当前位置: 仪器信息网 > 行业主题 > >

绝缘体界面

仪器信息网绝缘体界面专题为您整合绝缘体界面相关的最新文章,在绝缘体界面专题,您不仅可以免费浏览绝缘体界面的资讯, 同时您还可以浏览绝缘体界面的相关资料、解决方案,参与社区绝缘体界面话题讨论。

绝缘体界面相关的资讯

  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12 MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0 MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 科研人员首次在拓扑绝缘体中制造出激子
    德国“维尔茨堡-德累斯顿卓越集群—量子物质复杂性和拓扑结构”(ct.qmat)的科研人员在拓扑绝缘体中制造出了激子,有助于新一代光控电脑芯片和量子技术研究。相关研究已发表在《自然通讯》杂志。   科研人员通过短脉冲光作用在单个原子层组成的材料层(铋),从而产生了激子。激子在拓扑绝缘体中被激活,为拓扑绝缘体研究开辟了全新方向。光与激子的相互作用预示了这种材料能够产生新现象,如量子比特。量子比特是量子芯片的计算单元,使用光而不是电压能够让量子芯片具有更快的时钟速率,为未来量子技术和微电子领域开发新一代光控元件铺平了道路。
  • 我国科学家在反铁磁拓扑绝缘体MnBi2Te4中发现π/2周期的平面霍尔效应
    近日,中国科学院合肥物质科学研究院强磁场科学中心田明亮课题组利用磁输运方法,在本征反铁磁拓扑绝缘体MnBi2Te4中发现体态轨道磁矩产生的四重对称性的平面霍尔效应。相关研究成果发表在Nano Letters上 。  当前,拓扑量子材料由于其独特的性能,在未来低功耗量子自旋器件中颇具应用价值,是相关领域的研究热点。在拓扑材料中,贝里曲率和轨道磁矩是两个基本的赝矢量,对材料物性产生重要影响。轨道磁矩在谷电子学和手性磁效应中具有重要作用,而相比贝里曲率研究,关于轨道磁矩相关新奇物性的研究较少。近年来,本征反铁磁拓扑绝缘体MnBi2Te4受到广泛关注。这个体系具有丰富的物性,如量子反常霍尔效应、拓扑轴子态等,并为探讨轨道磁矩和贝里曲率对量子输运现象的影响提供了良好的平台。  科研人员利用微纳加工技术,制备出基于MnBi2Te4纳米片的Hall-bar器件,通过平面霍尔效应的测量,探究了贝里曲率和轨道磁矩对输运现象的影响。实验发现,在低温下弱磁场(B 7T)下,平面霍尔效应表现出二重对称性且电阻各项异性大于零。分析显示,这种π周期的平面霍尔效应可归因于无能隙的拓扑表面态。而当体系进入极化铁磁态时(B 10T),平面霍尔效应的周期从π转变成π/2,同时幅值由正变为负。为了阐明π/2周期的物理机制,研究人员进行理论计算。计算结果表明,π/2周期的平面霍尔效应来源于体态Dirac电子的拓扑轨道磁矩,且理论结果与实验结果完全吻合。进一步实验发现,随着温度升高,由于体态和表面态的竞争,平面霍尔效应发生非平庸演化。该研究揭示了轨道磁矩诱导的新颖电磁效应,也为磁性拓扑材料在低功耗自旋电子学中的应用提供了指引。  研究工作得到国家自然科学基金、国家重点研发计划、强磁场安徽省实验室等的支持。  论文链接
  • Nat. Comm.:强磁场低温光学平台助力磁性拓扑绝缘体多层异质结研究取得新突破
    ——量子化输运手性界面通道的建立在两个具有不同陈数的量子反常霍尔(QAH)绝缘体的边界处可以产生一维手性界面通道,这样的QAH异质结可以在零磁场下用作手性边缘电流分配器,这些通道可以对边界电流无耗散传输,但是要真正实现这个目标仍然面临诸多挑战。鉴于此,来自宾夕法尼亚州立大学物理系的常翠祖研究组与来自华盛顿大学的徐晓栋研究组通过采用原位机械掩模,使用分子束外延技术合成了QAH绝缘体一维异质结,并观察到在零磁场下磁畴壁处出现了量子化输运性质,证实了在零磁场下沿着磁畴壁出现两个平行传播的手性界面通道。对于陈数为1和2的异质结,通过定量化输运性质的测量表明,在界面处出现了单个手性界面通道。研究结果以“Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures”为题发表在Nature Communication上。该工作为实现更高效、更稳定的电子传输和信息处理提供了新思路,为基于QAH绝缘体的电子和自旋电子器件以及拓扑手性网络的发展奠定了基础。不同陈数异质结示意图,以及RMCD和电学输运测量结果该项工作中在2.5开尔文的低温环境下对样品进行了高质量的微区RMCD测量,该测量是在超精准全开放强磁场低温光学研究平台-OptiCool中实现的。OptiCool是Quantum Design公司为高质量的低温光学测量研发的超稳定强磁场低温系统。系统采用全干式设计,无需液氦,全自动软件控制可实现一键变温、一键变场,具有大磁场均匀区、超低振动、大数值孔径、温度稳定性高等诸多优点,已成为高精度低温光学测量的重要设备。目前全球已有数十套OptiCool系统工作在国内外的先进实验室中,并帮助用户取得了高质量的科研成果。低温光学相关产品介绍超精准全开放强磁场低温光学研究平台-OptiCoolOptiCool是Quantum Design于2018年2月推出的超精准全开放强磁场低温光学研究平台。该平台拥有3.8英寸超大样品腔、8个光学窗口(7个侧面窗口、1个顶部超大窗口)以及高达±7T的磁场。高度集成式的设计让样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。为满足不同条件下的低温强磁场研究,近期OptiCool又增加了诸多新选件,进一步丰富了OptiCool的功能,可以方便的应用于高压光谱和各种波长的光谱研究。超精准全开放强磁场低温光学研究平台-OptiCoolOptiCool技术特点:&blacksquare 全干式系统:完全无液氦系统,脉管制冷机。&blacksquare 8个光学窗口:7个侧面窗口,1个顶部窗口&blacksquare 超大磁场:±7T&blacksquare 超低震动:10 nm 峰-峰值&blacksquare 超大空间:Φ89 mm×84 mm&blacksquare 精准控温:1.7K~350K全温区精准控温&blacksquare 新型磁体:同时满足超大磁场均匀区、大数值孔径的要求&blacksquare 近工作距离选件:可选3 mm工作距离窗口,增透膜可选New&blacksquare ZnSe窗口可用于中红外研究New&blacksquare 气路选件:系统可以集成气路,便于使用气膜高压腔进行高压光学测量New&blacksquare 集成物镜:集成真空物镜、低温物镜、用户自定义物镜New&blacksquare 控制柜电隔离:为确保微弱信号样品的电学测量,避免信号微扰的可能性New&blacksquare 样品移动:可集成低温位移器New&blacksquare 光纤选件:系统可集成光纤通道New&blacksquare 底部窗口选件:可实现样品腔底部窗口,方面进行纵向的透射光学实验New超精细多功能无液氦低温光学系统Montana Instruments推出的新一代超精细多功能无液氦低温光学系统——CryoAdvance,是基于新的模块化设计架构的新一代标准化产品。该系统采用特殊减振技术和温度稳定技术,在不牺牲任何便捷性的同时,为实验提供超高温度稳定性和超低振动环境。CryoAdvance系列产品具有多种型号、配置、选件与配件可选,能够满足每个研究人员的独特需求。Montana超精细多功能无液氦低温光学系统CryoAdvance技术特点:&blacksquare 自动控制:智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。&blacksquare 模块化设计:多种配置可选,快速满足各种实验需求,后续升级简单。&blacksquare 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。&blacksquare 稳定性设计:新设计在变温和振动稳定性上进一步优化。&blacksquare 最低温度:3.2K&blacksquare 震动稳定性:5 nm(峰-峰值)&blacksquare 降温时间: 300K-4.2K~2小时&blacksquare 样品腔空间:Φ53 mm ×100 mm&blacksquare 光学窗口:5个光学窗口,可选光纤引入mk级低温光学系统-S Type Optical德国kiutra公司生产的绝热去磁低温设备以全干式闭环制冷机为基础,通过绝热去磁制冷技术轻松获得低于1K的极低温。kiutra绝热去磁低温设备可以实现100 mK的单程冷却和300 mK的不间断持续制冷。mK级低温光学系统是为光学实验设计的紧凑型绝热去磁制冷系统,该系统在有限的体积下实现了1K温度、自动控制、光学引入三方面的组合,适用于需要简单快速对样品进行操作的各种低温实验和应用。S-type 光学型超稳定极低温系统S Type Optical技术特点:&blacksquare 连续模式下的温度范围:300mK-300K&blacksquare 超低振动:<100nm(峰峰值)&blacksquare 全干式制冷,无需液氦,无需He3气体&blacksquare 磁场选件:样品区域磁场3T&blacksquare 光学孔径:>20 mm 【参考文献】[1]. Zhao, YF., Zhang. et al. Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures. Nat Commun 14, 770 (2023).
