当前位置: 仪器信息网 > 行业主题 > >

聚合体生成量

仪器信息网聚合体生成量专题为您整合聚合体生成量相关的最新文章,在聚合体生成量专题,您不仅可以免费浏览聚合体生成量的资讯, 同时您还可以浏览聚合体生成量的相关资料、解决方案,参与社区聚合体生成量话题讨论。

聚合体生成量相关的资讯

  • 岛津温控型生物制药聚合体分析系统上市
    岛津公司近日推出温控型生物制药聚合体分析系统。温控型生物制药聚合体分析系统是在常规的生物制药聚合体分析系统的基础上加入了温控组件。产品主要特点如下:1、定量评价亚可见颗粒(SVP)的浓度  温控型生物制药聚合体分析系统能够测定7纳米至800微米范围内的聚合体颗粒的粒度。使用生物制药定量软件可实现亚可见区颗粒区(100纳米- 10微米)的浓度定量分析(单位:毫克/升)2、 高灵敏度的测定聚合过程  可测定浓度 106个/ml 的1μm的粒子,对于生物药样品,一次分析仅需要0.4mL样品3、以1秒间隔高速定量监测聚合过程  能够以1秒间隔连续监测聚合物中的粒径和量的变化, 能够对各个中间态进行监测,从而评估反应速率。使用微量样品池( 5ml样品容量)能够对机械剌激导致的聚合过程进行观测4、具有温控系统以及搅拌功能  可以在一定温度条件下一边施加物理压力一边实时监测聚合体生成量,从而实现蛋白质稳定性的加速试验,通过加速试验可以快速确定蛋白质合适的包装容器材质,了解其稳定温度,有助于提高生物医药产品研发和生产流程的工作效率。
  • 岛津温控型生物制药聚合体分析系统上市
    岛津公司近日推出温控型生物制药聚合体分析系统。温控型生物制药聚合体分析系统是在常规的生物制药聚合体分析系统的基础上加入了温控组件。 产品主要特点如下:1, 定量评价亚可见颗粒(SVP)的浓度温控型生物制药聚合体分析系统能够测定7纳米至800微米范围内的聚合体颗粒的粒度。使用生物制药定量软件可实现亚可见区颗粒区(100纳米- 10微米)的浓度定量分析(单位:毫克/升)2, 高灵敏度的测定聚合过程可测定浓度 106个/ml 的1μm的粒子,对于生物药样品,一次分析仅需要0.4mL样品3, 以1秒间隔高速定量监测聚合过程能够以1秒间隔连续监测聚合物中的粒径和量的变化, 能够对各个中间态进行监测,从而评估反应速率。使用微量样品池( 5ml样品容量)能够对机械剌激导致的聚合过程进行观测4, 具有温控系统以及搅拌功能可以在一定温度条件下一边施加物理压力一边实时监测聚合体生成量,从而实现蛋白质稳定性的加速试验,通过加速试验可以快速确定蛋白质合适的包装容器材质, 了解其稳定温度,有助于提高生物医药产品研发和生产流程的工作效率。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • “小”仪器在聚合反应中的“大”作用
    反相乳液聚合是制备水溶性高聚物的重要方法之一。反相乳液自身具有诸多的优点,这使得反相乳液聚合技术在现代工业中的应用越来越广泛。但由于其稳定性差,因此提高其稳定性成了亟待解决的问题。 目前,提高反相乳液稳定性的方法主要有优化聚合体系的配方和操作条件。西南石油大学化学化工学院先用相转变法制备单体乳液,再进行反相乳液聚合的方法,即相转变-反相乳液聚合。其中对搅拌器的型式要求很高,因为其会直接影响乳液产品的质量。 该研究组人员还利用显微镜、粘度计等考察了双叶弯叶浆(A)、三叶折叶浆(B)、四叶平直浆(C)、锚式(D)、框式(E)搅拌器对相转变-反相乳液聚合体系的散热和聚合物乳液性能的影响。下列是五种搅拌器的简图: 经过一系列的实验验证,最终得出:不同搅拌器下聚合体系达到最高温度的高低顺序为:ACEBD;不同搅拌器所得聚合物乳液的黏度大小顺序为:ACEBD;Mn(相对分子质量)的大小顺序为:ACEBD。搅拌器的散热能力越差,聚合物乳液的相对分子质量分布越宽。双叶弯叶桨搅拌器更适于相转变-反相乳液聚合,所得聚合物乳液的静置稳定时间大于90天。
  • 揭秘岛津生物药聚集体粒子表征的创新之道
    导读生物药发生聚集后药效会明显减弱,还可能导致人体出现休克,岛津基于流动成像技术开发的粒子分析系统,对生物药中亚可见类聚集体以及不溶性微粒物或外源性组分检测提供了全新分析手段。 受新冠疫情影响,世界各国经济遭受重创,在面临资本寒冬的大环境中生物医药产业一枝独秀,逆势增长,俨然成为世界经济发展以及全球健康保障的指明灯。生物药可对病原体进行特异性攻击,副作用小,药效显著,但易受到环境温度、压力、存储条件、外界异物引入等因素影响而发生聚集。研究表明,生物药发生聚集后药效会明显减弱或消失,严重时还会因免疫反应而导致人体出现休克症状。 对于生物聚集体的分析,小于100nm的不可见聚集体通常使用空间排阻色谱法(SEC)检测,对于10um以上可见区聚集体美国药典和日本药典规定使用光阻法进行检定,但在100nm至10um之间并无合适的定量评价方法。2020版中国药典第四部关于不溶性微粒物检查,第一法光阻法,第二法显微计数法。光阻法只能给出计数浓度,不能查看粒子形貌及聚集状态,显微计数法虽然能查看粒子形貌及个数,但检定效率低且代表性差。 图1 生物聚集体大小及粒径范围分布 岛津iSpect DIA-10基于流动成像技术开发的粒子分析系统综合了粒度、显微观察、粒子计数三类仪器的特点,可以精确捕捉粒子形貌、粒径大小分布、能对不同大小粒子进行有效区分并给出对应粒径范围粒子的计数浓度结果,最低仅需50uL样品消耗且有非常高的灵敏度。对于生物药中亚可见类聚集体的检定以及相关的不溶性微粒物或外源性组分检查可提供一个全新分析手段。图2 岛津iSpect DIA-10动态颗粒图像分析系统 应用实例 生物药中不溶性亚可见微粒物的检查 样品处理:人体免疫球蛋白(1mg/mL)两份,一份80℃加热3min,一份机械搅拌10min样品分析:使用iSpect DIA-10分别观察其蛋白聚集形成状态 图3 80℃加热3min后粒子状态 图4 机械搅拌10min后粒子状态 图5 粒子检定结果 生物蛋白聚集体的粒径范围一般在0.2~10um之间,传统的蛋白聚集体评价方法中存在“无法一次性完成亚可见区的测定、”无法边施压(加热或机械刺激)边测定“、”无法回收已测样品“和“无法进行定量”等问题。岛津开发的生物医药聚集体评价系统Aggregates Sizer可以完美解决上述问题。图6 生物聚集体评价系统Aggregates Sizer ? 定量评价生物聚合体浓度(ug/mL)? 高灵敏度生物聚合体分析,一次仅需0.4mL? 具有温度控制及机械搅拌功能? 间隔1秒的超快速聚集过程监控? 可进行超过15小时的连续不间断测定 应用实例 不同温度及机械压力刺激下,生物蛋白聚集情况分析 样品:静脉注射免疫球蛋白(IVIG)热压力处理:在70℃下对1mL IVIC溶液进行5、7、9分钟培养后,取0.4ml进行测定机械刺激处理:5mL IVIC溶液室温中按190次/分钟速度搅拌,进行8个小时的连续测定 通过Aggregates Sizer生物医药聚集体评价系统对聚集体粒径、生成的聚集体浓度随时间的变化进行评价,结果如图7、图8所示。由图可知,施加热压力时,只在0.2um附近增加聚合体,而1um以上的粒径处并未生成聚集体。施加机械刺激时,随着时间的增加,可以发现在0.2~10um区域聚集体增加。FDA认证中将亚可见区分为0.2~2um和2~10um两个区域进行分别评价,而使用Aggregates Sizer只需一次测定即可得到整个区域的聚合体生成量信息。Aggregates Sizer采用的qLD法可以有效评价蛋白质在研发制造过程中受热压或机械刺激对生物药品的影响评价。图7 70℃加热 图8 190次/分钟速度搅拌 总结 生物药具有副作用小药效显著的特点,但在生产、运输、使用过程中容易产生聚集而影响药效,在生物聚集体大量存在的100nm~10um粒径范围内并无有效的评价方法,无相关的在线模拟实验(温度、机械压力影响)手段、无法进行定量分析、无法回收已测样品等,针对这一系列问题,岛津开发的Aggregates Sizer生物医药聚集体评价系统以及基于流动成像技术开发的iSpect DIA-10粒子分析系统可以很好的解决上述问题,可为生物药开发及品质监控提供全新的解决方案。
  • 科学家通过非接触式亚微米红外拉曼同步成像技术研究高内相乳液聚合演变过程
    在高内相乳液(HIPE)中,初始离散单元在聚合过程中或之后转变成由窗口高度互联聚合体的时间和方式,一直是一个有争议的问题。其中,以苯乙烯/二乙烯苯作为油相的油包水高内相乳液,是该领域研究的一个热点体系。在诱导聚合过程中,以支化的聚乙烯亚胺(PEI)为亲水端和聚苯乙烯(PS)链作为疏水端。这类大孔表面活性剂可以在大剂量范围内稳定HIPE并导致不同的开孔多聚形态。然而由于受到表征技术的限制,原位探测上述过程详细的机理仍然较为困难。Photothermal Spectroscopy Corp研发的光学光热红外(optical photothermal infrared)表面成像新技术可适用于液体环境测试,为探索polyHIPE的窗口形成机理提供了机会。光学光热红外技术通过探测红外光被吸收后所诱导的热响应信号来测试待测样品的红外振动峰,该技术有四大优势:使用可见光为检测光,可以将分辨率提高到 ~ 500 nm;非接触式的光学显微镜;分辨率不依赖于红外光波长;不会产生弥散的伪影。有鉴于此,同济大学万德成教授课题组与Photothermal Spectroscopy Corp合作,利用基于光学光热红外技术(O-PTIR)技术的非接触亚微米分辨红外拉曼同步测量系统mIRage(图1),对polyHIPE的聚合体进行了红外光谱和成像分析,探究其演变过程及形成机理。图1. A) 3%表面活性剂用量诱导的polyHIPE选取区域的光学照片,B)相应的mIRage图(条件: 红色代表强烈的反应,绿色代表几乎没有反应,而黄色代表对1492 cm-1处的激光束的中等反应),C)插图为典型的选定区域附近的局部表面形貌(通过SEM),D) 插图为立方状样品的光学照片(?5×5×5 cm3)如图1B所示,PS对在1492 cm-1处激光束有红外响应,对新鲜的多聚体表面进行该波长激光扫描,发现了三个有代表性的区域。区域1几乎没有PS信号,说明表面完全覆盖 PEI 大孔表面活性剂, 对其他组成不太敏感 , 区域3显示 一 个 强烈红外信号,对应 PS 块体人工样品处理后的横截面。区域2呈现出岛状的PS微区,点缀在大孔表面活性剂覆盖的表面。由此推断,PS微区可能起源于相分离诱导的大孔表面活性剂的析出。图2. 在1600 (绿色)和1492 cm-1(红色)激光束照射下的多聚体表面的mIRage 2D O-PTIR图像。B)一系列的FTIR光谱提取采样点(箭头尾)。每个采样点的高度比为1600/1492 cm-1,如(C)所示,相邻的采样点为250 nm进一步对区域2进行1600和1492 cm-1位置逐点热成像扫描得到二维图像(图2A),可以观察到一个不均匀的表面,表明发生了相分离。1600和1492 cm-1的波长分别用绿色和红色表示,PS对1600和1492 cm-1的激光束均有红外响应, PEI也对1600 cm-1的激光束有红外响。因此,如果表面仅仅是由PS决定的,那么1600和1492 cm-1的强度比应该不发生变化。1600/1492 cm-1红外强度比分布图(图2C)以及线性点提取红外光谱(图2B)都可以显示目标位置的表面化学成分,证实了相分离的发生。综上所示,非接触亚微米分辨红外拉曼同步测量系统mIRage为polyHIPE表面相分离的存在提供了强有力的证据,有助于未来窗口的发展。 参考文献:[1]. C. H. Li, M. Jin, D.C. Wan, Evolution of a Radical-Triggered Polymerizing High Internal Phase Emulsion into an Open-Cellular Monolith, Macromol. Chem. Phys. 2019, 220, 1900216.
