当前位置: 仪器信息网 > 行业主题 > >

局部结构

仪器信息网局部结构专题为您整合局部结构相关的最新文章,在局部结构专题,您不仅可以免费浏览局部结构的资讯, 同时您还可以浏览局部结构的相关资料、解决方案,参与社区局部结构话题讨论。

局部结构相关的论坛

  • 局部放电的特征和原理

    一、局部放电的特征局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷,在高电场强度作用下发生重复击穿和熄灭的现象。它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起局部击穿放电等。这种放电的能量是很小的,所以它的短时存在并不影响到电气设备的绝缘强度。但若电气设备绝缘在运行电压下不断出现局部放电,这些微弱的放电将产生累积效应会使绝缘的介电性能逐渐劣化并使局部缺陷扩大,最后导致整个绝缘击穿。局部放电是一种复杂的物理过程,除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声波、光、热以及新的生成物等。从电性方面分析,产生放电时,在放电处有电荷交换、有电磁波辐射、有能量损耗。最明显的是反映到试品施加电压的两端,有微弱的脉冲电压出现。如果绝缘中存在有气泡,当工频高压施加于绝缘体的两端时,如果气泡上承受的电压没有达到气泡的击穿电压,则气泡上的电压就随外加电压的变化而变化。若外加电压足够高,即上升到气泡的击穿电压时,气泡发生放电,放电过程使大量中性气体分子电离,变成正离子和电子或负离子,形成了大量的空间电荷,这些空间电荷,在外加电场作用下迁移到气泡壁上,形成了与外加电场方向相反的内部电压,这时气泡上剩余电压应是两者叠加的结果,当气泡上的实际电压小于气泡的击穿电压时,于是气泡的放电暂停,气泡上的电压又随外加电压的上升而上升,直到重新到达其击穿电压时,又出现第二次放电,如此出现多次放电。当试品中的气隙放电时,相当于试品失去电荷q,并使其端电压突然下降△U,这个一般只有微伏级的电源脉冲叠加在千伏级的外施电压上。所有局部放电测试设备的工作原理,就是将这种电压脉冲检测出来。其中电荷q称为视在放电量。二、局部放电的机理1.局部放电的发生机理局部放电的发生机理可以用放电间隙和电容组合的电气的等值回路来代替,在电极之间放有绝缘物,对它施加交流电压时,在电极之间局部出现的放电现象,可以看成是在导体之间串联放置着2个以上的电容,其中一个发生了火花放电。按照这样的考虑方法,将电极组合的等值回路如图所示。http://www.ai1718.com/Public/kindeditor/attached/image/20140813/20140813165644_51658.jpg图3-1电极组合的电气等值回路在图3-1中,Cg:是串入绝缘物中放电间隙(比如气泡)的电容;Cb:是和Cg串联的绝缘物部分的电容;Cm:除了Cb和Cg以外的电极之间的电容。设电极间总的电容为Ca,则http://www.ai1718.com/Public/kindeditor/attached/image/20140813/20140813165740_95692.jpg(3-1)在这样的等值回路中,当对电极间施加交流电压Vt(瞬时值)时,在Cg上不发生火花放电的情况下,加在Cg上的电压vt由下式表示http://www.ai1718.com/Public/kindeditor/attached/image/20140813/20140813165822_76607.jpg (3-2)在图中,随着外施电压Vt的升高,vt也随着增大,vt达到Cg的火花电压vp时,在Cg上就产生火花放电。这时,Cg间的电压和式中的vt逐渐发生差异,如设它为vg由于放电的原因,vg迅速地从vp下降到vr(剩余电压)。现设在Cg间,经过t秒后放出的电荷为Q(t),则http://www.ai1718.com/Public/kindeditor/attached/image/20140813/20140813165857_36836.jpg (3-3)式中,Cgr是从Cg两端看到的电容,它等于http://www.ai1718.com/Public/kindeditor/attached/image/20140813/20140813165937_17596.jpg (3-4)所以得到 http://www.ai1718.com/Public/kindeditor/attached/image/20140813/20140813165953_62532.jpg (3-5)这里,将vg从vp大致变成vr的时间称为局部放电脉冲的形成时间。当将这些量表示成时间的函数时,成为图3-2的曲线。http://www.ai1718.com/Public/kindeditor/attached/image/20140813/20140813170033_34556.jpg图3-2 Cg间的放电电荷和电压随时间变化的曲线局部放电脉冲的形成时间,除了极端不均匀电场和油中放电的情况之外,一般是在0.01s以下,而且认为vr大致是零。在上述前提下,观察一下各个电气量的情况(局部放电几个主要参量)。(1)视在放电电荷q。它是指将该电荷瞬时注入试品两端时,引起试品两端电压的瞬时变化量与局部放电本身所引起的电压瞬时变化量相等的电荷量,视在电荷一般用pC(皮库)来表示。(2)局部放电的试验电压。它是指在规定的试验程序中施加的规定电压,在此电压下,试品不呈现超过规定量值