  • 应用 | 检测方法对电气绝缘油界面张力的影响
    研究背景变压器油是变压器内部重要的绝缘材料,油品质量直接影响到变压器的电气性能和运行寿命。在运行中,变压器油在电气设备中因受湿度、光线、金属催化、水分及电场等因素的影响,会生成羧酸、醇等亲水极性物质在油-水界面的定向排列会改变界面上分子排列状况,从而降低界面张力。因此,界面张力是变压器油标准中的一项重要指标,能够反映新油在精炼时的纯净程度和在运行中油的氧化程度。实验仪器仪器:本文采用德国KRÜ SS力学法表界面张力仪K11测定界面张力。最新款表界面张力仪型号Tensíío。KRÜ SS 力学法表面张力仪Tensíío方法:不同产品标准所采用的界面张力检测方法不同,具体如表1和2所示。可以看出,各方法的测量原理相同,测定绝缘油的界面张力的方法大都采用的是圆环法,主要区别就是界面形成后即非平衡条件、接近平衡条件及平衡条件下测试的保持时间不同。表1 变压器油界面张力检测方法表2 不同界面张力检测方法试验条件对比结论与讨论由表3和图1可得,界面张力均随界面保持时间延长而降低。其中,新变压器油的酯类油比矿物油的界面张力低很多,这是由于酯类油的分子结构具有亲水性,使其界面张力相应减小。 表3 新油不同试验条件界面张力检测结果对比 图1 新油的界面张力随时间变化曲线表4和图2试验结果表明,老化后的矿物油和酯类油的界面张力也随界面保持时间延长而降低。与新油比,老化后变压器油的界面张力均比新油的界面张力低,尤其是矿物油D油的界面张力从新油46mN/m左右降至16mN/m左右。表3数据显示该样品抗老化、氧化性较差,因此容易生成醛、酮、羧酸等老化产品,而这些老化产物均为极性物质,在油水界面上做定向排列,从而使油品老化后油水间界面张力降低。E和F油为合成酯变压器油,虽然本身界面张力不高,但其氧化稳定性较好,老化前后界面张力变化不明显。表4 老化油不同试验条件界面张力检测结果对比 图2 老化油的界面张力随时间变化曲线对比图3和图4发现,老化油界面张力随着两相界面的保持时间呈较明显下降趋势,说明这一过程在老化变压器油中比在新变压器油中更为明显。图3 新矿油和老化矿油的界面张力随时间的变化曲线 图4 新酯类变压器油和老化酯类变压器油界面张力随时间变化的曲线IEC62961:2018方法介于ASTMD971方法和EN14210方法之间,在界面形成180s时测量界面张力更加符合实际,同时测量时间对测量结果影响较小。从图3和图4也可以看出,老化油的界面张力随时间变化较为明显,主要表现在界面张力曲线从30s到180s的变化斜率较大,而在界面形成的180s时测量界面张力数值与300s的测量数据很接近,可以提供一个较为真实的界面张力值,并且检测时间相对较短。新颁布的变压器油国际标准IEC60296:2020《电工流体电气设备用矿物绝缘油》,其界面张力检测规定采用ASTMD971-2020方法和IEC62961:2018两种方法,为了得到更有效的数据和满足实验室快速高效的日常检测工作,推荐采用IEC62961:2018方法为宜。结论界面张力是反映变压器油精制过程中洁净程度的指标,并与油品的老化程度密切相关。国内外检测变压器油界面张力方法的主要区别在于界面形成后的保持时间不同。实验室通过采用圆环法考察测量时间对界面张力值的影响,结果表明老化油的界面张力受时间影响较为明显,同时也说明变压器油的界面张力与油的劣化程度密切相关。通过考察不同方法测量时间对测量结果的影响,推荐采用IEC62961:2018方法对变压器油进行界面张力的检测,该方法既能减小因测试时间不同而引起的误差,又能快速进行检测。参考文献[1]张绮,张昱,周东等.不同检测方法对电气绝缘油界面张力的影响[J].润滑油,2024,39(01):43-47.DOI:10.19532/j.cnki.cn21-1265/tq.2024.01.009.
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 我国半导体/绝缘高分子材料取得重大突破
    我国半导体/绝缘高分子复合材料研究取得重大突破  日前,中科院长春应用化学研究所杨小牛研究员课题组在半导体/绝缘体高分子复合材料研究取得重大突破,其研究结果被国际著名期刊《先进功能材料》(Advanced Functional Materials)以“封面论文”的形式给予重点报道。  在传统观念中,绝缘体会阻碍电荷传输,因此一般来讲,在半导体/绝缘体复合材料中,绝缘相往往扮演着降低材料电学性能的角色。然而近年来研究人员发现,在特定外场条件下,复合材料二维表面处的载流子迁移率并不差。杨小牛课题组首次在体相半导体/绝缘高分子复合材料中发现并确认了绝缘基质增强的半导体电荷传输现象,随后将这一规律推广到无特定外场条件下的三维体系,并用更具普适性的物理量—电导率来论证了这一点。  通过控制聚噻吩/绝缘聚合物共混物制备过程中结晶和相分离的竞争关系,可抑制大尺度的两相分离,由此得到均匀的半导体/绝缘体复合材料。这种材料表现出绝缘基质增强的半导体电荷传输现象。研究人员认为,载流子以极化子形式在复合材料中进行传导。由于绝缘基质极化率较低,极化子在半导体/绝缘体界面处传输时受到周围极化环境的影响较小,有助于降低界面处的电荷传输活化能,由此提高了两相界面处的载流子迁移率。从此意义上讲,对于两相共混体系,增强的体相电荷传输性质需要满足下列3个条件:首先,鉴于电荷主要在共混两相界面传输,绝缘聚合物的介电常数必须足够低才可能降低电荷传输活化能,从而有效提高半导体相的载流子迁移率 其次,半导体/绝缘体两相相分离尺度需要足够小,才能大幅提高两相接触界面 第三,要求半导体相要有较好的连续性,有利于减小电荷传输的阻力。  在半导体聚合物中通过共混引入通用绝缘聚合物,不仅可以提高其电学性能,而且可降低基于塑料的柔性电子器件的成本,提高其柔韧性和环境稳定性。
  • Nature:皮米精度位移测量激光干涉仪助力声子四极拓扑绝缘体观测
    电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。 图1:实验装置示意图(图片来源:doi:10.1038/nature25156) 值得指出的是,Sebastian Huber教授利用细金属丝将100片硅片组成一个10cmX10cm的平面,以此来模式二维拓扑缘体(如图1所示)。关键点是,当硅晶片被超声激励时,只有中心点有振动;其他角尽管连接在一起仍然保持静止。这种行为类似于二维拓扑缘体的带隙边缘和隙内拐角态的电子行为。而如何探测硅晶片的微小振动是整个实验成功的关键,Sebastian Huber教授利用德国attocube system AG公司的IDS3010皮米精度激光干涉仪(如图2所示)来测量硅晶片不同位置的微小振动变化,整个测量系统的不确定度达到5pm的精度,测量统计误差达到10pm,后在通过超声激励后测得硅晶片的中心位置的振动位移为11.2pm,通过傅里叶变换之后在73.6KHz(如图3所示)。通过attocube皮米精度激光干涉仪IDS3010成功实现声子四拓扑缘体的次观测。 图2:皮米精度位移测量激光干涉仪IDS3010 图3:测量系统示意图和经过傅里叶频率变换的测量结果(图片来源:doi:10.1038/nature25156)IDS3010皮米精度位移测量激光干涉仪体积小、测量精度高,分辨率高达1 pm,适合集成到工业应用与同步辐射应用中,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等。同时也得到了国内外众多低温、超导、真空等领域科研用户的认可和肯定。
  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 研究|具有各向异性和高垂直热导率的高效热界面材料