  • 王宏伟、刘迎芳课题组合作揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构
    p  2015年1月22日,《Molecular Cell》杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 Å Resolution”的流感病毒RNA聚合酶复合体的结构和功能研究方面的重要研究成果。/pp  流感病毒属负链RNA病毒,有A、B和C型三种类型。其中,A型流感病毒是具有极强的致病性和传播能力的流感病毒种类,在过去有记录的人类历史上,曾经反复爆发,造成人类社会巨大灾难。由于流感病毒的快速变异特点,可以不断产生具有抗药性、高致病性的新毒株,从而对人类健康构成长期的重大威胁。流感病毒的复制和转录由其自身编码的流感病毒RNA聚合酶复合体负责,揭示流感病毒RNA聚合酶复合体的复制机制是控制流感病毒的关键所在,国际上对此项研究高度重视。流感病毒聚合酶包括PA,PB1和PB2三个亚基,总分子量约为250KD。对这一复合体的结构研究是揭示该复合体工作机制的关键条件之一。虽然对其结构研究的历史可追溯长达四十年,但是由于研究该复合体的难度,该复合体结构一直没有得到解析。由于其极端重要性,国际上众多国家的研究团队竞相对此开展了长期的研究,竞争十分激烈。/pp  经过长期不懈的努力,由生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室最终经过通力合作,通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。四聚体的每个单体内部有一个空腔。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,推测是进行RNA合成反应的区域。其活性中心结构与正链RNA聚合酶具有相似性,由此提出推测了流感病毒合成新生RNA链的机制。在四聚体复合物中,四个单体以D2对称性排列构成一个近似正方形结构。进一步的生物化学与功能研究发现该RNA聚合酶的寡聚状态与其结合的不同RNA底物相关,并可以发生单体-二体-四体之间的四级结构转换,多聚体界面残基的突变可以大大降低流感病毒的活力。在此基础上该论文首次提出了流感病毒转录和复制的转换模型,即四聚体是该复合体复制状态,而单体很可能是转录状态。在该论文的审稿过程中,法国的一个研究组率先在Nature杂志同时发表了两篇文章,分别报道了B型和蝙蝠流感病毒RNA聚合酶复合体的晶体结构。晶体结构验证了冷冻电镜解析的结构模型,但是与本工作揭示的A型流感不同,这些聚合酶仅以单体形式存在,因此无法提出复制的可能机制。/pp style="text-align:center "img alt="" height="585" src="http://life.tsinghua.edu.cn/userfiles/image/2015/0123_t.jpg" width="600"//pp  该项目主要研究成员包括生物物理所常胜海、孙大鹏博士、梁欢欢博士、清华大学生命科学联合中心博士研究生王家等十余名联合攻关团队成员。参加本课题研究的还有:美国UCLA的程根宏教授研究组、瑞士Paul Scherrer Institute的Dr. Meitian Wang研究组、清华大学王佳伟研究组以及浙江大学医学院感染性疾病协同创新中心的李兰娟教授研究组等。该工作的高分辨率冷冻电镜数据采集于国家蛋白质科学研究(北京)设施清华大学a href="http://www.instrument.com.cn/zc/1139.html"冷冻电子显微镜/a平台,也获得了中科院生物物理所a href="http://www.instrument.com.cn/zc/1139.html"电镜/a中心的大力帮助。该项研究课题得到了中国科学院先导B项目、科技部和国家自然科学基金委的资助。/p
  • 中科院过程所杨超/张庆华:乳液聚合过程中乳胶粒度分布的测定方法
    在乳液聚合过程中,聚合产物粒度分布的演变过程反映了乳液聚合反应的进行程度,对实验的关键现象、聚合机理以及最终产物的性能均有很大影响。本文综述了乳液聚合过程中粒度分布的测量方法,包括现有的离线(off-line)、半在线(on-line)和在线测量(in-line)方法。对比分析了各种测量方法的原理、分辨率、性能、优缺点等。此外,还探讨了在线测量技术的困难和挑战,并给出了几种原理上可行的发展方向或解决方案。乳液聚合颗粒粒径一般小于500 nm,并且为了满足产品性能需求粒径分布可能会出现多峰,因此对测量方法的分辨率有较高要求;同时为满足生产过程中的实时调控,对粒径分布的测量时间提出更严格要求。为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。离线测量方法需要手动采样等准备工作,它们主要包括(但不限于)光散射技术(例如,动态光散射,DLS)、显微镜技术(例如,扫描电子显微镜,SEM)和分离技术(例如,毛细管流体动力学分级,CHDF)。在所有的粒径分布测量方法中,尽管离线测量技术需要诸如采样等耗时的分析准备工作,其仍是使用最广泛的技术,但它不能实时反映乳胶的粒径分布。电子显微镜测量作为一种典型的离线测量方法,其测量结果是绝对且准确的,因此可以用作参考标准。目前,成熟的工业光学显微镜(例如共聚焦光学显微镜)的分辨率可以达到亚微米级(100 nm),其可以在一定的测量范围内代替电子显微镜进行离线粒径分布测量。以DLS为代表的光散射技术是一种相对方便的技术,在离线测量方法中测量时间最短,但不适用于测量多分散性体系。分离技术操作相对简单,适用于几乎所有的多分散体系,但是某些分离测量技术必须使用校准曲线。对于多分散体系,可以先使用分离技术将它们分为几个单分散组,然后再使用DLS技术进行精确测量。由于离线测量方法需要进行手动取样等准备工作,所以其非常耗时;为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。与仅需要一个分析仪器的离线测量方法不同,半在线和在线测量方法通常需要一组设备来构成分析系统。半在线测量是将离线测量仪器连接到反应器以完成自动采样,稀释和其他准备工作。“自动连续在线监测聚合反应(ACOMP)”是一个具有代表性的半在线测量粒径分布系统。半在线测量在一定程度上缩短了测量时间,但仍然无法避免采样和其他准备步骤。在线测量技术不进行采样,其直接使用光学原理等技术来实时监测反应器中的乳液聚合过程以获取粒度分布。由于在线测量技术避免采样等耗时的准备工作,其测量时间进一步缩短;然而,乳液聚合过程中粒度分布的在线测量并不是一种“完善的”测量技术。目前,仅有少数报道尝试探索这种方法用于特定的乳液聚合体系,并且现在还没有成熟的商业应用工具。主要原因是现有仪器缺乏测量精度,无法在高浓度的多相系统中处理来自不同粒子相的重叠信号,或无法捕获运动粒子的清晰图像。论文给出了乳液聚合颗粒粒径分布在线测量的几种可行的发展方向和解决方案,如:(1)直接使用光学原理进行实时测量粒度分布,例如光散射技术。光源发出的激光直接与反应器中的聚合物颗粒相互作用,然后检测器接收光信号并完成光电转换,最后使用特定的算法对光电信号进行分析,以获得粒度分布。该方法的困难在于光散射技术的原理是基于单散射理论,因此对粒子浓度有特殊要求。如果使用此技术实时监控聚合物颗粒的粒度分布,则需修改反应配方以降低聚合物颗粒的浓度,以便消除来自不同颗粒的重叠信号。(2)使用光学显微镜对反应器中的胶乳直接成像并用高速相机拍摄,然后使用图像分析技术进行实时分析,从而实现在线监测粒度分布的演变。电子显微镜分析过程中样品不能含水,因此使用电子显微镜基本上不可能进行在线测量。高分辨率光学显微镜(例如共聚焦显微镜)对样品的要求比电子显微镜要少,因此有可能实现在线测量粒度分布。该测量方案的难点在于高速相机是否可以快速捕获高速移动的纳米级聚合物颗粒。同时,该方案的局限性在于它只能实时监测焦平面中的聚合物颗粒,并且对反应器有很高的要求(例如高透光率)。(3)尽管一些学者认为在线测量应该避免经验模型,但是软传感器技术是一种很有前景的在线测量技术。然而,这种方法的困难在于缺乏精确的在线测量设备去验证模型。一种可行的方法是全面且多方位研究特定乳液聚合反应体系以获得足够的粒度分布数据,然后与大数据或人工智能技术相结合,以预测或计算在新的工作条件下的粒度分布。作者及团队介绍张庆华,男,1980年12月生,中国科学院过程工程研究所副研究员、硕士生导师,中国科学院大学授课教师,中国化工学会过程强化委员会青年委员,中国化工学会混合与搅拌专业委员会委员。2005-2009年中国科学院过程工程研究所攻读博士学位,2019.2—2020.2美国Iowa State University访问学者(美国李氏基金资助),合作导师为国际著名多相流专家Rodney O Fox教授。主持或参加多项国家自然科学基金、863项目、国家重点研发计划等项目。发表论文30多篇,申请专利10余项,撰写专著一章(多相反应器模拟、放大和过程强化,第三章)。长期从事聚合反应工程、多相流的在线测量和数值模拟等研究工作。 杨超,男,1971年8月生,江苏睢宁人。研究员、博士生导师。2010年获国家杰出青年科学基金。科技部“中青年科技创新领军人才”。中国科学院绿色过程与工程重点实验室常务副主任、绿色化学工程研究部主任。1993年南京化工学院化工系毕业后硕博连读,1998年获博士学位(导师为时钧院士和徐南平院士)。1998—2000年中国科学院化工冶金研究所博士后,在陈家镛院士和毛在砂研究员指导下,从事多相过程数值模拟和反应工程研究。2005—2006年美国康奈尔大学高访(美国李氏基金资助)。2019年获国家科技进步二等奖,2016年获何梁何利基金科学与技术创新奖,2015年获国家技术发明二等奖,2014年获中国工程院光华工程科技奖-青年奖,2013年获中国化学会-巴斯夫公司青年知识创新奖,2012年获日本化学工学会亚洲研究奖(SCEJ Asia Research Award),2011年获中国青年科技奖、中国科学院青年科学家奖,2010年获茅以升科学技术奖——北京青年科技奖,2009年获国家自然科学二等奖。2012年被评为全国优秀科技工作者,2015年获评中国科学院先进工作者。已发表SCI论文150余篇,出版英文专著1本,申请专利60余件,计算软件著作权29项。 研究团队多年以来一直应用多相流体力学、传递原理、反应工程等多学科方法,依据机理及验证实验、理论分析、数学模型和数值计算方法,开展多相搅拌反应器、聚合反应器和结晶反应器等的流动、传递、反应和传热的实验和数值模拟相关研究,在计算流体力学和计算传递学新方法、多相传递和反应耦合数学模型和数值模拟、多相体系的测量方法以及搅拌釜反应器内新型桨和内构件设计等方面有丰富的工作积累。获得2009 年的国家自然科学二等奖、2015年的国家技术发明二等奖和2019年国家科技进步二等奖。
  • 揭秘岛津生物药聚集体粒子表征的创新之道
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "受新冠疫情影响,世界各国经济遭受重创,在面临资本寒冬的大环境中生物医药产业一枝独秀,逆势增长,俨然成为世界经济发展以及全球健康保障的指明灯。生物药可对病原体进行特异性攻击,副作用小,药效显著,但易受到环境温度、压力、存储条件、外界异物引入等因素影响而发生聚集。研究表明,生物药发生聚集后药效会明显减弱或消失,严重时还会因免疫反应而导致人体出现休克症状。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/ae33f487-b53d-426d-88fa-4973b5dcfcbb.jpg" title="1.jpg" alt="1.jpg"//span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "对于生物聚集体的分析,小于100nm的不可见聚集体通常使用空间排阻色谱法(SEC)检测,对于10um以上可见区聚集体美国药典和日本药典规定使用光阻法进行检定,但在100nm至10um之间并无合适的定量评价方法。2020版中国药典第四部关于不溶性微粒物检查,第一法光阻法,第二法显微计数法。光阻法只能给出计数浓度,不能查看粒子形貌及聚集状态,显微计数法虽然能查看粒子形貌及个数,但检定效率低且代表性差。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/209b379b-870b-4e36-908c-369cae988b7e.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center text-indent: 2em "strongspan style="font-family: 宋体, SimSun "图1 生物聚集体大小及粒径范围分布/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "岛津iSpect DIA-10基于流动成像技术开发的粒子分析系统综合了粒度、显微观察、粒子计数三类仪器的特点,可以精确捕捉粒子形貌、粒径大小分布、能对不同大小粒子进行有效区分并给出对应粒径范围粒子的计数浓度结果,最低仅需50uL样品消耗且有非常高的灵敏度。