当前位置: 仪器信息网 > 行业主题 > >

聚集体分析

仪器信息网聚集体分析专题为您整合聚集体分析相关的最新文章,在聚集体分析专题,您不仅可以免费浏览聚集体分析的资讯, 同时您还可以浏览聚集体分析的相关资料、解决方案,参与社区聚集体分析话题讨论。

聚集体分析相关的资讯

  • “小贝开讲”之生物类似药申报中聚集体检测分析技术
    时间:2018年5月10日 15:00 - 16:00内容简介:近年来,随着一批“重磅炸弹”药物专利期的临近,生物类似药开发在国内外如火如荼的开展着。生物药物区别于化学药,由于其复杂的结构和生产工艺,很难做到和原研药完全一致,因此在生物类似药的申报中,需要对其各项特性指标进行全面表征和测定,确保其在质量、安全和有效性上与原研药保持一致。而聚集体的检测作为一项关键指标,需要在药物开发和生产过程中能够及时的检测出来,否则会影响药物的疗效,甚至会引起患者严重的免疫原性反应,如何有效的检测聚集体呢?本次讲座主要从常见聚集体检测分析方法,分析超离检测技术的特点以及国外药企在药物申报过程中对于单抗聚集体检测分析案例分享等三方面讲解,让你在生物类似药申报中提供更充分可靠的数据。主讲人简介:宋明敏离心机应用专家目前负责离心机产品线及分析型超离技术的应用开发。拥有多年生物制药行业研发,生产及质量管理经验。涉及领域包括抗体、疫苗和重组蛋白等生物制剂生产工艺开发、GMP认证及分析检测等。
  • 揭秘岛津生物药聚集体粒子表征的创新之道
    导读生物药发生聚集后药效会明显减弱,还可能导致人体出现休克,岛津基于流动成像技术开发的粒子分析系统,对生物药中亚可见类聚集体以及不溶性微粒物或外源性组分检测提供了全新分析手段。 受新冠疫情影响,世界各国经济遭受重创,在面临资本寒冬的大环境中生物医药产业一枝独秀,逆势增长,俨然成为世界经济发展以及全球健康保障的指明灯。生物药可对病原体进行特异性攻击,副作用小,药效显著,但易受到环境温度、压力、存储条件、外界异物引入等因素影响而发生聚集。研究表明,生物药发生聚集后药效会明显减弱或消失,严重时还会因免疫反应而导致人体出现休克症状。 对于生物聚集体的分析,小于100nm的不可见聚集体通常使用空间排阻色谱法(SEC)检测,对于10um以上可见区聚集体美国药典和日本药典规定使用光阻法进行检定,但在100nm至10um之间并无合适的定量评价方法。2020版中国药典第四部关于不溶性微粒物检查,第一法光阻法,第二法显微计数法。光阻法只能给出计数浓度,不能查看粒子形貌及聚集状态,显微计数法虽然能查看粒子形貌及个数,但检定效率低且代表性差。 图1 生物聚集体大小及粒径范围分布 岛津iSpect DIA-10基于流动成像技术开发的粒子分析系统综合了粒度、显微观察、粒子计数三类仪器的特点,可以精确捕捉粒子形貌、粒径大小分布、能对不同大小粒子进行有效区分并给出对应粒径范围粒子的计数浓度结果,最低仅需50uL样品消耗且有非常高的灵敏度。对于生物药中亚可见类聚集体的检定以及相关的不溶性微粒物或外源性组分检查可提供一个全新分析手段。图2 岛津iSpect DIA-10动态颗粒图像分析系统 应用实例 生物药中不溶性亚可见微粒物的检查 样品处理:人体免疫球蛋白(1mg/mL)两份,一份80℃加热3min,一份机械搅拌10min样品分析:使用iSpect DIA-10分别观察其蛋白聚集形成状态 图3 80℃加热3min后粒子状态 图4 机械搅拌10min后粒子状态 图5 粒子检定结果 生物蛋白聚集体的粒径范围一般在0.2~10um之间,传统的蛋白聚集体评价方法中存在“无法一次性完成亚可见区的测定、”无法边施压(加热或机械刺激)边测定“、”无法回收已测样品“和“无法进行定量”等问题。岛津开发的生物医药聚集体评价系统Aggregates Sizer可以完美解决上述问题。图6 生物聚集体评价系统Aggregates Sizer ? 定量评价生物聚合体浓度(ug/mL)? 高灵敏度生物聚合体分析,一次仅需0.4mL? 具有温度控制及机械搅拌功能? 间隔1秒的超快速聚集过程监控? 可进行超过15小时的连续不间断测定 应用实例 不同温度及机械压力刺激下,生物蛋白聚集情况分析 样品:静脉注射免疫球蛋白(IVIG)热压力处理:在70℃下对1mL IVIC溶液进行5、7、9分钟培养后,取0.4ml进行测定机械刺激处理:5mL IVIC溶液室温中按190次/分钟速度搅拌,进行8个小时的连续测定 通过Aggregates Sizer生物医药聚集体评价系统对聚集体粒径、生成的聚集体浓度随时间的变化进行评价,结果如图7、图8所示。由图可知,施加热压力时,只在0.2um附近增加聚合体,而1um以上的粒径处并未生成聚集体。施加机械刺激时,随着时间的增加,可以发现在0.2~10um区域聚集体增加。FDA认证中将亚可见区分为0.2~2um和2~10um两个区域进行分别评价,而使用Aggregates Sizer只需一次测定即可得到整个区域的聚合体生成量信息。Aggregates Sizer采用的qLD法可以有效评价蛋白质在研发制造过程中受热压或机械刺激对生物药品的影响评价。图7 70℃加热 图8 190次/分钟速度搅拌 总结 生物药具有副作用小药效显著的特点,但在生产、运输、使用过程中容易产生聚集而影响药效,在生物聚集体大量存在的100nm~10um粒径范围内并无有效的评价方法,无相关的在线模拟实验(温度、机械压力影响)手段、无法进行定量分析、无法回收已测样品等,针对这一系列问题,岛津开发的Aggregates Sizer生物医药聚集体评价系统以及基于流动成像技术开发的iSpect DIA-10粒子分析系统可以很好的解决上述问题,可为生物药开发及品质监控提供全新的解决方案。
  • 揭秘岛津生物药聚集体粒子表征的创新之道
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "受新冠疫情影响,世界各国经济遭受重创,在面临资本寒冬的大环境中生物医药产业一枝独秀,逆势增长,俨然成为世界经济发展以及全球健康保障的指明灯。生物药可对病原体进行特异性攻击,副作用小,药效显著,但易受到环境温度、压力、存储条件、外界异物引入等因素影响而发生聚集。研究表明,生物药发生聚集后药效会明显减弱或消失,严重时还会因免疫反应而导致人体出现休克症状。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/ae33f487-b53d-426d-88fa-4973b5dcfcbb.jpg" title="1.jpg" alt="1.jpg"//span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "对于生物聚集体的分析,小于100nm的不可见聚集体通常使用空间排阻色谱法(SEC)检测,对于10um以上可见区聚集体美国药典和日本药典规定使用光阻法进行检定,但在100nm至10um之间并无合适的定量评价方法。2020版中国药典第四部关于不溶性微粒物检查,第一法光阻法,第二法显微计数法。光阻法只能给出计数浓度,不能查看粒子形貌及聚集状态,显微计数法虽然能查看粒子形貌及个数,但检定效率低且代表性差。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/209b379b-870b-4e36-908c-369cae988b7e.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center text-indent: 2em "strongspan style="font-family: 宋体, SimSun "图1 生物聚集体大小及粒径范围分布/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "岛津iSpect DIA-10基于流动成像技术开发的粒子分析系统综合了粒度、显微观察、粒子计数三类仪器的特点,可以精确捕捉粒子形貌、粒径大小分布、能对不同大小粒子进行有效区分并给出对应粒径范围粒子的计数浓度结果,最低仅需50uL样品消耗且有非常高的灵敏度。对于生物药中亚可见类聚集体的检定以及相关的不溶性微粒物或外源性组分检查可提供一个全新分析手段。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/32d542bd-19df-418c-ab7e-f5202ba39c0c.jpg" title="3.png" alt="3.png"//pp style="text-indent:36px text-align:center line-height:120%"a href="https://www.instrument.com.cn/netshow/C390622.htm" target="_self"span style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) text-decoration: underline font-family: 宋体, SimSun "图2 岛津iSpect DIA-10动态颗粒图像分析系统/span/strong/span/a/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "应用实例:生物药中不溶性亚可见微粒物的检查/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品处理:人体免疫球蛋白(1mg/mL)两份,一份80℃加热3min,一份机械搅拌10min/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品分析:使用iSpect DIA-10分别观察其蛋白聚集形成状态/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/f21eba36-d161-4013-9e03-71c806dab510.jpg" title="4.png" alt="4.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/b69d824b-dbef-4341-914e-027cc8bfa68c.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "生物蛋白聚集体的粒径范围一般在0.2~10um之间,传统的蛋白聚集体评价方法中存在“无法一次性完成亚可见区的测定、”无法边施压(加热或机械刺激)边测定“、”无法回收已测样品“和“无法进行定量”等问题。岛津公司开发的生物医药聚集体评价系统Aggregates Sizer对上述问题有如下解决方案:/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/22689e1b-d6f5-43e4-954d-b8975108ee69.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "应用实例:不同温度及机械压力刺激下,生物蛋白聚集情况分析/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品:静脉注射免疫球蛋白(IVIG)/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "热压力处理:在70℃下对1mL IVIC溶液进行5、7、9分钟培养后,取0.4ml进行测定/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "机械刺激处理:5mL IVIC溶液室温中按190次/分钟速度搅拌,进行8个小时的连续测定/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "通过Aggregates Sizer生物医药聚集体评价系统对聚集体粒径、生成的聚集体浓度随时间的变化进行评价,结果如图7、图8所示。由图可知,施加热压力时,只在0.2um附近增加聚合体,而1um以上的粒径处并未生成聚集体。施加机械刺激时,随着时间的增加,可以发现在0.2~10um区域聚集体增加。FDA认证中将亚可见区分为0.2~2um和2~10um两个区域进行分别评价,而使用Aggregates Sizer只需一次测定即可得到整个区域的聚合体生成量信息。Aggregates Sizer采用的qLD法可以有效评价蛋白质在研发制造过程中受热压或机械刺激对生物药品的影响评价。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/c2534c58-481b-4f10-b689-019e91bc3562.jpg" title="7.png" alt="7.png"//span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "总结/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "生物药具有副作用小药效显著的特点,但在生产、运输、使用过程中容易产生聚集而影响药效,在生物聚集体大量存在的100nm~10um粒径范围内并无有效的评价方法,无相关的在线模拟实验(温度、机械压力影响)手段、无法进行定量分析、无法回收已测样品等,针对这一系列问题,岛津公司开发的Aggregates Sizer生物医药聚集体评价系统以及基于流动成像技术开发的iSpect DIA-10粒子分析系统可以很好的解决上述问题,为生物药开发及品质监控提供全新的解决方案。/span/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "作者:刘舟/span/strong/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "岛津企业管理(中国)有限公司/span/strong/pp style="text-align: right "strongspan style="font-family: 宋体, SimSun "高级技术专家/span/strong/p
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • Postnova场流分离系统应用举例:蛋白质聚集体分离的理想解决方案
    Postnova场流分离系统应用举例——蛋白质聚集体分离的理想解决方案 蛋白质聚集体已经成为药学发展和质检上一个重要的问题。其活性,生物利用度和可能的消极免疫响应等性能直接与不同程度的聚集态的存在有关。因此不仅FDA, 更多的官方和私人研究机构都对聚集态结构产生越来越大的兴趣。他们研究的目标是确定精确的聚集情况,即药物中的蛋白质中某个时间有多少聚集态结构形成以及如何避免这种情况。 场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。当样品注射到场流分离通道时,分离应力作用于聚合物或粒子强迫它们向通道底层移动,通道底层就被称为聚集壁。样品不能透过聚集壁,所以它们再次扩散到通道中心。扩散应力被分离应力抵消,在很短的时间(一般是30~120秒)内两种力之间就建立起一个稳定的动态平衡。大小不同的颗粒有着不同的扩散系数,所以它们在通道内由于速度梯度而被分离。注射后的粒子/聚合物由于“垂直场力”的存在,受迫向垂直于流动相流动的方向移动。小粒子由于具有较大的扩散系数将会比大粒子在通道内扩散的更深远。结果就是,小粒子在通道内被“层流”更快的定位,并因此而被洗脱出来;而大粒子则定位较慢,后洗脱出来。上图是使用AF4非对称场流分离单克隆抗体的结果。在20分钟内,不同程度的聚集态被分开,整个分离过程由于没有固定相存在,因此蛋白质的空间结构不会被破坏。样品不需要前处理,更可以通过联用多种在线检测器(LS, UV, RI, SEM, DLS),方便迅速得到需要的数据。 场流分离技术具有以下优点:• 快速、温和的分离,可以兼容任何溶剂和缓冲液• 超高的分辨率(±1nm)• 没有任何固定相的分离通道• 宽分离范围:粒径1nm~100mm /分子量1000Da~1012Da• 无需前处理及过滤,直接进样复杂基质样品• 可收集所需要的样品,方便升级至制备级• 能够连接各种检测器,如在线串联紫外、光散射、荧光、质谱等检测器• 可同时测定分子的分子量及粒子的粒径。这些优点使场流分离技术在蛋白质及其聚集体分离方面可以发挥巨大的作用。更多产品详情,敬请登陆:www.tegent.com.cn德祥热线:4008 822 822info@tegent.com.cn
  • AFM技术文章:通过边带KPFM(Sideband KPFM)对分子聚集体进行电势成像
    充分发挥潜力通过边带KPFM对分子聚集体进行电势成像Ilka M. Hermes, Andrea CerretaPark Systems Europe GmbH, Mannheim, Germany 功函数是一种材料特性,可用于区分复合材料中的单一成分或用于区分样品与基体。开尔文探针力显微镜(Kelvin probe force microscopy,KPFM)能利用已知的探针功函数,以纳米分辨率去成像样品表面功函数分布。在这里,我们介绍了Park Systems 研究型原子力显微镜中新开发的边带KPFM(Sideband KPFM)。边带KPFM显著提高了电势的灵敏度和空间分辨率,从而提高了KPFM测量的准确性和可靠性。 半氟化烷烃由两个链段组成–(CF2)xF和(CH2)yH 嵌段。FxHy 在水中和固体基质上以不同的形态自组装。因此,对半氟化烷烃(如F14H20)的研究有助于对自组装的一般理解。由于F14H20的电偶极子导致F14H20与衬底之间存在明显的表面电势差,所以开尔文探针力显微镜(KPFM)非常适合于自组装F14H20结构的纳米级可视化研究。 KPFM是一种扫描探针显微镜技术,它能同时捕捉样品的表面形貌和表面电势。对于KPFM,振荡的导电探针在扫描样品表面的同时会施加交流电压,用来检测由表面电势局部变化引起的针尖和样品之间的静电力变化。为了最小化所侦测到的静电力,外加直流偏压可以抵消扫描的每个点上针尖和样品之间的接触电势差。基于外加直流偏压,在KPFM信号中重构了样品的表面电势分布。如果已知导电探针的功函数,那么电势分布就可以转换为样品的功函数分布。静电力的检测方法决定了KPFM中表面电势的分辨率和精度。 在非共振KPFM中,交流电压以远离悬臂共振的频率调制静电力,用于形貌成像(图1a)。然后通过交流频率下的振幅来检测力。通过施加与针尖和样品之间的电势差所相匹配的直流偏压,可以消除交流频率下的振幅,从而消除静电力。然而,KPFM信号对长程力的依赖性降低了测量的灵敏度,因为样品和悬臂之间的非局部相互作用可以叠加在局部信号上。 对于边带KPFM,我们采用低频交流电压(2-5kHz)来调制静电力梯度。调制力梯度引入了悬臂共振左右两侧的频率边带(图1b)。与非共振KPFM类似,边带KPFM通过施加与电势差相匹配的直流偏置来抵消这些边带的振幅。通过检测短距离的力梯度来取代长程力梯度,可以减小长距离串扰,提高横向分辨率和局部电势灵敏度。图1:非共振KPFM(a)和边带KPFM(b)的频谱示意图。边带KPFM检测电极阵列在F14H20上进行测量之前,为了测试边带KPFM的电势分辨率和精度,我们在金电极阵列的相邻电极上施加了不同的电压(0V和-2V)(图2a)。图2b中样品形貌和边带KPFM电势的叠加说明了在两个电极上检测到的不同电势:左侧电极显示约0V的亮电势对比度,右侧电极显示约-2V的暗电势对比度。图2c是更详细的分析电势图像的线轮廓。在这里,我们发现测得的电势与外加电压是一致的。因此,我们检测到两个相邻电极之间存在2V压差,以及从电极到基板的急剧过渡。因此,我们证明了边带KPFM能够以很高的电势灵敏度和空间分辨率捕获施加在样品上的全电压。图2: a)电压分别为0和-2V的金电极阵列。b) 边带KPFM电势和形貌的三维叠加显示了两个电极的两种不同电势随外加电压的变化。c) 边带KPFM电势沿红线分布在两个电极上,表明测得的电位与外加电压一致,空间分辨率高。F14H20分子聚集体的KPFM研究 为了比较边带KPFM和更常用的非共振KPFM,我们绘制了半氟化烷烃(F14H20)自组装聚集体的表面电势分布图。在这里,分子的电偶极子在聚集体和亚硝酸盐之间引入了一个显著的电位偏移。图3:使用非共振和边带KPFM对相同的F14H20成像。横截面(红色)可以体现边带KPFM的横向和电势分辨率明显提高。 非共振和边带KPFM测量结果表明,边带KPFM的空间分辨率和电势分辨率都有所提高。对于边带KPFM,我们观察到基板和F14H20之间的潜在对比度为700-750mv,以及确定的横向分辨率,甚至可以成像聚集体中的小间隙。另一方面,非共振KPFM显示大约300mv的电势差,表明局部电位灵敏度较低。此外,边带KPFM捕获的清晰边缘在非共振KPFM中模糊,突出了边带KPFM优越的空间分辨率。 F14H20分子聚集体的柔软性对扫描探针技术的表征提出了新的挑战。然而,边带和非共振KPFM可以与Park Systems的非接触模式相结合,从而允许对这些软分子结构进行稳定的形貌成像。总结 边带KPFM,可扩展在Park NX研究型设备中,对测量如F14H20类似的软样品以及半导体和金属材料提供准确的表面电势研究。对静电力梯度的依赖性显著提高了横向分辨率和电势灵敏度,使边带KPFM成为纳米尺度表面电势定量表征的理想技术。Source:1. Silva, G. M. C., Morgado, P., Lourenço, P., Goldmann, M. & Filipe, E. J. M. Spontaneous self-assembly and structure of perfluoroalkylalkane surfactant hemimicelles by molecular dynamics simulations. Proc. Natl. Acad. Sci. 116, 14868 LP – 14873 (2019).2. Abed, A. El, Fauré, M.-C., Pouzet, E. & Abillon, O. Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface. Phys. Rev. E 65, 51603 (2002).3. Zerweck, U., Loppacher, C., Otto, T., Grafström, S. & Eng, L. M. Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424 (2005).