  • 【原创大赛】SPM观察金属表面局部电位变化

    【原创大赛】SPM观察金属表面局部电位变化

    1、SPM原位分析扫描电化学显微镜可用于原位检测电极表面微区电位、电流分布以及检测微观尺寸上的STM形貌分布。采用XMU-BY电化学扫描显微镜研究碳钢试样在孔蚀电位Eb及亚稳态孔蚀电位Em下恒电位极化时,碳钢试样表面的微区电位分布的变化。SPM技术是一种新型的观测金属表面的测试技术,包括扫描隧道显微镜(STM) 、原子力显微镜(AFM) 、磁力显微镜(MFM) 等。相较于其他表面分析技术,SPM不仅能够采用高分辨率的三维表面成相与测量,还能够对材料的性质差别进行研究。对于SPM的运用也从最初的测试工具发展为加工、制造等微观精密领域的应用。本文中所使用的XMU-BY扫描电化学工作站可用于原位检测电极表面微区电位、电流分布以及检测微观尺寸上的STM形貌分布。此外,XMU-BY扫描电化学工作站特有的定点测试功能,可以自动地将扫描探针定位到感兴趣的区域,然后可以进行局部点位置多种电化学信息的跟踪测试,比如电位随时间的变化测试、电位随X/Y/Z方向距离的变化测试、物质分布变化的测试以及形貌变化的测试。另外,还通过与恒电位仪联用,进行了外加恒电位条件下试样表面形貌的原位分析,实验用恒电位仪为。图1为联用系统结构原理框图,原理框图如下:http://ng1.17img.cn/bbsfiles/images/2015/09/201509271337_568105_2590289_3.png图1扫描探针显微镜与恒电位仪联用系统结构原理框图 http://ng1.17img.cn/bbsfiles/images/2015/09/201509271337_568106_2590289_3.png图2扫描探针显微镜与恒电位仪联用系统实物图图2为根据原理结构框图我们所建立的恒电位下扫描探针显微镜实物图。从图中可看出, XMU-BY扫描电化学工作站由5部分组成:扫描平台(包括扫描探头、扫描平台底座、扫描器、探针架和探针)、控制机箱、恒电位仪、电机控制器、计算机控制系统。2、实验与讨论在碳钢孔蚀电位Eb下进行恒电位极化,得到Q235碳钢表面电位变化。每隔5min得到一张电位微区分布图,连续恒电位测量1h,将所得的图片使用CSPM Imager图片编辑软件进行分析,绘制出三维图像。图3为实时监测电位分布图,图4为将得到数据进行三维处理后的电位分布图。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271349_568107_2590289_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271349_568108_2590289_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271349_568109_2590289_3.jpg图3 SPM恒电位极化下,碳钢表面电位分布http://ng1.17img.cn/bbsfiles/images/2015/09/201509271352_568110_2590289_3.png图4 恒电位Eb下Q235碳钢表面随时间变化的电位分布图3、结论在电位Eb恒电位极化下,碳钢表面微区电位同样呈现不均匀性,存在活性阳极与活性阴极区。

