当前位置: 仪器信息网 > 行业主题 > >

聚醚多元醇

仪器信息网聚醚多元醇专题为您整合聚醚多元醇相关的最新文章,在聚醚多元醇专题,您不仅可以免费浏览聚醚多元醇的资讯, 同时您还可以浏览聚醚多元醇的相关资料、解决方案,参与社区聚醚多元醇话题讨论。

聚醚多元醇相关的资讯

  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 全自动乌氏粘度计在聚醚酮酮材料中的应用
    聚醚酮酮(PEKK)是一种是在主链结构中含有两个酮键和一个醚键的重复单元所构成的高聚物,是聚芳醚酮家族中除聚醚醚酮以外的另一重要成员。聚醚酮酮材料拥有出色的机械强度和耐热性,是航空航天工程中重要的材料之一。聚醚酮酮材料作为一种高新的结构性热塑性塑料,其优异的性能使得它被应用于高精尖的领域之中,也对聚醚酮酮材料品质的稳定性提出了更高的要求。在聚醚酮酮(PEKK)材料的实际生产中,通常会采用乌氏粘度法来作为产品质量控制的重要保证之一,乌氏粘度法测得的黏度不仅反应了产品性能的优劣,同时也是工艺参数调整时参照的一项重要指标。目前使用高精密全自动乌氏粘度仪以及相关辅助设备进行黏度测试在聚醚酮酮(PEKK)材料领域已经成为一种趋势。黏度测试环节更高效便捷,为研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。 ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥,告别了粘度管是耗材的时代。
  • 北京博赛德推出硬质聚氨酯泡沫和组合聚醚中ODS物质的现场快速定性解决方案
    标准法规 为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,生态环境部生态环境监测司、法规与标准司组织,中国环境监测站总站起草,制定了《硬质聚氨酯泡沫和组合聚醚中CFC-12、HCFC-22、CFC-11和HCFC-141b等消耗臭氧层物质ODS的定性检测 便携式顶空/气相色谱-质谱法》的标准,该标准规定使用便携式顶空/气相色谱-质谱法现场快速定性分析硬质聚氨酯泡沫和组合聚醚中的ODS物质。 解决方案推荐设备:便携式气质联用仪HAPSITE ER+顶空进样模块北京博赛德科技有限公司针对该标准推出了硬质聚氨酯泡沫和组合聚醚中ODS物质现场快速定性分析的解决方案,该方案采用的是目前市场上用户认可度zuigao的一款便携式气相色谱质谱联用仪——美国INFICON便携式气质联用仪HAPSITE ER,由于不同于环境监测的应用,所以HAPSITE特别配置了专用的ODS分析模块,结合顶空模块和定量环Loop捕集,实现现场ODS物质的定性和定量分析。方案优势:易于携带、准确定性、快速分析、适用性强。对于已经拥有HAPSITE新老型号的用户来说,也能很容易实现ODS应用的重新配置。原理介绍:使用便携式顶空/气相色谱-质谱仪现场快速分析,将放有样品的顶空瓶放置到顶空模块中,在一定的温度条件下,顶空瓶内样品中的目标化合物向液(固)上空间挥发,产生蒸汽压,在气液(气固)两相达到热力学动态平衡,气相中的目标化合物经过高纯载气吹扫并吸附于便携式气相色谱-质谱仪的内置定量环中,再将定量环内的目标化合物以高纯载气反吹进入气相色谱分离后,用质谱仪进行检测,通过与标准物质保留时间和质谱图相比较进行定性。1-CFC-12,2-HCFC-22,3-CFC-11,4-HCFC-141b北京博赛德对该方案进行了全面测试,包括色谱柱的选择,色谱条件的优化,去除剂基质的干扰,顶空条件的选择(平衡温度和平衡时间的确认)和检出限确认等,并获得了环境监测总站等用户的认可。ODS应用模块+定量环方法特点:需要的配件设备少,操作简单快速分析,便携性强质谱定性,定性准确度高定量环进样,耐受高浓度样品能力强行业应用:包装材料 后记科普 ODS是什么工业生产和使用的氯氟碳化合物(用作制冷剂、压缩喷雾喷射剂、发泡剂)、哈龙(用于灭火药剂)等物质,当它们被释放到大气上升到平流层后,受到紫外线的照射后很快地与臭氧进行连锁反应,使臭氧层被破坏。这些破坏大气臭氧层的物质被称为“消耗臭氧层物质”,英文名称为 Ozone-Depleting Substances,简称 ODS。 ODS危害以及管理显而易见,ODS是破坏地球臭氧层的元凶。联合国为了避免ODS对地球臭氧层继续造成恶化及损害,承续1985年保护臭氧层维也纳公约的大原则,于1987年9月16日邀请所属26个会员国在加拿大蒙特利尔所签署的环境保护公约《蒙特利尔议定书》。我国也响应国际环保共识,自2010年6月1日起实施《中华人民共和国消耗臭氧层物质管理条例》,条例表明了国家拟逐步减少并BCT终停止使用消耗臭氧层物质。且于2018年8月3日生态环境部近期部署开展全国消耗臭氧层物质执法专项行动,目的是查找非法生产消耗臭氧层物质的企业。关注北京博赛德更多精彩
  • AMC 聚醚砜过滤膜促销
    货号: SCAZ-AC020DF1产品描述:American Membrane Corporation聚醚砜过滤膜规格: 293mm,0.45um,25片/盒原价:1889.00元优惠价:1322.00元,促销时间:2012-3-26至2012-12-31。上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 聚醚醚酮(PEEK)树脂材料的中压恒流泵研制成功
    我公司成功研制泵头、流路材料是聚醚醚酮(PEEK)树脂材料的中压恒流泵。TBP-k 系列恒流泵(PEEK泵、柱塞泵、耐腐蚀泵、中压泵、输液泵)采用聚醚醚酮(PEEK)树脂这种性能优异的特种工程塑料,PEEK不溶于浓硫酸外的几乎所有溶剂。TBP-k 系列恒流泵可以广泛用于化工、石化、煤炭、染料、精细化工、科研、环保、农药、制药、食品等行业,满足以上行业恒压恒流精确输送酸碱腐蚀性液体。 主要特点 &bull 耐酸碱溶剂腐蚀:采用PEEK特种工程塑料、红宝石、氧化锆陶瓷 &bull 压力脉动小:双柱塞结构,宝石球寿命长; &bull 流量精确:进口宝石柱塞和宝石,误差小; &bull 内建过压保护和流量校正系统 ; &bull 电脑控制:通过 RS232 接口与电脑通讯 &bull 大屏幕液晶显示; &bull 排气装置:有效除去输送液体中的气泡。
  • 赛默飞推出全新0.1微米 PES(聚醚砜)滤器
    强劲对抗支原体污染,超高过滤流速、通量的全新细胞培养基过滤器中国上海,2013年1月7日 &mdash &mdash 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)今日推出全新的支原体污染过滤装置&mdash &mdash 赛默飞 Nalgene 0.1 微米 PES(聚醚砜)1升滤器。此款全新的过滤装置将为学术研究领域、生物制药和细胞培养实验室的客户提供先进、优质、高效的过滤解决方案,成为对抗支原体污染的最后一道防线。此外,赛默飞还可为客户提供多款0.1 微米 PES(聚醚砜)滤器来对抗支原体污染。赛默飞 Nalgene 0.1 微米 PES(聚醚砜)1升滤器直径为90毫米,并配有Rapid-Flow&trade 专利膜支撑板, 因此可以显著滤除培养基和缓冲液中的微生物,尤其是能破坏细胞培养的支原体,进而保护培养物免受污染侵害。传统的降低污染手段通常采用无菌技术和日常测试工作,然而赛默飞新型滤器能把支原体污染指数降至最低,为培养物提供一道强劲的保护屏障。除此之外,Nalgene 0.1 微米 PES(聚醚砜)1升滤器配有低蛋白质结合膜,最大程度防止培养基重要组份损失,该膜的低吸附还可有效保证溶液质量。此外,符合Nalgene质量标准的防漏滤瓶瓶能维持过滤介质的PH值,提升实验室测试效率和质量。值得一提的是,新型过滤器可提供多种规格供选择,除了常规的1L外,还包括150ml、250ml及500ml。灵活的规格选择可完美符合不同实验室的应用需求,合理降低成本,节省存储空间。更多信息请登陆www.thermoscientific.com/filtration 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安等地设立了分公司,目前已有2200名员工、5家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 乌氏粘度法在聚醚醚酮(PEEK)材料中的应用
    聚醚醚酮(PEEK)是指在主链结构中含有一个酮键和两个醚键的重复单元所构成的高聚物,属特种高分子材料。具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。可用作耐高温结构材料和电绝缘材料,也可与玻璃纤维或碳纤维复合制备增强材料,被广泛用于航空航天、医疗器械和工业等领域。 在PEEK材料的实际生产中,通常会采用乌氏粘度法来作为产品质量控制的重要保证之一,乌氏粘度法测得的黏度不仅反应了产品性能的优劣,同时也是工艺参数调整时参照的一项重要指标。伴随着行业领域对于PEEK材料性能的高水准、高要求,目前使用高精密全自动乌氏粘度仪以及相关辅助设备进行黏度测试已经成为一种趋势。黏度测试环节更高效便捷,为研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 自动乌氏粘度计-外推法测定聚醚醚酮(PEEK)的特性粘度
    聚醚醚酮(PEEK)是在主链结构中含有一个酮键和两个醚键的重复单元所构成的高聚物,属特种高分子材料。具有耐高温、耐化学药品腐蚀等物理化学性能,是一类半结晶高分子材料,可用作耐高温结构材料和电绝缘材料,可与玻璃纤维或碳纤维复合制备增强材料。一般采用与芳香族二元酚缩合而得的一类聚芳醚类高聚物。这种材料在航空航天领域、医疗器械领域(作为人工骨修复骨缺损)和工业领域有大量的应用。聚醚醚酮(PEEK)塑胶原料是芳香族结晶型热塑性高分子材料,具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。耐高温性:具有较高的玻璃化转变温度(Tg=143℃)和熔点(Tm=343℃),其负载热变形温度高达316℃,瞬时使用温度可达300℃。机械特性:具有刚性和柔性,特别是对交变应力下的抗疲劳性非常突出,可与合金材料相媲美。自润滑性:具有优良的滑动特性,适合于严格要求低摩擦系数和耐磨耗用途的场合,特别是用碳纤维、石墨各占一定比例混合改性的PEEK自润滑性能更佳。耐腐蚀性:除浓硫酸外,PEEK不溶于任何溶剂和强酸、强碱,而且耐水解,具有很高的化学稳定性。阻燃性:具有自熄性,即使不加任何阻燃剂,可达到UL标准的94V-0级。易加工性:具有高温流动性好,而热分解温度又很高的特点,可采用多种加工方式:注射成型、挤出成型、模压成型及熔融纺丝等。耐剥离性:耐剥离性很好,因此可制成包覆很薄的电线或电磁线,并可在苛刻条件下使用。耐疲劳性:在所有树脂中具有最好的耐疲劳性。耐辐照性:耐高辐照的能力很强,超过了通用树脂中耐辐照性最好的聚苯乙烯。可以作成γ辐照剂量达1100Mrad时仍能保持良好的绝缘能力的高性能 。耐水解性:PEEK及其复合材料不受水和高压水蒸气的化学影响,用这种材料作成的制品在高温高压水中连续使用仍可保持优异特性。发烟性:在塑料中PEEK具有最低发烟性。毒气逸散性:PEEK与很多有机材料相同,在高温分解时,PEEK主要产生二氧化碳和一氧化碳,使用英国航行器测试标准BSS 7239可以检测到极低浓度的毒气逸散,这种检测过程需要在1立方米的空间内完全燃烧100克样品,然后分析其中所产生的毒气,毒性指数定义为在正常情况下产生的毒气浓度综合与30分钟可以使人致命的剂量之比,PEEK450G的指数为0.22,且没有检测到酸性气体。绝缘稳定性:具有良好的电绝缘性能,并保持到很高的温度范围。其介电损耗在高频情况下也很小。:稳定性:具有优越的尺寸稳定特性,这对某些应用来说有的很重要。温度、湿度等环境条件的变化对PEEK零件的尺寸影响不大,可以满足对尺寸精度要求比较高工况下的使用要求。PEEK塑胶原料注塑成型收缩率小,这对控制PEEK注塑零件的尺寸公差范围非常有好处,使PEEK零件的尺寸精度比通用塑料高很多。热膨胀系数小,随着温度的变化(可由环境温度的变化或运转过程中摩擦生热引起),PEEK零件的尺寸变化很小。尺寸稳定性好,塑料的尺寸稳定性是指工程塑料制品在使用或存放过程中尺寸稳定的性能,这种尺寸的变化主要是因为聚合物分子的活化能提高后,使链段有某种程度的卷曲导致的。PEEK耐热水解特性突出,在高温高湿环境下吸水性很低,不会出现类似尼龙等通用塑料因吸水而使尺寸发生明显变化的情况。众所周知,在复合材料成型工艺中,大家都会尽可能的寻求合适的基体粘度,使其对增强材料有良好的浸润性。那么特性粘度也是表征材料内部结构,分子的链结构、分子量及其分布等。 实验所需仪器:卓祥全自动粘度仪(溶剂测试、PEEK样品测试、粘度管清洗及干燥、样品各浓度在线稀释及混匀) 万分之一电子天平(PEEK样品的称重) 自动配液器(96%硫酸的精确移取,以及外推各浓度点稀释) 多位溶样器(PEEK样品溶解)实验所需试剂:96%浓硫酸粘度管规格:稀释型粘度管实验流程:1. 打开卓祥自动粘度仪①开启仪器控温部分、测量部分、清洗部分及在线稀释部分的电源,再打开PC电源后,双击点开卓祥粘度专用软件。②设置测试实验所需温度,待温度稳定后用标准温度计对温度进行校准后待用。2. 样品前处理①开启万分之一天平,用标准砝码对其校准或内校。②取干净的样品瓶,准确秤取PEEK样品质量0.**g左右,精确至0.0001g。③通过卓祥自动配液器ZPQ-50自动将样品配置至所需浓度值。④将配置好的样品瓶直接放置到卓祥MSB-15溶样器上溶解完全后待测。3. 样品测试①溶剂测试:加入**ml左右96%硫酸于稀释型粘度管中,启动卓祥粘度软件中的“溶剂粘度”至结束。②清洗粘度管:启动卓祥粘度软件中的“清洗”“干燥”等程序自动对粘度管进行清洗干燥后待测。③PEEK样品测试:精准移取**ml溶解好待用的PEEK样品溶液后,设置后续各浓度点参数、启动卓祥粘度软件至结束。④清洗粘度管:启动卓祥粘度软件中的“清洗”“干燥”程序自动对粘度管进行清洗干燥等任务。4. 测试结果:打开软件中的外推分析,选取各浓度点,自动推导出详细结果报表及谱图,得出的结果可在计算机上直接显示,并有数据储存。也可对其进行多样化粘度分析及打印等多种功能。
  • 亨斯迈聚氨酯(中国)有限公司完成UL94燃烧测试仪安装调试工作
    莫帝斯技术(中国)有限公司,日前已经完成亨斯迈聚氨酯(中国)有限公司,UL94水平垂直燃烧仪的安装调试工作,目前客户已经投入使用该测试仪器,并进行内部测试服务工作。 Firemaster UL94 水平垂直燃烧仪,设计为对设备和器具部件材料的可燃性能试验,众多应用于最终用途的测试指标如易燃性能、燃烧速率、火焰蔓延、燃烧强度及产品的阻燃性能均可被检测。 其可检测的标准为以下: 水平燃烧测试:UL HB、IEC 60695-11-10、IEC 60707、ISO 1210、GB/T 2408 50W 垂直燃烧测试:UL94 V0、V1、V2、IEC 60695-11-10、ISO 1210、GB/T 2408 500W垂直燃烧测试:UL94 5VA、5VB、IEC 60695-11-20、ISO 9770、GB/T 5169.17 薄膜材料垂直燃烧测试:VTM-0、VTM-1、VTM-2、ISO 9773 泡沫材料水平燃烧测试:HF-1、HF-2、HBF、ISO 9772、GB/T 8332 亨斯迈聚氨酯(中国)有限公司介绍:亨斯迈聚氨酯(中国)有限公司是亨斯迈聚氨酯公司在中国的子公司。亨斯迈聚氨酯是世界上最大的二苯基甲烷二异氰酸酯(MDI)的制造商之一。公司同时生产软质和硬质聚醚多元醇、聚酯多元醇、聚醚胺、环氧丙烷和组合聚醚多元醇系统和聚脲系统。 亨斯迈聚氨酯有限公司是亨斯迈集团的业务之一。 亨斯迈聚氨酯进入大中华已经有十多年的历史,是中国化学工业的外国投资方之一。目前,亨斯迈聚氨酯在上海拥有独资的组合聚醚多元醇混拌工厂及合资的MDI制造工厂和集仓储与分发为一体的贸易公司。为了更好地满足中国市场的需求,公司在香港,上海,北京,广州,青岛还设立了办事处。 公司网站地址:www.huntsman.com/pu www.motis-tech.com
  • 澳柯玛超低温冷冻柜为什么这么强?——超微孔发泡技术!