    01背景介绍随着集成电路和电子器件技术的快速发展,高功率密度电子设备的有效散热已成为确保其可靠性和使用寿命的主要因素之一。热界面材料通常被用来填补散热器和发热元件之间的间隙,以消除由非流动空气产生的高界面热阻。聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。一种可行的策略是将高导热填料与柔性和绝缘聚合物相结合,从而制备综合性能优良的复合材料。研究人员已经创造性地将各向异性的导热填料有序排列以获得具有优良各向异性导热性的TIM。由于导热路径最短,各向异性填料在基体厚度方向上的有效垂直排列以构建连续的传热路径,并进一步提高垂直透面导热系数,引起了研究人员的高度重视。人们已提出了电场或磁场、流动剪切力、定向冻结法和化学气相沉积等几种有效的策略来构建垂直取向结构以提高TIM的透面导热性。然而,垂直结构排列的二维填料并没有显示出明显的各向异性热导率增强。一维材料在其一个自由度的定向方向上可以达到最大的性能。近年来,碳纤维、碳纳米管、石墨烯等碳材料因其高导热性和优异的力学性能被广泛应用于TIMs的导热填料,其中一维中间相沥青基碳纤维的各向异性导热系数较高,轴向导热系数和径向导热系数分别约600 W/m K和小于10 W/m K,一维材料可以在特定方向上发挥最大的性能。02成果掠影四川大学陈枫教授团队采用中间相沥青基碳纤维,通过熔融挤压法制备了高取向度的短碳纤维(CF)/烯烃嵌段共聚物(OBC)复合材料,可提供高导热性、适度的电绝缘和良好的柔韧性。由于CF/OBC复合材料中CF的高取向度(f0.9,f是CF/OBC复合材料中CF的取向度),在 30 vol%的CF负载下表现出 15.06 W/m K的贯通面热导率,同时实现了良好的电绝缘(~10-9 S/m)和低压缩强度(2.62 MPa)。TIM测量的结果表明,垂直排列的CF/OBC显示出高效的散热能力,相比于随机结构温差可达 35.2°C,可用于冷却高功率LED器件。研究成果以“An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity”为题发表于《Composites Science and Technology》期刊。03图文导读(a)具有垂直排列结构的CF/OBC复合材料的制备流程图;(b)CF的SEM图;(c)CF的拉曼光谱图;(d)挤出的长丝;(e)垂直排列的CF/OBC复合材料。(a)丝状物的横截面和(b)垂直排列的CF/OBC复合材料的SEM图;(c)垂直排列和(d)平行排列的2D-WAXS图案,CF含量分别是1,5,10,15,20,30 vol%时,平行排列样品的2D-WAXS图,虚线标记了CF的(002)平面的环;(e)相应的方位角整合的强度曲线。(f)不同CF含量样品中(002)平面的取向度;(g)纯OBC、CF和10 vol% CF/OBC的一维XRD图;(h)从表面和横截面的X射线方向的说明;(i)表面和(j)横断面的三维XRD图。CF/OBC复合材料的导热性能。(a)垂直、平行和随机样品的热导率;(b)随机、平行和垂直排列时30 vol% CF/OBC的比较;(c)各向异性随着CF含量的增加而增加;(d)反复加热和冷却循环后30 vol% 垂直的CF/OBC的典型热导率值;(e)各向异性热导率 30 vol% CF/OBC在不同温度下的各向异性热导率;(f)CF/OBC的电绝缘性能;100℃的条件下(g)示意图、(h)红外图和(i)样品顶部的温度。CF/OBC的机械性能。(a)打结的长丝;(b)弯曲和(c)扭曲的柔韧性;(d)平行排列和(e)垂直排列的CF/OBC块体的抗压应力-应变曲线;(f)比较平行结构和垂直结构之间的抗压强度随CF含量增加的变化。30 vol%的CF/OBC切片用于界面热管理。用于LED芯片散热测试系统的红外图像(a)加热和(b)冷却;(c)原理图和(d)中心区域的平均温度与运行时间的关系。
  • 动态可逆粘附的高分子复合材料助力长期稳定的跨界面热传导
    四川大学傅强教授和吴凯副研究员报道了一种基于聚合物分子结构和填料表面设计的新型软物质热界面材料。研究团队通过力化学作用将液态金属(LM)包裹在球形氧化铝(Al2O3)表面形成核壳结构的填料,并将其嵌入具有动态粘附性的弹性体(PUPDM)中制备了三元复合材料。巧妙的PUPDM分子设计使得材料与各种热源/冷槽之间形成动态可逆的氢键相互作用,实现了零压状态下的低接触热阻和耐多次热循环的长期稳定性。而液态金属改性填料不仅可以作为导热桥梁,同时有利于聚合物链段在室温下的松弛,平衡了传统功能复合材料中导热性能与表面黏附可逆性的矛盾。这种在导热界面材料上构筑动态可逆键的概念在新型热管理材料和技术领域有广阔的应用前景。相关成果以“A Thermal Conductive Interface Material with Tremendous and Reversible Surface Adhesion Promises Durable Cross-Interface Heat Conduction”为题发表于《Materials Horizons》期刊(Mater. Horiz., 2022, DOI: 10.1039/D2MH00276K)。图1 具有可逆粘附能力的高导热/电绝缘/柔性软材料的分子设计和复合结构示意图随着现代电子设备朝着高度集成化和小型化发展,器件内部指数式增长的热严重影响到电子设备的工作性能、可靠性和使用寿命。因此,导热材料和先进的热管理技术引起广泛的关注。典型的热界面材料已经被大量应用去促进电子设备内部的界面热传导,并且评价其热管理效率的有两个重要的指标:材料本身的热导率和材料与接触基板的接触热阻。近年来,大量的研究人员致力于开发高导热的材料,然而随着电子设备尺寸的日益减小,解决接触热阻的问题变得同样重要。现有的一些降低接触热阻的方法有制备具备触变性和顺应性的材料或者施加外界应用压力。这些方法的目的都是增加接触界面的实际接触面积去实现更好的界面几何匹配。一些微纳尺度界面热传导的研究也表明界面相互作用有助于提高界面热导率,但在宏观热界面领域还缺乏系统的研究。更值得关注的是,由于热界面材料与接触基板的热膨胀系数不匹配,因此在经历长期热循环后,界面几何失配或者界面脱粘仍然会发生,阻碍着热管理的长期稳定性。图2 复合材料的导热和可逆粘附能力展示 为了解决上述问题,本工作采用的策略主要分为三个步骤:1)制备出具有可逆黏附能力的柔性弹性基体,提高热界面材料与基板的相互作用,并通过动态界面热管理实现跨界面热传导的长期稳定性。2)加工得到具有优异导热性能并且不影响柔性基体动态键的可逆性和活动性的导热填料。3)复合加工得到所需复合材料。基于独特结构的LM/Al2O3二元核壳填料结构设计, 结合具有动态可逆粘附弹性基体的合成,该工作中得到的复合材料完美地平衡了导热、柔性和粘附力的可逆性之间的矛盾。随着LM/Al2O3二元填料的加入,聚合物复合材料表现出出色的热导率(6.23 Wm-1K-1),允许材料内部的各向同性的热传导。同时,受益于二元填料的独特结构,绝缘的LM/Al2O3能有效地隔绝液态金属之间的电渗透网络,保证了复合材料的电绝缘性。此外,由于合成的PUPDM基体展现出超高的适用于多种基板的可逆粘附力(4.48 MPa, Al板,80℃),以及LM在基体和刚性填料的界面处为聚合物分子链链段的运动提供更多的自由度,有利于动态氢键的可逆解离与缔合,因此所得到的PUPDM/LM/Al2O3复合材料同样表现出出色的可逆黏附力(1.50 MPa, Al板,80℃),可以承担起一个10.66 kg的水桶。图3 PUPDM/LM/Al2O3复合材料的界面热管理展示 复合材料与基板之间出色的氢键结合作用实现了零压状态下的低接触热阻(18.28 mm2K W-1)。此外,这种动态可逆的氢键作用保证接触界面拥有良好的长期稳定性,即使复合材料与铝板的热膨胀系数不匹配,但是经过7500次热循环,接触热阻仍然没有明显上升。这种在高导热热界面材料上构筑动态可逆的界面相互作用的概念在微电子冷却技术、热电装置、大功率可穿戴设备等先进电子设备中具有广阔的应用前景。
  • 半导体所在非互易光学介质几何理论方面取得进展
