当前位置: 仪器信息网 > 行业主题 > >

聚烯烃膜材料与鱼眼

仪器信息网聚烯烃膜材料与鱼眼专题为您整合聚烯烃膜材料与鱼眼相关的最新文章,在聚烯烃膜材料与鱼眼专题,您不仅可以免费浏览聚烯烃膜材料与鱼眼的资讯, 同时您还可以浏览聚烯烃膜材料与鱼眼的相关资料、解决方案,参与社区聚烯烃膜材料与鱼眼话题讨论。

聚烯烃膜材料与鱼眼相关的资讯

  • 聚烯烃新材料研发的突破性手段
    由北京亿路达机电设备有限公司做为主赞助商的全国塑料标准化技术委员会及各分会2017年年会暨标准审查会于2017年11月20-23日在成都家园国际酒店召开。本次会议TC15的7个分会人员和行业内人士近300人共聚一堂,大会期间总会和各分会代表分别做了2017年总结、讨论了2018年工作计划,并且对相关标准进行了表决。北京亿路达机电设备有限公司总经理史清军先生携销售经理张原先生和相关技术人员参加了此次会议。在会议中,公司总经理史清军先生向大会做了聚烯烃表征新技术的精彩报告,深入浅出地讲解了西班牙Polymer Char公司的聚烯烃表征技术,与会人员对从微观结构上了解树脂性能差别的根本原因及相关表征技术有了新的认识,很多参会人员认为西班牙Polymer Char仪器将是聚烯烃微观结构表征突破性发展的助力,将彻底解决以前靠经验或“摸着石头过河”开发新产品的困惑局面。 亿路达公司总经理史清军先生在大会期间做报告
  • “十四五”指导意见:炼化+乙烯+高端聚烯烃+新材料成为当下“潮流”!
    近日,工业和信息化部等六部门联合印发《关于“十四五”推动石化化工行业高质量发展的指导意见》(工信部联原〔2022〕34号)发布。《指导意见》中指出,到2025年,大宗化工产品生产集中度进一步提高,产能利用率达到80%以上;乙烯当量保障水平大幅提升,化工新材料保障水平达到75%以上。引导烯烃原料轻质化,加快原油直接裂解制乙烯、合成气一步法制烯烃的技术开发应用,增强高端聚合物供给能力,加快发展高端聚烯烃,创建高端聚烯烃创新中心。从中国石化、中国石油,万华化学、再到浙江石化、恒力石化、盛虹炼化、卫星化学、宝丰能源等民营企业在全产业链布局中,都在着力发展大乙烯+高端聚烯烃或者大乙烯+化工新材料路线。1、加快原油直接裂解制乙烯技术开发应用通过技术变革,原油制化学品的比例已从10%提高到76%,有望达到80%。原油最大化生产化工原料总体上分为芳烃和低碳烯烃两条路线。对于以生产低碳烯烃为主的工艺路线,催化裂解是核心技术。原油最大化生产低碳烯烃主要有三个方向,即最大量乙烯、最大量丙烯、最大量兼产丙烯和乙烯。催化裂解是原油最大化生产低碳烯烃的核心技术,催化裂解原料来源广泛,可以是常规催化裂化(FCC)的各种重质原料,包括减压蜡油(VGO)、脱沥青油(DAO)、焦化蜡油(CGO)、加氢减压蜡油(HT-VGO)、加氢裂化尾油等重质馏分油,以及常压渣油(AR)和掺入减压渣油(VTB)的减压蜡油混合油(Blending of VGO and VTB),也可以是石脑油馏分、C4/C5轻烃等,较蒸汽裂解操作条件苛刻度低,产物分布可灵活调节。2、大乙烯发展国内新建大乙烯规模集中在100-150万吨/年之间,浙江石化、独山子石化、兰州石化等企业领衔国内大乙烯规模发展。民营炼化遵循“减油增化”原则,乙烯收率提升到50%左右。浙江石化仍有2.5期规划,古雷石化(二期)、中科炼化(二期)、中沙古雷、埃克森美孚(惠州)、巴斯夫(湛江)、广东石化、海南炼化、洛阳石化、岳阳石化、广西石化等均有大乙烯一体化项目建设。3、高端聚烯烃发展从全球的生产布局来看,高端聚烯烃生产主要集中在西欧、东南亚和北美地区,中东以大宗通用料为主,其中日本是东南亚高端聚烯烃主要生产国。相关企业包括ExxonMobil、Dow化学、BASF、 LyondellBasell、Total、三井化学、住友化学、旭化成等。国内以中国石化、中国石油等为龙头代表的聚烯烃生产企业正在加速突破高端聚烯烃的技术壁垒,包括a-烯烃、茂金属催化剂、非茂金属催化剂等的研发与生产。高端聚烯烃产品应用领域非常广泛,主要应用在高端管材、汽车零部件、医疗设备、工业管道、高端电子电气等领域。4、化工新材料发展化工新材料产业发展离不开市场的引领作用,新能源汽车、生物、高端装备、新能源、环保节能、轨道交通等产业的发展迫切需要品种众多的功能性化工新材料支撑。
  • 普立泰科参加2017APO第七届亚洲聚烯烃会议
    日前,北京普立泰科参加了由天津大学材料学院组织了第七届亚洲聚烯烃会议。二百余名从事聚烯烃催化剂设计、聚烯烃合成方法、结构性能分析及聚烯烃工程应用的海内外众多研究所、高校、企业的国际专家、学者和企业代表参加了本次盛会。开幕式上,天津大学副校长王树新教授首先祝贺2017年APO会议召开,欢迎海内外著名专家学者和知名企业代表的到来。随后,材料学院先进高分子研究所所长、国家杰出青年基金获得者李悦生教授致辞,希望以此次会议为契机,进一步推进聚烯烃领域研究的发展。美国芝加哥大学的Richard Jordan教授、日本东京大学的Kyoko Nozaki教授、意大利那不勒斯费德里克二世大学的Vincenzo Busico教授和上海有机化学研究所的唐勇院士分别做了精彩的学术报告。历时一周的APO盛会举行62场分会学术报告和90场学术墙报展讲。闭幕式上,李悦生教授致辞,感谢海内外专家、学者和企业代表的精彩报告,并预祝下一届亚洲聚烯烃会议举办成功。 北京普立泰科仪器有限公司作为美国Agilent公司凝胶渗透色谱仪中国区的独家代理。长期为中国区提供:聚合物特性分析及高效率监测的多种解决方案。Agilent公司最新推出的高温凝胶渗透色谱仪Infinity 1260 HT GPC涵盖超广温度范围(室温至220℃)的聚合物特性分析,是聚烯烃材料的分析利器。除了提供分子量及其分布的实时检测,配合黏度、光散射检测器后还能提供更丰富的信息,如黏度、支化、均方旋转半径等信息。 关于普立泰科:北京普立泰科仪器有限公司是一家集生产、研发、代理、销售及售后服务于一身的高新技术企业。公司总部设在北京,在上海、广州、安徽设有分支机构。早年取得美国J2Scientific公司样品前处理仪器中国地区总代理,将全自动前处理概念引入中国,并一直在样品前处理领域保持技术领先地位。此外,普立泰科自主研发的消解仪、全自动固相萃取、氮吹、二噁英处理系统、土壤干燥箱等产品,通过了ISO体系认证,目前有多条自主产品生产线。从2017年开始,普立泰科成为FLIR公司Griffin系列产品在中国市场的总代理商。注:本文部分内容转载自“材料先锋微信”
  • 新型GPC-IR聚烯烃分析系统
    新型GPC-IR聚烯烃分析系统Polymer Char发布了最新性能可靠、全自动4-凝胶渗透色谱仪,用最灵敏的检测器检测聚烯烃组成和分子量。新型GPC-IR具有HT-GPC用户需求的新特点: 四检测器(包括成分检测器):四毛细管粘度检测器多角度光散射检测器、独特的IR4红外检测器高灵敏度IR5 MCT检测器能够检测浓度和成分(SCB/1000C). 自动化样品制备: 整个过程包括填充样品瓶和管线内部 的反冲洗过滤,无需接触溶剂。任何 时刻都不需要移动样品瓶。样品保护:通过精确溶解时间、振荡(不搅拌)和N2保护使样品降解最小化。色谱柱保护: 独立区域保护色谱柱环境保护:溶剂循环利用系统一体化的计算软件: 一台GPC整合了所有的探测信号 可靠性和稳定性: 系统具有远程控制能力► 链接: New GPC-IR Features.新型GPC-IR特点网上直播:HT-GPC/SEC在聚烯烃研究中的进展。 由Polymer Char专家网上现场讲解HT-GPC/SEC聚烯烃分析如何因其最先进的全自动化仪表和内置高性能红外检测器,成为当今一个标准分析任务。2012年9月6日星期四:· 9:00 AM in US (EST).· 15:00h in Europe (CET).► 主要安排和用户注册► 链接: Program Overview and Registration.2012年用户培训会议:10月25-26于美国德克萨斯州休斯顿召开。 随着第四次ICPC国际会议的召开,2012年10月25-26在美国德克萨斯州休斯顿的伍德兰兹召开UTM,我们很高兴邀请您参加一年一度的UTM。该会议能指导您怎样更好的使用Polymer Char公司的仪器,例如日常操作、预防性维护、故障排除或预测过程。► 链接:See UTM 2012 Agenda.查看2012UTM议程► 链接:Go to UTM Site.去UTM现场新型GPC/SEC应用报告 点击这里阅读最新配置IR5的高温凝胶渗透色谱仪聚烯烃分析资料:灵敏度和自动化水平的突破。► 链接:Read Application Note.阅读应用报告第四次ICPC会议合作组织 Polymer Char将再次与聚烯烃表征国际会议合作。经过为期一天的技术讲座之后,第四次会议将在10月21-24德克萨斯州伍德兰兹召开。► 链接: Polymer Char-ICPC Site.Polymer Char ICPC现场► 链接: 4th ICPC Website.第四次ICPC网站通过链接加入组织 在这里您能够了解Polymer Char团队和其他用户、合作伙伴,也可以分享信息和相关仪器、表征技术的信息。► 链接: Join Group.加入团队
  • 标准应对:GB/T39994-2021 《聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定》
    国家标准GB/T 39994-2021 《聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定》于2021年4月30日公开发布,2021年11月01日正式实施。 聚烯烃一般是作为耐腐蚀的比较轻的这种材料来进行应用的。聚烯烃管道材料主要有聚乙烯(PE)、聚丙烯(PP)、聚丁烯(PB)等,广泛应用于各行各业。 有关调研显示,2015年聚乙烯管道消费量达到550万吨,占聚烯烃管道产量的一半以上,但实际上市场对聚乙烯管道的原料消费量约330万吨,这意味着部分管道有可能使用非新生管道原料进行生产。而使用过的管材回收料和未使用过的管材专用料的物理性能存在巨大差异,使用这些原料制成管材在实际应用中会成为巨大的安全隐患,也将给整个塑料管道行业造成极其恶劣的社会影响,同时也给合规原材料生产商造成了无法估量的社会评价下降和经济损失。 该标准规定了聚烯烃管道及原料中铁、钙、镁、锌、钛、铜六种金属含量的测定方法,适用于各种聚烯烃管材、管件、阀门中六种金属含量的测定,也适用于混配料、回用料和回收料(再生料)中六种金属含量的测定。研究表明在聚烯烃管道原料或制品中添加回收料(再生料)会导致其铁、钙、镁、锌、钛、铜元素的含量发生明显变化,其中铁和钙元素的变化尤其明显。因此,对聚烯烃管道产品金属元素含量,尤其是铁和钙元素的含量进行测定,是甄别聚烯烃管道原料或制品中是否含有回收料(再生料)的一种有效途径。 标准中对于六种金属含量测定的方法有原子吸收法(AAS法)、电感耦合等离子体光谱法(ICP-OES法)、电感耦合等离子体质谱法(ICP-MS法),三种方法各有特点,客户可以根据样品量等情况进行选择。 岛津推荐仪器 ///特点:-高灵敏度、多元素同时检测-自动方法开发,自动智能结果判断-低运行成本消耗-操作简便,维护简单 岛津ICPMS-2030系列 典型应用实例 ICP-MS测定Ca、Fe等元素的时候,由于同质异位素、多原子离子等的干扰,岛津ICPMS-2030系列通过选择合适的质量数及碰撞气进行高效干扰消除。 岛津可以提供标准规定的三种测量方法所对应需要使用的仪器,其中ICPM-2030系列在应对大量样品、多元素同时分析及元素含量高、低均有的复杂样品方面具有其特有优势,非常适合于聚烯烃管道中六种金属元素的高效、高灵敏的常规分析。 本文内容非商业广告,仅供专业人士参考。
  • 3月21日我司在万商酒店成功举办了聚烯烃表征行业的研讨会
    石化塑料标委会陈宏愿主任致辞 北京亿路达史清军经理做POLYMER CHAR公司产品的详细介绍北京化工研究院魏文骏先生做全自动二甲苯可溶物含量检测新技术(CRYSTEX)的说明美国DOW研发中心高级科学家WALLACE W. YAU先生做关于最新聚烯烃结构表征技术的报告参会人员展开热烈的讨论 会后大家纷纷合影留念 3月21日北京亿路达机电设备有限公司同石化塑料标委会一起成功举办了西班牙POLYMER CHAR聚烯烃结构分析表征方法技术研讨会。会议共有来自全国23家相关聚烯烃表征机构及大学的70余位代表参加。会议期间,石化塑料标委会陈宏愿主任致辞,欢迎与会同仁的到来、北京亿路达史清军经理做了POLYMER CHAR公司产品的详细介绍、北京化工研究院魏文骏先生代表客户做了细致的全自动二甲苯可溶物含量检测新技术(CRYSTEX)的说明,最后由美国DOW研发中心高级科学家WALLACE W. YAU先生做了关于最新聚烯烃结构表征新技术的报告。会上,参会人员展开了热烈的讨论,大家纷纷表示通过此次研讨会,使他们对聚烯烃表征技术有了新的认识,对表征工作起到了很好的指导意义。会后大家纷纷合影留念。
  • 4月1日我司成功参加北京化工研究院聚烯烃表征研讨会
    4月1日北京亿路达机电设备有限公司总经理史清军先生参加美国DOW研发中心高级科学家,现北京化工研究院技术专家WALLACE W. YAU先生受邀参加在北化院举办的聚烯烃表征研讨会,北京化工研究院材料科学研究所郭梅芳副所长等材料科学研究所、聚丙烯研究室、聚乙烯研究室及加工部同仁参加。WALLACE W. YAU先生根据多年的聚烯烃表征工作经验及Polymer char先进的表征技术,和北化院与会同仁们做了详细的技术交流,参会人员就表征新技术展开了热烈讨论。
  • 3月20日我司在低碳所成功举办聚烯烃表征研讨会
    3月20日北京亿路达机电设备有限公司总经理史清军先生陪同美国DOW研发中心高级科学家WALLACE W. YAU先生拜访低碳所聚烯烃研发部主管赖世耀以及高级工程师梁文斌等工作人员。WALLACE W. YAU先生根据多年的聚烯烃表征工作经验及Polymer char先进的表征技术,和低碳所与会同仁们做了详细的技术交流,参会人员就表征新技术展开了热烈讨论。会后,低碳所工作人员表示受益颇丰,欢迎WALLACE W. YAU先生再次参观指导。
  • 聚光科技为国内规模最大的煤制烯烃项目提供运维服务
    ——中天合创在线分析仪表运维项目工作纪实   2016年8月,正是沙漠最干热的季节,经过前期交流和投标,聚光科技成功中标中天合创能源有限责任公司化工分公司在线分析仪表维修框架项目,承担了该项目工艺装置上330多台在线分析仪表维护维修工作,开启了扎根沙漠、夙兴夜寐的工作时光。 中天合创煤炭深加工示范项目概览  中天合创能源有限责任公司化工分公司煤炭深加工示范项目位于内蒙古鄂尔多斯市乌审旗图克工业园区,建设产能煤炭2500万吨/年、甲醇360万吨/年和烯烃137万吨/年,项目主要包括煤气化、变换、净化、甲醇合成、甲醇制烯烃、聚烯烃等生产装置及配套的空分、动力锅炉、循环水场、罐区等公用工程,项目总投资近900亿元,为目前国内规模最大的煤制烯烃项目。由于其产品相关性强,带动性大,项目建成后将为内蒙古周边地区提供大量优质的,具有竞争力的聚乙烯、聚丙烯产品,对促进下游深加工产业的发展有着重要而深远的意义,因此该项目一经批复,就得到了业内同仁的广泛关注。2014年5月,项目正式开工建设,由于项目属于新建,现场操作人员新人较多,对“作为工艺的眼睛——分析仪表”的依赖性非常强,因此确保仪表正常使用显得尤为重要。  双方签订合同时,正逢360万吨甲醇合成装置开始投料试车准备阶段,为配合客户尽快达成产出合格甲醇、聚烯烃的目标,聚光科技立即从其他运维项目部抽调了既熟悉生产工艺,又精于在线分析仪表维护维修,同时具有开试车投料阶段项目经验的运维工程师到达现场,投入到在线分析仪表维护维修工作中,为项目甲醇合成装置投料试车保驾护航。 运维工程师现场作业情况  在天气最热的八月份,客户对2#、3#锅炉点火开车,刚投料不久,DCS中控台显示两台锅炉氧含量均异常,如不及时处理,两台锅炉将无法正常投运。在该厂区中,锅炉都是被厂房包围的,加上八月酷暑天气,锅炉边的室温能达到60摄氏度甚至更高,如同蒸笼一般,聚光科技两位运维工程师顶着高温,在锅炉边对氧化锆探头进行检查清理,排除故障,经过数小时的努力,两台锅炉氧化锆测量均恢复正常。虽然两位运维工程师热的全身湿透,但为确保锅炉正常生产,始终全程跟踪和配合操作员工作,此后操作员根据准确的氧含量测量值调整锅炉送风量,两台锅炉顺利达到了满负荷生产,为后续工段的开车提供了有力保障。 运维工程师现场作业情况在高质量完成自身合同范围内在线分析仪表维护维修工作同时,项目部运维工程师急客户所急,主动协助客户处理合同范围外在线分析仪表维护维修工作。在项目开车进行到净化合成工段时,该工段的总硫分析仪无法正常投用,可能引起合成工段催化剂中毒,导致整个工艺无法继续进行。当时总硫分析仪厂家售后技术人员未到达项目现场,该工段的在线分析仪表维护维修框架单位的现场人员也没有能力进行维护维修工作,于是机电仪中心的分析班长找到聚光科技运维人员,希望能够帮助解决问题。聚光科技项目部运维工程师立即赶赴了现场,对分析仪表流路进行检查,对加湿器和测量纸带进行安装,同时对分析仪表进行了校准,最终分析仪恢复正常使用,让开车得以延续进行。 运维工程师现场作业情况  在数月的开车投料及试生产过程中,类似的维护维修项目不胜枚举。中天合创煤炭深加工示范项目经过40多个日夜各装置单机试车、低高压气密、催化剂还原、水联运等工作,于9月24日产出合格产品甲醇,又经过1个月的调试运行,于10月26日产出合格聚乙烯、聚丙烯。实现了目前国内规模最大的煤制烯烃项目打通全部工艺流程,顺利投产。  虽然该项目地理位置较为偏僻,生活环境较为恶劣,衣食住行也存在着各种不便,但聚光科技运维工程师克服了重重困难,扎根沙漠,艰苦奋斗,通过与客户精诚协作,提供安全、可靠、专业、规范的运维服务,努力为客户创造最大价值,帮助客户尽早投料试车及产出合格产品,受到了客户的高度认可和一致好评。聚光科技将以此作为新的起点,再接再厉,为更多的石化、煤化工等企业提供机械动静设备、电气设备、仪表阀门、通信系统及过程控制系统的专业运维服务。
  • 2021工程与材料科学部重大项目指南发布,拟资助9个重大项目
    8月5日,国家自然科学基金委员会发布“十四五”第一批重大项目指南及申请注意事项。其中,2021年工程与材料科学部共发布12个重大项目指南,拟资助9个重大项目,项目申请的直接费用预算不得超过1500万元/项。 2021年工程与材料科学部12个重大项目指南如下:1、“基于能量耗散的金属基复合材料强-韧性关联重构”重大项目指南2、“高频高效电机用新型非晶软磁材料”重大项目指南3、“第三代半导体中压电-电/光耦合新效应、材料与器件研究”重大项目指南4、“干热岩地热资源开采机理与方法”重大项目指南5、“瞬态折展变形机构设计理论与关键技术基础”重大项目指南6、“规模化多能协同存储与能质调控”重大项目指南7、“高压电缆聚烯烃绝缘性能强化”重大项目指南8、“重大基础设施服役安全智能诊断”重大项目指南9、“梯级水电枢纽群巨灾风险评估与防控”重大项目指南10、“城市污水资源化与安全利用”重大项目指南11、“极地环境载荷及其与海洋结构物的耦合特性”重大项目指南12、“内禀功能耦合MA2Z4材料”重大项目指南12个重大项目指南关键内容如下:“基于能量耗散的金属基复合材料强-韧性关联重构”重大项目指南一、科学目标针对构型化复合面临的强韧化机理不清、设计调控难等瓶颈问题,研究能量耗散及变形非局域化的新原理和新技术,阐明复合构型的能量耗散机理,提出力学性能和使役行为的能量学判据,建立复合构型跨尺度设计准则,突破强-韧性倒置关系并实现关联重构,为制备高强韧金属基复合材料奠定理论基础。二、研究内容(一)金属基复合材料强-韧性关联的能耗机理。研究复合结构基元和界面的能量耗散行为,探究能耗方式对变形、断裂等力学行为的影响规律,揭示复合构型能量耗散的新机理,构建“复合构型-能量耗散-力学性能”的构效关系。(二)构型化金属基复合材料跨尺度设计原理。构建能量守恒与构型化复合相结合的跨尺度力学拟实模型,研究复合构型对能量-应力-应变的分配规律和影响机制,提出相对应的能量学判据,指导高强韧金属基复合材料的反向设计。(三)金属基复合材料构型化复合制备技术。发展跨尺度、精准调控复合构型的制备新技术,研究多相多尺度复合结构基元之间的限域作用规律,揭示复合构型和界面的形成与演化机制,实现高强韧金属基复合材料的可控制备。三、申请要求(一)申请书的附注说明选择“基于能量耗散的金属基复合材料强-韧性关联重构”,申请代码1选择E0105。(二)咨询电话:010-62327144。 “高频高效电机用新型非晶软磁材料”重大项目指南一、科学目标以高频高效电机铁芯为应用导向,研发出兼具高非晶形成能力、高饱和磁感强度和低磁致伸缩系数的新一代软磁非晶合金材料,形成软磁非晶材料高效研发的新技术,获得非晶铁芯低成本加工成型新工艺,突破非晶铁芯制造难题,为高频高效非晶电机在高端装备中的广泛应用提供科学依据和技术支撑。二、研究内容(一)软磁非晶合金的形成机理及其性能调控规律。研究软磁非晶合金形成过程中熔体结构的演化规律,揭示软磁非晶合金的形成机理;探明软磁非晶合金的微观结构和宏观磁性能、力学性能的关联性及其调控规律。(二)新型高性能软磁非晶合金的高效开发技术。建立软磁非晶合金的高效制备和集成化性能表征的新方法,获得兼具高非晶形成能力、高饱和磁感强度(1.8T以上)和低磁致伸缩系数的新一代软磁非晶合金。(三)新型软磁非晶合金的加工性能优化。探明非晶铁芯加工过程中结构和力学性能的演化规律,发展非晶合金塑性调控的新方法,探索软磁非晶铁芯塑性加工的新工艺,实现非晶铁芯的低成本和高效率加工。(四)基于新型软磁非晶合金的高频高效电机开发。发展高速非晶电机的损耗精细计算、分离理论及效率准确测试的方法和关键技术,优化非晶铁芯和高频高效非晶电机的结构,研制新一代高频高效非晶电机示范性样机。三、申请要求(一)申请书的附注说明选择“高频高效电机用非晶软磁材料基础问题研究”,申请代码1选择E0106。(二)咨询电话:010-62327144。 “第三代半导体中压电-电/光耦合新效应、材料与器件研究”重大项目指南 一、科学目标针对第三代半导体器件中压电极化制约大功率晶体管和发光二极管性能的瓶颈问题,研究压电-电/光多场耦合新效应,建立三维精准局域应力调控的新方法,为实现大功率晶体管和发光二极管性能的变革性突破提供理论和技术支撑。二、研究内容(一)压电-电/光耦合新效应。研究第三代半导体异质结处载流子的产生、分离、弛豫、复合的超快过程及其与压电-电/光多场耦合的关联,从原子层面揭示压电-电/光多场耦合新效应,构建完整的理论体系。(二)第三代半导体材料的精准构筑、应力固化与性能调控。精准构筑低维第三代半导体材料,揭示材料组分、微结构、缺陷行为与压电-电/光特性的内在关联;研究第三代半导体中应力固化的新机制,发展原子级三维应力调控和外延应力固化的新方法。(三)压电-电耦合增强的大功率晶体管的研制与应用。研究第三代半导体压电-电耦合器件新设计方法,发展压电异质结生长、器件构筑和应力调控等关键技术;面向雷达、通讯领域的需求,研制突破当前功率瓶颈的大功率晶体管。(四)压电-光耦合调制的发光二极管的研制与应用。研究第三代半导体大失配外延引入的压电场对光电器件性能的影响及作用机制,开拓压电-光耦合大幅提高光电转换量子效率的新方案,开发高能效的发光二极管,推动照明领域的节能减排。三、申请要求(一) 申请书的附注说明选择“第三代半导体中压电-电/光耦合新效应、材料与器件研究”,申请代码1选择E0207。(二) 咨询电话:010-62328234。“干热岩地热资源开采机理与方法”重大项目指南一、科学目标针对干热岩地热开采面临的钻井完井难、压裂造缝难、流动取热难等瓶颈问题,研究高效建井、造储与采热的新原理与新技术,揭示高温储层动态力学响应机制及缝网连通机理,阐明注采井干扰下地应力场演化规律,建立多场时空演化下强化取热与调控方法,为形成干热岩地热高效开发技术奠定理论基础。二、研究内容(一)高温储层岩体物理力学变化规律与表征方法。研究高温下干热岩天然裂缝形态、渗透率等物理、力学特性的演变规律;建立非连续性岩体孔隙/裂隙精细化表征方法和本构表征模型。(二)高温岩石动态损伤机理与高效破碎方法。研究高温环境钻头在轴-扭耦合冲击下的力学动态响应特征,及其与干热岩的作用机理;评价高温岩石的可钻性,并建立高温固井和提高井眼清洁度新方法。(三)高温岩体复杂缝网造储理论与技术。研究高温岩体地应力场、温度场重构特征,揭示天然裂缝对人工裂缝扩展干扰的作用机制,阐明多场耦合作用下缝网起裂、演化、渗流的影响规律,形成干热岩压裂造储理论与方法。(四)复杂缝网内取热工质渗流与传热规律。研究不同工质在干热岩储层缝网内的渗流特征、传质传热规律、水化/溶蚀反应特征,及其对缝网渗流场的影响规律,厘清注入流体参数对采出流体温度-压力-相态等的作用机制。(五)开采过程多场时空演变规律与流动调控方法。进行地质建模,构建宏观尺度的数字化“透明”干热岩体,研究多场耦合下地应力场、缝网形态、渗流场、温度场等时空演变规律,建立取热效率和干热岩开采寿命预测模型。三、申请要求(一)申请书的附注说明选择“干热岩地热资源开采机理与方法”,申请代码1选择E0401。(二)咨询电话:010-62327136。