    通常情况下,发泡工艺是将聚醚型多元醇、泡沫稳定剂、催化剂、发泡剂等材料充入白料预混站后再与黑料进行混合反应发泡,终形成保温性能良好的聚氨酯泡沫的过程。其中,发泡剂在反应过程中会产生气体,形成均匀的小气泡。目前,比较典型的发泡剂材料为氢氯氟烃(HCFC)、氢氯烃(HFC)、烃类(HC)等。但是,这些发泡剂都存在不足之处, HCFC物质具有一定的臭氧损耗潜势( ODP), HFC具有很高的全球变暖潜势(GWP),环戊烷所制成的发泡材料其导热系数较高。传统的发泡工艺是将聚醚多元醇与发泡剂在预混站里提前预混好储存在白料预混罐里,然后输送到发泡平台,通过注料枪头将白料与黑料进行混合反应发泡。而微孔发泡技术在原有发泡工艺的基础上进行改进,在发泡剂进入预混站前,将氮气或者二氧化碳通过充气装置混入发泡剂里,与发泡剂一同输送到预混站与白料进行预混,然后,再将白料/黑料在发泡平台中混合进行发泡,该方法可将聚醚多元醇提前进行乳化,这样在与黑料进行混合反应时,产生的起泡会更加均匀,泡孔会更加细密。改进后的发泡工艺路线, 如下图所示。微孔发泡技术发泡料的流动性较好,密度分布均匀。该技术较现有发泡体系降低3%的灌注量,同时保障整机的平均芯密度不低于原有体系,且收缩率及抗压强度指标都优于现有发泡体系,降低生产成本的同时,提高产品的质量。应用实例:澳柯玛(AUCMA)-40度低温冷柜(DW-40L525) 茂默科学以客户为本、合作共赢的理念,致力于帮忙客户提供整体实验方案。力求解决行业内客户对科学仪器选型难、维护难的处境。通过不断优化公司运作和提升服务质量,目前已赢得业内人士和广大客户广泛认可,拥有广泛而稳固的合作伙伴和客户群体。欲了解更多、更详细的关于低温冷柜的内容,Welcome to consult~
  • 食品药监局就化妆品用乙醇等9种原料征求意见
    关于征求有关化妆品用乙醇等9种原料要求意见的函  食药监许函[2011]21号有关单位:  为规范化妆品原料技术要求,我司组织编制了化妆品用乙醇等9种原料要求(征求意见稿)。现向社会公开征求意见,请将修改意见于2011年2月10日前反馈我司。  联 系 人:陈志蓉  电子邮件:chenzr@sfda.gov.cn  传  真:010-88373268  附件:  1.《化妆品用乙醇原料要求》(征求意见稿)和编制说明  2.《化妆品用滑石粉原料要求》(征求意见稿)和编制说明  3.《化妆品用甘油原料要求》(征求意见稿)和编制说明  4.《化妆品用DMDM乙内酰脲原料要求》(征求意见稿)和编制说明  5.《化妆品用月桂醇聚醚硫酸酯钠原料要求》(征求意见稿)和编制说明  6.《化妆品用合成熊果苷原料要求》(征求意见稿)和编制说明  7.《化妆品用聚丙烯酰胺原料要求》(征求意见稿)和编制说明  8.《化妆品用乙醇胺原料要求》(征求意见稿)和编制说明  9.《化妆品用椰油酰胺丙基甜菜碱原料要求》(征求意见稿)和编制说明  10.反馈意见表  国家食品药品监督管理局食品许可司  二〇一一年一月二十日
  • 塑胶跑道有毒有害物质检测
    近期,学校接连出现的“有毒塑胶跑道事件”让家长们忧心忡忡。塑胶跑道原本是国际上公认的最佳全天候室外运动场地坪,怎么会成为孩子们的健康杀手呢?   今天我们就来揭开这“有毒跑道”的庐山真面目。  塑胶跑道可能包含哪些有毒物质?  目前,国内的塑胶跑道一般为聚氨酯材料,再辅以颜料、助剂等。质量合格的聚氨酯,一般不会挥发有害物质。  聚氨酯是用“聚醚多元醇”和“二异氰酸酯”这两种单体聚合起来的链状分子。就像铁链由小铁环连接而成,聚氨酯就相当于长铁链,这两种单体相当于一个一个独立的铁环。如果这两种单体完全聚合,那么聚氨酯本身并没有危害。关键是劣质的聚氨酯内会残留较多这两种没有聚合完全的单体,而对人体有害的来源之一就是这两种单体。下面我们分别了解一下这两种单体对人体的危害。残留杂质之一:聚醚多元醇  实际上,“聚醚多元醇”本身并没有什么危害,但是在其生成过程中会有一些杂质混入,比如我们熟知的甲醛等醛类物质,这些物质的挥发和粘附,能够刺激我们的呼吸道和皮肤,产生种种不适的感觉。残留杂质之一:二异氰酸酯,本身有害“二异氰酸酯”可以说是剧毒类的物质了,它具有强烈的刺激性气味,对皮肤、眼睛和呼吸道有强烈刺激作用。 它的蒸气被吸入后,会引起支气管炎、支气管肺炎和肺水肿;与皮肤接触后,可引起皮炎,与眼睛接触可引起严重刺激作用,如果不加以治疗,可能导致永久性损伤。  特别是对二异氰酸酯过敏的人,在接触后,会出现气喘、呼吸困难和咳嗽等症状。严重的话可引发眼红肿和化学性灼伤,也能破坏鼻粘膜、上呼吸道粘膜,甚至有可能导致化学损伤。  研究表明,二异氰酸酯对人体的造血功能有伤害,部分二异氰酸酯从业人员的血小板会减少。  如何降低塑胶跑道的危害?  降低塑胶跑道的危害,要从两种主要的有毒物质下手。  第一,减少聚醚多元醇中的醛类等有毒杂质,这样最终制备的聚氨酯中的有毒物质也会减少。  第二,减少二异氰酸酯的危害。这一点可以从两方面入手。一方面,在制备聚氨酯时尽可能聚合完全,这样就尽可能地减少二异氰酸酯的残留。另一方面,在制备聚氨酯时,选用二苯基甲烷二异氰酸酯(MDI)。  这是因为,二异氰酸酯类化合物有很多种,制备聚氨酯的二异氰酸酯主要是两类,一类是甲苯二异氰酸酯(TDI),一类是二苯基甲烷二异氰酸酯(MDI)。  但TDI是二异氰酸酯类化合物中毒性最大的一种,挥发性大,而MDI比TDI更稳定,挥发得更少,而且在呼吸吸入和皮肤吸收方面毒性较低,危害更小,所以MDI更适合用作来制备聚氨酯的原料。  不过,MDI比TDI的制备难度大,价格也要贵一些,所以有些承包商为了节省成本,多用TDI来制备塑胶跑道,这就增加了塑胶跑道有毒的可能性。  另外,塑胶跑道除了聚氨酯这种主要成分,还有其他的辅加原料,比如甲苯、二甲苯溶剂,铅盐类重金属催干剂等;为了增加塑胶跑道弹性,还有可能添加有毒的塑化剂,这种塑化剂严重时可致男性绝育。如何检测塑胶跑道是否“有毒”? 近日,广东省建筑科学研究院针对目前塑料橡胶检测,执行方法标准是国家标准《合成材料跑道面层》GT/T14833-2011。 要求塑料橡胶样品颗粒小于1立方毫米,用有机HCL萃取溶解,测定重金属含量。 下面是我们GT200+冷冻套装+50毫升不锈钢研磨罐+25毫米不锈钢研磨球冷冻研磨2分钟,转速1800转/分,我们的实验人员对于处理这种样品的研磨,一直困扰的难题,GT200能够提供合乎要求的颗粒尺寸,均匀性很好,结果重复性和准确性强力保障。 GT200是针对现代实验室应用而设计生产的一款震动型球磨仪。它可对小量、大批次样品,如植物、动物组织细胞以及对小量样品进行快速干磨、湿磨或者冷冻研磨。 震动球磨仪GT200在仅仅1—3分钟内即可快速、高效地粉碎样本。粉碎是通过将预处理的样品放入研磨罐内,研磨罐或适配器在水平方向上进行圆弧式径向摆动,在高频摆动作用下,研磨罐内的小球高速撞击样品来完成的。需要低温处理样品需要把样品和研磨球预先放入罐内,锁紧罐,完全嵌入液氮内进行冷冻,3-5分钟后彻底无汽泡后,把罐放置仪器摇臂内紧固完全后,通过球与样品,罐壁之间的摩擦撞击作用可以有效导致样品的破碎。我们的特点:l 极短的研磨时间,10秒-3分钟l 高细度,最细可达5微米l 通用高效率的研磨、混合l 多种材质和规格的研磨罐及相关配件可供选择,可配玛瑙、氧化锆、碳化钨等材质l 实验参数可通过数字式预设,研磨结果具有高度相关客户有:上海市建筑科学研究院(集团)有限公司 广东省建筑科学研究院集团股份有限公司
  • 环氧树脂的羟值测定
    环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。5月份,我们带来了环氧树脂水分含量检测的应用方案,现在我们带着环氧树脂羟值测定的应用方案与您见面了! 一、背景介绍羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。目前胶黏剂中的环氧树脂、聚酯多元醇和聚醚多元醇及聚氨酯等对羟值有要求。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯胶黏剂生成时,羟值与酸值大小,是异氰酸酯加入改性的重要依据。故我们需要对羟值进行检测。依据标准:GB/T 12008.3-2009 塑料 聚醚多元醇 第3部分:羟值的测定。 二、羟值测定方法1、测试原理用过量酸酐与产品中羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。根据氢氧化钠的消耗量,可计算出产品的羟值。由于滴定终点颜色变化不易观察,因此通过电位来指示终点。 2、仪器及试剂:● ZDJ-5B型自动滴定仪● 231-01 pH玻璃电极+232-01参比电极● 咪唑、吡啶、邻苯二甲酸酐、0.5mol/L氢氧化钠标定滴定溶液 3、测试(1)样品前处理:● 向试料和空白锥形瓶中准确移取25ml邻苯二甲酸酐酰化试剂。摇动瓶子,至试料溶解,每个锥形瓶接上空气冷凝管,放在115+2℃油浴里30min。● 加热后,将装置从油浴中拿出并冷却至室温。用30ml吡啶冲洗冷凝管并取下冷凝管。将溶液定量转移到250ml烧杯中,用20mL吡啶冲洗锥形瓶。(2)空白测定:将空白样品置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。(3)样品测定:将试样置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。注意事项图1 样品测定曲线 (1)过量的水会破坏酯化试剂而干扰测定,试剂需要保持干燥,酰化试剂吸潮后需要重新配置。(2)酯化完成,冷却后,可以先加少量水,使过量的酸酐直接水解,在用氢氧化钠标准溶液进行滴定。(3)样品的取样量要进行估算,尽可能的使试料质量与理论计算值相近。 三、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 电化学合成,能否开辟出一条绿色清洁的石油化工产业链?
    石油炼化石油炼化可得到日常使用的煤油、汽油、柴油等燃料,抑或是烯烃、芳烃类的化工原料。乙烯是全球产量最大的化学品之一,占石化产品的75%以上,乙烯产量也是衡量一个国家石油化工发展水平的重要指标之一。乙烯衍生物乙烯的重要衍生物又会有哪些呢?环氧乙烷和环氧丙烷。环氧乙烷是广谱、高效的气体杀菌消毒剂,且是生产乙二醇及表面活性剂、乙胺醇溶剂和乙二醇醚溶剂等,被广泛应用于日化、医药、建筑和农药等领域。环氧丙烷下游的主要产品有聚醚多元醇,丙二醇甲醚及碳酸二甲酯、丙二醇醚等,聚醚多元醇是合成聚氨酯的核心原料[1]。电化学合成法加拿大多伦多大学Edward H. Sargent院士课题组采用电化学合成法,借助氧化还原介质氯离子,在常温常压下达成电极和乙烯之间的电子交换,将乙烯成功转化为环氧乙烷和环氧丙烷(图B)。相对于传统热合成环氧乙烷/环氧丙烷的严苛条件,如高温高压(200-300°C,1~3Mpa),Ag催化乙烯完成环氧乙烷的合成(图A),且生产1吨的环氧乙烷就会同时排放0.9吨的CO2, 文中采用绿色电化学方法实现了零碳排、更温和和更具选择性的环氧乙烷/环氧丙烷的合成,有望代替苛刻的热合成法,实现工业化,文章发表在Science上[2]。*图示来自Science原文,侵删一 起 探 索在整个石油化工产业链上,还有哪些中间产物抑或是塑料制品可以通过绿色低碳的电化学方法合成呢?!这值得我们一起来探索。无需自行搭建的反应体系:IKA 已为您备好了专业的电化学合成设备:恒流、恒压;直流、交流分隔反应管(可安置AEM,文中提及的阴离子交换膜)惰性气体保护/引入气体21种电极可选 循环伏安分析方法,探索机理,快速筛选最佳反应体系,如文中的氧化还原介质氯离子CV 图示分隔管丰富电极标准化设备,精准执行您的指令并完美重现,更是为了还您宝贵时间去做深入的知识探索。关于 IKAIKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场专家。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温混匀器、移液器、研磨机、旋转蒸发仪、真空泵、加热板、加热锅、恒温循环器、粘度计、量热仪、实验室反应釜、生物反应器,发酵罐等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与著名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。
  • 全国首例违法使用ODS涉刑案件宣判
    p  近日,全国首例因违法使用消耗臭氧层物质(ODS)构成污染环境罪并判处刑事处罚的案件在浙江省湖州市宣判。湖州市德清明禾保温材料有限公司(以下简称“明禾公司”)法定代表人祁某某因违法使用三氯一氟甲烷(CFC-11,俗称氟利昂)生产组合聚醚,被地方法院以污染环境罪判处有期徒刑10个月。/pp  2019年6-8月,生态环境部在全国范围内开展了ODS专项执法行动,并派出11个工作组对ODS重点省市开展专项检查。其中,浙江工作组在对明禾公司的突击检查中,发现企业台账的原料入库单上有异常,并在部分手写的生产配方便条上多次出现CFC-11记录,而该公司2017年通过的环评审批文件上明确其主要利用聚醚多元醇、一氟二氯乙烷(HCFC-141b)发泡剂等原料生产并销售组合聚醚。生态环境部执法局立即将明禾公司涉嫌违法采购CFC-11生产组合聚醚的线索转交地方,并多次指导、协调地方办理该案件。当地政府也高度重视,立即成立专案组并启动联合办案机制,公检法环等部门紧密配合全力侦办。在各方的通力合作下,办案人员克服重重困难,查清明禾公司近3年来违法采购并使用849.5吨CFC-11生产组合聚醚的犯罪事实,并先后赶赴江苏、河南、山东等地将上游CFC-11供应商韩某某等4人全部抓捕归案。/pp  目前,该案件由德清县人民法院宣判。明禾公司因违法使用CFC-11生产组合聚醚犯污染环境罪被判处罚金70万元,追缴违法所得140余万元,公司法定代表人祁某某犯污染环境罪被判处有期徒刑10个月,并处罚金5万元。该案也是迄今为止国内聚氨酯泡沫行业首起因违法使用ODS被判实刑的案件,充分体现了我国对涉ODS违法行为“零容忍”的坚决态度。/pp  中国政府一贯高度重视国际环境公约履约工作,并把严格执法作为巩固履约成果的重要保障。近年来,生态环境部持续开展了ODS专项执法行动,通过严厉打击违法行为,施加高压震慑,坚定维护了全球臭氧层保护成果。今后,生态环境部还将一如既往严厉打击违法生产、销售、使用ODS行为,持续强化监督管理,对涉ODS违法行为,发现一起、查处一起,绝不姑息。/p
  • 应用 | 乳化剂对氨基酸洁面膏性能的影响
    研究背景皂基类产品有非常强的清洁力,但对皮肤刺激性较强,市场上逐渐兴起氨基酸型清洁产品。常见的氨基酸表面活性剂有甘氨酸型、肌氨酸型、谷氨酸型以及丙氨酸型,而其中甘氨酸型表面活性剂因其易于冲洗,洗后干爽柔滑的使用感被广泛应用于洁面产品中。在实际产品开发中,往往会利用甘氨酸型表面活性剂在pH 6~7时部分酸化形成结晶的特性来制备洁面膏,但是这类产品在研制过程中容易出现发泡能力弱、制备料体稀薄、长时间放置后料体出水或外观粗糙等问题,目前主要通过调整配方中多元醇的种类及添加量,调节产品pH值或者添加高分子来解决,而乳化剂对结晶型氨基酸洁面膏性能影响的研究报道较少。本文主要通过动态泡沫分析仪等,研究了4种不同乳化剂对结晶型氨基酸洁面膏性能的影响,以期为洁面膏中乳化剂的选择提供实践基础以及理论支持,为开发兼具使用性及稳定性的洁面产品提供新的解决思路。实验仪器1.1样品制备表1.洁面膏基础配方1.2 泡沫性能测试DFA100动态泡沫分析仪 泡沫测试采用KRÜ SS的动态泡沫分析仪DFA100完成,包括泡沫高度分析以及泡沫结构分析。首先,用去离子水将洁面膏配成质量分数为10%的溶液,然后用注射器移取50 mL溶液至组装好的量筒配件中。将固定量筒的底座支架插入仪器中,进行泡沫测试。设置参数:发泡方法:搅拌器;搅拌速度:3000 r/min;搅拌3s停止3s(便于记录泡沫高度),循环15次;测试时间:15 min;照相机高度:55 mm;测试温度:25 ℃。结论与讨论2.1 乳化剂对泡沫性能的影响根据表1配方,考察不同类型乳化剂对结晶型氨基酸洁面膏的泡沫性能影响,其中1#配方为不添加乳化剂的空白组,泡沫高度结果如图1。 图1.不同乳化剂制备的洁面膏泡沫高度由图1可知,加入乳化剂,洁面膏泡沫量有不同程度的减少。空白组稳定后的泡沫高度为127.1 mm,其次是泡沫高度与其接近的2#,3#和5#配方,高度分别为126.6 mm,126.1 mm和126.7 mm;4#配方对泡沫总量减少较为明显,泡沫高度为119.4 mm。泡沫结构可以分析泡沫的细密程度以及泡沫的稳定性。图2为稳泡阶段的平均气泡面积随时间的变化曲线,图3为测试结束时的泡沫结构照片。由结果可知,除EumulginS21外,乳化剂的加入都能提高泡沫的细密程度以及稳定性,其中5#配方的泡沫最绵密,稳定性也最好,在测试时间内粒径变化最小,其次是3#与2#配方。定义每平方毫米内气泡个数衰减一半的时间为泡沫半衰期,则1#~4#配方的半衰期分别为615,626,637和553 s,而5#配方在测试周期内未观察到半衰期。这也说明用HostacerinDGSB,HostaphatKW340D 和PlantasensEmulsifier HP 30作为乳化剂能使结晶型氨基酸洁面膏的泡沫更加细密稳定,同时又不影响泡沫量。而EumulginS21使洁面膏的泡沫量减少,同时泡沫也更容易变大而破裂。乳化剂由于具有表面活性,在气泡中将被吸附在空气-水的界面,与表面活性剂共同稳定泡沫。结合泡沫的稳定性因素分析,乳化剂可能会增加气泡间液膜强度,减缓气体间的扩散导致泡沫增大,从而提高泡沫的稳定性。EumulginS21为聚醚类乳化剂,但配方中存在较高含量的多元醇和盐,这使得聚醚类乳化剂的浊点降低,从而改变乳化剂的亲水亲油平衡,在体系中的溶解度有限,在气-液界面形成棱镜铺展,取代表面活性剂,从而起到消泡的作用。其中Plantasens Emulsifier HP 30是一种液晶乳化剂,易于形成多层结构,这也可能是其泡沫稳定性最好的原因:多层液晶结构能赋予气泡间的液膜更高的粘度,可以防止或减慢排液的过程;而且液晶相的存在能增大气-液界面的曲率半径,从而减弱气泡间的Laplace压力;此外,液晶结构还能更大程度的增加液膜的力学强度和刚性,以抵御引起气泡破裂的热和机械扰动。 图2.不同乳化剂制备的洁面膏泡沫大小图3.不同乳化剂制备的洁面膏微观泡沫结构结论通过动态泡沫分析仪等研究了4种不同类型乳化剂对以椰油酰甘氨酸钠为主要表面活性剂的结晶型洁面膏的影响,包括泡沫高度和结构等,得出以下结论:磷酸酯类乳化剂HostaphatKW340D能提高洁面膏的泡沫稳定性;Eumulgin S21作为聚醚类乳化剂,在多元醇与盐含量较高的体系中浊点降低,使得其与体系的兼容性变差,从而导致泡沫量明显减少,泡沫的稳定性也最差;液晶型乳化剂PlantasensEmulsifier HP 30能显著提高泡沫的细密程度与稳定性,这可能是液晶乳化剂在体系中易于形成多层结构,从而使泡沫更加稳定。以上研究也为洁面膏中乳化剂的选择提供一定的实践结果与理论分析,因此在实际配方过程中,可挑选合适的乳化剂或乳化剂组合来达到改善洁面膏特定性能的目的。此文版权来自科莱恩化工(中国)有限公司,内容有所删减,全文请查看:张美龄,王晨茜,许明力,朱晨江.乳化剂对结晶型氨基酸洁面膏性能的影响[J]. 日用化学品科学, 2022,45(6): 43-47.