  • 天美公司助力聚集体科学国际研讨会暨聚集诱导发光研究20周年会议
    “聚集体科学国际研讨会暨聚集诱导发光(以下简称‘AIE’)研究20周年”会议于2021年7月25日至28日在广州市黄埔区盛大召开。此次会议由华南理工大学、广东省大湾区华南理工大学聚集诱导发光高等研究院、华南理工大学材料与器件国家重点实验室、广东省分子聚集发光重点实验室、华南理工大学聚集诱导发光研究中心、国家人体组织功能重建工程技术研究中心香港分中心、香港中文大学(深圳)联合举办。本次会议邀请了来自31家海内外高校专家学者通过线上及线下结合的形式,共同探讨聚集诱导发光领域的创新发展大计。 唐本忠院士致开幕词“聚集诱导发光(Aggregation-Induced Emission,AIE)”作为中国原创的科学概念,自中国科学家唐本忠院士2001年首次提出至今,已经走过了20年的科研发展历程,在智能材料、液晶显示、发光二极管、指纹检测、化学传感器、生物诊疗与成像等诸多领域取得了广阔的应用。会议主题旨在进一步增强AIE的学术交流,探讨该领域面临的科学问题和未来发展方向。天美(中国)科学仪器有限公司携爱丁堡公司应邀作为赞助商之一,全程参加了此次会议。天美公司会议展台与会期间,众多研究学者及老师们莅临展台,了解和咨询稳态瞬态发光的先进技术及广泛应用;同时,对老用户提出的关于稳态瞬态荧光光谱仪的各类使用问题进行解答。通过为期四天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为仪器行业的知名供应商,将始终秉承助力科研领域的发展,一如既往的支持AIE产业的创新研究,为广大用户提供更加优质的服务。
  • 【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织
    【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织(文末预约试拍)01—研究介绍脑组织样本的组织学分析给我们提供了有关导致常见神经退行性疾病的病理过程的宝贵信息。在这种情况下,开发新的高分辨率成像方法是神经科学当前面临的挑战。为此,我们使用了一种被称为随机光学重建显微镜 (STORM) 的超分辨率成像技术来分析人脑切片。作者将 STORM 细胞成像方案与神经病理学技术相结合,对患有神经退行性疾病的患者和对照受试者的脑样本进行了成像。02—研究结果(节选)作者在新皮质、白质和脑干样本中执行了 2D、3D 和双色STORM成像 。STORM 被证明在可视化致密蛋白质包涵体的组织方面特别有效,作者对阿尔茨海默病、帕金森病、路易体痴呆和额颞叶变性患者的中枢神经系统内的病理聚集体进行了 50 nm 分辨率的成像。聚集的 Ab 分支在细胞外基质中呈网状和交联,宽度为 60 至 240 nm。神经元内 Tau 和 TDP-43 内含物更密集,胞体呈蜂窝状,轴突呈丝状组织。最后,α-突触核蛋白病理学的 STORM 成像揭示了路易体的内部组织,这是传统荧光显微镜无法观察到的。1、使用 STORM 和TEM测量对人脑前额叶皮层冷冻样本进行成像图1、使用 STORM 对人脑样本进行超分辨率成像。(A) 用于 STORM 成像的光学设置示意图。I.B.,入射光束;E.F,渐逝场;R.B.,反射光束。(B) STORM 采集人脑切片中的皮层轴突,对神经丝 (NF) 进行免疫染色:首先采集传统的宽视场荧光显微镜图像。(B1),然后强烈增加激发功率以诱导荧光团闪烁,并获得数千帧记录(B2-B5)。以亚像素精度(B6-B9)在每帧的基础上检测到激活的荧光分子的定位。然后使用来自所有帧的累积定位来重建超分辨率图像(B10)。IF,成像帧。(C) 使用常规宽视场荧光显微镜、STORM 和透射电子显微镜 (TEM) 获得的纵向和横向切片前额叶皮层轴突的代表性图像。(D 和 E)使用常规荧光显微镜、STORM 和 TEM 在人脑中测量的轴突直径(纵向切片)和面积(横向切片)。误差线表示具有标准偏差的平均值。*P .0012、AD 患者脑样本中老年斑和神经原纤维缠结的STORM图像图2、AD患者大脑样本中老年斑和神经原纤维缠结的STORM图像。(A1) AD 患者新皮质中老年斑的代表性图像(Ab 的免疫组织化学检测)。(A2) 同一患者的新皮质切片中整个老年斑块的常规荧光显微镜图像对 Ab 进行免疫染色。(A3) 同一区域的风暴图像。插图(1 和 2)显示了聚合 Ab 分支的分布和大小的特写细节。(A4) 老年斑中 Ab 纤维(黑色箭头)的比较 TEM 图像。(B1) AD 患者新皮质中神经原纤维缠结的代表性图像(p.Tau 的免疫组织化学检测)。(B2) 在同一患者的新皮质切片中,整个退化神经元的胞体内神经原纤维缠结的常规荧光显微镜图像被 Ab 沉积包围。(B3) 通过结合传统荧光显微镜 (Ab) 和 STORM (p.Tau) 对同一神经元进行成像。插图(3 和 4)显示了胞体中 p.Tau 聚集体的蜂窝结构和轴突中的丝状组织的特写细节。(B4) 神经原纤维缠结中 Tau 丝(白色箭头)的比较 TEM 图像。03—研究总结本文中,作者结合了超分辨率显微镜和神经病理学技术来分析人脑切片。迄今为止,组织中纳米结构的成像主要依赖于透射电子显微镜,这是一项耗时的技术,需要超薄组织切片 (50-70 nm) 进行严格的样品制备,并限制了免疫靶向多样性和3D采集。相反,STORM在样品制备,广阔的观察领域,多分子标记和3D采集方面具有光学荧光显微镜的优势,而图像采集和重建仅需几分钟。人脑样本的 STORM 成像进一步打开了全面了解常见神经系统疾病的大门。这种技术的便利性应该会直接扩展其在人脑超分辨率成像方面的应用,为当前神经科学面临的挑战提供更好解决方案。04—超高分辨率显微成像系统 iSTORM前文中提及的随机光学重构显微镜(STORM)技术,目前已成功实现商用,有需要STORM技术进行实验研究的专家老师们,请文末填写问卷,即可预约获得 iSTORM 超高分辨率显微成像系统试拍服务哦~超高分辨率显微成像系统 iSTORM,成功实现了光学显微镜对衍射极限的突破,使得在 20 nm的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及超分子结构解析、生物大分子生物动力学等的研究成为现实,从而给生命科学、医学等领域带来重大性突破。图3、超高分辨率显微成像系统iSTORM。超高分辨率显微成像系统 iSTORM 具有 20 nm超高分辨率、3通道同时成像、3D同步拍摄、实时重构、2小时新手掌握等特点,已实现活细胞单分子定位与计数,并提供荧光染料选择、样本制备、成像服务与实验方案整体解决方案,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:P. Codron, F. Letournel, S. Marty, L. Renaud, A. Bodin, M. Duchesne, C. Verny, G. Lenaers, C. Duyckaerts, J.-P. Julien, J. Cassereau and A. Chevrollier (2021) Neuropathology and Applied Neurobiology 47, 127–142 STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced Protein Aggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 复杂单克隆抗体的对比分析
    p来自Postnova Analytics英国实验室的讯息:/pp  strongPostnova Analytics发布了一份新海报,比较了两种用于测定单克隆抗体物理化学及生物物理学性质的测试方法——电场流及非对称场流分离色谱法(EAF4-Electrical Asymmetrical Flow Field Flow Fractionation)和体积排阻色谱法(SEC-Size Exclusion Chromatography)的适用性。/strong/pp style="text-align: center "strongimg title="复杂单克隆抗体的对比分析.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/c124cda4-465c-4088-99f8-7208b46db509.jpg"//strong/pp  据美国国家标准与技术研究院(NIST-U.S. National Institute of Standards and Technology)的工作所述,一种参比单克隆抗体(RM 8671 mAb),被用于比较EAF4-UV-MALS(多重散射聚焦系统Multi Astigmatism Lens System)与SEC-UV-MALS之间分离量化、聚合量化及恢复参数的差异。NIST的这种mAb为治疗用蛋白质表征这一新技术的发展提供了一种代表性的检测分子。/pp  该海报阐述了EAF4模组如何将抗体及蛋白质分子大小与表面电荷特性(电泳迁移率)的同时测量变为可能。FFF(场流分离色谱Field Flow Fractionation)系统测量显示蛋白质/抗体的聚集只占注入总量的10%,且无聚集体被SEC检测到。研究人员总结到,FFF的开放通道设计会顾及相比SEC更好的注入物的复原,这对于追求量化少量聚集体而言至关重要。/pp  Postnova Analytics的EAF4技术独创性地将电场流分离色谱和非对称场流分离色谱的原理融合在同一系统中。在EAF2000系统中,电场流和交叉场流被同时应用于FFF通道,通过粒子不同的电泳迁移率,使得按粒子大小与电荷进行色谱分离成为可能。这两种强大分离技术在一个单独平台上的结合,为表征复杂的蛋白质、抗体、病毒,以及环境和带电纳米粒子或高分子打开了大门,而其他技术已证明了这一问题是多么棘手。/p
  • 安捷伦:抗体药分析项目众多 单项检测中快而灵敏的方法受欢迎
    p style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "全球抗体药物市场增长强劲,被业内认为是生物制药产业中最为活跃的组成部分。与小分子化学药相比,抗体药进入体内靶向相关细胞,特异性好,副作用低,已成为未来生物医药领域发展的“潜力股”。 随着国家医药生物产业规划升级的推动,中国的抗体药将迎来新的发展机遇期。但是,因抗体药分子量较大,结构复杂,存在多种翻译修饰,生产工艺复杂,使得其研发与质控难度增大,建立抗体表征结构鉴定的一系列方法已成为首要的任务。/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "为帮助抗体药相关研究人员及企业用户梳理抗体药物分析检测的仪器耗材、技术方法及相关进展,仪器信息网特别策划“抗体药分析检测技术”专题,并邀请安捷伦公司生物制药行业产品专员张曼玉分享了自己的观点。span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "br//span/span/pp style="text-align: center "img width="380" height="374" title="张曼玉.png" style="width: 380px height: 374px max-height: 100% max-width: 100% " alt="张曼玉.png" src="https://img1.17img.cn/17img/images/202004/uepic/8b9f8269-bd0a-499b-a4af-ae45e455aa66.jpg" border="0" vspace="0"//pp style="text-align: center "张曼玉 安捷伦公司/pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong仪器信息网:请您介绍一下抗体药物分析的相关情况以及行业现状?/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(79, 129, 189) "strong张曼玉:/strong/span治疗性抗体药物根据结构可分为单克隆抗体、双特异性抗体、抗体药物偶联物和抗体片段等,单抗是获批最多的抗体类型。从分析表征的角度来看,单抗是由四条多肽链通过二硫键连接形成的“Y”字型构象的蛋白质,同时具有生物学活性。单抗的分子量约为150 KDa,属于生物大分子,通常采用基因工程技术进行序列构建、通过细胞培养来进行生产。单抗生产过程中发生的翻译后修饰、聚集等化学物理变化使其具有高度的异质性,如大小异质性、电荷异质性、序列异质性以及结构异质性,生产和纯化的工艺影响着终产品的质量。分析检测和表征手段被用于其关键质量属性的监测,保障其安全性和有效性。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong仪器信息网:目前抗体药物及相关分析检测、表征手段有哪些?相关前沿进展及发展趋势如何?/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(79, 129, 189) "strong张曼玉:/strong/span单抗药物的分析表征项目包括滴度分析、聚集体分析、电荷异质性、分子量检测、肽图、糖型、氨基酸组成分析、活性检测、以及宿主蛋白/DNA残留等,分别用于监控抗体的浓度、聚集体含量和酸碱峰比例;确认其氨基酸序列的正确表达,鉴定翻译后修饰并计算其相对含量;检测其生物学活性,及杂质含量。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "考虑到单抗的异质性,为了更好的对其进行监控,相关分析方法涵盖了不同的检测机理和不同的分子大小层面,检测项目相对较多。从色谱分离的角度来看,滴度分析属于亲和色谱,聚集体检测采用尺寸排阻色谱,电荷异质性分析采用离子交换色谱或毛细管等电聚焦,分子量和肽图检测采用反相色谱分离,而糖型分析则用到亲水作用色谱。活性检测包含基于细胞和转基因细胞的活性检测,以及表面等离子共振、均相时间分辨荧光、Alpha技术和荧光染料标记法等新技术的检测方法*。宿主细胞蛋白残留采用ELISA方法,DNA残留检测以实时荧光定量聚合酶链式反应(qPCR)为最优。从分子大小层面,包括完整分子、聚体、亚基、肽图和游离糖。针对抗体的单项检测,更快更灵敏的分析方法受到关注和欢迎,如快速的聚集体分析和游离糖分析方案;同时,业内也在探讨采用单一检测方法替代多个检测方法的可行性,以加快抗体检测的进度。(* 王兰,徐冈,等. 抗体类生物治疗药物活性测定方法. 中国生物工程杂志,2015,35(6):101—108)/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong仪器信息网:请介绍贵公司在抗体药物分析检测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势?/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(79, 129, 189) "strong张曼玉:/strong/span 安捷伦作为实验室解决方案供应商,致力于提供平台化的完整解决方案,提供高效液相色谱(HPLC)、生物惰性液相色谱(Bioinert LC)、超高效液相色谱(UHPLC)、毛细管电泳仪(CE)及液相-飞行时间联用质谱(LC/QTOF)用于抗体的分析检测。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "液相色谱用于抗体的滴度分析、聚集体检测、电荷异质性、肽图和糖型分析,贯穿药物的研发和质控。安捷伦1260液相色谱是生物制药实验室的经典液相,性能稳定、皮实耐用;1290 UHPLC高效混合和耐压高的特点保障肽图和糖型分析的分离度和结果的重现性。采用四元泵系统搭配Buffer adviser软件能实现聚集体检测-尺寸排阻色谱方法和电荷异质性-离子交换色谱方法的快速开发。操作者只需配置3瓶母液,即可通过软件自动调配出不同pH值和盐浓度的梯度进行方法优化,得出最佳的分离条件,省去大量的缓冲盐配制工作,显著提高工作效率。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "尺寸排阻色谱和离子交换色谱都是在高盐体系下对非变性抗体进行的检测,分析系统与样品之前无特异性吸附,对提高分离效果、降低系统残留至关重要。安捷伦 1260 Infinity II 生物惰性液相色谱在样品流路中采用了无金属部件及溶剂输送无铁、无钢的设计,耐酸耐碱耐高盐,最大限度减少了不必要的表面相互作用,提高色谱分离度,适合高盐体系下生物大分子的分析。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C252818.htm" target="_blank"img title="1260infinity.jpg" style="max-height: 100% max-width: 100% " alt="1260infinity.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/3e38a6bc-98fd-4e1f-ba81-81f324b3f778.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C252818.htm" target="_blank"Agilent 1260 Infinity II 液相色谱系统 /a/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "毛细管电泳仪用于抗体研发质控中大小异质性、等电点和电荷异质性的检测,分别采用CE-SDS和CIEF等电聚焦模式。在大小异质性的检测中,安捷伦7100 CE具备高分辨和高速两种采样模式,分别满足高分离度和快速的需求。采用CE进行电荷异质性分析具有分析速度快、条件统一和分析方法开发简单的优点,与液相色谱基于表面电荷进行分离的离子交换方法互为补充。/pp style="text-align: center line-height: 1.5em text-indent: 0em margin-top: 10px margin-bottom: 10px " /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C99540.htm" target="_blank"img title="安捷伦毛细管电泳.jpg" style="max-height: 100% max-width: 100% " alt="安捷伦毛细管电泳.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/049220ba-7a1f-40ff-8869-fc592eced7a8.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C99540.htm" target="_blank"Agilent 7100 毛细管电泳系统/a/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "液相-飞行时间联用质谱用于抗体药物研发过程中的分子量测定、氨基酸序列确定、翻译后修饰鉴定及二级结构分析。Agilent 6545XT AdvanceBio LC/QTOF 针对生物大分子而设计,通过改善高真空度提升了单抗的谱图质量和灵敏度;特色的一键式SWARM粒子群调技术进一步提升了抗体检测的灵敏度,并实现了氨基酸等小分子检测灵敏度的兼顾。优异的灵敏度使其得以进行完整蛋白层面的药物代谢的分析,以及与毛细管电泳联机用于电荷异质性分析。/pp style="text-align: center line-height: 1.5em text-indent: 0em margin-top: 10px margin-bottom: 10px " /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C242488.htm" target="_blank"/a/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C265348.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/ceafa485-6375-45d1-8bf6-aa2374aeb4ce.jpg" title="tx.jpg" alt="tx.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265348.htm" target="_blank"Agilent 6545XT Q-TOF 液质联用系统/a/pp style="text-indent: 2em "了解更多请点击a href="https://www.instrument.com.cn/zt/ktywjc" target="_blank"span style="color: rgb(255, 0, 0) "strong“抗体药物分析检测技术”/strong/span/a专题。/pp style="text-align: center "br//pp style="text-align: center "a href="https://www.instrument.com.cn/zt/ktywjc" target="_blank"img width="550" height="138" title="抗体.png" style="width: 550px height: 138px max-height: 100% max-width: 100% " alt="抗体.png" src="https://img1.17img.cn/17img/images/202004/uepic/514512f4-a753-43ca-883c-f8744112e0d2.jpg" border="0" vspace="0"//a/pp style="text-align: center line-height: 1.5em text-indent: 0em margin-top: 10px margin-bottom: 10px " /p
  • 生物药分析丨如果有这样一台“加速器”,您想快进到哪一步?