  • 【转载】电缆局部放电测量常见干扰及抑制措施分析

    本文从电力电缆局部放电测量要求和试验特点分析测量中干扰的来源和途径,分析和阐述各种干扰的抑制措施,共同探讨、研究在测量系统设计、安装和使用过程中抑制测量干扰重要性和必要性。 关键词:电力电缆 局部放电 测量 干扰 抑制措施 一、前言局部放电测量是挤包绝缘电力电缆产品检验中重要安全项目之一,电缆局部放电是指电缆绝缘中局部缺陷(如毛刺、杂质、气泡或水气等)被击穿引起的电气放电,其放电量可能极小,以10-12库仑(pC)计,但这种微小放电危害极大,若在电缆运行中长期存在,或将引起放电周围绝缘发热老化,导致绝缘性能下降,引发电力安全事故,因此,准确测量电缆局部放电十分必要。但准确测量除关注检验设备性能及精度外,还应特别关注各种干扰对测量产生的影响。 二、常见干扰来源及途径 (一) 电缆局部放电测量标准要求及试验特点GB/T1206.2-2008和GB/T1206.3-2008挤包绝缘电力电缆标准要求,被试电缆在1.73U0(U0为电缆额定电压)下,应无任何由被试电缆产生的超过声明试验灵敏度的可检测到的放电,例行试验声明试验灵敏度应不大于10 pC,型式试验声明试验灵敏度应不大于5 pC。GB/T3048.12-2007局部放电试验方法标准要求,试验回路包括高压电源、高压电压表、放电量校准器、双脉冲发生器等组成,试验电源应是频率为49~61Hz交流电源,近似正弦波,且峰值与有效值之比应为√2±0.07。产生试验电压可以是变压器或串联谐振装置。试验步骤包括试验回路选择和连接、电量校准、施加电压和放电测量等。从试验设备和标准要求可知,电缆局部放电测量具有如下特点:1、 设备庞大,试验室占据空间大,连接环节多。无论使用变压器式或串联谐振式高压设备,其额定电压输出容量一般都在100kV以上,其调压设备、高压设备、耦合电容器和控制设备等都很庞大,试验时,需将这些设备、试样和局部放电检测仪按试验要求连接一起,可见空间之大,环节之多。2、 试样长,试验负载为电容性负载。短试样长度最小10m,长试样有时可达数千米,由于试验电压加于电缆屏蔽和导体上,中间为绝缘层,其试验时为电容性负载。3、 试验电压高,局部放电检测仪输入放电脉冲信号电压小。试验电压为1.73 U0,对于额定电压35kV电力电缆中C类电缆,试验电压为45kV。采用JF2000局部放电检测仪测量局部放电,其输入放电脉冲信号电压每升高0.1V,仪表读数增加10 pC,而放电测量值通常小于10 pC,可见放电脉冲信号电压之小。 (二)干扰的产生和影响从电缆局部放电测量标准要求及试验特点分析,电缆局部放电测量系统是大型、高灵敏度的试验设备,它在试验过程中极容易受到干扰,常见干扰和对测量的影响为以下几个方面:1、电源质量的干扰。试验过程高压电压表是测量试验电压有效值,而绝缘产生最大放电通常在峰值电压时刻,电源正弦波的品质不好,会引起试验电压峰值偏差,标准规定的试验电压为电压有效值,因而会造成局部放电测量误差,此外,交流电源频率和电压稳定性对测量也存在影响。2、电磁辅射的干扰。无线电设备的电波发射、电气设备的运行、发动机的点火和自然界中的雷电等都会产生电磁辐射,空间中,电磁辐射极其复杂,每一种电磁辐射都具有频率、波长

  • 【求助】请帮忙看看HMBC谱(局部)

    【求助】请帮忙看看HMBC谱(局部)

    [img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907221541_161032_1857836_3.jpg[/img]这是HMBC局部放大图。实在是弄不懂这三个碳到底分别跟哪些氢远程相关请各位帮忙看看多谢

  • 请教:局部放电测量中PC是什么单位?

    请教:局部放电测量中PC是什么单位?相关材料见附件:局部放电测试系统file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-22983.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-27172.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-27669.png求助编辑百科名片局部放电测试系统(英文名称:Partial Discharge Test System),专门用于变压器、电机、互感器、电缆、GIS、开关、避雷器等电器设备的局部放电测量,是适合电力部门、生产制造厂和科研单位等广泛使用的一种实用的局部放电测试仪器。    file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-28632.png 局部放电测试系统【仪器介绍】   局部放电检测系统其技术性能完全符合IEC-270标准及GB7354标准要求,是电器设备制造厂、发供电运行部门、电力建设安装调试部门的必备测试设备。是研究、开发新型高电压电工产品和提高产品质量的有力辅助工具,也是现场判断设备正常与否的有效测试仪器。   局部放电检测系统其独特的两通道同时测量功能,可方便地完成多台试品同时测量或单台试品的多点同时测量。这样使大型变压器放电部位的诊断成为可能,该方法已成功地用于大型变压器的检测及变电站的变压器局部放电在线监测。   【主要用途】   它基本保持了前几种仪器的优点和功能,又根据当今国内外局放仪研究领域的先进理论,参照国际电工委员会(IEC)标准,采用了先进电路,引用了先进技术,通过各地用户广泛试用后的不断改进而成的,BY2202局部放电检测仪比BY-8601、BY-9801局放仪在设计上更完善,使用上更方便,性能上更可靠。   专门用于变压器、电机、互感器、电容器、电缆、GIS、开关、避雷器等电器设备的局部放电测量,性能符合IEC-270标准及GB7354标准。全汉化软件,菜单式操作,测量与分析可任意存储,打印局部放电图形及数据,自动生成试验报告,2个测量通道,有椭圆、直线、二维、三维彩色显示方式。

  • 夏日常发生局部大雨!