“瞬态折展变形机构设计理论与关键技术基础”重大项目指南一、科学目标针对瞬态折展变形机构创成、机构-结构协同变形、与服役环境强耦合等理论问题,研究瞬态机构创成新原理与机构-结构多构态协同变形新机制,揭示机构-结构-环境交互作用机理,突破瞬态折展变形机构与服役环境融合设计及验证的新技术,构建瞬态机构-变形结构-环境融合的机构学理论与技术新体系。二、研究内容(一)瞬态可重复折展变形机构创成原理。研究多构态折展变形机构创成原理及构态间重复变换与锁定机制,阐明机构瞬态响应效应与损伤失效机理,发展瞬态机构高效驱动与“型-性-度”一体化设计方法。(二)机构-结构刚柔复合系统连续光滑协同变形机制。建立变形结构宏-细-微多尺度力学模型,揭示机构多构态运动与结构大变形全域协调机理,发展连续光滑大变形与承载功能一体化的机构-结构复合系统设计新理论与方法。(三)瞬态机构-结构复合系统与多场环境耦合作用机理。研究力-热-噪等多场环境下瞬态机构-结构复合系统动力学建模方法,揭示瞬态机构-变形结构-复杂环境耦合作用机理,阐明瞬态系统驱动模式与瞬变流场的力-热-噪-变形相互适应机制。(四)瞬态折展变形机构与服役环境融合设计及验证方法。研究瞬态机构-变形结构-复杂环境融合设计新方法,发展极端环境下瞬态折展变形机构服役性能评价方法与模拟试验测试新技术,对机构服役性能进行预示、反演和验证。三、申请要求(一)申请书的附注说明选择“瞬态折展变形机构设计理论与关键技术基础”,申请代码1选择E0501。(二)咨询电话:010-62327084。“规模化多能协同存储与能质调控”重大项目指南一、科学目标针对规模化多能存储面临储电安全管控、储热传递强化与调控、电制燃料热-电协同等瓶颈问题,研究基于热物理/热化学储能、电化学储能及电-燃料转化储能的多能协同存储新原理与新技术,揭示电/热/化学多能协同转换存储与能质调控机制,构建可再生能源规模化多能协同存储的理论和技术体系。二、研究内容(一)大容量电能存储与安全管控。研究大容量电能存储中储能电池多参数耦合在线状态诊断、故障预警及安全管控,发展化学电池本质安全理论和再生修复新技术,探索规模化电能物理转换与协同存储新方法。 (二)高功率密度热物理储能。研究高功率密度热物理储能的传热传质强化与智能管控,建立储热材料-装置的多相多尺度传热传质耦合模型,发展高导热储热材料及规模化高功率密度储热装置的热设计新方法。(三)高能量/功率密度热化学储能。研究高能量/功率密度热化学储能及能质调控新原理,揭示热化学储热材料传热传质强化与活性维持机理,提出规模化高密度热化学储能能质传输与化学反应耦合协同强化新方法。(四)高效率/能量密度电化学燃料储能。研究规模化电化学燃料储能的“可再生能源-电能-热能-燃料”有序对口转化,揭示电化学-热物理耦合转换过程中热/质/电/离子传递规律,形成热-电协同制取化学燃料的新技术。(五)规模化多能协同存储与能质调控。研究规模化多能协同存储的能量传递、存储及调控,构建 “源-储-荷”耦合匹配的多能协同存储与能质调控新理论,形成基于电网/热网/气网融合的多能协同存储和输配新方案。三、申请要求(一)申请书的附注说明选择“规模化多能协同存储与能质调控”,申请代码1选择E0607。(二)咨询电话:010-62327131“高压电缆聚烯烃绝缘性能强化”重大项目指南一、科学目标针对高压电缆聚烯烃绝缘的强绝缘、高可靠、长寿命的瓶颈技术问题,从解耦电荷、电场与微观结构/宏观界面之间的多尺度复杂关联着手,研究高压电缆聚烯烃绝缘电荷输运抑制,高压电缆聚烯烃绝缘电场调控,高压电缆聚烯烃绝缘耐电寿命提升,为解决高压电缆国家重大需求提供理论支撑。二、研究内容(一)高压电缆聚烯烃绝缘电荷输运抑制理论与方法。研究聚烯烃绝缘多级结构和杂质(缺陷)对电荷输运的影响机制及其调控。(二)高压电缆聚烯烃绝缘交流电场调控理论和方法。研究聚烯烃交流绝缘的宏观/介观界面设计、交流电场-热场耦合机制与设计、交流电场调控理论与方法。(三)高压电缆聚烯烃绝缘直流电场调控理论和方法。研究聚烯烃直流绝缘的宏观/介观界面设计、直流电场-空间电荷-热场耦合机制与设计、电场-空间电荷调控理论与方法。(四)高压电缆聚烯烃交流绝缘耐电寿命提升。研究聚烯烃电缆绝缘状态原位表征识别、多级结构与界面协同减缓聚烯烃绝缘交流电老化机制、聚烯烃交流绝缘剩余寿命理论。(五)高压电缆聚烯烃直流绝缘耐电寿命提升。研究聚烯烃绝缘直流电热老化机制、空间电荷和热场调控协同减缓聚烯烃绝缘直流电老化机制、聚烯烃直流绝缘剩余寿命理论。三、申请要求(一)申请书的附注说明选择“高压电缆聚烯烃绝缘性能强化”,申请代码1选择E0702。(二)电话:010-6232830。“重大基础设施服役安全智能诊断”重大项目指南一、科学目标针对服役性态感知识别不完备、安全风险预警不及时、性能演化和寿命预测不精准等瓶颈问题,研究重大基础设施结构服役安全智能诊断的基础理论和关键技术,突破结构服役性态多元感知与智能识别、服役性能多维评价和时变演化预测等基础科学问题,为构建重大基础设施服役安全智能诊断新方法奠定理论基础。二、研究内容(一)重大基础设施结构服役安全智能诊断多维表征性态指标及其体系。利用深度学习等智能方法,解析结构服役性能与性态指标的偶联机理,确定智能诊断服役性能关键表征性态指标,建立材料-构件-连接-结构的服役性能多维表征性态指标及其体系。(二)重大基础设施结构服役性态多元感知与智能识别。研究服役性态多元智能感知新技术,建立数字信号诊断信息的高效提取理论和识别方法;研究缺陷损伤识别的深度神经网络结构,挖掘关键识别特征,提出典型缺陷损伤的智能识别方法。(三)重大基础设施结构服役性能智能评价理论与方法。研究数据-物理耦合驱动的结构服役性能与多维表征性态指标映射机理的解析方法,建立基于关键表征指标体系的结构服役性能智能评价理论,提出结构服役安全高效智能量化评价方法。(四)重大基础设施结构服役性能演化机理与寿命预测方法。解析和挖掘结构服役性能与关键表征性态指标的全寿期时变演化机理,考虑可靠度水准、荷载与作用、服役环境、材料物理与化学等特征,建立基于深度学习的结构服役寿命预测方法。三、申请要求(一)申请书的附注说明选择“重大基础设施服役安全智能诊断”,申请代码1选择E0806。(二)咨询电话:010-62328359“梯级水电枢纽群巨灾风险评估与防控”重大项目指南一、科学目标针对梯级水电枢纽群区域地震活跃、地质灾害高发、高水头大流量、地震-地质-洪水灾害连锁效应等特点,探明极端荷载发生与作用的时空特性,建立溃坝及洪水演进数值模拟方法,揭示枢纽群灾害链形成和演化机制,提出枢纽群巨灾风险评估与防控理论,为梯级水电枢纽群安全保障提供科学支撑。二、研究内容(一)区域尺度巨灾因子识别与表征。研究强震、巨型滑坡、特大洪水等极端自然灾害事件的数值仿真方法,揭示极端荷载时空分布特性,建立区域尺度的巨灾因子识别方法,提出潜在灾害源表征指标体系。(二)水电枢纽系统的潜在失效模式与灾变机理。研究极端荷载作用机制,揭示枢纽系统的功能失效机制、潜在破坏模式与灾变机理,提出水电枢纽系统的溃坝致灾判别方法与评价指标体系。(三)梯级水电枢纽群灾害链的形成与演化机制。研究梯级水电枢纽群超标洪水的演进过程,灾害形成机制与链式放大效应,建立枢纽群灾害链数值模拟方法,揭示灾害链演化机制,建立梯级水电枢纽群灾害链形成条件判别的指标体系。(四)巨灾风险评估与减灾方法。研究梯级水电枢纽群的巨灾损失估算模型,建立巨灾风险分析方法与安全管理原则,提出梯级水电枢纽群巨灾风险评估与防控方法。三、申请要求(一)申请书的附注说明选择“梯级水电枢纽群巨灾风险评估与防控”,申请代码1选择E0906。(二)咨询电话:010-62328362。“城市污水资源化与安全利用”重大项目指南一、科学目标针对城市污水资源化过程中由病原微生物、有毒化学品残留导致的生态健康风险、由水质复杂而导致的高能耗高药耗等瓶颈问题,研究水质安全与减碳降耗的污水再生新原理和新技术,突破关键污染物定向转化与无害化新方法,构建适应我国污水特征和资源化需求的污水再生与安全利用理论和技术体系。二、研究内容(一)污水资源化关键毒害因子识别与风险评估。研究污水资源化利用过程中的潜在系统风险,建立水中关键风险物质高通量筛查及快速检测新技术,发展基于不同污水再生利用途径和暴露终点的生态健康风险评估新方法。(二)污水中病原微生物健康风险控制理论和技术。研究污水再生与利用过程中病原微生物与消杀副产物的作用关系,阐明病原微生物及消毒副产物的协同转化与调控机制,发展保障污水资源化生物与化学安全的新理论、新技术。(三)污水中有毒化学污染物的迁移转化与无害化机制。研究城市污水资源化过程中关键化学物质的迁移、转化及毒性变化规律,突破污水中微量有毒化学污染物的高效削减新原理,发展高风险污染物的解毒减害理论与技术。(四)污水碳氮磷协同转化新技术原理。研究水质风险防控与高值资源回收过程,阐明污水中物质转化、能量代谢机制,突破污染物定向回收新技术,建立集资源绿色回收与安全利用为一体的污水资源化原理方法体系。三、申请要求(一)申请书的附注说明选择“城市污水资源化与安全利用”,申请代码1选择E1002。(二)咨询电话:010-62327092“极地环境载荷及其与海洋结构物的耦合特性”重大项目指南一、科学目标针对海冰力学行为的跨尺度递进关系、冰与波流的动态耦合机理、冰与结构物的能量互馈机制等科学问题及相关联的水面重型破冰船和水下战略航行体破冰能力预报技术问题,研究极地环境载荷及其与海洋结构物的耦合特性,提出水面和水下两大重要装备破冰能力精确预报新方法,构建我国极地装备研发设计的关键理论和核心技术。二、研究内容(一)海冰力学行为的跨尺度演变规律。主要研究海冰在晶体、亚米、工程等不同尺度上的力学行为、揭示海冰力学行为随尺度的变化规律与内在机制、建立能够解释海冰力学行为的多尺度分析理论和协调尺度差异的本构关系。(二)极区风、浪、流与海冰相互作用机理。主要研究冰水混合区浪流传播的能量衰减理论、冰水混合区多冰块动态耦合机理、风浪流作用下的海冰破碎与漂移堆积机制。(三) 结构与海冰的相互作用与能量互馈机制。主要研究海冰分布及海冰与结构碰撞过程的随机性表征、结构与海冰之间的能量互馈机制、海冰破坏演化规律的建模与重构。(四)重型破冰船破冰能力预报方法。主要研究重型破冰船艏向、艉向、旋回三种破冰模式下冰-水-船-桨相互作用的破冰过程与碎冰运动、破冰载荷与船体结构响应特性、破冰能力预报方法。(五)水下航行体垂直破冰能力预报方法。主要研究水下航行体准静态向上和高速向上两种破冰场景下的近冰面效应与航行特性、垂直破冰载荷与航行体结构响应特性、垂直破冰能力预报方法。三、申请要求(一)申请书的附注说明选择“极地环境载荷及其与海洋结构物的耦合特性”,申请代码1选择E11。(二)咨询电话:010-62327137。“内禀功能耦合MA2Z4材料”重大项目指南一、科学目标针对传统材料中一些独特但矛盾的功能特性难以耦合或耦合效应弱的重大难题,建立内禀功能耦合MA2Z4材料的设计原理,发展制备理论和方法,革新材料创制范式,揭示功能结构单元耦合诱导的新物性和新效应,并开发新应用,为电子信息和可再生能源技术的发展奠定理论和技术基础。二、研究内容(一)MA2Z4材料的设计与性能预测。高通量计算与预测MA2Z4材料及其电学、磁学、光学、声学和超导等基本物性,阐明其功能单元耦合对MA2Z4物理性质的调控规律,实现内禀功能耦合特性目标导向的MA2Z4材料设计。(二)MA2Z4材料的制备理论与方法。开展MA2Z4材料的制备方法和生长机制研究,阐明其功能单元的结构特征,研究其生长热力学和动力学行为,建立MA2Z4材料的制备理论和方法,实现高质量材料的控制制备。(三)MA2Z4材料的物理性质与新效应。开展MA2Z4材料中磁性、超导、拓扑等性质的实验研究,阐明MA2Z4材料中多种内禀功能物态的耦合机制,并揭示多种内禀功能物态强耦合下MA2Z4材料中的新物性与新效应。(四)MA2Z4材料在新原理器件与新能源中的应用探索。 针对MA2Z4材料的独特性能,研究新原理器件的构建和新能源的高效转化,阐明内禀功能耦合MA2Z4材料在电子信息和可再生能源领域的作用机制及应用优势。三、申请要求(一)申请书的附注说明选择“内禀功能耦合MA2Z4材料”,申请代码1选择E13。(二)咨询电话:010-62327138。
  • 跨界收购!高分子材料企业拟1.19亿元购半导体设备企业51%股权
    近日,一起跨界收购案引起关注。11月9日,至正股份收到上交所《关于对深圳至正高分子材料股份有限公司对外收购事项的问询函》。11月8日,公司称,拟以现金方式收购苏州桔云科技有限公司51%股权。公告披露,本次收购标的主营半导体专用设备,与公司目前主业无关。公告称,实施本次交易旨在从原有的电线电缆用高分子材料业务向半导体设备领域拓展,提升公司盈利能力。据了解,至正股份是专业从事环保型低烟无卤聚烯烃电缆高分子材料的高新技术企业,定位于中高端电线电缆用绿色环保型特种聚烯烃高分子材料市场,属于国内电线电缆用高分子材料领先企业中的专业企业。公司主营业务为电线电缆、光缆用绿色环保型聚烯烃高分子材料的研发、生产和销售,公司产品被作为绝缘材料或外护套料广泛应用于电线电缆及光缆的生产过程中。公司目前产品主要分为以下三大类:光通信线缆、光缆用特种环保聚烯烃高分子材料;电气装备线用环保型聚烯烃高分子材料;电网系统电力电缆用特种绝缘高分子材料。11月10日,至正股份发布《深圳至正高分子材料股份有限公司拟以现金收购苏州桔云科技有限公司股权资产评估报告》。资料显示,苏州桔云成立于2019年6月,主要从事半导体专用设备的研发生产和销售,主要产品包括半导体清洗机、腐蚀机、烘箱、分片机、显影机、涂胶机等。公司于2020年推出半导体清洗设备、刻蚀设备和显影设备二代机型,现已成为长电科技、禾芯半导体、芯德半导体、全球化半导体设计与制造企业T公司等知名半导体企业的设备提供商,公司的产品能够有效提升客户的生产效率、产品良率并降低生产成本,已取得良好的市场口碑公司。设备主要使用于后道先进封装制程,包括湿法清洗设备和蚀刻设备、涂胶/去胶设备、显影设备等。未来公司将以清洗机与烘箱为主力产品,持续向前道工艺拓展。
  • 色谱DID技术为烯烃生产企业保驾护航
    乙烯和丙烯是现代有机化工中重要的基本有机原料,其主要用于生产聚乙烯和聚丙烯。然而在生产聚合级乙烯和丙烯过程中产生的CO和CO2会对其聚合性能,产品质量产生影响,甚至当含量达到一定值时会导致聚合催化剂中毒,活性降低。虽然国家标准对工业生产中CO和CO2的含量作了明确规定,但在实际生产中对其含量及工艺要求更为严格。 目前,常用的对乙烯和丙烯中微量CO和CO2的检测方法是GB/T3394-2009。但该方法不能满足实际生产中对痕量CO和CO2检测需求。因此,需要灵敏度更高的检测器进行检测。 针对这一需求,中国石化和上海石油化工研究院引进了美国GOW-MAC公司的816-DID型气相色谱仪(采用直流放电氦离子化检测器,即DID),并建立了一种快速测定聚合级乙烯和丙烯中痕量CO,CO2,CH4的色谱方法。为烯烃生产企业提供了一种新的高灵敏度的分析方法,对烯烃生产企业的烯烃产品质量控制和聚烯烃装置的生产具有重要的指导意义。
  • 重磅!国产汉诺医疗ECMO获批上市|迈瑞医疗入股
    国产ECMO产品获批上市——深圳汉诺医疗根据疫情防控工作需要,为确保新型冠状病毒肺炎重症患者治疗需要,2023年1月4日,国家药监局经审查,应急批准深圳汉诺医疗科技有限公司体外心肺支持辅助设备、一次性使用膜式氧合器套包注册申请,二者配合使用,用于急性呼吸衰竭或急性心肺功能衰竭、其他治疗方法难以控制并有可预见的病情持续恶化或死亡风险的成人患者。作为国产首个ECMO设备和耗材套包,上述产品具有自主知识产权,性能指标基本达到国际同类产品水平。其中,体外心肺支持辅助设备由主机、泵驱动装置、紧急泵驱动装置、备用电池、流量气泡传感器等组成。一次性使用膜式氧合器套包由膜式氧合器及动静脉管路组件(含离心泵泵头),预充管路组件,配件包组件和氧气管路组成。ECMO产品作为常规治疗无效的危重型新型冠状病毒肺炎患者的挽救性治疗设备,是《新型冠状病毒肺炎诊疗方案》中明确的治疗措施,国产产品的上市对于满足临床急需,保障新冠疫情重症患者治疗,确保疫情防控“保健康、防重症”目标落实,将发挥重要作用。在该产品的注册申报过程中,国家药监局按照“统一指挥、早期介入、快速高效、科学审批”的原则,成立应急审评工作组,专人负责、全程指导、发布技术审查指导原则,加大产品注册申报指导,加快审评审批进程,在保证安全、有效的基础上推动产品尽快上市,满足疫情防控工作急需。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。了解ECMO——体外膜肺氧合体外膜肺氧合(Extracorporeal Membrane Oxygenation,ECMO)主要用于对重症心肺功能衰竭患者提供持续的体外呼吸与循环,以维持患者生命。ECMO主要包括血管内插管、连接管、动力泵(人工心脏)、氧合器(人工肺)、供氧管、监测系统等部分。动力泵(人工心脏),提供动力驱动血液在管道中流动。临床上主要有两种类型的动力泵:滚压泵、离心泵。滚压泵不易移动,管理困难。急救首选离心泵,优势是安装移动方便,易于管理,血液破坏小。氧合器(人工肺),将输入的血液进行氧合,输出氧合后的动脉血。氧合器分为硅胶膜型与中空纤维型两种。硅胶膜型的生物相容性好,血浆渗漏少,血液成分破坏小,适合长时间使用。中空纤维型膜肺易排气,2-3日可见血浆渗漏,血液成分破坏相对大。ECMO三巨头皆为进口品牌:美敦力、索林、迈柯唯全世界ECMO的生产厂家仅有三家,皆为进口品牌,分别为美敦力、理诺珐(其ECMO 品牌为索林)以及迈柯唯。此前中国无一企业可生产,背后受技术门槛、临床使用、市场需求等多重因素制约!早在2020年2月27日,在国务院总理、中央应对新冠肺炎疫情工作领导小组组长李克强主持的领导小组会议上,指出要抓紧从全国调集ECMO,降低病亡率。高技术高门槛、产业链产能吃紧首先,ECMO系统的生产,具有颇高的技术门槛。ECMO由一整套设备体系组成,包括各类型原材料、电子元部件、高端材料等;ECMO设备厂家生产核心膜肺和泵、耗材等。膜肺是ECMO系统的核心部件,为进行气体交换的装置,至今已经发展出三代产品。目前市面上膜肺的材料有一代材料固体硅胶膜、二代材料微孔中空纤维膜以及三代材料固体中空纤维膜(PMP聚烯烃材料)。市场主要使用的第三代固体中空纤维膜,结合了第一代的材料固体硅胶膜和第二代材料微孔中空纤维膜优点,并克服了血浆渗漏的问题,有效延长了 ECMO 的临床使用时间。然而,PMP聚烯烃材料为3M公司旗下Membrana公司独家供应,因产能紧张,也导致下游ECMO企业产能受限。据业内人士称:PMP聚烯烃材料供应是垄断的,价格也是垄断的,所以奇货可居。设备昂贵,使用成本高——均价160万,开机费用5万元起步国内ECMO设备价格区间从100万元到300万元,均价为165万元,移动ECMO价格约300万元/台。昂贵的治疗费用,将患者拒之门外,实际治疗过程中,ECMO设备需要的耗材包每个报价也高达3万元到6万元,另外还需要持续检测、更换设备、用药等种种费用。据粗略估算,国内治疗费用开机从5万元起步。ECMO操作管理要求严格,至少4人以上专业临床团队ECMO对操作管理要求严格。一般需要有心脏外科或大血管外科、体外循环、心脏重症、呼吸重症、超声影像、检验等多个专业人员参与,一个 ECMO 运营团队至少4人及以上,要有专门的 ECMO负责人、协调员、仪器耗材管理员、信息管理员和医师,且均为专业重症和临床学科背景出身。由于ECMO救治患者极为危重,业界也建议ECMO中心最好设立在三级医院,且应具有相当水平的ICU。迈瑞医疗入股深圳汉诺医疗,助力打破进口ECMO垄断局面早在2022年2月,迈瑞医疗入股成为深圳汉诺医疗科技有限的新增股东,正式入局ECMO赛道。资料显示,深圳汉诺医疗科技有限公司该公司成立于2018年,由多位留德顶尖医疗技术专家创立,是一家从事三类高端医疗器械研发、生产及推广的高新技术企业。该公司专注于体外循环、体外生命支持类医疗设备和耗材,全链条产品的研发、制造、临床验证和全球销售,自主研制的体外膜肺氧合ECMO产品拥有完全自主知识产权与核心创新技术,该产品系列有望在短期内打破国外目前100%的市场垄断,实现中国在体外生命支持技术领域从零到一的国产化突破。
  • 中石油加快新能源、新材料布局!成立3个新研究所
    5月18日,中国石油下游直属科研机构中国石油石油化工研究院(简称“石化院”)召开大会,正式成立氢能、生物化工和新材料3个新研究所。 在其后发布的2020年度社会责任报告中,中国石油披露了其绿色低碳发展进展。大力发展天然气的同时,中国石油正在加快新能源、新材料布局。由“油气”供应商向“综合能源”供应商转型,中国石油明确宣布了这样的企业发展愿景。⒈科技攻关按下加速键新研究所的正式落地,标志着在这3个领域,中国石油的科技攻关按下了加速键。在研发方向方面,氢能研究所将围绕氢气制取储运及高效利用、燃料电池,以及储能技术等氢能产业相关技术展开研究。生物化工研究所将按照中国石油集团低碳绿色可持续发展战略部署,以低碳清洁能源和可再生碳资源供应及开发为目标,围绕生物质燃料、生物基材料与化学品等技术进行研究。新材料研究所将按照中国石油集团炼化业务从“燃料”向“化工产品及有机材料”转型的要求,围绕高性能合成材料、特种工程塑料、可降解材料、高端碳材料等进行研究。筹备三大新研究所的同时,石化院还开展了国内外行业形势、产业现状和代表性技术进展等前期调研和交流工作,部署了相关科研项目,目前已在中国石油新材料发展规划中得以落实。当前,全球新一轮科技革命和产业革新正在加速演进,氢能作为全球能源技术革命的重要方向,美国、欧盟和日本等都将其作为国家能源战略,制定了产业发展路线图。全球生物化工产业、新材料产业也在快速发展,作为实现产业升级的重要途径,开展相关研究是大势所趋。据介绍,此次成立的3个新研究所,在成立初期将实行“一套班子、两个机构”合并运行方案:新材料研究所与生物化工研究所初期进行合并运行;氢能研究所与化工研究室合并运行。按照公司严格控制机构数量要求,原聚烯烃研究室不再保留,创新团队依托合成树脂研究室运行,原生物质燃料与新能源研究室不再保留,整体划转生物化工研究所。⒉低碳领域科研投入将达10%实施低碳重大科技专项及新能源技术开发与应用研究工作,是中国石油助力绿色生产、推进低碳转型的重要举措。据官方最新数据,过去五年间,中国石油低碳科技专项资金投入超过2亿元,形成了18项关键技术和成套技术。中国已承诺力争2030年前实现“碳达峰”,2060年前实现“碳中和”。一方面是保障国家能源安全的战略要求,另一方面又是“双碳目标”的约束,能源转型在国内正在提速。在最新版社会责任报告中,中国石油明确了其三阶段的低碳发展路径:力争2025年左右实现“碳达峰”;2035年外供绿色零碳能源超过自身消耗的化石能源;2050年左右实现“近零”排放。从“清洁替代”到“战略接替”再到“绿色转型”,相较国家层面的整体规划,中国石油设定的时间节点进一步提前。为此,中国石油将主要采取三方面举措:推动天然气产量快速增长,到2025年占比提高到55%左右;推动公司向“油、气、热、电、氢”综合性能源公司转型;努力减少碳排放、实现碳移除,向社会外供绿色零碳能源等。中国石油已经把“绿色低碳”纳入了公司发展战略,融入了企业管理、科技创新和社会责任等公司发展的多个方面。在科技创新领域,为保障低碳发展目标的实现,中国石油将从以下方面发力:▍强化产、学、研、用相结合,加快先进技术和成果的转化与推广;▍打造低碳科技支撑条件平台,提升节能减排与环境保护科技自主创新能力,2030年低碳领域科技研究投入占比力争达到10%;▍推行绿色制造技术,提升产品装备低碳环保水平,推进全生命周期保护生态环境、节约资源能源;▍参与油气行业气候倡议组织等国际交流,在削减甲烷排放、推动CCUS发展、提高能效、减少交通行业碳排放强度等方面开展合作。加大科研创新,正在引领和支撑中国石油的业务转型与高质量发展。
  • 高分子领域国家重点实验室仪器配置清单