    HPLC肽图分析是蛋白质一级结构研究中极为重要的手段之一,不但可以比较重组与天然蛋白质结果之间的同一性,确认基因工程上游和下游处理过程中是否发生差错、重组产物中是否存在翻译后修饰及未预期氨基酸的变异等,而且不同批次产品的肽谱比较可验证工艺过程的稳定性。因此,肽图分析在生物技术药物质控中尤为重要。 目前肽图分析常用方法主要是胰蛋白酶切RP-HPLC方法。蛋白样品经酶解后进入HPLC,进行色谱分离,保留时间不同的肽段依次进入紫外检测器进行检测。 岛津的相关液相产品,例如Nexera-i系列、LC-40以及生物惰性兼容液相Nexera Bio均可实现蛋白类药物的HPLC肽图分析。 蛋白类药物肽图分析电荷异构体的存在将会影响到蛋白质药物的活性、结合能力、药代动力学、免疫原性及结构稳定性,从而影响药物有效性、安全性及保质期。同时,电荷异质性的控制程度也反映了重组蛋白类药物生产工艺的一致性。因此,在生物类似药的研发及与原研药的一致性评价研究中,电荷异质性是工艺质量控制的重要因素。 为了最大限度地降低蛋白质与固定相填料的离子相互作用及二者之间可能存在的吸附作用,电荷异质性分析通常使用高离子强度的流动相,并且采用碱性或酸性分析条件。但是,高离子强度流动相和碱性/酸性分析条件给液相色谱仪的耐腐蚀性和系统稳定性带来严峻的挑战。 ATP分析 糖基化是蛋白质的一种重要翻译后修饰,糖基分析主要包含唾液酸含量测定、单糖组成分析、糖基化位点测定、糖链结构测定等。 唾液酸含量的测定是先将唾液酸从糖链上解离成游离状态,再进行化学反应实现衍生化,通过测定衍生化产物从而测定唾液酸含量,常用的方法有间苯二酚显色法和HPLC法。间苯二酚显色法是利用间苯二酚将游离的唾液酸进行衍生生成有色化合物,再用紫外分光光度法测定其含量;HPLC法是利用邻苯二胺(OPD)对唾液酸进行衍生,然后用带紫外检测器的HPLC或者LC-MS/MS进行定量。 蛋白类生物药糖型分析 蛋白质药物在其生产、贮藏、运输、销售以及用药过程中由于外力因素的作用可能会产生聚集。蛋白质聚集现象会导致蛋白药活性和其在药品中的浓度降低,并可能产生有害的毒理学作用和免疫应答,甚至发生危及生命的药物反应。FDA关于聚集体的指导原则中就指出蛋白聚集体在人体内极易产生免疫原性。 对于常见的蛋白质低聚体(二聚~四聚体),非还原型聚丙烯酰胺凝胶电泳( SDS-PAGE )需要在变性条件下进行,一般会影响多聚体的检测。而体积排阻色谱法(SEC)条件温和,不会对蛋白的形态产生较大的影响。因此,SEC法能较准确地检测蛋白质中的低聚体,是蛋白质药物开发、质量控制和稳定性研究中常用的聚集体分析方法。 大小变异体,聚体分析 应用案例:单抗药物聚集体分析,推荐生物惰性液相 作为细胞生长的环境和营养来源,培养基的性能很大程度上决定了细胞密度和表达产物的产量和质量,因此培养基是工艺开发最重要的环节之一。其中,在生产工艺优化和确认过程中,以及QC过程中,细胞上清液中氨基酸含量的监测对细胞培养有着重大的意义。但是,离线衍生后使用HPLC分析,以及HPLC柱后衍生法检测氨基酸等方法,不仅耗时耗力,并且对结果准确度影响较大。因此,开发操作简单、高效稳定的分析方法,对氨基酸组成分析非常有意义。 24种氨基酸标准溶液色谱图(双波长同时检测)
  • 【安捷伦】划重点!生物制药分析关键在哪里?赶紧存下来
    随着改变生命的治疗方法的出现,生物制药的未来前景广阔,2018 年的诺贝尔奖更是授予了免疫检查点疗法,基于这一疗法的 PD-1 正在拯救更多癌症病人的生命,推动这些新型生物治疗药物安全地应用于临床需要可靠的生产和质量控制过程。生物治疗药物复杂的异质性需要借助准确而稳定的分析检测方法进行分析,并需要可靠的色谱分离。鉴定关键质量属性(CQA) 是实施质量源于设计 (QbD) 原则以开发和生产生物药物的过程中最困难的一步。定义各种产品属性极具挑战性,因此,产品质量的一致性变得更加重要。滴度测定、糖链分析、电荷异构体分析、氨基酸和培养基分析、肽谱分析、聚集体分析、完整蛋白和亚基分析都是关键质量属性重要的技术,然而想要成功地获取最佳的实验结果,需要操作者能切中要害,找到关键之处,让我们也一起来“划重点”说一下这些技术的难点以及关键所在。滴度测定技术应用滴度测定是对于单克隆抗体,最有效的滴度测定方法之一是亲和色谱法。选择 Protein A 或Protein G 色谱柱时,首先要考虑的是待纯化或分析的目标蛋白质,再选择合适的流动相和样品方法。实验痛点您可能并没有注意到洗脱液对基线噪音以及色谱柱寿命的影响,也并不清楚如何最大程度延长这些“有生命”的色谱柱寿命,然而这正是容易被您忽视的关键所在。快速有效的糖链分析技术应用翻译后修饰( PTM )可能形成许多不同类型的异构体。糖基化尤其高度可变,而糖基化对于许多蛋白质的功效具有重大影响。FDA 认为这是一项重大挑战,并就如何确定糖指纹谱提供了指导。实验痛点如何获取难分离糖链结构的最佳分离度?为此具体的方法条件都包含什么?例如,A 柱和 B 柱的选择?仪器的选用?柱温、流动相、 FLD、进样量等应如何选择和设置?不仅如此,如何能够快速的获取有效的实验结果是整个方法优化的痛点所在。电荷异构体分析技术应用离子交换色谱可以分离一些电荷异构体,特别是那些位于蛋白质表面(而不是隐藏在结构内)的电荷异构体。由于大多数蛋白质所含的碱性氨基酸多于酸性氨基酸,因此大多数电荷异构体分离需要采用阳离子交换。实验痛点从离子交换 ( IEX ) 色谱的使用、色谱柱选择,流动相的重要注意事项、到IEX 的一般使用经验规则都是电荷异构体分析能否成功的关键,不仅如此,在操作中还有若干仪器注意事项,所以此项分析需要注意的关键点会非常多,需要操作者根据电荷异构体的不同情况,具体问题具体分析。氨基酸和培养基分析技术应用氨基酸和培养基分析主要用于确定蛋白质的氨基酸组成与其他技术一起使用以确认正确的结构。氨基酸也是用于制备重组蛋白质的细胞培养基中的关键成分。氨基酸本身属于两性离子,并具有各种侧链,它们还缺少合适的UV 发色团,使得分离和检测氨基酸非常具有挑战性。实验痛点如何实现所有常见氨基酸的基线分离并确保符合欧洲药典的系统适用性,这是非常挑战实验员操作水平的。肽谱分析技术应用肽谱分析是一项强大的技术,可用于全面鉴定蛋白质的一级结构,还能够区分蛋白质内异构基团的精确位置。使用这种方法,蛋白质将被分解成单独的片段,然后将这些物质分离成经典的“指纹”色谱图。将分离与质谱检测相结合,能够将肽谱分析色谱图中观察到的实际的峰与分析软件预测的预期片段相关联。实验痛点要成功生成肽谱,需仔细检查完整的表征策略。其中样品前处理对于成功的肽谱分析至关重要,这可能是一个耗时的过程,可能需要针对待酶解的各种蛋白质优化多个步骤。然而打好基础熟练掌握肽谱分析流程的基本技术才是成功的第一步,此外,进行肽谱分离优化时需要注意诸如覆盖率等事项,才能尽可能获得最佳结果。聚集体分析技术应用体积排阻色谱是特别适合从高阶聚集体中分离单体峰的技术之一。随着技术发展,人们将目光投向了除单克隆抗体以外的蛋白质药物。抗体药物偶联物等更为复杂分子的聚集体表征可能更具挑战性,因为疏水性细胞毒性药物的存在可能导致许多体积排阻色谱柱无法发挥理想性能。使用可显著降低次级相互作用风险的新型固定相,将非常适合聚合物的快速分离和定量。实验痛点聚集体分析中,如何确保稳定可靠运行SEC分析,使用何种条件才能确保分析过程中蛋白质稳定,以及怎样维护这一易耗品,是该分析获取有效实验结果的关键。完整蛋白和亚基分析技术应用完整蛋白和亚基分析可以用来比较生物仿制药与原研药。在反相条件下,分子很可能发生变性。样品保留在色谱柱上得到浓缩,且适用于质谱分析。因此,该技术适用于测定完整蛋白和亚基分析的精确质量数。实验痛点如何考虑选择完整蛋白和亚基分析色谱柱的多个相互关联因素:样品分子量和最适合的填料孔径,色谱柱固定相,流动相条件,以及速度或通量要求等。这些都是完整蛋白和亚基分析的关键。如果您希望提高上述所有分析的分析效率、方法稳定性和分析结果的可靠性,安捷伦已经为您准备了最新最全版本的《安捷伦生物色谱住关键质量属性应用文集》,内容包括从样品前处理到获取最佳实验结果的全部操作流程和技术干货指导以及相关的仪器及耗材选择攻略。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 【经典文献赏析】微流成像颗粒分析技术(MFI)和光阻法(LO)对比研究
    国家食品药品检定研究院(NIFDC)和烟台大学药学院等科学家在期刊Journal of Pharmaceutical Sciences发表文章:Subvisible Particle Analysis of 17 Monoclonal Antibodies Approved in China Using Flow Imaging and Light Obscuration.文章中,使用光阻法(LO)和微流成像颗粒分析技术(MFI)分析了来自国内批准的17种商业单抗隆抗体药物中,205个样品的亚可见颗粒。每种方法进行了633次测试。在测试中,冻干粉或注射器包装的样品具有显著更高的颗粒浓度,且MFI的颗粒计数通常高于LO计数。通过研究数据表明,LO无法检出蛋白质半透明颗粒的数量是MFI方法高于LO计数的原因。研究背景基于单克隆抗体(mAb)生产工艺的复杂性,因此需要对其关键质量属性(CQA)进行控制和监测,同时为了确保药物产品的安全性和有效性,还需证明CQA在生产过程的一致性。这些CQA包括可见颗粒(VPs)和亚可见(SVPs)颗粒的测量。然而过去并没有对治疗蛋白质产品中的亚可见颗粒(0.1-100μm)的颗粒进行积极的检测。有研究表明,治疗性蛋白质产品中的蛋白质有聚集并形成SVPs的倾向,且这种聚集会引起治疗效果的降低和潜在的免疫原性风险。欧洲药典(EP)2.9.19、美国药典(USP)788和中国药典(ChP)0903等药典专论中对SVPs进行颗粒计数限值。且USP1787建议使用4-100μm粒径范围内的形态测量,这可能有助于理解粒子来源为固有的、内在的/外在的,以降低SVPs带来的风险。光阻法(LO)是USP788规定的主要检测方法,用于量化两个尺寸范围(≥10μm和≥25μm)的SVPs。该技术确定了颗粒的大小和数量,但由于其检测原理,无法区分不同类型的颗粒,例如蛋白质聚集体、硅油液滴等。许多研究表明,LO可能无法检测到半透明的蛋白质聚集体,从而低估了样品中的总颗粒。也有一些报告表明,样品的折射率(RI)会影响LO结果。随着USP787和USP1787的发布,要求在计数/浓度和形态方面表征2-10μm的SVPs。流式成像显微镜(FIM)技术已成为量化与LO技术相同大小范围内的SVPs的替代方法,它可以检测半透明的蛋白质聚集体,即通过使用直接对颗粒进行成像的FIM,还可以获得形态信息。这使得该技术能够将蛋白质聚集体与其他颗粒(如硅油滴、气泡和其他外在和内在的颗粒杂质)区分开来。本文中FIM技术使用的是ProteinSimple的微流成像颗粒分析技术(MFI)。到目前为止,比较这两种技术的研究都使用了标准微珠、蛋白质模拟物或有限数量的治疗性mAb样品。但没有对多批不同的商业治疗性mAb进行并排比较。在本研究中,使用LO和MFI方法分析了17种国家药品监督管理局批准的mAb药物产品。通过分析200多批mAb商业药物产品提供了一个独特的数据集,以检验MFI法和LO方法之间的粒子数计数差异和二者关联。样品准备表1列出了17种生物制药mAb药物产品的清单。对于每种药物产品,最多可获得50个批次。不同批次的相同药物被视为研究中的不同样本。对于药物的不同批次,它们分别标有数字1、2、3等。因此,研究中共有205个样品,如表1所示。每个批次由LO和MFI测试3到9次。总共对205个样本使用两种方法进行了1266次测试(633次使用LO方法,633次使用MFI方法)。研究结果如图所示,对使用MFI和LO测量的205个样品的颗粒计数进行了分析。由于颗粒形成是从较小尺寸到较大尺寸的动态过程,且USP1787要求对2-10μm颗粒进行表征(因为这个尺寸范围可能具有免疫原性)。所以使用MFI和LO检测了≥2μm、≥5μm、≥10μm的颗粒计数,以及2-10μm的颗粒计数。结果显示,在205个样本的633次运行中,22个样本的运行子集显示LO计数高于MFI计数。对于其余样本,MFI方法的计数高于LO方法。从结果中可以看出,来自注射器和冻干样品的样品在所有尺寸范围内的颗粒计数都明显高于瓶中液体。特别是在≥2μm尺寸范围内,根据之前的报告,硅油滴可能是这个尺寸范围内高计数的主要贡献者。2-10μm尺寸范围的计数与≥2μm尺寸范围的计数具有非常相似的趋势。这是因为粒子数的多少由较小的粒子数支配。冻干形式的药品在重构时可能会形成气泡,蛋白质容易吸附到气泡从而形成蛋白质颗粒。根据早期研究,MFI方法优于LO方法的一个优势是MFI比LO方法可以检测到更多的半透明蛋白质聚集体。因此,与LO方法相比,MFI方法通常检测到更多蛋白质溶液中的颗粒(如上图所示)。为了验证MFI方法在检测半透明蛋白质聚集体方面优于LO,首先需要在MFI测试获得的结果中将蛋白质颗粒与其他颗粒分开。这可以通过利用MFI软件对粒子的各种尺寸、形态和图像强度信息等不同范围的参数来区分不同类型的粒子。利用参数的组合充当过滤器以分离样品中的蛋白质和其它颗粒。例如参数AR反映了粒子的圆度,AR=1表示正圆,AR1表示非圆。通常,硅油滴和气泡的AR值接近1,而蛋白质颗粒的AR值较低。蛋白质颗粒图像通常具有相对较小的强度变化(暗度),而硅油滴、气泡和固体材料碎片通常具有明确的暗边缘。硅油滴、气泡或固体材料碎片的颗粒图像的强度变化(整个颗粒的暗度变化)大于蛋白质颗粒的强度变化。粒子图像的暗度变化可以通过参数Intensity STD来反映。因此可以采用AR0.8或AR≥0.8且Intensity STD≤100的过滤器来区分样品中的蛋白质颗粒和其他污染物颗粒,例如硅油滴和固体材料的碎片。为了显示统计显著性,上图使用了三种粒子计数相对较高且MFI计数和LO计数之间差异较大的样本。LO 和MFI检测了单个样品药物Atezolizumab的5个批次。结果显示,两个计数方法在所有运行中都相对一致,MFI的计数略高。对于药物 Daratumumab,如图B所示,在11个批次中,两个计数方法对于大多数运行来说都是一致的,其中一个批次的MFI计数要高得多。通过应用过滤器,可以确定MFI计数高的原因是蛋白质颗粒的计数高。从以上两个例子中可以看出,在同一种药物中,不同批次的颗粒计数MFI和LO方法的结果一般是一致的,MFI计数略高于LO计数。有几个批次具有较高的MFI计数,这是由于高计数的蛋白质颗粒引起的。不同批次的相同药物的蛋白质颗粒计数可能不同。图C显示了来自注射器包装的两个Golimumab样品的计数。6次运行中的蛋白质颗粒计数是一致的,而非蛋白质颗粒的计数在不同批次中是可变的。大量MFI计数高于LO计数,主要原因是蛋白质颗粒计数高。这也证实了早期的研究。对于这种药物,在所有6次运行中,非蛋白质颗粒的趋势和LO的总计数非常吻合。为了确定使用MFI观察到的更高计数是否与半透明蛋白质聚集体的数量有关。因为在示例中,从总MFI计数中分离出的非蛋白质颗粒计数接近LO计数。因此需要比较MFI的总计数与LO的计数以及MFI的计数与LO的非蛋白质部分之间的相关性。首先,将所有270次MFI运行中≥5μm的MFI计数与LO计数作图,相关性较低(图A)。当将MFI计数的非蛋白质颗粒与总LO计数作图时,相关性显著提高(R2从0.781到0.933),这表明蛋白质、半透明颗粒的数量是导致MFI计数高于LO的主要因素。因此证实了MFI在检测蛋白质半透明颗粒方面优于LO。结 论本研究使用LO和FIM方法测量了来自17种商业mAb药物产品的205个样品(批次)中≥2μm、≥5μm、2-10μm、≥10μm的SVPs。结果显示,冻干粉或注射器包装状态的样品显示出明显更高的颗粒浓度,尤其是在≥2μm尺寸范围内的颗粒计数。且MFI粒子计数通常高于LO计数(205个样本中的183个样本)。通过使用AR 0.8 or AR ≥0.8 and Intensity STD ≤100过滤器将样品中的蛋白质颗粒与其它污染物颗粒分离,审查了不同批次相同药物中LO和FIM计数的差异。MFI显示药物中的某些批次具有显著高的颗粒计数,被证实是由大量蛋白质颗粒引起的。同时,与瓶装液体相比,注射器的颗粒计数最多可高出10倍,瓶装液体主要归因于非蛋白质颗粒,主要是硅油液滴。MFI方法计数升高的原因是蛋白质、半透明颗粒而导致。将MFI的总计数与LO的总计数作图,并将MFI计数的非蛋白质部分也与LO的计数作图。结果相关性有很大改善。结果表明,与LO方法相比,蛋白质半透明颗粒的数量是MFI方法计数升高的主要因素。以上表明,虽然LO方法是被广泛接受的微粒分析工具,但它不足以测量生物制药中的所有粒子,证明了MFI等正交工具的必要性。由于MFI的优势,可以开展实验室间验证研究,以测试将MFI技术引入mAb的释放控制和稳定性研究的可能性。因此目前药典对SVPs的要求可以通过MFI等新技术的应用进行优化。获取资料请扫二维码
  • AAV基因治疗产品亚可见颗粒分析方法简述
