2种,分别RALS与LALS联用,和多角光散射MALS。[b] 光散射检测器1 - RALS/LALS直角和小角联用光散射检测器[/b]RALS与LALS具有一定的互补性的。RALS灵敏度高,适合测量散射光各向同性的样品,LALS适用于测量散射光各向异性的样品,可以提供非常准确的结果。如下图,RALS/LALS联用检测器将两种检测器整合在一个流通池当中。在Zimm图上,RALS主要测试分子尺寸小于临界半径12nm的各向同性散射体,LALS则精确测试分子尺寸大于临界半径12nm的各向异性散射体。软件会自动根据检测器的信号在RALS与LALS之间进行切换。对于各向异性散射体,两个检测器计算的分子量的比值可以用于估计Pθ,这样再对分子结构进行假设(无规线团或刚性球),就可以估计分子的Rg了。[img=,687,252]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060950302655_7653_3200617_3.png!w687x252.jpg[/img][b]左图,RALS/LALS联用检测器结构与流通池流路。激光从流通池末端进入,检测器布置在90度和小角度方向。右图,使用RALS/LALS联用时,对应的Zimm图为两个点,其中RALS为各向同性散射体提供高灵敏度的检测,LALS为各向异性散射体提供高精确度的检测[/b]RALS/LALS联用的特点:[list][*]对于分子体积不大的大分子,RALS可以提供最高的灵敏度[*]对于分子体积较大的大分子,LALS可以提供最好的准确性[*]可以比较两个角度的散射光强度[*]对两个角度的数据进行分析,可以计算Zimm曲线的斜率,进而计算Rg,当然这个Rg的准确程度比MALS得到的Rg要差一些,毕竟只有两个点的外推[*]RALS/LALS联用检测器具有很小的流通池,这其实是相对MALS检测池的优势之一,毕竟检测池小了,扩散效应会降低很多[b][/b][/list][b]光散射检测器2 - 多角光散射MALS[/b]如名称所示,MALS检测器在多个角度检测散射光的强度,如下图。将这些角度的数据点添加在Zimm图中,通过最合理的拟合曲线外推至0度角,就可以计算分子量。曲线起始部分的斜率可以精确的计算分子尺寸Rg。[img=,686,252]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060951288805_6810_3200617_3.png!w686x252.jpg[/img][align=left][b]左图:MALS检测器结构与流通池流路。激光从流通池末端进入,检测器布置在多个角度方向上 。右图:使用MALS时,可以得到一条完整的拟合曲线 ,这条曲线外推至0度可以计算大分子的分子量,曲线起始部分的斜率可以计算Rg[/b][/align][b] 多角光散射的外推模型小分子[/b] 小分子线团、蛋白质、单克隆抗体等样品为均匀散射,不需要外推。[b] 大分子[/b] 外推模型包括: [list][*]Zimm外推,Kc/R[sub]θ[/sub]对于 sin[sup]2[/sup](θ/2)外推拟合,适用于适用于适中分子大小 Rg ~ 20-50 nm的分子线团 [*]Deby外推,R[sub]θ[/sub]/Kc 对于 sin[sup]2[/sup](θ/2)外推拟合,在一个比较宽的Rg范围内使用,是一种广谱的拟合模型,其适合范围比Zimm模型更加宽泛 [*]Berry外推,(Kc/R[sub]θ[/sub])[sup]0.5[/sup]对于 sin[sup]2[/sup](θ/2)外推拟合,适用于比较大的分子 Rg 50 nm[/list][img=,634,189]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060951554498_5952_3200617_3.png!w634x189.jpg[/img][b]左图:为小分子量聚合物的Zimm曲线,散射光为均匀散射,没有角度依赖性右图:为高分子量聚合物的Zimm曲线,散射光为非均匀散射,具有角度依赖性,需要外推得到0度角的散射光[/b] 其中在拟合过程中,用户可以适当删除一些与拟合曲线偏差较大的光散射数据点,以及使用1-5阶指数拟合方式(线形好尽可能用低阶指数),以达到更好的拟合效果。