    夏日常发生局部大雨!

    [b][color=#cc0000]夏日常发生局部大雨![/color][/b][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209122111421095_7818_1841897_3.jpg!w690x388.jpg[/img]

  • 无菌检查室,需要B级背景下的局部A级环境吗?

    药品GMP指南的征求意见稿中这么描述:无菌操作室的环境洁净度条件不应低于无菌生产操作区,以降低无菌检查出现假阳性的风险。无菌检查应在环境洁净度10000级下的局部洁净度100级的单向流空气区域内或隔离系统中进行。用于无菌检查和微生物限度检查的洁净操作室应配有属于“人流净化”的更衣室及属于“物流净化”的缓冲间或传递窗(柜),使进入洁净操作室的实验人员和试验物品分别经适当净化后进入实验操作间。但是正式出版以后改了:无菌检查应在环境洁净度B级下的局部洁净度A级的单向流空气区域内或隔离系统中进行。--------------------------------------------------------------------------------------这么一改,要求提高很多啊。

  • 【分享】直读光谱试样组成结构状态的影响

    直读光谱试样组成结构状态的影响 试样中大多数金属元素都是以互相化合及相互熔融的形式存在,而且由于热处理方式,如淬火、退火、锻压、浇注以及冶炼等的过程不同,均会使它们原子与原子间的晶格排列发生变化,不同的晶格其键的结合能发生差异,会影响其熔点及导热性,改变其被光源侵蚀的程度。 对于由于组织结构不同引起的影响,在光谱分析时应严格控制试样的热处理状态,使试样的结构保持一致;采用高速高能或高能预火花光源,由于这类光源的能量大、电蚀作用大,在较短时间使样品表面局部熔融及均匀化,可以消除或减少试样表面结晶组织结构的影响;其次适当延长预燃时间也减少结晶组织的影响。

  • 【讨论】这个结构的氢谱,二维谱。

    【讨论】这个结构的氢谱,二维谱。

    结构图:[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811151428_118669_1631818_3.jpg[/img]一维氢谱:[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811151437_118670_1631818_3.jpg[/img]局部放大:[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811151437_118671_1631818_3.jpg[/img]二维H-H COSY:[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811151442_118672_1631818_3.jpg[/img]从一维图上看,好像是二种物质,要是是一种物质的话,出现的峰组,峰面积都有问题,而且从二维图上看,又不像是混合物,那它的结构应该是怎样的呢?[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811151643_118693_1631818_3.jpg[/img]

  • 【原创大赛】金属表面局部腐蚀情况研究

    【原创大赛】金属表面局部腐蚀情况研究

    一、引言金属的腐蚀存在于国内外各行业中,且造成了巨大的经济损失。局部腐蚀因其隐蔽性和微观性等不易被察觉的特性,常会折损设备的使用寿命造成经济损失,有时甚至会导致重大事故。局部腐蚀可能比金属的均匀腐蚀造成的危害更加严重。二、实验方法电化学测试采用传统的三电极体系,如图1所示。其中,辅助电极为铂电极,参比电极为饱和甘汞电极,工作电极为碳钢试样。 采用慢速动电位回扫测试,实验均在室温下,文中出现的电位均为相对于饱和甘汞电极。所用电化学仪器为武汉科思特仪器有限公司CS350电化学工作站和美国park公司parst2272电化学测试系统。通过分析所得极化曲线,得到亚稳态孔蚀电位和稳定孔蚀电位等电化学信息。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271312_568096_2590289_3.png图1电化学测试中使用的三电极体系图三、结果与讨论图1为某浓度NaCl溶液体系中未添加的慢速动电位回扫曲线。选取低于自腐蚀电位Ecorr100mV开始实验,将电流持续上升,不再下降的电位称为稳定孔蚀电位Eb,反向扫描曲线与正向曲线的交点电位称为再钝化电位Ep,Eb与Ep之差即ΔE。在稳定孔蚀电位前保持不变的电流密度称为维钝电流密度ipassive回扫过程中达到的最大电流密称为ipeak。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271319_568097_2590289_3.png图1碳钢在未添加咪唑啉季铵盐的NaNO2+NaCl溶液中的动电位回扫极化曲线图2是碳钢试样在含有不同浓度缓蚀剂的NaNO2+NaCl溶液中的动电位回扫极化曲线。从图2可以看出,添加咪唑啉季铵盐缓蚀剂后,碳钢的自腐蚀电位Ecorr发生一定正移,是一种阳极型缓蚀剂。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271320_568098_2590289_3.png 图2碳钢在含不同量咪唑啉季铵盐的NaNO2+NaCl溶液中的动电位回扫极化曲线四、结论实验所有缓蚀剂作为一种阳极型缓蚀剂能降低碳钢在NaNO2+NaCl溶液中的维钝电流密度,对钝化起到一定的促进作用,尽管对稳态孔蚀电位影响不大,但如果添加适量,能较明显地促进稳态蚀孔的再钝化。