    生物制药如治疗性蛋白质、疫苗、基因与细胞治疗是一个不断快速增长药物领域。生物制药原料药和药品中蛋白质聚集体和不溶性颗粒是需要充分评估和控制的杂质,因为它们有可能引发免疫原性反应,影响产品的安全性和有效性。中美药典中现行的颗粒定义是10-100 nm为蛋白寡聚体,0.1-1 μm为亚微米颗粒/纳米聚集体,1-100 μm是亚可见颗粒/微米聚集体,∽100 μm是可见颗粒。目前基因治疗产品亚可见颗粒分析方法可参考USP787、788和789对治疗性蛋白质注射液和眼科溶液中亚可见颗粒的规定。对于含量超过100mL容器中的治疗性蛋白质注射剂,总颗粒数≥10 μm的颗粒≤6000,对于≥25 μm颗粒≤600。 不同于治疗性蛋白质产品,基因治疗产品大多采用病毒作为载体包括腺病毒(AdV)、腺相关病毒(AAV)或慢病毒(LV)、溶瘤病毒等,所以细胞、病毒和脂质纳米颗粒等递送载体本身就是颗粒,可通过大小、形态、含量和浓度的分析技术来表征。这些基于病毒载体的基因治疗产品剂型主要是注射剂,相关质量标准可参考生物大分子药物不溶性颗粒技术要求。但由于病毒颗粒异质性和复杂性,以及对最终产品的有效性和安全性可能影响,如降低病毒的转导效率和诱发免疫原性反应等,所以需要多种不同技术和方法联合使用,实现更全面更准确的基因治疗产品颗粒表征。以rAAV载体的基因治疗产品为例,病毒颗粒本身是无包膜的,二十面体结构,直径约为25nm,可形成各种不同大小的变体和聚合形态。AAV大小变异体和聚集体可增加临床实验的免疫原性,较大的AAV聚集体在转导细胞效力方面可能降低,进而改变产品疗效。目前有多种技术来表征相关产品溶液中颗粒大小,从纳米级到肉眼可见级别,对于不同粒径大小的颗粒可采用不同技术进行分析表征。对于纳米级别颗粒,可采用动态或静态光散射(Dynamic or Static Light Scattering)、SEC-HPLC、电镜(EM)、原子力显微镜 (AFM)、分析型超速离心机(AUC)、纳米颗粒跟踪分析技术(NTA,Nanosight)和非对称流场流动分级(A4F)等;对于微米级别颗粒,可采用光阻法(LO)、微流成像颗粒分析技术(MFI)、库尔特颗粒计数(Coulter counter)等。可见颗粒可采用拉曼/红外显微镜、荧光显微镜或目测法等。可用于AAV颗粒分析的代表性方法参考下图。颗粒分类中亚可见颗粒是一种聚集形式,经历了相分离并变得不溶。多个国家药典规定注射剂亚可见颗粒物检测采用光阻法(LO)和显微计数法。其中光阻法只能计数颗粒大小和数目,不能看到颗粒形态。美国药典1787推荐了微流成像颗粒分析技术作为大小和形态表征重要的方法。同时推荐在保质期内应该评估产品中2-10 μm亚可见颗粒的范围和水平,10 μm以下颗粒总数分成两组≥2-5μm和≥5-10μm来统计。2021年中国食品药品检定研究院发表文章,详细比较了微流成像颗粒分析方法和光阻法对17种单克隆抗体的亚可见微粒分析结果,显示了微流成像颗粒分析技术在准确性方面具有优势,未来可能用于放行质量控制和稳定性研究。代表性亚可见颗粒分析方法介绍微流成像颗粒分析方法(MFI):技术原理是待测样本在流经样本检测池过程中,在固定的检测窗口处,采用高频成像检测器动态连续检测样本中颗粒物,获取一系列的数据照片,最终通过软件对所获取的颗粒物照片进行分类和计数分析。核心技术是通过精确地控制样本检测池中的流速,配合静态的图像捕获,使相邻两次成像检测液柱无重叠,从而避免对样本颗粒的重复计数,同时需要保证85%以上样本实现了颗粒成像检测,配合全景深立体成像,保证所有检测到的颗粒都在景深范围内,实现对颗粒大小检测准确性。该方法提供了样本中颗粒真实图像的原位条件,对捕获的数字图像进行分析,实现了颗粒的可视化、计数、大小调整和表征。还可根据颗粒图像、对比度和形状,可能指示颗粒的来源和类型如蛋白聚集、硅油、气泡和纤维等。与图像数据库联合使用,可识别一些颗粒,有助于了解污染源和产品性质。与光阻法和显微计数法相比,缩短了分析时间,具有更高重复性和分辨率。满足2-10 μm范围内亚可见颗粒分析需求。光阻法(LO)介绍:被检测的液体通过专门设计的流通室,与液体流向垂直的入射光束由于被液体中的粒子阻挡而减弱,从而使传感器输出的信号变化,这种信号变化与粒子通过光束时的截面积尺寸成正比。这种比例关系可以反映粒子的大小。每一个粒子通过光束时引起一个电压脉冲信号,脉冲信号的多少反映了粒子的数量。光阻法检测颗粒范围为1∽300 μm(USP 401787)。以光阻法为原理设计的微粒检测仪主要包括取样器、传感器和计算机控制的检测和数据处理系统。不同设备测量粒径范围涵盖了2∽100μm,检测粒径浓度为0∽10000个/ml,取样体积为0.2∽100 mL。符合药典对大小容量注射液和粉针剂不溶性微粒检测需求。其主要优势是可直接观察溶液中颗粒,具有大量历史数据的药典推荐方法。操作简单可进行中高通量检测。劣势是对比度低,可能会低估制剂配方中形成的不可见蛋白质颗粒,对气泡敏感,某些脱气技术会改变样本性质,更重要的只适合表征颗粒大小和分布,不能通过形态来分析颗粒。电感应区检测方法:基于库尔特原理检测颗粒,可检测0.4∽1600μm范围内的颗粒(不同商业化库尔特颗粒计数及粒度分析仪有变化)。稀释悬浮在电解液中的样本颗粒通过小孔管时,取代相同体积的电解液,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,从而中断电场,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。 信号响应不受颗粒类型的影响(如颜色、硬度、不透明度和折射率变化)。本技术优势不受溶液光学特性的影响,可实现单孔中高通量样本检测。劣势是需要大样本体积,需要较低颗粒浓度,有时样品必须在电解质溶液中稀释获得足够电导率,可能会改变样品性质。同样也不能提供形态学参数。显微计数法:采用光学显微镜(LM)检测和分析颗粒,光在样品上透射或反射后通过一系列透镜,直接采用目镜观测,或数码相机采集信号成像。图像分析可使用软件系统,按照一定参数对颗粒群体进行分析。优势是可直接观察溶液中颗粒,可视化计数颗粒大小和数目,并鉴别颗粒形态。可与红外或拉曼计数整合来鉴定颗粒化学组成。但劣势是人工分析费时费力和通量低,难以看到低光学对比度颗粒,自动化程度低。颗粒鉴定表征可采用傅里叶红外光谱(FTIR)显微镜、显微拉曼光谱和扫描电镜-能谱分析(SEM-EDS)等技术,本文不做深入论述。基因治疗产品亚可见颗粒分析案例鉴于不溶性微粒研究在生物制品中重要性,有必要深入研究病毒为载体基因治疗产品中病毒颗粒聚集体和不溶性颗粒形成原因,并找到相应的解决方案来提高基因治疗产品的研发和质量控制水平。以下案例简要说明基因治疗产品亚可见微粒分析方案。AAV生产超滤工艺中颗粒监控AAV生产过程中超滤环节将AAV浓缩并置于最终制剂配方缓冲液中,作为生产工艺中关键步骤,需要深入研究和加深对AAV载体超滤的理解。美国Voyager Therapeutics公司研究超滤膜截留分子量和操作条件对复合再生纤维素(CRC)超滤膜的通量和传输的影响,采用AAV2和AAV9两个血清型病毒载体,以及对AAV超滤行为的定量理解,并指导工艺开发。利用微流成像颗粒分析方法(MFI)研究病毒浓缩超滤工艺开发过程中产生的亚可见颗粒,当通过CRC超滤膜时,膜截留分子量和操作条件对通量影响。下图结果展示1到10μm之间颗粒采用MFI检测时存在明显差异。两个批次A和B实验,对于特定的膜批次,当处理时间较长时,亚可见微粒浓度较高。与较低TMP 6.5 psig相比,当采用更高TMP(20 psig)进行超滤时,亚可见微粒浓度降低。这归因于较低TMP下超滤时,泵通过管道和通道次数增加导致。本研究可指导超滤工艺的条件设置。MFI系统具备自动进样系统,可一次自动检测多达90个样本,非常适合AAV生产过程中工艺优化。不同渗透率RC2A膜超滤的AAV2样本的不同大小颗粒评价,上图批号Lot A样本,下图Lot B样本AAV基因治疗产品稳定性研究制剂配方中AAV长期稳定性和密封容器封闭的完整性是冷冻产品两个关键方面。为了最大限度地减少化学和物理降解,也为了长期存储和运输,AAV原料药和产品制剂通常冷冻在≤-60 °C下,有时允许产品制剂短期存储在医院的2-8°C冰箱中。在制造、贴标签和临床使用过程中会在室温和冷藏条件下发生冻融循环。除了长期稳定性外,在外暴露期间AAV的稳定性也很重要。不同AAV血清型和制剂配方差异导致这期间的稳定性也会有所不同,所以在制剂配方早期开发过程中获得数据来确认AAV在制造、贴标签和临床使用期间将保持稳定是有意义的。为了研究温度、存储时间和冻融率对AAV8和AAV9稳定性的影响,美国REGENXBIO公司研究低浓度和高浓度AAV8和AAV9病毒在五个冻融循环中,预期存储以外时间的稳定性,考察病毒关键质量属性变化情况。下图是采用数字PCR检测病毒载体基因组浓度(GC/mL),结果显示病毒效力和浓度在方法误差范围内保持稳定。采用光阻法检测亚可见微粒(Particles/mL ≥10 μm)。左边第1列是配方F1中AAV8,第2列是配方F3中AAV8。每个小图中左边一对柱状图是低浓度结果和右边一对柱状图是高浓度结果。对照组标记为Cont.和累积预期存储时间外暴露样本标记为TOIS。实验结果显示TOIS后颗粒数非常低,≥2 μm的颗粒≤78个/mL,≥10μm的颗粒≤10个/mL,≥25μm的颗粒≤2个/mL,和≥50μm的颗粒0个/mL。在本研究设定实验条件下,结果表明AAV8和AAV9产品质量属性保持在可接受范围内,稳定性适合用于生产和临床使用。作者认为光阻法有局限,可能低估了半透明的蛋白质颗粒和病毒聚集体颗粒,后续研究需要采用微流成像技术对亚可见颗粒进行表征和稳定性研究。同样研究冻融条件对病毒载体稳定性影响,美国堪萨斯大学疫苗分析和制剂中心科学家(Vineet Gupta,2022,Journal of Virological Methods)研究了淋巴细胞性脉络丛脑膜炎病毒(LCMV)载体稳定性,使用TEM、NTA和MFI三种互补的病毒颗粒表征技术研究病毒载体在冻融应激下稳定性。4种不同制剂配方(Form 1-4)在0、3和6个冻融循环条件下亚可见颗粒变化,研究冻融对病毒载体稳定性影响。参考下图,结果证明了通过MFI可检测到样本中存在大量的亚可见微粒。揭示某些制剂(制剂F1和F3)病毒载体亚可见颗粒浓度与病毒载体滴度损失之间存在负相关,制剂配方2和4没有变化。与上述研究类似,Kumru等2015年观察到在冻融循环时,特定配方中溶瘤单纯疱疹病毒1的体外效力值和亚可见颗粒浓度之间呈现负相关。基于多项研究,不同制剂配方中观察到结果可能有所不同,所以在评估病毒感染能力和稳定性时,需要同步进行亚可见颗粒研究。综上所述,基因治疗产品在研发、生产、存储等多个工艺过程中需要持续监测样本中颗粒情况,从早期到晚期开发阶段都需要监测颗粒的动态变化过程,探索研究病毒聚集体和颗粒产生的原因。可采用多种不同分析检测技术联合使用,针对纳米级和微粒级颗粒进行全范围覆盖。特别是参考中美药典对不溶性颗粒检测规定,借鉴生物大分子蛋白质药物颗粒分析经验,不同方法优势互补,采用光阻法、显微计数法和微流成像颗粒分析方法(MFI)对亚可见微粒进行深入研究,分析基因治疗原料药和药品中颗粒形成原因,可用于优化病毒载体生产和纯化工艺、筛选合适制剂配方和存储条件,提高产品质量稳定性和安全性,保证产品疗效。索取资料请扫上方二维码参考文献:Alexandra Roesch, Sarah Zolls, et al. Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. Journal of Pharmaceutical Sciences(2021) 1−18于雷,裴德宁等. 基因治疗产品中病毒颗粒的微粒特性研究. 药物分析杂志 Chin J Pharm Anal 2020,40(1)Andrew D.Tustian, Hanne Bak. Assessment of quality attributes for adeno‐associated viral vectors. Biotechnol Bioeng. 2021 1–18.United States Pharmacopeia 787.Subvisible particulate matter in therapeutic protein injections. 788. Particulate Matter in Injections. 789. Particulate Matter in ophthalmic solution. 1787. Measurement of subvisible particulate matter in therapeutic protein injections. 1788. Methods for the determination of subvisible particulate matter. Rockville, MD: United States Pharmacopeial Convention 2020年版药典,0903 不溶性微粒检查法Abhiram Arunkumar, Nripen Singh. Ultrafiltration behavior of recombinant adeno associated viral vectors used in gene therapy. Journal of Membrane Science, volume 620,2021Jared S. Bee, Yu (Zoe) Zhang, et al. Impact of Time Out of Intended Storage and Freeze-thaw Rates on the Stability of Adeno-associated Virus 8 and 9. Journal of Pharmaceutical Sciences (2022) 1−8 Vineet Gupta, Lorena R. Antunez, et al. Development of a high-throughput RT-PCR based viral infectivity assay for monitoring the stability of a replicating recombinant Lymphocytic Choriomeningitis viral vector. Journal of Virological Methods 301 (2022) 114440
  • 斯坦福医学院案例cell分享 | MST技术检测蛋白的二聚体亲和力
    Part 1研究背景在生物化学中,蛋白质二聚体是由两个蛋白质单体或单个蛋白质形成的大分子复合物,它们通常是非共价结合的。蛋白质二聚体是一种蛋白质四级结构。有些蛋白需形成同源或者异源二聚体才能发挥其特定的功能,且不同聚集体的亚型与不同靶蛋白特异性结合,如14-3-3蛋白。对聚集体的状态维持和解离研究能更加清楚的了解生物学过程,并且开发特异性的靶标药物,用于疾病的治疗。由于聚集体是蛋白的四级结构组成部分,因此,一般来检测聚集体的亲和力需要先形成蛋白单体,也就是极低的蛋白浓度,对于很多互作方法来说无法实现检测。下方这篇Cell文献介绍了MST成功检测蛋白的二聚体亲和力以及小分子对聚集过程的影响。Part 2研究内容美国斯坦福大学Paul A. Khavari小组使用葡萄糖解聚DDX21二聚体来调节mRNA剪接和组织分化。2023年1月出版的《Cell》杂志发表了这项成果。https://doi.org/10.1016/j.cell.2022.12.004IF: 64.5 Q1葡萄糖是一种普遍的生物能量来源,此外,研究发现,葡萄糖可能重塑分化所需蛋白质的功能,使分化过程得以实现。DDX21是一种DEAD-box RNA解旋酶,为同源二聚体状态,DDX21调节黑素细胞干细胞的分化。然而,DDX21在表皮分化中的功能尚未不清晰。在该研究中,作者发现,葡萄糖结合DDX21的ATP结合域,改变其构象,进而造成DDX21解离。在分化过程中,DDX21以葡萄糖依赖的方式定位于mRNA内含子中特定的模体,并促进关键的促分化基因的剪接。为了更清楚地了解葡萄糖对DDX21二聚化的影响,作者需检测(不)结合葡萄糖时DDX21二聚体亲和力。MST技术上机检测的浓度可以低至pM-nM,保证DDX21为单体状态,进而获得准确的二聚体亲和力结果。此外,MST对缓冲成分没有要求,并且是检测达到平衡状态时的亲和力。因此,可以将葡萄糖作为缓冲成分加入到体系中,并且使葡萄糖和DDX21达到平衡后再进行检测。MST亲和力结果表明,葡萄糖显著抑制DDX21二聚化(降低了近7倍)。图1:微量热泳动(MST)检测DDX21的二聚化(黑色)以及存在350uM葡萄糖(红色)或者半乳糖(蓝色)时亲和力。Part 3技术优势在这篇工作中,通过MST技术确定了DDX21形成二聚体的亲和力,以及葡萄糖与DDX21的作用。对于分子互作亲和力的检测,MST上机浓度极低,保证蛋白的单一状态,同时节省样本。当检测多个分子互作时,可以孵育达到平衡,获得准确的多元的亲和力。
  • 生物药分析路上乘风破浪的Nexera Bio生物兼容液相系统
    近年来,生物药由于其在临床治疗中的优良表现发展迅猛,成为了制药行业不可抵挡的新趋势。在生物药研发、生产过程中,企业通过引入关键质量因素(CQA)对整个药物质量进行控制,以保证生物药安全性和有效性。这些CQA包括氨基酸序列、聚集体、电荷异质性、糖型和肽图等,其中聚集体和电荷异质性分别采用尺寸排阻色谱(SEC)、离子交换色谱(IEX)进行分析。 在使用SEC或IEX进行色谱分析过程中,通常使用高离子强度流动相,比如高浓度磷酸盐和氯化钠溶液,甚至极端pH分析条件。在这些条件下,可能会导致系统堵塞或泵头腐蚀。此外,蛋白质易与固定相填料或液相系统管路之间发生次级交互作用或吸附作用,产生色谱峰形拖尾,以影响色谱分离。这样高盐分析条件和蛋白类生物药独特性质给液相色谱仪分离带来严峻的挑战。 Nexera Bio生物兼容液相系统来啦!!! 岛津生物兼容液相Nexera Bio系统流路采用生物惰性材料,不仅耐腐蚀,而且能减少生物大分子的吸附,保证生物大分子的完整性,有效保障分析重复性和仪器耐用性。 图1 Nexera Bio生物兼容液相系统 Nexera Bio生物兼容液相系统特点:• 泵头、混合器、进样针、样品环和接头配件等均采用生物惰性材料,耐腐蚀、抗吸附;• 耐高压不锈钢包覆的Peek管路,提升系统耐压至66MPa;• 标配输液泵柱塞清洗蠕动泵,有效降低盐析,实现良好的送液稳定性,并防止泵头腐蚀。 举些“栗子”,带您一窥究竟 • 聚集体分析 图2 mAb二聚体分析 通过优化尺寸排阻色谱(SEC)分析单克隆抗体(mAb)的流动相组成,得到150 mmol/L磷酸钠缓冲液和150 mmol/L氯化钠溶液的较优流动相条件。通过图2对比图可知该单抗在普通液相系统条件下拖尾严重,但在Nexera Bio系统下峰形对称性良好,无拖尾现象。此外,重复性结果显示,二聚体和单体的保留时间和峰面积的RSD%均小于0.5%,重复性良好(表1)。实验数据表明Nexera Bio生物兼容色谱系统和Shim-pack Bio SEC色谱柱在SEC分析中,可以提供良好色谱峰型,带来快速有效分离,保证稳定可靠分析。 电荷异质性分析 图3 盐梯度方法下mAb的电荷异质体分析 采用Shim-pack Bio IEX和Nexera Bio生物兼容液相系统,在盐梯度方法下进行mAb的电荷异质体分布,在5min内实现了电荷异质体的高度分离。3.448min处的峰被命名为主峰。主峰之前和之后的峰分别被称为酸性峰和碱性峰。mAb的电荷异质体的主峰约占50.99%,酸性峰和碱性峰分别占34.94%和14.07%。且六针重复测定结果表明重现性非常好,所有峰保留时间RSD%均小于1%,主峰,酸性峰和碱性峰的峰面积RSD%均小于2%。实验数据表明Nexera Bio生物兼容色谱系统稳定可靠。 最后小编还是要强调下在使用SEC或IEX进行色谱分析过程中,不管是高盐还是极端pH条件,Nexera Bio均可长期耐受,不会造成仪器的腐蚀或堵塞等问题,更重要的是在分析过程中蛋白类药物无吸附,无拖尾,乘风破浪,确保生物药分析结果的稳定可靠。
  • 【PNP】聚合物纳米药物载体使用多检测器SEC分析的应用案例