MALS特点:[list][*]由于可以获得多个角度的散射光强度,使用者可以通个比较相邻的角度的数据更好的确定结果的准确性[*]MALS可以测量各种大分子的分子量,因为计算过程已经将角度依赖性考虑在其中了[*]通过多个角度的数据,可以精确的计算Rg[*]根据Zimm曲线的形状,MALS可以洞察散射光的角度依赖性的情况[*]需要选择合适的模型,这点非常重要,毕竟Zimm,Debby,Berry的最适合的范围不同[*]如果某个角度的数据不合理或者噪音太高,计算过程中可以将其去掉,这样做不会对结果造成太大的影响[*]光学元件的设计导致散射池体积较大,这会造成比较大的扩散效应[/list]当使用MALS时候,最为关键的一点是能不能确定拟合曲线的类型,而精确的拟合曲线主要是由精确的低角度的数据的数量决定的。因此一台MALS应该配置尽可能多的低角度接收器,这有助于提高外推至0度角的准确性。总体上对于不同类型的MALS而言,角度越多,外推过程的准确性就越好。[b]趣谈1 光散射检测器角度越多分子量检测越准?[/b]这真的是一个需要很多前提条件的论断。首先,12nm以下的小分子散射是均匀的,任何一个信噪比良好的角度得到的散射光强计算分子量都可以得到准确的结果,不必需要0度角的信号意味着既不需要多角度MALS的外推也不必需小角度LALS的信号。这在众多通过90度角单角度检测蛋白(如人学白蛋白HA,单克隆抗体)的用户实际检测中得到了验证。不但单抗单体150KDa检测极为精确,而且其他的寡聚体峰,如二聚体300KDa,三聚体450KDa都没有任何问题。而在检测大分子的过程中,小角光散射LALS的准确度并不比多角差。实际上,因为不需要像MALS一样选择模型进行外推(外推过程中的选点,选模型,选择拟合阶次都是具有一定主观性的),在检测分子量的角度,小角度的准确性甚至更高。很多GPC的专业书籍都对此有所描述:[img=,690,338]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060952216648_8096_3200617_3.png!w690x338.jpg[/img] 所以,我的观点是只有当您:1选择了多角光散射MALS作为检测器,2检测大分子的时候,角度越多分子量越准。毕竟角度越多越有利于外推的准确性。但是话说回来,如果您特别在意Rg的检测的话,那么多角度还有有其优势的。 [b]趣谈2光散射检测器不需要校正[/b] 很多厂商都是这么说的,但是,实际上完整的表述是,光散射检测器不需要做传统校正曲线!在不同的流动相下,其光散射检测器的光学常数不同,这个光学常数以及检测器之间的保留体积需要通过一个窄分布的标准样品校正出来,而一旦校正出来常数,做任何样品都是一样的。据博士所知,所有厂商都是如此!!![align=left][b]趣谈3装了光散射检测器的GPC是不是所有样品都可以检测?[/b][/align]光散射检测器不是万能的,也有其限制。限制1. 分子量或者dn/dc极低的样品。这时候散射光强会很弱,有可能散射信号的信噪比很差,此时光散射结果会有较大偏差限制2. 多组分混合物,这里指的是不同化学结构单元的混合物,如聚苯乙烯PS和聚氯乙烯PVC的混合物。由于不同组分的dn/dc不同,而软件只能输入一个dn/dc值,所以检测出来的数据必定不那么“绝对”。一个例子就是沥青的分子量检测,其标准方法就是相对分子量,因为成分太复杂了,没法符合光散射的基本要求。限制3. 荧光样品。具有荧光发射的样品对于散射光信号是一种干扰,如木质素,通常会使得散射光增强,也就是分子量偏高。一个治标不治本的方法是在检测器前加入荧光滤光片,然而,先不谈荧光滤光片会降低检测器的灵敏度,其得到的散射光强也是有偏差的。解决之道是使用RI和粘度检测器连用,进行普适校正,这个后面我们到粘度检测器再慢慢聊。 [b]趣谈4光散射检测器好贵呀,我一定要检测绝对分子量吗?[/b]当然不是。每一种检测方式都有其存在的必然。如果您面对的工作是工厂中的QAQC,或者研发中的初步判断和比较,应该传统校正的相对分子量就够了。但是如果您面对的工作是高端的研发,以及需要分子量和其他物理化学性能相关联,那么绝对分子量无疑会更好。最近会写一个番外篇,也是一个预告:[b]为什么凝胶渗透色谱需要光散射技术[/b] 好了,先聊到这里,开学了,家长和孩子们的惊悚大片即将上映,祝大家心平气和!