    光在复杂介质中的传播是光学和相对论的经典课题。在爱因斯坦提出广义相对论不久,W. Gordon,I. E. Tamm和G. V. Skrotskii等将费马原理推广到弯曲时空。1960年,J. Plebanski指出弯曲时空度规的空间分量和时空混合分量分别等价于非均匀各向异性光学介质的折射率(介电常数与磁导率)和反对称非互易磁电耦合参数。上述结果已被广泛应用于引力场量子效应的实验室模拟。2006年,J. Pendry和U. Leonhart提出的变换光学反过来用坐标变换设计非均匀材料以实现光线控制,在电磁隐身衣、新型波导和天线等器件方面具有重要应用。然而,相对论电动力学和变换光学无法处理手性和非互易光学材料,也无法提供类似于坐标变换的几何方案来控制光的偏振。近日,中国科学院院士、中国科学院半导体研究所研究员常凯领导的合作团队针对以上问题提出广义变换光学理论,将光学介质从普通Cauchy连续统推广到具有内部自由度的广义连续统。在该理论中每一个几何点除具有坐标自由度外,还具有由局域标架代表的内部自由度,描述点粒子的旋转、拉伸和扭转,可以用来处理具有复杂本构关系的线性光学介质。研究团队发现具有局域旋转自由度的连续统可以描述实验室静止的非互易光学介质。非互易光学介质主要包括磁光介质(金属或稀薄等离子体、磁性绝缘体、稀磁或铁磁半导体)、磁电耦合介质(多铁材料、拓扑绝缘体及Weyl半金属)和时变介质。磁光介质介电常数与磁导率的反对称虚部和磁电耦合介质的磁电耦合参数带来电磁场不同分量之间的交叉耦合,产生非互易的偏振旋转,被广泛应用于隔离器和环形器等非互易电磁器件。基于广义变换光学理论,研究团队引入描述非互易光学介质的时变黎曼几何理论和基于标架旋转的等价黎曼-嘉当几何理论,利用时空挠率张量描述磁光和磁电耦合参数,统一解释了包含磁光、磁电耦合介质和具有局域旋转自由度的时变介质在内的一般线性非互易电磁介质。该工作一方面引入时空挠率的微观构造,将相对论协变电动力学推广到非黎曼时空;另一方面表明通过标架变换可以实现光偏振态的调控。将标架变换与坐标变换相结合,原则上可以同时实现对电磁场的光线和偏振态的调控,为未来新型光学和电磁器件设计提供了理论基础。该研究成果近日发表于《物理评论快报》(Phys. Rev. Lett. 130, 203801 (2023))。论文通讯作者为常凯和香港科技大学教授冯建雄。本工作得到国家自然科学基金委、科技部国家重点研发计划资助项目、香港大学教育资助委员会、中国科学院和半导体研究所人才项目的支持。
  • 斯达沃发布斯达沃绝缘油析气性测定仪SDW-570新品
    SDW-570绝缘油析气性测定仪介绍 SDW-570绝缘油析气性测定仪按照国家标准GB/T 11142-89和国家行业标准NB/SH/T 0810-2010《绝缘油在电场和电离作用下析气性测定法》,绝缘油经经干燥和氢气饱和后,绝缘液体和液面上的氢气层在电压为10KV、频率为50Hz、油温为80℃、测试时间为120min的条件下,受到径向电场的作用,油、氢气交界面因放电反映导致油本身吸收或放出气体的倾向。广泛应用于石化、电力、铁路、科研等部门,是油品分析和质量检查不可缺少的设备。 功能特点 • 7寸大屏幕触摸液晶屏,图像清晰、操作方便。• 不同标准集于一身,客户选择性高。• 内置流程图,用户实验方便操作。• 进口温度传感器,测量精度高。• 进口温控模块,高精度控温。• 带排油阀,换油操作方便。• 热敏打印机打印结果,稳定可靠。• 具有安全防护开关,仪器使用安全可靠。• 储存1000条历史数据,方便查询。 技术参数 氢气进气压力:0.05~0.1Mpa恒温温度:80℃±0.05℃(可调范围:室温~ 100℃)分 辨 率:0.01℃试验电压:10kV±0.2 kV分 辨 率:0.01kV时间计量:5 min、10 min、50min、120min (根据标准自动转换)计时误差:<±0.1s使用温度:(10~40)℃相对湿度: <85%加热功率:≤1500W 搅拌速度:1200转/分电源电压:AC 220V±10% 50Hz±10整机功率:≤1700W外型尺寸: 控 制 器 :320mm×305mm×195mm 高压发生器:320mm×305mm×380mm 析气性测定仪:320mm×305mm×590mm 注意事项1. 仪器外壳应与大地接触良好以保证安全。2. 恒温浴内没有液体时,不得启动仪器,否则将损坏加热器。3. 在更换保险丝或其它零部件时,应拔下电源插头。4. 如果更换了新的量气管需要重新输入数据。5. 非专业人员不得随意拆修仪器。6. 仪器使用完毕后,应及时切断电源。创新点:SDW-570绝缘油析气性测定仪按照国家标准GB/T 11142-89和国家行业标准NB/SH/T 0810-2010《绝缘油在电场和电离作用下析气性测定法》,绝缘油经经干燥和氢气饱和后,绝缘液体和液面上的氢气层在电压为10KV、频率为50Hz、油温为80℃、测试时间为120min的条件下,受到径向电场的作用,油、氢气交界面因放电反映导致油本身吸收或放出气体的倾向。广泛应用于石化、电力、铁路、科研等部门,是油品分析和质量检查不可缺少的设备。 功能特点 • 7寸大屏幕触摸液晶屏,图像清晰、操作方便。• 不同标准集于一身,客户选择性高。• 内置流程图,用户实验方便操作。• 进口温度传感器,测量精度高。• 进口温控模块,高精度控温。• 带排油阀,换油操作方便。• 热敏打印机打印结果,稳定可靠。• 具有安全防护开关,仪器使用安全可靠。• 储存1000条历史数据,方便查询。
  • Nat. Commun. :无液氦低温磁光克尔助力金属-绝缘体转变研究
    具有特功能特性的材料可以替代大型复杂电路,大地提高电子设备的可扩展性和能效。例如,使用电压应用诱导电阻开关的材料,可以在仅由几个元件组成的电路中模拟突触可塑性和不同的神经元峰行为。相比之下,传统互补金属氧化物半导体(CMOS)则需要数十个晶体管来实现类似的功能。深入了解此类先进电子材料的物理特性及其对外部刺激的响应对于后续设计应用程序至关重要。迄今为止已有许多研究探索了基于离子电迁移的非易失性开关的特性,这在存储器中具有广阔的应用前景。 近期,人们对一种不同类型的电阻开关产生了大的兴趣。该类型的电阻开关是由金属-缘体转变的电触发变化而产生的易失性开关,即改变材料电荷传输特性的本征相变(例如,莫特或佩尔斯转变)。这种易失性切换是通过向金属-缘体转变材料施加并保持电刺激而诱发的,并且在关闭刺激后,这种开关自动重置回初始状态(因此称为“易失性”)。基于金属-缘体转变的开关通常伴随着电阻率和光学特性的巨大变化,这使得其在射频电子学、光电学和受生物启发的人工神经元中的应用具有吸引力。 近期,加利福尼亚大学圣地亚哥分校物理科学与先进科学中心的Pavel Salev,Ivan K. Schuller等利用无液氦低温磁光克尔效应系统-CryoMOKE研究了基于La0.7Sr0.3MnO3(LSMO)薄膜器件中金属-缘体转变电触发的易失性电阻开关,从金属到缘体,发生在一个相应的特征空间模式中,形成一个垂直于驱动电流的缘势垒。这种势垒的形成导致电流-电压特性中出现不寻常的N型负微分电阻。作者进一步证明电诱导横向势垒能够实现电压控制磁性的特方法。通过触发磁性材料中的金属-缘体电阻开关,使用施加到整个设备的全局电压偏置实现铁磁性的局部开/关控制。该成果以《Transverse barrier formation by electrical triggering of a metal-to-insulator transition》为题发表在Nature Communications. 图1 金属-缘体电阻开关的磁光成像 a.磁光测量示意图,在器件区域的每个xy点处获得MOKE磁滞回线。沿器件长度方向在平面内施加磁场。在整个测量时间内,电压偏置保持不中断。b. 同时记录I–V曲线(中心)和MOKE xy成像图(侧面)。图中的亮区对应于铁磁LSMO。总视场为90×140μm2。在MOKE成像图中,电流沿着水平方向。随着I–V穿过负微分电阻,在器件中心出现横向缘顺磁势垒,并随着外加电压的增加而不断扩展。I–V图中的插图显示了势垒尺寸d,作为施加电压的函数,V。c. 在24 V下的MOKE成像图和对应于记录的三个器件区域(使用罗马数字标记)的局部磁滞回线。当器件两侧(区域I和III)显示铁磁响应时,中心(区域II)的MOKE信号为零。所有测量均在100 K下进行。 为解释金属-缘体电阻开关的潜在微观机制,该工作的研究者利用金属-缘体转变与磁跃迁同时发生的事实,对LSMO器件进行了操作成像。使用扫描磁光克尔效应(MOKE)显微镜(图1a),绘制了施加电压偏置时铁磁区域的空间分布图。测量过程使用5 μm大小的激光束记录设备区域上每个点的MOKE磁滞回线,通过绘制MOKE回线量(即大克尔旋转角)的xy图来表示数据。在传统的MOKE图像中,对比度来源于不同磁化方向的区域。在这篇工作中,亮区对应于铁磁性区域,而暗区表示没有铁磁性。 该研究发现金属-缘转换是通过在垂直于电流的方向上形成横跨整个器件宽度的缘势垒来实现的。图1b显示了不同电压下的MOKE图和相应的I–V曲线。该器件在15 V以下仍保持均匀的铁磁(金属)状态,但施加更高的电压会导致LSMO转变为性质不同的状态。在16 V时,I–V曲线显示出一个小的跳跃,同时在器件中心附近出现一个~5 μm宽的无磁性畴。磁畴横跨整个器件宽度,其尺寸随着外加电压的增加而增大,直到电压升至48 V时覆盖整个器件(图1b中I–V图中的插图)。 值得注意的是,本工作中低温下的磁光克尔测试使用了DMO和Montana公司联合研发的低温磁光克尔效应系统- CryoMOKE,该设备可以实现在4~350K范围的高灵敏度磁滞回线及磁畴成像测试,Montana提供了超低振动的无液氦低温恒温器,该恒温器可以连接多种电学测试,可以在测量磁光克尔的同时在样品上施加电流/电压。 图2 DMO和Montana公司联合研发的CryoMOKENanoMOKE3主要技术特点:☛ 温度范围:4~350K☛ 振动:小于5nm☛ 纵向/向磁光克尔☛ 纵向磁场:>0.4T,向磁场>0.3T☛ 高灵敏度磁滞回线测试及磁畴成像 CryoMOKE国内客户: 南方科技大学中国科学院化学研究所 参考文献:[1] Pavel S, Ivan K. S,et al. Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nat. Commun.12,5499(2021)