    纳米药物载体热点应用#本文由马尔文帕纳科GPC应用专家冯慧庆供稿#2022 PNP聚合物纳米药物载体纳米药物载体可实现靶向药物治疗。靶向给药治疗是指供助载体、配体或抗体将药物通过局部给药或全身血液循环而选择性地定位于靶组织、靶器官、靶细胞或细胞内结构的给药系统。在特定的导向机制作用下,纳米药物载体输送药物到特定靶点,发挥治疗作用,可达到药剂用量少、毒副作用低、药效持续、生物利用度高、长时间保持靶目标的有效药物浓度的效果。常见的纳米药物运载体系在药学研究中,正确定位小分子药物的给药位置和控制药物释放曲线是一个关键的挑战。通过小分子药物与聚合物纳米载体偶联起来,在很大程度上实现细胞内精准靶向给药,在实际应用过程中有较好的效果。该方法既可用于控制药物释放曲线,又可用于控制药物释放位置,以最大限度地减少可能的副作用。阿霉素(Doxorubicin)阿霉素(Dox)是一种高效抗肿瘤抗生素,对肺癌、急慢性白血病等多种恶性肿瘤都有很强的细胞毒性,其机制是:通过将自身插入细胞的DNA碱基对中,破坏DNA的双螺旋结构,阻断DNA复制和RNA转录。通常是通过血液循环导入肿瘤细胞实现其抗肿瘤功能。聚谷氨酸(PG)是一种以氨基酸谷氨酸为基础的具有生物相容性的聚合物。试验结果表明Dox和PG的偶联,可以实现靶向给药,提高药物在靶体内的聚集度,延长体内循环时间,降低毒副作用。在本文中我们展示了马尔文帕纳科OMNISEC多检测器SEC如何对PG、Dox 和两个PG-Dox 偶联样品进行表征。这种先进的分析技术可用于研究药物加载效率和药物加载后发生的聚合物结构变化。研究方法 PG和PG-Dox偶联物溶解在在pH7.4的PBS缓冲液中,通过OMINISEC进行样品的分离和检测。OMNISEC是一个多检测器SEC系统,包括示差检测器(RI)、紫外检测器(UV)、光散射检测器(LS)和粘度检测器(IV)。流动相为PBS pH 7.4,含30%(v/v)甲醇水溶液;采用马尔文A6000M和A3000色谱柱分离。OMNISEC多检测器SEC检测结果与讨论 测试PG样品和两个PG-Dox偶联物样品色谱图如图1所示,PG的数值结果见表1。PG样品分离显示一个单峰,测得其平均分子量(MW)约为13KDa。再看两个偶联样品,都分离出和PG具有相似保留体积的多峰。较早洗脱的光散射色谱图(绿色,12-14mL)表明存在一些大的聚集体。而且,这些峰包含明显的紫外吸收信号,表明Dox的存在成功地偶联到聚合物上。图1 PG(A)、PG-Dox 1(B)和PG-Dox 2(C)多检测器色谱图表1 PG测试结果在图2 A中可以看到,在不同进样量下检测游离Dox的UV色谱图,可以看到游离的Dox从柱上洗脱得很晚,实际上已经在整个柱体积之后。这清楚地表明了Dox与色谱柱发生了显著的相互作用,延迟了Dox的洗脱。但从图2 B所示浓度响应曲线可以看出,尽管存在相互作用,回收率仍然接近100%。该校准曲线用来测量存在于PG-Dox样品中的Dox的量。图2 A:不同进样量Dox在UV(490nm)色谱图;B:Dox浓度校准曲线如果我们确定36mL处的峰为游离Dox,这样PG-Dox样品中的相同位置峰也能确定为游离Dox。如图3所示,可以清楚地确定偶联样品含有PG-Dox偶联物和游离Dox。图3 UV色谱图显示偶联样品含有PG-Dox偶联物和游离Dox使用图2 B中的浓度校准曲线,可以计算偶联样品中存在的Dox量。如表2所示,两种PG-Dox偶联物都含有游离的Dox。在一次注射体积中,PG-Dox 1的偶联物中含有大约11μg的Dox,而PG-Dox 2的偶联物中含有大约39μg的Dox。然后,可以计算出样品中注入的总Dox质量和Dox浓度。然后,可以根据溶解物质的质量计算出近似的总样品浓度。这样就可以计算每个PG-Dox偶联物中Dox的近似负载量。由此可以近似地看出,样品2的偶联物中含有的Dox是样品1的三倍。表2 计算两个偶联样品中Dox的负载量我们可以对PG-Dox偶联物进一步表征(其中dn/dc假设分析),计算偶联聚合物的近似分子量、特性粘度和结构数据,如表3所示。表3 PG-Dox偶联物测试结果Mark-Houwink(M-H图)显示了特性粘度作为分子量的函数,是分子间结构差异的直观表示。在溶液中密度较高的聚合物在M-H图上看起来较低,用来研究结构变化,如支化、偶联等结构变化。图4显示了3个样本的M-H图。首先,这两个PG-Dox偶联物M-H曲线显著低于单独的PG。这是我们预料中的,因为药物分子的偶联将增加聚合物在溶液中的表观密度,并且具有更大Dox负载量的样品将进一步向下移动。PG-Dox 1和PG-Dox 2之间的斜率不同,说明Dox负载量可能不是随分子量均匀分布的。图 4 Mark-Houwink曲线图叠加显示PG和PG-Dox偶联物结论 本文展示了如何将多检测器SEC用于高分子聚合物偶联小分子药物传递表征分析的方法。在相同的测试条件下,对原聚合物、游离药物(Dox)和两种偶联产物进行了表征。药物的紫外吸光度使得可以测量负载水平和评估两种偶联物的偶联水平。通过假设分析,偶联分子量和结构也可以测量并相互比较。 小分子药物的输送在实际应用中面临许多挑战,与较大的聚合物偶联是提高药物定位和载药量的一种策略,但要获得可靠和可重复的结果,需要先进的表征方法。通过使用OMNISEC这样的多检测器系统进行分析,研究人员可以更好地表征和研究,从而控制附着在聚合物纳米输送载体上的药物量以及产品的分子量和结构,以实现最佳的药物输送效率。
  • 划重点!生物制药分析关键在哪里?
    p style="text-align: justify text-indent: 2em "随着改变生命的治疗方法的出现,生物制药的未来前景广阔,2018 年的诺贝尔奖更是授予了免疫检查点疗法,基于这一疗法的 PD-1 正在拯救更多癌症病人的生命,推动这些新型生物治疗药物安全地应用于临床需要可靠的生产和质量控制过程。生物治疗药物复杂的异质性需要借助准确而稳定的分析检测方法进行分析,并需要可靠的色谱分离。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/6d173e0c-2823-4042-81c7-8cb61da8ed57.jpg" title="1.jpg" alt="1.jpg" width="442" height="312" style="width: 442px height: 312px "//pp style="text-align: justify text-indent: 2em "鉴定关键质量属性(CQA) 是实施质量源于设计 (QbD) 原则以开发和生产生物药物的过程中最困难的一步。定义各种产品属性极具挑战性,因此,产品质量的一致性变得更加重要。滴度测定、糖链分析、电荷异构体分析、氨基酸和培养基分析、肽谱分析、聚集体分析、完整蛋白和亚基分析都是关键质量属性重要的技术,然而想要成功地获取最佳的实验结果,需要操作者能切中要害,找到关键之处,让我们也一起来“划重点”说一下这些技术的难点以及关键所在。/pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 112, 192) "strong滴度测定/strong/span/pp/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "技术应用/span/pp style="text-align: justify text-indent: 2em "滴度测定是对于单克隆抗体,最有效的滴度测定方法之一是亲和色谱法。选择 Protein A 或Protein G 色谱柱时,首先要考虑的是待纯化或分析的目标蛋白质,再选择合适的流动相和样品方法。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "实验痛点/span/pp style="text-align: justify text-indent: 2em "您可能并没有注意到洗脱液对基线噪音以及色谱柱寿命的影响,也并不清楚如何最大程度延长这些“有生命”的色谱柱寿命,然而这正是容易被您忽视的关键所在。/pp style="text-align: center text-indent: 0em "strongspan style="color: rgb(0, 112, 192) "快速有效的糖链分析/span/strong/pp/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "技术应用/span/pp style="text-align: justify text-indent: 2em "翻译后修饰( PTM )可能形成许多不同类型的异构体。糖基化尤其高度可变,而糖基化对于许多蛋白质的功效具有重大影响。FDA 认为这是一项重大挑战,并就如何确定糖指纹谱提供了指导。br//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "实验痛点/span/pp style="text-align: justify text-indent: 2em "如何获取难分离糖链结构的最佳分离度?为此具体的方法条件都包含什么?例如,A 柱和 B 柱的选择?仪器的选用?柱温、流动相、 FLD、进样量等应如何选择和设置?不仅如此,如何能够快速的获取有效的实验结果是整个方法优化的痛点所在。/pp style="text-align: center text-indent: 0em "strongspan style="color: rgb(0, 112, 192) "电荷异构体分析/span/strong/pp/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "技术应用/span/pp style="text-align: justify text-indent: 2em "离子交换色谱可以分离一些电荷异构体,特别是那些位于蛋白质表面(而不是隐藏在结构内)的电荷异构体。由于大多数蛋白质所含的碱性氨基酸多于酸性氨基酸,因此大多数电荷异构体分离需要采用阳离子交换。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "实验痛点/span/pp style="text-align: justify text-indent: 2em "从离子交换 ( IEX ) 色谱的使用、色谱柱选择,流动相的重要注意事项、到IEX 的一般使用经验规则都是电荷异构体分析能否成功的关键,不仅如此,在操作中还有若干仪器注意事项,所以此项分析需要注意的关键点会非常多,需要操作者根据电荷异构体的不同情况,具体问题具体分析。/pp style="text-align: center text-indent: 0em "strongspan style="color: rgb(0, 112, 192) "氨基酸和培养基分析/span/strong/pp/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "技术应用/span/pp style="text-align: justify text-indent: 2em "氨基酸和培养基分析主要用于确定蛋白质的氨基酸组成与其他技术一起使用以确认正确的结构。氨基酸也是用于制备重组蛋白质的细胞培养基中的关键成分。氨基酸本身属于两性离子,并具有各种侧链,它们还缺少合适的UV 发色团,使得分离和检测氨基酸非常具有挑战性。br//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "实验痛点/span/pp style="text-align: justify text-indent: 2em "如何实现所有常见氨基酸的基线分离并确保符合欧洲药典的系统适用性,这是非常挑战实验员操作水平的。/pp style="text-align: center text-indent: 0em "strongspan style="color: rgb(0, 112, 192) "肽谱分析/span/strong/pp/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "技术应用/span/pp style="text-align: justify text-indent: 2em "肽谱分析是一项强大的技术,可用于全面鉴定蛋白质的一级结构,还能够区分蛋白质内异构基团的精确位置。使用这种方法,蛋白质将被分解成单独的片段,然后将这些物质分离成经典的“指纹”色谱图。将分离与质谱检测相结合,能够将肽谱分析色谱图中观察到的实际的峰与分析软件预测的预期片段相关联。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "实验痛点/span/pp style="text-align: justify text-indent: 2em "要成功生成肽谱,需仔细检查完整的表征策略。其中样品前处理对于成功的肽谱分析至关重要,这可能是一个耗时的过程,可能需要针对待酶解的各种蛋白质优化多个步骤。然而打好基础熟练掌握肽谱分析流程的基本技术才是成功的第一步,此外,进行肽谱分离优化时需要注意诸如覆盖率等事项,才能尽可能获得最佳结果。/pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 112, 192) "strong聚集体分析/strong/span/pp/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "技术应用/span/pp style="text-align: justify text-indent: 2em "体积排阻色谱是特别适合从高阶聚集体中分离单体峰的技术之一。随着技术发展,人们将目光投向了除单克隆抗体以外的蛋白质药物。抗体药物偶联物等更为复杂分子的聚集体表征可能更具挑战性,因为疏水性细胞毒性药物的存在可能导致许多体积排阻色谱柱无法发挥理想性能。使用可显著降低次级相互作用风险的新型固定相,将非常适合聚合物的快速分离和定量。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "实验痛点/span/pp style="text-align: justify text-indent: 2em "聚集体分析中,如何确保稳定可靠运行SEC分析,使用何种条件才能确保分析过程中蛋白质稳定,以及怎样维护这一易耗品,是该分析获取有效实验结果的关键。/pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 112, 192) "strong完整蛋白和亚基分析/strong/span/pp/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "技术应用/span/pp style="text-align: justify text-indent: 2em "完整蛋白和亚基分析可以用来比较生物仿制药与原研药。在反相条件下,分子很可能发生变性。样品保留在色谱柱上得到浓缩,且适用于质谱分析。因此,该技术适用于测定完整蛋白和亚基分析的精确质量数。/pp style="text-align: justify text-indent: 2em "实验痛点/pp style="text-align: justify text-indent: 2em "如何考虑选择完整蛋白和亚基分析色谱柱的多个相互关联因素:样品分子量和最适合的填料孔径,色谱柱固定相,流动相条件,以及速度或通量要求等。这些都是完整蛋白和亚基分析的关键。/p
  • 青年才俊齐聚兰州 彰显中国分析测试行业先锋力量
    2021年7月17日,由中国分析测试协会青年学术委员会(以下简称“青委会”)主办,中国科学院兰州化学物理研究所承办,西北师范大学、中科院青年创新促进会兰州化物所小组、甘肃省分析测试技术与仪器学会协办的“中国分析测试协会第七届青年学术委员会第三次全体委员会议暨学术交流会”在甘肃省兰州市顺利召开。会议围绕分析测试新技术、新方法、新成果,以及青委会工作规划等内容展开研讨,齐聚近200位来自全国分析测试领域的青年才俊,彰显国内分析测试界的先锋力量与影响力。仪器信息网作为支持媒体全程报道本次会议。会议现场中国分析测试协会青年学术委员会主任委员周江主持开幕式中国分析测试协会副理事长刘成雁致辞中国科学院兰州化学物理研究所副所长张俊彦致辞  刘成雁副理事长在致辞中代表中国分析测试协会江桂斌理事长和各位副理事长,代表中国分析测试协会对会议的成功召开表示热烈祝贺。对为本次会议的组织付出辛勤劳动的中国科学院兰州化学物理研究所、西北师范大学、中科院青年创新促进会兰州化物所小组、甘肃省分析测试技术与仪器学会表示衷心的感谢。  中国分析测试协会几十年来非常重视青年科技工作,自1986年末成立之后,即在1989年就成立了青年学术委员会。在30多年的时间里,青委会在科技部的关怀下,在中国分析测试协会的领导和支持下,始终致力于帮助青年人才成长,搭建青年学者学术交流的平台,扎实工作,凝聚资源,砥砺奋斗,自强不息,充分发挥了青年分析测试人才的积极性和能动性,为青年学者的成长、发展创造了有利条件,为科技进步和国家的经济建设做出了巨大的贡献。中国分析测试协会青年学术委员会已成为我国乃至全世界分析测试行业具有较大学术影响力的青年学术组织。  今年是中国共产党成立一百周年,全国人民已经踏上中华民族伟大复兴的新征程。新的时代对中国分析测试青年学者也提出了更高的要求,广大青年科学家应当服务于国家战略需求,勇于攻坚克难,着力解决分析测试行业卡脖子的技术难题。青年“要不负时代、不负韶华”,把青春奋斗融入分析测试行业事业中去,成为推动行业发展的先锋力量,为我国科学仪器产业、为我国分析科学事业的飞速发展,为在中国共产党的领导下在本世纪中叶把我国建设成为社会主义现代化强国做出应有的贡献。报告题目:聚合物量子点的电致化学发光传感南京大学生命分析化学国家重点实验室 鞠熀先教授  同光致发光分析技术相比,电致化学发光分析无需激发光源,可以有效地避免激发光散射带来的背景干扰,在分析研究领域更具优势。因此,开展量子点的电致化学发光行为研究对于开发新型的电致化学发光物质和拓宽量子点的应用研究领域都具有重要的意义。报告介绍了量子点电致化学发光、无机纳米粒子的电致化学发光、聚合物点电致化学发光、聚合物点电致化学发光成像等研究进展,为发展更高效、更低点位的新型电致化学发光传感技术提供思路。报告题目:等离子体质谱(单)细胞分析探索东北大学理学院 王建华教授  生命体、细胞中的金属转运、迁移、形态变化参与生命的全过程,从单细胞、单分子(原子)水平探索其生物化学过程,揭示细胞间的显著特异性具有重要意义。