    人类的生产和生活离不开高分子材料,小到日用家居,大至航空领域,高分子材料广泛应用于通讯、电子、电气、医疗、化工、航空、航天、汽车、信息、生命科学等多个领域,因此高分子材料的研究与应用具有十分重要的意义。仪器信息网特对高分子领域国家重点实验室仪器配置情况进行盘点。高分子领域国家重点实验室高分子领域国家重点实验室依托单位实验室主任学术委员会主任纤维材料改性国家重点实验室东华大学朱美芳张希聚合物分子工程国家重点实验室复旦大学丁建东江明高分子物理与化学国家重点实验室中国科学院化学研究所和中国科学院长春应用化学研究所高分子材料工程国家重点实验室四川大学李光宪曹镛化学工程联合国家重点实验室清华大学、天津大学、华东理工大学和浙江大学超分子结构与材料国家重点实验室吉林大学孙俊奇段雪化工资源有效利用国家重点实验室北京化工大学宋宇飞 田禾  纤维材料改性国家重点实验室  纤维材料改性国家重点实验室依托于东华大学,源于我国第一个化学纤维专业,于1992年由国家计委批准筹建,1996年通过国家验收,分别于2003、2008、2013、2018年通过国家评估,其中2018年被评“优秀类国家重点实验室”,是我国纤维和纺织材料领域第一个国家重点实验室。实验室依托东华大学材料科学与工程学科,立足国际纤维科技前沿,紧密结合国家战略需求和国计民生需要,在高性能纤维领域打破国外垄断、民用纤维领域引领产业超越国家先进水平、生物质纤维和无机纤维开展前沿探索研究等方面作出了重要贡献。纤维材料改性国家重点实验室仪器配置清单纤维材料改性国家重点实验室仪器配置声速仪光学解偏振仪水分测定仪小型湿法纺丝机真空转鼓烘箱微型流延膜机聚合釜微型锥形双螺杆共混仪微型注塑机微型双锥共混螺杆纺丝机    聚合物分子工程国家重点实验室  聚合物分子工程国家重点实验室依托复旦大学,于2011年10月获得科技部批准建设,2013年12月通过科技部验收,2014年8月通过科技部组织的化学领域国家重点实验室的评估,获得“良好”。  实验室主体依托学科是复旦大学高分子化学与物理全国重点学科。实验室以“分子工程学”思想为导向,把结构性能关系研究、分子设计与合成、材料制备与应用融为一体。以“国家重大需求和学科前沿导向的基础研究”为总体定位,结合学科发展和学科交叉的需要,基于原有的研究基础,设置四个主要研究方向:(1)通用高分子的高性能化 (2)生物医用高分子的设计 (3)高分子相关的功能介孔材料 (4)高分子多尺度制备科学与技术。聚合物分子工程国家重点实验室仪器配置清单聚合物分子工程国家重点实验室仪器配置动态力学分析仪凝胶渗透色谱仪静态/动态激光光散射仪应变型流变仪差示扫描量热仪固体核磁共振仪稳态/瞬态荧光光谱仪X射线衍射仪可变真空扫描式电子显微镜基质辅助激光解析电离-飞行时间质谱仪自动纯化色谱质谱联用仪傅里叶变换红外光谱仪纳米粒度-Zeta点位分析仪热重分析仪偏光显微镜紫外可见分光光度计扫描探针显微镜场发射扫描电镜透射电镜荧光光谱仪凝胶色谱仪冷冻超薄切片机低温超速离心机基质辅助激光解吸电离飞行时间质谱仪热机械分析仪激光拉曼光谱仪液体核磁共振波谱仪小动物多角度光学活体成像系统流式细胞仪激光共聚焦显微镜旋转流变仪小动物Micro-CT成像系统转矩流变加工系统    高分子物理与化学国家重点实验室  高分子物理与化学国家重点实验室的前身是1989年经中国科学院批准,依托中国科学院化学研究所和中国科学院长春应用化学研究所建立的中国科学院高分子物理联合开放实验室。  鉴于1995和1999年连续两次在“国家化学学科重点实验室评估”中被评为优秀实验室,2000年经科技部批准由中国科学院开放实验室晋升为国家重点实验室,并扩充“中国科学院-中国石化总公司高分子化学联合开放实验室”(依托单位为中国科学院长春应用化学研究所和中国科学院化学研究所),重新组建成“高分子物理与化学国家重点实验室”。实验室于2001年3月通过建设验收。  *高分子物理与化学国家重点实验室仪器配置未公开  高分子材料工程国家重点实验室  高分子材料工程国家重点实验室(四川大学)1991年在四川大学高分子材料学科基础上组建,是世界银行贷款“重点学科发展项目”建设的75个国家重点实验室之一和确定的七个试点实验室之一。1995年4月通过国家验收,1996年2月正式向国内外开放,1997年、2003年、2008年和2013年连续四次通过国家评估,取得良好成绩。实验室的创始人中国科学院院士徐僖教授是我国高分子材料科学奠基人之一。实验室学术委员会由国内外知名专家学者17人组成,学术委员会主任为中国科学院院士曹镛教授。实验室研究方向明确,在高分子材料应用基础研究和工程化方面有鲜明特色,拥有一支朝气蓬勃、结构合理的高水平科研队伍,承担国家重要科研任务,取得显著科研成果,并在高层次人才培养方面取得卓越成绩,开展了卓有成效的对外交流与合作,现已成为我国高分子材料科学与工程领域规模最大的科研和教学基地之一。  *高分子材料工程国家重点实验室仪器配置未公开  化学工程联合国家重点实验室  化学工程联合国家重点实验室1987年被批准建设,1991年建成并开放运行,由清华大学、天津大学、华东理工大学和浙江大学四个分室组成。四个分室强强联合、优势互补,构成了我国唯一定位于化学工程一级学科的国家重点实验室。化学工程联合国家重点实验室仪器配置清单化学工程联合国家重点实验室仪器配置热分析同步热分析仪差示扫描热量计差示扫描量热仪反应型差示扫描量热仪热重分析仪热分析仪分子量与组成凝胶渗透色谱仪高温凝胶色谱仪(三氯苯相)气相色谱仪——付立叶红外光谱仪激光拉曼光谱分析仪形态结构磁悬浮高压热天平全自动比表面和微孔孔径分析仪表面积分析仪压汞仪纳米粒度电位分析仪粒度分析仪(0.017~2000μm)纳米粒度电位分析仪(2-3000nm)粒度分析仪(0.04—2000μm)力学性能万能材料试验机仪器化低温摆锤冲击测试仪导热系数测定仪维卡测定仪摆锤材料冲击仪表面分析超薄冷冻切片机120kv透射电子显微镜多功能纳米红外光谱仪场发射扫描电子显微镜台式扫描电镜原子力显微镜视频接触角测试仪偏光显微镜(带热台)流变性能高压毛细管流变仪带环境调控的动态热机械分析仪旋转流变仪粘度计熔融指数仪聚合物加工微型制样系统微型高性能复合材料混合成型系统微型高性能复合材料混合成型系统转矩流变仪转矩流变仪微型仿型制样机气动空心冲模压机实验室压片机双辊开炼机高压反应器间歇式捏合反应器系统带扭矩传感器的高压反应釜系统反应釜(Parr3.75L)反应釜(Parr1L)  超分子结构与材料国家重点实验室  超分子结构与材料国家重点实验室的前身是1978年由唐敖庆院士创建的“吉林大学结构化学研究室”,1991年在此基础上成立了“分子光谱与分子结构教育部开放研究实验室”,2001年更名为“超分子结构与材料教育部重点实验室”。2006年申请建立国家重点实验室,2007年由国家科技部批准建设,2010年通过验收。现任学术委员会主任为中科院院士段雪教授,实验室主任为孙俊奇教授。  实验室依托吉林大学高分子化学与物理、物理化学、有机化学、分析化学四个国家级重点学科,汇聚了一批具有不同学科专业背景的研究人员,现有固定人员85人,其中研究人员70人,技术人员11人,管理人员4人。研究队伍中包括中科院院士3名(含双聘院士2名),特聘领军人才2名,国家杰出青年科学基金获得者7名,国家自然科学基金委优秀青年科学基金获得者8名,优秀青年学术带头人6名,国家百千万人才计划入选者1名,国家万人计划入选者4名,全国百篇优秀博士学位论文获得者2名,教育部新(跨)世纪优秀人才培养计划入选者8名。超分子结构与材料国家重点实验室仪器配置清单超分子结构与材料国家重点实验室仪器配置核磁共振谱仪x射线单晶衍射仪粉末x射线衍射仪高分辨紫外光电子能谱飞行时间质谱联用仪气相色谱质谱联用仪透射电子显微镜原子力显微镜光栅型拉曼光谱仪激光共聚焦显微镜    化工资源有效利用国家重点实验室  化工资源有效利用国家重点实验室(北京化工大学)前身为2000年8月成立的可控化学反应科学与技术教育部重点实验室,2006年6月27日由国家科技部批准筹建国家重点实验室,2009年1月4日正式通过验收。  实验室学术委员会由22名专家学者组成,学术委员会主任由中科院院士田禾教授担任,实验室主任由宋宇飞教授担任。  重点实验室密切围绕我国建设资源节约型社会的战略目标,以化工资源有效利用为主攻方向,深入研究相关领域的科学问题与技术集成原理,充分利用北京化工大学化学、化工和材料三个一级学科布局紧凑、专业方向完整的优势,通过学科间的交叉、渗透和整合,针对“化工资源有效利用”的途径,形成了三个有特色的研究方向:组装化学、可控聚合、过程强化。  实验室认真贯彻执行“开放、流动、联合、竞争”的方针,重视科学研究、人才培养、队伍建设和开放交流等各方面的工作。基于北京化工大学的基础及办学宗旨,实验室确定了基础研究与应用研究密切结合的定位,即在开展学术前沿研究的同时,以国家实际需求为切入点,直接进入国民经济建设的主战场。承担一批基础和工程化及产业化研究项目,发表一批高水平的学术论文,申报一批国家和国际发明专利,产出一批具有显示度的科研成果,形成鲜明的应用基础研究特色。化工资源有效利用国家重点实验室仪器配置清单化工资源有效利用国家重点实验室仪器配置核磁分析400MHz固体核磁共振谱仪形貌分析扫描电子显微镜(热场高分辨SEM)透射电子显微镜(高分辨TEM)透射电子显微镜(分析型TEM)扫描探针显微镜热分析热分析仪差热天平热分析/质谱联用系统色谱分析气相色谱质谱联用仪液相色谱仪表面性能分析物理吸附分析仪4站物理吸附分析仪化学吸附分析仪程序升温化学吸附/质谱联用仪表面张力仪光学法液滴形状分析系统激光粒度仪纳米粒度和Zeta电位分析仪光谱分析傅里叶红外光谱仪原位红外光谱仪真空红外/拉曼联用光谱仪紫外分光光度计圆二色光谱分析仪显微共焦拉曼光谱仪激光显微共聚焦荧光显微镜元素分析等离子发射光谱仪能谱仪结构分析X射线衍射仪  除了上述国家重点实验室,还有海洋涂料国家重点实验室和废旧塑料国家重点实验室等企业国家重点实验室。另外,还有一些教育部成立的重点实验室等,以下也将公开的仪器配置予以列出。  工程塑料重点实验室  中国科学院工程塑料重点实验室成立于1991年,是国内最早开展工程塑料科学研究的实验室。实验室建设和发展初期以高分子复合材料和狭义的工程塑料研究为主 后逐渐扩展到多品种的高分子材料科学研究,如烯烃聚合催化剂的合成及可控聚合、高分子材料的增强增韧、塑料高性能化的新技术、苛刻环境中使用的先进高分子材料等方向 近年来,随着学科的发展和国民经济建设的需要,实验室增加了纳米复合材料、生物医用高分子材料、环境友好高分子材料和聚烯烃合金新材料的合成与制备等研究方向。工程塑料重点实验室已经成为我国从事高分子材料基础研究和应用基础研究、实施科技成果转化、培养优秀青年科技人才、开展国际学术交流和合作的重要基地。工程塑料重点实验室仪器配置清单 工程塑料重点实验室仪器配置加工成型反应型双螺杆挤出系统同向双螺杆挤出机塑料注射成型机微量注射成型仪气动制样机自动切缺口机小型捏合机转矩流变仪平板硫化机超临界二氧化碳反应装置结构、热性能差示扫描量热计动态力学分析仪热失重分析仪傅里叶红外光谱仪凝胶渗透色谱仪高效液相色谱台式万能材料流变、力学性能试验机电子式悬简组合冲击试验机毛细管流变仪高级流变拓展系统/旋转流变仪拉伸流变仪熔融指数仪偏光显微镜微观形貌冷热台透射电子显微镜扫描电子显微镜超薄切片机溅射仪扫描探针显微镜    高分子化学与物理教育部重点实验室  北京大学高分子化学与物理重点实验室于2004年底获教育部批准立项建设。实验室的总目标是面向学科发展和国家需求,对本领域内的重要科学前沿问题和重大技术问题进行创新性研究 按照教育部重点实验室建设的要求,结合高分子科学的发展趋势,进一步凝炼研究方向,加强研究队伍建设,围绕高分子化学与物理的核心问题,开展原创性的前沿工作,努力体现基础与应用基础研究两个层面的交叉复合。本实验室将对高分子科学领域的学术创新和技术进步作出贡献,解决本领域一些重要的科学技术问题,培养高水平的高分子科学研究人才,努力成为我国高分子领域重要的基础研究基地、材料开发和技术创新基地、人才培养基地和学术交流中心。      功能高分子材料教育部重点实验室  功能高分子材料教育部重点实验室于1989年经国家计委批准立项,由世界银行贷款资助,在南开大学高分子化学与物理国家重点学科的基础上创建的。1995年9月实验室通过国家验收并向国内外开放。  实验室根据国际高分子科学的研究前沿和我国国民经济发展的需求,主要开展分子识别与吸附分离功能高分子材料、生物医用高分子材料、杂化及纳米材料和聚合物结构与性能研究。部分研究领域居国际、国内前列。  2019年12月,教育部科技司评估功能高分子材料教育部重点实验室(南开大学)结果为优秀类教育部重点实验室。功能高分子材料教育部重点实验室仪器配置清单功能高分子材料教育部重点实验室仪器配置超导核磁共振谱仪核磁共振波谱仪小角X光散射系统付立叶红外光谱仪原子力显微镜扫描式电子显微镜热分析系统广角激光光散射系统ZETA电位仪高效液相色谱仪荧光光谱测量系统接触角分析仪凝胶渗透色谱仪高效液相色谱仪折光指数增量测定仪气体吸附表面积分析仪紫外分光光度计万能材料实验机液体核磁共振谱仪广角激光散射仪(红光636nm)偏光显微镜ZETA电位+广角激光散射仪(绿光532nm)飞行时间质谱仪拉曼光谱仪    聚合物成型加工工程教育部重点实验室  聚合物成型加工工程教育部重点实验室以华南理工大学材料科学与工程国家重点一级学科和机械工程国家重点(培育)学科为支撑,以材料学、材料加工工程、材料物理与化学、机械设计及理论、化工机械等五个博士点为依托,于2002年9月经教育部评估优秀后正式成立,是目前我国唯一有关聚合物成型加工工程的重点实验室。  本实验室的总体定位是围绕聚合物成型加工技术与工程,开展高水平基础与应用基础研究,探索聚合物加工新方法和高分子材料微结构设计理论 研究开发具有自主知识产权的聚合物成型加工新技术与新装备,提升我国高分子材料成型加工技术水平及国际竞争力 培养高层次的专业人才,为相关领域的理论研究、教学和技术开发提供人才资源。实验室的主要研究方向是聚合物成型加工新技术及理论、加工过程动力学及加工过程高分子物理化学,以及三者之间的相互作用关系。聚合物成型加工工程教育部重点实验室仪器配置清单聚合物成型加工工程教育部重点实验室仪器配置差示扫描量热仪热重分析仪热重气相色谱质谱联用仪应力控制流变仪动态热机械分析仪傅里叶变换红外光谱仪场发射扫描电子显微镜熔融指数仪台式电子万能试验机高温十八角度激光光散射仪橡胶加工分析仪塑料工作站高分子材料动态流变工作站单双三螺杆反应挤出机及电磁动态塑化挤出机系列各种注塑及注射机系列密炼机系列  生物医用高分子材料教育部重点实验室  生物医用高分子材料教育部重点实验室由国家教育部于2003年批准立项建设,实验室的前身是1993年原国家教委批准建立的生物医用高分子材料教育部开放实验室。实验室自上世纪80年代开始开展生物材料研究,是国内最早开展生物医用高分子研究的基地之一。在卓仁禧院士、张俐娜院士等学术带头人的领导下,经过多年的努力和发展,实验室形成了自己的特色和学术优势,科研成果获多项国家级、省部级奖励。目前实验室已成为我国生物医用高分子材料的一个重要研究基地、高水平生物医用材料专业人才的培养基地。生物医用高分子材料教育部重点实验室仪器配置清单生物医用高分子材料教育部重点实验室仪器配置小动物活体成像仪激光共聚焦显微镜超高分辨率激光共聚焦显微镜光声/超声成像仪流式细胞仪凝胶渗透色谱仪激光散射仪粒径电位分析仪紫外可见分光光度计红外光谱仪倒置荧光显微镜荧光分光光度计偏光显微镜酶标仪接触角测量仪核磁共振谱仪高效液相色谱仪冷冻干燥机核酸合成仪圆二色谱仪液相质谱仪  橡塑材料与工程教育部重点实验室  橡塑材料与工程教育部重点实验室暨山东省橡塑材料与工程重点实验室是依托青岛科技大学高分子材料与工程学科建设的省部共建重点实验室,是青岛科技大学以橡胶材料与工程为特色的优秀科研团队和高水平仪器设备聚集、运行管理相对独立的科研平台。  重点实验室于2003年获教育部批准立项建设,2006年完成建设方案预定的各项目标并通过教育部专家组验收正式揭牌运行。与此同时,重点实验室2004年被山东省科技厅列为山东省重点建设的高水平重点实验室,并在历次山东省重点实验室考评中均取得优异成绩,连续两个五年计划获山东省科技厅的大力支持。    生态环境相关高分子材料教育部重点实验室  生态环境相关高分子材料实验室,是在甘肃省高分子材料重点实验室的基础上于2005年7月由国家教育部批准立项建设的生态环境相关高分子材料教育部重点实验室。2009年5月通过教育部专家组验收,成为教育部重点实验室。主要研究方向为:环境修复高分子材料研究、环境友好高分子复合材料研究和改性天然及农用生态高分子材料研究。  聚合物复合材料及功能材料教育部重点实验室  聚合物复合材料及功能材料教育部重点实验室于1993年12月经国家教委批准成立,1996年9月正式对外开放,1999年10月第一批被批准为教育部重点实验室。  实验室的主要研究方向为:1.聚合物多相复合体系的结构与性能及聚合物复合材料的研究和应用。研究内容包括:聚合物及其复合材料(包括纤维增强、颗粒填充和共混等)的基础和应用研究 复合材料界面效应及其作用机理、界面层设计及其控制方法和相关表征技术的研究 复合材料结构、性能及加工成型工艺的优化设计和综合研究 新型聚合物的(合成)制备和研究。2.新型(纤维状)功能材料研究及其应用技术。研究内容包括:新型吸附分离功能纤维材料(活性碳纤维、离子交换纤维、螯合纤维)的制备、吸附分离机理及其在环保资源回收方面的应用。新型聚合物功能材料的(合成)制备和研究。  现任实验室正、副主任分别是章明秋教授和符若文教授,学委会主任是曾汉民教授,学术秘书是陈水挟副教授。  橡塑新型材料合成国家工程研究中心  橡塑新型材料合成国家工程研究中心隶属中国石化集团公司,于1996年11月1日在北京正式成立。  橡塑新型材料合成国家工程研究中心(RPNERC)北京燕山石油化工公司自1992年开始向国家申报组建橡塑新型材料合成国家工程研究中心,1995年6月6日国家计委正式批准项目建议书,1995年11月23日正式批准可行性研究报告,同时进入实施阶段。2003年4月15日,橡塑新型材料合成国橡塑新型材料合成国家工程研究中心由七个科研开发职能部和一个办公室组成。  分析检测部主要是负责橡胶和塑料高分子材料原材料和成品的结构分析和物性测试,共有分析技术人员30人,测试仪器齐全,技术力量雄厚,是高分子材料全面分析和测试的基地。家工程研究中心(RPNERC)通过了国家有关部门组织的验收。  聚烯烃国家工程研究中心  聚烯烃国家工程研究中心于2003年1月16日在北京通过了国家有关部门验收。受国家计委的委托,聚烯烃国家工程研究中心于2003年1月16日在北京通过了国家有关部门验收。上世纪90年代以前,中国的聚烯烃先进技术几乎依赖进口。国家计委依托中国石化北京化工研究院于1995年批准建设聚烯烃国家工程研究中心。中心的工作重点是研制聚烯烃高效催化剂,开发大型成套技术,并将研究成果转化为工业化生产,在全行业推广。  聚烯烃国家工程研究中心由国家计委投入3100万元人民币,中国石化投入近1亿元。经过几年建设,基本建成了催化剂研究开发和生产制备、聚合工艺评价与成套技术开发、合成树脂表征及应用等综合配套的工程研究及开发能力。总体实力达到国内领先、国际先进的水平。中心自主开发并转化生产的聚丙烯N型催化剂技术具有明显的优势,该技术向美国菲利普斯(Phillips)石油公司转让专利许可证。目前该催化剂已成为包括欧美市场在内的国际市场上第二大聚丙烯催化剂品种。  中心建设期间,在科研开发、成果产业化、市场推广应用、人才队伍建设以及国内外合作交流等方面已取得较大的成绩,为中国聚烯烃行业的技术进步与发展作出了重要的贡献。  中国科学院生态环境高分子材料重点实验室  中国科学院生态环境高分子材料重点实验室主要研究生态环境高分子材料的高效制备、先进加工技术和工程化所面临的关键问题,主要研究以聚乳酸和二氧化碳基塑料为代表的生物降解高分子材料、以膜分离高分子材料和絮凝材料为代表的水资源高分子材料、以聚苯胺和紫外光固化树脂为代表的环保防腐高分子材料,并以生态环境材料的加工工程为四个研究方向之一。实验室有固定职工54人,研究生等流动人员57人。  本实验室在上述四类材料上有10年以上的长期积累,承担了国家科技部、自然基金委、中国科学院、吉林省科技厅等各部门在相关领域的重大、重点计划,研究成果在国内外产生了重要影响。如本实验室在世界上率先实现了二氧化碳基塑料的产业化,得到了世界范围的认可 建立了世界上第二条、国内第一条千吨级聚乳酸生产线,获得了吉林省科技进步一等奖 建立了世界上第二条、国内第一条百吨级聚苯胺生产线 在海水淡化膜分离材料方面也拥有丰富积累,是科技部973项目中高分子膜分离材料的负责单位,在油田水处理方面也正在日益显示出本实验室技术的有效性和重要性,建立了国内第一条水介质分散聚合制备水溶性高分子的3000吨生产线,获得了中油大庆油田分公司等大型企业的认可。  实验室的创立者和名誉主任为我国著名的高分子化学家王佛松院士,实验室主任为王献红研究员,学术委员会主任为张希院士。  中国科学院高分子复合材料工程中心  高分子复合材料工程实验室成立于2009年,是为了适应我国发展战略高技术对先进高分子复合材料的强烈需求,在2009年经中国科学院批准建设的“中国科学院高分子复合材料工程化研发平台”的基础上,利用长春应化所高分子物理与化学国家重点实验室和原高分子工程实验室的部分研究力量组建而成的。实验室现有研究员11人,副研究员24人,高级工程师4人,中级研究人员49人,初级研究人员3人,在读研究生54人,2015年经费达到10169万元,有科研用房面积约5557平方米,科研仪器设备总价值7125余万元。高分子领域常用仪器配置高分子领域常用仪器色谱凝胶色谱仪高效液相色谱波谱核磁共振光谱红外光谱仪紫外分光光度荧光光谱仪拉曼光谱仪质谱气质联用液质联用飞行时间质谱仪X射线仪器X射线衍射仪粒度/颗粒/粉末分析仪器Zeta电位仪激光粒度仪表界面物性测试比表面化学吸附仪流变仪/粘度计流变仪热分析仪差示扫描量热仪热重分析仪热分析联用仪热机械分析仪试验机万能试验机拉力试验机电子显微镜扫描电镜透射电镜原子力显微镜扫描探针显微镜显微镜偏光显微镜共聚焦显微镜  信息统计来源于各国家重点实验室官网,部分实验室罗列仪器设备较全,部分实验室仅罗列了最主要或特色的仪器设备,因此结果仅供参考。另外其中有些仪器类型可能存在并列或包含关系,并未进行详细区分。
  • 用户之声|赛默飞深入石化分析一线 助力REACH法规研究
    用户之声|赛默飞深入石化分析一线 助力REACH法规研究 “你买到口罩了吗?” 最近大家云见面最常问的就是这句话。疫情之下,医用口罩变为紧缺物资,也让其重要原材料——聚丙烯成为行业关注焦点。 作为过滤新冠病毒气溶胶的核心关键材料,聚丙烯更是《中国制造2025》高分子材料重点发展领域之一。聚丙烯的迅猛发展,丙烯聚合用催化剂起了很大的推动作用。新型内给电子体开发是聚烯烃催化剂发展的源动力,通过内给电子体复配可使内给电子体之间优势互补,得到综合性能更优的聚丙烯催化剂,大量具有优良加工性能的聚丙烯产品不断出现。 内给电子体含量的准确测定对于催化剂研发、生产起着至关重要的作用,然而到目前为止,国内外对各种助剂在催化剂中含量的检测方法鲜见相关文献报道。赛默飞提供的气相色谱,气质联用,以及气相色谱和红外联用技术,为催化剂内给电子体定量和定性分析,提供创新性技术分析平台。创新技术平台气相色谱-质谱联用系统 气相色谱-红外联用系统 中国石油化工股份有限公司北京化工研究院(以下简称"北化院")是国内最早从事石油化工综合性研究的科研机构之一,致力于建设世界一线的能源化工研究机构。设立了聚烯烃国家工程研究中心、国家高分子材料与制品质量监督检验中心等10个全国性技术中心,在聚烯烃催化剂研究方面处于国际先进水平,已有多个聚丙烯催化剂实现工业化生产。其中,不仅包含单一内给电子体催化剂,还有基于内给电子体复配技术催化剂。 陈松,博士,高级工程师,中国石化北京化工研究院高级专家,第九届石油炼制分会炼油分析及规格标准化委员会专家咨询组成员,中国石化北京化工研究院分析研究所烯烃原料分析中心负责人。以北化院聚烯烃催化剂及乙烯技术为基础长期从事烯烃原料及聚烯烃材料VOC分析技术研究工作。完成石油工艺和煤化工工艺路线聚合级烯烃原料中近150种微量杂质的分析技术建立工作,及聚烯烃材料VOC中100种挥发性有机物嗅觉数据库建立。起草多项国家标准行业标准,获得中石化多项科技进步奖、专利,获得中国石化闵恩泽青年科技人才奖,等等。 北化院分析研究所烯烃原料分析中心负责人陈松博士表示:我院工艺组正在研究催化剂研制过程中内给电子体含量对催化剂性能的影响,GCMS和GC-IR在项目过程中发挥非常重要作用。两台仪器都是2008年采购的,至今已使用十二年,仪器性能依然十分稳定。 两台仪器除助剂分析外,早在2010年中国石化为国内化工品遵循欧盟REACH法案研究和注册期间,承接了很多重要分析项目,也立下汗马功劳。 出口欧盟苯乙烯谱图 根据欧盟《关于化学品注册、评估、许可和限制的法规》(简称“REACH”)要求,欧盟委员会建立统一化学品监控管理体系,将欧盟市场上约3万种化工产品及其下游纺织、轻工、制药等产品分别纳入注册、评估、许可3个管理监控系统,成为石油化工、轻工和纺织等相关产业出口欧盟贸易技术壁垒。 顺利通过欧盟REACH法规的预注册和注册,是中国石化产品进入欧盟市场的前提,也是中国石化实现向国际化能源化工公司战略目标发展的重要步骤之一。同时,中国石化产品在欧盟进行预注册和注册后,下游用户可免于注册,选用中国石化产品,可为下游用户开创进入欧盟市场的绿色通道。 按照中国石化总部要求,通过气相色谱-质谱联用仪(GC-MS)和气相色谱-红外联用仪(GC-IR)平台,分两个阶段及时完成应对REACH正式注册可气化有机物的定性定量试验,向欧盟提交符合注册要求的化学品相关材料全部谱图、数据和测试方法说明。更重要的是,该项目加快我国化学品管理法规与国际接轨的步伐。 石化行业正面临深度结构调整、转型升级的严峻挑战。赛默飞卓越的气相色谱、气质联用系统和完善的解决方案可应用于石化勘探开采、生产过程控制、生产工艺优化以及工业“三废”监管等领域,助力石油化工产业立足环境友好实现高质量发展。
  • 烟用热熔胶及其粘接材料表面性能的研究