  • Science: 低温强磁场磁力显微镜—调控拓扑绝缘体磁畴壁手性边界态
    拓扑缘体,顾名思义是缘的,有趣的是在它的边界或表面总是存在导电的边缘态,这是拓扑缘体的特性质。近期,理论预测存在的拓扑缘体在实验上被证实存在于二维与三维材料中,引起了科研界的大量关注。通常二维电子气体系中存在着量子霍尔效应,实验中观测到了手性边界态存在于材料的边界。在三维体材料的拓扑缘体中实验上可观测到反常量子霍尔效应。K. Yasuda, Y. Tokura等人利用德国attocube公司的低温强磁场磁力显微镜attoMFM在0.5K温度与0.015T磁场环境下,证实了拓扑缘体磁畴壁的手性边界态的可调控性能,不同于之前实验上观测到的拓扑缘体中自然形成随机分布的磁畴中的手性边界态。Y. Tokura等人基于Cr-掺杂 (Bi1-ySby)2Te3制备了拓扑缘体薄膜,基底是InP(如图1C)。图1D为在0.5K低温下使用MFM测量的材料中的磁畴分布,可以清晰看到自然形成的随机分布的大小与形貌不一的磁畴。通过使用MFM磁性探针的针在0.015T的磁场环境下扫描样品区域成功实现了对材料磁畴的调控。图1F为调控后样品的磁畴情况,被探针扫描过的区域,磁畴方向保持一致。图1: A&B 拓扑缘体磁畴调控示意图;C 拓扑缘体材料结构;D attoMFM实验观测自然形成多个磁畴; E&F MFM探针调控磁畴该拓扑缘体磁畴反转的性能随磁场大小变化的结果也被仔细研究。通过缓慢改变磁场,不同磁场下拓扑缘体样品的磁畴方向可清楚地被证实发生了反转(见图2)。通过观察,随机分布气泡状磁畴(0.06T磁场附近)一般的大小在200纳米左右。图2: A 霍尔器件电测量结果;B attoMFM观测不同磁场下拓扑缘体的磁畴情况不仅通过attoMFM直观观测分析磁畴手性边界态调控,电学输运结果也证实手性边界态的调控。图3为在温度0.5K的时候,拓扑缘体电学器件以及相应的电学测量数据。数据表明,霍尔电阻可被调控为是正负h/e2的数值,证实了不同磁畴的手性边界态的调控被实现。作者预见,该实验结果对于低消耗功率自旋电子器件的研究提供了一种可能的途径。图3:拓扑缘体制备器件反常量子霍尔效应结果证实磁畴手性边界态调控图4:拓扑缘体磁畴手性边界态调控相关设备—低温强磁场原子力磁力显微镜 低温强磁场原子力磁力显微镜attoAFM/MFM主要技术特点:-温度范围:mK...300 K-磁场范围:0...12T (取决于磁体)-样品定位范围:5×5×5 mm3-扫描范围: 50×50 μ㎡@300 K, 30×30μ㎡@4 K -商业化探针-可升PFM, ct-AFM, SHPM, CFM等功能 参考文献:“Quantized chiral edge conduction on domain walls of a magnetic topological insulator” K. Yasuda, Y. Tokura et al, Science 358, 1311–1314 (2017) 相关产品及链接:1、低温强磁场原子力/磁力/扫描霍尔显微镜:http://www.instrument.com.cn/netshow/C159542.htm2、低温强磁场无液氦扫描探针显微镜系统:http://www.instrument.com.cn/netshow/C273802.htm
  • 时代新维发布北京时代新维TP575 绝缘油析气性测定仪价格新品
    应用TP575 析气性测定仪广泛应用于石化、电力、铁路、科研等部门,是油品分析和质量检查不可缺少的设备。原理该仪器符合国家标准GB/T 11142-89和国家行业标准NB/SH/T 0810-2010《绝缘油在电场和电离作用下析气性测定法》,绝缘油经经干燥和氢气饱和后,绝缘液体和液面上的氢气层在电压为10KV、频率为50Hz、油温为80℃、测试时间为120min的条件下,受到径向电场的作用,油、氢气交界面因放电反映导致油本身吸收或放出气体的倾向。功能特点* 7寸大屏幕触摸液晶屏,图像清晰、操作方便。* 不同标准集于一身,客户选择性高。* 内置流程图,用户实验方便操作。* 进口温度传感器,测量精度高。* 进口温控模块,高精度控温。* 带排油阀,换油操作方便。* 热敏打印机打印结果,稳定可靠。* 具有安全防护开关,仪器使用安全可靠。* 储存1000条历史数据,方便查询。技术指标氢气进气压力:0.05~0.1Mpa恒温温度:80℃±0.05℃(可调范围:室温~100℃)分 辨 率:0.01℃试验电压:10kV±0.2 kV分 辨 率:0.01kV时间计量:5 min、10 min、50min、120min(根据标准自动转换)计时误差:<±0.1s使用温度:(10~40)℃相对湿度: <85%加热功率:≤1500W搅拌速度:1200转/分电源电压:AC 220V±10% 50Hz±10%整机功率:≤1700W外型尺寸:控 制 器:320mm×305mm×195mm高压发生器:320mm×305mm×380mm析气性测定仪:320mm×305mm×590mm订购指南配件指南* 析气池* 量气管注意事项1.仪器外壳应与大地接触良好以保证安全。2.恒温浴内没有液体时,不得启动仪器,否则将损坏加热器。3.在更换保险丝或其它零部件时,应拔下电源插头。4.如果更换了新的量气管需要重新输入数据。5.非专业人员不得随意拆修仪器。6.仪器使用完毕后,应及时切断电源。创新点:* 7寸大屏幕触摸液晶屏,图像清晰、操作方便。* 不同标准集于一身,客户选择性高。* 内置流程图,用户实验方便操作。* 进口温度传感器,测量精度高。* 进口温控模块,高精度控温。北京时代新维TP575 绝缘油析气性测定仪价格
  • 中国化学会胶体与界面化学专业委员会完成换届,李峻柏任新一届主任
    根据中国化学会《关于分支机构换届的通知》(化会字〔2022〕16号),各学科/专业委员会换届工作陆续完成。中国化学会胶体与界面化学专业委员会按照换届要求完成换届,新届期将自2022年至2026年。新一届委员会委员信息如下:主任:李峻柏副主任:郝京诚、李广涛、黄建滨、董金凤、闫学海 秘书(长): 范磊委员:委员姓名工作单位安琪中国地质大学(北京)陈晓山东大学胶体与界面化学教育部重点实验室丁宝全国家纳米科学中心丁立平陕西师范大学化学化工学院董金凤武汉大学 化学与分子科学学院杜学忠南京大学房喻陕西师范大学化学化工学院冯玉军四川大学甘礼华同济大学顾正彪江南大学郭荣扬州大学韩杰扬州大学郝京诚山东大学胶体与界面化学教育部重点实验室贺强哈尔滨工业大学医学与健康学院侯万国山东大学化学与化工学院黄建滨北京大学化学与分子工程学院李广涛清华大学化学系李峻柏中国科学院化学研究所刘欢北京航空航天大学刘堃吉林大学超分子结构与材料国家重点实验室刘鸣华中国科学院化学研究所罗序中赣南师范大学牟伯中华东理工大学齐利民北京大学化学与分子工程学院王毅琳中国科学院化学研究所魏涛香港中文大學吴立新吉林大学化学学院邢艳东北师范大学化学学院闫学海中科院过程工程研究所阎云北京大学化学与分子工程学院杨恒权山西大学张希清华大学 / 吉林大学赵东元复旦大学化学系周峰中国科学院兰州化学物理研究所
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
  • 中国科学家重大突破:打破硅基“封印”,助推半导体三维集成发展