对于生物药中亚可见类聚集体的检定以及相关的不溶性微粒物或外源性组分检查可提供一个全新分析手段。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/32d542bd-19df-418c-ab7e-f5202ba39c0c.jpg" title="3.png" alt="3.png"//pp style="text-indent:36px text-align:center line-height:120%"a href="https://www.instrument.com.cn/netshow/C390622.htm" target="_self"span style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) text-decoration: underline font-family: 宋体, SimSun "图2 岛津iSpect DIA-10动态颗粒图像分析系统/span/strong/span/a/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "应用实例:生物药中不溶性亚可见微粒物的检查/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品处理:人体免疫球蛋白(1mg/mL)两份,一份80℃加热3min,一份机械搅拌10min/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品分析:使用iSpect DIA-10分别观察其蛋白聚集形成状态/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/f21eba36-d161-4013-9e03-71c806dab510.jpg" title="4.png" alt="4.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/b69d824b-dbef-4341-914e-027cc8bfa68c.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "生物蛋白聚集体的粒径范围一般在0.2~10um之间,传统的蛋白聚集体评价方法中存在“无法一次性完成亚可见区的测定、”无法边施压(加热或机械刺激)边测定“、”无法回收已测样品“和“无法进行定量”等问题。岛津公司开发的生物医药聚集体评价系统Aggregates Sizer对上述问题有如下解决方案:/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/22689e1b-d6f5-43e4-954d-b8975108ee69.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "应用实例:不同温度及机械压力刺激下,生物蛋白聚集情况分析/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品:静脉注射免疫球蛋白(IVIG)/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "热压力处理:在70℃下对1mL IVIC溶液进行5、7、9分钟培养后,取0.4ml进行测定/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "机械刺激处理:5mL IVIC溶液室温中按190次/分钟速度搅拌,进行8个小时的连续测定/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "通过Aggregates Sizer生物医药聚集体评价系统对聚集体粒径、生成的聚集体浓度随时间的变化进行评价,结果如图7、图8所示。由图可知,施加热压力时,只在0.2um附近增加聚合体,而1um以上的粒径处并未生成聚集体。施加机械刺激时,随着时间的增加,可以发现在0.2~10um区域聚集体增加。FDA认证中将亚可见区分为0.2~2um和2~10um两个区域进行分别评价,而使用Aggregates Sizer只需一次测定即可得到整个区域的聚合体生成量信息。Aggregates Sizer采用的qLD法可以有效评价蛋白质在研发制造过程中受热压或机械刺激对生物药品的影响评价。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/c2534c58-481b-4f10-b689-019e91bc3562.jpg" title="7.png" alt="7.png"//span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "总结/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "生物药具有副作用小药效显著的特点,但在生产、运输、使用过程中容易产生聚集而影响药效,在生物聚集体大量存在的100nm~10um粒径范围内并无有效的评价方法,无相关的在线模拟实验(温度、机械压力影响)手段、无法进行定量分析、无法回收已测样品等,针对这一系列问题,岛津公司开发的Aggregates Sizer生物医药聚集体评价系统以及基于流动成像技术开发的iSpect DIA-10粒子分析系统可以很好的解决上述问题,为生物药开发及品质监控提供全新的解决方案。/span/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "作者:刘舟/span/strong/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "岛津企业管理(中国)有限公司/span/strong/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "高级技术专家/span/strong/p
  • 岛津应用:基于Aggregates Sizer的蛋白质稳定性加速试验
    生物药品在生产、保管和运输过程中,会接触到金属、树脂、玻璃等各种物质,并且药品容器有不同的材质,蛋白质的稳定性会因其发生变化。因此,必须选择适当的材质作为容器。在实际制造工序中,从几种材质中进行选择将提高成本,并且需要长达几个月的时间进行验证。但如果通过加速试验事先选择材质,将有助于提高生物医药品生产流程的效率。在本次分析中,我们使用生物药品聚合体分析系统AggregatesSizer TC(带温控功能)(以下简称为Aggregates SizerTC)附带的3种材质的搅拌盘(PEEK、不锈钢、玻璃),在一定温度下一边施加物理性压力一边监控聚合体生成量,以进行蛋白质稳定性的加速试验。由此可知,不同材质对聚合体产生的不同影响以及评价稳定性时温控的重要性。本文将进行详细说明。 图1 生物药品聚合体分析系统Aggregates Sizer TC(带温控功能)(a)主机(b)循环恒温槽(c)批量检测池(带温控功能)(d)监控画面 了解详情,敬请点击《使用Aggregates Sizer(带温控功能)进行蛋白质稳定性的加速试验》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析Mia Summers和Michael O&rsquo Leary沃特世公司(美国马萨诸塞州米尔福德)应用优势■ 既能对聚合物进行快速表征又不会降低性能水平■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案ACQUITY 超高效聚合物色谱(APC&trade )系统ACQUITY APC XT色谱柱沃特世聚合物标准品带有GPC选项的Empower 3色谱数据软件关键词聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(5 &mu m)的色谱柱已投放市场,并能提高GPC分离速度,但分离速度会因色谱柱本身的最大工作压力偏低而受限。此外,常规GPC仪器的系统体积较大,这需要使用较大直径的色谱柱以减缓可能导致分辨率降低的系统峰展宽。沃特世ACQUITY超高效聚合物色谱(APC)系统与亚3 &mu m杂化颗粒色谱柱相结合,可增强系统稳定性并能在更高压力下确保流速准确性。此外,APC系统的总体扩散度低,能显著提升分辨率,在分析低分子量低聚物时尤为明显。提高分离低分子量低聚物的分辨率并缩短运行时间能对聚合物工艺开发进行快速监测,提早检测出新的聚合物类型并从总体上加快聚合物新产品的上市进程。这篇应用纪要将基于ACQUITY APC系统的分离与基于常规GPC的分离进行了比较。本文将会说明使用一种采用亚3 &mu m杂化颗粒技术色谱柱的低扩散系统能加快分析速度,提高分辨率并有助于对低分子量低聚物进行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验Alliance GPC系统条件检测器: 2414 RI (示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1mL/min色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu LACQUITY APC系统条件检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1 mL/min色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu L数据管理Empower 3色谱数据软件样品1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL)结果与讨论为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。结论由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • NIR-II半导体聚合物点:链堆积调节和深部组织中的高对比度血管成像
    研究内容:近红外二区(NIR-II)窗口的荧光成像在研究血管结构和血管生成方面引起了人们的极大兴趣,为早期疾病的精确诊断提供了有价值的信息。然而,由于荧光团的强光子散射和低荧光亮度,对深层组织中的小血管成像仍然具有挑战性。本文描述了作者在荧光探针设计和图像算法开发方面的共同努力。首先,使用聚合物共混策略来调节大型刚性NIR-II半导体聚合物的链堆积行为,以产生紧凑明亮的聚合物点(Pdots),这是小血管体内荧光成像的先决条件。进一步开发了一种稳健的Hessian矩阵方法来增强血管结构的图像对比度,特别是小血管和弱荧光血管。与原始图像相比,在全身小鼠成像中获得的增强的血管图像在信噪比(SBR)方面表现出超过一个数量级的改善。利用明亮的Pdots和Hessian矩阵方法,作者最终进行了颅骨NIR-II荧光成像,并在携带脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑血管系统。Pdots探针开发和成像算法增强的研究为深层组织的NIR-II荧光血管成像提供了一种很有前景的方法。图1.(a)NIR-II半导体聚合物的分子结构。(b)由纯NIR-II半导体聚合物制备的聚集体或线状聚合物纳米结构的TEM图像。(c)通过将短刚性半导体聚合物与NIR-II半导体聚合物共混得到小球形Pdots的TEM图像。首先,作者研究了由两组氟取代的半导体聚合物制备的NIR-II Pdots的大小和形态,单纯的NIR-II聚合物纳米颗粒是通过再沉淀法制备的,透射电子显微镜(TEM)观察纳米粒子呈现大尺寸和线状形态。通过混合NIR-II聚合物和CN-PPV获得的Pdots的大小和形态发生了显著变化。从TEM图像可以看出,所有六种类型的混合Pdots均表现出小尺寸和球形形态,与纯CN-PPV Pdots相似。CN- PPV聚合物在Pdots形成过程中具有协同效应,迫使大的刚性聚合物主链折叠并扭曲NIR-II聚合物的链堆积,从而形成小尺寸的球形形态。这表明混合具有小共轭长度的传统半导体聚合物是制备小尺寸球形NIR-II Pdots的可靠策略。图2. m-PBTQ4F Pdots与不同比例的(a)PSMA聚合物、(b) PS-PEG-COOH聚合物和(c) CN-PPV聚合物混合的TEM图像。实验证实,只有共轭聚合物,才能有效调节NIR-II半导体聚合物的链堆积行为,产生小球形的Pdots。