  • 角型调节阀的结构与使用

    角型调节阀的合理使用角型调节阀流路简单、阻力小,一般情况下适用于正向使用(安装)。然而在高压降场合推荐角型调节阀反向使用,以改善不平衡力和减少对阀芯的损伤,同时也有利于介质的流动、避免调节阀结焦和堵塞。角型调节阀在反向使用时,特别应该避免长时期小开度开启的情况,以防引起强烈振荡而损坏阀芯。特别在化工装置试生产阶段,由于试生产时负荷较低、设计工艺条件不可能很快达到要求,反向使用的角型调节阀应尽可能避免较长时间的小开度开启状况,以防角型调节阀损坏。在生产过程自动化调节系统中,调节阀是一个重要的、必不可少的环节,被称之为生产过程自动化的“手脚”,是自动控制系统的终端控制元件之一。它是由执行机构和阀两部分组成。从水力学观点来看,调节阀是一个局部阻力可以变化的节流元件,调节阀是按照输入信号通过改变行程来改变阻力系数,从而达到调节流量的目的。1、角型调节阀的结构与使用1.1角型调节阀的结构角型调节阀除阀体为角型外,其他结构均和单座阀相似,其特点决定了它的流路简单,阻力小,特别有利于高压降、高粘度、含有悬浮物和颗粒状物质流体的调节。它可以避免结焦,粘结和堵塞等现象发生,也便于清洗和自净。1.2角型调节阀正、反向使用比较一般情况下,角型调节阀均采用正向安装,即底进侧出。只有在高压差场合和高粘度、易结焦、含悬浮颗粒物介质的情况下,才推荐反向安装,即物料侧进底出。角型调节阀反向使用的目的是为了改善不平衡力和减少对阀芯的磨损,同时也有利于高粘度、易结焦和含悬浮颗粒物介质的流动,避免结焦和堵塞。2、角型调节阀反向使用剖析吉林化学工业股份有限公司从西德引进的乙醛装置中,pv-23404角型调节阀在高压降的工艺条件下,推荐反向使用。在水联动试车时,角型调节阀产生强烈振荡,且发出刺耳的噪声,试车4h后阀芯就断裂了。当时外国专家认为是阀芯制造质量不好所致。笔者认为并非质量问题,而是由于使用不合理所致。下面就其断裂原因进行分析。众所周知,目前除了蝶阀和隔膜阀在结构上完全对称外,所有其他结构的调节阀都是不对称的。当调节阀改变流动方向时,由于流路的变化会引起)值变化。各类调节阀的正常流向均为使阀芯打开的方向(正向使用),生产厂也只提供正常流向时的流通能力)值和流量特性。当调节阀反向使用时,既流体沿着使阀芯关闭的方向流动时,调节阀的流通能力会增大。水联动试车时,模拟工艺条件不可能很快达到正常状态,调节阀在较长时间内处于小开度状态下使用,由于不平衡力的作用,会出现严重的不稳定。所以调节阀会产生强烈的震荡并发出刺耳的噪声,因而导致阀芯很快断裂。而在正常工艺条件下,调节阀的开度是适中的,即使小开度也是短暂的,所以调节阀可正常安全使用。除特殊情况外,角型调节阀均是正向安装的,不推荐反向使用,如果违规使用,不仅会损坏设备,还有可能造成危险。另外,在反向使用时,应避免长期小开度情况下运行,尤其是在试车时更应该多加注意。