  • 动态光散射仪

    各位大虾 动态光散射仪测定粒径分布和zeta的相关仪器推荐下

  • 向广大同仁们求教-做静态注射化学发光分析实验的要点!

    大家好!我是一名新手,最近在做静态注射化学发光分析实验,luminol+H2O2+酶+促进剂,可是遇到一个问题:在进行实验时发现,做一组相同浓度的对比实验,然而在保持参数不变的条件下(加样的量,样品浓度,仪器的工作参数)得倒得峰信号的强度差别很大,重现性差,多次反复试验后,感觉注射的速度快时得到的信号很强,慢一点,得到的信号就弱很多,(我用的是普通一次性针管),再次对实验各个条件出现误差的可能进行了排除,最后怀疑是注射方法产生了误差。但是找不到静态注射发光分析方面关于注射方法的严格的操作手册--就是对注射的速度,样品和发光剂的混合度(样品加太多则混合不均匀,发光强度受影响)方面的经验或总结。 只好到这里来请教一下前辈,老师,同学以及同仁们,希望大家给予帮助,在此感谢大家。敬祝工作学习愉快。 困惑的小钟

  • 【原创大赛】瞬稳静态注射化学发光法测定环境水中总磷

    【原创大赛】瞬稳静态注射化学发光法测定环境水中总磷

    瞬稳静态注射化学发光法测定环境水中总磷摘要:文中介绍了测定水中总磷的瞬稳静态注射化学发光法,在0.04mg/L—0.20mg/L浓度范围内,通过用静态注射化学发光法测定几个样品的总磷含量,对其实验原理、条件、操作步骤进行了详细讨论。说明化学发光法由于较高的灵敏度和较宽的动态响应范围,正在逐渐用于水中总磷的测定。本文基于在酸性介质中,磷酸盐与钼酸铵反应生成的磷钼杂多酸,在碱性条件下与鲁米诺产生化学发光反应,且发光强度与磷的浓度在一定范围内成线性响应的原理,建立了测定磷的瞬稳静态注射化学发光法,方法的线性范围为0.04~0.2mg/L。所建立的方法用于地表水和饮用水中溶解的痕量磷的测定,回收率为80%~120%。静态注射化学发光法可以为测定水中总磷提供方便。关键词:瞬稳静态注射;化学发光;鲁米诺;总磷引言:磷在自然界分布很广,与氧的化合能力较强,因此在自然界中没有单质磷。在天然水和废水中,磷几乎都是以各种磷酸盐、缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐(如磷脂等),存在于溶液和腐殖质粒子或水生生物中。天然水中磷酸盐含量不高。化肥、冶炼、合成洗涤剂等行业的工业废水以及生活污水中含有较大量的磷。磷是生物生长必需的元素之一,是地表水超营养化的关键元素,在生物生长过程中发挥重要的作用。过量的磷(如超过0.2mg/L)对水生植物的快速增长、物种组成、浮游生物和海藻的过度繁殖有很大的影响,造成湖泊,河流的透明度降低.水质变坏,使水资源丧失了饮用、养殖和游览等方面的利用价值。因此水体中磷的含量测定已经被列为环境监测的重要内容之一。总磷是指水体中各种形态的磷的总量,是反映水体受污染程度和湖库水体富营养化程度的重要指标之一。水体中含磷量的增加导致水体质量下降,特别对于湖库水体,由于含磷量的增加,使水体中浮游生物和藻类大量繁殖而消耗水中溶解氧,从而加速湖库水体的富营养化。为了保护水资源,控制水体的富营养化,我国已将总磷列为正式的环境监测项目,制订了环境质量标准和污水排放标准,作为水质评价的重要指标。水中总磷是评价水体受污染程度的重要指标之一,国内外卫生及环保部门非常重视水中总磷的测定。目前,国内外检测水中总磷的方法很多,其中主要有钼蓝光度法,钒钼磷酸比色法,磷钼杂多酸光度法、原子吸收光谱法、色谱法等,但此类方法大多操作烦琐,需要化学药剂多,干扰大。化学发光法准确度和精密度较高、操作更简便、测定快捷、样品用量少,试验所用仪器及相关试剂方便、安全。我国测定水中总磷的国家标准方法是《水质总磷的测定钼酸铵分光光度法》(GB11893-89)。其反应原理是:在酸性介质中正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物,通常即称磷钼蓝 但是国标方法操作步骤繁复,且量程较小。化学发光法提高了量程,简化了测量操作,大大提高工作效率。1.实验材料与方法1.1实验仪器与试剂1.1.1.仪器 YN-FGⅠ型瞬稳静态注射化学发光分析仪(河南农业大学迅捷测试技术有限公司研制) http://ng1.17img.cn/bbsfiles/images/2013/09/201309251036_467175_2222989_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/09/201309251036_467176_2222989_3.png 图1YN-FG 1型瞬稳静态注射化学发光分析仪图样