  • 仕必纯亮相“3rd Vaccine China 2013”
    &ldquo 3rd Vaccine China 2013&rdquo 于3月13-14日在上海锦江汤臣洲际大酒店举行,会议汇聚了来自中国、印度、韩国以及新加坡等多个国家和地区的疫苗研发、生产领域的专家和科研人员,就生物产业研发、生产、市场、监管等一系列的问题进行了深入的讨论。仕必纯作为本次展会赞助商,展示了公司新近推出的改性聚醚砜中空纤维膜过滤组件以及配套产品,向与会人员提供了诸多疫苗生产下游纯化工艺相关技术和解决方 案。同时,仕必纯中国区技术总监黄迎庆博士做了关于中空纤维膜过滤器在疫苗研发和生产方面应用情况的报告,并分享了仕必纯切向流过滤系列产品在诸多领域的 应用体验与成果。
  • Merck提供的Milli-Q超纯净水系统可适用于ppt级元素分析的实验室用超纯水
    简介随着分析仪器的新发展,痕量分析的检测限越来越低。联用技术被普遍应用到样品研究和元素检测中。现在,只要能提供特定的清洁条件和仔细的试验操作,用于样品分析和元素检测的连用技术能达到ng/L甚至pg/L级别。因此,用于空白分析,标准稀释和样品制备的设备和试剂也就要求高的纯净度。因此,用于空白分析,标准液和样品制备的仪器和试剂都要是高质量的。根据被研究的元素和分析实验室环境条件的不同,可能出现不同的仪器组合方式。FAAS/ETAAS, ICP-OES/ICP-MS是痕量级分析研究中主要应用的技术1,2。1 分析仪器1.1 ICP-MS选用于超痕量分析工具ICP-MS能进行快速的、未知样品的多元素定性分析3,4,并将多元素的定量分析降低到ppt(ng/L)级,甚至ppq(pg/L)级。它的应用包括研究重金属对健康影响的医学领域5,金属追踪的环境科学领域6,同位素放射残留和检测物种能力的原子核领域,以及对各种高纯化学试剂(包括高纯净水)进行超痕量分析的微电子工业领域7~9。实际的检测极限就取决于元素、矩阵、样品的制备和仪器条件。于是,发展一些精确的方法步骤和试验条件,进行某些特殊的元素鉴定10。 1.2 干扰和污染优质的试验要求减少污染。大多数试验优化都需遵循着空白优化(空白优化对于新的亚ppt浓度检测限是重要的),要求样品的精制、处理和分析技术。如当前的分析能力经常超过了收集未被污染物和有代表性的环境样品的能力11。如果考虑到由于仪器和试验可能造成污染和干扰的可能极限值,那么使用亚ppt浓度检测限的ICP-MS来进行痕量元素的精确测定还是可以做到的。 1.2.1 仪器干扰考虑到仪器本身,当杂离子与被分析离子有同样的m/z值时,出现的光谱干扰是ICP-MS 分析中的障碍12。主要的干扰可区分成两类:Ⅰ来自等离子气体,样品溶胶中的水,等离子体中的空气(例如40Ar16O和56Fe或40Ar35Cl和75AS)中的多原子背景干扰。Ⅱ由于元素同位素之间有相同m/z比产生的同重元素干扰(例如64Zn和64Ni)。 表 1 一些元素的离子和潜在干扰其它干扰则来自使用的仪器本身。首先由于ICP-MS的锥形分离器的表面修正产生的矩阵效应能导致信号漂移(气炬和质量摄谱器之间的干扰)。这就导致等离子体气炬中的离子化特征变化,这种变化将影响系统的敏感性。一些元素的记忆效应,例如Hg、I和B 就需要一种适当的清洗溶剂。1.2.2 污染指定元素的空白水平受处理样品的溶液纯度、容器洁净度和分析环境等因素的影响。在空白、标准和样品制备中被用到的众多试剂中重要的是超纯水。超纯水,例如由Milli-Q系统制备的超纯水,所造成的光谱干扰就低于高质量硝酸。尽管这种硝酸经过亚沸工艺处理,其中的痕量元素浓度仍然高于超纯水13。很明显18.2 MΩ.cm已经不是一个“质量证明”值。关于超痕量分析的研究显示,只有在超纯水中大部分元素的含量达到亚ppt级时空白优化才能成为可能。当超纯水被放置时,污染风险大大增加。研究结果清楚的显示高纯水的水质随储存时间的延长而退化14。 1.3 水纯化系统1.3.1 预处理系统先将水通过一个包含反渗透和连续电去电离子装置(EDI)的系统。EDI技术是生产去离子水的关键措施。在EDI模块处,直流电压被应用到含树脂的单元中。即使进水离子浓度变化,仍保持无波动的恒定产水质量。所产生的高电阻系数的水,对超纯的精炼树脂造成的负担较低。在EDI模块中的水解和离子迁移使树脂处于稳定操作状态,既不会使用枯竭也不需要再生。关于RO/EDI的更完整描述,在一个名为“Elix”的系统中有详细报道15。Elix系统中的水被存储在中间蓄水容器,以足够的进水速率供给超纯净水系统。为了寻找合适的建造材料,确定蓄水容器的设计以及在蓄水中限制水质的劣化,进行了大量的测试。测试的结果是, 选择确定了低溶出的聚乙烯用来作容器,而且要使用吹塑工艺来以确保圆锥形蓄水容器内表面的平滑和规则性,并且空气过滤器中应用了活性炭和碱石灰18。经过纯化的水再经过一个超纯净水精制系统处理。1.3.2 超纯净水精制系统Milli-Q Element 超纯净水系统(见图1), 在低可滤特性的聚丙烯构架中使用高质量的离子交换混合床树脂。用于空白优化和制备标准物的好的超纯净水是在水系统中加入UV 氧化技术得到的。185/254 nm波长的紫外灯被放置在精制部分的上游,用来确保有机物和金属络合有机物的分解。所释放的元素被离子交换树脂截留。首先步骤净化柱,包括一种能除去硼的树脂。为了监测从精制部分(Q-Grad B1)释放出来的离子,电阻率检测仪被放置在精制柱的上游,柱内包含混合床树脂(Quantum IX)。以0.1m的过滤器加以过滤,该过滤器包含一个为临界痕量应用而设计、用高分子量的聚乙烯制成的膜,膜装置带正电的特定结构去除痕量的胶体。可以将主机和使用点以3m的距离分隔开来,通过直接获取层流罩下的超纯净水,减少和限制污染的风险。纯水输送通过一个自动的脚踏开关电磁阀来保障。以下图1是Milli-Q Element的流程图: 图 1 Milli-Q Element 的流程图2 分析方法2.1 试验要求样品和(或)试验污染会影响痕量金属分析的准确性。大多数污染物都来自于与样品接触的一些东西,包括玻璃器皿,试验环境,空气和那些在样品制备中使用到的物质。甚至, 在洁净间使用的手套都能导致显著的金属污染17。为了除去在制备样品和标准物中使用的容器中带来的任何污染,要建立精确的洗涤方案。在整个制备样品过程和分析过程中,要使用高质量的塑料瓶,主要为聚乙烯(PE), 氟硅氧烷(PFA)和氟化乙烯基丙烯(FEP)塑料瓶。一些酸和超纯净水的洗涤步骤要在进行试验前完成,以避免从小瓶中进一步的滤除18。为避免来自不同小瓶或样品从容器壁吸附造成污染的影响,发展了原料的净化步骤19。科学家们在冰河学领域中工作的步骤,被沿袭下来了成为了一个标准20:“装样品的LDPE瓶和其他的塑料工具,在100级的环境下,用酸洗净。物品按以下步骤洗净:自来水粗洗以去除灰尘,三氯甲烷除去油脂,超纯净水洗去残渣。浸泡在一级酸浴中(硝酸和超纯净水的比例为1:3,50℃,保持2周),再用超纯净水洗涤掉残余之后,浸泡在2级酸浴中(硝酸和超纯净水的比例为1:1000,50℃,保持2周),再用超纯净水冲洗,浸泡在三级酸浴中(硝酸和超纯净水的比例为1:1000,50℃,2周)。将瓶子用超纯净水冲洗数次,装满稀释的超纯净硝酸稀溶液,并保存在用酸洗净过的双倍聚乙烯袋子中。” 2.2 样品制备为了避免从环境、使用的容器和试剂带入污染,应采用洁净间实验室或层流罩的措施减小外界的影响。当制备样品和标准样的时候,要避免溶液与外界环境接触。使用聚乙烯盖来保护样品瓶,防止在将样品装入分析器中时的颗粒污染(见图2)。 图 2 样品清洁流程标准品的制备需要将市售溶液进行多次稀释。由于稀释后的溶液在贮存过程中发生水质降级,只能达到ppm浓度级别。即便为了获得平行的污染效果(如果有的话),也应该让样品和标准同时配制。现代仪器设备的发展已经使得多元素同时分析成为可能,随之而来就需要多元素标准溶液。15种元素同时分析意味着需要15种溶液。这些操作让标准溶液承受了被污染的风险。标准溶液的纯度要很高,因为特定元素的标准溶液可能由于不当操作被其他元素污染。某些不当的混合可能产生化学反应,导致沉淀。混合标准溶液的出现减少这些危险。使用多元素标准溶液 SPEX(Cat.N XSTC-331),它包含28种元素,用来做出多种校正曲线。酸化稀释后的标准溶液,例如空白水样和样品水样,是使溶液中的元素稳定的处理手段。通常使用硝酸来进行酸化处理,实验室有多种级别的硝酸可供选择,有些更高等级的附带鉴定文件有助于污染控制。由于硝酸有氧化和溶解化学物的能力,它比标准溶液更容易受到污染。超纯级硝酸(Kanto Kagaku)被用来进行标准溶液和稀释酸化。取样瓶要无化学物析出。当样品被酸化存放时,同样浓度的硝酸进行浸出物试验。瓶壁的吸附现象也应该列入考虑。在这项研究中,样品瓶都经过连续超纯水清洗和硝酸浴。 2.3 ICP-MS条件多元素同时分析需要一个能够对应全部元素的通用设置。通常使用较低的等离子功率和盾焰以减少大量的干扰离子,如Ar,ArH和ArO。为了解每种元素的信号增益,先准备一条预试校准曲线,标准添加值20、40和60ppt(图3)。 浓度 ppt 图 3 ICP-MS 标准曲线校正曲线直到60ppt处依然保持着良好的线性。在这段范围内,在检测器上没有观察到信号饱和现象。每种元素有不同的灵敏度,取决于在等离子火焰中的离子化效率。此外较低的离子化功率会限制离子化容量。在有些情况下,信号损失能够通过对指定元素更长时间的信号累积来补偿。以下列出的结果是在冷等离子体条件下获得的,目的是为了获得难于测量的离子信息。 表 2 HP4500ICP-MS 条件3 结果和讨论3.1 初步研究 在超纯水上进行了没有针对任何特定元素进行优化的ICP-MS分析,读数被记录下来, 以对获得的空白有所认知。对被研究元素加入10ppt的标准以研究其定量限(见表1)。40Ca 测定产生的高读数显示了40Ar的影响,说明使用ICP-MS测定钙时要进行条件优化才能获得灵敏准确的结果。3.2 Milli-Q Element超纯水的元素分析使用Milli-Q Element系统(Elix系统提供进水供应)产生的超纯水进行多种元素试验(见表2)。检测限(DL)取3倍标准偏差(10 次重复空白试验, Milli-Q SP ICP-MS 水, Millipore日本有限公司),定量限(QL)取3.33倍检测限。表中还给出超纯水的元素含量值,即便它们低于定量限。BEC 代表空白等当浓度。计算方法是每种元素做一条0,50, 100ppt三个标准点的线性校正曲线,(见图4) 把这条曲线外推,和X轴的交点(y=0)就是BEC值。能够较好的反映污染水平。钙的标准曲线显示测定这种离子的限制(基于选用的仪器和实验条件)。另一方面,对铁的良好测定结果说明选定的ICP-MS条件有效去除干扰。如表4所示,当元素污染很低的时候就能获得很好的结果。 图 4 一些标准曲线结合先进的水纯化技术并使用在洁净和环境控制的体系中,生产的超纯水可以使多数元素都能达到亚ppt浓度的级别。 3.3 结论将背景领域作为一个例子,在过去的10 年内,关于背景痕量元素浓度的报道从数十ppb(ug/L) 的浓度降低到了几个ppb 浓度到ppt(ng/L)浓度的范围内。这实际上没有反映出水质量的改善,但是反映出了在样品制备,工艺处理和分析过程中污染的减少。这些改进后仪器和分析步骤,突出了微小污染的影响。因此,在制备空白样品和标准样品,在进行严格洗涤和高灵敏度分析的时候要使用高质量的超纯净水。根据在某些特定元素(例如硼) 的痕量分析的空白优化应用中,要能将超纯化柱成分进行调节。为了一些特定的需要(如关注于硅20),也可进行其他的改进和发展。例如可以加入脚踏开关来对系统进行控制,防止被其他使用者和在层流罩下仪器操作引起的交叉污染。这些不同的仪器和净化技术上的进步,促进了生产适合于亚ppt浓度级别痕量分析的超纯水的系统发展。 参考文献 1 Jackson K.W., Guoru C. Atomic Absorption, Atomic Emission, and Flame Emission Spectrometry, Analytical Chemistry,1996,68(12):231~2562 Olesik J.W. Fundamental Research in ICP-OES and ICP-MS, Analytical Chemistry News & Features,19963 Hoenig, M. Cilissen, A. Performances and Practical Applications of Simultaneous Multi-Element Electrothermal Atomic Absorption Spectrometry the Case of the SIMAA 6000,Spectrochimica Acta, PART B,1997,17154 Newman, A. Elements of ICP-MS, Analytical Chemistry News & Features,1996,46~515 Hurley, J.P. Shafer, M.M. Cowell, S.E. Overdier, J.T. Hughes P.E. Armstrong, D.E. Trace Metal Assessment of Lake Michigan Tributaries Using Low-Level Techniques Environmental Science & Technology 1996,30(6): 2093~20986 Kawabata, K. Takahashi, H. Endo, G. Inoue, Y. Determination of Arsenic Species by Inductively Coupled Plasma Mass Spectrometry with Ion Chromatography Applied Organometallic Chemistry 1994,8:245~2487 Kishi, Y. Gomez, J. Potter, D. The Determination of Impurities in Sulfuric Acid by ICP-MS, HP Application Note,1995:5964~01428 Yamanaka, K. Gomez, J. Kishi, Y. Potter, D. The Determination of Impurities in Nitric Acid and Hydrofluoric Acid by ICP-MS , HP Application Note,1995:5964~0142E9 Woller, A. Garraud, H. Martin, F. Donard, O.F.X. Fodor, P. Determination of Total Mercury in Sediments by Microwave-Assisted Digestion-Flow Injection-Inductively Coupled Plasma Mass Spectrometry, Journal of Analytical Atomic Spectrometry 1997,12:53~5610 Horowitz, A.J. Some Thoughts on Problems Associated With Various Sampling Media for Environmental Monitoring, The Analyst,1997,122: 1193~120011 Milgram, K.E. White, F.M. Goodner, K.L. Watson, C.H. Koppenaal, D.W. Barinaga, C.J. Smith, B.H. Winefordner, J.D., Marshall, A.G. Eigh-Resolution Inductively Coupled Plasma Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Analytical Chemistry,1997,69(18):3714~372112 Sakata, K. Kawabata, K. Reduction of Polyatomic Ions in Inductively Coupled Plasma Mass Spectrometry, Spectrochimica Acta 49B(10), pp. 1027-1038 (1994)13 Probst, T.U Studies on the long-term stabilities of the background of radionuclides in inductively coupled plasma mass spectrometry (ICP-MS) A review of radionuclide determination by ICP-MS, Fresenius journal of Analytical Chemistry 1996,354:782~78714 Gabler, R. Hegde, R. Hughes, D. Degradation of High-Purity Water on Storage, Journal of Liquid Chromatography 1983,6(13):2565~257015 Stewart, B.M., Darbouret D. Advancements in the production of ultrapure water for ICP-MS metals analysis, American Laboratory News,1998,30(9): 36~3816 Darbouret,D. Kano,I. Youf,E.Stewart,B.M. Optimizing storage of High Purity Water. Millipore Laboratory Water Division:R&D Notebook RD001,199817 Hartzell, A. Rose, J. Liu, D. McPherson, P. O325Shaughnessy, M. Seeley, C. Burt, R. Correlating extraction and Contaminate-transfer Test Results for Cleanroom Gloves Microcontamination,1996:69~7818 Kammin, W.R. Cull, S. Knox, R. Ross, J. McIntosh, M., Thomson, D. Labware Cleaning Protocols for the Determination of Low-Level Metals by ICP-MS, American Environmental Labpp.1995,5~719 Takenaka, M. Hayashi, M. Suzuki, I., Yamada, Y. Takamatsu, K. Kageyama, M. Evaluation of a Mirror-Polishing Technique for Fluorocarbon Polymer Surfaces for Reduction of Contamination from Containers Used in Ultratrace Analysis , Analytical Chemistry 69(5), Editonic - RCS Versailles :1997, 93:972~97620 Barbante, C. Bellomi, T. Mezzadri, G. Cescon, P. Scarponi, G. Morel, C. Jay, S. Van de Velde, K. Ferrari, C. Boutron, C.F. tirect Determination of Heavy Metals at Picogram per Gram Levels in Greenland and Antarctic Snow by Double Focusing Inductively Coupled Plasma Mass Spectrometry Journal of Analytical Atomic Spectrometry ,1997,12:925~93121 Chu, T. Balasz, M.K. Determination of Total Silica at ppb Levels in High-Purity Water by Three Different Analytical Techniques, ULTRAPURE WATER