  • 【原创大赛】[第八届原创] 红外光谱测定苯甲酸的结构

    红外光谱测定苯甲酸的结构对于不同的化合物有不同的结构,不同的结构振动方式和频率各不相同。当红外光通过被测样品时,该样品的不同结构会对红外光能量产生特征吸收,红外分光光度计将物质对红外光的吸收情况记录下来,得到该物质的红外光谱图。各种功能团的红外吸收峰均出现在特定的波长范围以内,特征性强不受到其他干扰峰的影响。通过它们的红外吸收光谱中吸收峰的位置、形状可以进行定性鉴定和结构分析。在实验前,首先要用压片法对样本进行处理。取1-2mg的干燥苯甲酸和10倍的干燥KBr(均为分析纯),一并倒入玛瑙研钵中进行混合,混合均匀后研磨至2μ细粉。然后取混合物的粉末倒入压片器中压制成透明锭片(制得的晶片必须无裂痕,局部无发白现象,要完全透明,否则要重新进行制作)。在对样品测定之前要按附录仪器操作步骤开机和进行调节,设定实验条件。首先要扫描空气本底,红外光谱仪中先不放任何物品,从4000~400cm-1进行波数扫描。然后进行仪器的校正,测定聚乙烯和未知塑料膜的红外吸收光谱图。最后把样品放入红外光谱仪上进行测试,由于同一物质在相同的测定条件下测得的红外光谱有很好的重复性。将校正后的光谱图与标准的苯甲酸红外光谱图进行比对,若相似度达到90%以上,可以进行光谱分析,若相似度过低或与其他物质匹配,则要重新进行制作。得到符合要求的红外光谱图后,进行谱图的解析,标出谱图中各官能团的特征吸收峰,将未知化合物官能团区的峰位列表,并根据其他数据指出未知物的可能结构,最终推测所得谱图为苯甲酸。

  • 【原创大赛】碳钢表面局部腐蚀形貌

    【原创大赛】碳钢表面局部腐蚀形貌

    1、在腐蚀溶液总逐渐添加缓蚀剂后碳钢表面腐蚀形貌图1是Q235碳钢不同缓蚀剂的溶液中经过慢速动电位扫描达到孔蚀电位时的表面形貌。从图1可以看出,添加咪唑啉季铵盐后,金属表面孔蚀变化情况为小孔增多,但蚀孔深度有所下降,金属的溶解量减少。 http://ng1.17img.cn/bbsfiles/images/2015/09/201509271424_568111_2590289_3.png图1碳钢在含不同缓蚀剂的NaNO2+NaCl溶液中极化后的扫描电镜图2、未添加缓蚀剂时不同PH下碳钢表面孔蚀形貌不同pH条件下碳钢表面发生孔蚀时的表面形貌如图2所示。在pH =6.64时,蚀孔区域相对较集中,小孔周围覆盖有腐蚀产物,pH=10时试样表面蚀孔增多,但蚀孔一般较浅,蚀孔密集,有向全面腐蚀发展的趋势;pH=4时试验表面蚀孔区域与为发生孔蚀区域区分明显,孔蚀趋于多个连成一片,形成大的蚀坑。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271427_568114_2590289_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271427_568115_2590289_3.png图2不同pH条件下,碳钢在缓蚀剂溶液中的表面形貌3、 添加少量缓蚀剂时不同PH下碳钢表面孔蚀形貌当添加少量缓蚀剂时,不同pH条件下的孔蚀形貌变化如图3所示,与未添加咪唑啉季铵盐相比,试验表面在各个pH条件下小孔均有所增加,不同pH条件下的孔深变化情况基本与未添加咪唑啉季铵盐溶液体系保持一致。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271426_568112_2590289_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271426_568113_2590289_3.png图3添加少量缓蚀剂时,不同pH条件下的孔蚀形貌:(a)未调节pH;(b) pH =10;(c) pH=4 pH=7.02与pH=10时,试样表面小孔较多,且发生孔蚀的区域较大,当pH=4时,试样表面蚀孔明显减少,发生腐蚀区域较小,但是试样表面形貌变化较大,基本呈现坑蚀特征。4、缓蚀剂含量增加后,碳钢表面孔蚀形貌缓蚀剂含量增加后,不同pH条件下的孔蚀形貌变化如图4所示,与前两种体系相比:为确定pH条件下,体系蚀孔变浅,蚀孔数目相对于添加少量缓蚀剂时有减少,但仍比未添加咪唑时的蚀孔数目多;pH=10时,蚀孔数目明显减少,且深度变小;pH=4时,蚀孔深度和数目均减小,试验局部腐蚀得到明显的抑制。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271433_568116_2590289_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271433_568117_2590289_3.png图4缓蚀剂含量增加后,不同pH条件下的孔蚀形貌:(a)为调节pH;(b) pH =10;(c) pH=4