作者研究了不同质量分数的NIR-II聚合物m-PBTQ4F分别与PSMA、PS-PEG-COOH和CN-PPV共混制得的纳米粒子的形态变化。对于PSMA和PS-PEG-COOH,所得到的大多数纳米颗粒都呈短丝状形态。虽然通过共混(1:1比例)可以减小粒子的尺寸,但粒子的尺寸分布很大,在透射电子显微镜中仍观察到部分椭圆形的纳米粒子。相反,当m-PBTQ4F与CN-PPV混合时,随着CN-PPV分数的增加,观察到了向单分散球形Pdots的明显形态演变。这些结果表明,共混刚性共轭聚合物可以有效调节NIR-II半导体聚合物的链堆积,得到致密的球形Pdots,而柔性两亲聚合物没有类似的效果。图3. (a)聚乙二醇化CN-PPV Pdots、m-PBTQ4F Pdots和 (b) 聚乙二醇化m-PBTQ4F/CN-PPV混合Pdots的吸收和发射光谱。(c)聚乙二醇化m-PBTQ4F/CN-PPV Pdots的流体动力学直径和TEM图像。(d)在808 nm连续辐射下ICG和Pdots在相同质量浓度的水中的光稳定性。为了使Pdots具有更长的血液循环时间,将m-PBTQ4F和CN-PPV聚合物组成的小尺寸Pdots进一步用两亲性PS-PEG-COOH官能化。观察三种类型Pdots的吸收和发射光谱,发现混合Pdots的吸收光谱与纯m-PBTQ4F和CN-PPV Pdots的吸收光谱一致。此外,混合的Pdots在可见光和NIR-II区域显示出双发射峰。动态光散射(DLS)测量和TEM结果显示,混合的Pdots呈球形,流体动力学直径约为20 nm。以临床批准的染料ICG为对照,对Pdots的光稳定性进行了表征,在808 nm激光持续照射2 h下,Pdots的荧光保持接近原始强度的88%,而ICG在10 min内完全光漂白,表明Pdots具有优异的光稳定性。与不同浓度的Pdots孵育24小时后的细胞存活率测定显示,Pdots的细胞毒性最小,静态溶血试验结果显示,Pdots的溶血活性可忽略不计。此外,在注射Pdots的小鼠的主要器官的苏木精和伊红(H&E)染色图像中未观察到明显异常。总之,这些结果表明聚乙二醇化m-PBTQ4F/CN-PPV Pdots是具有高亮度、光稳定性和生物相容性的小尺寸探针,有望用于体内成像应用。图4. (a)用于血管图像分割的Hessian矩阵方法示意图。(b)俯卧位采集的小鼠NIR-II荧光图像与(c)横截面强度分布。(d)仰卧位采集的小鼠NIR-II荧光图像与(e)横截面强度分布。首先进行预处理以抑制图像中的背景信号并增强血管的几何特征。进一步估计一系列的尺度因子,构造了平滑的高斯核,然后与图像进行卷积,得到Hessian矩阵的元素。然后,考虑管状结构的具体情况,推导出Hessian矩阵的特征值,最终得到血管增强图像。作者通过使用Pdots探针和Hessian矩阵方法展示了活小鼠的高对比度全身血管成像。。在静脉注射Pdots探针的小鼠的NIR-II荧光图像中,虽然注射的Pdots属于最亮的荧光团,但原始图像中几乎无法将荧光信号较弱的小血管与周围背景区分开,经Hessian矩阵法处理后,原始图像中的许多小直径血管和模糊血管均得到明显增强。从仰卧位的同一只小鼠的原始图像和增强图像中,血管结构明显增强,而来自肝脏的信号受到抑制,因为该方法只能提取具有管状结构的目标。图像处理后两条小血管的SBR较原图像增强了约13倍,说明Hessian矩阵算法对于提高全身荧光血管成像中弱小荧光血管的SBR有很强的效果。图5. 颅骨和头皮完整的小鼠的脑脉管系统的体内NIR-II荧光图像。(a)野生型C57BL/6小鼠和ND2:SmoA1小鼠的脑脉管系统NIR-II荧光图像以及(b)放大图像。(c)使用血管分割和量化算法,对野生型和荷瘤小鼠的脑血管系统中的血管长度和血管分支进行定量比较。接下来,作者使用NIR-II Pdots和Hessian矩阵法探索了小鼠脑深部组织血管成像。对正常小鼠和携带脑肿瘤的转基因ND2:SmoA1小鼠进行了头皮和颅骨脑部成像。与野生型动物相比,由于肿瘤的发展,ND2:SmoA1小鼠显示出更扭曲和紊乱的脑脉管系统,从原始荧光图像中很难识别横窦和小直径血管的轮廓,经Hessian矩阵法图像处理后,原始图像中多条小血管明显增强,横窦结构清晰。为了评估肿瘤生长中的血管形态,还定量分析了血管长度和血管分支,这些在原始图像中是无法获得的,因为它们的图像对比度低。从增强图像中提取的血管长度和血管分支统计分析表明,转基因脑肿瘤小鼠的这两个参数均显著高于野生型小鼠。血管形态的定量评估为研究肿瘤血管生成和诊断肿瘤恶性提供了一种有效方法。图6. 切除肝脏中血管的离体成像。(a)注射NIR-II Pdots期间肝脏中血管树的原始和增强图像以及(b)放大图像。(c)切除肝脏的照片。(d)从Pdots注射整个过程的NIR-II图像中获得的血管长度和(e)血管分支。(f)沿(b)中白色虚线标记的位置强度分布。接下来,进一步证明了使用NIR-II Pdots和Hessian矩阵方法在体外可视化大鼠肝脏血管结构的可行性。由于肝组织的强散射和吸收以及肝血管的复杂结构,肝血管成像是一项复杂的任务。原始图像在高度混浊的肝组织中显示出非常弱的荧光信号,而Hessian-matrix增强图像显示出高得多的SBR,肝血管成像中SBR的20倍以上增强。这些结果验证了Hessian矩阵用于血管成像的有效性,并为研究肝脏疾病中血管结构的发展提供了工具。图7. (a)颅骨完整的SD大鼠的脑脉管系统的体内NIR-II荧光图像和Hessian基质增强图像与(b)横截面强度分布。(c)大鼠切除的脑组织的亮场和荧光图像。(d) H&E染色图像。(e)健康大鼠和荷瘤大鼠脑切片荧光图像。最后,作者探索了大鼠模型中原位成胶质细胞瘤的颅骨内脑血管成像。由于颅骨更厚且光子散射更强,因此将大鼠脑可视化比将小鼠脑可视化更具挑战性。图像经Hessian矩阵法处理后,原始图像中的小直径血管明显增强,脑血管结构更加清晰可见且增强图像中的SBR有明显改善,与小鼠脑和肝血管成像结果一致。此外,进行离体NIR-II荧光成像,在来自不同组的切除的脑器官的亮场和荧光图像中,模型组肿瘤部位可见亮荧光,而对照组和假组未检测到明显信号。该结果表明,由于渗透性和滞留性增强(EPR)效应,Pdots在脑肿瘤中有效蓄积。对照组和荷瘤组脑切片的H&E染色图像,证实了脑中肿瘤的发展。除了链式堆积调制时,CN-PPV聚合物的混合也赋予Pdots橙色发射,从而能够通过常规共焦成像对组织切片进行显微镜检查,脑切片的共焦荧光图像表明Pdots在脑肿瘤中明显积聚。总之,这些结果证明了使用NIR-II荧光Pdots和Hessian矩阵法进行的大鼠脑高对比度颅骨血管成像。总结:作者设计了荧光Pdots并且开发了一种图像算法,用于小动物的高对比度血管成像。作者提出了一种聚合物共混策略,该策略可以有效地调节大的刚性NIR-II半导体聚合物的链堆积行为,产生用于小血管体内荧光成像的致密明亮的Pdots。此外,作者开发了一种有效的Hessian矩阵方法来增强血管结构的图像对比度,特别是小的和弱荧光的血管。在全身小鼠成像中,与原始图像相比,增强的血管图像在SBR中表现出超过一个数量级的改善。进一步证明了使用NIR-II Pdots和Hessian矩阵法离体可视化大鼠肝脏血管结构的可行性。原始图像显示高度混浊的肝组织的血管网络非常模糊,而Hessian矩阵图像在肝血管成像中显示SBR增强20倍以上。利用明亮的Pdots和Hessian矩阵法,最终进行了颅骨内荧光成像,并在荷脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑脉管系统。本研究将成像算法与NIR-II荧光Pdots相结合,显示出其在体内促进肿瘤血管生成及其他微循环相关疾病定量成像与研究的潜力。参考文献Chen, D. Qi, W. Liu, Y. Yang, Y. Shi, T. Wang, Y. Fang, X. Wang, Y. Xi, L. Wu, C., Near-Infrared II Semiconducting Polymer Dots: Chain Packing Modulation and High-Contrast Vascular Imaging in Deep Tissues. ACS Nano 2023, 17 (17), 17082-17094.⭐ ️ ⭐ ️ ⭐ ️ 近红外二区小动物活体荧光成像系统 - MARS NIR-II in vivo imaging system高灵敏度 - 采用Princeton Instruments深制冷相机,活体穿透深度高于15mm高分辨率 - 定制高分辨大光圈红外镜头,空间分辨率优于3um荧光寿命 - 分辨率优于 5us高速采集 - 速度优于1000fps (帧每秒)多模态系统 - 可扩展X射线辐照、荧光寿命、一区荧光成像、原位成像光谱,CT等显微镜 - 近红外二区高分辨显微系统,兼容成像型光谱仪 有不同型号的样机可以测试,请联系:艾中凯(博士)132 6299 1861⭐ ️ ⭐ ️ ⭐ ️ 恒光智影 上海恒光智影医疗科技有限公司,被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。 恒光智影,致力于为生物医学、临床前和临床应用等相关领域的研究提供先进的、一体化的成像解决方案。 与基于可见光/近红外一区的传统荧光成像技术相比,我们的技术侧重于近红外二区范围并整合CT, X-ray,超声,光声成像技术。 可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。⭐ ️ ⭐ ️ ⭐ ️ 上海恒光智影医疗科技有限公司地址:上海市浦东新区张江高科碧波路456号 B403-3室网址:www.atmsii.com邮箱:ai@atmsii.com电话:132 6299 1861 (同微信)
  • PerkinElmer推出DSC-拉曼光谱法联用系统
    差示扫描量热法与拉曼光谱法结合使用促进制药和聚合物研发 康涅狄格州舍尔顿,2009 年 9 月 28 日(美国商业新闻)- 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer, Inc.,推出其独有的差示扫描量热法 (DSC)-拉曼光谱法联用系统后,成为联用科学仪器领域的领导者。 DSC-拉曼系统集热分析和拉曼光谱法的优点于一身。通过将这两种互补技术结合使用,科研人员能够更好地了解分子水平上的材料改变情况。 在领先仪器制造商中,“PerkinElmer 是唯一具有热分析和拉曼光谱法开发领域科学专业知识的公司。我们运用这些专业知识独家开发出联用技术,能够使研究人员在材料发生改变时直接观察样品,而其它技术只能通过逸出气体进行观察,”PerkinElmer 光谱业务副总裁 Martin Long 解释说。这项功能提供了众多的分析优势。“因此,该仪器将在制药和聚合物等几个关键技术领域产生重大影响。” DSC-拉曼系统配备了双炉 DSC 8500 和 RamanStation(TM) 400 光谱仪。该方法首先使用拉曼光谱仪同步分析化学和结构信息,然后将这些信息与 DSC 生成的量热数据相关联。几家大型制药公司和大学对联用技术进行了测试,发现这些技术能够更加深入地分析聚合体结晶、药物载体的相互作用、硫化和多晶改变。这些创新能够减少客户的研发时间,将性能和疗效更佳的新材料和药物更快速地推向市场。 有关 DSC-拉曼联用技术的海报和论文,请访问 www.perkinelmer.com.cn/hyphenation。DSC-拉曼系统通过 PerkinElmer 销售团队在全球销售。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有约 8,500 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com 或致电 1-877-PKI-NYSE。 单击此链接可访问图片/多媒体画廊。来源:PerkinElmer, Inc. 媒体联络PerkinElmer, Inc. Lori Benedetto联络电话: 203-402-6893或 Mario Fante联络电话: 781-663-5602 版权所有 美国商业新闻 2009
  • 岛津最新推出“Aggregates Sizer”系统