    经过数十年发展,半导体工艺制程已逐渐逼近亚纳米物理极限,传统硅基集成电路难以依靠进一步缩小晶体管面内尺寸来延续摩尔定律。发展垂直架构的多层互连CMOS逻辑电路以实现三维集成技术的突破,已成为国际半导体领域积极探寻的新方向。在2023年12月美国旧金山召开的国际电子器件会议(IEDM)中,三星、台积电等半导体公司争相发布相关研究计划。由于硅基晶体管的现代工艺采用单晶硅表面离子注入的方式,难以实现在一层离子注入的单晶硅上方再次生长或转移单晶硅。虽然可以通过三维空间连接电极、芯粒等方式提高集成度,但是关键的晶体管始终被限制在集成电路最底层,无法获得厚度方向的自由度。新材料或颠覆性原理因此成为备受关注的重要突破点。近日,中国科学院大学周武课题组与山西大学韩拯课题组、辽宁材料实验室王汉文课题组、中山大学候仰龙课题组、中国科学院金属所李秀艳课题组等合作,提出了一种全新的基于界面耦合的p型掺杂二维半导体方法。该方法采用界面效应的颠覆性路线,工艺简单、效果稳定,并且可以有效保持二维半导体本征的优异性能。在此基础上,该研究团队利用垂直堆叠的方式制备了由14层范德华材料组成、包含4个晶体管的互补型逻辑门NAND以及SRAM等器件(如下图所示)。这一创新方法打破了硅基逻辑电路的底层“封印”,基于量子效应获得了三维(3D)垂直集成多层互补型晶体管电路,为后摩尔时代未来二维半导体器件的发展提供了思路。据“ 中国科学院大学”介绍,该掺杂策略预期可广泛适用于TMD材料与具有高功函数的层状绝缘体之间的界面,有望推动半导体电路先进三维集成的进一步发展。目前,该项由中国科学家主导的半导体领域新成果以“Van der Waals polarity-engineered 3D integration of 2D complementary logic”为题于2024年5月29日在Nature杂志在线发表。原文链接: https://www.nature.com/articles/s41586-024-07438-5
  • 大昌华嘉参加第十三届胶体与界面化学会议
    大昌华嘉公司科学仪器部于本月20日-22日参加了在山西太原由中国日用化学工业研究院和山西大学化学化工学院联合承办的第十三届胶体与界面化学会议。 。2011 年为&ldquo 国际化学年&rdquo (International Year of Chemistry),本次会议是中国化学会以&ldquo 化学-我们的生活,我们的未来&rdquo 为主题,举办系列&ldquo 国际化学年在中国&rdquo 活动的一部分。中国化学会胶体与界面化学专业委员会诚邀全国从事胶体与界面化学科研、教学和开发的各类人士参加,交流自2009 年青岛会议以来我国在胶体与界面化学领域的最新研究进展,展示胶体与界面化学在各个领域中的应用成果,分析当前国际胶体与界面化学领域的研究动态、热点、前沿和发展趋势,研讨学科发展规划和人才战略等问题,促进我国胶体与界面化学事业的发展。会议期间还将安排新仪器、新产品发布活动。大昌华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。激光粒度分析仪-美国麦奇克(MICROTRAC)公司视频光学接触角测量仪、表面/界面张力仪-德国克吕士(Kruss)公司比表面/孔隙度分析仪&mdash 日本拜尔BEL公司密度计/旋光仪/折光仪/糖度仪-美国鲁道夫(Rudolph)公司全自动氨基酸分析仪-英国Biochrom公司元素分析仪、TOC总有机碳含量分析仪、稳定同位素质谱仪-德国elementar公司薄层扫描仪、点样仪-德国迪赛克(DESAGA)公司近红外分析仪-德国优泰科(ZEUTEC)公司水份活度仪-瑞士novasina公司凯氏定氮仪-德国贝尔(behr)公司高压反应釜-瑞士premex公司全自动反应量热仪-瑞士Systag公司LB膜分析系统&mdash 芬兰Kibron公司颗粒图像分析系统&mdash 挪威AnaTec公司
  • 中国化学会第十七届胶体与界面化学学术会议
    由中国化学主办, 中国化学会胶体与界面化学专业委员会与江南大学共同承办的“ 中国化学会第十七届全国胶体与界面化学学术会议”拟定于2019年7月28日-8月1日在素有“太湖明珠”之称的江苏省无锡市召开。本次会议围绕(1)胶体与界面的基础问题;(2)两亲分子聚集体;(3)微纳材料;(4)软物质;(5)两亲分子与大分子的相互作用;(6)表面活性剂及其日用化学品工业应用;(7)食品和生物胶体 (8)应用胶体与界面化学 (9) 新理论、现象和实验技术;(10) 工业领域的胶体与界面化学等多个研究领域开展交流讨论.本次会议将邀请国内外学术和企业界知名专家和学者参加, 共同展示胶体与界面化学领域的最新进展和研究成果, 开展学术交流,为国内相关领域的科研技术人员提供一个良好的交流平台.会议主题近两年来胶体与界面化学领域的研究进展会议时间2019年7月29日-8月1日活动地点无锡君来湖滨饭店Biolin光学接触角测量仪Biolin光学接触角测量仪Attension Theta Flex,将进一步增强百欧林品牌在光学接触角仪器市场上的占有率和地位。有了这款产品,并搭配百欧林全新推出的网上支持系统Support Portal,能够提供更加优质的用户体验。1一台接触角测量仪,满足所有测试需求2一流的用户界面3优越的分析精度4实时分析5实时分析6为每个需求提供灵活性7便捷的数据处理和导出8优化工业使用Biolin全自动表面张力仪力学表面张力仪可测量表面张力、界面张力、临界胶束浓度、动态接触角、固体表面自由能、粉体润湿性、悬浊液沉降速度和液体密度等。可用于科研、研发和质量控制领域。力学表面张力仪可精确测量一系列的材料性质,表界面张力和接触角可以为气液固三相间的相互作用提供非常有价值的信息。而这一相互作用在如下研究中起到重要作用:润湿性、吸附性、配方科学、表面活性剂研发、粘附性。PMX颗粒电位滴定及粒度分析仪通过使用stabino,可实现快速便捷的颗粒的电位滴定测试。分散体中,同性带电离子的静电排斥作用是分散体避免凝聚保持稳定的主要原因,故带电粒子界面的表征是必不可少的。当颗粒离子化后,总电荷和电荷密度是需要知道的重要参数。电荷测量是通过建立动电信号来完成的。
  • 123万!岛津等中标山东能源研究院仿生能源界面技术研究中心固体表面Zeta电位仪及气质联用仪采购项目
    一、项目编号:ZKGSF(ZB)-20221398(招标文件编号:ZKGSF(ZB)-20221398)二、项目名称:山东能源研究院仿生能源界面技术研究中心固体表面Zeta电位仪及气质联用仪采购项目三、中标(成交)信息供应商名称:北京华尔达科贸有限责任公司供应商地址:北京市东城区东中街58号1号楼1层105中标(成交)金额:123.1688000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 北京华尔达科贸有限责任公司 固体表面Zeta电位仪;气相色谱-质谱联用 安东帕Anton Paar;岛津Shimadzu SurPASS3;GCMS-2020NX 1台;1台 568508;663180
  • 128万!山东能源研究院仿生能源界面技术研究中心固体表面Zeta电位仪及气质联用仪采购项目
    项目编号:ZKGSF(ZB)-20221398项目名称:山东能源研究院仿生能源界面技术研究中心固体表面Zeta电位仪及气质联用仪采购项目预算金额:128.0000000 万元(人民币)最高限价(如有):124.0000000 万元(人民币)采购需求:序号设备名称数量简要用途交货期交货地点是否允许采购进口产品1固体表面Zeta电位仪1台固体表面ZETA电位分析仪,采用流动电位法和流动电流法测定Zeta电位。流动电位和流动电流是液相相对固体表面运动引起的动电效应。通过配置特定的电解质溶液可以得出固体表面ZETA电位,吸附效果等参数,从而判断材料亲水性、材料表面等电点、检测材料性能等。在污水处理、生物材料、半导体、膜行业、化妆品、海水淡化、纤维行业都有较多的应用。签订合同后12周山东能源研究院是2气相色谱-质谱联用1台适用于对材料化学研究中易挥发的有机化合物进行有效的分离,并且对这些化合物进行定性(通过数据库比对)和定量分析。签订合同后2个月山东能源研究院是 合同履行期限:固体表面Zeta电位仪为签订合同后12周;气相色谱-质谱联用为签订合同后2个月。本项目( 不接受 )联合体投标。
  • 回放视频|首届表面分析技术与应用主题网络研讨会回放视频发布