    研究背景近年来,随着我国工业自动化进程的不断加快,热熔胶由于具有环保、固化速度快等特点,其发展取得显著成效。与此同时,高装饰包装材料的应用不断扩大,对热熔胶的粘接性能提出了新的挑战。卷烟工业中对烟支的“软包硬化”包装材料便是其中之一。烟支包装材料的正面和背面均为光滑平面,使用EVA或聚烯烃热熔胶对其进行粘接,经常出现开胶、粘接不牢等问题。 为了扩大EVA热熔胶的应用范围,提高其在难粘材料上的应用,本文采用OWRK法测定热熔胶及其原料、烟用包装材料在常温下的表面能,初步讨论烟用包装材料的表面能,热熔胶原料表面能与热熔胶表面能的关系,最后结合粘接力学数据,讨论材料表面能与粘接性能的关系。 实验方法仪器:Drop Shape Analyzer-DSA25接触角测量仪,德国KRÜSS有限公司方法:将热熔胶或原料分别放在隔离纸上,放入烘箱中30min(150℃)后取出,室温冷却至少2h,选择表面平整处,裁剪成2 cm × 1cm 样品,备用。将上述样品放在DSA25平台上,使用去离子水和二碘甲烷两种液测定接触角,然后进行表面能及分量的计算。 file:///C:/Users/Thinkpad/AppData/Local/Temp/ksohtml10020/wps961.jpg 结果与讨论1.包装材料包装材料的接触角、表面能及其分量见表1。表1 烟用包装材料数据表 烟用包装材料在生产过程中,其表面处理工艺有一定的不同,纸箱表面的瓦楞纸需要加入大量的疏水剂和施胶剂(如疏水性淀粉胶等),为提高强度防止吸水后变软,所以其与水的接触角大于90°,实测在103.5°,二碘甲烷则体现完全润湿,无法测定其接触角。 普通条盒纸和软包硬化纸均是以白卡纸为基材,具有一定的强度,表面进行不同处理更加考虑其外观性及手感。普通条盒纸的正反面与水的接触角远低于软包硬化纸,同时,前者正面与二碘甲烷的接触角同样低于后者正面的。前者正面的表面能及其分量均高于后者正面,条盒白卡纸正面表面能44.7mN/m,软包硬化纸正面31.5mN/m。因此,普通条盒纸为易粘接材料,而软包硬化材料属于难粘接材料。 2.烟用热熔胶主要原料烟用热熔胶主要原料的接触角、表面能及其分量见表2。表2 烟用热熔胶主要原料数据表 增粘树脂的表面能在42.0 ~61.4mN/m,属于高表面能材料,用于提高热熔胶的粘接性。由表2可知,1#~4#原料为烟用热熔胶主体树脂,均为乙烯的共聚物。值得注意的是,在相同条件下,低醋酸乙烯含量的聚醋酸乙烯与乙烯共聚树脂对纤维类基材的粘接性要优于高醋酸乙烯含量。5#和6#原料为烟用热熔胶两种常用蜡:乙烯蜡和费托蜡,其中,费托蜡的表面能高于石蜡和乙烯蜡。7#~10#原料为烟用热熔胶常用增粘树脂,其中,C9氢化石油树脂与水及二碘甲烷的接触角均最大,表面能最低,为42.0mN/m。11#原料为实验室自制马来酸酐改性松香季戊四醇酯树脂,由于含有一定过量的马来酸酐,其对水的接触角减少至51.7°,与二碘甲烷的接触角只有 21.7°,其表面能为61.4mN/m。 3.烟用热熔胶合成的热熔胶及表面性能见表3。表3 自制烟用热熔胶数据表 由表3可知,1号胶使用费托蜡改性聚醋酸乙烯与乙烯共聚树脂,导致表面分子中的结构、结晶和分布状态的改变,致使表面能由30.8mN/m上升至41.5mN/m。2号胶在1号胶的基础上,加入了松香,通过松香中的羧基亲水基团进一步提高胶体表面能。3号胶的表面能下降为38.3mN/m,是由于所使用材料的水滴角均较高,导致表面能偏低。4、5号热熔胶分别采用材料9#或10#(即氢化C5或C9)替换3号胶中的松香季戊四醇酯,得到4号热熔胶的表面能与3号几乎相等,略高于5号胶。基于以上,我们看到单独使用增粘树脂时,即使少量松香加入也会使热熔胶在主体材料(1号胶)基础上表面能有一定的增加,而松香酯、氢化C5和氢化C9合成的热熔胶,即使大量加入也会导致表面能减少,在37.6 ~38.4mN/m,这是由于大量增粘树脂的存在减少了胶中唯一能与水形成氢键的酯基在表面的数量,使3~5号胶表面亲水性降低,表面能降低。 鉴于增粘树脂的亲水性对热熔胶表面能影响较大,利用松香季戊四醇酯对二碘甲烷接触角较小的性质,实验室制备了马来酸酐改性松香酯树脂,其表面性质如上所述。分别在6号和7号胶中添加了材料11#,从结果看,11#的加入使两项接触角都有一定的下降,表面能明显增加至53.3和55.9mN/m,而将6和7号对比,得知其加入量对热熔胶的表面能均有较大提升作用。 4.热熔胶与各种基材的粘接性能表4自制热熔胶与烟用包装材料的粘接性能对比 表4为采用表3中1 ~7号胶进行粘接实验后测得的粘接强度数据。由表4可得,纸箱属于易粘接材料,1~7号胶均达到基材破坏的效果。普通条盒包装材料,粘接效果也较为理想,2 ~7号胶配比均能达到基材破坏,这说明在基材表面能为44.7mN/m,属于高表面能材料时,与基材表面能相似的热熔胶均能取得理想的粘接效果。而1号胶的胶粘效果要相对差一些,说明对于高表面能基材,胶粘效果不由热熔胶表面能的高低决定,而取决于对基材的润湿性。对于软包硬化白卡纸,其表面能为31.5mN/m,属于低表面能基材。1 ~ 5号胶粘接效果均不理想,剥离强度均小于5N/cm,这是由于低表面能所导致。6和7号胶粘接效果较为理想,其中6号胶对基材的粘接剥离强度最高,达到11.2mN/m,破坏类型为胶层开裂,7号胶强度达到7.8N/cm,破坏类型为基材破坏。6和7号胶表面能与2~5号胶有明显差异,是取得高粘接性和基材破坏效果的主要原因。 结论应用OWRK法测得烟用包装材料、热熔胶主要原料及其制备烟用热熔胶的接触角和表面能,普通条盒白卡包装纸正面的表面能为44.7mN/m,而软包硬化白卡包装纸正面的表面能为31.5mN/m,即前者更易于粘接,后者更难粘接。 所制备的烟用热熔胶表面能在37.6~55.9mN/m,均分别高于主体树脂和蜡的表面能。松香季戊四醇酯、氢化C5和C9对热熔胶表面能的提升有限,其胶体表面能低于主体树脂和蜡混合后(1号胶)的表面能,而含一定量羧基的增粘树脂能够不同程度提高热熔胶的表面能,其数值均高于主体树脂和蜡混合后(1号胶)的表面能。 对于易粘接基材(封箱和普通条盒白卡纸),热熔胶的表面能对粘接效果影响有限,主要取决于热熔胶在基材上的润湿性。对于难粘性基材(软包硬化白卡纸),热熔胶的高表面能,尤其是使用高表面能增粘树脂是取得优异粘接效果的关键。 参考文献[1]耿志忠,刁立翔,杨帆,张弘胤,董彦林,刘瀑,宋秭龙,刘文富.烟用热熔胶及其粘接材料表面性能的研究[J].粘接,2022,49(01):46-50.
  • 2018CMRS:中国高校储能材料前沿研究荟萃
    p  strong仪器信息网讯/strong 自7月13日,2018中国材料大会开幕以来,截止今日,作为大会33个分会场之一——能量转换与存储材料分会场已经会期过半。能量转换与存储材料分会场(以下简称:分会场)共组织77场报告,发布墙报42篇。报告作者来自于55个单位,除两篇报告以外,其余作者均来自于各高校。锂电池是本次会议的主角,燃料电池、储氢材料、电容、太阳能电池等方面也有所涉及,充分展现了中国高校在能量转换和存储材料方面研究的最新前沿进展。精彩的报告内容吸引了众多观众,100多人会场座无虚席。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1be6a7ce-c872-4cbf-a5fd-4fa08dab1158.jpg" title="fenhuich.jpg"//pp style="text-align: center "  能量转换与存储材料分会场现场/pp  锂电池研究正如火如荼,像中国一样,到了一个关键时期。分会场邀请了众多知名学者分享各自的前沿研究进展,仪器信息网特节选部分报告作扼要介绍。中国科学院物理研究所黄学杰作《LiNi0.5Mn1.5O4 as cathode material for Li-iion Batteries》报告,分享了LiNi0.5Mn1.5O4首周不可逆容量的结构因素研究以及最近发表《Chemistry of Materiais》的“LiNi0.5Mn1.5O4在晶粒宏观形貌控制及表面结构研究”研究成果。/pp style="text-align: center "img style="width: 400px height: 235px " src="http://img1.17img.cn/17img/images/201807/insimg/f71ae0f2-a5b2-4794-a470-485dade17562.jpg" title="huangxjie.jpg" border="0" height="235" hspace="0" vspace="0" width="400"//pp style="text-align: center "中国科学院物理研究所黄学杰/pp  广东工业大学施志聪作《微纳结构能源储存与转化材料》报告。分享了分形双通微纳米多孔铜、负载纳米亲锂金属的微纳米多孔铜应用于锂电池中的最新研究进展。/pp style="text-align: center "img style="width: 400px height: 235px " src="http://img1.17img.cn/17img/images/201807/insimg/a8e5498b-f661-49ba-8644-c4eb301eb43f.jpg" title="shizhicong.jpg" border="0" height="235" hspace="0" vspace="0" width="400"//pp style="text-align: center "广东工业大学施志聪/pp  浙江大学高明霞作《Destabilization of light-metal borohydrides by reactive combination, catalysts nanconfinement》报告,报告内容主要为通过多项的反应综合、纳米限制和催化来提高轻金属硼氢化物体系的储氢性能,试验结果表明,通过放气循环后,很好地保持了原有的纳米结构。/pp style="text-align: center "img style="width: 400px height: 235px " src="http://img1.17img.cn/17img/images/201807/insimg/0bd780fa-d623-4297-a782-acb7aade2a66.jpg" title="gaomingxia.jpg" border="0" height="235" hspace="0" vspace="0" width="400"//pp style="text-align: center "浙江大学高明霞/pp  厦门大学赵金保作《面向高能量密度锂离子电池的隔膜材料的开发》报告,为达成高能量密度、高安全性的目标,锂离子电池的隔膜材料需进一步发展。如何避免内部短路引起的电池起火,是提高电池安全的关键。聚烯烃系隔膜在高温下发生收缩带来巨大安全隐患,伴随电池大型化和高能量密度化,隔膜高温熔融现象易发生,隔膜的耐温性变得重要。报告中提出一种陶瓷隔膜,大幅度提高基膜性能、提高隔膜高温下尺寸稳定性、提高隔膜的热熔化温度值与热关闭温度值的差值。通过给出的210Wh/kg级622三元动力电池(40Ah)的针刺实验、过充电实验的安全测试实例,展示了陶瓷隔膜的高温维度稳定性高,大幅提高了锂离子电池的安全性。/pp style="text-align: center "img style="width: 400px height: 235px " src="http://img1.17img.cn/17img/images/201807/insimg/70efd9f0-bf7d-48ec-b4ba-ae379b091a91.jpg" title="zhaojibao.jpg" border="0" height="235" hspace="0" vspace="0" width="400"//pp style="text-align: center "厦门大学赵金保/pp  分会场还特别邀请了来自University College London 的Zheng-Xiao Guo作《Engineering Low-Dimensional Nanostructures for Effective Energy Conversation and Storage》报告。/pp style="text-align: center "img style="width: 400px height: 235px " src="http://img1.17img.cn/17img/images/201807/insimg/4d7ab988-0270-4789-8aa6-4003a491bb6d.jpg" title="guozhxiao.jpg" border="0" height="235" hspace="0" vspace="0" width="400"//pp style="text-align: center "  Zheng-Xiao Guo作报告/pp  来自中南大学梁超平作《Obstacles toward unty efficiency of LiNi1 - 2xCoxMnxO2x (x=0~1/3) (NCM) cathode materials: Insights from ab initio calculations》报告,华南理工大学的胡仁宗作《储锂SnO2负极材料转化反应的可逆性调控》报告,武汉理工大学的罗雯博士分享了“材料复合新技术国家重点实验室”在纳米线储能材料与器件新进展,北京大学夏定国团队分享了富锂正极材料中的阴离子氧化还原问题研究进展....../pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/bc7f78f8-27d9-41e9-99de-e0860acb7880.jpg" title="zhongren.jpg"//pp  分会场将于16日上午结束,随着会议的进程,更多精彩报告将一一呈现!/p
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • 2亿元!万华化学获山东省首笔技术改造与设备更新贷款
    6月13日,中国工商银行山东省分行发放全省首笔技术改造与设备更新贷款——万华化学集团股份有限公司“120万吨/年乙烯及下游高端聚烯烃项目”2亿元。本项目的成功投放,标志着本轮科技创新和技术改造再贷款设立以来,全省(不含青岛)首笔项目清单内的技术改造与设备更新贷款实现落地。为贯彻落实党中央、国务院决策部署,推动新一轮大规模设备更新和消费品以旧换新,2024年4月,中国人民银行设立科技创新和技术改造再贷款,其中4000亿元旨在激励引导金融机构发放技术改造与设备更新贷款。政策出台后,山东工行高度重视,成立专班,第一时间召开专题推动会,印发政策明白纸明确服务路径。提前介入,主动服务,积极了解各级推荐项目信息,按照“一项目一团队”原则开展精准对接服务,切实提升服务实体经济的精准直达性,以“头雁”姿态做好各项金融服务。在中国人民银行山东省分行的指导下,山东工行积极探索服务重点领域技术改造需求的新模式、新产品,秉承“贷、债、股、代、租、顾”六位一体的全产品服务理念,推出专属金融服务产品包。创新推出设备购置绿色贷,精准匹配工业技改技术迭代快、设备更新升级频繁的特点,有效助推企业经营提质升级。通过科创研发贷,满足科创企业研发中的采购需求,有效助力企业“轻装上阵”开展关键核心技术攻关。运用固定资产贷款技术改造服务和工银金租融资租赁,发挥集团优势,开展行司联动,综合满足在经营周转、置换存量融资、项目资本金及建设资金、设备引进等多方面的需求。在工信部下发首批技术改造备选项目名单后,山东工行高效响应,及时了解到名单内万华化学资金需求后,工行烟台分行快速行动,第一时间组队上门服务,以实际需求为导向,以项目贷款及系列产品提供综合金融服务,通过专属绿色通道高效完成流程审批,于6月13日成功签约并发放全省首笔技术改造与设备更新贷款2亿元。关于万华化学万华化学集团股份有限公司是一家全球化运营的化工新材料公司,依托不断创新的核心技术、产业化装置及高效的运营模式,为客户提供更具竞争力的产品及解决方案。万华化学始终坚持以科技创新为第一核心竞争力,持续优化产业结构,业务涵盖聚氨酯、石化、精细化学品、新兴材料、未来产业五大产业集群。所服务的行业主要包括:生活家居、运动休闲、汽车交通、建筑工业、电子电气、个人护理和绿色能源等。
  • 干货 | 锂离子动力电池及其关键材料的发展趋势
    p  进一步提高电池的能量密度是动力电池发展的主题和趋势, 而关键材料是其基础. 本文从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径 负极材料将继续朝低成本、高比能量、高安全性的方向发展, 硅基负极材料将全面替代其他负极材料成为行业共识. 此外, 本文还对锂离子动力电池正极、负极材料等的选择及匹配技术、动力电池安全性、电池制造工艺等的关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题./ppstrong  1 引言/strong/pp  发展新能源汽车被广泛认为是有效应对能源与环境挑战的重要战略举措. 此外, 对我国而言, 发展新能源汽车是我国从“汽车大国”迈向“汽车强国”的必由之路 [1] . 近年来, 新能源汽车产销量呈现井喷式增长, 全球保有量已超过130万辆, 已进入到规模产业化的阶段. 我国也在2015年超过美国成为全球最大的新能源汽车产销国. 以动力电池作为部分或全部动力的电动汽车, 因具有高效节能和非现场排放的显著优势,是当前新能源汽车发展的主攻方向. 为了满足电动汽车跑得更远、跑得更快、更加安全便捷的需求, 进一步提高比能量和比功率、延长使用寿命和缩短充电时间、提升安全性和可靠性以及降低成本是动力电池技术发展的主题和趋势./pp  近日,由中国汽车工程学会公布的《节能与新能源汽车技术路线图》为我国的动力电池技术绘制了发展蓝图. 该路线图提出,到2020年,纯电动汽车动力电池单体比能量达到350Wh/kg,2025年达到400Wh/kg,2030年则要达到500W h/kg 近中期在优化现有体系锂离子动力电池技术满足新能源汽车规模化发展需求的同时, 以开发新型锂离子动力电池为重点, 提升其安全性、一致性和寿命等关键技术, 同步开展新体系动力电池的前瞻性研发 中远期在持续优化提升新型锂离子动力电池的同时, 重点研发新体系动力电池, 显著提升能量密度、大幅降低成本、实现新体系动力电池实用化和规模化应用./pp  由此可见, 在未来相当长的时间内, 锂离子电池仍将是动力电池的主流产品. 锂离子电池具有比能量高、循环寿命长、环境友好、可以兼具良好的能量密度和功率密度等优点, 是目前综合性能最好的动力电池, 已被广泛应用于各类电动汽车中 [2~7] ./pp  本文简要介绍了锂离子动力电池的产业技术发展概况, 并从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 本文还对锂离子动力电池正、负极材料的选择及匹配技术、动力电池安全性、电池制造工艺等关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题./ppstrong  2 锂离子动力电池产业技术发展概况/strong/pp  从产业发展情况来看, 目前世界知名的电动汽车动力电池制造商包括日本松下、车辆能源供应公司(AESC)、韩国LG化学和三星SDI等都在积极推进高比能量动力锂离子电池的研发工作. 综合来看, 日本锂电池产业的技术路线是从锰酸锂(LMO)到镍钴锰酸锂三元(NCM)材料. 例如, 松下的动力电池技术路线早期采取锰酸锂, 目前则发展镍钴锰酸锂三元、镍钴铝酸锂(NCA)作为正极材料, 其动力电池主要搭载在特斯拉等车型上. 韩国企业以锰酸锂材料为基础, 如LG化学早期采用锰酸锂作为正极材料, 应用于雪佛兰Volt车型, 近年来三星SDI和LG化学已经全面转向镍钴锰酸锂三元材料(表1) [8] ./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/2d0662ae-8c3d-4524-aa6c-4ba35fb5d971.jpg" title="1.jpg"//pp  目前国内主流动力锂电池厂商, 如比亚迪等仍以磷酸铁锂为主, 磷酸铁锂电池在得到了大规模普及应用的同时, 其能量密度从2007年的90W h/kg提高到目前的140W h/kg. 然而, 由于磷酸铁锂电池能量密度提升空间有限, 随着对动力电池能量密度要求的大幅提升, 国内动力电池厂商技术路线向镍钴锰三元、镍钴铝或其混合材料的转换趋势明显(表2)./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/fd4ccbd7-67aa-49c0-bf98-30020d1d0ed3.jpg" title="2.jpg"//ppstrong  3 锂离子动力电池关键材料的发展趋势/strong/pp  锂离子电池采用高电位可逆存储和释放锂离子的含锂化合物作正极, 低电位可逆嵌入和脱出锂离子的材料作负极, 可传导锂离子的电子绝缘层作为隔膜,锂盐溶于有机溶剂作为电解液, 如图1所示. 正极材料、负极材料、隔膜和电解液构成锂离子电池的4种关键材料./pp  3.1 正极材料/pp  锰酸锂(LMO)的优势是原料成本低、合成工艺简单、热稳定性好、倍率性能和低温性能优越, 但由于存在Jahn-Teller效应及钝化层的形成、Mn的溶解和电解液在高电位下分解等问题, 其高温循环与储存性能差. 通过优化导电剂含量、纯化电解液、控制材料比表面 [11] 以及表面修饰 [12] 改善LMO材料的高温及储存性能是目前研究中较为常见且有效的改性方法./pp  磷酸铁锂(LFP)正极材料有着良好的热稳定性和循环性能, 这得益于结构中的磷酸基聚阴离子对整个材料的框架具有稳定的作用. 同时磷酸铁锂原料成本低、对环境相对友好, 因而使得LFP成为目前电动汽车动力电池中的主流材料 [12~16] . 但由于锂离子在橄榄石结构中的迁移是通过一维通道进行的, LFP材料存在着导电性较差、锂离子扩散系数低等缺点./pp  从材料制备角度来说, LFP的合成反应涉及复杂的多相反应,因此很难保证反应的一致性, 这是由其化学反应热力学上的根本性原因所决定的 [16] . 磷酸铁锂的改进主要集中在表面包覆、离子掺杂和材料纳米化三个方面.合成工艺的优化和生产过程自动化是提高LFP批次稳定性的基本解决方法. 不过, 由于磷酸铁锂材料电压平台较低(约3.4V), 使得磷酸铁锂电池的能量密度偏低,这一缺点限制了其在长续航小型乘用车领域的应用./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/4796d208-e8dd-4b71-a5fc-296ecba8d6c1.jpg" title="3.jpg"//pp  镍钴锰三元(NCM)或多元材料优势在于成本适中、比容量较高, 材料中镍钴锰比例可在一定范围内调整, 并具有不同性能. 目前国外量产应用的动力锂电正极材料也主要集中在镍钴锰酸锂三元或多元材料, 但仍然存在一些亟需解决的问题, 包括电子导电率低、大倍率稳定性差、高电压循环定性差、阳离子混排(尤其是富镍三元)、高低温性能差、安全性能差等 [17] . 另外, 由于三元正极材料安全性能较差, 采用合适的安全机制如陶瓷隔膜材料也已成为行业共识 [18] ./pp  考虑到安全性等问题, 通过改进工艺(如减少电极壳的重量等)来提高电池能量密度的空间有限. 为了进一步提高动力锂离子电池的能量密度, 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径(图2) [19,20]/pp  3.1.1 高电压正极材料/pp  开发可以输出更高电压的正极材料是提高材料能量密度的重要途径之一. 此外, 高电压的另一显著优势是在电池组装成组时, 只需要使用比较少的单体电池串联就能达到额定的输出电压, 可以简化电池组的控制单元. 目前主流的高电压正极材料是尖晶石过渡金属掺杂的LiM x Mn 2?x O 4 (M=Co、Cr、Ni、Fe、Cu/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/3b01137b-1330-47a0-a313-51c9d4f2f033.jpg" title="4.jpg"//pp style="text-align: center "  图 2 比较各种类型的高电压、高容量正极材料的体积能量密度、功率、循环性、成本和热稳定性的雷达图 [20] (网络版彩图)等)/pp  最典型的材料是LiNi 0.5 Mn 1.5 O 4 , 虽然其比容量仅有146mAh/g, 但由于工作电压可达到4.7V, 能量密度可达到686W h/kg [20,21] . 本课题组 [22] 以板栗壳状的MnO 2为锰源, 通过浸渍方法合成了由纳米级的多面体聚集而成微米球状的尖晶石镍锰酸锂(LNMO)材料. 该结构对电解液的浸入和锂离子的嵌入和脱出十分有利,且可以适应材料在充放电过程中的体积变化, 减小材料颗粒之间的张力. 该研究还发现, 含有微量Mn 3+的LNMO电化学性能更优, 充放电循环80圈后放电比容量还能保持在107mAh/g, 容量保持率接近100%.LiNi 0.5 Mn 1.5 O 4 的比容量衰减制约了它的商业化进程,其原因多与活性材料以及集流体与电解液之间的相互作用相关, 由于电解液在高电位下的不稳定性, 如传统碳酸酯类电解液会在4.5V电压以上氧化分解, 使得锂离子电池在高电压充放电下发生气胀, 循环性能变差./pp  因此, 高电压正极材料需要解决电解液匹配问题.解决上述问题的方法包括以下3个方面. (1) 材料表面包覆 [23~25] 和掺杂 [26~28] . 