    岛津公司日前在中国市场推出了Aggregates Sizer系统,该系统是通过对纳米激光粒度SALD-7500nano追加特定选件而构成的生物医药聚合体粒度及浓度分析系统。 &ldquo Aggregates Sizer&rdquo 聚合体分析系统能够对亚可见区颗粒的浓度(单位:&mu g/mL )进行定量分析。生物制药领域所产生的聚合体按照粒径划分大致分为三类:肉眼不可见颗粒,亚肉眼可见颗粒,肉眼可见颗粒。在&ldquo Aggregates Sizer&rdquo 问世之前,由于粒径范围的限制,测定亚可见颗粒通常需要多种测定方法的组合才能覆盖整个粒径范围。Aggregates Sizer&rdquo 的独创性设计使其能够轻松完成亚可见粒子的粒度分析和浓度定量分析 。 Aggregates Sizer系统构成 Aggregates Sizer系统特点 1. Aggregates Sizer 能够实现亚可见区颗粒(100纳米〜 10微米)的浓度定量分析(单位:微克/毫升)用常规的激光粒度测定时,只能得到相同的粒度分布数据,而不能发现浓度的不同(下左图)。Aggregates Sizer系统能够进一步分析与颗粒浓度成正比的光强度数据,并通过聚苯乙烯标准颗粒所制作的标准曲线进行校准,可进一步获得以浓度(单位: mg/mL)形式给出的粒度分布数据。2. 以1秒间隔定量监测聚合过程能够以1秒的间隔进行连续监测聚合体中的粒径和量的变化,能够对各个中间态进行监测,从而评估反应速率。 3. 使用微量样品池(5ml样品容量),能够对机械刺激导致的聚合过程进行观测持续机械刺激使 0.5 &mu m 到 10 &mu m的丙种球蛋白的聚合体不断增加。在第0,5,10,15, 20分钟仪器所得到的聚合体浓度(&mu g/mL)也不断增加。 有关详情,敬请咨询岛津公司· 北京分公司 (010) 8525-2310/2312· 浦西分公司 (021) 2201-3888· 广州分公司 (020) 8710-8661· 四川分公司 (028) 8619-8421· 沈阳分公司(024) 2341-4778· 西安分公司(029) 8838-6350· 乌鲁木齐分公司(0991) 230-6271· 昆明分公司(0871) 315-2986· 南京分公司(025) 8689-0258· 重庆分公司(023) 6380-6068· 深圳分公司(0755) 8287-7677· 武汉分公司(027) 8555-7910· 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 化学所可拉伸聚合物半导体研究获进展
    合物半导体在可穿戴设备、健康监测、疾病诊断等新型领域中颇具应用前景。基于聚合物半导体的柔性电子学是蕴含重大科学创新机遇的新领域。通常优异的电荷输运性能要求聚合物材料具有高结晶性,而强结晶性会导致材料拉伸力学性能低。因此,设计合成高迁移率可拉伸的聚合物半导体面临挑战。   近日,中国科学院化学研究所有机固体院重点实验室张德清课题组发展了在主链上引入中心不对称单元获得高迁移柔性聚合物半导体的新方法(图)。该策略实现了半导体性能和拉伸性能的协同调控,为柔性可穿戴设备提供可能的材料设计思路。   如图所示,螺芴单元的引入可以打破主链的对称性,降低薄膜中的晶畴尺寸,进而显著降低薄膜的拉伸模量;螺芴单元的引入还可以减少侧链长链烷基的含量,提升小尺寸晶畴中的短程有序度;通过调节螺芴单元上环形取代基大小还可以微调薄膜形貌。其中,P2在150%的形变后迁移率达3 cm2V-1s-1,在50%形变比例下循环拉伸1000次后迁移率仍保持在1.4 cm2V-1s-1以上,这是目前报道的可拉伸高分子半导体的最优性能。该工作为发展可用于柔性器件的可拉伸高分子半导体的设计提供了新策略。   研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。P1和P2的化学结构式以及薄膜的结晶性和力学性能对比
  • 中科大在高分子光物理和光化学领域取得重要成果
    近日,中国科学技术大学合肥微尺度物质科学国家研究中心张国庆教授团队在高分子光物理和光化学领域取得重要成果。相关成果分别以“Functional Roles of Polymers in Room-Temperature Phosphorescent Materials: Modulation of Intersystem Crossing, Air Sensitivity and Biological Activity”为题发表于Angewandte Chemie(DOI:10.1002/anie.202218712);以“Organic Photocatalyzed Polyacrylamide without Heterogeneous End Groups: A Mechanistic Study”为题发表在ACS Catalysis上(DOI:10.1021/acscatal.2c05972)。在高分子光物理领域,中国科学技术大学张国庆教授和张学鹏研究员团队,将具有分子内电荷转移态(ICT态)特征的染料(如图1,Dye1)共聚到不同极性的高分子中,研究了高分子基质对RTP材料的三大功能化调控作用。图1.高分子极性对染料单-三线态能极差(∆EST)的调控作用首先,S1态具有ICT属性的染料,在越极性高分子中,S1能级越低,具有局域跃迁属性的T1态的能级在不同高分子中几乎保持不变,因此可以通过改变高分子极性来调控染料的∆EST,进而实现对其热激活延迟荧光和RTP发射比例及发光颜色的调控。传统上调控系间窜越(ISC)一般采取改变染料自身化学结构的方式,而该工作提供了一个通过外部基质极性调控ISC的独特方法。图2.高分子基质形貌对RTP强度和寿命的调控作用其次,传统上高分子RTP材料易被氧气渗透,难以实现空气中的RTP。作者发现可以通过高分子链形成交联离子键来改变高分子形貌,获得空气中高效和超长的RTP。例如Dye1-co-PQAS和Dye2-co-PQAS,其本身因多孔疏松在空气中无RTP;但与聚丙烯酸阴离子络合之后,变得光滑致密,在空气中获得了超长的绿色和红色余辉。图3.高分子基质与染料产生的活性氧的协同杀菌作用最后,作者将磷光染料与季铵盐共聚,带正电的聚季铵盐基质和带负电的细菌膜具有静电吸附效应,更易于将磷光染料产生的活性氧释放到细菌周围,从而实现了杀菌效率的大幅提升。该工作创新性的揭示了高分子基质对RTP材料的系间窜越、氧气通透性和杀菌能力的“主动”调控作用,为拓展高分子RTP材料的新功能与新应用提供了新思路。中国科学技术大学合肥微尺度物质科学国家研究中心张国庆教授和张学鹏研究员为该论文的通讯作者。该工作得到了国家自然科学基金、中国科学技术大学量子科技创新计划、中国科学技术大学重要方向项目培育基金等项目的资助。在高分子光化学领域,张国庆教授和合作博士后黄文环发展了一种以廉价、可大量工业制备的酰亚胺类化合物为光催化剂,在365-nm LED光照下高效合成无杂端基聚丙烯酰胺的方法,并对光诱导聚合机理及聚合体系的性质进行了详细研究,同时还展示该方法在软物质光刻方面的初步应用。光诱导反应一直是人工光合作用、太阳能电池、有机合成方法学、可控高分子聚合等领域的研究重点。相对于传统的热引发聚合,光诱导的高分子聚合反应条件更加温和、速度更快,在时间与空间上的可控性更好。然而,大多数光诱导聚合体系往往采用一些光化学惰性分子作为敏化剂和引发剂,这些分子不可避免地作为端基共价结合到聚合物中,对其机械性能、生物相容性和环境毒性等相关特性产生了不可控的影响。该论文提出了一种有别于传统光诱导聚合的方法,实现了聚丙烯酰胺(PDMA)的无杂端基制备(图1),获得了相对于传统方法的组分“纯净”高分子,为后续探究这种“纯净”高分子的特性,以及引发剂作为端基共价接到聚合物对其性能的影响提供了条件。图1.聚合示意图(a)传统聚合:将引发剂作为一个末端基团 (b)光诱导N,N-二甲基丙烯酰胺(DMA)聚合:以工业 单体二甲基丙烯酰胺DMA本身作为引发单元研究团队对光诱导聚合体系(萘酰亚胺分子与DMA单体)光处理前后的荧光光谱变化、核磁信号变化等进行了表征,发现该聚合体系在光照两分钟之内转化率接近100%,聚合过程具有光可控性,并且萘酰亚胺分子并未共价结合到聚合物上。图2.聚合体系的性质及聚合机理示意图研究团队除了对这一体系的聚合机理进行探讨(图2)、聚合物TGA,DSC等性质进行研究之外,还展示了这一体系在软物质光刻方面的初步应用(图3)。目前团队已经可以利用波长更长的紫光和更多的工业单体进行无杂端基聚合反应,有望未来几年实现产业化应用。图3.光刻示意图及光刻体系的光谱性质中国科学技术大学合肥微尺度物质科学国家研究中心张国庆教授和陈彪特任副研究员为该论文的通讯作者;博士后黄文环为该论文的第一作者。该工作得到了国家自然科学基金、中国科学技术大学量子科技创新计划、中国科学技术大学重要方向项目培育基金等项目的资助。
  • 赛默飞携多款聚合物解决方案亮相2013中国国际橡塑展
    中国上海,2013年5月20日 &mdash &mdash 今日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携多款聚合物解决方案亮相广州2013中国国际橡塑展,展示了包括HAAKE Rheonaut 流变-红外联用测试单元、PROSIS红外传感器和Beta Plus传感器在内的最新产品和技术。凭借领先的分析技术,赛默飞旨在以全面、优质的产品服务和技术支持更好地贴近本地客户,为其提供从实验室到生产线的一站式聚合物解决方案。中国国际橡塑展是亚洲第一,全球第二的橡塑展。本着&ldquo 橡塑科技‧ 成就未来&rdquo 的主题,本届展会成为各厂商展示橡胶和塑料产品以及解决方案的绝佳平台,同时也为所有参观者呈现了塑料和橡胶在各行各业中超乎想象的应用及发展。会上,赛默飞以&ldquo 创新、可靠,便捷&rdquo 为主题,着重彰显了在聚合物领域的革命性成果&mdash &mdash 流变仪与红外光谱仪的完美结合,以及红外在线厚度分析传感器和穿透式定量传感器等多项技术突破和全新成果。这些解决方案能够为聚合物领域的客户提供操作简便、测量精准的分析体验,在保证高质量、高性能的前提下降低成本、节约原材料并提高生产效率。作为服务科学领域的领导者,赛默飞将一如既往地重视在橡塑行业的发展,以不断革新的技术和解决方案满足中国乃至全球橡塑市场的需求。请点击http://www.thermo.com.cn/chinaplas2013 了解更多赛默飞参展信息。革命性新技术&mdash &mdash HAAKE Rheonaut 流变-红外联用测试单元。这是一项在全球范围内极具革命性的全新联用技术。它有机结合了HAAKE MARS III 流变仪与Nicolet FTIR 红外光谱仪,可同时提供动态流变学的数据和结构变化的光谱数据,标志着流变学领域中的重大突破。模块化流变仪工作站 HAAKE MARS III是当今市场上模块化程度最高的纳牛米级流变仪,提供针对聚合物、化工、涂料油墨和化妆品等领域的整体解决方案。该设备更具完善的远程控制和诊断功能,满足用户对高端分析仪器的进一步需求。 Nicolet iS10 傅立叶变换红外(FT-IR)光谱仪专为实验室设计,适用于质量控制,并能够以最小的投资取得最优的测试能力,及时得到最可靠的样品分析结果,解决最具挑战性的难题业内性能最佳、测量范围最广&mdash &mdash PROSIS红外在线厚度分析传感器。该传感器提供了业内最佳的测量性能和最高的分辨率,更宽的光谱覆盖范围使其在实验室测试中比以往任何时候都能测量更多的材料。新款PROSIS 红外传感器更加易于使用和标定,对于测量单层和多层结构均有卓越性能。 最新传感器&mdash &mdash Beta Plus 系列穿透式定量传感器。这是赛默飞众多非金属测量解决方案中最新推出的一款传感器,在传感器功能上有了进一步的提升:增加了快速更换窗口,低放射曲线信号进一步增强,低噪声的测量;真正的开槽源几何结构;温度和压力补偿;高速数字电子组件。一系列的设计元素使其能提供卓越的传感器性能,实现最佳的测量和控制。节省成本的最佳方案&mdash &mdash 微型双螺杆挤出机 HAAKE Process 11。这款设备易于操作,仅需少量样品就能获得与生产条件相关的数据,使得研究人员可以以较少的成本和人力开展一系列试验。紧凑的单体设计最大程度地减少了实验室空间的占用,也降低了对实验室空间的需求,较少的成分消耗减少了环境污染和操作人员的暴露接触。高性价比、贴近本地客户需求&mdash &mdash Thermo Scientific iSystem在线测量系统。这是一款稳定可靠的总克重测量系统,在包括流延薄膜、片材挤出、辊涂、挤出涂布和无纺布等非金属应用领域可以提供一贯、精确和实时的定量测量。在降低客户成本、服务技术支持更加本地化的同时,该系统也保持了赛默飞全球高端产品的一贯标准。质量控制的发展趋势&mdash &mdash 模块化转矩流变仪 HAAKE PolyLab QC。作为一款测量用密炼机和挤出机系统,该仪器把最先进的软硬件与简单易用的界面相结合,简化用户使用体验。基于系统的兼容性,现有的密炼机和挤出机也可与之相连,并且实现软件自动识别。该设备有台式和落地式两种型号可供选择,能更好地适应实验室环境,使其在占地空间和重量上均具有很大的灵活性。 2013中国国际橡塑展-赛默飞展台 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2300名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的维修服务中心,在全国有超过400名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 美科学家制成聚合物纳米纤维反应器