    仪器信息网于2022年9月7-9日成功举办首届表面分析技术与应用主题网络研讨会,旨在促进表面分析技术与应用领域的发展,会议反响强烈,超千名观众报名参会。首届表面分析技术与应用主题网络研讨会共设置了5个主题会场 ,分别是:电子能谱(XPS/AES/UPS)技术与应用、扫描探针显微镜(AFM/STM)技术与应用、电子探针/原子探针技术与应用、二次离子质谱(SIMS)技术与应用、拉曼光谱及其他表面分析技术与应用。会议的回放视频可点击相应内容观看:报告题目报告人专场一:电子能谱(XPS/AES/UPS)技术与应用(09月07日上午)原位电子能谱技术应用进展清华大学/国家电子能谱中心研究员/副主任 姚文清X射线光电子能谱法在有机高分子材料研究中的应用北京化工大学研究员/副主任 程斌光电子能谱(XPS)深度剖析北京师范大学教授级高工 吴正龙低能离子散射谱(LEISS)在催化剂表界面研究中的应用厦门大学教授 陈明树XPS在催化材料研究中的应用石油化工科学研究院高级工程师 邱丽美多功能光电子能谱仪在表面分析中的应用重庆大学分析测试中心高级工程师 周楷光电子能谱在固态锂离子电池研究中应用中山大学高级实验师 谢方艳专场二:扫描探针显微镜(AFM/STM)技术与应用(09月07日下午)Coherence enhancement of solid-state qubits by scanning probe microscopy北京大学教授 江颖原子力显微镜样品制备方法介绍Park原子力显微镜高级工程师 潘涛Local Interfacial Engineering of 2D Atomic Crystals by Advanced Atomic Force Microscopy中国人民大学教授 程志海基于STM的亚纳米分辨单分子光谱成像中国科学技术大学教授 董振超新型大能隙拓扑绝缘体α‐Bi4Br4的拓扑边缘态北京理工大学研究员 肖文德STM原理及在有机分子自组装上的应用国家纳米科学中心研究员 曾庆祷Research progress of atomically manipulating structural and electronic properties of low-dimensional structures中科院物理研究所副研究员 陈辉专场三:电子探针/原子探针技术与应用(09月08日上午)电子探针分析技术及其标准化研究中国地质科学院矿产资源研究所研究室主任/研究员 陈振宇电子探针市场分析和我们的应对举措捷欧路(北京)科贸有限公司表面分析产品经理/部长 胡晋生超轻金属元素Be的原位定量分析及其应用浙江大学教授 饶灿岛津epma技术特点及其应用岛津企业管理(中国)有限公司EPMA产品专员 廖鑫电子探针微区化学状态分析及其应用中国科学院金属研究所高级工程师 王道岭原子探针层析技术最新进展及应用上海大学副研究员 李慧专场四:二次离子质谱(SIMS)技术与应用(09月08日下午)飞行时间二次离子质谱分析技术及其应用清华大学分析中心高级工程师 李展平飞行时间二次离子质谱及其应用中国科学院化学研究所研究员 汪福意AES/XPS/SIMS/GD-OES(MS)深度剖析定量分析汕头大学物理系教授 王江涌用于SIMS的高分辨质谱技术进展及展望中国科学院大连化学物理研究所研究员 李海洋专场五:拉曼光谱及其他表面分析技术与应用(09月09日上午)电化学表面增强拉曼光谱及等离激元介导光化学反应研究厦门大学教授 吴德印国产显微共聚焦拉曼光谱成像仪奥普天成(厦门)光电有限公司董事长/高级工程师 刘鸿飞表面增强拉曼光谱在纳米颗粒表面化学反应原位检测中的应用南开大学研究员 谢微基于消逝场界面耦合的表面增强拉曼光谱新技术吉林大学超分子结构与材料国家重点实验室教授 徐抒平双光束原位红外光谱表征技术研究进展大连理工大学副教授 刘家旭会议全部回放视频链接:https://www.instrument.com.cn/webinar/meetings/icsa2022/
  • 全新FLIR Si2声学成像仪,让局部放电故障位置一目了然!
    全新FLIR Si2-PD和Si2-Pro声学成像仪配备了智能局部放电检测分析功能其可帮助用户检测、辨识和分析电气系统中象征着存在问题和故障隐患的局部放电提前定位故障点,避免出现重大事故那么它是如何做到精准又快速的呢?局部放电被听见的必要性顾名思义,局部放电(PD)指绝缘体局部故障,其可能在任何类型(固体、空气、气体、真空或液体)的绝缘体上发生。如果电荷经常穿过绝缘体,很可能导致绝缘体被彻底击穿,从而造成灾难性的故障,因此及时发现局部放电非常重要,它能有效规避重大事故的发生。局部放电分为多种不同类型,其特征因类型而异。在实际应用中,可分为四类:负电晕放电、正负电晕放电、浮动放电以及表面或内部放电。不同放电类型的局部放电相位分布(PRPD)图谱略有差异,想要详细解读的菲粉们可以点击下方图片,获取“FLIR Si2系列声学成像仪局部放电检测深度分析白皮书”,它能让您对局部放电有更深层次的理解!声学成像仪智能分类局部放电的类型不同类型的局部放电主要表现为50或60Hz周期的不同时段中的脉冲或脉冲簇。对局部放电进行电气测量,能够测出这些脉冲期间转移的电荷,并显示其与电压相位的相对关系。这就是所谓的局部放电相位分布(PRPD)图谱。局部放电相位分布(PRPD)图谱PRPD图谱具备数种特征,可用于推断存疑局部放电的类型。例如,PRPD图谱通常拥有两个明显的脉冲簇,一个靠近正电压峰值,另一个则靠近负电压峰值,这些脉冲簇的大小和形状可能不同。这两个脉冲簇在大小和形状上可能对称,也可能高度不对称。在某些情况下,可能只存在一个脉冲簇而非两个。因此,可以根据不同的PRPD图谱来判断局部放电的类型。下载白皮书,详细介绍典型的PRPD图谱FLIR声学成像仪将自动检测具有较强50或60Hz周期性的信号,并构建类似的PRPD图谱。但要注意,即使声学成像仪界面显示了PRPD图谱,也不代表声源一定是局部放电。例如,某些类型的低压电子设备也可能产生类似的周期性图谱,因此还要进一步分析。选择FLIR Si2声学成像仪的优势FLIR Si2系列声学成像仪内置124枚麦克风,接收频率范围在2kHz至130kHz,涵盖了局部放电的声波范围,在远距离或嘈杂环境中也能直观地显示超声波信息,生成精确的声像。声像实时叠加在可见光数码图像上,使用户可以准确地查明异常声音来源。对于局部放电检测,Si2声学成像仪内置局部放电严重程度评估和纠正措施建议功能,通过对局部放电进行分类,能让用户迅速做出决策,减少故障的影响。这样的检测,比传统方法要将近快10倍哦~Si2具备人工智能技术辅助分析和故障严重程度评估功能,可现场提供决策支持FLIR Si2系列声学成像仪其配备的插件还能让用户将声像导入FLIR Thermal Studio软件中,进行离线编辑、分析和创建高级报告。专业的报告和分析软件,让局部放电检测后的结果处理变得更加简单明了!利用超声波对局部放电进行检测不仅设备轻便,适应性好,性价比高还能保障操作人员的安全,精准定位故障点FLIR Si2系列声学成像仪作为其中的佼佼者可作为电力检测人员的“完美”工具。
  • 超高压高强度瓷绝缘子研发成功
    在科技部的组织下,国家科技支撑计划项目“500kV以上超高压高强度盘形悬式瓷绝缘子产业化关键装备技术研发”,日前在贵阳顺利通过了项目验收。  据介绍,该项目是新中国成立以来贵州省承担的第一个重大装备类国家科技支撑计划。由贵州九天高原电瓷有限公司、贵州大学、郑州一邦电工机械有限公司、西安高压电器研究院与中国科学院地球化学研究所等国内多家优势企业和学术单位进行联合攻关,经过3年努力完成。  专家组认为,该项目在盘形悬式绝缘子材料及关键工艺方面完成了原材料物理化学性能分析研究、材料及关键配方研究、原材料粒度及除杂控制研究、烧成等关键工艺控制研究 研制了高性能练泥机、盘形悬式瓷绝缘子坯件成型自动化生产线、全自动燃气抽屉窑与自动胶装机,并通过第三方检测,满足相关标准要求,形成了超高压高强度盘形悬式瓷绝缘子年产40万片的生产能力。  据悉,这一项目的实施提升了电瓷绝缘子相关产业的技术水平,形成了一批具有自主知识产权的核心技术及主机产品,将满足“西电东送”和“黔电送粤”等重大项目的需求,带动电力企业及配套装备制造企业的规模扩张,形成产业联盟和集成创新。项目成果在行业推广后,可带动贵州省矿产资源的综合利用、装备制造业发展及瓷绝缘子产业升级。  据了解,超高压高强度盘形悬式瓷绝缘子是高压输变电线路的重要组成部分,对于满足我国超高压、大电流、大跨距电力线路的需求具有重要意义。
  • 基于垂直架构的新型二维半导体/铁电多值存储器研究获进展