例如, Kim等 [28] 近期通过表面4价Ti取代得到LiNi 0.5 Mn 1.2 Ti 0.3 O 4 材料, 透射电子显微镜显示材料表面形成了坚固的钝化层, 因此减少了界面副反应, 30℃下全电池实验结果表明在4.85V截止电压, 200个循环后, 容量保持率提高了约75%. 然而, 单独的表面涂层/掺杂似乎不能提供长期的循环稳定性(如≥500个循环), 在应用中必须考虑与其他策略相结合. (2) 使用电解液添加剂或其他新型电解质组合 [29~31] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/e33aa180-4c60-4e9a-af6d-315f29391fd1.jpg" title="5.jpg"//pp style="text-align: center "  图 3 具有良好电化学稳定性的用于高电压LiNi 0.5 Mn 1.5 O 4 材料的LiFSA/DMC电解液体系. /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) LiFSA/DMC混合电解液中的组分结构示意图 (b) 两种不同配比情况下, 溶剂分子典型平衡轨迹的DFT-MD模拟 (c) 铝电极在LiFSA/DMC混合电解液中的高电压稳定性 (d) 全电池在40° C, C/5倍率下的循环性能 [31] (网络版彩图)/span/pp  如图3所示, Yamada课题组 [31] 利用简单的LiFSA/DMC(1:1.1, 摩尔比)电解液体系实现了LiNi 0.5 Mn 1.5 O 4 /石墨全电池在40℃温度下循环100次后容量保持90%, 尽管高度浓缩的系统的离子电导率降低了一个数量级(30℃时为约1.1 mS/cm), 但依然保持了与使用商业碳酸酯电解液体系相当的倍率性能. (3) 使用具有离子选择透过性的隔膜 [32~35] . 已经证明使用电化学活性的Li 4+x Ti 5 O 12 膜 [32] 以及锂化Nafion膜与商业PP膜的复合隔膜 [33] 能够极大地改善LiNi 0.5 Mn 1.5 O 4 的循环寿命./pp  此外, 一些由LiNi 0.5 Mn 1.5 O 4 衍生的新型尖晶石结构高电压材料如LiTiMnO 4 [36] 、LiCoMnO 4 [37,38] 等, 以及橄榄石结构磷酸盐/氟磷酸盐也被广泛研究, 如LiCoPO 4 [39] 、LiNiPO 4 [40] 、LiVPO 4 F [41] 等 [42] ./pp  3.1.2 高容量正极材料/pp  由于锂离子电池负极材料的比容量远高于正极材料, 因此正极材料对全电池的能量密度影响更大.通过简单的计算可知, 在现有的水平上, 如果将正极材料的比容量翻倍, 就能够使全电池的能量密度提高57%. 而负极材料的比容量即使增加到现有的10倍, 全电池的能量密度也只能提高47% [43] ./pp  镍钴锰三元材料中, Ni为主要活性元素, 一般来说,活性金属成分含量越高, 材料容量就越大.低镍多元材料如NCM111、NCM523等能量密度较低, 该类材料体系所能达到的动力电池能量密度为120~180Wh/kg, 无法满足更高的能量密度要求. 高容量正极材料的一个发展方向就是发展高镍三元或多元体系./pp  高镍多元体系中, 镍含量在80%以上的多元材料(NCA或NCM811)能量密度优势明显, 用这些材料制作的电池匹配适宜的高容量负极和电解液后能量密度可达到300Wh/kg以上 [44] . 但是高镍多元材料较差的循环稳定性、热稳定性和储存性能极大地限制了其应用. 一般认为当镍的含量过高时, 会引起Ni 2+ 占据Li + 位置, 造成阳离子混排, 阻碍了Li + 的嵌入与脱出, 从而导致容量降低 [20,45,46] .另外, 材料表面与空气和电解液易发生副反应、高温条件下材料的结构稳定性差和表面催化活性较大也被认为是导致容量衰减的重要原因 [20,45,47] ./pp  解决上述问题的方法有如下3种./pp  (1) 对材料进行有效的表面包覆或体相掺杂 [48~50] . 例如, 最近Chae等 [50] 利用湿化学法在NCM811表面包覆了一层N,N-二甲基吡咯磺酸盐,有效地阻隔了材料与电解液界面, 抑制了电解液在高镍三元材料表面的催化分解, 1C倍率下前50圈的平均库仑效率达99.8%, 容量保持率高达97.1%./pp  (2) 开发具有浓度梯度的高镍三元体系 [51~55] . Sun课题组 [53~55] 采用共沉淀方法制备了具有双斜率浓度梯度三元材料,如图4所示, 这种材料的内部具有更高含量的镍, 有利于高容量的获得和保持, 外层有更高含量的锰, 有利于循环稳定性和热稳定性的提升. 通过Al掺杂, 具有浓度梯度的LiNi 0.61 Co 0.12 Mn 0.27 O 2 在经过3000次循环后,其容量保持率从65%大幅度提高到84%./pp  (3) 开发与高容量正极材料相适应的电解液添加剂或新型电解液体系 [56~58] ./pp  目前高镍多元材料量产技术主要掌握在日韩少数企业手中, 如日本的住友、户田, 韩国的三星SDI、LG、GS等. 根据不同的应用领域, 材料的镍含量在78~90 mol%, 克容量集中在190~210mA h/g. 各公司正尝试将其应用于电动汽车领域, 其中尤以特斯拉采用的镍钴铝(NCA)受到广泛瞩目. 需要指出的是, NCA和NCM811两种材料在容量、生产工艺等方面具有很多相似性, 松下18650电池正极采用NCA正极, 电池能量密度约为250Wh/kg, 但NCA材料因存在铝元素分布不均、粒度难以长大等问题, 主要应用于圆柱电池领域, 圆柱型电池在在电池管理系统方面需要的技术与成本较高./pp  除 此 之 外 , 基 于 Li 2 MnO 3 的 高 比 容 量 (200~300mAh/g) 富 锂 正 极 材 料 zLi 2 MnO 3 · (1?z)LiMO 2(0/pp  3.2 负极材料/pp  锂离子电池负极材料分为碳材料和非碳材料两大类. 其中碳材料又分为石墨和无定形碳, 如天然石墨、人造石墨、中间相碳微球、软炭(如焦炭)和一些硬炭等 其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等 [61] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/6e6b8975-e32c-4aee-9021-c6d0edef3ad9.jpg" title="6.jpg"//pp style="text-align: center "  图 4 Al掺杂的具有双斜率浓度梯度三元材料LiNi 0.61 Co 0.12 Mn 0.27 O 2 [54,55] ./pp span style="font-family: 楷体, 楷体_GB2312, SimKai "(a) TEM EDS元素分析成像 (b) TEM 线性元素扫描分析 (c) Al掺杂和无掺杂的三元材料循环性能对比 (网络版彩图)/span/pp  负极材料将继续朝低成本、高比能量、高安全性的方向发展, 石墨类材料(包括人造石墨、天然石墨及中间相碳微球)仍然是当前锂离子动力电池的主流选择 近到中期, 硅基等新型大容量负极材料将逐步成熟, 以钛酸锂为代表的高功率密度、高安全性负极材料在混合动力电动车等领域的应用也将更加广泛. 中远期, 硅基负极材料将全面替代其他负极材料已成为行业共识./pp  硅基负极材料被认为是可大幅度提升锂电池能量密度的最佳选择之一, 其理论比容量可以达到4000mAh/g以上 [62,63] , 与高容量正极材料匹配后, 单体电池理论比能量可以达到843Wh/kg, 但硅负极材料在充放电过程中存在巨大的体积膨胀收缩效应, 会导致电极粉化降低首次库仑效率并引起容量衰减 [64~67] ./pp  研究者尝试了多种方法解决该问题./pp  (1) 制备纳米结构的材料, 纳米材料在体积变化上相对较小, 且具有更小的离子扩散路径和较高的嵌/脱锂性能, 包括纳米硅颗粒 [68~70] 、纳米线/管 [71~74] 、纳米薄膜/片 [75~77] 等./pp  (2) 在硅材料中引入其他金属或非金属形成复合材料, 引入的组分可以缓冲硅的体积变化, 常见的复合材料包括硅碳复合材料 [78~82] 、硅-金属复合材料等 [83~85] . Cui课题组 [81] 通过先后在硅纳米颗粒表面包覆二氧化硅和碳层, 再将二氧化硅层刻蚀之后得到蛋黄蛋壳结构的硅碳复合材料, 如图5所示, 并利用原位透射电镜研究了碳壳与硅核之间的空隙对材料稳定性及电化学性能的影响. 由于蛋黄蛋壳的结构在硅和碳层之间预留了充足的空间, 使硅在嵌锂膨胀的时候不破坏外层的碳层, 从而稳定材料的结构并得到稳定的SEI膜. 在此基础上, 通过对碳包覆之后的纳米颗粒进行二次造粒,在大颗粒的表面再包覆碳膜, 最后刻蚀制备出类石榴的结构 [82] , 复合材料尺寸的增大减小了材料的比表面积, 提高了材料的稳定性, 材料的1000周循环容量保持率由74%提高到97%, 如图5所示./pp  (3) 选用具有不同柔性、界面性质的黏结剂, 提高黏结作用 [86~88] 最近,Choi等 [88] 通过形成酯键使传统黏结剂聚丙烯酸PAA与多聚轮烷环组分PR交联结合得到具有特殊结构的双组分PR-PAA黏结剂, 如图6所示, 很大程度上提高了硅负极在充放电过程中的稳定性./pp  (4) 采用体积变化相对缓和的非晶态硅材料, 如多孔硅材料等 [89,90] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/c68c0215-a21a-4fa0-9f73-1a0fca0d02f5.jpg" title="7.jpg"//pp style="text-align: center "  图 5 具有蛋黄蛋壳的结构的硅碳复合锂离子电池负极材料 [81,82] ./ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " (a) 蛋黄蛋壳的结构合成示意图及TEM图 (b) 类石榴的结构合成示意图 (c) 硅纳米粒子、 蛋黄蛋壳结构硅碳复合材料、类石榴结构硅碳复合材料的循环性能对比 (网络版彩图)/span/pp  应用方面, 日立Maxell宣布已成功将硅基负极材料应用于高能量密度的小型电池 日本GS汤浅公司则已推出硅基负极材料锂电池, 并成功应用在三菱汽车上 特斯拉则宣称通过在人造石墨中加入10%的硅基材料, 已在其最新车型Model 3上采用硅碳复合材料作为动力电池负极材料./pp  3.3 电解液/pp  高安全性、高环境适应性是锂离子动力电池对电解液的基本要求. 随着电极材料的不断改善和更新, 对与之匹配的电解液的要求也越来越高. 由于开发新型电解液体系难度极大, 碳酸酯类有机溶剂配伍六氟磷酸锂盐的常规电解液体系在未来相当长一段时间内依然是动力电池的主流选择./pp  在此情形下, 针对不同用途的动力电池和不同特性的电极材料, 优化溶剂配比、开发功能电解液添加剂就显得尤为重要.例如, 通过调整溶剂配比含量和添加特殊锂盐可以改善动力电池的高低温性能 加入防过充添加剂、阻燃添加剂可以使电池在过充电、短路、高温、针刺和热冲击等滥用条件下的安全性能得以大大提高 通过提纯溶剂、加入正极成膜添加剂可以在一定程度上满足高电压材料的充放电需求 通过加入SEI膜成膜添加剂调控SEI膜的组成与结构, 可以实现延长电池寿命 [91] . 近年来, 随着Kim等 [92] 第一次成功地将丁二腈(SN)作为电解液添加剂来提高石墨/LiCoO 2 电池的热稳定性, 以丁二腈(SN)和己二腈(ADN) [93] 等为代表的二腈类添加剂因其与正极表面金属原子极强的络合力并能很好地抑制电解液氧化分解和过渡金属溶出的优点, 已经成为学术界和工业界普遍认可的一类高电压添加剂. 而以1,3-丙烷磺酸内酯(PS [94] 和1,3-丙烯磺酸内酯(PES) [95] 等为代表的另一类高电压添加剂,即正极成膜添加剂, 则是通过在正极表面优先发生氧化反应并在正极表面形成一层致密的钝化膜, 从而达到阻止电解液和正极活性物质接触、抑制电解液在高电压下氧化分解的效果./pp  目前, 高低温功能电解液的开发相对成熟, 动力电池的环境适应性问题基本解决, 进一步提高电池的能量密度和安全性是电解液研发的首要问题. 中远期, 锂离子动力电池电解液材料的发展趋势将主要集中在新型溶剂与新型锂盐、离子液体、添加剂等方面, 凝胶电解质与固态电解质也是未来发展的方向. 而以固态电解质为关键特征之一的全固态电池在安全性、寿命、能量密度及系统集成技术等都具有潜在的优异特性, 也是未来动力电池和储能电池领域发展的重要方向 [96] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/58812389-5862-4e1d-a7b7-b4dc7b4fc4d9.jpg" title="8.jpg"//pp style="text-align: center "  图 6 SiMP负极PR-PAA黏结剂的应力释放机理 [88] . /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) 减小提起物体用力的滑轮机理 (b) PR-PAA黏结剂用于缓解因硅颗粒充放电过程中体积变化而产生应力的示意图 (c) 充放电过程中PAA-SiMP电极破碎和生成SEI膜的示意图 (网络版彩图)/span/pp  3.4 隔膜/pp  目前, 商品化锂离子动力电池中使用的隔膜材料主要是微孔的聚烯烃类薄膜, 如聚乙烯(polyethylene,PE)、聚丙烯(polypropylene, PP)的单层或多层复合膜.聚烯烃类隔膜材料由于其制造工艺成熟、化学稳定性高、可加工性强等优点在一段时间内仍然是商品化隔膜材料的主流, 尤其是PE的热闭孔温度对抑制电池中某些副反应的发生及阻止热失控具有重要意义.发展基于聚烯烃(尤其是聚乙烯)隔膜的高性能改性隔膜材料(如无机陶瓷改性隔膜、聚合物改性隔膜等),进一步提高隔膜的安全特性和电化学特性仍将是隔膜材料研发的重点 [18] ./pp  最近, 本课题组 [97] 通过使用耐高温的聚酰亚胺做黏结剂将纳米Al 2 O 3 涂覆在商业PE隔膜单层表面将隔膜的热稳定性提高到了160℃. 本课题组 [98] 还在前期开发的SiO 2 陶瓷隔膜的基础上, 在其表面和孔径间原位聚合包覆上一层耐高温的聚多巴胺保护层, 如图7所示, 使隔膜在230℃高温下处理30min, 不但不收缩并且保持良好的机械性能, 可以有效保障电池安全. l’Abee课题组 [99] 以耐热性的聚醚酰亚胺树脂为基材, 将其用NMP加热溶解后重新浇铸成膜, 得到的聚醚酰亚胺隔膜, 其热稳定性可达到220℃.随着锂离子电池在电动汽车等领域的应用, 建立隔膜构造、隔膜孔径尺度与分布的有效调控方法, 以及引入电化学活性基团等使聚烯烃隔膜多功能化, 将是隔膜发展的重要方向. 针对耐热聚合物隔膜等的研发及产业化工作也将得到大力推进./pp  综上所述,锂离子动力电池关键材料的发展趋势将如图8所示, 正极材料向高电压、高容量的趋势发展 负极则以发展硅碳复合材料为主, 通过发展新型黏结剂和SEI膜调控技术使得硅碳复合负极材料真正走向实际应用 电解液近期内将以发展高电压电解液和高环境适应性电解液材料为主, 中远期则将以固态电解质材料为发展目标 多种材料复合且结构可控的隔膜材料将是锂离子动力电池隔膜的重点发展方向./ppstrong  4 锂离子动力电池的关键技术和基础科学问题/strong/pp  4.1 锂离子动力电池的关键技术/pp  锂离子动力电池是一个复杂的系统, 单一部件、材料或组分的优化未必对电池整体性能的改善有突出效果 [100] . 发展面向电动汽车的高比能量、低成本、长寿命、安全性高的动力电池, 需对锂离子动力电池体系的关键技术予以重点关注, 解决在最终应用过程中影响性能的制约因素./pp  4.1.1 正极、负极材料等的选择及匹配技术/pp  锂离子动力电池的寿命、安全性和成本等基本性能很大程度上取决于其电极材料体系的选择和匹配. 因此如何选择高比能量、长寿命、高安全、低成本的材料体系是当前锂离子动力电池的重要技术./pp  4.1.2 动力电池安全性/pp  安全性是决定动力电池能否装车应用的先决条件/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/a49c15af-1975-4d11-bfe5-e1f5440c1331.jpg" title="9.jpg"//pp style="text-align: center "  .图 7 包覆上耐高温聚多巴胺保护层的SiO 2 陶瓷隔膜 [98] . /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) 隔膜结构及合成示意图 (b) 隔膜形貌表征 (c) 隔膜热收缩性能对比(网络版彩图)/span/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/35ce98d1-12c4-439a-b44f-0aa5561115de.jpg" title="10.jpg"//pp style="text-align: center "  图 8 锂离子动力电池关键材料技术现状及发展趋势总结(网络版彩图)/pp  随着锂离子电池能量密度的逐步提升, 电池安全性问题无疑将更加突出. 导致锂离子电池安全性事故发生的根本原因是热失控, 放热副反应释放大量的热及有机小分子气体, 引起电池内部温度和压力的急剧上升 而温度的急剧上升反过来又会呈指数性加速副反应,产生更大量的热, 使电池进入无法控制的热失控状态,导致电池终发生爆炸或燃烧 [101,102] . 高比能的NCM和NCA三元正极、锰基固熔体正极均较LFP材料的热稳定性差, 使人们在发展高能量密度动力电池的同时不得不更加关注安全问题 [103] . 解决电池安全性问题至少需要从两方面着手: (1) 防止短路和过充, 以降低电池热失控的引发几率 (2) 发展高灵敏性的热控制技术,阻止电池热失控的发生 [104] ./pp  4.1.3 电池制造工艺/pp  随着动力电池应用的不断加深, 单体电池向着大型化、易于成组的方向发展. 在这一过程中, 单体电池的制造技术尤为重要. 提高产品一致性, 从而使电池成组后的安全性、寿命更高, 使其制造成本更低将是未来锂离子电池制造工艺的发展方向. (1) 开发生产设备高效自动化技术, 研发高速连续合浆、涂布、辊切制片、卷绕/叠片等技术, 可以降低生产成本 (2)开展自动测量及闭环控制技术研发, 提高电池生产过程测量技术水平, 实现全过程实时动态质量检测, 实现工序内以及全线质量闭环控制, 保证产品一致性、可靠性 (3) 建立自动化物流技术开发, 实现工序间物料自动转运, 减少人工干预 (4) 开展智能化生产控制技术研发, 综合运用信息控制、通讯、多媒体等技术,开发有效的生产过程自动化控制及制造执行系统, 最大程度地提高生产效率, 降低人工成本./pp  4.2 锂离子动力电池的基础科学问题/pp  4.2.1 研究电极反应过程、反应动力学、界面调控等基础科学问题/pp  目前, 元素掺杂、包覆等方法被广泛应用于材料改性, 但究其原因往往“知其然不知其所以然”, 如LFP可以通过异价锂位掺杂显著提高电子导电性, 但其究竟是晶格掺杂还是通过表面渗透还存在争议. 另外,一般认为LFP较低的电子导电性和离子扩散特性是导致倍率特性不佳的主要原因, 但研究表明, 锂离子在电极/电解液界面的传输也是影响LFP倍率特性的重要因素. 通过改善界面的离子传输特性, 可以获得更好的倍率特性. 因此深入研究电极上的表面电化学反应的机理, 尤其是关于SEI膜的形成、性质以及电极与电解液的相互作用等, 可以明确材料的结构演化机制和性能改善策略, 为材料及电池性能的改善提供理论指导 [6] ./pp  4.2.2 发展电极表界面的原位表征方法/pp  锂离子电池电极材料的性能主要取决于其组成及结构. 通过原位表征技术系统研究材料的组成-结构-性能间构效关系对深入了解电极材料的反应机理,优化材料组成与结构以提高其性能及指导高性能新材料开发与应用均有十分重要意义 [105,106] . 例如, 原位Raman光谱可以通过晶格(如金属-氧配位结构)振动实时检测材料的结构变化, 为找寻材料结构劣化原因提供帮助 [107~109] . 同步辐射技术不仅可通过研究电极材料中原子周围化学环境, 获取电极材料中组成元素的氧化态、局域结构、近邻配位原子等信息, 还可原位获得电池充放电过程电极材料的结构演化、过渡金属离子氧化态以及局域结构变化等信息, 精确揭示电池反应机理 [110,111] 固体核磁共振谱(NMR)则可提供固态材料的局域结构信息, 得到离子扩散相关的动力学信息 [112,113] ./ppstrong  5 结论/strong/pp  锂离子动力电池是目前最具实用价值的动力电池, 近几年在产业化方面发展迅速, 有力地支撑了电动汽车产业的发展. 然而, 锂离子动力电池仍然存在许多有待解决的应用问题, 特别是续航能力、安全性、环境适应性和成本, 需要在动力电池基础材料、电池制造和系统技术全产业链上同时进行研究. 可以预期相关技术将在近年内取得长足进步并实现规模应用.随着电动汽车的快速发展, 锂离子动力电池将迎来爆发增长的黄金期./pp style="text-align: right "  strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  作者:刘波(厦门大学) 张鹏 赵金保/span/strong/pp  /ppbr//p
  • 场发射扫描电镜SEM5000在锂电隔膜检测中的应用
    锂离子电池”锂离子电池是一种二次电池,主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,锂离子穿过隔膜在两个电极之间往返嵌入和脱嵌,锂离子能量的存储和释放通过电极材料的氧化还原反应实现。锂离子电池主要由正极材料、隔膜、负极材料、电解液和其他材料组成。其中,隔膜在锂离子电池中起到阻止正负极直接接触的作用,并允许电解液中的锂离子自由通过,提供锂离子传输的微孔通道。锂离子电池隔膜的孔径尺寸、多孔程度、分布均一性、厚度直接影响电解液的扩散速率和安全性,对电池的性能有很大影响。如果隔膜的孔径太小,锂离子的透过性受限,影响电池中锂离子的传输性能,使得电池内阻增大;如果孔径太大,锂枝晶的生长可能会刺穿隔膜,造成短路或爆炸等事故[1]。场发射扫描电镜在锂电隔膜检测中的应用”使用扫描电镜可以观察隔膜的孔径尺寸和分布均匀性,还可以对多层和有涂覆隔膜的截面进行观察,测量隔膜厚度。传统的商业化隔膜材料多为聚烯烃材料所制备的微孔膜,包括聚乙烯(PE)、聚丙烯(PP)单层膜及PP/PE/PP三层复合膜。聚烯烃类的高分子材料绝缘不导电,并且对电子束非常敏感,高压下观察会导致荷电效应,高分子隔膜的精细结构也会被电子束损伤。国仪量子自主研发的SEM5000型场发射扫描电镜,具备低压高分辨的能力,可以在低压下直接观察隔膜表面的精细结构,并且不会对隔膜产生损伤。隔膜的制备工艺主要分为干法和湿法两类[2]。干法即熔融拉伸法,包括单向拉伸工艺和双向拉伸工艺,工艺过程简单,制造成本低,是锂离子电池隔膜生产的常用方法。干法制备的隔膜具有扁长状微孔(图1),但制备的隔膜较厚,且微孔均匀性差、孔径和孔隙率较难控制,组装后的电池能量密度低,主要应用于中低端锂离子电池。场发射扫描电镜在锂电隔膜检测中的应用”图1 干法拉伸隔膜/0.5KV/Inlens湿法即热致相分离法,将聚合物与高沸点溶剂等混合熔融,经过降温相分离、拉伸、萃取干燥、热处理定型等工艺制得微孔膜。与干法工艺相比较,湿法工艺稳定可控,制得的隔膜厚度薄、力学强度高、孔径分布均匀且相互贯穿(图2)。使用湿法工艺制得的隔膜虽然成本高于干法工艺,但组装后的电池能量密度高、充放电性能好,多应用于中高端的锂离子电池。结合国仪量子自主研发的孔径分析系统,可以对隔膜的孔径、孔隙率等特征进行快速自动化的分析(图3)。图2 湿法拉伸隔膜/1KV/Inlens图3 隔膜孔径分析/1KV/Inlens虽然聚烯烃类的隔膜广泛应用于锂离子电池中,但受材料本身力学性能、耐热性及表面惰性的限制,单纯的聚烯烃隔膜无法满足锂离子电池高安全性和高性能的要求。为此,需要对聚烯烃隔膜进行表面改性,以提高其力学性能、耐热性及与电解质的亲和力。其中,目前最常使用的方法就是对隔膜进行表面物理涂覆[3]。无机陶瓷材料(图4)具有耐热性好、化学稳定性高的特点,并且表面的极性官能团有利于改善聚烯烃隔膜对电解液的浸润性,故其常作为涂覆颗粒以增强隔膜的耐热性和电化学性能。图5为经无机陶瓷颗粒涂覆后隔膜的陶瓷面的表面形貌。图4 氧化铝陶瓷粉末/5KV/BSED图5 陶瓷涂覆隔膜/1KV/Inlens
  • 直播预告!iCEM 2022之电子显微学技术在材料领域的应用专场篇