    美国研究人员已开发出一种仅用大约1000个分子即可进行化学反应的新型化学合成方法,该新系统利用的是聚合物纳米纤维相互交织后所产生的微弱的化学反应,该方法已被证明可用于新型药物和工业原料的快速筛选。  研究人员称,这种新工艺还可用于对新的蛋白或DNA识别标签进行高通量测试,以改进目前用于测序的蛋白或DNA识别标签;或用于检测罕见的生物分子,如癌症或其他疾病早期阶段的微量蛋白特性。  目前,研究人员一般使用微流体系统来进行小规模的化学反应,即在一个芯片上通过由微型管路和泵组成的网络来传递化学物质。而美国博林格林州立大学化学家帕维尔安祯贝切尔开发的这个新系统则完全不同,反应在悬浮于干燥的聚合物纳米纤维中进行,且只在纤维相遇时才会相互发生反应。  研究人员使用静电技术研制出了这个纤维反应器。他们将液体聚氨酯装入配有细针的注射器,在针尖处形成一个微小的液滴,然后给针尖施加电压。电荷相斥驱动液滴形成细长的聚合物纤维,每条的直径约在100纳米至300纳米之间。研究人员认为,利用含有少量反应物的聚氨酯溶液所产生的静电,就可编制出一个液态纤维网,这样就创建出了反应器。经向的纤维包含一种反应物,纬向的纤维则包含另一种反应物。当施以微热使这些纤维融合时,结合处的化学物质就混合在一起发生反应。通过荧光成像和质谱等各种方法,这些生成物就可被鉴别出来。  在最近一期《自然化学》杂志上,研究人员介绍了利用该微型反应器对4种不同反应所做的测试。这些反应只发生在具有zepto-mole(10的负21次方摩尔)量级的大约1000个分子间。其中两种反应可用来测试与荧光染料分子相关的方法,这些分子只在经向与纬向相互交织的线上碰到相似的目标分子时才会发光。安祯贝切尔的研究领域之一便是开发可检测特定蛋白片段或DNA碱基的染料,目前他正在开发attoliter(一万亿分之一升)级的反应器纤维,以对这些染料进行高通量筛选。该系统加以改进后就可使用非常小的样本来研究数千个蛋白的相互反应。  研究人员表示,这种纤维反应器的最大优势在于比其他技术费用低廉,低反应量在测试那些目前尚未知晓的物质之间的新反应时也具有优势。更重要的是,反应和生成物仅限于纤维内,它们不会蒸发和泄露,因而更为安全。
  • 前沿合作 | 岛津携手阳光诺和揭示头孢西丁钠新颖聚合方式
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司合作,采用岛津高效液相色谱串联四极杆飞行时间质谱(2D LCMS-QTOF)对注射用头孢西丁钠有关物质进行结构鉴定,揭示了一种由噻吩环引发的新颖聚合方式。该研究成果发表在国际知名学术期刊《Talanta》(IF= 6.1)。背景介绍Introductionβ-内酰胺类抗生素是临床应用较广的一类抗感染药物,其β-内酰胺四元环张力较大容易开环断裂,生成N-型或L-型聚合物。聚合物杂质引发的过敏反应严重威胁临床用药安全,是β-内酰胺类抗生素杂质谱研究的重点。由于聚合物杂质稳定性差、含量低、聚合方式多样、聚合程度各异,以及小分子杂质的干扰,聚合物杂质的控制存在很大挑战。本研究基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台和创新中心开发的《抗生素杂质数字化标准品数据库》,无需改变一维色谱流动相条件,即可实现头孢西丁聚合物杂质的专属性检测。图1 头孢西丁钠破坏样品检测色谱图(254 nm,一维HPSEC色谱图,上;二维反相色谱图,中;聚合物杂质HPLC检测色谱图,下)解决方案Solution图2 岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030本方案一维采用HPSEC系统,磷酸盐流动相定位头孢西丁钠中的聚合物杂质,然后采用阀切换技术,使用500 μL定量环将聚合物峰全部转移至二维反相色谱,脱盐、分离并质谱鉴定。基于LCMS-9030四极杆飞行时间质谱高分辨,高质量准确度和二级碎片定性的功能,通过比较头孢西丁钠与聚合物杂质母离子和特征碎片离子的相关性对头孢西丁钠四种未知聚合物杂质进行科学合理的定性分析。其中聚合物C1分子量较2分子头孢西丁少2个H(Mr. 852.09),根据其同位素比例和特征碎片离子信息,推断其为一分子头孢西丁7-位侧链与另一分子头孢西丁7-位噻吩环联结形成的,该新颖聚合方式尚未见文献报道。C1是实际样品中的优势聚合物(占比>50%),可作为注射用头孢西丁钠质量控制的指针性聚合物。最终,本研究建立了注射用头孢西丁钠聚合物检测的反相色谱方法,并探索其用于日常检验的可能性。表1 头孢西丁钠及四种聚合物杂质的质谱信息(ESI+)图3 C1一级质谱图(A)和母离子m/z 870的二级质谱图(B)(ESI+)图4 C1聚合物可能的结构和裂解规律结论Conclusion本文采用创新中心搭建的专属性中心切割二维反相色质谱联用分析平台对注射用头孢西丁钠中的聚合物杂质进行研究,展示了二维色谱-串联质谱技术在不挥发盐类流动相系统中对未知杂质结构鉴定的巨大潜力。岛津飞行时间质谱LCMS-9030采集全谱信息,提供快速、高灵敏度的测试结果,确保实验数据的可靠性,支持追溯性分析有利于未知物的结构鉴定。创新中心开发的《抗生素杂质数字化标准品数据库》,收录了β-内酰胺类抗生素一般杂质和聚合物杂质的色谱和高分辨质谱数据,大大降低了企业的研发成本,同时也为药物工艺改进、剂型研发、品质提升等方面提供技术参考。参考文献:《Characterization of polymerized impurities in cefoxitin sodium for injection by two-dimensional chromatography coupled with time-of-flight mass spectrometry》.https://doi.org/10.1016/j.talanta.2023.125378
  • 【瑞士步琦】SFC遇见SEC——三种模式应用于聚合物分离
    三种模式应用于聚合物分离 通常来讲,对于聚合物的分离,主要方法为体积排阻色谱(SEC)和液体吸附色谱(LAC),然而在这两个模式之间,存在着所谓的临界条件下液相吸附色谱法(LACCC)。原理上,对于所有的模式都是根据分子的特性来对聚合物进行分离。其实,在这三种模式中使用超临界 CO2 只是停留在早期的研究中,但是随着 SFC 领域的快速发展,又燃起了我们对于这些模式研究的希望!本篇文章,我们将会以聚乙二醇(PEG)为模型展示这三种模式下的分离状态。为了确定临界条件下的色谱参数,采用了质量设计(QbD)的方法来减少所需的实验。1聚合物分离的色谱原理超临界条件下体积排阻色谱scSEC临界条件下超临界流体吸附色谱SFACCC超临界流体吸附色谱SFAC大量的改性剂强溶剂聚合物与固定相无相互作用焓变强溶剂和弱溶剂的混合物焓和熵的效应是相等的二氧化碳含量高(弱溶剂)聚合物在固定相上的解吸与吸附基于流体动力体积的分离高分子量优先被洗脱不依靠分子量的聚合物共洗脱基于端基的分离基于相互作用强度的分离更高分子量的后洗脱表1. 超临界流体色谱法对聚合物不同分离方式的比较。哪种模式占主导地位取决于色谱条件,主要是溶剂强度。2实验材料与设备实验条件色谱柱250 mm x 20 mm, 5μm (制备柱)Reprosil SEC 200&angst (Dr. Maisch, Germany)150 mm x 2.1 mm, 1.9μm (分析柱)仪器分析型:Waters UPC2 with Acquity ELSD(Waters)制备型:Sepiatec SFC-250 with ELSD(Sepiatec)软件Fusion QbD software (S-Matrix Corp.)3SFACCC 中使用 QbD 对聚合物进行条件筛选与分离QbD 法确定关键色谱条件:在第一次筛选后,使用 QbD 方法以最少的实验确定关键色谱条件在较小的条件区域内,所有共洗脱的聚乙二醇都可以得到,图中用白色背景表示这一点通过实验得到了验证PEG-400 与聚多卡醇(端基为 C12-烷基的 PEG-400)在如下条件分离:名称目标下界上界颜色所有PEGs最大保留时间差最小0.030——红色聚多卡醇/PEG400保留时间差最大——0.100绿色▲图1.由 Fusion QbD 软件生成的方法设计;在临界色谱条件 T 中进行▲图2.在临界色谱条件:36% 甲醇和 56℃ 下,不同 PEG 的共洗脱(上图)和 PEG-400 与聚多卡醇的分离(下图)4在相同系统下采用 SEC 与吸附色谱对聚乙二醇进行实验实验条件色谱柱200 &angst 1.9μm背压调节阀1800psi(124bar)洗脱液CO2(A)/甲醇(B)流速1 mL/min温度40℃检测器ELSD▲图3.scSEC:等度模式;10/90(CO2/甲醇)▲图4.SFAC:梯度模式;十分钟之内 90/10 – 50/50(CO2/甲醇)▲5.SFAC:等度模式;90/10(CO2/甲醇)scSEC色谱法在亚临界条件下通过高比例的强溶剂进行等度洗脱,高分子量的 PEG 更早的洗脱出来。SFAC色谱法通过梯度洗脱模式对 20kDa – 200Da 分子量范围内的 PEG 进行洗脱。后续采用低比例改性剂的等度模式对可将 PEG-200 和 PEG-400 分散剂分解为其单分散组分。分子量的确认通过 SFC-MS 联用技术进行确认。SEC校准:将衍生化均匀聚合物与常规 PEGs 分散剂进行校准比较,以此来证明均匀聚合物的可用性。5制备分离 PEG-400 里均匀聚合物实验条件仪器Sepiatec SFC-250色谱柱200 &angst 5μm洗脱液CO2(A)/甲醇(B)= 93/7流速60 mL/min温度40℃检测器ELSD▲图6.通过 SFAC 色谱模式对 PEG-400 均匀聚合物进行分离效果图谱聚合物纯度验证:在分析层面上使用开发的 SFAC 色谱法对均匀聚合物的纯度进行检测,结果表明即使在不优化分离条件的情况下,所有聚合物的纯度都>99%。6结论通过改变 CO2 和甲醇的比例,三种模式均可在相同的系统中实现。除此之外,在实际应用中,通过将开发的分析方法顺利转移到制备规模中,对不同分子量的聚乙二醇进行分离纯化且得到了均匀的聚合物。
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • Webinar:“小贝开讲” 之细胞治疗中基因编辑载体的纯化和验证
    时间:2017年7月27日 19:30 - 20:30内容简介:国家对细胞治疗领域管理政策的收紧和规范化,对CAR-T及干细胞治疗等前沿研究领域来说,是挑战但也是机遇。无论您选择病毒载体、质粒表达系统还是游离核酸片段进行基因编辑,如何高质量高通量地完成以上载体的分离纯化,并使之达到药品级的要求,都是一个普通实验室向GMP/GLP实验室转变的关键步骤。密度梯度超速离心工艺,作为最经典的纯化工艺流程,经过全球几十年的实践验证,广泛应用于病毒颗粒疫苗等生物制品行业,是工业药品级病毒、核酸纯化的首选方法。与此同时,超速离心不仅可用于制备,还可用于检测。贝克曼库尔特独有的分析型超速离心技术,还可用于病毒载体中聚合体、空壳病毒、错误组装病毒等颗粒的检测和验证。本次线上讲座,我们邀请了贝克曼库尔特生命科学部离心机产品经理霍德华与大家共同探讨,贝克曼超速离心技术如何协助您拿到最纯的基因编辑载体。主讲人简介:霍德华产品经理 贝克曼库尔特生命科学部从事细胞与分子生物学实验室科研及相关产品的应用支持和市场推广工作近15年,对各种细胞、核酸、蛋白的常用和前沿技术及仪器具有广泛而深入的了解,曾参与了多个实验室多种技术平台的构建与优化。目前在贝克曼公司负责离心机产品线的全国市场及应用推广业务,可为客户提供离心机及周边相关的实验完整解决方案支持。近年来,已协助国内外多家客户成功搭建病毒载体纯化相关的超速离心分离纯化技术平台,积累了丰富的病毒载体纯化的经验,为各地贝克曼离心机的新老用户提供了多场专题培训及疑难解答。点击此处轻松报名。
  • 德国耶拿两大业务部门合体亮相BCEIA