  • 【原创大赛】瞬稳静态注射化学发光法测定水果中的总铬

    【原创大赛】瞬稳静态注射化学发光法测定水果中的总铬

    瞬稳静态注射化学发光法测定水果中的总铬摘要利用Cr3+对鲁米诺一过氧化氢化学发光反应的催化作用,瞬稳静态注射化学发光法的优点,建立测定Cr3+的新方法,并通过硼氢化钾的还原作用,使Cr6+还原为Cr3+,从而实现对总铬的测定。确定此方法的最佳条件:放大倍数64×;铬(III)试液的pH为4.5;EDTA浓度为0.1mol/L。线性范围为1.0×10-5mg/mL一1.0×10-3mg/mL,该法测定苹果,红枣样品的回收率均在80%-120%范围内,符合要求。关键词化学发光法水果总铬引言随着我国对外开放的不断扩大和人民生活水平的提高,农产品的质量安全问题日益引起人们的重视。除了较明显影响人体健康的农药残留问题外,对人体有累积性影响的微量元素限量闯题也开始引起人们的关注。铅、铬、砷等公认有毒重金属对人体健康危害不仅受到医学界的重视,也成为食品检验、卫生标准和环境检测的重要分析项目。而锰、铜、锌等人体必须的元素,超过一定的限量范围也会对人体有害。为此,各国都对食品中的微量元素作出了限量规定。我国还发布了砷、铅、铜、锌、镉、汞、氟、硒、稀土、铬等10种(类)元素在水果中的限量卫生国家标准及相应的测定方法国家标准,这些标准的发布和实施,为我国衡量和测定水果中有害元素含量提供了科学依据。 三价铬是人体必须的微量元素之一,对维持正常血糖,胆固醇和脂肪酸代谢有影响。而六价铬则是明确的有害元素,能使人体血液中某些蛋白质沉淀,引起贫血、肾炎、神经炎等疾病,长期与六价铬接触还会引起呼吸道炎症并诱发肺癌或者引起侵入性皮肤损害,严重的六价铬中毒还会致人死亡。所以寻求一种快速的具有高灵敏度的测量水果中重金属含量分析方法对其安全营养性的探讨具有指导作用。 在我国的食品检验标准中,微量元素的测定大多采用传统的化学法和原子吸收法。化学法由于分析步骤烦琐,检测周期长,显然满足不了目前日益提高的检测需求。原子吸收法是目前普遍采用的一种方法,也是国家标准方法。而相对于原子吸收法,化学发光法作为一种有用的痕量分析技术具有灵敏度高,线性范围宽(常常在3-4个数量级,原子吸收法只有2-3个数量级),价格便宜(一般一台发光仪1-2万左右)等优点,在食品分析领域得到迅速发展,是目前测定食品中重金属含量前景非常大的一种方法。据此本文建立瞬稳静态注射化学发光测定水果中痕量铬的新方法,结果令人满意。1材料和方法1.1实验原理水果中的有机物可以被浓硝酸与高氯酸的混酸氧化,生成二氧化碳、水、氮气等氧化产物。有机物中常见非金属元素原子(C、H、O、N、P、S)氧化后大部分以气体形式逸出,金属元素原子则以高价离子形式存在于溶液中,水果中各种价态的铬可被硼氢化钾还原为三价铬,三价铬可以催化双氧水与鲁米诺的反应,在低浓度条件下,反应速度与催化剂浓度有关。1.2实验材料1.2.1实验仪器YN-FG1型瞬稳静态注射化学发光分析仪(河南农业大学迅捷测试技术有限公司),YN-2000微电脑多功能养分速测仪(河南农大机电技术开发中心),消化仪,电炉,移液管,烧杯,三角瓶,反应瓶,玻璃棒,50 ml比色管,500ml、100ml、[

  • 【求助】请教蒸发光散射检测器的问题

    我的一个朋友于2008年5月份购买一台美国 ALLTECH 的蒸发光散射检测器,型号为 2000ELSD。 安装调试时基线比较好,流动相是:乙睛:水:三氟乙酸=10:90:1,检测器的温度是:50℃。今年7月份时,发现基线不平稳,有杂质峰,之后 ALLTECH 及时上门清洗蒸发光散射检测器,但基线在 50℃ 的检测温度下仍然不平稳,只有把蒸发光散射检测器的检测温度提高到 80℃ 时基线才会平稳;当用纯乙睛做流动相时,检测基线也非常平稳。有一些样品也检测不出。 请问各位大哥、大姐,是否知道基线不平稳的原因?非常感谢!