    2022年7月26-29日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(www.china-em.cn)将联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022将围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电子显微学技术在先进材料中的应用、电镜实验操作技术及经验分享、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位仪器信息网、中国电子显微镜学会参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022或扫描二维码报名以下为“电子显微学技术在材料领域的应用”专场预告(注:最终日程以会议官网发布为准)专场五:电子显微学技术在材料领域的应用(7月28日全天)上午专场主持人:葛炳辉 安徽大学 教授09:00--09:30高性能镍基单晶高温合金 “全寿命”的微观结构演化规律赵新宝(浙江大学 研究员)09:30--10:00布鲁克全新一代电制冷能谱仪陈剑峰(布鲁克(北京)科技有限公司 应用工程师)10:00--10:30水氧敏感二维材料的本征缺陷原子尺度研究林君浩(南方科技大学 研究员)10:30--11:00跨尺度高通量定量统计表征方法研究及其在GH4096高温合金中γ´相的表征应用卢毓华(钢铁研究总院/纳克微束(北京)有限公司 应用科学家)11:00--11:30高强韧铝合金纳米析出强化机理研究及高效设计李凯(中南大学 副教授)11:30--12:00显微学成像技术及其应用的研究葛炳辉(安徽大学 教授)下午专场主持人:谷猛 南方科技大学 研究员14:00--14:30具有离子导电性的半导体材料电致相变及阻变的电镜研究吴劲松(武汉理工大学 教授)14:30--15:00徕卡电镜制样在材料科学方面的应用与介绍武素芳(徕卡显微系统(上海)贸易有限公司 高级应用工程师)15:00--15:30镍基单晶高温合金的形变机理丁青青(浙江大学 副研究员)15:30--16:00COXEM台式扫描电镜在材料显微表征领域的应用沈宁(COXEM库赛姆台式电镜 产品应用专家)16:00--16:30结构功能一体化纳米多孔金属材料刘攀(上海交通大学 特别研究员)16:30--17:00用原位电镜研究NaYF4上转换发光材料的结构和发光性质鞠晶(北京大学 高级工程师)17:00--17:30固体电解质界面层的冷冻电镜研究谷猛(南方科技大学 研究员)嘉宾简介及报告摘要浙江大学研究员 赵新宝【个人简介】赵新宝,浙江大学“百人计划”研究员,博士生导师,浙江省杰出青年基金获得者,浙江大学材料学院院长助理、高温合金研究所副所长。主要从事航空航天、火力和燃气发电、舰船动力等领域用高温合金、耐热钢材料的研发、制备和产业化应用。先后主持国家自然科学基金重大研究计划重点项目、JWKJW基础加强计划重点项目课题、重大科技专项课题等20余项;参与国家973、浙江省重点研发计划项目、华能集团高精尖科研项目等10余项。先后获得某创新团队奖、教育部自然科学奖二等奖、浙江大学2021年度十大学术进展、华能西安热工研究院有限公司科学技术奖一等奖等。在Acta Materialia、Journal of Materials Science and Technology等金属材料顶级期刊发表论文80余篇,授权国家专利40余项。报告题目:高性能镍基单晶高温合金 “全寿命”的微观结构演化规律【摘要】 镍基单晶高温合金是航空发动机高压涡轮叶片的重要制备材料,其微观结构特征是影响合金关键性能的重要因素。以一种新型第四代镍基单晶高温合金为对象,考察了合金铸态、热处理态和高温低应力蠕变过程中的微观结构演化特征。镍基单晶高温合金的铸态组织为“十字”的枝晶结构,枝晶间和枝晶干存在尺寸不均匀的粗大γ′相和γ/γ′相共晶组织。通过多步阶梯固溶处理,回溶粗大γ′相和γ/γ′相共晶组织并减小偏析,通过两步时效处理获得组织均匀、立方度好的γ′相。在1100℃/137MPa蠕变条件下,获得了合金在不同变形过程中γ′相的筏排化过程、位错网的演化规律,结合断口裂纹的扩展规律,明确了其微观结构演化与蠕变性能的关联关系。南方科技大学研究员 林君浩【个人简介】林君浩,南方科技大学物理系副系主任,副教授,国家青年特聘专家,博士生导师,深圳市新型量子功能材料与器件重点实验室执行副主任。博士毕业于美国范德比尔特大学(Vanderbilt University)物理系,后赴日本任JSPS特聘研究员。林君浩博士主要利用高分辨扫描透射电镜和第一性原理计算作为研究工具,致力于实验与理论相结合的手段研究二维材料中原子结构与材料性能之间的关联,以期通过结构工程获得性能更优异的新型材料。近年来的主要研究兴趣为透射电子显微学新技的发展,以及新型二维铁磁与铁电材料缺陷的精确测量及其对磁性与极化的影响。近5年来,在Nature, PRL,Advanced Materials, ACS Nano等高影响期刊发表80余篇文章,总引用次数超过9700多次,H因子36。多次在国际学术会议及高校论坛做邀请报告,担任Nature, Nature Communication等期刊审稿人,承担多项国家与省市级科研攻关项目。入选《麻省理工科技评论》“35 岁以下科技创新 35 人”2021中国区榜单。报告题目:水氧敏感二维材料的本征缺陷原子尺度研究【摘要】 二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解本征缺陷的原子结构对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如单层铁电,单层铁磁,单层超导材料在大气环境下会迅速劣化,无法表征其本征缺陷。在这个报告中,我将报道定量衬度分析技术在二维材料缺陷表征中的应用,以及我们课题组搭建的大型氛围控制高通量生长与高精度表征联用系统的进展。我们利用该系统在直接观测二维敏感单层材料晶格原子结构与缺陷中取得的一些初步成果,包括单层WTe2的本征褶皱结构、点缺陷的分布,少层卤族铁磁反铁磁材料的直接CVD制备与无损表征,层状拓扑反铁磁绝缘体MnBi2Te4的自发表面重构现象等。中南大学副教授 李凯【个人简介】中南大学材料学博士及比利时安特卫普大学物理学博士,中南大学粉末冶金国家重点实验室副教授、博士生导师,中南大学高等研究中心材料微结构研究所副所长、湖南省电镜中心主任助理。作为第一/通讯作者在Acta Materialia、Journal of Materials Science & Technology、Scripta Materialia等行业高影响力SCI期刊上发表20余篇论文,研发的高强韧铝合金获授权专利2项且其中一项已实现重要应用,主持国家自然科学基金面上、青年、国际合作项目各1项并作为骨干参与国家自然科学基金重点项目2项,应邀为Taylor&Francis出版社的铝合金专著撰写1章节,所发表SCI论文被引用900余次。报告题目:高强韧铝合金纳米析出强化机理研究及高效设计【摘要】 纳米析出相的结构、尺寸、体积分数及力学行为共同影响铝合金强化效果。前期研究及文献报道均发现在200-300 keV的常规高能透射电子束下,铝合金亚稳析出相,如Al-Mg-Si合金的主要强化相β″,在几分钟内即发生结构损坏。为解决该问题,本工作提出了耦合低能量/低剂量球差矫正透射电镜观察和能量-错配度理论计算的系统方法,为不耐电子束辐照的铝合金纳米析出相的晶体结构构建及界面、缺陷结构研究提供了新的范式,构建的Al-Mg-Si(-Cu)体系若干重要析出相如GP区、β″、B′的晶体结构模型夯实了铝合金集成计算材料工程的晶体结构基础,为析出相力学性质、热物理性质及力学行为的理论模拟提供了可靠依据。在另一方面,本工作通过原位TEM纳米力学实验、离位TEM及三维原子探针(3DAP)表征,从实验角度系统揭示了主强化相β″及次强化相β′被位错切过、碎片化及旋转等不同力学行为,并与多尺度微结构定量表征一起,为屈服强度模型提供了关键精准输入,实现了同时析出的不同强化相的强化效果的精确模拟预测。在以上实验研究及文献研究基础上,本工作抓住铝合金实际工业设计中的主要矛盾,提出了应用相图热力学计算指导高强韧铝合金高效设计的三个准则,研制的高性能铝合金得到重要应用。安徽大学教授 葛炳辉【个人简介】安徽大学教授,电镜中心主任,皖江学者特聘教授,入选2018 Nature Index Rising Star, Research杂志(Science合作期刊)副主编。主要从事:1)球差矫正电子显微学方法,像衬理论,电子晶体学方法研究;2)原位电子显微学:3)利用球差矫正电镜表征催化剂,热电材料和高温合金等材料微观结构,探索材料构效关系。近五年材料表征方面研究工作主要发表在EES,Joule, Nature communications,Advanced Materials,Angewandte等顶级杂志;另外,电镜方面工作发表在Ultramicroscopy, Microscopy and Microanalysis,Microscopy等期刊。应邀编写电镜类相关书籍2章(节)。报告题目:显微学成像技术及其应用的研究【摘要】 报告主要介绍三方面工作 1、iDPC技术在轻元素成像中的应用及其最佳成像条件的探索 2、Bi2Te3基热电器件断裂机制的原位研究 3、重型燃气轮机中雀斑缺陷形成机制的探索武汉理工大学教授 吴劲松【个人简介】吴劲松博士师从郭可信院士在中科院北京电镜实验室学习。随后在欧美的电子显微镜实验室(包括德国Juelich研究中心、美国亚利桑那州立大学、美国乔治亚大学,美国西北大学等)工作。吴劲松于2018年全职回国工作。他现任武汉理工大学纳微研究中心执行主任。他共发表科技论文150余篇,其中包括Science (2), Nature Nanotechnology (1), Nature Materials (1),Nature Communication (2), JACS (10), Advanced Materials (5), Nano Letters (4),ACS Nano (9)等。他曾获国际电镜学会、日本电镜学会、德国洪堡奖金等多项奖励。报告题目:具有离子导电性的半导体材料电致相变及阻变的电镜研究【摘要】 具有快离子导体特征的半导体材料如Cu2Se,Ag2Se等在外温度场和电场的作用下会由于铜和银离子的快速迁移,而产生独特的相变特征和物理性能。得益于原位透射电子显微学的迅速发展,能够对材料在外场作用下的结构动态演变进行直接观察。我们利用原位电子显微学来研究了具有离子导体特征的半导体材料在温度、外加电压作用下产生的相变和电阻变化,以探索它们的电阻变化机理。浙江大学副研究员 丁青青【个人简介】丁青青博士以浙江大学全链条高温合金研究平台和先进电子显微技术为依托,从事先进金属结构材料特别是应用于极端条件下合金的研发。研究方向包括合金成分设计及制备、显微结构和形变机理与性能的关系。申请人主持和参与浙江省自然科学基金、浙江省重大研发计划专项、国家自然科学基金重大研究计划项目、国家自然科学基金面上项目、中央高校基本科研业务费专项资金项目等多项, 在金属材料领域国内外重要学术期刊发表学术论文20余篇,其中第一或通讯作者论文发表于Nature、Materials Today、Applied Materials Today、Acta Materialia、Materials Today Nano等顶级期刊,多篇论文入选ESI热点和高被引论文(论文被引用2600余次)。报告题目:镍基单晶高温合金的形变机理【摘要】 镍基单晶高温合金是目前唯一应用于航空发动机涡轮叶片的材料,而理解不同力热耦合条件下镍基单晶合金的形变机理是优化单晶合金成分和性能的前提。结合利用扫描和透射电子显微镜,我们将二代镍基单晶高温合金不同力热耦合条件下力学性能与微观组织结构演变规律相关联,从原子到微米跨尺度揭示了不同力热耦合条件下二代镍基单晶合金的形变机理,阐明了形变过程中合金两相的竞争关系,发现高温形变时基体相是单晶合金的薄弱环节。因此,发展高性能镍基单晶高温合金需重点提高基体相强度。上海交通大学特别研究员 刘攀【个人简介】刘攀,上海交通大学材料科学与工程学院特别研究员、博导。长期从事结构功能一体化金属材料的原位/非原位电子显微学研究,主要研究功能导向三维微纳结构金属及其复合材料的相变热/动力学、表/界面结构特性、弹塑性行为的微观机制、设计制备及应用。累计发表论文114篇,其中包括第一/通讯作者论文Nat. Commun., Adv. Mater., Nano Lett., JACS, Angew. Chem. Int. Ed., Acta Mater.等31篇。论文共获SCI他引6718次,个人H指数42,ESI高被引论文16篇。授权国际国内发明专利13件。主持国家自然科学基金项目、军委科技委重点项目课题等6项。获北京市科学技术一等奖、上海市浦江人才和东方学者。报告题目:结构功能一体化纳米多孔金属材料北京大学高级工程师 鞠晶【个人简介】1996年获吉林大学理学学士,1999年获吉林大学理学硕士, 2003年获北京大学理学博士;2003-2009年在日本东北大学从事科研工作。2009年加入北京大学化学学院并任高级工程师。研究方向:1. 无机固体结构化学2. 原位电镜技术研究化学反应过程。报告题目:用原位电镜研究NaYF4上转换发光材料的结构和发光性质【摘要】 NaYF4是重要的上转换发光材料,广泛应用于医学诊断,成像和防伪技术等领域。本文利用原位电镜方法,系统研究了NaYF4纳米颗粒在加热条件下发生连续的氧化反应,结构从六方相向立方相转变的过程。利用SEM-CL方法研究了结构变化过程中纳米材料发光性能的变化。南方科技大学研究员 谷猛【个人简介】谷猛博士毕业于美国加州大学戴维斯,曾在美国西北太平洋国家实验室和陶氏化学公司任职。主要从事能源反应机理的显微学研究,共发表英文SCI论文170篇,引用超过12000次。2015年,由于谷教授在电子显微分析方面的突出贡献,被美国电镜协会授予Albert CREWE award奖项。2019年入选深圳市青年科技奖。报告题目:固体电解质界面层的冷冻电镜研究【摘要】 包括锂钠钾在内的碱金属是相应电池体系热力学上最理想的负极,但碱金属与电解液之间的不稳定性以及枝晶生长,会导致严重的电池容量衰减甚至内部短路。研究碱金属电化学沉积的行为,理清碱金属与电解液副反应的化学过程,对发展高容量锂电池和低成本钠/钾电池具有重要的指导意义。然而,碱金属及固体电解质界面(SEI)因为对水氧和电子束的敏感性而难以表征,无法得到原子尺度的精确分析。我们将深度结合冷冻电镜的制样与成像技术,系统研究电化学沉积碱金属的微观形态和SEI在原子尺度的精细结构,探索调控碱金属沉积行为和SEI结构的有效策略。布鲁克(北京)科技有限公司应用工程师 陈剑峰【个人简介】毕业于长春应用化学研究所,主要研究方向是高分辨电子显微镜在聚烯烃类高分子结晶中的应用,毕业即加入FEI中国,负责扫描电子显微镜的市场和应用等工作,后在安捷伦及赛默飞负责扫描电子显微镜的应用工作,2021年加入布鲁克公司,主要负责EDS,EBSD,Micro-XRF等产品的技术支持工作,对扫描电子显微镜有多年的实操经验和工作经历。报告题目:布鲁克全新一代电制冷能谱仪【摘要】 2022年布鲁克发布全新一代电制冷能谱仪,具有更高的输出计数和最优的结构设计,与WDS,EBSD和Micro-XRF一起高度集成于ESPRIT软件系统,为业界提供了全面的化学成分和组织结构分析解决方案。本次报告我们主要为大家讲解XFlash 7最新的技术和功能模块,以及在几个领域里的突出优势。钢铁研究总院/纳克微束(北京)有限公司应用科学家 卢毓华【个人简介】卢毓华,男,博士。毕业于钢铁研究总院有限公司(原名:钢铁研究总院),硕、博期间在王海舟院士创新工作室进行课题研究,主要研究方向是材料高通量表征方法的研究和应用,博士期间采用高通量场发射扫描电镜建立了跨尺度γ´相的定量统计表征方法,并在GH4096高温合金中进行应用。对扫描电镜等设备具有多年的实操经验和使用经历,目前主要进行高通量电镜的应用开发方面的工作。报告题目:跨尺度高通量定量统计表征方法研究及其在GH4096高温合金中γ´相的表征应用【摘要】 基于材料基因高通量表征的思想,采用高通量场发射扫描电镜,建立了跨尺度γ´相的定量统计表征高通量扫描电镜法,解决了多晶高温合金中一次、二次和三次γ´相的高通量获取、识别和表征问题。首次实现了采用高通量扫描电镜单次实验获得大尺寸高温合金部件的一次、二次和三次γ´相多参量跨尺度的定量统计信息。徕卡显微系统(上海)贸易有限公司高级应用工程师 武素芳【个人简介】武素芳,硕士研究生,毕业于北京航空航天大学。徕卡显微系统(上海)贸易有限公司,材料电镜制样高级应用工程师(Senior Application Specialist),从事电镜应用操作和电镜样品制备工作10年有余,具有丰富的电镜观察和样品制备经验,制备及观察样品种类繁多,对样品制备观察有丰富经验和独特见解。具有丰富的样品制备问题方案解决经验,曾为全国各地区高校、研究所、企业检测、研发中心及生产线产品问题缺陷检测、第三方检测等提供解决方案,培训相关技术及操作人员数千人。报告题目:徕卡电镜制样在材料科学方面的应用与介绍【摘要】 徕卡电镜制样在材料行业提供整套技术路线产品。样品表现出的性能往往不是表层或宏观能看到的,电镜观察是了解微观信息的重要手段,而专业的电镜制样可以将样品制备为符合电镜测试要求的状态,如200纳米以内薄片,无应力平整断面,含水样品的冷冻处理后样品的原位观察等。故好的制样是电镜成功的一半。COXEM库赛姆台式电镜产品应用专家 沈宁【个人简介】沈宁,库赛姆产品应用专家 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责库赛姆台式电镜市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。报告题目:COXEM台式扫描电镜在材料显微表征领域的应用【摘要】 扫描电子显微镜自商业化以来,由于其景深大、分辨率高,有利于观察物体的表面结构,越来越多的科研检测机构或企业将其应用在材料的分析表征。COXEM( 库赛姆)EM系列高分辨率台式( 桌面式)扫描电镜在1~30KV范围内连续可调,采用双聚光镜成像技术,与大型扫描电镜的成像方式一致,使用二次电子探测器作为基础成像单元,从而可以获得更高的分辨率(5nm),图像表面信息更丰富细腻,此外还可配置多种附件,例如EDS、EBSD、STEM、冷台和大面积拼图软件等,是真正意义上的高分辨率综合分析型台式扫描电镜。
  • 五部委发布137项优先发展高技术产业领域指南(2011年度)
    发改委网站2011年10月20日刊文,由发改委、科技部、工信部、商务部、知识产权局联合研究审议的 《当前优先发展的高技术产业化重点领域指南(2011年度)》,现予以发布。《指南》确定了当前优先发展的信息、生物、航空航天、新材料、先进能源、现代农业、先进制造、节能环保和资源综合利用、海洋、高技术服务十大产业中的137 项高技术产业化重点领域。  当前优先发展的高技术产业化重点领域指南(2011年度)  2007年,国家发展改革委、科技部、商务部、知识产权局联合发布了《当前优先发展的高技术产业化重点领域指南(2007 年度)》(国家发展改革委2007 年第6 号公告,以下简称《指南(2007 年度)》),对指导各部门、各地方开展高技术产业化工作,促进产业结构调整、加快经济发展方式转变,引导社会资源投向等发挥了重要作用。为贯彻党的十七届五中全会精神,落实《国民经济和社会发展第十二个五年规划纲要》、《国家中长期科学和技术发展规划纲要(2006-2020)》,进一步发挥“指南”的指导作用,国家发展改革委、科技部、工业和信息化部、商务部、知识产权局,在充分分析国内外高技术发展现状及趋势,广泛征求意见的基础上,研究提出了《当前优先发展的高技术产业化重点领域指南(2011年度)》(以下简称《指南(2011 年度)》)。  《指南(2011 年度)》确定了当前优先发展的信息、生物、航空航天、新材料、先进能源、现代农业、先进制造、节能环保和资源综合利用、海洋、高技术服务十大产业中的137 项高技术产业化重点领域,其中,信息15 项,生物17 项,航空航天6 项,新材料24 项,先进能源13 项,现代农业18 项,先进制造21 项,节能环保和资源综合利用9 项,海洋6项,高技术服务8 项。重点内容体现了发展高技术产业、大力培育发展战略性新兴产业,推进产业结构优化升级、促进经济发展方式转变,应对全球气候变化的新需求。与《指南(2007 年度)》相比,《指南(2011年度)》新增了高技术服务产业和15 项重点领域,删除了8 项已基本实现产业化的重点领域,并对各领域下的具体内容进行了调整。  一、信息  1、网络设备(略)  2、光传输设备(略)  3、接入网系统设备(略)  4、数字移动通信产品(略)  5、数字音视频产品(略)  6、计算机及外部设备(略)  7、软件及应用系统(略)  8、信息安全产品与系统(略)  9、集成电路(略)  10、信息功能材料与器件  以氮化镓、碳化硅、氮化铝为代表的第三代(高温宽带隙)半导体材料与器件,蓝宝石晶片、石墨烯和碳纳米管混合材料,高k 栅介质和金属栅极材料,新型微电子和光电子材料与器件,大尺寸光纤预制棒及配套材料,光子晶体材料与器件,硅基光电子材料与器件,半导体纳米结构材料与器件,光传感用光电子材料与高端核心器件,轧制印刷电路板及锂电池用高性能、低轮廓电子铜箔、IC引线框架铜带、封装基板材料、高频、高耐热性覆铜板、无铅焊料,高性能永磁软磁铁氧体材料与器件、低损耗电容器纸、8-12 吋硅片生产设备的配套材料(超高纯石英材料)。  11、电子专用设备、仪器和工模具  8-12 英吋集成电路生产设备、封装测试设备,无线射频(RFID)封装设备,化合物半导体生产设备,碳化硅单晶材料生长设备,片式元件生产设备,半导体照明设备、光伏太阳能设备、新型显示专用设备、敏感元器件/传感器件生产设备,高频率器件生产设备,电力电子器件生产设备,超净设备,环境试验设备,高精度电子专用模具,终测仪、路测仪等电子专用测试仪器。  12、新型显示器件(略)  13、新型元器件(略)  14、汽车电子(略)  15、民用雷达(略)  二、生物  16、生物反应及分离技术  高效生物反应器,高密度培养技术,佐剂、悬浮培养、发酵培养等生物制品产业化关键技术及动植物生物反应器技术,大规模高效分离技术、介质和设备,大型分离系统及在线检测控制装置,基因工程、细胞工程和蛋白质工程产品专用分离设备,生物过程参数传感器和自控系统。  17、生物制造关键技术及重大产品  新型高效工业、食品、医药和环保等专用酶制剂,酶制剂质量评价技术及标准,以动植物为原料深加工药物中间体,功能性淀粉糖(醇),小品种高附加值的氨基酸和有机酸、生物防腐剂、生物絮凝剂等新型微生物制造的食品和大宗发酵制品,生物反应废液生物酶分解技术,抗生素和维生素的绿色生产技术。  18、新型疫苗  预防流行性呼吸系统疾病、艾滋病、肝炎、结核病、布氏菌病、出血热、疟疾、钩虫病、血吸虫病、手足口病、肠道疾病、自然疫源性疾病等传染病和治疗肿瘤等慢病的联合疫苗、治疗性疫苗、口服疫苗、新型佐剂等,疫苗生产用清洁动物、细胞基质。  19、重大疾病创新药物及关键技术  新型抗恶性肿瘤疾病、抗心脑血管疾病、糖尿病等内分泌疾病,抗肝炎、艾滋、结核等抗感染类疾病,抗老年性痴呆、帕金森氏症等神经退行性疾病及神经精神类疾病、非成瘾性镇痛、戒毒类等的创新药物、通用名大品种药物、特色药物。药物生产的绿色合成、手性拆分、晶型制备技术,药物生产在线质量控制技术,药物信息技术。  20、生物技术药物及关键技术  基因工程药物、抗体药物、多肽药物、核酸药物等的规模化制备技术,蛋白质工程技术,聚乙二醇化学修饰技术,干细胞治疗相关技术,多肽药物大规模合成技术,治疗性抗体生产技术,科研用试剂关键技术及产品,医学实验动物。  21、单克隆抗体系列产品与检测试剂  传染病早期检测诊断试剂及试剂盒,病毒细菌感染鉴别诊断试剂及试剂盒,新型系列肿瘤标记物检测试剂及试剂盒,出生缺陷早期筛查试剂及试剂盒,食品安全检测试剂及试剂盒,动植物疫病检测试剂及试剂盒。  22、新型给药技术及药物新剂型  新型释药系统,包括缓释、控释、靶向给药技术,蛋白或多肽类药物的口服给药技术及制剂,药物控释纳米材料和药物新晶型制备技术,新型给药技术、装备和辅料,中药新剂型及其新型辅料。  23、计划生育药具(略)  24、中药材及饮片(略)  25、中药制品(略)  26、中药制药工艺及设备(略)  27、生物医学材料(略)  28、新型医用精密诊断及治疗设备  肿瘤等重大疾病的新型诊疗设备,新型便携式诊疗设备,新型多功能激光治疗设备,微创手术及介入治疗设备,CT、彩超、磁共振、X 射线等大型设备及成像材料和关键零部件,新型血液净化处理设备,新型急救、诊断、康复设备。  29、医学信息技术及远程医疗(略)  30、生物芯片  重大疾病、传染病、遗传病、地方病等诊断用芯片,食品安全、生物安全检测用芯片,研究用芯片,生物芯片数据获取、处理和分析设备及软件。  31、生物材料及产品  利用生物质生产聚乳酸、聚羟基烷酸、聚氨基酸和聚有机酸等可降解材料,生物可降解聚酯,可降解高分子材料与淀粉共混的环境友好材料,新型炭质吸附材料,新型绿色生态可降解聚乳酸纤维、多元醇纤维,生物乙烯、1,3-丙二醇、丁醇系列产品,乳酸、丁二酸、琥珀酸以及各种具有特定性能的有机酸产品和医药中间体。  32、功能性食品  辅助降血脂、降血压、降血糖功能食品,抗氧化与抗缺氧功能食品,减肥功能食品,特殊人群功能食品等,功能因子的绿色高效制备技术及生物活性稳态化加工技术 功能性食品有效成分检测和安全评价技术。  