    德国耶拿两大业务部门合体亮相BCEIA 熟悉德国耶拿的都知道,耶拿是全球厉害的光谱及元素分析供应商,从AAS,ICP-OES,ICP-MS,TOC/TN,C/N/S/Cl,到UV, Raman,产品全面,且独具特点;2020年新冠疫情爆发时,随着德国耶拿定量PCR仪服务火神山的镜头被中央电视台新闻捕捉报导,德国耶拿在生命科学领域展露更多的风采。那么,问题来了,平时您可能大多只看到耶拿一个部门的产品,可作为第三方检测公司,你们其实两类仪器都需要?机会来了,9月27日,在BCEIA德国耶拿展台,分析仪器和生命科学两大业务部门合体亮相,只为展示更加全面的行业解决方案,包括固废,水质,制药,环境,食品,半导体、大分子药物研发,新冠病毒检测等,让您一次看个够! 来展台的可不只是一线仪器使用人员,27日上午,德国耶拿展台迎来了这样一行人——以江桂斌院士为首的科技司代表团,专家们对德国耶拿的发展给予了高度评价。 去年突如其来的疫情改变了人们很多的工作生活方式,比如云开会、云聚餐等。BCEIA虽然是行业盛会,但充分考虑到更多的业界朋友们因多种原因无法亲临展会现场,今年德国耶拿特开通直播频道,带您云参观耶拿BCEIA盛况。 高峰对话直播——让创新成为引领发展的一动力当天上午,德国耶拿高峰对话直播间有幸邀请到广州分析测试中心陈江韩主任做客,德国耶拿中国区市场总监杨佳霖先生与陈江韩主任就《让创新成为引领发展的一动力》展开对话,围绕德国耶拿的创新科技给行业带来的助力、解决用户的痛点、社会使命、耶拿中国20年发展的回顾与总结、未来中国市场的战略部署等展开全面交流,直播间热闹非凡。对话直播结束后镜头直接导播到德国耶拿展台,德国耶拿中国区应用经理王越慜女士带领大家全面近距离了解耶拿的产品特色、应用等。 高峰直播间对话 德国耶拿应用经理王越慜女士 现场直播新品亮相——全新高性能凝胶成像系统来自耶拿公司的全新一代多功能凝胶成像仪UVP GelStudio系列,拥有高达1200万的物理像素(非图像输出)能够确保捕获更多的图片信息。在物理像素达到业内较高水平的同时,这款优质的科研级相机还为UVP GelStudio系列凝胶成像仪带来卓越的灵敏度保证。当一款凝胶成像仪拥有了如此厉害的相机核心之后,再搭载高性能的矩阵式LED作为荧光光源,它所能适用的领域将扩展到许多基于的荧光应用。德国耶拿生命科学产品经理刘健先生现场新品视频介绍视频采访—耶拿中国如何面对机遇与挑战今年是德国耶拿进入中国20周年,经过20年的发展,德国耶拿已跻身为行业的领军企业之一。在展会首日,耶拿中国区市场总监杨佳霖先生接受仪器信息网采访邀请,向用户娓娓道来20年来,耶拿公司在中国市场历史阶段中主要业务/产品的演变过程以及演变背后的重要意义,同时阐述了十四五及由贸易战引发的国产化政策倾斜等机遇与挑战并存下,德国耶拿中国未来的发展方向。诸多报告,精彩分集为了让观展用户收获更满,耶拿在展会首日就举办了8场高频次的现场小报告,报告围绕食品、环境、核工业、新冠检测、限塑令等诸多行业应用解决方案展开,充分满足观展不同行业用户的需求。活动纷呈,趣味多多展期推出诸多趣味游戏,有单人作战的切水果,摇一摇,有临时组队的团队作战-拔河游戏,动感的音乐,热烈的节奏,驱走逛展会的疲惫,更兴奋的应该是莫过于斩获奖品了吧!现场更有与耶拿20周年合影留念的相框,很多观众来此美美的摆个Pose,用光影记录下跟耶拿20周年的留念。随着夜暮的降临,喧闹一天的展馆回归平静,德国耶拿全员合影留念为紧张而充实的一天画上圆满句号。
  • 中科院开发痕量生物分子分离的纳米孔聚合物微球新技术
    p   近日,中科院理化技术研究所研究员王树涛团队与大连化学物理研究所研究员梁鑫淼团队合作,开发出一种具有亲水/疏水异质纳米孔的聚合物微球。该微球能在不同极性的溶剂中选择性吸附生物分子,进而从复杂样品中高效地分离出痕量的糖肽。相关研究成果发表于《先进材料》,研究工作得到了国家自然科学基金杰出青年基金、中组部国家“万人计划”领军人才项目和北京市科委计划项目等资金的大力支持。/pp  目前高分子多孔材料已广泛地应用于分离领域,传统的高分子多孔材料具有均质的组成或孔隙,例如聚苯乙烯多孔微球,这些材料往往很难从复杂的样品中分离出痕量的目标分子。为了实现选择性分离,通常需要对这些材料表面进行功能基团的修饰。然而,这些修饰仅仅是在分子尺度,往往造成在材料表面的修饰密度低、不均匀等各种问题,难以消除含量较高的背景分子的非特异性吸附。在临床上,痕量疾病标志物分子的分离和检测意义重大,例如与阿尔茨海默氏症紧密相关的内源性糖肽的分离。/pp  该工作是在乳液界面聚合的研究基础上取得的又一新进展。王树涛团队前期发展的乳液界面聚合策略,实现了拓扑结构和化学组成可调的两亲性Janus微球材料的可控制备,这些两亲性的Janus微球可用于油水乳液的高效分离。同时,这种界面聚合的方法还可以拓展到二维Janus膜材料的制备上。/pp  王树涛表示,这种具有亲水/疏水异质纳米孔的微球为开发新型的生物分子分离材料提供了新的思路,有望应用于生物分子分离及后续的临床诊断等领域。该工作一经发表便得到了国内外同行及媒体的广泛关注。/ppbr//p
  • PerkinElmer全新亮相BCEIA 2009
    PerkinElmer的华丽转型  2009年1月1日起,PerkinElmer公司将旗下的生命科学、光电子学和分析仪器三个领域整合为“人类健康”和“环境健康”两个部门,正式开始从“仪器供应商”到“为人类健康和环境健康提供解决方案供应商”的转型。  2009年11月25~27日的BCEIA 2009展会,转型后的PerkinElmer首次以全新形象出现在用户面前。经常参观BCEIA的观众,可能很多已经习惯了PerkinElmer展台一贯的白、蓝、灰、黑,色调清爽却稍显单调,而此次BCEIA展会,PerkinElmer的全新形象让人眼前一亮,在展台的设计上,首次融入绿、红、黄等不同的颜色,并各有寓意,代表绿色环保、安全、卫生、健康等,给观众带来视觉享受的同时,也强化了PerkinElmer新的品牌形象,显示了PerkinElmer品牌的整体实力。   PerkinElmer 展台  多个功能展区展示品牌实力  作为一家拥有60余年分析仪器研发、制造经验的老牌企业,PerkinElmer一直以“Precisely”作为仪器制造的准绳,而对于当前日益复杂的实验室分析、测试需求,单纯依靠仪器的高精度是远远不够的。伴随着公司品牌形象的转型,“For the Better”也将取代“Precisely”成为PerkinElmer仪器的新商标。  此次BCEIA展会上,PerkinElmer的展台布置也体现了这一点,以“For the Better”作为展示主题,将展区划分为“环境分析监测”、“食品安全”、“新药研发和生命科学”、“材料研究”、“能源、燃料”几个功能区,分别展示了针对性的行业解决方案,包括仪器、软件、应用方法、应用案例等,PerkinElmer所独有的EcoanlytixTM方案也吸引了众多观众驻足参观。  当然,作为行业解决方案的核心部分,先进仪器、技术的展示也体现了PerkinElmer行业领导者的地位,其中PerkinElmer2009年推出的Flexar系列液相色谱仪,可分别耐6000、10000、18000psi的输液泵压,可满足用户从事常规分析到真正超高压液相分析的不同需求,该系列产品一经亮相便引起了观众的极大兴趣 另外,特别值得一提的是联用技术的展示,包括TG-GCMS,DSC-Raman,TG-IR,TG-MS等,PerkinElmer率先将不同的分析技术进行联合开发、应用,大大延伸了仪器的使用范围和发挥的作用,为用户的科研、工作提供更大的帮助。   全球首席科学官兼大中华区总裁Dan Marshak博士接受主办方采访  技术研讨会服务客户  除了解决方案的展示外,技术交流会一向是展会的重要组成部分,也是技术导向性公司服务客户、展示实力的良好平台,此次BCEIA展会,PerkinElmer的资深技术专家做了两场研讨会。市场部策略经理祝立群博士做了题为复杂样品分析的技术进展---PerkinElmer公司的解决方案的报告,主要针对样品的目标物明确但基质复杂样品的分析,介绍了PerkinElmer公司的解决方案如:保证直接进样检测血液样品中铅准确性的石墨炉技术、用于气相色谱中气路切换控制的Swafer 微通道技术 针对样品的待测物复杂、难以逐一确定的样品分析,如水、面粉中溴酸盐的LC-ICPMS分析、GC/MS结合D-Swafer中心切割分析溶剂中杂质等 针对样品的种类复杂、需要不同的进样技术和检测技术的样品分析,如HS-GC在啤酒生产过程质量控制中的应用、全挥发法顶空进样测定水基涂料中溶剂残留等。  大中华区材料表征产品经理康瑜容女士做了题为新型联用分析技术在材料研究方面的进展。由于一般在材料分析过程中,只能对物质进行定性或者定量,很难对材料生产过程的全部面貌进行监控,而各种仪器的相互联用可以达到中间过程的监控,发展联用技术,可以更好地了解材料的世界——揭示聚合体结晶与聚合物材料组成、促进有机挥发性气体VOC的研究和逸出气体成分分析、掌握药物载体的相互作用以及多晶改变情况。而联用分析技术, 即是将各种分析技术串联而成,连接的方式包含:降解气体分析(Evolved Gas Analysis, EGA)、 同步分析 ( DSC-Raman) 、测试环境改变 (UV-DSC, Humidity-DMA)。针对不同的连接方式,康瑜容工程师特从四个联用技术与实际的应用相结合,分别做了详细的阐释:热重-红外联用技术 (TG-IR)、热重-质谱联用技术 (TG-MS)、热重-气质联用分析技术 (TG-GCMS)、差示扫描量热法-拉曼光谱联用技术 (DSC-Raman) 。   祝立群博士在做报告
  • 赛默飞亮相2013德国K展,展示领先聚合物技术
    中国上海,2013年10月17日&mdash &mdash 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携领先的聚合物以及塑料解决方案亮相于2013德国杜塞尔多夫国际塑料及橡胶博览会(简称:K Show),展位号:10号厅B59。值此契机,赛默飞不仅推出了最新HAAKE MiniJet Pro注塑成型系统等全新产品,还向全球各地的参观者展示了赛默飞聚合物技术、产品以及应用解决方案,旨在助力解决在聚合物、塑料研发和生产方面的困难和挑战。 2013 K展于10月16-23日举行,是世界上最大的塑料和橡胶行业展会。今年,赛默飞以&ldquo 沟通、协作、解决&rdquo 为主题,充分展示了赛默飞在聚合物研究、测试、监测、量产等环节的完整解决方案。作为该领域的领军者,赛默飞能够帮助研究人员和企业提升产品质量和效果,同时减少原材料浪费,减少其循环周期。 &ldquo 从研发到生产,我们的创新和专长涵盖聚合物和塑料行业的整个产业链,我们的设计使客户能够获得卓越、精确的检测结果。&rdquo 赛默飞化学分析部门市场营销和产品开发副总裁Brian Davies表示,&ldquo 我们了解与聚合物相关的工艺参数和对效率起关键作用的决定因素,这些参数和决定因素使科学家和工程师考虑使用我们提供的方案来应对其面临的最大挑战。&rdquo 创新的材料表征解决方案和多功能光谱仪。赛默飞HAAKE MiniJet Pro是样品制备仪器系列中的新款机型,使材料科学家更快、更高效地开发小批量(仅2-13毫升)的注塑试样,同时节省时间和成本。赛默飞设计了活塞注塑成型系统,旨在大幅减小传统注塑成型机的机械和样品要求尺寸。材料科学家也可使用赛默飞HAAKE MARS流变仪平台的Rheonaut模块来同时进行流变学和傅立叶变换红外光谱测量。这种组合式方法让材料科学家能够在同一个样品上取得测量值,从而使数据得到完美的关联。由此可避免不同样品制备过程带来的不确定性以及采集数据所花费的时间。 赛默飞HAAKE MARS的Rheonaut模块与高度灵活的赛默飞Nicolet iS50傅立叶变换红外光谱仪相结合,后者可从简单的FT-IR工作台升级到采集从近红外到远红外光谱的全自动多光谱范围系统。多功能的Nicolet iS50也可一键式启动全新的ATR拉曼和近红外模块,使用户无需手动改变系统组件即可使用这些技术。赛默飞DXR拉曼显微镜展示出先进的拉曼显微镜如何能帮助科学家通过瞄准式和面分布测量来更好地了解样品。该仪器具有适用于包装和聚合物分析等应用的灵敏度和空间分辨率。赛默飞ARL PERFORM' X波长色散X射线荧光(WDXRF)分析仪提供了对样本中不均质的样品或缺陷进行小光斑分析和绘制面分布图的能力。赛默飞ARL OPTIM' X也采用WDXRF分析技术帮助以高分辨率测定多种液体和固体样品的元素组成。 小型挤出机。紧凑的独立式赛默飞Process 11双螺杆挤出机进行的是小型试验,但其坚固程度足以混合高性能的聚合物。由于赛默飞独立式混合系统拥有经过验证的可扩展性,研究人员能够方便地使用其测量结果来优化生产条件。在使用Process 11挤出机后,研究人员仅需少量材料即可进行一系列试验,从而节省材料和劳力成本。 高性能薄膜测厚。赛默飞PROSIS红外过程分析厚度传感器采用全光谱红外光分析在线材料,为薄膜测厚用户提供改善生产质量和减少废料的高精度多组分厚度数据。赛默飞PROSIS为制造商带来高精度的厚度和湿度数据、更大的原材料节省量和更高的生产率。该传感器用于多种应用,包括食品包装行业、保健和个人卫生市场中使用的无纺布、电子设备中使用的光学薄膜和金属线圈上的各种涂层。欲了解更多关于赛默飞K展的信息,敬请登录thermoscientific.com/k2013。 您可在以下时间段使用赛默飞DXR拉曼显微镜现场测试预登记的多层样品:2013年10月21日周一至2013年10月23日周三上午11时和下午3时。同时,欢迎将预先登记的样品带至赛默飞展台,亲自体验赛默飞传感器带来的不同体验。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 牙膏添加处方药“氨甲环酸”,为什么大家反应这么大?