  • 特殊硅结构可基于单光子产生多个电子空穴对

    能使太阳能电池最大转化效率提升至42%2013年01月30日 来源: 中国科技网 作者: 张巍巍 中国科技网讯 据物理学家组织网1月29日(北京时间)报道,美国加州大学戴维斯分校的科研人员通过计算机模拟证实,利用特殊的“硅BC8”结构,能够基于单个光子产生多个电子空穴对,大幅提升太阳能电池的转换效率。相关研究报告发布在最新一期的《物理评论快报》上。 太阳能电池以光电效应作为基础,当一个光子或是光粒子击中单个硅晶体时,便会产生一个带负电荷的电子以及一个带正电荷的空穴,而收集这些电子空穴对就能够生成电流。作为论文的合著者,该校化学系的朱莉亚·加利表示,传统的太阳能电池能基于每个光子产生一个电子空穴对,因此其理论最大转换效率约为33%。而新途径能够基于单个光子产生多个电子空穴对,从而切实提升太阳能电池的效率。 科研人员借助劳伦斯伯克利国家实验室的超级计算机模拟了硅BC8的行为,这种硅结构形成于高压环境,但其在正常压力下也很稳定。模拟结果显示,硅BC8纳米粒子确实基于单个光子生成了多个电子空穴对,即使当它暴露于可见光时亦是如此。 此次研究的主要作者、博士后研究员斯蒂芬·魏博曼谈到,这一途径可使太阳能电池的最大转化效率提升至42%,超越任何现有的太阳能电池,意义十分重大。“事实上,如果利用抛物面反射镜为新型太阳能电池聚集阳光,我们有理由相信,其转换效率或可高达70%。”他补充说道。 有些遗憾的是,通过与传统的硅纳米粒子相结合,目前制成的太阳能电池模型仅能在紫外线的照射下工作,还不能在可见光照射下正常工作。此前哈佛大学和麻省理工学院的科学家曾发表论文指出,当普通硅太阳能电池被激光照射时,激光所发出的能量或可营造出局部的高压以形成硅BC8纳米晶体。因此,施加激光或是化学压力都可能使现有的太阳能电池转化为高效的新型太阳能电池。(记者 张巍巍) 总编辑圈点 太阳能电池或许是最清洁和方便的能源。但目前的电池板有一点不能令人完全满意:光电转化效率。近几年,国际上开发出不少新材料,都能提高太阳能电池的效率,高的能达到20%。这一次,美国科学家发明的新微观结构,更是让半导体的效率上限翻番。当然这是计算机模拟的结果,大规模应用为时尚早。从经验来看,低能耗生产新式光电池,难度不可小觑。 《科技日报》(2013-01-30 一版)