  • 北京检疫局科技周“多元素”打造互动平台
    日前,2009年北京检验检疫局科技周圆满落幕。在此次科技周活动中,一系列展板、一本发展报告、一个揭牌颁奖仪式、两场讲座等“多元素”打造的科技互动平台,让该局职工津津乐道。  北京局本次科技周活动的主题是:加强科技创新,打造科技精品,推动北京局科技工作实现新跨越。在该局综合实验楼一楼大厅,37块科技成果展板分别从科研成果、科研平台、机构改革、实验室能力建设等方面全面、直观地展示了近年来北京局依靠科学技术发展检验检疫事业所取得的成果和发展状况。  科技周活动中,令人印象最深的要数国家纳米科学中心研究员刘前的“纳米科技与检测技术”和国家标准化管理委员会总工程师于欣丽的“标准与技术创新”专题讲座。通过讲座,北京局科研人员及时了解了前沿科技的国际国内发展趋势,更好地了解了检验检疫需求与现代科学技术与标准的紧密结合点,解决了科研人员在研究和管理过程中遇到的一些问题。  据北京局相关部门负责人介绍,下一步该局将在总结科技活动周经验的基础上,不断改进、完善工作方法,落实工作措施,进一步尝试和实践科技宣传活动的多种形式和多种途径,进一步提高活动的针对性和有效性。
  • 盛泰仪器全自动结晶点仪通过万华化学验收
    盛泰仪器全自动结晶点仪通过万华化学验收 万华化学集团股份有限公司是一家全球化运营的化工新材料公司,起步于1978年,2001年在上海证券交易所上市(股票代码600309)。公司以技术创新为第一核心竞争力,拥有极具竞争力的MDI制造技术和产业链完整的ADI制造技术,以及C2/C3/C4完整石化产业链。业务聚焦聚氨酯、石化、精细化学品、新兴材料四大产业平台,相关产品广泛应用于生活家居、运动休闲、汽车交通、建筑工业、电子电气、个人护理和绿色能源等涉及国民生活的方方面面、 万华化学始终坚持以科技创新为第一核心竞争力,持续优化产业结构,业务涵盖MDI、TDI、聚醚多元醇等聚氨酯产业集群,丙烯酸及酯、环氧丙烷等石化产业集群,水性PUD、PA乳液、TPU、ADI系列等功能化学品及材料产业集群。 因为万华化学的其中一个产品的特殊性,国内其他普通的结晶点满足不了产品要求,通过实验、对比、比较,他们很快把目光锁定在盛泰仪器的全自动结晶点测定仪,因为盛泰仪器拥有智能化仪器的定制能力,盛泰凭借其定制优势获得了万华化学的认可。能与万华化学合作,我们深感荣幸。在未来的合作中我们将更好的做好售后服务,我们也为能为更多的化工科研做出一份绵薄之力而自豪,期待为更多的化工企业服务。
  • 国家质检总局、标准委发布264项国家标准
    9月26日,国家质检总局、国家标准委批准发布了264项国家标准。该批国家标准中,制定190项,修订74项 强制性标准14项,推荐性标准250项。标准名称、编号及实施日期在《中华人民共和国国家标准批准发布公告》(2010年第6号)中向社会发布。  附件:序号国家标准编号国  家  标  准  名  称代替标准号实施日期1GB/T 325.2-2010包装容器 钢桶 第2部分:最小总容量208L、210L和216.5L全开口钢桶 2011-03-012GB/T 325.3-2010包装容器 钢桶 第3部分:最小总容量212L、216.5L和230L闭口钢桶 2011-03-013GB/T 480-2010煤的铝甑低温干馏试验方法GB/T 480-20002011-02-014GB/T 1033.2-2010塑料 非泡沫塑料密度的测定 第2部分:密度梯度柱法 2011-08-015GB/T 1033.3-2010塑料 非泡沫塑料密度的测定 第3部分:气体比重瓶法 2011-08-016GB/T 1632.3-2010塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第3部分:聚乙烯和聚丙烯GB/T 1841-19802011-08-017GB/T 2566-2010低煤阶煤的透光率测定方法GB/T 2566-19952011-02-018GB/T 4122.2-2010包装术语 第2部分:机械GB/T 4122.2-19962011-03-019GB/T 4122.3-2010包装术语 第3部分:防护GB/T 4122.3-19972011-03-0110GB/T 4122.4-2010包装术语 第4部分:材料与容器GB/T 4122.4-2002,GB/T 13039-1991,GB/T 13040-19912011-03-0111GB/T 4122.5-2010包装术语 第5部分: 检验与试验GB/T 4122.5-20022011-03-0112GB/T 4122.6-2010包装术语 第6部分:印刷GB/T 13483-19922011-03-0113GB 5135.16-2010自动喷水灭火系统 第16部分:消防洒水软管 2011-03-0114GB/T 5135.19-2010自动喷水灭火系统 第19部分:塑料管道及管件 2011-02-0115GB/T 5135.20-2010自动喷水灭火系统 第20部分: 涂覆钢管 2011-02-0116GB/T 5464-2010建筑材料不燃性试验方法GB/T 5464-19992011-02-0117GB/T 5517-2010粮油检验 粮食及制品酸度测定GB/T 5517-19852011-03-0118GB/T 5527-2010动植物油脂 折光指数的测定GB/T 5527-19852011-03-0119GB 6067.1-2010起重机械安全规程 第1部分:总则GB/T 6067-19852011-06-0120GB/T 6964-2010渔网网目尺寸测量方法GB/T 6964-19862011-05-0121GB/T 6974.2-2010起重机 术语 第2部分:流动式起重机GB/T 6974.6-19862011-02-0122GB/T 7143-2010铸造用硅砂化学分析方法GB/T 7143-19862011-02-0123GB/T 7562-2010发电煤粉锅炉用煤技术条件GB/T 7562-19982011-02-0124GB/T 8570.2-2010液体无水氨的测定方法 第2部分:氨含量GB/T 8570.2-19882011-03-0125GB/T 8570.3-2010液体无水氨的测定方法 第3部分:残留物含量 重量法GB/T 8570.3-19882011-03-0126GB/T 8570.4-2010液体无水氨的测定方法 第4部分:残留物含量 容量法GB/T 8570.4-19882011-03-0127GB/T 8570.5-2010液体无水氨的测定方法 第5部分:水分 卡尔费休法GB/T 8570.5-19882011-03-0128GB/T 8570.6-2010液体无水氨的测定方法 第6部分:油含量 重量法和红外吸收光谱法GB/T 8570.6-19882011-03-0129GB/T 8570.7-2010液体无水氨的测定方法 第7部分:铁含量 邻菲啰啉分光光度法GB/T 8570.7-19882011-03-0130GB/T 8572-2010复混肥料中总氮含量的测定 蒸馏后滴定法GB/T 8572-20012011-03-0131GB/T 8573-2010复混肥料中有效磷含量的测定GB/T 8573-19992011-03-0132GB/T 8574-2010复混肥料中钾含量的测定 四苯硼酸钾重量法GB/T 8574-20022011-03-0133GB/T 8576-2010复混肥料中游离水含量的测定 真空烘箱法GB/T 8576-20022011-03-0134GB/T 8577-2010复混肥料中游离水含量的测定 卡尔费休法GB/T 8577-20022011-03-0135GB/T 9065.2-2010液压软管接头 第2部分:24°锥密封端软管接头GB/T 9065.2-19882011-02-0136GB/T 9065.5-2010液压软管接头 第5部分:37°扩口端软管接头GB/T 9065.1-19882011-02-0137GB/T 9439-2010灰铸铁件GB/T 9439-19882011-02-0138GB/T 9442-2010铸造用硅砂GB/T 9442-19982011-02-0139GB/T 9707-2010密闭式炼胶机炼塑机GB/T 9707-20002011-10-0140GB 9774-2010水泥包装袋GB 9774-20022011-07-0141GB/T 12008.2-2010塑料 聚醚多元醇 第2部分:规格GB/T 12008.2-19892011-08-0142GB/T 12008.5-2010塑料 聚醚多元醇 第5部分:酸值的测定GB/T 12008.5-19892011-08-0143GB/T 12008.6-2010塑料 聚醚多元醇 第6部分:不饱和度的测定GB/T 12008.7-19922011-08-0144GB/T 12008.7-2010塑料 聚醚多元醇 第7部分:粘度的测定GB/T 12008.8-19922011-08-0145GB/T 12529.5-2010粮油工业用图形符号、代号 第5部分:仓储工业GB/T 12529.5-19902011-03-0146GB/T 13008-2010混流泵、轴流泵 技术条件GB/T 13008-19912011-02-0147GB/T 13578-2010橡胶塑料压延机GB/T 13578-19922011-10-0148GB/T 13929-2010水环真空泵和水环压缩机 试验方法GB/T 13929-19922011-02-0149GB/T 13930-2010水环真空泵和水环压缩机 气量测定方法GB/T 13930-19922011-02-0150GB/T 13972-2010海洋水文仪器通用技术条件GB/T 13972-19922011-02-0151GB/T 14181-2010测定烟煤粘结指数专用无烟煤技术条件GB 14181-19972011-02-0152GB/T 15224.1-2010煤炭质量分级 第1部分:灰分GB/T 15224.1-20042011-02-0153GB/T 15224.2-2010煤炭质量分级 第2部分:硫分GB/T 15224.2-20042011-02-0154GB/T 15224.3-2010煤炭质量分级 第3部分:发热量GB/T 15224.3-20042011-02-0155GB/T 15269.1-2010雪茄烟 第1部分:产品分类和抽样技术要求部分代替:GB 15269-19942011-03-0156GB/T 15594-2010塑料 八羟基聚醚多元醇GB/T 15594-19952011-08-0157GB/T 15597.2-2010塑料 聚甲基丙烯酸甲酯(PMMA)模塑和挤塑材料 第2部分:试样制备和性能测定 2011-08-0158GB/T 16552-2010珠宝玉石 名称GB/T 16552-20032011-02-0159GB/T 16553-2010珠宝玉石 鉴定GB/T 16553-20032011-02-0160GB/T 16554-2010钻石分级GB/T 16554-20032011-02-0161GB/T 16576-2010塑料 三羟基聚醚多元醇GB/T 16576-19962011-08-0162GB/T 16577-2010塑料 四羟基聚醚多元醇GB/T 16577-19962011-08-0163GB 16668-2010干粉灭火系统及部件通用技术条件GB 16668-19962011-03-0164GB 16669-2010二氧化碳灭火系统及部件通用技术条件GB 16669-19962011-03-0165GB/T 16743-2010冲裁间隙GB/T 16743-19972011-02-0166GB 16999-2010人民币鉴别仪通用技术条件GB 16999-19972011-05-0167GB/T 17431.2-2010轻集料及其试验方法 第2部分:轻集料试验方法GB/T 17431.2-19982011-08-0168GB/T 17758-2010单元式空气调节机GB/T 17758-19992011-02-0169GB/T 17817-2010饲料中维生素A的测定 高效液相色谱法GB/T 17817-19992011-01-0170GB/T 17818-2010饲料中维生素D3的测定 高效液相色谱法GB/T 17818-19992011-01-0171GB/T 17858.2-2010包装袋 术语和类型 第2部分:热塑性软质薄膜袋GB/T 17858.2-19992011-03-0172GB/T 18024.2-2010煤矿机械技术文件用图形符号 第2部分:采煤工作面支架及支柱图形符号GB/T 18024.2-20002011-02-0173GB/T 18024.3-2010煤矿机械技术文件用图形符号 第3部分:采掘机械图形符号GB/T 18024.3-20002011-02-0174GB/T 18024.4-2010煤矿机械技术文件用图形符号 第4部分:井下运输机械图形符号GB/T 18024.4-20002011-02-0175GB/T 18024.5-2010煤矿机械技术文件用图形符号 第5部分:提升和地面生产机械图形符号GB/T 18024.5-20002011-02-0176GB/T 18024.6-2010煤矿机械技术文件用图形符号 第6部分:露天矿机械图形符号GB/T 18024.6-20002011-02-0177GB/T 18024.7-2010煤矿机械技术文件用图形符号 第7部分:压气机、通风机和泵图形符号GB/T 18024.7-20002011-02-0178GB/T 18443.1-2010真空绝热深冷设备性能试验方法 第1部分:基本要求 2011-02-0179GB/T 18443.2-2010真空绝热深冷设备性能试验方法 第2部分:真空度测量GB/T 16876-1997,GB/T 18443.2-20012011-02-0180GB/T 18443.3-2010真空绝热深冷设备性能试验方法 第3部分:漏率测量GB/T 16775-1997,GB/T 18443.3-20012011-02-0181GB/T 18443.4-2010真空绝热深冷设备性能试验方法 第4部分:漏放气速率测量GB/T 18443.4-20012011-02-0182GB/T 18443.5-2010真空绝热深冷设备性能试验方法 第5部分:静态蒸发率测量GB/T 18443.5-20012011-02-0183GB/T 18443.6-2010真空绝热深冷设备性能试验方法 第6部分:漏热量测量 2011-02-0184GB/T 18443.7-2010真空绝热深冷设备性能试验方法 第7部分:维持时间测量 2011-02-0185GB/T 18443.8-2010真空绝热深冷设备性能试验方法 第8部分:容积测量GB/T 18443.1-20012011-02-0186GB/T 21782.5-2010粉末涂料 第5部分:粉末空气混合物流动性的测定 2011-08-0187GB/T 21782.9-2010粉末涂料 第9部分:取样 2011-08-0188GB/T 21782.11-2010粉末涂料 第11部分:倾斜板流动性的测定 2011-08-0189GB/T 21782.12-2010粉末涂料 第12部分:相容性的测定 2011-08-0190GB/T 21782.14-2010粉末涂料 第14部分:术语 2011-08-0191GB/T 23561.10-2010煤和岩石物理力学性质测定方法 第10部分:煤和岩石抗拉强度测定方法 2011-02-0192GB/T 23561.11-2010煤和岩石物理力学性质测定方法 第11部分:煤和岩石抗剪强度测定方法 2011-02-0193GB/T 23561.12-2010煤和岩石物理力学性质测定方法 第12部分:煤的坚固性系数测定方法 2011-02-0194GB/T 23561.13-2010煤和岩石物理力学性质测定方法 第13部分:煤和岩石点载荷强度指数测定方法 2011-02-0195GB/T 23561.14-2010煤和岩石物理力学性质测定方法 第14部分:岩石膨胀率测定方法 2011-02-0196GB/T 23561.15-2010煤和岩石物理力学性质测定方法 第15部分:岩石膨胀应力测定方法 2011-02-0197GB/T 23561.16-2010煤和岩石物理力学性质测定方法 第16部分:岩石耐崩解性指数测定方法 2011-02-0198GB/T 23720.3-2010起重机 司机培训 第3部分:塔式起重机 2011-02-0199GB/T 23723.3-2010起重机 安全使用 第3部分:塔式起重机 2011-02-01100GB/T 23723.4-2010起重机 安全使用 第4部分:臂架起重机 2011-02-01101GB/T 23724.3-2010起重机 检查 第3部分:塔式起重机 2011-02-01102GB/T 25054-2010海洋特别保护区选划论证技术导则 