三、航空航天  33、民用飞机(略)  34、空中交通管理系统(略)  35、新一代民用航空运输系统(略)  36、卫星通信应用系统(略)  37、卫星导航应用服务系统(略)  38、卫星遥感应用系统  卫星遥感系统综合应用平台,形成基于自主数据源的高速全交换式地面接收系统、基于网格架构的卫星遥感数据处理像素工厂、面向服务的分发系统、模式类应用系统等共享平台,在国土测绘与监测、气象观测与服务、资源考察、城市规划管理与监测、交通运输、农林监测、地质勘探、环境监测及防灾减灾等领域的应用 城市空间信息服务 有效载荷国产化。  四、新材料  39、纳米材料  纳米钨粉及纳米硬质合金材料、纳米膜材料、纳米催化材料和纳米晶金属材料,材料表面纳米化技术,纳米能源材料与技术,纳米生物医用材料与技术,包括重大疾病早期诊断与治疗用纳米材料与器件,纳米环境材料与技术,纳米多孔气凝胶材料,纳米电子、光子、传感材料及器件,纳米材料与器件的制备、加工、计量、评价技术与装备。  40、高性能、低成本钢铁材料  超细组织钢铁材料的轧制工艺、先进微合金化、高均质连铸坯及高洁净的冶炼工艺,高强度耐热合金钢及铸锻工艺和焊接技术,高强度轿车用钢、超超临界机组用钢、高性能工模具钢、960MPa 以上高韧性工程机械用钢、耐腐蚀及耐高温、高压高强钢,经济型奥氏体及铁素体不锈钢,高质量大型轴承钢,高速铁路用钢,特殊品质高级无缝管。  41、高性能镁、铝、钛合金材料  高性能铝合金、镁合金、钛合金、钨合金及其复合材料,钛合金及铝合金大型宽厚板,镁及镁合金的液态铸轧技术,镁、铝、钛、钨合金的线、棒、板、带、薄板、铸件、锻件、异型材等系列化产品的加工与焊接技术,大型复杂构件成形技术,着色、防腐技术及相关配套设备。  42、特种功能材料  特种功能焊接材料、特种功能喷涂材料、特种功能密封材料、超导材料,智能材料,功能陶瓷、功能薄膜,气敏、湿敏、磁性液体、光敏材料、巨磁阻抗等传感材料,氢的制备及分离、储氢合金和储氢容器、太阳能电池、高性能二次锂电池和新型电容器等能量转换和储能材料,烯烃等聚合物及清洁生产所需催化材料,稀贵金属高纯材料,非晶材料,特种阳极材料,稀有金属粉末及制品,多孔材料及元器件,特种功能金属纤维及其制品,新型超硬材料及设备,贵金属催化剂。  43、稀土材料  高纯度稀土氧化物和稀土单质的分离、提取技术,高性能稀土(永)磁性材料及其制品,稀土催化材料,稀土贮氢材料,稀土发光材料,稀土转换膜,超磁致伸缩材料,稀土光导纤维,稀土激光晶体和玻璃,稀土精密陶瓷材料,高性能稀土抛光材料,稀土磁光存储材料,稀土磁致冷材料,稀土生物功能材料,高性能稀土合金材料。  44、高温结构材料  陶瓷-金属复合材料,高温过滤及净化用多孔陶瓷材料,连续陶瓷纤维及其复合材料,高性能、细晶氧化铝产品,低温烧结复相陶瓷、碳化硅陶瓷产品,单晶高温合金低成本制备技术,TiAl 基和高熔点金属间化合物材料,粉末高温合金成型产品、复杂高温合金铸件。  45、新型建筑节能材料  高性能外墙自保温墙体材料、功能墙体材料、热反射涂料、相变储能材料、外墙隔火防热材料,高效屋面保温材料,楼地面隔热保温材料,高性能节能玻璃和门窗,低辐射玻璃。  46、重交通道路沥青  利用环烷基原油资源生产重交通道路沥青,用重油和含硫原油生产高质量的AH-70、AH-90 等牌号的重交通道路沥青,抗紫外线、防冻道路改性沥青,路面再生及有机大分子废弃物在改性沥青中的应用。  47、高分子材料及新型催化剂  新型工程塑料与塑料合金,新型特种工程塑料,阻燃改性塑料,通用塑料改性技术,汽车轻量化热塑性复合材料,农林等纤维素原料提取高分子材料-酶解木质素技术,氟塑料成形加工技术,聚烯烃催化剂、高效硝基苯加氢催化剂及原位聚合聚烯烃纳米复合材料催化剂,交联聚乙烯材料和电器用合成树脂材料,高性能聚芳醚酮类树脂材料,硅树脂、异戊橡胶、乙丙橡胶、硅橡胶材料及改性技术,邻甲酚环氧树脂,万吨级聚碳酸酯塑料、千吨级尼龙11 塑料、万吨级通信和电力电缆用及油气输送用聚烯烃管材生产技术及设备,超低密度材料。  48、复合材料  双金属材料及多金属复合材料,高性能铜合金复合材料,金属基复合材料,碳-碳复合材料,陶瓷基复合材料,先进树脂基复合材料及其低成本制备技术,新型特殊结构复合材料制备技术。绿色玻璃钢-热塑性复合材料制品,输气管道、轴承、渔船、汽车覆盖件用玻璃钢。高强高导铜基纳米陶瓷弥散增强复合材料。  49、特种纤维材料  高性能碳纤维、无碱玻璃纤维、氨纶纤维、芳纶纤维、芳砜纶纤维、超高分子量聚乙烯纤维、聚苯硫醚纤维、聚四氟乙烯纤维、聚酞亚胺纤维,陶瓷纤维,高性能、高感性、高功能和环保型纤维,晶须材料,低成本、高性能、特种用途玻璃纤维及其制品。  50、环境友好材料  生态环境材料,环境友好及特殊用途光学玻璃材料,环保型可降解塑料,建筑与海洋防护用工程环保涂料,无机高分子絮凝剂,电子电器产品限用物质替代材料,可降解汽车内饰材料技术,材料的可循环回收技术,高分子材料环境友好技术,低碳型和环境友好型包装材料,建筑材料环境友好技术,环境友好材料的分析检测技术和方法及标准物质。  51、膜材料及组件  功能高分子膜材料及成套装置,均相系列荷电膜及装备,聚烯烃类微滤膜及应用,纳米结构敏感膜、液体脱气膜、汽液相分离膜材料,模内转印(IMD)用膜材料,氯碱用膜材料,高性能复合纳米滤膜材料,无机分离催化膜材料,生物功能和仿生分离膜材料,海水、苦咸水及中水处理用反渗透膜材料及组件,陶瓷分离膜材料与技术,渗透气化和蒸汽渗透分离膜材料与技术。  52、金属粉体材料及粉末冶金技术  超高温、高压惰性气体雾化制粉技术,超声振动雾化制粉技术,注射成形、温压成形、喷射成形等先进粉末冶金技术,系列化高性能粉末冶金产品,纳米粉末冶金材料,低成本触点材料,复合粉体材料,高性能镍基高温合金粉体材料。  53、表面涂、镀层材料  环保型防腐涂料,环保型高性能工业涂料,高温陶瓷涂敷材料,高档汽车用金属颜料,水性重防腐涂料,耐高温抗强碱涂料,防火阻燃涂料,磁性热敏涂层材料,先进高能束表面改性技术,复合表面技术,锡系无铅可焊性电沉积环保工艺材料,超低表面能含氟表面保护材料与技术。  54、盐湖及海水提锂、提镁技术(略)  55、新型纺织材料及印染后整理技术(略)  56、高性能密封材料  轿车及中高档轻型车覆盖件、结构件及动力传动、减振、制动系统用密封材料,大型成套设备高压、液压、气动系统用密封件,电力设备高温、高压机械用密封件,石油化学工业用高速透平压缩机的非接触气膜密封件,金属磁流体密封件,高性能无石棉密封材料,高性能碳石墨密封材料,高性能无压烧结碳化硅材料,航空航天用聚硫密封剂材料。  57、子午线轮胎生产技术和关键原材料  低碳、节能、安全、高性能子午线轮胎制造技术,异戊橡胶、杜仲橡胶生产技术及装备,新型环保、节能、高性能纤维(金属)骨架材料,5 万吨/年节能、低耗、环保、高性能软质新工艺炭黑,高性能、低能耗特种炭黑,低耗、低排、绿色、高性能橡胶助剂。  58、金属、无机非金属多孔复合催化材料  能源工业净化燃煤烟气用金属催化过滤材料,多孔过滤催化材料,金属多孔材料表面预处理技术,载体复合、催化剂活性组分附着等表面技术,金属复合催化材料的制备技术,催化过滤材料的制备技术,催化反应膜技术。  59、油田用助剂  万吨级耐高温、耐盐聚合物驱油剂,驱油表面活性剂,万吨级钻井液用化学品,万吨级高效清防蜡剂和降凝降粘剂,千吨级高温原油破乳剂,千吨级石油压裂液增稠剂、采油和炼油缓蚀剂,千吨级采油用稠油降粘剂,千吨级高效杀菌剂,石油开采中的环境友好型高分子驱油材料,原油脱硫化氢剂。  60、造纸用助剂  2 万吨/年造纸专用增强剂,万吨级涂布纸用专用化学品,万吨级造纸用树脂障碍控制剂,2 万吨/年高留着型淀粉表面施胶剂,5 千吨级印刷适应性改进剂,万吨级造纸增强填料石膏晶须产品,新型功能表面活性剂。  61、新型选矿设备及药剂  铜矿、铁矿等大型金属矿山和铝土矿、钨矿、锡矿、钛矿及低品位的氧化锌矿、锶矿等难处理矿成套选矿设备,大型选矿、冶炼自动控制技术与装备,千米深井采矿技术与装备,大深度精细勘查技术与装备,数字矿山关键技术,高效低毒的捕收剂、调整剂、起泡剂等选矿药剂。  62、核工程用特种材料  高纯海绵锆及核级锆与锆合金、锆合金的表面改性,核级不锈钢,耐晶间腐蚀和应力腐蚀的镍基合金,抗液体钠腐蚀材料,抗氢脆材料,抗高温热腐蚀低合金钢,高纯、抗辐照各向同性石墨,中子屏蔽用石墨,耐腐蚀、抗辐照脆化、具有良好焊接性能的高强度压力壳体钢,核二、核三级设备超厚超宽钢板和锻件,安全运行监测控制用低熔点材料。  五、先进能源  63、动力电池及储能电池(略)  64、氢开发与利用(略)  65、风能(略)  66、太阳能(略)  高效率、低成本、新型太阳能光伏电池材料,太阳能晶硅冶炼用长寿命石墨材料,太阳能电池制造技术及装备,太阳能电池非玻璃封装技术,中、高温太阳能发电技术与设备,太阳能储热材料,光伏逆变并网系统技术,兆瓦级以上光伏太阳能并网发电系统,兆瓦级以上大规模太阳能高温热发电系统,风/光及其他能源互补发电系统,太阳能采暖与制冷系统与设备,太阳能与建筑一体化技术,薄膜太阳电池关键技术及装备,聚光、柔性等新型太阳电池技术及装备。  67、生物质能  非粮作物生物燃料乙醇及副产品联产技术,农林生物质能源原料新品种及其配套生产技术,农业废弃物生产高值生物燃气技术,绿色生物柴油精制技术,生物质热解、气化燃料技术,生物航煤生产技术,生物质直燃、混燃和气化供热/发电技术,生物质气化制氢技术,生物质成型燃料生产、应用及系统集成技术,垃圾、垃圾填埋气和沼气发电技术,油料植物的高附加值利用技术,秸杆、芦苇、麻类高效降解与转化技术和设备,二氧化碳(CO2)藻类转化技术。  68、地热能与海洋能(略)  69、石油勘探开发技术及设备(略)  70、油品加工技术及设备(略)  71、长距离高压油气输送设备(略)  72、煤炭高效安全生产、开发与转化利用(略)  73、高效低污染燃煤发电及水电技术系统(略)  74、核电及核燃料循环(略)  75、电网输送及安全保障技术(略)  六、现代农业  76、农作物新品种(略)  77、蔬菜、水果等园艺作物新品种(略)  78、林木、花卉新品种(略)  79、畜禽水产新品种(略)  80、新型设施农业技术(略)  81、安全高效、规模化畜禽清洁养殖技术(略)  82、安全高效淡水产品清洁养殖技术(略)  83、农林节水技术与设备(略)  84、新型高效生物肥料(略)  85、新型安全饲料(略)  86、农业动物重大疫病预防控制  预防控制禽流感、口蹄疫、狂犬病、猪蓝耳病、新城疫、布氏杆菌病等重大动物疫病及人兽共患病的新型疫苗、诊断试剂、快速检测试剂盒、免疫增强剂以及消毒药物等,动物源性食品安全相关微生物的检测与风险分析技术,经济动物和野生动物疫源疫病监测技术,环境融合型畜禽疫病综合防治技术,高效、低毒、使用安全的新型兽医专用药物、中兽药(制剂)生产技术、兽用标准物质制备技术,兽药多残留快速检测技术、耐药性监控技术,佐剂、悬浮培养、发酵培养等兽用生物制品产业化关键技术。  87、水产疫病预防控制  水产养殖生物主要疫病快速诊断与检疫试剂盒、免疫增强剂、抗病微生物制剂、病原感染阻断剂、非特异性免疫制剂,口服、浸泡型和注射型渔用疫苗,高效、低残留渔用药物新剂型、新制剂,禁用渔药替代药物。  88、农林植物有害生物检疫、预防、控制  高效、低毒、低残留、环保型农药新产品(制剂)生产技术,智能施药、施肥技术及产品,农药残留快速检测技术及设备,农林作物有害生物及外来入侵生物检疫、监测、检测、快速鉴定、预警、预防和长效控制技术与产品,物种资源出入境快速查验及快速鉴定技术及装备,检疫检验隔离新技术与设施,食品中有毒、有害物质检疫检验、预防和控制技术与装备。  89、数字化农林技术与装备(略)  90、农林产品加工技术与装备(略)  91、农林业生物质材料精深加工与利用(略)  92、农林业机械(略)  93、粮食储藏与流通(略)  七、先进制造  94、工业自动化(略)  95、网络化制造(略)  96、现代科学仪器设备  近红外光谱仪、等离子体光谱仪、金属原位分析仪、辉光光谱仪、激光光谱仪等光谱分析仪器,气相色谱仪、液相色谱仪等色谱分析仪器,等离子体质谱仪、质谱联用仪等质谱分析仪器,新型pH 计、电导仪、离子计、电位滴定仪等电化学分析仪器,微机控制材料试验机、材料图像分析仪、智能化电磁超声探伤仪等材料性能检测仪器,高性能工业X 射线CT 装置,环境保护、社会安全应急检测仪器和系统,全自动气象测量系统,二维色谱、阵列毛细管电泳、表面等离子体共振成像、激光诱导荧光等医学研究仪器,基于光纤传感技术的结构健康监测系统。  97、新型传感器  高性能、多功能的位移、力敏、磁敏、光敏、热敏、气敏、湿敏、离子敏和生物敏型传感器以及红外传感器、光纤传感器,紫外传感器,声表面波传感器,微纳传感器,生物、医学研究急需的新型传感器,新型环保、气象、地震、海洋、大气环境监测传感器,工业过程控制传感器,汽车传感器,多传感器的集成与融合技术,结构健康监测传感器、腐蚀监测传感器。  98、精密高效和成形设备  精密微细加工技术,特殊用途光学薄膜加工技术及设备,近净成形技术与装备,纳米精度高效光学加工技术及设备,大型数控锻压机床及生产线,高精度大型复合材料缠绕、铺带、铺丝设备及相关工艺过程分析、模拟和优化软件,高精度塑料加工成形设备。  99、激光加工技术及设备  性能稳定的大功率激光器及其晶体,大功率光纤激光器,大型轧辊激光表面强化设备,激光精密加工技术和设备,激光切割技术和设备,激光焊接技术和设备,激光热处理和熔覆技术及设备,激光强化技术和装备,激光复合加工技术和装备,激光加工基础装置和系统,激光测量仪器和校准标准仪器。  100、高精度数控机床及功能部件  高精密车、铣数控机床及加工中心,车铣(铣车)复合机床,高精度数控磨床,数控齿轮加工机床,重型、超重型数控机床,数控特种加工机床,数控专用机床及生产线,中高档数控系统和数字伺服控制器,大功率、高刚度电主轴及其伺服单元,直线电机、力矩电机及伺服控制器,高速滚珠丝杠副和导轨副,高速、精密、重载直线导轨,万能铣头,高速防护装置,刀库及自动换刀装置,全功能数控刀架、数控回转工作台,高精度数字化测量仪器,高速切削刀具。  101、机器人(略)  102、大型石油化工成套设备(略)  103、关键机械基础件(略)  104、电力电子器件及变流装置(略)  105、汽车关键零部件(略)  106、高效节能内燃机(略)  107、数字化专用设备(略)  108、快速制造技术及设备(略)  109、大型构件制造技术及装备(略)  110、大型部件自动化柔性装配技术及装备  111、核技术应用  辐照交联电线电缆、热缩材料、辐照材料、发泡材料、交联聚烯烃管材及附件、橡胶硫化、高分子PIC 器件、绿色环保涂料,用辐射技术处理三废,电子束固化等辐射加工,医疗保健用品辐射灭菌消毒,同位素辐照设备、大功率辐照加速器、电子加速器及成套设备等辐射装置及成套设备,以同位素γ源和加速器为射线源的大型工业在线检测、危险物品的安全检测装备,同位素药物及辐射治疗。  112、高技术船舶(略)  113、海洋工程装备(略)  114、轨道交通设备(略)  八、节能环保和资源综合利用  115、先进节能技术(略)  116、饮用水安全保障技术  灵敏、快速的水源地水质自动监测技术,水质在线检测和预警技术,饮用水强化处理技术,高效安全消毒技术,微污染净化技术,高效控藻、除藻和藻毒素去除技术,管网水质在线检测技术,多功能自动化捞藻船及二次污染控制技术,多物种智能生物预警仪,管网水质稳定技术和直饮水净化技术,农村饮用水除氟、除砷技术与装置。  117、工业和城市节水、废水处理(略)  118、雨水、海水、苦咸水利用(略)  119、大气污染与温室气体排放控制  机动车尾气排放控制用高性能蜂窝载体、满足国IV、国V 标准汽车净化器,高性能除尘滤料和高性能电、袋组合式除尘技术与设备,燃煤烟气脱硫、脱硝、脱汞或一体化的高效技术和装备,工业排放有毒废气控制技术与设备,选择性催化还原法(SCR)烟气脱硝催化剂及再生技术,室内空气污染物控制与削减技术,挥发性有机化合物(VOC)的控制技术,油库、加油站油气回收技术与设备,碳减排及碳转化利用技术,消耗臭氧层物质的低温室潜能替代技术及产品。  120、固体废弃物的资源综合利用(略)  121、危险固体废弃物处置技术及设备(略)  122、环境自动监测系统  水质及污染源在线监测系统备,水中微量有机污染物富集装置,持久性有机污染物采样、分析系统,环境遥感监测系统和量值溯源标准设备,空气质量及污染源在线监测系统,温室气体(GHG)排放监测技术与设备,污染事故应急监测等便携式现场快速测定仪及预警、警报仪器,大气中污染物在线检测系统,矿山安全监测、预警与防治技术,滑坡、崩塌、泥石流等地质灾害监控预警设备及系统。  123、生态环境建设与保护  环保基础材料制备及其应用技术,水土流失及荒漠化防治技术,湿地恢复与利用技术,污染土壤修复、污染水体修复、衬泥治理及富营养化防治技术,面源污染控制技术,持久性有机污染物(POPs)替代技术及替代产品,重金属污染物农田治理改造技术与产品,垃圾填埋防渗材料、渗滤液处理、填埋气回收技术和设备,高效、节能、环保和可循环的新型制造工艺及装备,机电产品表面修复和再制造技术。  九、海洋  124、海洋监测技术与装备  特异、灵敏度高、抗污染、抗海洋生物附着和耐腐蚀的各类传感器,适合海洋动力和生态环境现场连续快速测量的浮标、潜标、海床基、岸基及智能化走航的平台技术,适应海上固定平台及船舶观测相关技术,经济型投弃式测量装备,海洋环境探测雷达技术及装备,海洋环境声学探测技术及装备,海洋突发性污损灾害事故应急监测等便携式现场快速测定仪和预警、警报专用技术及系统平台,海洋地震观测技术设备,海洋遥感技术,水下通讯和能源补充技术,海洋信息处理和应用技术。  125、海洋生物活性物质及生物制品  源于海洋生物的抗菌、抗病毒、抗肿瘤、抗氧化、抗骨关节病、降血糖、减肥及心脑血管、神经系统等高效海洋新药物规模提取、纯化和合成,应用现代生物技术从海洋生物中获取海洋功能食品、酶制剂以及特异性诊断试剂等生物制品,大型藻类生物酿造、生物能源技术开发。  126、海水养殖良种繁育和育苗技术(略)  127、设施渔业和渔业工程装备(略)  128、海底资源环境监测、勘探技术与装备  海底资源勘探、采样和评价技术与装备,水下组网技术,水下移动观测平台技术,海底极端环境监测、探查技术与装备,深海观察及运载技术与装备,海洋勘探、开采的防污与封闭装备。  129、海洋环境保护与生态修复技术及装备  海洋环境污染防治与处理技术及装备,海洋环境污染处理材料与制剂,海洋生态系统功能修复与恢复技术。  十、高技术服务  130、信息技术服务(略)  131、电子商务服务(略)  132、数字内容服务(略)  133、研发设计服务(略)  134、生物技术服务  生物医药、生物农业、生物能源、生物制造、生物环保等领域的生物技术服务。创新药物和以生物芯片为代表的生物医学工程产品上市前全过程的技术开发与评价、产业工程技术、检测与标准技术服务等专业化服务 生物技术外包服务,健康管理技术支撑服务。依托基因工程、细胞工程、分子育种等现代生物技术的生物农业技术服务。生物能源、生物基新材料研发服务和生物环保技术服务。  135、检验检测服务  支持分析、测试、计量、检疫、认证、溯源等技术服务。特种设备安全与节能检测服务,质量安全风险监测预警与应急预警技术服务,生物安全检疫技术服务,基于产品检测分析的综合解决方案服务,检测仪器设备、检测试剂盒、试剂耗材的开发和研究。标准一致性(符合性)测试检验服务。标准信息分析及标准中创新技术的分析、应用和保护等标准咨询服务。  136、知识产权服务(略)  137、科技成果转化服务(略)  科技评估、科技招投标、科技情报咨询等科技信息服务 公共实验室、测试中心、中试基地、研发环境等技术支持服务 创业辅导、孵化器、大学科技园等科技成果转化平台服务 技术产权交易、技术经纪等中介服务,生产力促进中心等科技中介服务。  全文查看:当前优先发展的高技术产业化重点领域指南(2011 年度)
  • 中国材料盛宴 | 摩方精密赋能多领域的创新之光!
    2023年7月10日,为期三天的“中国材料大会2022-2023”圆满落幕,全国1.9万余名材料科技工作者、1500余位杰青长江学者、50余位两院院士齐聚一堂,共同探讨学术发展前沿,碰撞智慧火花。本届大会是立足于国家全面推进高水平科技自立自强的大背景下举办的一次跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平最高、涉及领域最广、前沿动态最新的超万人国家级品牌大会。在本次盛会中,重庆摩方精密科技股份有限公司(以下简称:摩方精密)隆重亮相17号馆,展示了多样化的自主研发材料及超高精密3D打印解决方案,以满足不同领域的应用需求。多年来,摩方精密自主研发了多种具有不同性能的超高精密成型材料,包括高强度、高硬度、耐高温、韧性和生物相容性等材料。此次展出的材料样件是通过摩方精密的微纳3D打印设备制备而成,吸引了众多专家学者和各行业企业家前来参观,并受到了广泛关注和好评。摩方精密的超高精密3D打印解决方案为各行业提供了定制化的制造工艺,通过3D打印技术,可实现复杂结构和超高精密部件的快速制造,减少了传统制造工艺过程中的材料浪费和加工时间。同时,还可实现产品设计的灵活性和创新性,在科研、工业制造、航空航天、医疗等领域具有广泛的应用前景。例如,在科研领域,可用于制造具有复杂结构的材料样品,用于研究、培训和医疗实践等,提高实验的效率和准确性;在工业制造领域,可用于制造高强度和高硬度的零部件,提高产品的质量和可靠性;在航空航天领域,可制造轻量化的零件,降低飞行器的重量和燃料消耗;在医疗领域,可用于制造生物相容性好的医疗器械和植入物,提高治疗效果和患者的生活质量。摩方精密的技术和产品为不同行业的发展提供了新的机遇和可能性,并有望推动科学研究、工业制造等多领域创新的进一步发展。microArch S230为了满足客户在精密样件加工尺寸、加工效率和加工材料等方面的需求,第二代摩方精密2μm精度3D打印系统microArch S230具备了更大的打印体积(50mm×50mm×50mm),最高可提升5倍的打印速度,并且可以兼容树脂和陶瓷材料。通过配置激光测距系统,实现了打印平台和离型膜的调平。同时,配备滚刀涂层系统后,能够加快液面流平时间,扩大对各种树脂种类的支持范围,例如耐候性工程光敏树脂、韧性树脂、生物兼容性树脂和陶瓷浆料(如氧化铝、钛酸镁)等功能性复合材料。此外,材料的多元化也拓展了新的应用领域,例如毫米级微波应用(如5G天线、波导、太赫兹、雷达等电子元器件)、新能源器件和精密零件等。这不仅满足了工业领域对终端产品功能性和耐用性的需求,而且为科研领域开发新型功能性复合材料提供了支持。microArch S240备受瞩目的microArch S240设备荣获全球光电科技领域最高奖——"棱镜奖(Prism Award)"。该产品继承了第一代S140打印机在高精密度方面的特点,具备10µ m的打印精度和±25µ m的加工公差。为了更好地满足客户在精密结构件加工尺寸、加工效率和加工材料等方面的需求,S240拥有更大的打印体积(100mm×100mm×75mm),最高可提升10倍以上的打印速度,能够生产更大尺寸的零部件,或实现更大规模的小部件产量。在打印材料方面,S240支持高粘度陶瓷(≤20000cps)和耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料,极大地满足了工业领域对产品耐用性的需求,同时也为科研领域开发新型功能性复合材料提供了有力支持。7月9日上午,在D18-仿生材料分论坛上,摩方精密产品应用部经理彭瑛博士作了《PμSL微尺度3D打印技术及其在仿生领域的应用》的主题报告。她精彩地分享了摩方精密PμSL技术在仿生领域的应用案例,包括仿南洋杉的3D锯齿结构(液体择向输运)、仿弹尾虫表皮结构(可控亲疏水性)、仿松针结构(液滴定向输运)、仿树蛙脚掌多级微纳结构(界面湿增摩效应)和多孔模结构(水下单向流)等。她指出:“摩方精密的专利技术——面投影微立体光刻技术(Pµ SL)是一种微米级精度的3D光刻技术。这一技术利用液态树脂在UV光照下的光聚合作用,借助滚刀快速涂层技术大大缩短了每层打印的时间,并通过打印平台的三维移动逐层累积成型,制作出复杂的三维器件。因此,Pµ SL技术成为仿生领域原型器件开发验证和终端零部件小批量制备的最佳选择。”报告结束后,彭博士受到了热烈的掌声。同时现场观众对公司产品表达了浓厚的兴趣,并向彭博士提出了关于产品性能、制造工艺和应用领域等方面的问题。彭博士以丰富的知识储备和经验,清晰地回答了观众们的疑问,详细介绍了公司产品的特点和优势。这使得观众们对公司产品有了更深入的了解,现场的热烈反应进一步验证了摩方精密在技术与研发上的实力与前景。新材料是战略性新兴产业发展的基石。我国新材料产业已经进入了一个快速发展的阶段,技术创新不断推动着产业的发展,应用领域不断拓展,成为支撑新一代信息技术、节能环保、高端装备制造等重要产业的关键材料。作为增材制造行业发展的先行者,摩方精密在“创新之都”深圳,与众多专家学者、企业家、行业同仁齐聚一堂,共同推动增材制造行业的创新与发展。未来,摩方精密将充分利用材料行业的资源禀赋,不断加强研发投入,探索新材料、新工艺的应用,从而提升整个材料产业链的附加值。我们相信,通过持续不断地努力和创新,摩方精密将引领材料发展的潮流,在众多领域提供颠覆性的生产制造方案!