ICP-MS单细胞分析可揭示细胞对特定金属(形态)摄取及胞内分布状态,课题组在流体惯性效应微通道中对单细胞进行聚焦分离,实现高通量单细胞进样,基于ICP-MS检测揭示单细胞对纳米粒子摄取的细微差异。课题组还基于高特异性流体惯性效应和水动力过滤原理,在微通道中分离CTC,实现(单)循环肿瘤细胞的高效检测。报告题目:心脑血管等重大疾病标志物与药物计量标准关键技术研究中国计量科学研究院化学所 李红梅研究员  心脑血管、肿瘤等疾病在我国死亡率人群中排名TOP3,但心脑血管等重大疾病却面临准确诊断“测不准”的严重问题,大分子标志物的标准化是卡脖子难题。IFCC等多个国际组织向国际计量界提出急迫需求,要求开发重大疾病亟需的共性关键计量技术。课题组突破源头基准技术瓶颈,在国际上首次实现大分子诊断标志物源头基准物质溯源至SI单位 创新建立复杂血清基质中cTnI等心脑血管重大疾病标志物测量溯源技术,检测灵敏度提高10倍 创新建立生物药物特征组分鉴定技术,填补功效特性精准表征技术空白 建立生物药物杂质测量新技术,实现单克隆抗体聚集体和多肽类杂质的精准表征。报告题目:光生电荷转移的理解与调控西北师范大学化学化工学院 韩振刚教授  课题组基于自主研发的扫描电化学显微技术,发现J聚集体表现出更优的光电性能。通过模拟生物发光现象,提出了一种基于卟啉的全新界面电子诱导的电化学发光体系。选用两亲性环糊精将卟啉分子包裹,破坏了卟啉分子间的聚集,达到“解聚”的目的。通过共反应的策略报道了四苯基噻咯等聚集诱导电致化学发光现象,有助于解决有机发光体普遍存在的非水溶性和聚集性猝灭的关键问题。采用具有聚集诱导发光的四苯基乙烯分子修饰卟啉分子,在水相中具有优良的发光性能,成功解决了卟啉由于聚集而导致的发光猝灭问题。报告题目:微尺度样品中质谱环境分析的研究进展广东工业大学 栾天罡教授  21世纪环境分析科学的发展趋势由宏观环境调查转向微尺度、原位分析,向分析测试技术提出了更高的要求。报告详细介绍了表面修饰木签电喷雾质谱、表面修饰探针纳升电喷雾质谱、膜上反应平台-纸基电喷雾质谱、液液微萃取-纸基电喷雾质谱、代谢流分析、三维质谱成像等基于原位质谱及成像技术的环境分析方法,并列举了NPC1疾病模型中异常脂质的空间分布、基于质谱成像的斑马鱼眼暴露恩诺沙星分布及内源脂质变化等应用案例。报告题目:药物分析“芯”方法清华大学化学系 梁琼麟教授  课题组着眼于支撑国家药品质量与安全、服务重大新药创制的国家战略需求,以微流控器官芯片为研究重点,推动核心关键技术与装备的研制与应用转化,代表性研究进展是成功构建了多样性三维器官结构、高效率模拟器官微生理环境、开发微流控纺丝技术制备管型仿生结构并应用于复杂迂回血管模型的构建等。下一步课题组还将开发药理学测试与药学分析一体化的“芯片上的药学实验室”系统,力争应用于高通量药物筛选和个性化药物治疗评估 将器官芯片新模型应用于疾病新机制的探索与验证。报告题目:BCEIA2021介绍中国分析测试协会 翟若木  北京分析测试学术报告会暨展览会(BCEIA)历经30多年的发展,现已成为全世界知名的分析测试四大展会之一。BCEIA2021将在中国国际展览中心(天竺新馆)召开,全馆面积大比例增加,展商数大比例增加,展会将持续三天,设立14个100-400人规模的会议互动区,携行业众多机构开展精彩的学术交流论坛,新增新冠检测高峰论坛、新冠疫情下诊疗技术发展高峰论坛,并增加官方云视频平台——网络视频特别节目《聚焦.BCEIA2021》等,内容精彩纷呈,期待9月盛会。报告题目:药物分子的智能控释与精准示踪中国科学院兰州化学物理研究所 师彦平研究员  课题组面向生命健康、针对生物医药开展了分离分析样品处理、药化成分质控方法、识别探针控释示踪等工作。如:设计制备了一种智能化超分子水凝胶释药体系和示踪模式 建立了活体组织中药物分子的MAIDL-TOF-MS/MS和MAIDL-TOF-MSI质谱成像分析方法 监测了活体组织中药物分子的定位控释与生物分布 实现了抗肿瘤药物的智能级联释放和协同治疗 实现了抗肿瘤药物的靶向释药过程及生物分布与代谢过程的在线精准示踪。报告题目:毛细管电动分离技术能否在生物和医药领域东山再起?上海交通大学药学院 闫超教授  现代电动毛细管分离技术包括毛细管区带电泳、毛细管凝胶电泳、胶束电动毛细管电泳、SDS-聚丙烯酰胺毛细管凝胶电泳、毛细管等电聚焦、毛细管等速电泳、毛细管电色谱。通微基于承担的国家重大科学仪器专项,成功推出了高效微流电色谱,兼具毛细管电泳和液相色谱的特点,适合于蛋白大分子和复杂生物样本的分离,可应用于蛋白质组学、生物医学、药物研究等领域。近些年毛细管电动微分离技术热度再起,闫超教授认为其在基因检测与遗传性疾病筛查,生物药中蛋白纯化、分子量测定和等电点测定,体外医疗检测等领域有望东山再起。报告题目:诊疗一体化光声成像探针的合成与应用广西师范大学化学与药学学院 赵书林教授  光声(PA)成像是一种基于光激发和超声检测相结合的生物成像模式,具有更高的时空分辨率和更深的组织穿透性,是一种具有巨大应用潜力的深部组织生物成像技术,能促进疾病的精准诊断或追踪深部组织的生物活动。基于光声成像技术的发展现状与面临的挑战,课题组开展了一系列探索性的工作,如发展了一种肿瘤微环境诱导吸收红移的聚合物纳米粒子,用于同时激活癌组织的光声成像和光热治疗 发展一种独特的纳米酶用于级联催化触发肿瘤微环境激活NIR-II光声成像和化学动力/光热协同靶向治疗等。报告题目:全集成便携与可穿戴式体液生物传感器东北师范大学分析测试中心 周明教授  全集成便携与可穿戴式体液生物传感器正朝着非入侵式、全集成、更小(更合身)、(更加)准确直接检测原液、实时监测生理状态等方向发展,同时也面临体液原液vs电化学直接检测、无创体液vs金标准体液等挑战。课题组研制了用于坏血病现场即时诊断的、全集成生物医学器件,开展无线、全集成式纳米电子系统的设计,研制了可穿戴式全集成汗液尿酸传感器。下一步还将探索体液中新生物标记物的检测与生理状态的关系,构建面向新生理状态判断的多重检测器件,构建自供能全集成电子器件等。报告题目:面向高端科技文献信息交流的服务与保障国家科技图书文献中心 杨代庆研究员  “十四五”规划明确提出“构建国家科研论文和科技信息高端交流平台”的重要任务,充分体现了党中央对国家科技信息(情报)工作的高度重视。科技信息是科技自主创新的战略资源,是科技自立自强的战略支撑。国家科技图书文献中心面向高端科技文献信息交流提供服务与保障,报告详细介绍了中心概括以及为广大科研工作者所能提供的服务。报告题目:从分析方法到商品化便携式仪器的研究探索吉林大学化学学院 宋大千教授  课题组围绕国家重大战略需求和市场导向需求,积极开展了产学研用的工作。针对食品、环境、水质、生物、材料领域的应用,开发了具有自主知识产权、符合社会经济发展的现场监测检测新的方法、技术、仪器和试剂盒,培养博士和硕士复合型创新人才,并实现技术转移和成果转化。以现场快速检测技术的应用和产业化为例,课题组研制了真蛋白快速检测仪、花生油掺假检测仪、溴酸盐快速检测仪为代表的52种专用检测仪器以及88种配套试剂盒。报告题目:基于电喷雾质谱的催化反应研究北京师范大学化学系 那娜教授  近年来,课题组围绕气体/液体反应相态,针对多种基质检测干扰、样品预处理复杂、中间体难捕捉等问题,开展了装置设计、中间体研究、降低干扰、增强离子化在内的基于常压质谱的催化反应研究。例如开发了多层液流萃取电喷雾离子源(MF-EESI)技术,针对复杂体系检测,实现了反应物、产物或中间体的快速检测及监测,降低背景干扰、避免盐析结晶、增强离子化效率,为反应机理的研究提供可靠实验数据。报告题目:金属稳定同位素标记均相免疫分析四川大学分析测试中心 刘睿教授  金属稳定同位素和放射性同位素化学性质相近,借鉴放射同位素标记的成功经验,通过金属稳定同位素标记多组分生物分子,可以用原子质谱高灵敏地检测多组分生物分子,在蛋白质、核酸、酶活性、生物小分子甚至单分子的检测中有广泛应用。课题组开展了金属稳定同位素标记均相免疫分析测定CA125、CEA和CA199等分析研究,该方法具备简便快速分析、高灵敏分析、多组分分析、自验证分析等显著特点。报告题目:DNA 染料诱导纳米金聚集:从电荷屏蔽到电荷中和成都理工大学材料与化学学院 张信凤教授  纳米金具备表面等离子共振性质、小尺寸效应、生物相容性好、导电能力强、直观/简便的可视化优势,课题组基于此开展了DNA染料诱导纳米金聚集、G4-DNA染料诱导纳米金聚集等研究工作,所开发方法操作简便,无需分离、标记等步骤,具有良好的应用前景。  本次会议还得到了赛默飞世尔、岛津、海光仪器、天津阿尔塔、上海通微、HORIBA等仪器企业的倾情支持,通过学术报告和现场展示,向广大青年分析测试工作者展现科学仪器最新的产品与应用成果,  会议同期举办中科院兰州化物所与上海通微的合作签约仪式,中国分析测试协会青年学术委员会见证这一科研单位与企业的合作。报告题目:IQX-全新一代 Orbitrap 高分辨质谱技术在组学和药物研究中的应用赛默飞世尔科技(中国)有限公司 徐牛生报告题目:岛津成像质谱显微镜最新应用介绍岛津企业管理(中国)有限公司 韩美英报告题目:SCIEX 高分辨质谱新技术简介SCIEX 中国 赵贵平赛默飞岛津海光仪器阿尔塔通微HORIBASCIEX中科院兰州化物所与上海通微合作签约仪式参会代表合影
  • 聚焦慕尼黑上海分析生化展——岛津医药临床篇
    2020年11月16-18日,岛津以“Celebrating 50 Years of MS Innovation (1970-2020)”为主题,亮相“慕尼黑上海分析生化展”。 岛津长期致力于推动中国的医药/临床行业的发展,积极支持生命科学和生物技术、新药研究和仿制药评价等领域的多种分析检测工作,比如中药安全与评价、遗传(基因)毒性杂质、包材相容性、蛋白质组学、基因组学和代谢组学等。 在医药/临床展区将为您呈现:2020年版《中国药典》、中药检测、疫苗、TDM以及生物药解决方案,除解决方案外还将为您呈现LC-40、LCMS-8045、GCMS-TQ8040NX、LCMS-8050CL和Nexera UC Pre等产品介绍。 解决方案介绍 Part 01 2020年版《中国药典》 我国是天然药物之乡,随着对中药资源的开发和研究,我国对中药的用药理论和临床应用积累了丰富的经验,对于很多慢性病的治疗,中药的疗效越来越被国人所认可,被世人所熟知。然而阻挡中药走出国门的壁垒不仅包括中药有效成分难以确认,而且还包括中药中有害残留物超标,如农药残留和重金属等,致使中药在世界上的声誉受到影响。 2020版药典四部增订《第五法药材及饮片(植物类)中禁用农药多残留测定法》和修订《0212 药材和饮片检定通则》。首次收载禁用农药残留检测项目、限量要求、检测方法进入四部通则,形成整体检验标准,对中药安全性控制提出了更高的要求。 针对2020年版《中国药典》,将介绍以下解决方案:《中国药典》2020年版通则与各论解读《中国药典》2020年版中药禁用农残和重金属检测解决方案 Part 02 生物药 生物药在许多威胁生命的疾病治疗方面已显示出明显的临床优势,国内外各大医药企业都大力介入生物药物研发,并在某些领域有所收获。 国家食品药品监督管理总局药品评审中心(CDE)于2014年10月和2014年12月连续发布两个指导原则—生物类似药研发与评价技术指导原则(征求意见稿)和《生物制品稳定性研究技术指导原则》,并于2015年3月发布《生物类似药研发与评价技术指导原则(试行)》进入实施,旨在为生物药物的研发和质量控制提供更官方的、完备的指导原则。参考国内外重要机构的指导原则(如NMPA、ICH、PIC/S),岛津能够为生物药品的研发、生产和质量控制提供完整的解决方案。 针对生物药,将介绍以下解决方案:《岛津蛋白类生物药开发和临床试验解决方案》 Part 03 疫苗行业 疫苗,作为预防性药物,在患病之前给予人体抵御疾病的能力,比治疗性药物意义更加重大。生产优质的疫苗、严把疫苗质量关是关乎民族存亡和国家兴衰的大事。然而,疫苗现存的大多数问题已无法依靠传统理化检测方法(如液相色谱和紫外分光光度计)进行应对。现代化、先进理化技术的参与,为解决疫苗现存问题提供了方向。 岛津自2017年开始,先后与中国食品药品检定研究院和国内知名疫苗企业开展合作。在合作中,除采用传统理化检测方法(如液相色谱和紫外分光光度计)以外,还以液相色谱质谱、聚集体分析、痕量元素分析、电子探针和MALDI-TOF等先进技术为支撑,开发了从疫苗生产到质量评价的全过程疫苗检测方法,覆盖蛋白类疫苗(如百白破)、多糖类疫苗(23价肺炎多糖疫苗等)、病毒类疫苗(如流感疫苗)和多糖蛋白结合疫苗(13价肺炎多糖疫苗、脑膜炎疫苗、Hib疫苗)等疫苗品种。 针对疫苗行业,将介绍以下解决方案:《岛津疫苗质量评价新技术方案》 产品信息介绍 为了更好、更直观地了解各产品应用,届时我们会进行现场的技术交流会,诚邀您来参观与交流。
  • 《中国药学杂志》岛津杯第十四届全国药物分析优秀论文评选交流会圆满结束
    2019年9月20~21日,岛津杯第十四届全国药物分析优秀论文评选交流会热度不减,持续进行中,各个专题分会场也邀请到了行业专家学者进行发表。 在中药分析分会场,岛津(上海)实验器材有限公司徐露莎发表了题目为《中药农药残留测定最新分析技术与应用实例》的报告,在报告中提到了基于2020版中国药典已公布的中药农残意见修改稿,通过具体的应用实例利用岛津WondaPak QuEChERS前处理方法及Shim-pack Velox C18表面多孔液相色谱柱和InertCap-17MS气相柱在中药农残检测中的应用,为中药农残的液质及气质方法提供全面的解决方案,符合2020版药典农残意见修改稿的要求。岛津(上海)实验器材有限公司徐露莎 化学药分析分会场,岛津上海分析中心刘洁发表了题目为《ICP-MS在药物分析中的应用》的报告,首先对中国、美国和欧洲等国家药典以及ICH Q3D中关于金属元素杂质分析部分进行解析,突出了ICP-MS在药物元素杂质分析领域的重要性并介绍了岛津ICPMS-2030的优势特点以及在药物杂质元素含量和形态分析领域的应用。岛津上海分析中心刘洁 生物生化药分会场中,岛津北京分析中心黄小艳发表了《激光粒度仪在生物制药评价中的应用》的报告,她指出生物药分子量大易聚集,对稳定性和一致性要求高,而岛津激光粒度仪可以检测7 nm-800 μm颗粒粒度,独配的生物制药聚集体评价系统可以对40 nm-20 μm的聚集体做定量评价。并讲解了岛津激光粒度仪在疫苗颗粒一致性和稳定性评价的应用,以及在生物制药聚集体评价中的应用。岛津北京分析中心黄小艳 在优秀论文报告评选交流分会场,高水平的论文报告持续不断的涌现,岛津北京分析中心冀峰与岛津上海分析中心刘巧霞分别带来了《在线体积排阻反相液相色谱-飞行时间质谱法鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质》和《利用CLAM-2030+LCMS-8050构建免疫抑制剂治疗药物监测定量分析方法》的优秀报告。北京分析中心冀峰发表中上海分析中心刘巧霞发表中 大会期间,岛津公司在展区也进行了展览,特别展出了岛津旗舰级液相色谱产品Nexera LC-40,岛津工作人员为与会嘉宾解答疑惑,双方讨论非常热烈。岛津展台 9月21日上午,大会经历了两天、几百篇优秀论文的发表和评选,选出了本届岛津杯优秀论文和在校学生优秀论文交流的一、二、三等奖,大会为获奖者举行了盛大的颁奖仪式,并由一等奖获奖代表发表了获奖感言。岛津北京分析中心冀峰获得了岛津杯优秀论文三等奖颁奖仪式一等奖获奖代表发表感言 最后,大会迎来了闭幕式,岛津公司吕冬部长为大会致闭幕词,在闭幕词中,吕冬部长首先对获得优秀论文奖项的各位青年才俊表示了最诚挚的祝贺并对岛津公司的合作伙伴中国药学会药分专业委员会、《中国药学杂志》社27年的坚守和付出表示了衷心的敬意。紧接着,吕冬部长说:“今年的岛津杯已经走过了27年,也是岛津开展液相色谱仪研发50周年,岛津在年初举办了庆祝活动及岛津液相色谱仪新产品Nexera LC-40发布会。Nexera LC-40秉承了岛津一直以来的设计理念,将源自日本的“匠人精神”和面向未来的互联网技术相结合,融合岛津优秀的工业设计和分析智能、物联网等尖端技术,成为一台真正的面向未来的液相色谱仪。作为药物分析领域最常规的分析手段,期待Nexera LC-40在提供卓越性能的同时,能够给各位用户带来非同以往的便利操作体验。岛津公司不仅提供品质优良的软、硬件产品,还提供各个应用领域的全面应对方案,例如对于“遗传毒性杂质分析“、“药包材相容性研究”、“注射剂一致性评价/再评价”等热点领域,岛津以先进分析技术提供有针对性的整体解决方案,实现 ‘创新精准药物分析,保障药品质量安全’。”岛津公司吕冬部长
  • 【热点应用】高级多检测器SEC表征腺相关病毒载体的方法