2011-02-01103GB/T 25126-2010大容量交叉式电磁四通换向阀 2011-02-01104GB/T 25127.1-2010低环境温度空气源热泵(冷水)机组 第1部分:工业或商业用及类似用途的热泵(冷水)机组 2011-02-01105GB/T 25127.2-2010低环境温度空气源热泵(冷水)机组 第2部分:户用及类似用途的热泵(冷水)机组 2011-02-01106GB/T 25128-2010直接蒸发式全新风空气处理机组 2011-02-01107GB/T 25129-2010制冷用空气冷却器 2011-02-01108GB 25130-2010单元式空气调节机 安全要求 2011-06-01109GB 25131-2010蒸气压缩循环冷水(热泵)机组 安全要求 2011-06-01110GB/T 25132-2010液压过滤器 压差装置试验方法 2011-02-01111GB/T 25133-2010液压系统总成 管路冲洗方法 2011-02-01112GB/T 25134-2010锻压制件及其模具三维几何量光学检测规范 2011-02-01113GB/T 25135-2010锻造工艺质量控制规范 2011-02-01114GB/T 25136-2010钢质自由锻件检验通用规则 2011-02-01115GB/T 25137-2010钛及钛合金锻件 2011-02-01116GB/T 25138-2010检定铸造粘结剂用标准砂 2011-02-01117GB/T 25139-2010铸造用泡沫陶瓷过滤网 2011-02-01118GB/T 25140-2010无轴封回转动力泵技术条件(Ⅱ类) 2011-02-01119GB/T 25141-2010自吸式回转动力泵 型式与基本参数 2011-02-01120GB/T 25142-2010风冷式循环冷却液制冷机组 2011-02-01121GB/T 25143-2010真空成型模技术条件 2011-03-01122GB/T 25144-2010搪玻璃釉平均线热膨胀系数的测定方法 2011-03-01123GB/T 25145-2010搅拌设备名词术语 2011-03-01124GB/T 25146-2010工业设备化学清洗质量验收规范 2011-03-01125GB/T 25147-2010工业设备化学清洗中金属腐蚀率及腐蚀总量的测试方法 重量法 2011-03-01126GB/T 25148-2010工业设备化学清洗中除垢率和洗净率测试方法 2011-03-01127GB/T 25149-2010工业设备化学清洗中碳钢钝化膜质量的测试方法 红点法 2011-03-01128GB/T 25150-2010工业设备化学清洗中奥氏体不锈钢钝化膜质量的测试方法 蓝点法 2011-03-01129GB/T 25151.1-2010尿素高压设备制造检验方法 第1部分:不锈钢带极自动堆焊层超声波检测 2011-03-01130GB/T 25151.2-2010尿素高压设备制造检验方法 第2部分:尿素级超低碳铬镍钼奥氏体不锈钢选择性腐蚀检查和金相检查 2011-03-01131GB/T 25151.3-2010尿素高压设备制造检验方法 第3部分:尿素级超低碳铬镍钼奥氏体不锈钢晶间腐蚀倾向试验 2011-03-01132GB/T 25151.4-2010尿素高压设备制造检验方法 第4部分:尿素级超低碳铬镍钼奥氏体不锈钢晶间腐蚀倾向试验的试样制取 2011-03-01133GB/T 25151.5-2010尿素高压设备制造检验方法 第5部分:尿素高压设备氨渗漏试验方法 2011-03-01134GB/T 25152-2010液-液分离旋流器技术条件 2011-03-01135GB/T 25153-2010化工压力容器用磁浮子液位计 2011-03-01136GB/T 25154-2010电容法液相微量水分仪 2011-03-01137GB/T 25155-2010平板硫化机 2012-01-01138GB/T 25156-2010橡胶塑料注射成型机通用技术条件 2011-03-01139GB/T 25157-2010橡胶塑料注射成型机检测方法 2011-03-01140GB/T 25158-2010轮胎动平衡试验机 2011-03-01141GB/T 25159-2010包装术语 非危险货物用中型散装容器 2011-03-01142GB/T 25160-2010包装 卡纸板折叠纸盒结构尺寸 2011-03-01143GB/T 25161.1-2010包装袋 尺寸允许偏差 第1部分:纸袋 2011-03-01144GB/T 25161.2-2010包装袋 尺寸允许偏差 第2部分:热塑性软质薄膜袋 2011-03-01145GB/T 25162.1-2010包装袋 跌落试验 第1部分:纸袋 2011-03-01146GB/T 25162.2-2010包装袋 跌落试验 第2部分:热塑性软质薄膜袋 2011-03-01147GB/T 25163-2010防止儿童开启包装 可重新盖紧包装的要求与试验方法 2011-03-01148GB/T 25164-2010包装容器 25.4mm 口径铝气雾罐 2011-03-01149GB/T 25165-2010明胶中牛、羊、猪源性成分的定性检测方法 实时荧光PCR法 2011-05-01150GB/T 25166-2010裙带菜 2011-05-01151GB/T 25167-2010新吉细毛羊 2011-03-01152GB/T 25168-2010畜禽 cDNA 文库构建与保存技术规程 2011-03-01153GB/T 25169-2010畜禽粪便监测技术规范 2011-03-01154GB/T 25170-2010畜禽基因组BAC文库构建与保存技术规程 2011-03-01155GB/T 25171-2010畜禽养殖废弃物管理术语 2011-03-01156GB/T 25172-2010猪常温精液生产与保存技术规范 2011-01-01157GB/T 25173-2010水域纳污能力计算规程 2011-01-01158GB/T 25174-2010饲料添加剂 4′,7-二羟基异黄酮 2011-01-01159GB/T 25175-2010大件垃圾收集和利用技术要求 2011-08-01160GB/T 25176-2010混凝土和砂浆用再生细骨料 2011-08-01161GB/T 25177-2010混凝土用再生粗骨料 2011-08-01162GB/T 25178-2010减压型倒流防止器 2011-08-01163GB/T 25179-2010生活垃圾填埋场稳定化场地利用技术要求 2011-08-01164GB/T 25180-2010生活垃圾综合处理与资源利用技术要求 2011-08-01165GB/T 25181-2010预拌砂浆 2011-08-01166GB/T 25182-2010预应力孔道灌浆剂 2011-08-01167GB/T 25183-2010砌墙砖抗压强度试验用净浆材料 2011-08-01168GB/T 25184-2010X射线光电子能谱仪检定方法 2011-08-01169GB/T 25185-2010表面化学分析 X射线光电子能谱 荷电控制和荷电校正方法的报告 2011-08-01170GB/T 25186-2010表面化学分析 二次离子质谱 由离子注入参考物质确定相对灵敏度因子 2011-08-01171GB/T 25187-2010表面化学分析 俄歇电子能谱 选择仪器性能参数的表述 2011-08-01172GB/T 25188-2010硅晶片表面超薄氧化硅层厚度的测量 X射线光电子能谱法 2011-08-01173GB/T 25189-2010微束分析 扫描电镜能谱仪定量分析参数的测定方法 2011-08-01174GB 25194-2010杂物电梯制造与安装安全规范 2011-06-01175GB/T 25195.1-2010起重机 图形符号 第1部分:总则 2011-02-01176GB/T 25195.2-2010起重机 图形符号 第2部分:流动式起重机 2011-02-01177GB/T 25195.3-2010起重机 图形符号 第3部分:塔式起重机 2011-02-01178GB/T 25196.1-2010起重机 状态监控 第1部分:总则 2011-02-01179GB/T 25197-2010静置常压焊接热塑性塑料储罐(槽) 2011-02-01180GB/T 25198-2010压力容器封头 2011-02-01181GB/T 25199-2010生物柴油调合燃料(B5) 2011-02-01182GB 25200-2010干粉枪 2011-03-01183GB 25201-2010建筑消防设施的维护管理 2011-03-01184GB 25202-2010泡沫枪 2011-03-01185GB 25203-2010消防监督技术装备配备 2011-03-01186GB 25204-2010自动跟踪定位射流灭火系统 2011-03-01187GB/T 25205-2010雨淋喷头 2011-02-01188GB/T 25206.2-2010复合夹芯板建筑体燃烧性能试验 第2部分:大室法 2011-02-01189GB/T 25207-2010火灾试验 表面制品的实体房间火试验方法 2011-02-01190GB/T 25208-2010固定灭火系统产品环境试验方法 2011-02-01191GB/T 25209-2010商品煤标识 2011-02-01192GB/T 25210-2010兰炭用煤技术条件 2011-02-01193GB/T 25211-2010兰炭产品技术条件 2011-02-01194GB/T 25212-2010兰炭产品品种及等级划分 2011-02-01195GB/T 25213-2010煤的塑性测定 恒力矩吉氏塑性仪法 2011-02-01196GB/T 25214-2010煤中全硫测定 红外光谱法 2011-02-01197GB/T 25215-2010水煤浆试验方法导则 2011-02-01198GB/T 25216-2010煤与瓦斯突出危险性区域预测方法 2011-02-01199GB/T 25217.1-2010冲击地压测定、监测与防治方法 第1部分:顶板岩层冲击倾向性分类及指数的测定方法 2011-02-01200GB/T 25217.2-2010冲击地压测定、监测与防治方法 第2部分:煤的冲击倾向性分类及指数的测定方法 2011-02-01201GB/T 25218-2010粮油机械 产品涂装通用技术条件 2011-03-01202GB/T 25219-2010粮油检验 玉米淀粉含量测定 近红外法 2011-03-01203GB/T 25220-2010粮油检验 粮食中赭曲霉毒素A的测定 高效液相色谱法和荧光光度法 2011-03-01204GB/T 25221-2010粮油检验 粮食中麦角甾醇的测定 正相高效液相色谱法 2011-03-01205GB/T 25222-2010粮油检验 粮食中磷化物残留量的测定 分光光度法 2011-03-01206GB/T 25223-2010动植物油脂 甾醇组成和甾醇总量的测定 气相色谱法 2011-03-01207GB/T 25224.2-2010动植物油脂 植物油中豆甾二烯的测定 第2部分:高效液相色谱法 2011-03-01208GB/T 25225-2010动植物油脂 挥发性有机污染物的测定 气相色谱-质谱法 2011-03-01209GB/T 25226-2010大米 蒸煮过程中米粒糊化时间的评价 2011-03-01210GB/T 25227-2010粮食加工、储运设备现场监测装置技术规范 2011-03-01211GB/T 25228-2010粮油检验 玉米及其制品中伏马毒素含量测定 免疫亲和柱净化高效液相色谱法和荧光光度法 2011-03-01212GB/T 25229-2010粮油储藏 平房仓气密性要求 2011-03-01213GB/T 25230-2010粮油机械 打麸机 2011-03-01214GB/T 25231-2010粮油机械 喷风碾米机 2011-03-01215GB/T 25232-2010粮油机械 刷麸机 2011-03-01216GB/T 25233-2010粮油机械 袋式除尘器 2011-03-01217GB/T 25234-2010粮油机械 叶轮闭风器 2011-03-01218GB/T 25235-2010粮油机械 组合清理筛 2011-03-01219GB/T 25236-2010粮油机械 检验用锤片粉碎机 2011-03-01220GB/T 25237-2010粮油机械 淀粉洗涤旋流器 2011-03-01221GB/T 25238-2010粮油机械 重力曲筛 2011-03-01222GB/T 25239-2010粮油机械 微量喂料器 2011-03-01223GB/T 25240-2010烟草包衣丸化种子 2011-01-01224GB/T 25241.1-2010烟草集约化育苗技术规程 第1部分:漂浮育苗 2011-01-01225GB/T 25241.2-2010烟草集约化育苗技术规程 第2部分:托盘育苗 2011-01-01226GB/T 25241.3-2010烟草集约化育苗技术规程 第3部分:砂培育苗 2011-01-01227GB/T 25242-2010敖汉细毛羊 2011-03-01228GB/T 25243-2010甘肃高山细毛羊 2011-03-01229GB/T 25244-2010高邮鸭 2011-03-01230GB/T 25245-2010广灵驴 2011-03-01231GB/T 25246-2010畜禽粪便还田技术规范 2011-03-01232GB/T 25247-2010饲料添加剂 糖萜素 2011-03-01233GB/T 25248-2010830nm数字制版材料用红外吸收菁染料含量的测定 高效液相色谱法 2011-08-01234GB/T 25249-2010氨基醇酸树脂涂料 2011-08-01235GB/T 25250-2010成像材料 纸质照片上的彩色影像 打印彩色影像室内耐水性测定 2011-08-01236GB/T 25251-2010醇酸树脂涂料 2011-08-01237GB/T 25252-2010酚醛树脂防锈涂料 2011-08-01238GB/T 25253-2010酚醛树脂涂料 2011-08-01239GB/T 25254-2010工业用聚四亚甲基醚二醇(PTMEG) 2011-08-01240GB/T 25255-2010光学功能薄膜 聚对苯二甲酸乙二醇酯(PET)薄膜 拉伸性能测定方法 2011-08-01241GB/T 25256-2010光学功能薄膜 离型膜 180°剥离力和残余黏着率测试方法 2011-08-01242GB/T 25257-2010光学功能薄膜 翘曲度测定方法 2011-08-01243GB/T 25258-2010过氯乙烯树脂防腐涂料 2011-08-01244GB/T 25259-2010过氯乙烯树脂涂料 2011-08-01245GB/T 25260.1-2010合成胶乳 第1部分:羧基丁苯胶乳(XSBRL)56C、55B 2011-08-01246GB/T 25261-2010建筑用反射隔热涂料 2011-08-01247GB/T 25262-2010硫化橡胶或热塑性橡胶 磨耗试验指南 2011-08-01248GB/T 25263-2010氯化橡胶防腐涂料 2011-08-01249GB/T 25264-2010溶剂型丙烯酸树脂涂料 2011-08-01250GB/T 25265.1-2010摄影和成像 喷墨介质:分类、命名和尺寸 第1部分:照相级介质(纸和胶片) 2011-08-01251GB/T 25266-2010涂料 用安德森滴管法测定涂料填充物颗粒粒度的分布 2011-08-01252GB/T 25267-2010涂料中滴滴涕(DDT)含量的测定 2011-08-01253GB/T 25268-2010橡胶 硫化仪使用指南 2011-08-01254GB/T 25269-2010橡胶 试验设备校准指南 2011-08-01255GB/T 25270-2010橡胶塑料的拉伸、屈挠和压缩试验设备(恒速移动型) 技术要求 2011-08-01256GB/T 25271-2010硝基涂料 2011-08-01257GB/T 25272-2010硝基涂料防潮剂 2011-08-01258GB/T 25273-2010液晶显示器(LCD)用薄膜 雾度测定方法 积分球法 2011-08-01259GB/T 25274-2010液晶显示器(LCD)用薄膜 紫外吸收率测定方法 2011-08-01260GB/T 25275-2010液晶显示器(LCD)用偏振片 光学性能和耐候性能测试方法 2011-08-01261GB/T 25276-2010液晶显示器(LCD)用三醋酸纤维素酯(TAC)膜 厚度测定方法 2011-08-01262GB/T 25277-2010塑料 均聚聚丙烯(PP-H)中酚类抗氧剂和芥酸酰胺爽滑剂的测定 液相色谱法 2011-08-01263GB/T 25278-2010塑料 用毛细管和狭缝口模流变仪测定塑料的流动性 2011-08-01, 264GB/T 25279-2010中空纤维帘式膜组件 2011-08-01  注:1、GB 10457-2009 《食品用塑料自粘保鲜膜》于2009年4月27日批准发布。鉴于聚氯乙烯保鲜膜接触油脂、微波炉加热和高温使用条件下的安全性需卫生部进行进一步评估,根据中国轻工业联合会申请,同意此项标准暂缓实施(国标委农[2010]62号“关于同意暂缓实施《食品用塑料自粘保鲜膜》国家标准的批复”)。  2、GB/T 24480-2009《电梯层门耐火试验》国家标准名称修改为:《电梯层门耐火试验 泄漏量、隔热、辐射测定法》。
  • 沃特世多元数学统计方法分析传统草药