  • 炼化领域三个重点实验室中试基地投用
    8月19日,中国石油炼化科研平台建设取得重要进展,首批建成投用的3个重点实验室和中试基地正式挂牌运行,挂牌仪式在石油化工研究院举行。这将进一步提升中国石油在炼化领域的自主研发水平。  这次挂牌的重质油加工重点实验室和催化裂化催化剂及制备工艺、聚丙烯催化剂及工艺中试基地,是中国石油炼化领域首批投入使用的重点实验室和中试基地,标志着中国石油在炼化科技平台建设上实现新突破,为炼油催化剂、聚烯烃领域的重大基础理论研究、关键技术攻关、技术集成配套及产业化提供高水平的实验和试验研究创造有利条件。
  • 基金委与美NSF材料领域合作项目初审结果公布
    2012年国家自然科学基金委员会(NSFC)与美国国家科学基金会(NSF)将共同资助合作研究项目(项目执行期为2013年1月1日~2015年12月31日)。经公开征集和根据国家自然科学基金委员会有关规定进行初步审核,确定有效申请38项,现将通过初审的项目公布如下:编号科学部受理号姓名单位美方PI美方单位中文题目151110453陈军南开大学HU YUNHANGMichigan Technological University新型多孔催化剂在二氧化碳催化加氢转化中的基础研究211110364邓惠勇中国科学院上海技术物理研究所Lei L. KerrMiami UniversityInAsSb量子点的制备与高效率太阳电池的研究351110467暴宁钟南京工业大学Arunava GuptaThe University of Alabama面向高效太阳能转化的跨尺度多维纳米组装设计与制备基础研究451110463韩敏芳中国矿业大学(北京)Fanglin (Frank) ChenUniversity of South Carolina (USC)抗硫、防积碳、高性能的陶瓷阳极支撑的固体氧化物燃料电池551110443路胜利浙江科技学院Sam Shajing SunNorfolk State University一种新型超高效率柔性薄膜纳米太阳能电池的研发651110440邵宗平南京工业大学Jeongmin AhnSyracuse University基于固体氧化物燃料电池的气电共生的关键材料研究751110461李琦中国科学院金属研究所Xiaoli TanIowa State University水热合成高性能钛酸钡基无铅压电陶瓷材料研究851110448唐卫华南京理工大学David CarrollWake Forest University面向高效率有机太阳能电池的窄带隙聚合物材料与器件951110441唐新峰武汉理工大学Ctirad UherUniversity of Michigan高性能Si基热电材料的能带结构及微结构调控和性能优化1051110446屠恒勇上海交通大学Johannes SchwankUniversity of Michigan基于生物质气直接内重整的固体氧化物燃料电池阳极研究1151110465汪家道清华大学Q Jane WangNorthwestern University基于硅藻的染敏太阳能电池电极及其制备1251110445张志成西安交通大学T.C.Mike ChungThe Pennsylvania State University高储能密度聚合物电介质材料制备及其可靠性研究1351110450张海燕广东工业大学Cheng, ZhengdongTexas A&M University用于储氢的柱撑固体层金属有机骨架结构的研究1451110473刘东志天津大学Lichang WangSouthern Illinois University光诱导电子转移体系的设计、计算、合成与性能研究1551110457曹堃浙江大学Changchun ZengFlorida State University基于环烯烃共聚物的孔洞型铁电驻极体的能量收集材料研究1651110472张政军清华大学Jun LouRice University用于提高太阳能电池转换效率的纳米材料研究1751110456巩金龙天津大学Zhihong NieUniversity of Maryland, College Park自组装方法合成三维高度有序光解水制氢阳极材料的基础问题研究1851110451李巧伟复旦大学Omar M. YaghiUniversity of California, Los Angeles多功能金属有机骨架材料的协同效应研究1951110452刘韩星武汉理工大学Thomas R.Shrout (T.R. Shrout)The Pennsylvania State University宽工作温度储能器件中无铅电介质材料的组成、结构设计与性能评价2051110476杨俊和上海理工大学William A. Goddard IIICalifornia Institute of Technology新型纳米碳材料的制备,表征及在电化学储能领域的应用2151110460朱宏伟清华大学Wei BingqingUniversity of Delaware三维分支交联石墨烯/碳纳米管复合电极材料2251110475朱廷钰中国科学院过程工程研究所Yan CaoWestern Kentucky University燃煤烟气汞形态转化机理研究及新型汞氧化催化剂开发2351110471孟庆波中国科学院物理研究所Yaqiong XuVanderbilt University新型无机量子点敏化太阳能电池界面电荷传输机理研究2411110371沈健复旦大学Hanno H. WeiteringUniversity of Tennessee不对等n-p共掺杂引导的多带太阳能电池材料2511110367徐科中国科学院苏州纳米技术与纳米仿生研究所王德利University of California – San Diego应用于光电化学法制氢的宽禁带半导体能带调控基础研究2611110365董闯大连理工大学Chonglin ChenUniversity of Texas at San Antonio材料世界网络:中低温固体燃料电池中的材料基础问题2711110362方以坤钢铁研究总院Sy-Hwang LiouUniversity of Nebraska-Lincoln新型高性能永磁合金的微结构和矫顽力机制研究2851110474刘宏山东大学Guozhong CAOUniversity of Washington基于多体耦合系统TiO2纳米带表面异质结构阵列的全太阳光波段高效太阳能电池的研究2951110455南策文清华大学David R. ClarkeHarvard University新型热电氧化物陶瓷探索3011110363王牧南京大学Nicholas X. FangMassachusetts Institute of Technology (MIT)亚波长微纳结构在电磁波传播和光电能量转化中的作用研究3151110464党智敏北京科技大学Zhong-Yang ChengAuburn University介质结构储能电容器用低维碳/聚合物纳米复合材料的可控制备及显微结构与性能的关联3251110469郭小伟电子科技大学Jurgen MichelMassachusetts Institute of Technology多尺度光子结构在薄膜硅太阳能电池应用研究3311110366侯国付南开大学Qihua FanSouth Dakota State University利用新型高密度等离子体气相生长宽光谱硅纳米结构太阳能电池的研究3451110470浦鸿汀同济大学Peter N. PintauroVanderbilt University用于质子导电膜的分子网络和纳米纤维网络的构建3561110428王洋华南师范大学Krzysztof KempaBoston College基于等离子体光子纳米结构的超强吸收和热电子光伏电池3651110459拜永孝兰州大学Nicolas A. KotovUniversity of Michigan二硫化亚铁纳米晶胶体"墨水"太阳能电池材料的合成研究3751110458罗豪甦中国科学院上海硅酸盐研究所Shashank PriyaVirginia Polytechnic Institute and State University压电能量收集器材料与系统研究3811110369邹如强北京大学Yusheng ZhaoUniversity of Nevada & Los Alamos National Laboratory用于全固态锂离子电池的新型超离子导体固体电解质的合成与构效关系研究  联系人:国际合作局美大处 刘秀萍  电 话:010 6232 5377  传 真:010 6232 7004  Email:liuxp@nsfc.gov.cn
  • 中科院化学所:废旧塑料转化制备汽油,收率达80%!
    现代生产生活中,塑料制品具有不可替代的作用。塑料制品促进了社会经济的发展,但产生了大量的较难自然降解的废旧塑料垃圾。这对生态环境与人类健康造成危害,并引起了世界性关注。因此,废弃塑料的资源化利用对解决塑料污染问题、实现绿色可持续发展意义重大。废弃塑料中,聚乙烯的非极性的碳碳键难以活化和断裂,故转化难度较大。目前,已有的聚乙烯转化策略主要依赖高反应温度、贵金属催化剂和外加氢源,限制了聚乙烯化学回收的工业化。如何低成本且高效地转化聚乙烯是塑料转化领域的难点。中国科学院化学研究所胶体、界面与化学热力学重点实验室/北京分子科学国家研究中心韩布兴课题组,在二氧化碳、生物质、废弃塑料、有机垃圾等可循环碳资源催化转化利用方面取得了系列成果。近日,该课题组与北京师范大学、北京大学等的科研人员合作,利用层状自支撑分子筛作为催化剂,实现了低温、无贵金属、无氢气、无溶剂条件下聚乙烯塑料转化制备高品质汽油,收率达80%。该策略利用层状自支撑分子筛丰富的外比表面积和介孔孔道,使得聚烯烃大分子与催化剂活性位点充分接触;同时,这种层状自支撑分子筛具有独特的开放骨架三配位铝位点,有助于活化碳氢键,形成碳正离子,促进聚烯烃碳碳键发生β-裂解。自支撑分子筛高效催化部分聚乙烯芳构化,为产生的小分子烯烃转化为烷烃提供氢源,从而以自供氢的方式产生汽油。该研究制备的汽油组分中能够提升辛烷值的支链烷烃含量是商用汽油的近两倍。上述成果为废弃聚乙烯催化转化制备高品质汽油提供了新路线,具有良好的应用前景。4月9日,相关研究成果发表在《自然-化学》(Nature Chemistry)上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。层状自支撑分子筛催化聚乙烯转化制备汽油
  • 一线防护服告急!一文了解医用防护服材料与检测标准
    p  近期,国务院应对新型冠状病毒肺炎疫情联防联控机制医疗物资保障组提出《医用防护服生产用压条机信息征集倡议书》。医用防护服是抗击新冠肺炎疫情的重要医疗物资,是保护医护人员生命安全的关键屏障。工业和信息化部作为国务院应对新型冠状病毒肺炎疫情联防联控机制医疗物资保障组组长单位,坚决落实党中央、国务院决策部署,把医用防护服供给作为重中之重,向全国医用防护服重点生产企业派出了驻企特派员,协调企业从原料配备到跨省运输中遇到的困难和问题。医用防护服产量已经从1月28日的0.87万件上升到2月4日的3.16万件,但仍难满足当前的防疫救治需求。br//pp  缺少压条机(又称热风缝口密封机、贴条机、热封机)是制约医用防护服增产扩能的瓶颈。工业和信息化部积极支持主要压条机生产企业恢复生产,但目前恢复的产能远远不能满足医用防护服生产需求。/pp  当前,医用防护服供需矛盾日益突出。为充分利用有限资源,指导医务人员正确做好个人防护,维护医务人员队伍的身体健康,国家卫生健康委就疫情期间医用防护服的使用管理提出要求,下发《国家卫生健康委办公厅关于进一步加强疫情期间医用防护服严格分级分区使用管理的通知》。/pp  一是高度重视医用防护服的合理使用。重点强调《新型冠状病毒感染的肺炎防控中常见医用防护用品使用范围指引(试行)》和《国家卫生健康委办公厅关于加强疫情期间医用防护用品管理工作的通知》等文件的落实。实行一把手负责制,按照“优先保障高风险区域、高风险操作、高风险人员”的原则,严格分级分区使用,确保医用防护服合理使用。/pp  二是加强医用防护服的分级分区使用管理。防护服应当在隔离留观病区(房)、隔离病区(房)和隔离重症监护病区(房)使用,其他区域和在其他区域的诊疗操作原则上不使用防护服。明确了符合国标(GB19082)的一次性无菌医用防护服,在境外上市符合日标、美标、欧标等标准的医用防护服,以及“紧急医用物资防护服”的使用要求。/pp  三是加强管理,促进合理使用医用防护服。医疗机构应当将医用防护服纳入全院统一管理,建立台账,根据医务人员工作所在不同区域、开展的不同操作及管理患者的症状轻重程度,科学合理分配防护服。要根据收治患者的实际情况,合理安排医务人员在隔离区域工作的班次,发挥资源利用最大效益。/pp  一般认为,医用防护服起源于手术服。100多年前,医生做手术时大多穿着一种黑色外套,被认为是最早的医用防护服。当时,这种医生穿着防护服的目的并不是防护自身免受伤害,而是为了保护衣服不被血液或分泌物污染。/pp  早期的防护服材质一般为棉质,在干燥状态下具有防细菌渗透的能力,但是在湿态下却无法抵抗细菌的入侵。二战时期,美国的军需部门为了使防护服的材料应该能阻挡液体进入带入细菌,开发了一种经氟化碳和苯化合物处理的高密机织物,增强防护衣的防水性能。战后,民用医院开始采用这些织物作为医用防护服的面料。/pp  20世纪80年代以后,人类对于艾滋病毒、肝炎B病毒、肝炎C病毒等血载病原体有了深入的了解,深刻认识到医护人员在救治患者过程中存在受感染的风险,开始着力开发医用防护服,使得防护服行业得到了蓬勃发展。/pp  2003年,我国在抗击“非典”疫情过程中,充分认识到医护人员面临的生物职业危害。在SARS流行过程中,我国内地累计报告非典型性肺炎5329例,其中医护人员969例,占18%,属于高发人群。由于医护人员在治疗、护理、转运等环节中,因直接接触病人而被感染的现象十分普遍,甚至出现为抢救一名病人而导致数十名医务人员被感染的罕见现象,令社会各界大为震惊。我国相关领域开始研发医用防护服。常见的医用防护服通常由帽子、上衣、裤子组成的连身式结构,在制作中有着严格标准,包括防护性(密封性)、服用性、安全卫生性。通过裁剪、缝合、上松紧、粘合压胶条才能制作出的医用防护服,涉及到的机器离不开这三种:平缝、包缝、压胶。/pp  医用防护服作为防化服中的一类,主要用于医护人员穿着,不仅要排湿透气、穿着自如,还要让医护人员免受诊疗过程中病毒、细菌等各种污染物的感染,抵挡住水液、酒精、油渍侵入,而且要有效抗静电,甚至防止灰尘进入。医用防护服的作用是产生细菌阻隔层,以防止细菌泳移,减少交叉感染。近年来一些科研单位和企业已经开发出不少医用防护服,大多以非织造布为主要面料。医用防护服按面料的组织结构可分为机织、非织造布和复合材料 按使用期限分为用即弃型(一次性使用)、限次型和可重复使用型 按加工复合技术来说有整理加工、涂层和覆膜三大类方法。/pp  医用防护服要求做到“三拒一抗”,即拒水、拒血液、拒酒精以及抗静电的医用防护服,与一般的织造材料不同,采用的是微纳米级别材料。这种复合材料可以通过不同材料复合,如用聚乙烯/聚丙烯纺黏非织造布,与透气微孔薄膜或其他非织造布复合,或用水刺非织造布与透气微孔薄膜复合,或用木桨复合水刺非织造布。/pp  目前国内市场上正在销售和研发的几种医用防护服所用的非织造材料主要有以下几种:/pp strong 聚丙烯纺粘布/strong/pp  聚丙烯纺粘布可经抗菌、抗静电等处理,制成抗菌防护服、抗静电防护服等。相对于传统的棉布防护服,聚丙烯纺粘布防护服无疑是一大进步。因其价格较低,而且是一次性使用,可以大大减少交叉感染率,在刚推出的相当长时期内,在国外得到大量推广。但是,材料的抗静水压比较低,对病毒粒子阻隔效率也比较差,只能作为无菌外科手术服、消毒包布等普通防护用品。/pp  strong聚酯纤维与木浆复合的水刺布/strong/pp  材料手感柔软,接近传统的纺织品,而且可以经三抗(抗酒精、抗血、抗油)和抗静电、抗菌等处理,可以用γ射线进行消毒,是一种比较好的医用防护服材料。但它的抗静水压也相对较低,对病毒粒子阻隔效率也比较差,因此也不是理想的防护服材料。/pp  strong聚丙烯纺粘一熔喷一纺粘复合非织造布,即SMS或SMMS/strong/pp  熔喷布的特点是纤维直径细、比表面积大、蓬松、柔软、悬垂性好、过滤阻力小、过滤效率高、抗静水压能力强,但强力低,耐磨性差,在相当程度上限制了其应用领域的发展。而纺粘布纤维线密度较大,纤网又是由连续长丝组成,其断裂强力和伸长比熔喷布大得多,恰恰可以弥补熔喷布的不足。这种材料有均匀美观的外观、高抗静水压能力、柔软的手感、良好的透气性、良好的过滤效果、耐酸碱能力强。另外,还可以对SMS非织造布进行三抗(抗酒精、抗血、抗油)和抗静电、抗菌、抗老化等处理,以适应不同用途的需要。/pp  strong高聚物涂层织物/strong/pp  用于防护织物的涂层种类很多,有聚氯乙烯、聚乙烯、聚氯丁橡胶和其他各种合成橡胶,该种防护服的防水性、阻隔细菌粒子的性能非常好,可重复使用,但透湿性能差,人体的大量汗液无法排出,穿着舒适性能差,非典时期使用橡胶涂层织物的防护服实在是不得已之举。国内外最新进展是采用微孔聚四氟乙烯薄膜与织物复合获得防水透气功能,但作为一次性用品价格昂贵。/pp  strong聚乙烯透气膜/非织造布复合布/strong/pp  根据防护等级的不同要求,所采用的非织造布与薄膜也有不同。聚乙烯透气膜/非织造布复合材料,对于阻隔细菌粒子穿透和液体渗透有优良的效果,且手感可通过改变复合面料的柔软度来调整,其抗拉强力强,透气性好,舒适性能大大提高,能经受消毒处理,不含有毒成分,克重60~100g/msup2/sup ,有良好的性价比,用它制成的医用一次性防护服可保护医务人员免遭污染源污染,克服交叉感染,起到有效防护的作用。/pp  strong重复使用型:/strong/ppstrong  聚四氟乙烯层压织物/strong/pp  医用防护服是一个广义的概念,包括了医疗环境下医护人员穿戴的各类服装,如日常工作服、外科手术服、隔离衣以及防护服等。根据应用环境及功能不同,医用防护服对于液体及细菌渗入有不同的标准等级,所采用的材料也各不相同。不过,按照基本功能大致可分为重复使用型和用即弃型(一次性)两类。/pp  重复使用型防护服,一般作为医护人员的日常工作服和手术服等。主要采用传统机织布、高密织物、涂层织物及层压织物等材料制成。由于层压织物是将普通织物与一层特殊薄膜通过层压工艺复合在一起制得,因防护性能及透湿透汽性能较好成为业内主流选择。/pp  比较高端的层压织物是聚四氟乙烯超级防水透湿复合面料。该面料是以聚四氟乙烯为原料,经过膨化拉伸后形成一种具有微孔性的薄膜,将此薄膜用特殊工艺覆合在各种织物和基材上,成为新型过滤材料。由于该膜孔径小,分布均匀,孔隙率大,在保持空气流通的同时,可以过滤包括细菌在内的尘埃颗粒,达到净化且通风的目的。这种层压织物能够防风、防水、透气、透湿,而且舒适性极好。目前,发达国家大多使用聚四氟乙烯材质。采用聚四氟乙烯复合膜作为隔离层研制的医用多功能防护服,具有耐久的防水、拒水、抗菌、抗静电、阻燃、透湿等物理机械性能,对血液、病毒(液体重或气体重)在自然条件和压力条件下都具有很好的阻隔性能,阻隔(过滤)效率大于99%。/pp  strong一次性防护服:/strong/ppstrong  聚烯烃纤维无纺布/strong/pp  理想的医用防护服应该具有多功能性,既要能保护医护人员免受有毒有害的液体、气体或具传染性的病毒和微生物侵袭,又要穿着舒适,在具备阻隔性能的同时,还要具备透气性、抗菌性及防致敏性,不得危害人体健康。除此之外,防护服面料选择还要考虑成本及废弃后的环保问题。/pp  可重复使用的防护服,每次使用后都要进行洗涤和消毒,操作不方便,大大限制了它的织造结构,而且使用一段时间后,其防护性能有所下降。鉴于此,国际上逐渐采用一次性非织造(无纺布)材料制成的防护服。这种防护服,经过进一步的抗菌、抗静电等处理,手感和性能跟传统纺织品比较接近,而且价格较低。因此,在医疗领域的隔离衣和防护服中应用较为广泛。/pp  目前,国内用于无纺布生产的三大纤维分别为聚丙烯、聚酯和粘胶纤维。其中聚丙烯所占比例最高,占62%。一般而言,用于生产无纺布的聚丙烯主要指的是高熔指聚丙烯纤维料,近年来,聚丙烯高熔纤维料的需求受多重利好因素的影响,被市场看好,生产企业也在积极的研发拓展聚丙烯纤维市场。数据统计,2019年国内聚丙烯纤维料产量约170万吨左右,同比2018年增长7.5%。其中高熔指聚丙烯纤维料95万吨,同比增长了15.8% 中熔指聚丙烯纤维料77万吨,相比基本持平。/pp  无纺布生产工艺主要有纺粘法、水刺法、闪蒸法、SMS复合材料等。纺粘法无纺布主要利用化纤纺丝的方法形成聚丙烯长丝,再借助气流或机械的方法分丝成网,其在手感和性能方面很接近于传统的纺织品 水刺法无纺布,是通过高压水柱高速水流对涤纶、锦纶、丙纶等纤维纤网喷射,使纤网中纤维运动而重新排列和相互结,以达到固结成布的日的 闪蒸法无纺布,以聚烯烃为主要原料,采用静电分丝,使丝条在拉伸过程中相互摩擦形成静电分丝,彼此相互排斥保持单纤维状态,然后靠静电装置使纤维凝聚成网,纤网再经热轧而成 SMS复合无纺布,就是将两种以上性能各异的非织造纤网通过化学、热或机械等方式复合在一起,或者是结合不同的成网工艺制造的无纺布。/pp  目前,一次性防护服多采用聚乙烯透气膜制成复合无纺布。聚乙烯透气膜在LDPE/LLDPE树脂载体中,添加50%左右的特种碳酸钙进行共混,经挤出成膜后定向拉伸一定倍率而成。由于聚乙烯树脂为热塑性塑性材料,可在一定条件下进行拉伸和结晶,拉伸时聚合物与碳酸钙颗粒之间发生界面剥离,碳酸钙颗粒周围就形成了相互连通的蜿蜒曲折的孔隙或通道,正是这些孔隙和通道赋予了薄膜的透气(湿)功能,从而沟通了薄膜两面的环境。/pp  截至目前, 现行的防护服国家标准有21条;其中,医用防护服主要使用spanGB 19082-2009《span医用一次性防护服技术要求/span》,标准中涉及外观、结构、号型规格、液体阻隔功能(抗渗水性、透湿量、抗合成血液穿透性、表面抗湿性)、断裂强力、断裂伸长率、过滤效率、阻燃性能、抗静电性、静电衰减性能、皮肤刺激性、微生物指标、环氧乙烷残留量的检测。/span/pp style="text-align: center "表 现行防护服国家标准/ptable border="0" cellpadding="0" cellspacing="0" height="396" style="" align="center"colgroupcol width="134" style="width:100.50pt "/col width="394" style="width:295.50pt "//colgrouptbodytr height="18" style="height:13.50pt " class="firstRow"td height="13" width="157" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"标准号/tdtd width="331" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"标准名称/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 33536-2017/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 森林防火服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 29511-2013/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 固体颗粒物化学防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 28895-2012/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 抗油易去污防静电防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 28408-2012/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 防虫防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 24539-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 化学防护服通用技术要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 24540-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 酸碱类化学品防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 24536-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 化学防护服的选择、使用和维护/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 24278-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"摩托车手防护服装/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width="143"GB 19082-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width="331"医用一次性防护服技术要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 8965.1-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 阻燃防护 第1部分:阻燃服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 8965.2-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 阻燃防护 第2部分:焊接服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 23462-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 化学物质渗透试验方法/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 23463-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 微波辐射防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 23464-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 防静电毛针织服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 13640-2008/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"劳动防护服号型/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 18136-2008/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"交流高压静电防护服装及试验方法/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 13459-2008/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"劳动防护服 防寒保暖要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 20654-2006/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 机械性能 材料抗刺穿及动态撕裂性的试验方法/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 20655-2006/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 机械性能 抗刺穿性的测定/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 20097-2006/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服 一般要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 17599-1998/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服用织物 防热性能 抗熔融金属滴冲击性能的测定/td/tr/tbody/tablep  /ppbr//p
  • 聚焦“十四五”石化分析技术发展——第七届岛津化工论坛在西安召开
    仪器信息网讯 2021年7月13日,为了与业内专家学者共同分享、交流化工行业最新成果和经验,岛津在古城西安特别举办第七届岛津化工论坛,百余位来相关领域的专家学者参与了本次论坛。论坛现场石化化工行业在国民经济的发展中有重要的地位,是我国重要的支柱产业部门之一。2020年我国石化化工行业在面临着较大下行压力下,展现了良好的盈利,2021年初石油及化工产品价格开始回升,利润水平大幅上涨,率先进入新一轮景气周期。石化化工行业不仅关乎着经济发展与社会就业,同时其发展也与下游的电子信息、新材料、新能源等战略性新兴产业息息相关。近几年,国家不断对化工产业结构进行调整,化工产业已从高速增长向高质量升级转变,同时带动了新材料和新能源领域的发展,特别是在氢能等战略新兴产业。分析仪器检测作为化工产业中重要的一环,在产业各个环节中扮演着十分重要的作用。岛津历来重视化工行业发展,致力于新产品、新应用方案的创新和研发,以成套成熟的大项目解决方案、完善的售前售后服务体系,得到了越来越多化工用户的信赖。岛津分析计测事业部副事业部长李军波致辞“岛津化工论坛”策划举办之初,其目的就是为国内化工邻域的分析专家们搭建一个沟通交流的平台,共同的讨论、交流,共同提高,促进化工行业的分析测试技术的发展。该论坛每年举办,此次已经是第七届。浙江省化工研究院-岛津合作实验室签约与揭牌仪式浙江省化工研究院有限公司科研管理部经理 王久菊岛津分析计测事业部分析中心部长 黄涛宏浙江省化工研究院有限公司是目前浙江省内规模最大的科研开发类院所,是我国唯一的国家消耗臭氧层物质(ODS)替代品工程技术研究中心、国家南方农药创制中心浙江基地的依托单位。近年来,浙江省化工研究院以“增强创新能力,引领产业发展,打造国内一流的研发机构”为目标,取得了丰硕的研究成果。据了解,浙江省化工研究院拥有岛津气相色谱仪、液相色谱仪、液相色谱-质谱联用仪等多套设备,期待通过此次合作,借助岛津专业化色谱、质谱仪的优势,能够在氟化工、精细化工领域进行共同合作与技术开发。岛津也能够通过浙化院前沿的研究领域和独特的技术资源,开发出更多更全面的解决方案。本次第七届岛津化工论坛上,多位专家学者以及岛津相关人员分享了精彩报告,既有中国化工行业发展趋势、炼化企业转型发展与分析技术需求、煤化工发展方向等行业宏观发展趋势的报告,也有燃料电池用氢气质量检测方法标准化研究进展、聚烯烃树脂VOC及添加剂分析、车用汽油详细组成研究进展等综述报告。岛津主要介绍了天然气分析系统完整解决方案、XPS分析技术与应用、Nexera GPC系统提升分析通量探索等产品技术。报告人:岛津中国董事&事业战略室部长 端裕树报告题目:岛津天然气分析系统完整解决方案报告人:中国测试技术研究院化学研究所研究员 潘义报告题目:燃料电池汽车用氢气质量检测方法标准化研究进展报告人:中石化北京石油化工研究院高级工程师 陈松报告题目:聚烯烃树脂VOC及添加剂分析报告人:浙江省化工研究院有限公司 秦胜报告题目:RR-GC评估温室效应报告人:岛津分析计测事业部市场部 表面分析产品资深专家 龚沿东报告题目:XPS分析技术与应用报告人:石油和化学工业规划院石油化工处处长 白雪松报告题目:中国化工行业发展趋势报告人:中国石化上海石油化工研究院高级工程师 李继文报告题目:快速PONA分析提升工作效率报告人:岛津仪器(苏州)有限公司部长 沈华报告题目:为您提供更好的产品——岛津苏州工厂的优质品质管理报告人:岛津分析计测事业部市场部 色谱机种产品经理 尹宏瑞报告题目:岛津Nexera GPC系统对GPC分析通量提升的探索报告人:高化学株式会社西安分公司总经理 李海吉报告题目:煤制乙二醇及煤化工发展方向报告人:中石化大连石油化工研究院高级工程师 韩博报告题目:石蜡中苯和甲苯的测定方法研究报告人:中石化石油化工科学研究院教授级高级工程师 李长秀报告题目:车用汽油详细组成研究进展报告人:中石化石油化工科学研究院教授级高级工程师&首席专家 徐广通报告题目:炼化企业高质量转型发展与分析技术支撑论坛参会人员合影后记通过与参会专家以及岛津相关人士交流,大家一致认为,“十四五”期间,化工产业升级高质量发展,其中新能源和新材料成为热点。加上“碳中和”与“碳达峰”的政策要求,化工行业对于分析仪器的需求与日俱增。新能源领域,例如氢燃料电池用氢气中杂质分析的需求,相对清洁天然气的分析需求等;在新材料方面,对于新型的聚合物材料,例如可降解塑料、功能性的聚合物的物性、杂质、环保性能的分析需求等方面都在提高。特别在“双碳”背景的要求下,化工企业都需要考虑碳排放的监测、CO2的转化利用、环境保护等,以上都对仪器分析厂商综合解决方案的能力提出了要求。另外,现在智能化工厂的发展也是一大趋势,怎样将分析仪器设备更好的结合、融入到信息化、自动化、智能化工厂的发展中去也是很关键的一点,需要仪器设备在配套的操作软件工作站上的网络化功能上也不断地提高,在自动化取样、进样分析、结果自动判断上都需要根据客户的需求去创新开发。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制