    #本文由马尔文帕纳科应用专家冯慧庆供稿# 基因治疗是生物制药行业中一个快速增长的领域,通过基因治疗可实现疾病的治疗或预防。其中,重组腺相关病毒(rAAV)是目前基因治疗领域研究较多的一类病毒载体。腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一,一般,研究中采用的重组腺相关病毒载体(Recombination adeno-associated virus, rAAV)是在非致病的野生型AAV基础上改造而成的基因载体,由于其种类多样、免疫原性极低、安全性高、宿主细胞范围广、扩散能力强、体内表达基因时间长等,rAAV被视为最有前途的基因研究和基因治疗载体之一。目前,rAAV的准确定量分析和表征的难度是阻碍基因治疗快速发展的关键因素。我们常常需要对rAAV进行综合全面表征,比如衣壳数量、实心率、颗粒尺寸、聚集体比例等。传统情况,rAAV滴度和病毒载量采用ELISA、ddPCR、AUC和EM等技术进行测量。但这些方法通常费时费力,而且精确度不高。本文通过GPC/SEC和多角度动态光散射(MADLS)两种分析技术分析rAAV5样品,展示了快速、准确和可靠地定量测量AAV的病毒滴度(AAV Titer)和实心率(% full AAV)的方法。 01仪器参数OMNISEC GPC/SEC多检测器系统非常适合于生物医药行业,可用于全面表征rAAV样品。OMNISEC包含一个示差折光检测器(RI),紫外线全波长阵列检测器(UV-Vis 190-900 nm)和光散射检测器,仅需一次进样,可精确测量绝对分子量、聚集体比例、病毒滴度和实心率。与传统HPLC不同,测量过程不依赖柱保留体积,也不需要一系列标样进行色谱柱校正。图1显示了使用OMNISEC测量的CQA关键质量参数。02检测方法我们采用Empty和Full rAAV5两个样品作为分析案例。Full rAAV5 载有已知分子量为785 kg/mol的PFB-GFP ssDNA。经qPCR和ELISA测量方式可知,该样本的病毒滴度为2.5x1013。采用色谱柱P4000和P3000串联,对rAAV样品的进行色谱分离。由OMNISEC软件采集分析测试结果,其中硬件系统包含OMNISEC RESOLVE(包含泵、自动进样器和柱温箱)和OMNISEC REVEAL(包含示差、UV/PDA和直角90°/小角7°光散射检测器)。样品经过分离洗脱后,使用共聚物分析方法确定样品两种不同组分的浓度和分子量。计算方法如下:其中,ConcCapsid是衣壳浓度(mg/mL),NA是阿伏伽德罗数,Mwcapsid是衣壳的分子量(g/mol),ConcDNA是DNA浓度(mg/mL),MwSeqDNA是来自序列的ssDNA的分子量。因此,通过计算出的颗粒浓度,可以很容易地得出样品实心率的百分比。 03检测结果案例一:图2显示了Empty rAAV5的三检测色谱图。RI信号由红色曲线表示,260 nm紫外信号由紫色曲线表示,直角光散射(RALS)信号由绿色曲线表示。样品包含四个部分:单体峰保留体积(RV)在12.5ml,碎片在16ml ,二聚体在10.5ml ,聚集体在8.5ml 。使用共聚物分析方法,可以得到表1结果。单体的分子量为3.84×106g/mol。衣壳的理论分子量为3.8×106g/mol,证实分析结果与预期相符。MW/Mn为分子量分布,描述了样品的分散性,单体和二聚体的值接近1,而聚集体和片段均显着高于1,表明在同一峰内有多个不同分子量的组分。Fraction of Sample表示样品组分百分含量,单体所占百分比为84.7%。Fraction of Protein显示了样品中衣壳的百分比,单体包含99.8%的衣壳。这证实了样本确实是Empty rAAV5。最后Empty rAAV5样品总滴度为5.91x1013Vp/ml。 案例二:第二个样品Full rAAV5的三检测器色谱图如图3所示。图中显示了与Empty rAAV5截然不同的色谱峰。分析色谱图可以看出,只包含两个不同的组分,其中单体峰,大概12.5ml RV处,包含Full 和Empty rAAV5的混合物,而聚集体出现在8ml RV处。测试结果见表2。对于主体的单体峰,计算出其混合物分子量为4.49×106g/mol,其中86%为衣壳。rAAV5的蛋白质组分的分子量为3.89×106g/mol,这与表1中Empty rAAV5 的数据一致。单体是总体的93.2%,样本的总滴度为7.48x1013VP/ml。其中单体包含78% Full rAAV5,22% Empty rAAV5。需要注意的是,这种分析方法假设样品要么是Full ,要么是Empty ,忽略部分装载或过度装载情况。Zetasizer Ultra纳米粒度及电位仪可以使用MADLS方式快速确定病毒滴度。从OMNISEC获得的数据与Zetasizer Ultra的粒子滴度进行了比较,两种技术之间有很好的相关性,见图4。另外,本文将Full rAAV5和Empty rAAV5以确定比例混合,来对Full rAAV5样品进行分析。表3显示了每个样品的预期值和实际值Full rAAV百分比。图5显示了期望值和实际值之间有很强的相关性,证实了OMNISEC确定样品实心率结果的可靠性。为了进一步评估OMNISEC对rAAV样品准确表征能力,我们进行了rAAV5样品的热应力稳定性研究,同时,基于ZS Ultra对聚集体的极高灵敏度,我们利用了ZS Ultra表征rAAV5聚集体的微小变化。测试条件是将rAAV5样品置于25oC到80oC之间进行测试。在不断加热过程中,在每个温度下测量rAAV5样品的粒径。在25oC和35oC之间,没有观察到粒径的变化。从35oC开始,可以观察到粒径开始增大,这表明样品开始发生变化(图6A)。30oC和45oC下的数据比较清楚地显示了这些样品之间的大小差异(图6B)。我们选择45oC条件,对OMNISEC进行进一步稳定性研究。将rAAV5样品在稳定在45oC,分别在2min 、5min、10min和15min后,取样品到OMNISEC上测试。图7色谱叠加图显示样品发生了明显的变化,聚集体百分含量增加,单体浓度含量降低。表4显示MW在此潜伏期内保持稳定,单体峰中的AAV百分比也保持稳定。结论:在这项研究中,我们展示了OMNISEC和Zetasizer Ultra在综合分析表征rAAV5样品的能力,以及将两者联合使用的应用价值。 OMNISEC多检测SEC系统将示差折光检测器、紫外全波长检测器、光散射检测器集成一体化设计,具有更高的灵敏度和准确度,通过一次进样分析,可提供各种血清型AAV样品的绝对分子量、衣壳大小、滴度、实心率、聚集体、片段和样品稳定性等关键质量属性。虽然这些参数中很多都可以使用传统的生物化学方法来确定,但OMNISEC提供了更为简单、可靠的方法,正逐渐成为一种表征分析AAV通用的技术工具。
  • 新帕泰克发布纳米粒度分析仪新品NANOPHOX CS
    近日,德国新帕泰克最新发布了一款能够快速分析高浓度浑浊分散体的纳米粒度分析仪NANOPHOX CS。本款产品创新采用了PsB PCCS技术,不仅延续了PCCS技术上消除了高浓度体系检测时的多次散射影响,提高结果真实性、准确性的优点,还通过偏振分离散射技术将信噪比提高到一个新的水平,适用于更高的样品检测浓度,测试更快、重复性更高。基于动态光散射0.5-10,000 nm 纳米粒度分析仪动态光散射(DLS)基本原理由于分子的热运动,使得颗粒与溶剂分子产生碰撞并在溶液中做无规则的布朗运动;大颗粒运动慢,小颗粒运动快。动态光散射(DLS)仪器的实现就是利用颗粒的这种运动现象,将入射光照射到待测溶液中,随后与颗粒发生散射作用,再由探测器在一定角度上收集散射光光强信号。散射光光强随着颗粒的布朗运动发生波动,分析这些散射强度随时间的波动可确定颗粒的扩散系数,从而利用斯托克斯-爱因斯坦方程进行进一步分析,获得被检纳米溶液的粒度大小和分布。PCS与PCCS技术传统DLS仪器采用光子相关光谱(PCS)技术,无法避免高浓度测试下多重散射带来的结果偏差问题,往往需要大量稀释,因此样品准备工作往往非常耗时且容易出错,同时稀释也会导致样品的粒度分布和稳定性发生变化。光子交叉相关光谱(PCCS)技术采用双光束设计,通过相关处理获得单散射信号,从而提高了高浓度检测的准确性。交叉相关技术的应用允许了不受多重散射影响的粒度分析。通过测量不同浓度系列的100nm聚苯乙烯标准品悬浮液,我们可以直观地比较PCS与PCCS在可分析样品浓度上的差别:上图可见,PCS需要大量稀释后才能得到可靠的粒度结果,而PCCS在样品浓度较高时就可获得正确的结果。PsB PCCS技术在光子交叉相关光谱(PCCS)技术的基础上,NANOPHOX CS创新设计的偏振分离后向散射PCCS技术(PsB PCCS),实现了更高浓度以及更快速的纳米样品分析。在这项强大的技术中,垂直和平行的两束偏振激光束照射在同一个测量体积上,随后散射信号分别由对应的两个探测器接收,通过互相关处理获得粒度大小信息。偏振分离后向散射PCCS技术提供了一个新的信号质量水平,增强被测颗粒的单散射信号,显著提高信噪比,从而获得更加准确和重复的分析结果。PsB PCCS帮助NANOPHOX CS实现高于PCCS技术100倍以上的浓度检测, 同时测试时间缩短10倍以上,让高浓度样品在原始状态下直接进行分析成为可能,为高浓度体系的研究提供科学依据。高浓度纳米激光粒度仪NANOPHOX CS应用案例——油墨面对油墨分析,挑战不仅来自样品的高不透光性,还来自对聚集体的高分辨率,正确的粒度分析结果有助于油墨质量与稳定性的确认:NANOPHOX CS适合测量亚微米到纳米范围内油墨中颜料颗粒的大小: ● 原液检测,避免稀释可能导致的油墨变化或引入杂质等 ● 缩短分析时间,无需样品制备过程,轻松检测 ● 智能软件操作,全自动化参数和可测量性检查 ● 多峰敏感,区分原生颜料产品与聚集体总结分析结果的准确性与科学性是研究、制造的基础,高浓度纳米体系保持原始状态的分析显然更具意义。NANOPHOX CS的上市,将进一步助力纳米产品的研究、开发与质量控制。
  • 赛默飞推出在线二维液相色谱法分析单抗样品的解决方案
    2014年12月19日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出在线二维液相色谱法分析单抗样品的解决方案。 生物制药被誉为21世纪的金苹果,其利用现代生物技术(组织提取、发酵和细胞培养等等)为人类健康带来诸多良药。通过淋巴细胞杂交瘤技术或基因工程技术制备单克隆抗体药物,已经成为生物制药领域的一个重要方面。单克隆抗体药物专一性强,疗效显著,尤其是在癌症的治疗过程中发挥重要的作用,成为今年来研究的热点药物之一。但在单克隆抗体药物的每个生产过程中,必须采用合适的方法进行产品的纯化和质量控制,测定其效价、聚集体和电荷亚型变体等。其中,聚集体和电荷亚型变体会在药品的生产、存储和运输过程中产生,这些副产物会产生与主产品不同的药效,有时会引起严重的副作用。因此必须对这些副产物进行严格的质量控制,从而更好地保证患者的用药安全。赛默飞推出的方案基于Ultimate 3000 DGLC 双三元液相色谱系统,一维使用MabPac Protain A亲和色谱柱对单抗溶液进行分离,通过阀切换将收集到loop环(或者富集柱)中的单抗样品转移到二维,利用SEC色谱柱将样品中的聚体和单抗进行分离,从而实现全自动在线二维液相分离单抗药物的目的。该方案可以实现单抗药物的全自动滴度分析和聚体分离,节约时间,提高工作效率,同样该方法也适用于全自动滴度分析和电荷异构单抗分离。更为重要的是该方法可以整合不同分离原理的液相色谱方法,为生物制药和蛋白分析建立一个方法开发平台,从而让 Ultimate 3000 DGLC 双三元液相色谱更好地为生物制药行业服务。下载应用文章请登陆:www.thermo.com.cn/Resources/201410/2095520813.pdf ---------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 沃特世ADC药物分析技术交流会成功举办
    近日,沃特世ADC药物分析技术交流会在上海张江圆满召开。本次研讨会聚焦ADC药物在研究开发、表征分析、工艺开发、质量控制、生物分析等方面的应用方案,吸引了众多业内专家和同行的关注与参与。 本次分析技术交流会邀请了上海凯莱英生物技术有限公司分析测试中心执行副总经理陈维斌博士、映恩生物制药(苏州)有限公司ADC总监张禹博士、上海中科新生命生物科技有限公司研发总监唐家澍博士、沃特世大中华区消耗品部市场经理胡学桥博士、沃特世大中华区生物药应用经理聂爱英博士、怀雅特市场开发经理罗宇文等嘉宾出席。 会议伊始,沃特世大中华区市场部制药市场总监蔡麒先生发表致辞。他首先对与会嘉宾表示了热烈的欢迎,并强调沃特世在ADC药物分析技术领域的持续创新。蔡麒提到,沃特世作为全球领先的分析仪器制造商,一直致力于为ADC药物研发提供先进的分析技术和解决方案,支持药物研发新突破。此次会议,沃特世携手业界知名企业,并邀请多位专家学者,围绕ADC药物分析的新技术、方法及应用进行深入交流,以促进行业合作与发展。 图1.沃特世大中华区制药市场总监蔡麒先生致辞。 专家报告,干货满满 会议进入主题报告环节。首先,上海凯莱英生物技术有限公司分析测试中心执行副总经理陈维斌博士为大家带来了精彩的报告。他详细介绍了抗体偶联药物的目前市场状态及发展趋势,并结合实际案例,深入剖析了ADC关键质量属性和相对应的分析方法,让在场的嘉宾对ADC药物DAR值测定、偶联位点分布及占有率分析、药物分布以及游离毒素的定量分析有了更为深刻的认识。 图2.上海凯莱英生物技术有限公司分析测试中心执行副总经理陈维斌博士作题为“抗体偶联药物的新趋势暨质量控制分析方法的研究”的报告。 随后,映恩生物制药(苏州)有限公司ADC总监张禹博士就ADC药物的CMC开发和工艺优化过程进行了深入解读。他结合丰富的行业经验和实际案例详细阐述了产品质量控制的重要性,并探讨了工艺参数变更对产品性能的影响,同时结合案例介绍了可比性研究是评估不同批次或不同工艺条件下生产的ADC药物是否具有相似性和等效性的重要手段,为与会者带来了一场精彩纷呈的专业分享。 图3.映恩生物制药(苏州)有限公司ADC总监张禹博士分享“ADC工艺开发与关键质量属性考量”报告。 上海中科新生命生物科技有限公司研发总监唐家澍博士针对ADC药物的临床前研究进行了深入分享。唐博聚焦ADC药物的临床前DMPK研究,首先详细解读了ADC药物在生物体内的代谢路径和动力学特性;进一步从细胞、组织到动物体内,多层面地分析了Payload的体外释放和代谢过程;最后结合具体案例,重点介绍了基于质谱的ADC药物的临床前生物分析策略,为行业同仁提供了宝贵的专业见解。 图4.上海中科新生命生物科技有限公司研发总监唐家澍博士分享“ADC药物研发中的生物分析策略”报告。 沃特世ADC分析解决方案分享 沃特世始终与全球生物制药行业保持着密切互动,为生物制药行业提供全方位的技术支持和解决方案。在本次ADC药物分析技术交流会上,沃特世也充分展示了自己在ADC分析领域的深厚经验与实践成果。 沃特世大中华区消耗品部市场经理胡学桥博士深入解析了不同液相分析方法的分离原理,涵盖了孔径、键合相和柱管处理技术等多个方面,并针对ADC药物聚集体分析、DAR值鉴定和电荷异质体分析给出了专业的色谱柱推荐。特别是MaxPeak Premier系列色谱柱能够有效减少ADC药物与色谱柱键合相之间的吸附效应,从而提高分析的准确性和可靠性。此外,沃特世大中华区生物药应用经理聂爱英博士从药物抗体偶联比、聚集体分析、药物分布、游离毒素分析、偶联位点及电荷变异体等关键质量属性出发,详细阐述了ADC药物的分析挑战与解决方案。最后,沃特世-怀雅特市场开发经理罗宇文还为我们介绍了怀雅特的辉煌历史,并回顾了光散射原理,强调了SEC-MALS和FFF-MALS在抗体及偶联药物表征分析中的重要作用。 图5.沃特世大中华区消耗品部市场经理胡学桥博士作题为“MaxPeak Premier技术如何助力ADC分析平台的建立”报告。 图6.沃特世大中华区生物药应用经理聂爱英博士分享“沃特世ADC药物完整解决方案”报告。 图7.沃特世-怀雅特市场开发经理罗宇文作题为“抗体与XDC的分子量,尺寸,形貌与载荷分析与表征”的报告。 左右滑动查看更多 结束语 此次交流会的成功举办,不仅展示了ADC药物领域的最新研究成果和技术进展,更为与会者提供了对ADC药物关键质量属性、工艺开发及分析方法的深刻理解。我们衷心感谢每一位参与者的支持与贡献,并期待未来有更多这样的交流机会,共同促进ADC药物分析技术的创新与发展。
  • 杨正红:静态图像法粒度和形貌分析技术在药品质量控制中的应用
    药物生产中的关键工艺参数是影响药物和剂型理化性质和生物药剂学性质的重要因素。原料药粉末的大小和晶体形状影响其流动性和压实性能:粒径大且球形度好的颗粒通常比颗粒小但长宽比大的颗粒更容易流动;小颗粒溶解更迅速,并且比大颗粒的悬浮液粘度更高。因此,各国药典中都对相关药物所涉及的粒度问题及测量方法做出了规定。有关粒度测定的测定方法是随着科学的发展和计算机技术的飞速进步逐渐发展起来的,包括:筛分法、显微镜法、电阻法和光阻法、以及目前非常流行的激光衍射法(光散射法)等(1,2)。然而,随着计算机功能日益强大,数字化图像分辨和提取技术不断提高,可以同时具备上述各种方法能力,可以测量粒度分布、粒形分布,可以准确计数的图像法粒度粒形分析仪正在走向舞台中央(2)。一、中国药典中所涉及的药物粒度及测定方法中国药典2020年版四部在通则0982《粒度和粒度分布测定法》中规定了以下测定方法:1.第一法(显微镜法),用于测定药物制剂的粒子大小或限度。2.第二法(筛分法):用于测定药物制剂的粒子大小或限度,粒度下限在75μm左右的样品。3.第三法(光散射法):即激光衍射法。根据ISO13320-2009,该方法用于测定原料药或药物制剂的粒度分布,适用的粒度范围大约为0.1μm~3mm。在中国药典中涉及粒度的药物包括中药、丸药、颗粒剂、外敷软膏、滴眼液、抗生素等,如下表中国药典一部中国药典二部中国药典三部药品名所载页数粒度测定方法要求药品名所载页数粒度测定方法要求通则所载页数粒度测定方法要求人参茎叶总皂苷389第二法灰黄霉素351第一法0104颗粒剂第二法人参总皂苷391第二法曲安奈德注射液362第一法0105眼用制剂第一法心脑欣丸722第二法阿莫西林克拉维酸钾颗粒437第二法0109软膏剂、乳膏剂第一法冰黄K乐软膏865第一法蒙脱石1452第三法0114凝胶剂第一法妇乐颗粒896第二法蒙脱石分散片1454第二法0115散剂第二法京万红软膏1106第一法蒙脱石散1455第二法逍遥颗粒1358第二法醋酸甲羟孕酮混悬注射液1529第一法通心络胶囊1447第一法磷霉素钙颗粒1585第二法障翳散1672第一法注射用亚锡聚合白蛋白1599第一法---锝[99mTc]聚合白蛋白注射液1607第一法二、美国药典中所涉及的药物粒度及测定方法美国药典中涉及粒度分析内容是用于注射液和滴眼液的USP788/789通则,推荐的方法是光阻法和膜显微镜法,主要关注药液中粒度范围在10~24μm和25~50μm(可视范围)的颗粒计数和评价。这些颗粒存在的形式如下:i.不溶的可移动的固体/半固体;ii.单个实体或聚集体;iii.一种或几个物种;iv.化学反应产生的固体v.制剂变化产生的固体这些颗粒物产生的原因包括:i.外源性物质存在;ii.内源性物质存在:包括生产工艺的功能故障和包装来源;iii.制剂固有的颗粒,如生物制品中存在的颗粒。USP789基本等同于788,但主要针对滴眼液。USP788等同于欧洲药典EP5.5和日本药典JPXIV,XV。关注医疗风险的USP729是以USP788为模板的,适用于所有脂质(10%,20%,30%)。其限定的粒度范围是在0.5~5μm,因为这些颗粒可以机械阻塞微血管。但是,USP788所主张的粒度测定方法存在以下问题:1.光阻法的问题:只适用于球形颗粒;气泡和油滴不能分辨,也被计数。2.显微镜的问题:对粒子的判断和解释存在主观意识。另外,对于生物制剂中不可见粒子分析,特别是可以通过不同的机制聚集的蛋白质的应用,USP788面临着挑战。因为对于透明、非球形和高浓度的蛋白质聚集体,光阻法和显微镜法无能为力。对于口服制剂和原料药(API),USP429规定了激光衍射方法测定粒度的通则。该方法根据ISO标准13320-1(1999)和9276-1(1998)建立的,整个章节也已经和EP和JP的相应章节进行了协调。USP429指出,此技术并不能区分单个粒子的散射和一团基本粒子的散射,也就是不能区分结块和凝聚。绝大多数的样品都包含结块和凝聚,并且我们主要关注的是基本粒子的尺寸分布,所以在检测前这些结块通常需要分散成基本粒子。