    多元数学统计方法分析传统草药,使用U P LC 超高效液相色谱/T O F -MS 飞行时间质谱比较不同样品种类  Kate Yu, Jose Castro-Perez, 和 John Shockcor  沃特世公司,米尔福德,马萨诸塞州,美国  前言  实验方法  传统草药 (THM)或传统中药 (TCM)样品的分析研究是非常具有挑战性的,直接原因是样品的重现性差。植物提取物的成分会因产地,采收季节以及提取方法的不同而发生显著变化。即使提取物是来自同一株植物的提取物或来自相同名称的两株植物,其成分也不尽相同。  此外,为了有效的对中药进行质量控制,非常有必要对中草药进行分析比较。中草药样品分析对于传统草药的生理作用机理的研究也是非常关键的。  我们开发了一套简便快速且易于通用的传统中草药分析流程的(图 1)。该分析流程利用了沃特世 (Waters) UPLC 超高效液相色谱的技术优势,即高分辨,高灵敏度和快速分离,并结合了 SYNAPT™ HDMS™ 质谱系统的飞行时间质谱仪(TOF MS) 精确质量数测定的功能。该工作流程能够应用于化合物鉴定或样品解析。  传统中草药中的化合物鉴定在我们已在另一篇应用纪要中讨论过。1 本文将演示如何利用该分析流程借助多元数学统计方法进行样品数据的解析。结果表明,样品的比较可以在几个小时内完成并获得完整的样品信息。这显著地缩短了传统草药样品的分析时间和节省了人力。图 1. 传统草药分析的工作流程 。  本实验的样品来自于两种人参提取物口服液。  样品 1 是人参精口服液 (产自中国,JV Trading Ltd. 公司销售,纽约,纽约州)。  样品 2 是青春宝口服液 (产自中国,Overseas Factor Corporation 公司销售,旧金山,加利福尼亚州)。  每个样品在进样前先过滤。  液相条件  液相系统: 沃特世 ACQUITY UPLC 超高效液相色谱系统  色谱柱: ACQUITY UPLC 超高效液相色谱 HSS T3 色谱柱  2.1 x 100 mm, 1.7 µ m, 65 °C  流速: 600 µ L/min  流动相 A: 水+ 0.1% 甲酸  流动相 B: 甲醇  梯度: 时间 组成 曲线  0 min 95% A  10 min 30% A Curve 6  17 min 0% A Curve 6  20 min 95% A Curve 1  质谱条件  质谱系统: 沃特世 SYNAPT HDMS 质谱系统  离子化模式: 电喷雾  毛细管电压: 3000 V  锥孔电压: 35 V  除溶剂温度: 450 °C  除溶剂气体: 800 L/Hr  离子源温度: 120 °C  采集范围: 50 to 1500 m/z  碰撞气体: 氩气  数据处理  化合物筛选和分析:  MarkerLynxTM  应用管理软件  多元数学统计分析:  SIMPCA-P  结果  为保证数学统计结果的可靠性和重要性,每个样品至少重复进样三次。为获得每个样品的所有信息,有必要对它们在正负离子模式下进行LC/MS分析。本实验中,每种样品重复进样六次:三次电喷雾正离子模式分析和三次电喷雾负离子模式分析。出于演示目的,本文只讨论了负离子模式下的结果。  图 2 显示两种人参提取物口服液基峰离子色谱图的比较。由图可以看出人参精口服液含成份远多于青春宝并且浓度更高。由于两个样品成份都很复杂,有必要利用多元数学统计工具对两个样品做进一步的分析。  图 2. 两种人参提取物样品的 LC/MS 液相色谱/质谱基峰离子色谱图。  使用多元数学统计方法对 LC/MS 数据进行分析的第一步是将三维 LC/MS 数据转换成二维矩阵。这一关键步骤由 MassLynx™ 操作软件中的 MarkerLynx 完成。MarkerLynx 将每一个数据点转换成精确质量保留时间 (EMRT) 数据对,并以二维矩阵型式将结果列出 (图 3)。  本实验共得到了 1184 个精确质量保留时间 (EMRT) 数据对 。可检测到 EMRT 数据对的数量取决于色谱峰检测限的设定,该参数可由分析人员设定。  图 3. MarkerLynx 结果显示窗口。窗口上部为样品进样列表。窗口下部为精确质量于保留时间数据对列表。  从 MarkerLynx 报告界面上,仅需点击 P+ 按钮,EMRT 数据对列表就可以被自动导入到 SIMCA-P 中。首先利用主成分分析 (PCA) 法对对数据进行处理。之后利用无监督统计学模型,结合正交偏最小二乘法进行两维数据分析 (OPLS-DA)。图 4 列出正交偏最小二乘法数据分析的分值结果。该图清晰地展示了两个样品组在 X 轴和 Y 轴方向的差别。图 4. 数值图表示人参精口服液和青春宝口服液明显的分组情况。  为进一步鉴定两组样品的化学组成上的差异性,正交偏最小二乘法得到的数据分析结果散点图如图 5 所示。图 5. 基于正交偏最小二乘法获得的人参精口服液和青春宝口服液数据分析结果散点图。  在散点图中,每个点代表一个精确质量保留时间数据对。X轴表示可变量。一个数据点距离 0 越远,该点对样品差异的贡献越大。Y 轴表示在同一样品组中的样品间的相关性。精确质量与保留时间数据对距离 0 值越远,进样间的相关性越好。因此,在 S 型曲线两端的 EMRT 数据对代表了来自每个样品组的可信度最高的特征离子。  例如,图 5 中,接近 S 图右上角的 EMRT 数据对为来自青春宝口服液可信度最强的特征标记物,接近 S 图左下角的 EMRT 据对为来自人参精口服液可信度最强的特征标记物。  这些特征的 EMRT 数据对可以被选择性地捕获,并获得每组样品中特征标记物列表,并以 TXT 文件保存下来。这个 TXT 件可被输回 MarkerLynx ,产生一个结果列表,从而用于元素组成搜索以及数据库搜索。图 6 显示了从两组样品 S 图中获得的十个特征的精确质量与保留时间数据对列表。图 6. 利用正交偏最小二乘法从两个样品数据分析散点图中获得的最高贡献的十个精确质量保留时间数据对列表。  图 6 表明保留时间为 6.45 分钟质荷比为 945.5419 离子是人参精样品中最显著的标记物,可信度达 0.999。保留时间为6.33 分钟质荷比为 801.5021 的离子是青春宝样品中最显著的标记物,可信度达 0.994。  此外,相比人参精样品(从质荷比 783 到质荷比1187),青春宝样品中最特征的十个 EMRT 数据对在较低的分子量范围内 从质荷比 623 到质荷比 955)。这说明人参精样品的十个特征的标记物中的大多数含有三至四个糖环,而青春宝样品中最特征的十个标记物含有二至三个糖环。  差异性最大的十个 EMRT 数据对也可以用棒状图格式进行查看。图 7 列出人参精 (7a) 和青春宝 (7b) 十个差异性最大的标记物的棒状图。图 7. 人参精 (7a)和青春宝(7b)十个差异性最大的标记物的棒状图。  棒状图提供了列表中已经鉴定的标记物的额外信息,显示被研究的两个样品组十个差异性最大的 EMRT 数据对的直接比较结果。在图 7 中,人参精样品的十个特征标记物在青春宝样品中几乎没有被检测到。而来自青春宝样品的十个特征标记物在人参精样品中被检测到具有很低的强度,有些也未能检测到。  此外,棒状图也提供了一些半定量的信息。来自青春宝样品的十个最大标记物比在人参精样品中检测到的强度高。表明青春宝口服液是比人参精口服液更纯的提取物。  如上所述,从 SIMCA-P 得到的文本文档可以直接导入 MarkerLynx 结果列表中。图 8 显示填入两组结果的 MarkerLynx 结果窗口界面,每个表格代表一组。图 8. 导入精确质量与保留时间数据对的 MarkerLynx 结果显示窗口界面, 文本文档从 SIMCA-P 散点图获得。  从 MarkerLynx 结果表格中,可以对每一个 EMRT 数据对报告中的精确质量进行元素组成分析检索。此信息可进一步用于作现有数据库搜查,寻找推断的该成分的化学结构(如果  数据库中存在该种标记物)。举例来说,我们从青春宝样品中选择一个质荷比为 971.4880 的 标 记物,其元 素 组 成 为 C48H76O20,对公共 平台数据库,Chemspider 进行检索。其中一个可能性如图 9 所示。图 9. Chemspider 数据库中检索的到的质荷比 971.4880 的可能结构。  从该信息很容易返回到液相色谱/质谱 LC/MS 原始数据,利用飞行时间 TOF MSE 数据1的碎片离子来确认推导的结构的准确性。  结论  本应用文集演示一种通用智能化的传统中草药样品分析的工作流程。相对于传统的分析方法,当前这种方法对于相当复杂样品的分析非常有效。  通过 UPLC 超高效液相色谱/SYNAPT™ HDMS™ 质谱系统的进行飞行时间质谱分析,首先采集含有精确质量测定的原始数据。当将这些数据作为精确质量保留时间数据对转成二维矩阵形式,多元数学统计分析方法即可对这套数据进行分析。每个样品的最特征的离子可以从 SIMCA-P 的正交偏最小二乘法数据分析散点图中获得。结果可以导回 Markerlynx 的结果列表中。如果标记物是已经解析出的化合物,可利用数据库检索其元素组成及化学结构。 整套分析方法简便,快速适用性强。它可以很方便地应用到不同类型的传统中草药样品分析之中。因此,在显著节省资源的同时获得最大信息量。  参考文献  1. An Intelligent Workflow for Traditional Herbal Medicine: Compound  Identification by UPLC/TOF MS. Yu K, Castro-Perez J, Shockcor J. Waters  Application Note. 2008 720002486EN.
  • MCC售后服务无忧行动 ——走进烟台万华
    烟台万华是一家全球化运营的化工新材料公司,依托不断创新的核心技术、产业化装置及高效的运营模式,其业务已涵盖MDI、TDI、聚醚多元醇等聚氨酯产业集群,丙烯酸及酯、环氧丙烷等石化产业集群,水性PUD、PA乳液、TPU、ADI系列等功能化学品及材料产业集群。作为自主创新的龙头企业,烟台万华的未来发展得到了国家领导人的特别重视。瑞士万通作为烟台万华的优质仪器服务供应商在6月末紧随习大大的步伐,也来到了这座朝气蓬勃的工业园,开展了为期3天的MCC售后服务无忧行动。活动伊始,为了让新入职的员工尽快熟悉设备,掌握专业知识,瑞士万通中国的工程师就仪器的工作原理,日常仪器维护保养及样品分析方法做了深入的培训。培训结束后,还设有结业考试以考量用户的真实掌握情况,对于成绩优异者,进行了奖励及表扬。紧接下来,资深服务工程师深入了用户的每一个实验室,对在用仪器进行了专业的上机操作培训,解决用户日常工作中遇到的实际样品方法开发和软件设置等问题。活动的最后,用户对我们的服务给予了高度的评价,感谢我们长期以来对于他们实验工作的支持。同时,对未来的合作也提出了相应的期许。2018MCC售后服务无忧行动,瑞士万通中国售后团队秉承为用户提供高质量服务的信念,针对用户在仪器日常使用和实验室管理中遇到的技术及应用问题举办的免费定制化用户培训、实验室仪器体检&保养及仪器合理化管理的活动。希望通过活动,能让用户的实验室管理工作更轻松。我们的活动还在继续,敬请期待~
  • ​【热点研究】微囊悬浮剂的连续化制备
    研究背景农药微囊化技术是将农药活性成分(芯或内相)用各种天然的或合成的高分子化合物连续薄膜(壁或外相)完全包覆起来,而农药活性成分的原有化学性质不发生改变,然后通过某些外部刺激或缓释作用使农药活性成分缓慢释放出来。农药微囊作为一种环保剂型,具有持效期长、安全、环保等优点,可降低用药量,减少用药次数,是农药减量增效最为有效的手段之一,是近几年的研究热点,也是厂商争相竞逐的下一个上量新高地。近期,南通江山农药化工股份有限公司的研究人员,利用康宁G1微通道反应器成功实现高效氯氟氰菊酯(lambda-cyhalothrin)微囊悬浮剂连续化制备。康宁G1多功能平台该工艺优势:密封制备,一次投料,避免刺激;精准合成、游离含量低(5%以内);精准控制壁材交联度、孔隙率,达到速释效果;储存稳定。微囊悬浮剂试验方法:氯氟氰菊酯原药完全溶解在溶剂中,再加入油性单体充分搅拌均匀为A体系;乳化剂与水混合为均相为B体系;B体系剪切状态下缓慢投入A体系,使其粒径D50达到2~3μm左右成为C体系;水性单体溶于水成为D体系;C体系和D体系分别通过不同的泵以一定量的流速进入混合器,再进入微反应器;充分反应固化成囊后再加入分散剂、防冻剂、防腐剂、稳定剂等组分形成产品。图1.微通道反应器制备微囊悬浮剂流程图微囊悬浮剂成囊机理以异氰酸酯与二乙烯三胺为原材料,界面聚合合成囊材,包裹住高效氯氟氰菊酯水乳剂组分,并结合分散剂、防冻剂、防腐剂等组分,使囊球均匀悬浮于分散介质中,反应机理见图2。图2. 界面聚合成囊反应机理研究过程一、制备工艺的影响因素作者通过对囊芯溶剂用量、乳化剂种类及用量、剪切速度和时间、水性囊材添加速度等各反应条件探索,研究对微囊悬浮剂制备的影响。1. 囊芯溶剂用量的影响150#、200#溶剂油、环己酮均对高效氯氟氰菊酯原药有溶解和稀释作用。现采用不同组成和比例的溶剂溶解氯氟氰菊酯原药,观察其成囊、包覆率等情况。表1.不同溶剂用量对微囊的影响 150#溶剂油较200#溶剂油组分集中且较轻,溶解氯氟氰菊酯原药更好,成囊更稳定和均相,其中释放速率见图3。图3. 不同溶剂制剂微囊悬浮剂释放速率 2. 乳化剂种类及用量的影响分别采用乳化剂乳化剂A(烷基酚聚氧乙烯醚),B(EO-PO嵌段聚醚),C(蓖麻油聚氧乙烯醚),D(多元醇酯类)进行高效氯氟氰菊酯乳状液筛选。实验结果表明乳化剂C具有较强的分散乳化作用,有利于成囊。3. 剪切速度、时间的影响微囊制备过程中,粒径大小及其分布,在相当程度上取决于初始乳状液的粒径大小、分布和囊芯的乳化效果。表2. 剪切速度对微囊的影响 剪切速度过慢,油溶性囊材异氰酸酯与水无法充分接触转化为其羧酸形态;剪切时间延长,异氰酸酯易自聚,无法与多元胺聚合形成稳定均相的囊材,对有效成分进行包裹。4. 水性囊材添加速度的影响脲醛树脂预聚体在油珠表面与多元胺发生缩聚反应,多元胺滴加速度对微囊粒径大小及分布也有较明显的影响。表3. 水性囊材添加速度对微囊粒径大小及分布影响 多元胺与异氰酸酯反应剧烈且易触发副反应,如果滴加速度过慢,异氰酸酯自聚,无法与多元胺聚合成囊;滴加速度过快,导致油珠碰撞聚并、缩聚反应速率加快,急剧沉积致微囊粒径分布变宽,所得微囊也常有凹陷。二、微囊悬浮剂质量采用优化后配方组成,分别应用常规反应器和微通道反应器各配制4批23%高效氯氟氰菊酯微囊悬浮剂,相关指标结果如下。表4. 不同反应设备产品质控指标对照 三、工艺比对作者对微通道技术与传统工艺参数进行了比较。表5. 加工工艺对比情况 由上表可以看出,连续流微通道反应器可以精准控制反应物料配比、反应温度和反应时间,且设备体积小、持液量少、节能环保,无放大效应,制备无批次差异,产品质量稳定。四、田间药效实验对比通过田间药效试验对比分析,康宁连续流微通道反应器制备的23%高效氯氟氰菊酯微囊悬浮剂在防治甘蓝菜青虫田间药效试验中表现良好。 表6. 23%高效氯氟氰菊酯微囊悬浮剂防治甘蓝菜青虫田间药效试验 总结通过采用界面聚合法进行23%高效氯氟氰菊酯微囊悬浮剂的制备;优选囊芯溶剂用量、芯壁比、剪切速度和时间、水性囊材添加速度等各反应条件,并结合微通道反应器,很好地解决了对反应物料无法精确瞬间配比、无法避免副反应、耗能大、刺激强等问题;可以实现连续化生产,是农药加工领域重要的发展方向。参考文献:《农药.》2022,61(08)
  • “悦动指尖· 纯水传奇” - 默克全新Milli-Q® IQ 7000水纯化系统面世
    p  strong——纪念默克第一代超纯水系统发布50周年/strong/pp  2017年5月16日,中国上海——全球领先的科技公司默克在上海举办”悦动指尖· 纯水传奇”Milli-Q® IQ 7000水纯化系统新品发布会,回顾了Milli-Q水纯化系统五十年来的创新历程,向近200名行业伙伴展示了第七代创新科技Milli-Q® IQ 7000水纯化系统的革命性的简洁与高效率特性。此次新品发布也标志着默克向全世界的实验室科学家们持续提供超纯水解决方案已迈入第50个年头。纯水品牌50载,不断传承改革和创新的理念。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201705/insimg/a1f7b767-64e2-4382-85e8-71ed3a3663de.jpg" title="密理博.jpg"//pp style="text-align: center "Milli-Q® IQ 7000水纯化系统/pp  “人们在实验室科研方面已取得了重大进展,尽管如此如今的科学家们仍在积极寻求提高数据重现性和可靠性的方法,”默克执行董事会成员兼生命科学首席执行官吴博达(Udit Batra)表示,“我们的客户正在寻找紧凑的、符合人体工程学的系统和软件,从而更快地推动科学发展。我们最新的水纯化系统能够解决这些痛点,使科学家们将精力集中在解决问题上,100%的经历投入到科研工作中。这一全新系统体现了默克一如既往在超纯水技术领域的开拓和创新。”/pp  半个世纪以来,默克一直以来是实验室科学家们的首选合作伙伴,凭借出色的水纯化系统和专业服务,为科学家们提供科研所需的实验室用水解决方案。/pp  为确保其超纯水解决方案满足客户应用日益多元化的要求,默克将客户反馈和其专业的工程和技术知识相结合,研发了全新的Milli-Q® IQ 7000水纯化系统,配备创新的智能化的人机交互系统和全新人体工程学的取水手臂,更小巧优雅、更易于操作,具备以下功能:/pp  · ech2o® 新型无汞氙激发紫外灯/pp  · 创新的人机交互系统,配备高清晰智能触摸屏,使操作更便捷、灵活化/pp  · 可通过集成数据管理系统轻松连接到实验室网络,使信息获取更快速便捷/pp  · 为报告的生成提供可追溯性和无纸化传输环境/pp  · 符合人体工程学的、精确的取水轮,为超纯水分配速率提供更多选择-从逐滴分配至2升每分钟/pp  · 占用空间更小,创新的安装方式,具备更小更整洁的使用空间/pp  默克的领先品牌Milli-Q® ,已然成为实验室纯水的代名词,也是在全球科研文章中被引用最多的品牌。Milli-Q® 水纯化系统的纯化介质由默克独家研发和检测,使默克成为全世界实验室提供最纯水质的供应商。/pp  “中国市场对于默克具有重要的战略意义。在生命科学业务领域,我们致力于为中国生命科学科研、制造和政府机构提供高质量的纯水解决方案,帮助提升行业用水规范。相信Milli-Q® IQ 7000水纯化系统的创新超纯水解决方案能够助力提高工作效能、安全性和生产力,以推进中国科学研究的发展。”默克中国生命科学业务董事总经理卫政熹(Steve Vermant)表示。/pp  默克的Milli-Q® IQ 7000水纯化系统已于2017年四月开始在全球发售。/ppbr//pp strong 关于默克/strong/ppspan style="font-family: 隶书, SimLi "  默克是一家全球领先的科技公司,专注于医药健康、生命科学及高性能材料三大领域。全球约有5万名员工服务于默克,他们致力于推动技术进步,改善人们的生活,从应对癌症活多发性硬化症的生物疗法、应用于科学研究和生产的尖端系统,到智能手机和平板电视的液晶材料。2016年,默克在66个国家的总销售额达150亿欧元。/span/ppspan style="font-family: 隶书, SimLi "  默克创建于1668年,是世界上历史最悠久的医药化工企业。默克家族作为公司的创始者至今仍持有默克大部分的股份。位于达姆施塔特的默克在全球拥有“默克”这一名称和品牌的所有权。仅有的例外是在加拿大和美国,默克在这两个国家使用的名称是EMD Serono,MilliporeSigma 和 EMD Performance Materials。/span/ppbr//p
  • 分子互作仪新品盘点|技术多元化,谁将成为“黑马”?