  • 【原创大赛】超微结构保存更好——高压冷冻与冷冻替代样品制备技术

    【原创大赛】超微结构保存更好——高压冷冻与冷冻替代样品制备技术

    最近一直在摸索着用高压冷冻和冷冻替代样品制备技术,刚开始做的时候冰晶特别严重,如下图Hela细胞。冰晶已经把细胞超微结构破坏的不行了。http://ng1.17img.cn/bbsfiles/images/2016/09/201609231539_611900_2423894_3.jpg经过很长时间的摸索,得到以下制样方法:1 取样1.1 培养细胞:取适量的细胞悬浮液,低速离心成细胞团,去上清,细胞团呈米糊状,用移液枪取适量细胞,填满Carrier,加入适量冷冻保护液1-Hexadecene,滤纸吸取多余水分,使冷冻保护液液面略高于Carrier(Carrier用丙酮清洗,然后在空气中晾干,用1-Hexadecene浸泡备用)。1.2 小鼠肝脏:从活体上取出的组织,先用锋利的刀片在低温下切成尽可能薄片状,从中挑选合适的部分切下来,然后装入Carrier,加入适量冷冻保护液1-Hexadecene,滤纸吸取多余水分,使冷冻保护液液面略高于Carrier。2高压冷冻高压冷冻仪在使用前,要先做一些准备工作:要先加入足够的液氮,并加入压力液甲基环己烷,然后用空载的carrier高压冷冻三次,保证高压冷冻仪在最佳工作状态。2.1 将上述装有样品的carrier快速安置到高压冷冻仪,准备高压冷冻。2.2 高压冷冻样品,迅速把样品冷冻下来,并做好记录。通过高压冷冻仪冷冻样品后产生的冷冻速度和压力变化曲线,可以选择冷冻效果较好的样品继续下面实验。2.3 转移样品,首先把现配的替代液1%锇酸(0.5g锇酸溶于50mL丙酮)分装到2mL冻存管中,迅速放入液氮冷冻备用,冷冻过程中保持冷冻管直立。与此同时,冷冻替代仪加满液氮,将自制的冻存管架放入样品腔,预冷至-100℃。用预冷的镊子,在液氮下将Carrier分别装入冻存管,冻存管盖不宜拧的过紧,然后迅速转移到冷冻替代仪样品腔室的冻存管架里。3 冷冻替代 步骤 温度 时间 1 -100℃ -90℃ 4h 2 -90℃ 72h 3 -90℃ -60℃ 8h 4 -60℃ 8h 5 -60℃ -30℃ 4h 6 -30℃ 8h 7 -30℃ -20℃ 2h 8 -20℃ 8h 9 -20℃ 4℃ 2h 10 4℃ 1h 温度达到4℃后,用4℃的丙酮浸洗样品3次,每次15分钟。此过程中,会有部分样品与Carrier分离,若还有没分离的可以用解剖针将样品从Carrier中剥离。4 渗透包埋分别用以下渗透液渗透。 步骤 渗透液 浓度 时间 1 Epon812/丙酮 1:1 1.5-2h 2 Epon812/丙酮 3:1 6-12h 3 Epon812 100% 1h 4 Epon812 100% 8h 5 Epon812 100% 1h然后将样品转移至包埋槽,60℃烘箱聚合48h。5 超薄切片把两种生物样品对应的每一个包埋块分别超薄切片,各捞两个铜网,并染色。6 电镜观察观察细胞内超微结构保存情况,对感兴趣区域拍照。终于有所改善,如下图的小鼠肝脏细胞,轮廓十分清楚,结构保存完好。http://ng1.17img.cn/bbsfiles/images/2016/09/201609231516_611895_2423894_3.jpg局部放大后观察,能看见核孔,双层核膜,甚至是膜的磷脂双分子层结构(这是在常规化学固定制样中很难看到的),看到这些让人激动不已。http://ng1.17img.cn/bbsfiles/images/2016/09/201609231516_611894_2423894_3.jpg碰巧看见一个正在分裂的线粒体。线粒体脊很清楚,双层膜紧挨着,不像常规制样间隙那么大。另外,线粒体基质保存完好,所以线粒体整体较细胞基质反差大。http://ng1.17img.cn/bbsfiles/images/2016/09/201609231516_611893_2423894_3.jpg以下是常规化学固定制样的结果,可与上面高压冷冻及冷冻替代制样技术结果对比:http://ng1.17img.cn/bbsfiles/images/2016/09/201609231644_611928_2423894_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609

  • 【资料】苯的结构

    苯是有机化学工业基本原料之一,是在1825年由英国物理学家和化学家法拉第(Michael Faraday,1791-1867)通过分离煤焦油而首先发现的。1834年,德国科学家E• F• 米希尔里希(Mitscherlich,1794-1863)将此液体命名为苯。随后,苯的分子量和分子式也由化学家相继确定,但是如何确定苯的结构式却成了一个难题。  德国化学家凯库勒(Friedrich August Kekule,1829-1896)是一位极富想象力的学者,他曾提出了碳原子四价学说和碳原子之间可以相连成-C-C-链状结构这一重要学说。在此基础上,于1865年,他提出了苯的环状结构学说,他认为苯的结构可想象为6个链形碳原子闭合而成。他在提出了多种开链式结构而又因其与实验结果不符而被一一否定之后,终于悟出闭合链的形式是解决苯分子结构的关键,他先以(Ⅰ)式表示苯结构,1866年他又提出了(Ⅱ)式,后简化为(Ⅲ)式(图2),也就是我们现在所说的凯库勒式,由此确定了苯的结构。  苯的结构理论的确立,促进了近代结构理论的发展,对有机化学的贡献是巨大的。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制