  • 【求助】测量细胞散射用什么光谱仪好

    我将做一个用光谱仪来测量细胞的散射光谱实验。现在有一台海洋公司的型号是hr4000cg-uv-nir的光谱仪。不知可不可以用来测量细胞的散射光谱。 对你们的提议,我太感谢了

  • 光声效应及光散射检测器

    由电话发明家A.G.Bell于1880年提出。经调制的断续光照射于物质时,物质发射与断续光频率相等的声波,这种现象称为光声效应。利用物质微粒(包括分子)对光的散射作用进行分析的检测器。当某一波长的光照射在物质微粒上时,除一部分通过物质微粒或被微粒吸收外,大部分的光将以同样的波长向各个方向散射(瑞利散射),散射光的强度是微粒数量和微粒大小的函数。光散射检测器是凝胶色谱中常用的检测器之一。

  • 【原创】动态光散射测定生物大分子粒径,纳米粒径和均一性

    【原创】动态光散射测定生物大分子粒径,纳米粒径和均一性

    下午培训的另一台仪器是动态光散射,主要用于测定生物大分子的粒径和均一性。仪器推荐50nm一下,但是目前,我们有时测试样品可以接近100nm。虽然是生命科学仪器,但是测纳米粒子子相当不错。做蛋白结晶时会经常考虑到蛋白在某种条件下是否聚集,这个就可以通过动态光散射来检测,是单体,二聚 ,还是多聚等等。此仪器同样可以检测pH,盐离子,温度对蛋白质的影响。蛋白的某个参数吧。仪器为Dynapro-99-E [img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809251019_110100_1613111_3.jpg[/img]

  • 【原创】动态光散射粒度测量仪器

    看到论坛很多人希望了解动态光散射粒度仪,且有专版征图,再此希望开一个贴写写关于动态光散射粒度仪的一些东西。实验室有台Horiba公司的动态光散射激光粒度仪LB-550,先上图,然后再慢慢介绍参加培训时知道的一些关于动态光散射的知识。只是怎么直接发图呢(非附件下载方式)??[em09512]

  • 【求助】动态光散射法

    最近一直在看动态光散射的资料,就有两个疑问。第一,许多动态光散射仪都将角度设为90度,或其他的多角度,这样的设定根据是什么。第二,动态光散射是由于粒子的布朗运动使得散射光强度上下波动,然后有数字相关器处理得到时间自相关函数,再根据Stocks-Einstein公式得到粒子的大小,但是,这不是只能得到粒子的大小吗?那么,粒子的质量分布或是体积分布是根据什么得到的呢? 我困惑好久了,也不知道自己想歪了没有,哪位高人知道,还请指点小妹一二。在此谢过!

  • 【讨论】拉曼光谱是中心线完全是瑞利散射吗?

    在拉曼光谱的原理解释中,所有的资料和书籍上都说拉曼散射中没在发生频率变化的散射为瑞利散射,但根据所用激光的波长与所测试粒径大小的关系,我认为这一散射称其为米氏散射更为合适,因为其粒径比光源的波长大,已经不能称为瑞利散射了,不知我的理解对不对?请大家指教!

  • 光散射技术

    [font=&]【题名】: 光散射技术[/font][font=&]【全文链接】: [/font]

  • 激光粒度仪静态样品池使用方法

    标准粒子选用北京海岸鸿蒙标准物质有限公司的编号为GBW(E)120021 的标准物质。使用方法:1.首先检查静态样品池的玻璃表面是否清洁,如果不清洁,用脱脂棉蘸无水乙醇进行清洗。2.将干净的静态样品池注约三分之二深的水后将上盖盖住(记住盖的方向),放入到激光粒度分析仪的检测口内,然后进行软件的参数设置和对中调整(注意在盖上盖子的时候一定不要使镜头中有气泡)。3.参数设置如下:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif4.对中调整好以后,点击软件上背景按钮,当出现分析界面时,取出静态样品池,将样品池上盖取下(注意记得盖子的方向),向样品池中滴入几滴标准粒子液滴,然后用洗耳球对准液体进行吹气,使样品池中的粒子均匀分散。然后原方向盖上样品池盖,不能盖反,然后放入检测口内,点击分析进行测量。注意:这里只是一个静态样品池的使用方法,告诉你如何使用静态样品池测试标准粒子,并不能算作对仪器的标定。当测试结果与标准粒子标称值差别较大时,可致电我公司,我们可协助判断和校准仪器。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制