    ——2022上半年生命科学仪器新品盘点系列分子互作仪作为研究分子间相互作用的重要工具,在生命科学、临床医学、食品安全、环境检测和药物筛选及相关药物动力学检测等研究中发挥了重要作用。今年年初马尔文帕纳科收购了瑞士光学生物传感器领军企业Creoptix公司,并在6月携专利光栅耦合干涉(GCI)技术推出了WAVE分子间相互作用仪,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据;赛多利斯则是布局多元化非标记分子互作分析平台,推出新一代SPR分子互作分析仪Octet SF3;NanoTemper携光谱位移技术推出了高通量亲和力筛选平台Dianthus,弥补了SPR技术和ITC技术在亲和力筛选应用的不足;上海量准则是推出小型桌面式NanoSPR One分子互作分析系统以及长沙诺司康推出自主研发NSK-T(III)型高频石英晶体微天平生物传感仪。为了方便大家熟悉了解分子互作仪新品的看点与亮点,小编特别进行了一期简评,供大家学习了解。马尔文帕纳科:新一代动力学技术 WAVE分子间相互作用仪2022年6月2022年6月29日,马尔文帕纳科在线发布了创新型产品WAVE分子相互作用仪,不同于传统的基于表面等离子共振(SPR)技术的解决方案,WAVE系统采用专利的光栅耦合干涉(GCI)技术,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据。另外,采用无堵塞微流控芯片设计,适用于多种不同类型样品,确保样品活性和生物学特性,节约了纯化步骤所需时间以及避免流路堵塞等问题。新品WAVE分子相互作用仪还具备高时间分辨率,能够准确表征解离速率大于10s-1的分子间相互作用的动力学,兼容48,96,384板任意组合,长达120小时的无人值守运行。Creoptix WAVE 分子相互作用仪小编简评:瑞士Creoptix公司是光学生物传感器的领军企业,拥有业内高灵敏度的WAVE生物分析系统,马尔文帕纳科公司于2022年1月22日宣布完成对其收购,该款新品展示出马尔文帕纳科为积极开拓上游药物发现领域解决方案做出的重要举措之一。赛多利斯: OctetSF3新品发布 打造多元化非标记分子互作分析平台2022年5月2022年5月,赛多利斯全新推出Octet SF3 (SPR)分子互作仪。作为新一代SPR分子互作分析仪,Octet SF3从技术原理、仪器性能、操作便捷度等方面进行了全面升级优化,相比普通多循环或单循环动力学分析技术,用户能够在更短的时间内生成高质量的动力学和结合亲和力数据。新品Octet SF3单次无人值守检测的样本通量高达768个样品,采用OneStep进样技术,只需简单制备一份待分析样品溶液,即可自动为动力学和亲和力分析创建一个完整的浓度梯度,从而简化实验开发和操作。使用NeXtStep™ 进样技术,能够从单一分析物浓度确定分析物在多个竞争分子存在的情况下的完整动力学和亲和力。赛多利斯 Octet SF3 (SPR)分子互作仪小编简评:在非标记生物分析领域,BLI和SPR技术一直占据主流地位。随着赛多利斯推出新一代SPR分子互作分析仪Octet SF3,旗下的产品序列变得更加丰富多样,为打造多元化非标记分子互作分析平台迈出实质性一步。上海量准:个人型生物分子相互作用仪2022年5月2022年5月1日,上海量准发布了个人型生物分子相互作用仪—NanoSPR One,小型桌面式外观,使用场景灵活;配套云平台,快速分析数据;多样化的芯片便面修饰。NanoSPR One分子互作分析系统以纳米微阵列生物芯片为检测基质,通过检测NanoSPR芯片的共振反射或吸收峰强度变化来测定分子之间的相互作用,无需标记,能够提供高质量的动力学、亲和力及特异性等生物信息。NanoSPR One 生物分子相互作用仪小编简评:NanoSPR One生物分子相互作用仪体积小巧,极大地节约了宝贵的实验室空间,同时价格相对可观,降低了分子互作仪的置入门槛,让每一个生命科学研究实验室都有机会拥有一台自己的分子互作仪。NanoTemper:携光谱位移技术 推出高通量亲和力筛选平台Dianthus2022年4月2022年4月20日,NanoTemper发布了全新高通量亲和力筛选平台Dianthus。它是首个使用光谱位移技术(Spectral Shift)的亲和力筛选平台,并且采用温度依赖的荧光强度变化(TRIC)这项成熟技术对光谱位移技术进行补充,使得Dianthus可以灵敏检测更多真正的结合分子,提供高质量的数据。Dianthus检测流程相当简单,仅需1分钟即可精确计算样品间的kd值,且可在33分钟完成384孔板检测,满足高通量筛选的需求。检测是在溶液中进行且不依赖于分子量变化,无需担心分子量过低而漏掉有价值的hits。此外,Dianthus是基于微孔板、无微流控系统的亲和力筛选平台,无需清洗维护。NanoTemper Dianthus高通量分子互作筛选系统此外,NanoTemper在今年3月也发布了另一款新品NanoTemper PR Panta 无标记TSA分析仪,结合了微量差示扫描荧光nanoDSF (nano Differential Scanning Fluorimetry)技术、动态光散射DLS (Dynamic Light Scattering)技术、静态光散射技术(Static Light Scattering)和背反射(Backreflection)技术,具备数据质量高、检测速度快、样品消耗量少等独特的优势。NanoTemper PR Panta 无标记TSA分析仪小编简评:尽管光谱位移技术并非创新技术,但新品Dianthus是首个将该项技术应用于亲和力定量检测的仪器平台,弥补了SPR技术和ITC技术在亲和力筛选应用的不足,丰富了重要靶点和候选药物的亲和力筛选工具。长沙诺司康:频率最高400MHz 石英晶体微天平新品问世2022年1月2022年1月,长沙诺司康生物科技有限责任公司推出自主研发NSK-T(III)型高频石英晶体微天平生物传感仪,工作频率可达400MHz,精确测量纳克级甚至皮克级物质质量的传感技术。操作简单,可实现非标记检测生物大分子,可广泛地应用于疾病诊断、药物检测、环境检测、食品检测等多个领域。该仪器采用创新设计、模块化结构、PID模糊智能控温技术等能够进行在线检测生物分子靶向作用过程。长沙诺司康 NSK-T(III)型高频石英晶体微天平分析仪小编点评:NSK-T(III)型高频石英晶体微天平分析仪的显著优势不仅在于扫频范围达400MHz,而且采用模块化设计,可个性化定制。后记:分子互作仪的市场竞争相对温和,在过去长达二三十年的时间里,一直由思拓凡和赛多利斯这两家品牌主导。近年来,随着生命科学基础研究的不断深入和生物制药研发愈发火热,分子互作仪的需求在快速增加,同时,市面上也涌现出很多新仪器品牌参与市场竞争。赛多利斯为巩固自身市场地位,不断丰富自身产品线,打造多元化非标记分子互作分析平台。作为思百吉集团材料分析板块的马尔文帕纳科公司为开拓上游药物发现市场,收购Creoptix公司杀入分子互作赛道。德国NanoTemper作为后起之秀,不断研发新技术、新产品,努力帮助药物和生物科学研究人员加快新药发现和开发的进程。国产分子互作仪器厂商则是另辟蹊径,通过降低仪器置入门槛和使用门槛来开拓市场。此外,据小道消息得知Gator Bio公司将于年底推新一代高通量、高性能的BLI分子互作仪。该新品将搭载第二代hFc传感器,并且针对粗样将采用高敏AAV定量传感器和检测AAV空壳率的生物传感器。以上,就是小编为大家整理的2022年迄今为止分子互作仪器领域新品新技术的相关内容,更多仪器,请点击进入“分子互作仪”专场。找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、生命科学仪器、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类。
  • 单细胞icpTOF揭示精子细胞多元素分布规律
    不孕不育影响了全球约6-8千万夫妇。男性因素导致了约半数的不孕不育病症,精子质量差的是主要问题。因此,深入了解精子质量有助于男性不育症的预防和对应治疗。以往研究表明,多种化学元素(如Zn,Cu,Se等)在精液中发挥着重要的生理功能。相关的元素分析主要集中在精液或精浆上,而很少着眼于精子细胞。此外,常规的批量分析无法提供单个细胞的特定元素信息,模糊了细胞之间的异质性。单细胞电感耦合等离子体质谱法(scICP-MS)作为一种成熟的技术,能够填补这一信息空白。通过采用配备飞行时间分析器的ICP-TOF-MS,可以高通量且高灵敏地检测单个细胞的全谱元素含量(微信公共号‘单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例’)。 近期中科院生态环境研究中心阴永光研究员与中科院高能物理研究所王萌副研究员以及同济医院靳镭教授合作,使用scICP-TOF-MS(仪器型号:TOFWERK icpTOF 2R)实现了单个精子细胞的高通量全元素检测.icpTOF实验方法 研究人员首先通过离心分离细胞。再使用不含磷盐的有机缓冲液和多聚甲醛等渗固定剂清洗和固定细胞。之后再用纯水进一步清洗细胞,以去除干扰离子(主要是Na和Cl)。经处理的精子细胞在显微镜下形态完整,无基质干扰,因此提高了信噪比,也避免了ICP-TOF-MS仪器检测器饱和。icpTOF结果与讨论 在scICP-TOF-MS中,由于可以实现同时的多元素检测,研究人员将内源性元素作为细胞信号,同时分析其他信息,如外源性元素信息。磷元素(31P)在精子细胞中含量丰富,可作为细胞信号指示元素。在scICP-TOF-MS分析中,细胞信号和背景信号的P强度分布均可明确区分(图2A和图2B)。高时间分辨率的单细胞检测中,ICP-TOF-MS的P的信号峰和基线相比有明显且相对固定的信噪比。(编者注:如图1所示,icpTOF 2R的强大质量分辨率可更好区分干扰信号,有利于P元素的准确检测。在icpTOF全谱测量,没有为低质量数P元素灵敏度专门优化的大前提下,仍能取得较好的信噪比)。图1 icpTOF 2R ICP-TOF-MS可区分P信号和其他干扰信号。 该实验中,结合高时间分辨的连续单细胞实验结果,作者推断假阳性的信号大多来自细胞碎片,主要基于下列实验结果:1, 峰信号的元素组成特征更符合细胞碎片的特征,且有P信号存在时检测到的其他(内源性)元素质量显著高于没有P信号时的相应元素质量(图2C);2,流式细胞仪也证实精子细胞悬浮液中存在相当数量的细胞碎片。编者注:另外还可能有套实验数据可以用来辅助证明,细胞碎片的瞬时事件时长应该显著小于完整单细胞。TOFWERK icpTOF S2的超高时间分辨率在后续实验中可以用来验证这一点。通过计算细胞碎片率,相对于高质量精子,研究发现低质量精子样品中含更多的细胞碎片(图2D),这可能跟低质量精子细胞的形态异常等相关。图2 (A)scICP-TOF-MS测得的P信号分布图;(B)单细胞进样条件下,scICP-TOF-MS测得的实时P信号;(C)有P信号和无P信号同时检测到的Zn质量;(D)高质量和低质量精子细胞中的细胞碎片比例 细胞中元素的含量普遍表现出细胞异质性。该研究使用scICP-TOF-MS揭示了细胞中不同元素的异质性差异。结果表明,大多数元素表现出较高的异质性,而细胞的大量元素如P、Zn含量稳定,异质性则较低(图3A)。不同元素之间异质性的差异进一步凸显了多元素同时检测的重要性。 基于数以千计的单细胞事件,研究人员使用降维分析和分层聚类来提取每个样本中关键信息。降维分析的可视化展示直观地展示了多种元素在单细胞中分布规律或生理功能的相似性(图3B)。例如P、Zn、Cu在精子细胞中含量很高,是基本的组成元素,因此相似性很高。而蓝圈中的元素大多没有生理功能。聚类分析也为这些相似性提供了客观性证据(图3C)。图3 (A)异质性系数热图;(B)元素相关性降维分析投影图;(C)元素相关性的分层聚类图icpTOF总结这是第一份报告了使用scICP-TOF-MS在单细胞水平对动物细胞进行多元素分析的研究。该分析方法利于更好地了解细胞中元素分布的规律,以及细胞性质和元素分布之间的关联。参考文献原文:Tian et al., Single-cell multi-element analysis reveals element distribution pattern in human sperm, Chemical communications, 2023, DOI: 10.1039/d3cc01575k作者团队简介:阴永光,中国科学院生态环境研究中心研究员、博士生导师。主要研究方向为有毒金属的形态分析与环境转化。王萌,中国科学院高能物理研究所副研究员。现主要开展基于质谱技术的单细胞分析和生物成像方法及应用研究。靳镭,华中科技大学同济医院附属同济医院生殖医学专科主任,二级教授,主任医师,博士生导师。主要擅长生殖医学、男女性不孕症等。
  • 玩具企业拓展多元化市场 挑战与机遇并存
    中国是一个玩具制造大国,产量中约有百分之八十用于出口,欧美为主要出口市场。受金融危机影响,中国玩具出口呈现下降态势,外贸环境遇到挑战。今年上半年,中国同欧盟、美国这两大经济体的双边贸易总值同比分别下降20.9%和 16.6%。世界经济形势的变化向以出口为主要贸易方式的企业发出警告。然而,出口的道路不只一条。为摆脱不利局面,获得外贸增长方式的多元化,玩具企业应迅速调整出口战略,加大新兴市场的开拓力度,争取新商机。  本文将就当前的出口环境及经济形势展开分析,并重点介绍新兴市场的发展状况,为玩具出口企业打通多元出口渠道提供建议。  一、金融危机效应持续 玩具出口规模收窄  中国历来是世界玩具产品的主产地。然而,如今的国际经济环境让主要依靠出口欧美等发达国家的玩具制造企业遭遇重创,出口部门也最早感受到了金融危机的寒意。对于80%以上的产量用于出口的中国玩具业,自去年10月份以来出口规模就明显缩小。今年2月,玩具出口创去年以来月度最低。统计数字显示,今年上半年,全国玩具出口为28.5亿美元,比去年同期下降14.2%(如图一)。虽然6月份出口额环比上涨了17.9%,略有回暖迹象,但中国玩具产业仍未摆脱金融危机的影响,形势依然严峻。  为抑制中国玩具出口过快下滑,降低金融危机对玩具出口的影响,今年6月1日,中国年内第三次调高出口退税率,玩具的出口退税率已至15%。然而,在全球金融危机持续的今天,作为非生活必需品的玩具,外部市场需求仍将继续低迷。5月7日闭幕的第105届广交会中,玩具订单成交额下降36.6%,明显高于本届广交会总体成交额下降16.9%的跌幅,是交易商品中下降最多的品种。[ii]另外,由于人民币升值因素的作用,国外买家追求更加低廉的成本,进一步压缩了出口利润,来自越南、菲律宾等周边国家的竞争压力显现,中国玩具企业本已微薄的利润空间受到明显挤压。  二、国际技术壁垒考验频仍 企业成本被动攀升  当前玩具出口量下降,订单减少,一方面是由于欧美玩具销售商为降低经营风险,缩减了对外采购量 另一方面,玩具主要出口市场近年来不断出台的环保、安全标准提高了玩具准入门槛,基于贸易保护而实施的技术壁垒,导致企业生产成本不断增加,出口阻力进一步加大。  近年来,中国玩具在欧美市场遭遇的“质量门”事件不断。2008年,CPSC发出产品召回通报402项,其中,中国产品被召回的通报为222项,占同期召回总数的50%以上。而中国产品中玩具及其它儿童用品[iii]又占115项,占比51.8%(如图二)。[iv]2008年,欧盟非食品类商品快速报警制度(RAPEX)针对不安全产品共发布通报1520次,涉及到中国产品的有855次,占总数的56.3%,其中玩具产品的召回次数占总量的55%,达到467次(如图三)。[v]几个数字均超过总数的一半,一方面说明中国产品在欧美市场的占有率很高,另一方面也给出口企业的的质量管控问题敲响了警钟。  透过研究召回案例,我们注意到造成玩具质量问题的原因是多方面的,然而欧美市场日益提高的质量安全标准却是其中的重要因素。美国于去年11月开始实施的《消费品安全改进法案》(CPSIA),覆盖范围涉及所有包括玩具在内的消费品,对含金属铅和邻苯二甲酸盐的物质进行了严格的强制限定,几乎达到“零容忍”。2008年12月,欧盟出台的2009/48/EC《玩具安全指令提案》,修订了化学、机械物理、电性能、标识要求等多个安全方面的要求。,在化学方面,禁止了一切过敏物质在玩具中的使用。除了这两个对玩具产品影响最大的法规之外,欧盟目前管控范围最广的化学品安全法令----REACH法规,已经结束预注册,一旦正式实施,纺织服装、玩具等10多类上万种商品将受到直接影响。又由于该法规程序繁琐、检测项目众多,保守估计中国出口欧盟商品成本会因此平均提高10%—20%。[vi]2009年欧盟还要求含有富马酸二甲酯(DMF)的消费品不得投放欧洲市场。据不完全统计,2008年以来,世界范围内已经有近40个国家或地区出台或修订了消费品的安全环保标准,这一发展趋势仍将继续。  