虽然ISO13320-2009修改了激光衍射法的应用限制,指出激光衍射法测量粒度只适用于球形颗粒,其测量的误差来源包括非球形、表面粗糙度和不正确的光学参数,USP429也已经指出,被测物质的光学性质和它的结构(如形状、表面粗糙度和多孔性)对于最终结果有影响。三、图像法粒度和形貌分析技术阿扎胞苷为无菌冻干粉针剂,是一种新型表观遗传学抗肿瘤药,是目前唯一被临床证明可延长高风险骨髓增生异常综合征患者总生存期的抗肿瘤药。根据美国药典USP章节 788 和 729 ,必须关注注射类产品中颗粒物对生物学性质的影响。美国药典附录中规定了注射剂分析的主要方法:1.可测量尺寸和颗粒计数2.数据统计非常重要,特别是尺寸小于1微米的颗粒和数目但是,药典中给出的消光法粒子计数器(光阻法)粒度和计数功能只能覆盖2~400微米,其消光效率无法解决低于2微米的问题。自USP788以来,药物产品已经发生了深刻变化:疫苗、新癌症治疗药物、纳米颗粒(克服不溶性)、控释微球、聚合物、结晶纳米颗粒、脂质体制剂等新的剂型不断涌现,同时对粒度检测也提出了新的要求。2010年12月8日至10日,美国药典委员会在马里兰州洛克维尔USP总部召开了USP有关粒度的专题研讨会,对USP788通则面临的挑战开始寻找和调查替代方法。来自美国StableSolutionsLLC公司的DavidF.Driscoll博士在研讨会上明确指出:要解决小于1微米颗粒的技术挑战,包括:■颗粒物理性质■颗粒筛分■颗粒计数■颗粒统计■颗粒轮廓在研讨会上,讨论和考察了一系列新的粒度分析仪器和技术,欧奇奥(Occhio)图像法粒度粒形分析仪也位列其中。而这些挑战对于先进的适用于医药行业的静态图像法粒度粒形分析仪已经迎刃而解。作为下一代粒度分析仪,Occhio粒度粒形分析仪可以进行:●颗粒大小及其分布l颗粒计数●颗粒形状及其分布●干法或湿法,动态或静态●适用于悬浮液、乳浊液、泡沫、颗粒、粉末、纤维●同时具有激光粒度仪、库尔特法或光阻法计数器和显微镜的功能1.粒度粒形分析仪的组成粒度粒形分析仪有硬件和软件两个部分。硬件部分由分散系统、进样系统和成像系统组成。其中成像系统是核心部件(见表2)。成像系统检测的是颗粒群中每个颗粒的尺寸,因此必须使用分散系统以保证颗粒之间没有团聚。根据被测物料的介质是气态还是液态,可分为干法分散系统和湿法分散系统:湿法分散系统是将颗粒分散在液体介质中,干法分散系统是将颗粒在空气中直接分散。与激光粒度分析仪的干法系统不同,图像法的干法分散样品是可以回收并重复测定的,因此具有极大的优越性。所以,应该提倡“干样干测,湿样湿测”,最大程度地保持样品的初始状态。干法测定可以极大简化样品准备过程,避免粉体样品在液体介质中团聚的可能。表2粒度粒形分析仪的成像系统组成及功能成像系统部件功能光源单色(脉冲)光可避免颗粒对光的衍射产生虚影,得到边界清晰的颗粒图形,优于白光扩束单元根据不同缩放倍率的镜头调节输出光束的直径测试区(样品池)颗粒与脉冲光的作用区光学系统不同的放大倍率和相应的测试范围相适应;好的光学系统不存在像差工业相机是远高于普通摄像机成像和存储速率的图像拍摄装置进样装置:物料在进入成像系统或分散系统前,需要调节到一定的浓度,以得到最佳的分散/检测效果:●湿法:通过加入不同体积的颗粒量进行调节,由注射泵(可相对计数)、蠕动泵(可相对计数)或离心泵(动态湿法,只能绝对计数)将样品带入位于光路中的样品池(见图1左)。●干法(动态):由振动进样单元控制,调节单位时间的进样量,然后进行自由下落式分散或气流分散。气流分散包括喷射式分散和横向分散,其中横向分散对样品扰动最小,并能使样品处于势能最低的位置,准确采样(见图1右)。●干法(静态):将分散在载玻片上的颗粒样品通过机械传动装置,直接置于成像系统的测试区。图1湿法和动态干法粒度粒形分析仪示例左图:OcchioFC200湿法粒度粒形分析仪原理图,包括光源、变倍率远心镜头、高分辨相机、样品池和内置注射泵,检测下限低于200nm。可外置湿法分散模块;右图:OcchioZephyrLDA动态干法粒度粒形分析仪原理图,包括振动进样单元、横向气流分散装置、样品池自动吹扫系统、成像系统和真空样品回收系统。静态法图像分析仪器对样品扰动少,安全性高,还可以对颗粒进行计数,统计量达上万个,既可以替代扫描电镜,也可以替代激光粒度仪,测量、描述和验证方法的执行标准包括GB/T21649.1-2008和ISO13322-1。应用3D软件和反射光分析技术,还可以对混合物样品进行颜色分析,估算各种单质的比例。一次实验可以得到多个结果,数据量极为丰富,是药品研发和质控表征技术升级改造必备的分析手段。专用的图像法粒度和形貌分析仪还可用于蛋白质聚集体或结晶反应过程的跟踪分析。图2下限低于200nm的Occhio500nanoXY静态干湿法粒度粒形分析仪及其各部分功能说明(点击了解仪器更多详情)2.原料药(API)或晶型药物的分散分散器是粒度分析仪器的主要组成部分。良好分散的要求是:●颗粒必须被分开;●在分散过程中,样品的尺寸和形状不应该被改变。●较小的颗粒和较大颗粒必须以相同方式分离。●分散过程可以重复几次,并在同一样品上再现相同的结果。通常,药物制剂中最重要的产品是API,一般通过粉末的晶体形态对其进行表征,其尺寸分布从亚微米到几百微米不等。部分API可能由精细,脆弱的针状晶体组成,这些颗粒通常与小纤维相似。图3比较了三种分散样品的方法,数据表明:只有方法C提供了正确的粒度粒形值。图3.不同分散方法的比较A手动分散:有颗粒团聚体存在且分布不均匀;B脉冲空气分散:可以看到,由于进气压力的存在,导致晶体颗粒被破坏;COcchio可控的真空分散:这种分散是均匀的,且脆弱的晶体颗粒没有被破坏;可控的真空分散方法(2)分散API颗粒(图2),不仅样品用量少,而且保证分散过程中样品的完整性,并可进行重复分析。与空气喷射式干法相比,不仅可以保证晶型不被气流破坏,而且可以减少与环境大气相关的污染,继而用统计软件来详细描述颗粒结构,并提供可对比的尺寸形貌研究。图4对比了两种不同分散方式得到的样品粒度结果。由图4可见,曲线之间存在着非常重要的差异。在小于10μm(点2)的区域,可以看到存在大量的细粉。这些颗粒是因为分散期间的晶体断裂产生的(空气分散,图3B)。蓝色曲线中粗颗粒更多(点1),这些不是真正的晶体,而是由于颗粒的非均匀分布而引起的团聚。粒径(μm)P10P25P50P75P90空气分散(蓝线)11.652520.752132.884856.139378.3827Occhio真空分散(红线)11.045917.491426.085434.679544.3478图4同一样品不同分散方法得到的累计粒度分布图(横坐标为筛分直径)事实上,图像法粒度及粒形分析已经进入USP1787。由于ISO13322-1把显微镜归于静态图像法,美国药典将图像法粒度分析仪看作“流动的显微镜”。目前,欧奇奥图像分析技术为技术不仅能提供ISO9276-6定义的粒度和粒形参数,还另外发展了五十多个粒度分布和形貌分布参数以及色彩分布参数。这些先进的图像分析技术已经应用到世界各大著名药厂,包括Sanofi(France,Germany)、Unilever(UK)、GSK、Novartis、Janssens、Fresenius、BoehringerIngelheim、Lilly、Therapeomic、Nycomed、Pfizer、Biomé rieux、Cytheris、Stryker、Ethypharm、EvenSante、Glatt等,并且在中国药企中也开始发挥作用。四、图像法粒度和形貌分析技术在药品质量控制中的应用1.药物一致性研究:一般认为造成仿制药物与原研药物、不同企业生产的同种药物、同一企业的不同生产批号药物临床疗效差异的原因大多数是来自于固体化学药物的晶习在状态的变化。同一种药物由于晶型不同,其不仅物理性质会有所不同,而且其生物活性也会有明显差异。有些药物的不同晶习,生物活性不仅差异显著,而且干扰了药物的临床应用。表3仿制药晶型表征推荐参数2.API颗粒的球形度研究和修饰:原料药粉末(API)的大小和形状影响其流动性和制剂时的压实性能。球形度好的大颗粒通常比较小的颗粒或长宽比大的颗粒更容易流动;更小的颗粒溶解更迅速,并导致比颗粒较大的悬浮液粘度更高。表4API颗粒球形度推荐参数3.不溶性微粒检测和蛋白质聚集体监控:药品包装材料对药物本身的污染和生物制品因不稳定产生的蛋白质聚集体是药品生产和安全贮存研究的重大课题。药物中的外源性颗粒包括纤维、昆虫部分、花粉和营养物质、纤维素、绒、矿物质、玻璃、塑料、橡胶、金属和油漆、上皮细胞、衣物碎片和毛发;内源性颗粒包括硅油。虽然硅油是大部分产品的必需添加剂,但它会产生人造颗粒或不想要的颗粒,或由于未控制或过量使用而影响治疗成分的稳定性。图5Occhio图像粒度分析仪检测不溶性大颗粒(左侧二维图可区分不同的颗粒形状分布)生物制剂中的蛋白质聚集是我们不想看到的,但又无法避免,因此需要监控其聚集的程度;检测范围增加2-5μm和5-10μm的量,也是为了很好的监控其聚集程度。乳液也存在类似情况,因此,要对2μm以上的大乳粒进行分析和监控。上述颗粒的种类无法通过传统的计数方法加以区分,而通过粒度粒形分析均可以分别计数和统计,还可以排除气泡的影响,这在传统方法的检测结果中是无法避免的。图5是不溶性大颗粒的应用举例。光阻法测试大颗粒只能给出粒径和数量,但很多纤维状或片状颗粒误认为小颗粒或者超大颗粒,造成假性结果,而对透明颗粒(如微塑料),只有高端的图像法粒度仪可以区分识别(图6)。图6OcchioIPAC2图像粒度分析仪检测透明大颗粒(图左)和发现纤维及团聚体(图右)4.破壁中药粉体的破壁效能及破壁成分固体药物制剂中,药物的颗粒大小影响药物从剂型中溶出及释放的速率,进而影响药物的疗效与生物及利用度。对难溶性固体药物而言,其粉末愈细,粒径愈小,比表面积愈大,溶解速度愈快,药物吸收速度也愈快,吸收量愈多,药效就愈好。因此减少制剂中固体颗粒的大小,有利于药物的溶出,也有利于难溶药被人体吸收,进而提高药物的疗效及生物利用度。但过细的粉末易因粉体团聚而导致流动性较差,影响药物制作过程。超细药物粉体在应用过程中因其溶解速度快,人体吸收快,易使人体中毒,因此需要更加精准的配方设计及临床测试。采用不同的粉碎技术对天然药物或者合成药物进行粉碎所获得的药物粉体,具有不一样颗粒大小,形状,表面能,比表面积等,对医药粉体后续的制剂的工艺性能及产品质量影响甚大。中药破壁饮片是将符合《中国药典》要求并具有细胞结构的中药饮片,经现代破壁粉碎技术加工至D90<45μm粉体,加水或不同浓度的乙醇粘合成型,制成30~100目的原饮片全成分的均匀干燥颗粒状饮片。我们对丹参破壁饮片用500nanoXY静态粒度粒形分析仪(图2)进行了分析研究,发现小于1微米的颗粒数量占30%,最小粒径可接近0.2微米,说明破碎后有大量细胞器释放出来。通过3D粒形分析,利用Occhio颗粒形貌3D复合标度分析——“腋瓣(Calypter)”技术,并与相应的电镜照片比对,提示我们破壁中药微粉中释放出的各种细胞器(见图7),从而为进一步提高药效和生物利用度指明方向。另外,表面处理技术对药物的生物利用度及疗效也存在极大影响。医学研究表明,人体接受药物之后,因药物存在的表面状态不同而产生不完全一致的效应,进而对生物利用度及疗效有着显著的影响。利用粉体表面改性技术修饰医药粉体表面,可以获得具有合适生物利用度及疗效的医药产品。如:利用表面包覆或为胶囊化控制药物的释放速率,进而改变或者控制药物的生物利用度及疗效。图7用Occhio颗粒形貌3D复合标度分析技术鉴定丹参破壁粉体中的氩细胞器(下)并与电镜照片对比(上)五、总结创新性的粒度粒形分析仪器,适用于药物发现、化学和制剂开发以及药物生产领域的质量控制。静态图像法粒度分析技术也符合ISO13022和2020版中国药典0982规则,可针对一系列针剂、胶囊剂和口服制剂进行了药品质量分析表征的研究,并帮助使用者开发稳健的配方,由此获得具有生物利用度的稳定药品。适当的分散方式是确保API稳定性以及正确的粒度粒形结果的基础。采取可控的真空分散程序,才能保证符合大多数药物法规中要求的测量稳定性和可重复性。随着生物药物市场关注度和资金投入的迅猛增长以及人们对具有特殊用途的新颖生物药物的需求不断增加,这一行业在确保提供起效快且安全可靠的治疗药物方面正面临越来越大的压力。着眼于单克隆抗体、重组蛋白、疫苗、寡核苷酸等生物分子的生物制药开发和生产过程漫长、十分复杂,同时面临非常特殊的分析挑战。不依靠显微镜的可变倍率显微成像扫描尖端技术可直接测量透明粒子大小和形态,并对蛋白质聚集体进行跟踪分析,保证粒度和粒形的最终结果统计可信度。为降低生物大分子制剂的风险,将计数器、显微镜和激光粒度分析表征方法融于一身,不仅可以及时提供准确的数据,而且精简了流程,消除了瓶颈,提高了效率。最新一代的颗粒分析技术必将推动新药的开发和药品质量控制的提升。参考文献:1.VincentChapeau,ChristianGodino.Methodanddevicefordispersingdrypowders.US20110120368A1,20112.杨正红,欧阳亚非.静态图像粒度分析中真空分散器原理和分散效果解析.现代科学仪器.2019,1:65-68.3.Wadel,H.(1932),Volume,shape,androundnessofrockparticles,JournalofGeology,vol.40,pp.443-451.4.Krumbein,W.C.(1941),Measurementandgeologicalsignificanceofshapeandroundnessofsedimentaryparticles,JournalofSedimentaryPetrology,vol.11,No.2,pp.64-72.5.Krumbein,W.C.andSloss,L.L.(1963),StratigraphyandSedimentation,SecondEdition,W.H.FreemanandCompany,SanFrancisco,p.660.6.Powers,M.C.(1953),Anewroundnessscaleforsedimentaryparticles,JournalofSedimentaryPetrology,vol.23,No.2,pp.117-119.7.Barrett,P.J.(1980),Theshapeofrockparticles,acriticalreview,Sedimentology,vol.27,pp.291-303.8.ISO9276-6:2008粒度分析结果的表述第6部分:颗粒形状和形态的描述和定量表征9.TudorArvinte,EmiliePoirier,CarolinePalais.PredictionofAggregationInVivobyStudiesofTherapeuticProteinsinHumanPlasma.Biobetterspp91-104.Springer,NewYork,NY,2015作者:杨正红仪思奇(北京)科技发展有限公司总经理(注:本文由杨正红老师供稿,不代表仪器信息网本网观点)
  • 高分文献年年有!盘点使用PR蛋白稳定性分析仪发布的国内外文献
    从应用方向上看,科研/生物医药领域的研究人员借助PR系列蛋白稳定性分析仪的多维度组合模块和功能,可实时同步评估蛋白热稳定性,胶体稳定性,聚集体与粒径等信息,为生物制品、结构生物学、蛋白表征以及Thermal Shift Assay(TSA)等研究提供强大助力,PR提供的组合方法及四种技术模块早已成为CNS必备的高分神器,也是您的理想之选! 👉 点击此处,查看详细文献列表👈 选择PR获取实验所需的多维度参数信息,您将看到其他技术所不能提供的稳定性数据。选择PR让您获得更可靠的、高分辨率的蛋白质稳定性数据,检测出不易被发现的稳定性行为,让您对检测结果充满信心!
  • 盘点2023下半年使用【PR系列蛋白稳定性分析仪】发表的国内外文献
    今年8月,我们盘点了近三年使用PR系列蛋白稳定性分析仪发表在CNS等国内外期刊的高分文献(点击查看往期高分文献)供大家查阅参考。时近年末,让我们再来看看又有哪些国内外研究团队在PR系列蛋白稳定性分析仪的助力下成功发表文献,这些新的文献或许可为您近期或之后的检测提供新的实验思路或技巧哦!应用方向 从应用方向上看,科研及生物医药领域的研究人员更常借助PR系列蛋白稳定性分析仪的多维度组合模块和功能,进行实时同步评估蛋白热稳定性,胶体稳定性,聚集体与粒径等信息。由此可见,PR提供的组合方法及四种技术模块早已成为CNS必备的高分神器,也是您的理想之选。点击图片,查看详细文献列表选择PR获取实验所需的多维度参数信息,您将看到其他技术所不能提供的稳定性数据。 选择PR让您获得更可靠的、高分辨率的蛋白质稳定性数据,检测出不易被发现的稳定性行为,让您对检测结果充满信心!
  • 岛津推出激光粒度分析仪应用数据集册
    颗粒的粒度粒形是决定物料性能的重要参数之一,食品、医药、化工和电池等众多行业对颗粒的粒度粒形都有严格要求。有效地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今最流行的粒度测量仪器之一。 近年来,各种原辅料颗粒的粒度粒形也逐渐成为生产工艺过程中关注的重要参数之一,颗粒的粒径会直接或间接影响成品的质量和性能。有效准确地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。目前国内外的使用激光粒度仪测试粒径分布的方法标准相对较少,当前的主要方法标准有: 岛津公司针对近年来激光粒度仪需求量日益增加的市场趋势,使用岛津不同型号激光粒度仪分别开展了粉体材料,医药研发和食品安全等相关领域的应用方法开发,并精心汇编了《岛津激光粒度分析仪应用数据集册》,应用报告题目如下: 1.岛津激光粒度仪系列产品介绍2.激光粒度仪在粉体材料中的应用 激光粒度测试中折射率的选择技巧SALD测定金属硅粉的粒径分布SALD测定磷酸铁锂的粒径分布SALD-2300测定二氧化钛粉末样品的粒径分布SALD-2300测定聚苯乙烯粉末树脂的粒径分布SALD-2300测定氧化铝浆料样品的粒径分布SALD-2300测定氧化锌固废粉末的粒径分布SALD-2300测定环氧树脂粉末的粒径分布激光粒度仪在涂料行业中的应用激光粒度仪在卫生陶瓷洁具行业的应用3.激光粒度仪在医药研发中的应用 干法激光粒度在制药行业的应用干法激光粒度仪在注射剂一致性评价中的应用SALD-2300测定原料药盐酸万古霉素样品的粒径分布SALD-2300测定药用辅料药吡哌酸样品的粒径分布Aggregates Sizer在疫苗聚集体评价系统中的应用4.激光粒度仪在食品安全中的应用 干法激光粒度在乳制品行业中的应用SALD-2300测定牛乳样品的粒径分布
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制