    最近,某款牙膏被曝光,所谓的中草药止血,是因为在牙膏里掺了西药处方药“氨甲环酸”,引起了网络一系列讨论。为什么在牙膏里添加氨甲环酸被曝光后,会受到一众抵制呢?这就要从氨甲环酸,这一款处方药说起了。氨甲环酸(Tranexamic acid)又名凝血酸,化学名为反-4-氨甲基环已烷甲酸,白色结晶性粉末;无臭,味微苦。分子式:C8H15NO2氨甲环酸为氨甲苯酸的衍生物,是一种抗纤溶的止血药物。氨甲环酸化学结构与赖氨酸相似,能竞争性抑制纤溶酶原在纤维蛋白上吸附,防止其激活,保护纤维蛋白不被纤溶酶所降解和溶解,最终达到止血效果。但是!氨甲环酸是处方药!必须遵医嘱使用!我们来看看氨甲环酸的使用注意事项:1. 联合用药禁忌 药物名称临床症状及处置方法作用机制 危险因素凝血酶有可能有血栓形成的倾向有促进血栓形成的作用,如果联合用药有增加血栓形成的倾向2. 联合用药时的注意事项:药物名称临床症状及处置方法作用机制 危险因素蛇毒凝血酶大量合用时可引起血栓形成倾向本制剂具有的抗纤溶作用,有可能导致蛇毒血凝酶引起的我纤维蛋白块存留较长时间,从而使栓塞的症状延续巴曲酶有可能引起血栓或栓塞症由巴曲酶所生成的desA ,可阻碍纤维蛋白聚合体的分解。 凝血因子制剂依他凝血染等在口腔等纤溶系统活性比较强的部位,有可能使凝血系统进一步亢进。凝血因子制剂通过活化凝血系统出现止血作用,而本药物通过阻碍纤溶系统也出现止血作用以下患者应慎重给药(1)有血栓的患者(脑血栓、心肌梗塞、血栓静脉炎等)以及可能引起血栓症的患者。[有使血栓稳定化的倾向](2)有消耗性凝血障碍的患者。(与肝素等并用)[有使血栓稳定化的倾向](3)术后处于卧床状态的患者以及正在接受压迫止血的患者。[上述情况易发生静脉血栓,给予本药后有使血栓稳定化的倾向。有在下床运动及解除压迫后发生肺栓塞的报告。](4)有肾功能不全的患者[有时血药浓度升高](5)对本剂有既往过敏史的患者。可以看出,不合理用药,会增加血栓风险,因此氨甲环酸必须在医生指导下使用。而牙膏是我们日常生活必需品,老人小孩都会使用到它。虽然并不是直接服下,但是我们不能排除风险。另外,牙龈出血也不是随随便便把血止住就万事大吉了的。在排除了刷牙方式不当或牙刷刷毛过硬外,牙龈出血表示:1. 你患有牙龈炎,牙周炎了;2. 你牙结石过多了;3. 其他的一些全身性疾病。而所谓的止血牙膏,仅仅是把血止住了而已,对牙龈炎牙周炎等并无改善作用,类似于掩耳盗铃。久而久之,很多人就会错过口腔传递的求救信号,许多疾病就无法得到及时治疗,导致更严重的后果出现。最后,牙膏最主要的功能,就是清洁牙齿防止蛀牙,所以购买牙膏时,不必为了各种花哨的功能而左挑右选,除了含氟牙膏是经过证实能够预防龋齿之外,别的宣传基本上都是噱头。
  • 流变在聚合物改性、加工和表征应用研讨会(福州)-赛默飞世尔
    邀 请 函流变在聚合物改性、加工和表征方面应用研讨会 时间:2012年6月5日,8:30—16:00地点: 福建师范大学(仓山校区)主题:从聚合物的流变性能摸索改性方法、工艺参数和结构表征尊敬的先生/女士:您好!由赛默飞世尔科技(中国)有限公司和福建省高分子材料重点实验室共同主办的“流变在聚合物改性、加工和表征方面应用研讨会”将于2012年6月5日在福州举行,本次研讨会将由哈克流变仪资深技术人员,以及福建师范大学的老师为您讲解最新技术和应用,并借此机会首次在国内发布最新的产品和技术。我们诚挚地邀请您参加本次会议,共同讨论材料结构—流变性能—在聚合物加工成型工艺中的应用及其最新进展。交流会内容如下:1、技术报告:1) 转矩流变仪在聚合物改性及加工中的应用;2) 旋转流变仪在聚合物改性及加工中的应用;3)竹粉和聚丙烯的改性及其对复合体系流变性能的影响;2、哈克流变仪 2012新品发布:Process 11和红外流变联用新技术3、参观福建师范大学转矩流变测试仪器实验室等会议日程(6月5日)8:30-9:00注册所有与会者9:00-9:10欢迎辞,嘉宾介绍赛默飞世尔科技,王琦9:10-9:15福建省高分子材料重点实验室执行主任致辞福建师范大学,刘海清 教授,博士生导师9:15-9:45哈克Rheonaut红外流变同步联用测试单元赛默飞世尔科技,范永忠9:45 - 10:15哈克PROCESS 11微型双螺杆挤出机赛默飞世尔科技,李健10:15-10:30茶歇所有与会者10:30-12:00哈克旋转流变仪和粘度计在聚合物表征方面的应用赛默飞世尔科技,孙文彬12:00-13:15午餐所有与会者13:30 -14:00竹粉和聚丙烯的改性及其对复合体系流变性能的影响福建师范大学,陈钦慧老师14:30-15:30哈克转矩流变仪在聚合物加工改性等方面的应用赛默飞世尔科技,李健15:30-16:00技术交流和参观合作实验室所有与会者 注册表Registration FormName姓名 Company公司 Department部门 Title职位 Email电子信箱 Telephone电话 Address地址 The following Colleague will be attending as well:下列同事将与我一起参加:Name姓名 Company公司 Department部门 Title职位 Email电子信箱 Telephone电话 Address地址 Pls let me know about your new products or special offers:请将贵公司的新产品或提供的其它特殊技术通过下列方式发送给我:via E-mail(电子邮件):‰via Direct Mail(直接邮寄至):‰Take me off your distribution list (请不要发送给我):‰Register via E-mail: moggy.wang@thermofisher.com , Tel: 020-83145171;13926010308;Fax:020-83486621 sunny.feng@thermofisher.com, Tel: 021-68654588-2419 Costs: Seminar fee, lunch and seminar documentation are included.Number of attendees is limited – so register today!您可以通过下列电子邮件注册:moggy.wang@thermofisher.com , Tel: 020-83145171 Fax:020-83486621sunny.feng@thermofisher.com,电话:021-68654588-2419 本次会议不收取会务费,并免费提供午餐和会议资料。坐席有限—请立即报名!赛默飞世尔科技(中国)有限公司福建省高分子材料重点实验室2012年5月15日交通指引:火车南站至福建师范大学(仓山区)乘坐124、503、83路在师大站下车,全程约50分钟/11.1公里。火车站至福建师范大学(仓山区)乘坐k1、20、106路在师大站下车,全程约60分钟/12.0公里。机场大巴至阿波罗酒店乘坐出租车至福建师范大学(仓山区),全程约14分钟/5.5公里。
  • 纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)助力复合聚合物领域实现新突破
    背景简介聚合物纳米复合材料是以聚合物为基体连续相,以纳米填充物为分散相的一种复合材料,具有易加工、摩擦和磨损率小、表面硬度高以及成本低廉等特点,在工业中具有广泛应用,受到诸多科学家的关注。研究聚合物复合材料的内部结构是一种综合性认知材料聚集形态形成和物质组成分布的有效方法。通常,科学家通过透射电子显微镜(TEM)研究颗粒的内部结构及聚集形态。但是,电子显微镜并不能对轻质元素(C, H, N和O) 进行元素识别及表征,而这些元素正是水体系聚合物主链单元的主要组成元素。同时,电子显微镜对聚合物功能团的识别强烈依赖于选择性染色,需要将电子密度高的重金属离子引入聚合物链。因此,通过扫描透射电子显微镜-电子能量损失谱方法(STEM-EELS)或者TEM相衬度法来研究聚合物纳米材料的形态结构及元素分布仍然存在一些争议,特别是在研究水溶性主链的聚合物体系中染色带来的误差和衬度失真尤为严重。近年来,迅速发展的纳米分辨傅里叶红外光谱与超分辨光学成像技术(nano-FTIR & neaSNOM)能够实现在10 nm的空间分辨率下对材料的化学组成和结构进行表征。与电子显微镜与电子能谱结合的方法相比,光学探测技术具有无损伤、无需染色标记、快速且适用性广等优点,可以研究材料化学组分,微观结构、电学、力学、高分子取向与构象以及物质相互作用等信息。研究进展近期西班牙纳米科学研究中心的Rainer Hillenbrand团队通过nano-FTIR & neaSNOM对聚全氟辛基丙烯酸酯-基丙烯酸酯-丙烯酸丁酯(PMB)形成的纳米复合颗粒进行研究[1]:证明了颗粒内部形成了复杂的Core-Shell-Shell结构。进一步,通过nano-FTIR对全氟取代共聚物(POA)和丙烯酸共聚物(MMA/BA)在三层结构中的分布及比例进行定量研究,发现本该富集在Core部分的疏水POA在三层结构中都存在,并且在inner-Shell的比例高度达到了65%。结合聚合反应动力学研究,nano-FTIR & neaSNOM可以呈现复合聚合物颗粒Core-Shell-Shell结构在形成过程中各化学组分生成时间、相分离及迁移的具体路径以及疏水、亲水相互作用,有助于提升对纳米材料复杂高次结构的理解和设计。需要指出的是:由于不同的域(核,壳)显示出显着不同的机械性能和形貌(图1a),其他方法(例如PiFM和AFM-IR)得到的红外信息会跟局域的机械性能有一定关联,造成一些数据假象。而nano-FTIR对于这种材料系统的优点是部与样品之间的纯光学相互作用决定了信号,因而得到的信号与材料的机械性能无关。 精彩结果展示图1 PMB嵌段聚合物截面光学超分辨成像。(a)s-SNOM原理示意图。通过激发光(Einc)聚焦照射AFM探针,在针周围形成增强的局域近场,进一步AFM探针以Ω轻敲振动频率调制针散射(Esca)的近场信号,从而获取纳米尺度下聚合物截面的光学图像。(b)纯poly(POA) 与poly(MMA-co-BA)的nano-FTIR光谱,用作对比参考光谱。垂直的蓝色虚线表示记录在图(d)和(e)中的近场光学图像的红外频率。(c) PMB颗粒的拓扑结构成像。(d, e) 近场红外的相位图对应了样品分别在1250 cm−1 (d)和在1736 cm−1 (e)处的吸收。图像的积分时间为每个像素6 ms 图像获取时间为24 min。图2 nano-FTIR&neaSNOM对PMB单颗截面Core-Shell-Shell结构中POA/ARC(MMA-co-BA)的高光谱及纳米红外光谱研究(左);图3 对多个PMB聚合物颗粒化学组分的统计研究,定量给出了Core-Shell-Shell的比例分布(右)。结论作者展示了无需化学染色标记的一种纳米成像与纳米光谱表征方法(s-SNOM& nano-FTIR),该方法确认了PMB聚合物复合颗粒内部结构并证明了新型的核-壳-壳复杂结构的存在。进一步通过对参比样品光谱进行线性叠加拟合,定量的计算出核-壳-壳结构中各个组分的定量比例及分布。这种同时表征材料微观纳米结构与对应化学成分的方法是前所未见的,有助于帮助科学找到影响材料性能的关键参数以及终材料聚集形态形成的动力学路径,依此来设计和调控材料所需的宏观性能。 研究利器上述研究中的纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)是由德国Neaspec公司利用其有的散射型近场光学技术发展出来的,使纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,可以在纳米尺度下实现对几乎所有材料的化学分辨。由此开启了现代化学分析的纳米新时代。该设备还具有高度的可靠性和可重复性,已成为纳米光学领域热点研究方向的重要科研设备!图4 neaspec纳米傅里叶红外光谱仪-Nano-FTIR 参考文献:[1]. Cross-Sectional Chemical Nanoimaging of Composite Polymer Nanoparticles by Infrared Nanospectroscopy, Macromolecules, 2021, 54 (2), 995-1005, DOI: 10.1021/acs.macromol.0c02287
  • 利用超高空间分辨单分子表征技术,怀柔科学城新成果登上《科学》杂志
    落户于怀柔科学城的中科合成油技术股份有限公司联合北京大学、中科院,共同攻克了乙烯聚合可视化的难题,首次以分子电影形式展示了表面乙烯聚合的反应过程,让这一微观反应原理具有了“眼见为实”的证据支撑。该成果于近日登上了全球顶级学术期刊《科学》杂志。当下,乙烯聚合反应用于生产聚乙烯塑料,其每年产量超过一亿吨,是全球产量最大的塑料制品原料,被广泛应用于制造薄膜、容器、纤维和管材等生活用品,但其在催化剂作用下的微观反应过程一直没有被影像捕捉到,也因此,其反应机制一直存在着学术争议。“如果能将乙烯聚合的反应过程用分子电影记录下来,那么对于解释其如何实现分子链引发将有了‘眼见为实’的证据。”中科合成油公司总经理李永旺介绍。为何这么多年始终无法用视频捕捉表面乙烯聚合的微观反应过程?李永旺告诉记者,这是由于当下的聚合反应很多催化剂的成份较为复杂,很难拍下单纯的分子链引发机制。如何找到一个成份相对单一的催化剂来进行乙烯聚合反应拍摄?中科合成油表面科学实验室周雄研究员等人敏锐地发现,有一个现成的拍摄对象。那就是利用公司目前主营业务中的费托合成技术。通过这一技术,公司实现了将液态煤转化成合成油。“费托合成也可视为聚合体系,费托合成催化剂碳化铁极有可能也能活化乙烯聚合,因而解决了乙烯聚合体系模型化的困难。”周雄表示。有了“演员”,实验室找到北京大学吴凯教授团队来做“摄影师”,利用超高空间分辨的单分子表征技术,从而得以在微观尺度上直观观察到这一经典聚合反应。研究团队综合多种实验手段和理论计算,确定了在没有引发剂存在时碳化铁表面的乙烯聚合机理。3月11日,这一成果以《表面乙烯聚合乙烯插入机制的可视化》为题发表在世界学术顶刊《科学》杂志,杂志还将其列为当期置顶论文。德国慕尼黑大学Joost Wintterlin教授撰写专文评论,认为该工作“不仅会引发学术兴趣,还可以对工业应用产生重要影响,相关过程决定了合成聚合物的物理性质和质量”。值得一提的是,该成果也是少有的以企业为第一完成单位的顶刊论文,体现了怀柔科学城鼓励产学研合作的理念。
  • 岛津发布纳米激光粒度仪SALD-7500nano
    近日,岛津公司在中国市场推出了纳米颗粒的粒度分布测定装置SALD-7500nano。 SALD-7500nano具备高测量精度与出色的灵敏度,粒径测定范围7nm(0.007&mu m)~800&mu m。本产品非常适合应用于以下三个领域:(1)测定生物制药聚合体粒度通过选件,可以对生物制药产生的聚合体颗粒进行粒度和浓度方面的分析。(2)细气泡之前被称为纳米/微米气泡,目前被定义为&ldquo 细气泡&rdquo 。 粒径范围为从100nm到60微米。微细气泡,在农业杀菌,制药,化妆品,机械零件及半导体清洗,功能性食品,食品等领域都有广泛的应用。(3)测定纳米粒子和纳米材料纳米粒子和纳米材料的在二次电离的电极材料,催化剂,先进的技术开发等方面有广泛的应用。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312· 浦西分公司 (021) 2201-3888· 广州分公司 (020) 8710-8661· 四川分公司 (028) 8619-8421· 沈阳分公司(024) 2341-4778· 西安分公司(029) 8838-6350· 乌鲁木齐分公司(0991) 230-6271· 昆明分公司(0871) 315-2986· 南京分公司(025) 8689-0258· 重庆分公司(023) 6380-6068· 深圳分公司(0755) 8287-7677· 武汉分公司(027) 8555-7910· 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制