国内玩具业界要获得可持续发展,克服日益频繁的海外技术壁垒的影响,必须改变出口方式,开拓多元化出口渠道,挖掘内销市场发展潜力,转变贴牌加工的生产模式,加快走向自主创新和品牌建设的步伐。今天的市场,会用两条腿走路并不新鲜,多一条腿就有可能探索出多一条出路。  三、抓住新兴市场的发展机遇 多元化出口展露新商机  中国的玩具业还是原来的玩具业,但是市场已经发生了翻天覆地的变化,曾经以欧美市场为主要出口目的地的局面终将被打破。  根据广州海关统计数据显示,2008年,由于受金融危机影响较小,俄罗斯、巴西、中东等新兴市场对中国玩具的进口量呈现较快增长,其国内市场需求强劲,成为中国出口的主攻对象。事实上,俄罗斯的订单从2006年开始就以每年30%-50%的速度在增长。而像中东、南部非洲等一些资源型国家受益于近年能源价格的飞涨,积累了很多的财富,他们的订单也是上升的,所以市场上英文包装一统天下的局面在逐渐改变。对新兴市场出口的大幅增长,在一定程度上弥补了欧美市场订单减少带来的损失。  俄罗斯  当前,中国企业的海外经营范围较窄,主要集中在美国、欧洲等地。这种情况无疑会加大经营风险。其实,新兴市场和发展中国家市场具有很大潜力。世界200多个国家和地区,发挥中国生产力的地方还有更多。由于历史原因,俄罗斯的轻工业一直比较薄弱,而中国在这一领域则是长线。  尽管由于一些历史原因,俄罗斯经济曾经出现过严重倒退,但是近些年的经济改革措施让这个曾经的巨人重新回到了经济舞台。2008年其经济总量排在美日中及欧盟国家之后,位列第八。  俄罗斯儿童用品的消费群体很大。至2002年底,俄14岁以下儿童为2700万,庞大的消费群令儿童商品市场发展迅速,玩具市场已成为最具发展前景的市场之一。目前,在俄小城市,人均年购买儿童用品的消费额约为50美元,中心城市约为100美元至150美元,城市富裕阶层孩子的花费约为250美元至300美元,而在莫斯科这一数字可以达到500美元。据专家评估,俄罗斯儿童用品市场容量估计为每年60亿美元至70亿美元,并且还以每年15%至20%的速度增长,其中儿童玩具销售额年增长率为30%。[vii]虽然和欧洲、日本等地的玩具市场相比,中国对俄罗斯市场的玩具出口量暂时相对较小,但也正因为如此,巨大的市场潜力蕴藏着无限商机。调查发现,有30多个国家的玩具供应商向俄罗斯提供玩具,其中最主要的就是中国。中国制造的儿童玩具,因为品种齐全、价格合理,吸引了不少俄罗斯客户,约占俄罗斯玩具市场份额的70%以上。在俄罗斯的进口玩具中,塑料玩具占约75%的份额,这是俄罗斯生产技术水平落后(特别是模压注塑工艺落后),无法生产高品质的塑料产品导致的。 今年1-5月,中国成为俄罗斯第一大贸易伙伴,更增加了我们对这一市场的期待。  南美  对于正在为玩具外销不畅而踌躇的出口企业来说,日益崛起的南美市场吸引了越来越多的关注目光。在南美洲,中国玩具的主要外销市场包括阿根廷、巴西、智利和秘鲁等国。2009年5月中国出口南美玩具同比增长3%,总额为441万美元,较4月份有显著的增长。  以秘鲁为例,中国已成为秘鲁在亚洲第一、世界第二大贸易伙伴。据统计,今年前9个月,秘鲁从外国共进口2000万美元的儿童玩具,其中产自中国的儿童玩具为1550万美元,占总进口额的75%,中国玩具在秘鲁的受欢迎程度可见一斑。  南美大国巴西,幅员辽阔,资源丰富,是南美经济中的中坚力量,经济实力居南美各国之首。同时,巴西也是“年轻”的国家,近两亿的全国人口中,14岁以下儿童占24.9%,儿童人口比例远高于发达国家水平,形成了一个庞大的消费群。作为拉丁美洲地区最大的经济体,受益于政府稳健的政策,巴西经济近年在通货膨胀降低的 同时,保持了全面增长,抵御外部冲击能力有所增强。2008年前三个季度,巴西实际GDP同比分别增长5.9%、6.1%和6.8%,保持了较高得水平。尽管金融危机对巴西经济造成了一定冲击,今年1-5月,经济有所下滑,但是身为“金砖四国”之一,其抵御风险的能力已然增强。经合组织6月发布的经济展望报告认为,部分新兴经济体经济目前已开始复苏,明年将先于发达经济体大幅反弹,其中巴西明年的经济增长率甚至会高于2008年(如图五)。[viii]据巴西官方统计,2008年巴西与中国双边贸易总额为364.42亿美元,中国已经成为巴西第二大贸易伙伴,仅次于美国。  中东  由于天然的地理优势,中东地区凭借得天独厚的能源资本,当地人们的生活颇为富足。在中东,每一个孩子平均每年在玩具和电子游戏上的消费额为327美元,是欧洲孩子的两倍,成为继北美之后的第二大玩具消费地区。同时,该地区年人口增长率超过6%,是世界上人口增长最快的地区之一。中东玩具市场每年的价值近15亿美元,并以11.8%的年增长量快速上升。  过去5年,中国对非洲、拉美和中东的出口额已经从380亿美元上升至1920亿美元。实际上,中国最近已经超过美国,成为对中东的最大出口国。[ix]今年前五个月,中国出口中东玩具总额 1.8亿美元, 在当前的经济环境下,创造了不错的出口成绩(如图六)。  今年3-5月,中国输往中东的21个玩具品类中,有13个品类出口额比去年同期增长,最小增幅5%,最大增幅248%,总额增长8%。3月、4月传统玩具、百音盒及装置出口同比增长显著,童车及配件增长约10% 4月、5月节庆品均有成倍增长。5月份,三轮车、踏板车和类似的带轮玩具出口中东占第一位,出口额达 848万美元。  东盟  东盟拥有人口5亿多,地域面积超过450万平方公里,是一个具有相当影响力的区域性组织。近些年来,中国同东盟组织的密切交往,有力地推动了同这一地区的经济往来。由于历史原因,华人在东盟国家中占有重要经济地位。地缘优势、人缘优势带来的经济优势正愈来愈显现出其潜在动力,未来的发展空间不容小觑。据东盟各国官方预计, 2008年印尼的经济增长率为5.2%,马来西亚为5.5%,菲律宾为4.6%,新加坡为1.1%,泰国为2.6%,越南为6.5%。[x]  中国----东盟自由贸易区自建设以来,双方贸易发展迅猛,据官方统计,截至2008年年底,东盟为中国的第四大贸易伙伴,双边投资额达到约600亿美元,双边贸易额达到2311亿美元,较上年增长近14%。[xi]。随着中国----东盟自贸区的建成,越来越多的省份重视发展与东盟的经贸合作,而且各领域合作和次区域经济合作正逐步展开。虽然金融危机席卷全球,但2008 年中国与东盟的双边投资不减反增。  玩具业在中国东盟自由贸易区关系当中,基本上以贸易形式为主。东盟十国中除泰国、印尼有少量玩具生产外,其市场供应的玩具大部分依靠进口,而其中大部分来自中国,特别是广东。东盟与广东地理位置邻近,文化相似,在经济上存在很大的发展空间。今年上半年,作为中国玩具出口主战场的广东省,对东盟的玩具出口值达到1.1亿美元,大幅增长1.1倍。  东盟的马来西亚,每年从中国进口玩具逾1500货柜,货值超过1.5亿元人民币,其中广东占了1200个货柜,是东盟从中国进口最多的国家之一。[xii]马来西亚人均月收入约合人民币2000元,其经济实力和生活水平在东盟十国中仅次于文莱和新加坡。  印度尼西亚人口2.3亿人,是世界第四大人口国。印尼受金融海啸影响,经济受到较大削弱,加上人口众多,人民生活水平较马来西亚差。从玩具销售来说,主要以中低档为主。印尼本国玩具生产不多,大部分依靠进口。  明年1月1日,中国----东盟自由贸易区将基本建成。届时,中国与东盟超过九成的产品贸易关税将降为零。建成后的中国----东盟自由贸易区将是一个拥有近19亿人口、3万亿美元国内生产总值、2.5万亿美元贸易总额,成为继欧盟、北美自贸区之后的“未来世界第三大经济体”,也是世界上拥有消费者最多、覆盖面积最大人口、发展中国家之间最大的自由贸易区。  外销出口一直是中国玩具的重头戏,但随着出口环境的变化和中国经济的快速发展,内销市场正越来越受到原来只做OEM玩具厂家的重视。在上一期的《FOCUS》中,我们对这一市场的现况、前景、容量、发展手段等进行过详细分析,这里不再赘述。  四、多元化出口市场 挑战与机遇并存  新兴市场的崛起向玩具企业展示出新的生机,除欧美等传统地区外,玩具出口企业其实还有更加广阔的市场可以开发。虽然这些市场目前的实力还远不及美欧,但是其迅猛的发展速度,巨大的发展潜力不可忽视。  当然,这些新兴市场对进口产品的技术性贸易措施也是不可掉以轻心的。例如,在俄罗斯,对食品、家用电器、电子产品、化妆品、家具、玩具以及陶瓷等产品是实施强制认证的。无论是国产还是进口,都必须获得俄罗斯强制认证证书(GOST)方可上市销售。同时,俄罗斯70%的质量标准与国际标准不一致,部分安全系数标准甚至高于一般发达国家。  在南美的巴西,今年对包括玩具、鞋子、成衣在内的24种进口产品实行许可证制度,影响到部分中国产品对巴西的出口。  在亚洲的印度,由于和中国的产业结构相似,给当地工业带了不小压力,近期对我国产品实施的贸易保护措施越来越多。今年,印度政府一度对中国玩具下达“禁令”,这在短期内受到了部分印度玩具生产厂家的欢迎,使得印度本土生产的玩具市场占有率上升。但是,禁令实施一个多月时,印度市场玩具价格也上涨30%到100%不等,最终损害了印度消费者的利益。  尽管如此,相较于美国的CPSIA,欧洲的2009/48/EEC这样严格的玩具安全标准,上述新兴市场国家对玩具的安全性要求还相对较松,玩具出口企业完全可以利用这暂时的缓冲时间迅速占领这一市场,同时,为自己企业的转型创造时间。毕竟,未来的市场对产品的环保性、安全性会越来越重视,这一趋势不可改变。  同时,我们还应该注意到,由于介入这些新兴市场的时间还不长,当地的市场体系建立尚未充分、成熟,大多数企业对当地的法律法规、产品的安全性规范并不熟悉,特别是对于像俄罗斯这类对产品的质量要求体系和欧美的主流标准有所差异的市场,企业很容易因为不了解情况受到市场的挑战,而并非因为产品安全这样的技术原因。因此,出口企业在转向发展新兴市场之前,最好向Intertek这种专业的第三方检测机构详细咨询,了解清楚当地的法规制度,质量检测标准,环保检验程序。Intertek作为一家国际性的质量安全公司,其专业意见将帮到企业节约出口成本及时间,最快、最安全地达到目标市场。  市场多元化战略就是全球化市场战略,其首要目标是在全球建立合理、平衡市场布局,并不单纯依靠某一特定市场,使出口贸易能够持续、健康地发展。同时降低市场集中度,分散市场风险,减少贸易纠纷,规避贸易及非贸易壁垒,提高市场应变能力。这就意味着出口企业不能只把目光停留在欧美等发达国家市场,别把鸡蛋放在一个篮子里。实践表明,选取受金融危机直接影响较小、与中国产业结构或者贸易结构有所互补的国家,更容易获得利益。通过一些展会的调查也发现,低端市场比欧洲这样的高端市场更容易获得利润。  尽管中国玩具制造业正在经历一场严峻的考验,但是由于玩具制造业仍然属于劳动密集型产业,相对于发达国家而言,中国玩具业已经形成了完备的产业链,因此仍具有竞争优势。玩具出口企业应在充分利用自己制造优势的同时,加强自我创新能力,在巩固美日欧等传统市场的前提下,大力开拓新兴市场,迎接新经济形势下的新挑战。
  • 【安捷伦】ICP-MS 期刊 | 单细胞纳米多元素分析,附送解决方案
    不同元素在细胞中的作用,是目前细胞生物学中前沿的研究领域之一。在相关的研究当中,如果能在一次分析中得到单个细胞中的多个元素的信息,将会在提高实验效率的同时,也为研究人员提供更多的研究空间。本期向您介绍高灵敏度、多元素的单细胞分析方案,为帮助您检测单个细胞中的阿克 (ag, 1.0 × 10-18g) 级的多种元素。本期推荐阅读 使用 Agilent 7900 ICP-MS 在 scICP-MS 模式下进行单细胞分析仅使用 100 μL 样品测量单细胞中的四种元素许多元素对细胞健康至关重要,元素不平衡、缺乏或过量都可能会破坏自然细胞过程。传统细胞中金属元素的分析方法需要进行样品溶解、提取或消解,然后利用原子光谱进行分析。这些样品前处理步骤会破坏细胞结构,使得报告中的金属浓度结果为数千个细胞的平均值。在单细胞 ICP-MS (scICP-MS) 中,样品溶液中包含的完整细胞被雾化,各个细胞悬浮在气溶胶液滴中。之后,使用成熟的单纳米颗粒 ICP-MS (spICP-MS) 分析方法将各个细胞引入等离子体中,即可对单细胞中的金属元素进行有效分析。实验部分本实验使用水溶液配制酵母细胞样品,采用配备可选的集成样品引入系统 (ISIS 3) 的 Agilent 7900 ICP-MS 进行分析,利用 Agilent ICP-MS MassHunter 软件的单纳米颗粒应用模块的快速多元素纳米颗粒分析模式进行方法设置、采集和数据处理。结果与讨论- 细胞雾化和传输效率为确定细胞传输效率,将 ICP-MS 计算得出的细胞数量除以通过显微镜计数得出的细胞数量。使用此方法,得出细胞传输效率为 25%。确保大量细胞得到雾化和分析,可提高数据的准确度。- 信号分布使用 scICP-MS 在多元素模式下分析单细胞。31P+、34S+、56Fe+ 和 66Zn+ 的信号分布如图 1 所示。通过在样品前处理程序的离心和缓冲液置换步骤中充分清洗细胞,可以明确区分单细胞中各种元素的信号与背景信号。图 1. 单细胞中四种分析物的信号分布- 平均质量表 1 所示的 P、S、Fe 和 Zn 的平均质量数据由 ICP-MS MassHunter 软件自动计算得出。除核酸和蛋白质的主要成分 P 和 S 以外,还测量了各个细胞中亚飞克 (fg, 1.0 × 10-15g) 级的 Fe 和 Zn。表 1. 单细胞中各种分析物的平均质量(阿克)和精密度 (n = 3)结论安捷伦多元素 scICP-MS 方法能够用于详细测量和研究多种金属在细胞生物学中的作用。该技术提供了有关单个细胞中固有金属含量和金属缔合物的有价值的信息。scICP-MS 还可用于研究细胞对金属和含金属纳米颗粒的吸收、累积和释放。访问 www.agilent.com/zh-cn/products/icp-ms/icp-ms-systems,详细了解安捷伦 ICP-MS 系统。关注“安捷伦视界”公众号,获取更多资讯。
  • 交流活动 | 热烈欢迎海外客户莅临杰普仪器参观、交流与合作,共同探索国内外水质测量多元化发展!
    合作新动力 未来新发展近日,杰普仪器公司为迎接海外客户到访,举办了一场跨国产品交流会,与海外客户进行产品技术等方面业务沟通,各路外宾齐聚杰普仪器公司,共同参观、学习、交流和培训,公司各级领导代表事业部销售经理,技术经理,工厂管理人员等一行共同出席,全程陪同本次外宾考察接待活动,以热情欢迎远道而来的朋友们。双方交流活动现场本次交流活动杰普团队准备了丰富内容,会议涵盖多方面:从公司参观交流、企业文化、产品展示、水质测量知识、仪器仪表维常规培训、产品深度应用指导、工程维修维护、未来行业发展等内容,为海外用户提供了深度学习与交流的机会,达成友好合作的平台。01关于杰普JENSPRIMA仪表远销全球30多个国家和地区:英国、中国台湾、香港、希腊、新加坡、印度、越南、土耳其、肯尼亚、泰国、迪拜、以色列、马来西亚、南非、韩国、墨西哥、印度尼西亚、文莱、秘鲁、塞浦路斯、巴基斯坦、斯里兰卡、摩尔多瓦、哥伦比亚、毛里求斯、孟加拉、萨尔瓦多、智利等。02产品应用杰普仪器产品涵盖在线水质分析仪、过程测量仪表和实验室水质仪器,应用于各个行业水质监测和过程控制,为全球用户提供水质测量解决方案,为企业进行多元化定制满足水质多参数测量需求。03新品介绍●数字传感器浊度、污泥浓度、pH、电导率、氯离子、氟离子、余氯●SDI分析仪-污染指数分析仪主要用于反渗透系统SDI的在线监测●颗粒电荷分析仪主要用于水处测量胶体电荷●酸碱浓度/盐度分析仪感应式电导率,0-2000mS,可测酸碱浓度、盐度●双通道雷达液位计雷达比超声波测量更准确,抗干扰更强●双通道泥位计更经济,性价比更高●磷酸盐分析仪主要用于工业锅炉磷酸盐的在线监测●更多双通道仪表用户可自由选择两个测量参数,杰普仪器为用户提供定制服务04产品演示在进一步了解杰普企业后,用户充满兴趣的进入产品演示环节,双方交流中,谈及随着企业产品全球化,用户多元化,行业水质测量需求变化,相关产品能否准确地解决客户的实际需求和问题。满足行业用户痛点、需求以提供实际性个性化的解决方案尤为重要,对于用户感兴趣的产品及期望后续业务拓展方向,杰普也分享了制药纯化水和工业锅炉领域丰富的经验,并把行业应用的仪表产品系列进行深入详细的介绍交流。现场产品介绍现场为用户展示制药行业应用仪表系列纯水pH、ORP、高温电导率、浊度、臭氧和SDI分析仪多款产品,产品型号总硬度PACON5000、PACON4800、PACON4200、innoCon6800与不同测量参数电极,及新品数字控制器、在线余氯/总氯分析仪PACON2501等。仪表操作演示交流结束来宾对公司产品创新能力、规范化的生产流程、严格的质量管理给予充分肯定,并表示对之后紧密合作充满信心。此行来访杰普仪器,更加强双方合作共识,加快业务合作发展,期待长期合作,深化双方友好合作注入新的动力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制