    二维层状半导体材料得益于原子级薄的厚度,受到静电场屏蔽效应减弱,利用门电压可对其电学性能进行有效调控。利用二维层状半导体材料构建的多端忆阻晶体管(Memtransistor)可以模拟人脑中复杂的突触活动,有望应用于未来非冯架构的神经形态计算等。此外,相比于平面构型,二维纳米功能材料通常具有开放且洁净的界面,使其能够进行任意垂直组装,可实现硅基半导体工艺所不能兼容的多层向上集成范式,从而在单位面积内沿z轴获得更高密度集成。因此,基于垂直架构的二维纳米电子学器件,已成为当前延续摩尔定律的重要研究方向之一。迄今为止,针对铁电二维材料忆阻晶体管的研究仍然匮乏,尤其缺失具有垂直构型的门电压可调的忆阻器件的研究,主要原因在于传统基于隧穿架构的二维忆阻器难以在垂直方向兼具更高性能和有效栅极调控特性。   近日,中国科学院金属研究所沈阳材料科学国家研究中心与国内多家单位合作,设计二维半导体与二维铁电材料的特殊能带对齐方式,将金属氧化物半导体场效应晶体管(MOSFET)与非隧穿型的铁电忆阻器垂直组装,首次构筑了基于垂直架构的门电压可编程的二维铁电存储器。11月17日,相关研究成果以A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory为题,在线发表在《先进材料》(Advanced Materials)上。   科研团队使用二维层状材料CuInP2S6作为铁电绝缘体层,利用二维层状半导体材料MoS2和多层石墨烯分别作为铁电忆阻器的上、下电极层,形成金属/铁电体/半导体(M-FE-S)架构的忆阻器;在顶部半导体层上方通过堆叠多层h-BN作为栅极介电层引入了MOSFET架构。底部M-FE-S忆阻器件开关比超过105,具有长期数据存储能力,且阻变行为与CuInP2S6层的铁电性存在较强耦合(图1)。此外,研究通过制备3×4的阵列结构展示了该型铁电忆阻器件应用于存储交叉阵列【crossbar array,实现随机存取存储器(RAM)的关键结构】的可行性(图2)。进一步,研究在上方MOSFET施加栅极电压,有效调控了二维半导体层MoS2的载流子浓度(或费米能级),从而对下方M-FE-S忆阻器的存储性能进行操控(图3)。基于上述成果,科研人员展示了该型器件的门电压可调多阻态的存储特性(图4)。   本研究展示的门电压可编程的铁电忆阻器有望在未来人工突触等神经形态计算系统中发挥重要作用,并或推动基于二维铁电材料制备多功能器件的开发。此外,该工作提出的MOSFET与忆阻器垂直集成的架构可进一步扩展到其他二维材料体系,从而获得性能更加优异的新型存储器。   研究工作得到国家重点研发计划“青年科学家项目”、国家自然科学基金青年科学基金项目/面上项目/联合基金项目、沈阳材料科学国家研究中心等的支持。图1.器件结构设计及两端铁电忆阻器的存储性能。a、器件结构示意图;b、器件的阻变行为;c、少层CuInP2S6的压电力显微镜相位和幅值图;d、器件在不同温度下的输运行为;e、存储器的数据保持能力测试;f、存储器开关比统计图。图2.铁电忆阻器存储阵列演示。a、二维铁电RAM结构示意图;b、CuInP2S6/MoS2界面的HAADF-STEM照片;c、3×4阵列的SEM图像;d、局部放大图;e、3×4阵列的光学照片;f-g、通过读取3×4阵列中每个交叉点的高阻态和低阻态编码的“I”“M”“R”的简化字母。图3.器件的可编程存储特性。a、器件结构示意图;b、MoS2层的转移特性曲线;c-d、异质结的能带结构图;e-f、通过施加门电压实现了对存储窗口从有到无的调控。图4.门电压可编程存储器的多阻态存储特性。a-d、器件在不同门电压下的存储窗口;e、器件的多阻态存储性能演示;f、栅极调控的耐疲劳特性。
  • 全国胶体与界面化学奖学金颁奖仪式在北大举行
    第七届“东方胶化”杯全国胶体与界面化学奖学金颁奖仪式在北京大学举行 “东方胶化”杯全国胶体与界面化学奖学金是北京东方德菲仪器有限公司与全国胶体与界面化学专业委员会联合,由北京东方德菲仪器有限公司独资设立的。以资鼓励在胶体化学与材料科学领域孜孜不倦努力进取的博士生,研究生。该奖项的创立为胶体化学及材料科学领域搭建了良好的学术交流平台。 第七届“东方胶化”杯全国胶体与界面化学奖学金颁奖仪式于2009年3月26日在北京大学英杰交流中心第二会议室举行,本届“东方胶化”杯经专家组评审、复议后,来自中国科学院化学所、北京大学、扬州大学、清华大学、北京航空航天大学、山东大学等学校的9名在校研究生获得了此次奖励。具体名单如下: 一等奖:张轶群(中国科学院化学研究所) 李 澄(北京大学化学与分子工程学院) 二等奖:周传强(扬州大学化学化工学院) 王 朝(清华大学化学系) 陈洪艳(中国科学院化学研究所) 三等奖:周 苇(北京航空航天大学化学与环境学院) 赵玉荣(山东大学胶体与界面化学教育部重点实验室) 范海明(北京大学化学与分子工程学院) 沈玉文(山东大学胶体与界面化学教育部重点实验室) 在颁奖仪式上,受邀到场的嘉宾如下:张希院士 清华大学化学系系主任 吴凯教授 北京大学化学与分子工程学院副院长 刘鸣华研究员 全国胶体与界面化学专业委员会副主任 科学院基础局副局长 中国科学院化学所研究员 黄建滨教授 全国胶体与界面化学专业委员会副主任 北京大学化学与分子工程学院教授 表面活性剂与胶体研究开发中心主任 侯万国教授 全国胶体与界面化学专业委员会成员 山东大学化学化工学院教授王毅琳研究员 中国科学院化学所研究员 齐利民教授 全国胶体与界面化学专业委员会成员 北京大学化学与分子工程学院教授 徐宝财教授 北京工商大学化学与环境工程学院副书记王武宁经理 北京东方德菲仪器有限公司总经理 其中,张希院士、吴凯教授、刘鸣华研究员、黄建滨教授、侯万国教授、徐宝财教授、王武宁总经理等到场嘉宾亲自为获奖同学颁奖。 颁奖仪式过后,张希院士、刘鸣华研究员、黄建滨教授受邀做了非常精彩的学术报告。获奖同学中的张轶群、李澄、王朝、陈红艳四位同学也就自己的科研成果做了非常精彩报告,得到了各位老师和同学的一致好评。 此次活动由北京东方德菲仪器有限公司与全国胶体与界面化学专业委员会联合举办,并得到清华大学、北京大学等知名高校师生的大力支持。 北京东方德菲仪器有限公司 www.edcc.com.cn
  • 气相色谱仪检测分析绝缘油/绝缘油检测分析仪器厂家直销
    南京科捷是检测分析绝缘油/绝缘油检测分析气相色谱仪的厂家,联系电话:尹先生13951792301,欢迎来电咨询、购买! 绝缘油一种润滑油。通常由深度精制的润滑油基础油加入抗氧剂调制而成。主要用作电器设备的电介质。电器绝缘油的主要性能是低温性能、氧化安定性和介质损失。绝缘油检测分析仪专用气相色谱仪性能: GC5890型气相色谱仪 :全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、裂解炉进样器、甲烷转化炉. 更多检测分析绝缘油/绝缘油检测分析气相色谱仪详情可登录www.kj17.com了解!
  • 上海光机所在机器学习算法赋能二维材料识别和检测方面取得进展
    近期,中国科学院上海光学精密机械研究所光芯片集成研发中心王俊研究员团队在基于机器学习算法实现二维材料层数识别和物性检测方面取得进展,相关综述论文以“Thickness Determination of Ultrathin 2D Materials Empowered by Machine Learning Algorithms”为题发表于Laser & Photonics Reviews,并被编辑推荐为当期正封面文章。   自从发现石墨烯以来,大量新型二维层状材料逐渐被发现和制备,目前已成为涵盖绝缘体、拓扑绝缘体、半导体、半金属到超导体的庞大家族。通常,二维材料的层数对于调节纳米电子和光电器件的性能具有重要意义,在实现进一步的物理研究或器件制造之前,往往需要确定目标样品的最佳厚度。目前,通过光学技术获得光学图像或光谱信息后,后续的数据处理往往依赖研究人员的专业知识,并且受个人经验和主观因素影响较大。   近年来,人工智能改变了现代社会的诸多方面,作为其最重要的一个子领域,机器学习通过收集和分析数据以预测复杂系统的行为并建立解决问题的模型,为物理、化学、材料科学等传统研究领域带来了新的发展机遇和解决方案。例如光学图像作为实验室中最容易获取的数据集,是解决图层识别高通量和实时性要求的最简单方法,机器学习算法可以提取图像中的基本特征并建立决策模型,同时较好地适用于不同的光学系统,以满足不同用户对自动光学识别和表征的要求。除了光学图像,机器学习算法还可以准确高效地分析光谱数据,这不仅可以利用光谱特征信息快速得到所需的样品厚度,还可以从材料本秉特性出发,有效解决不同实验平台间测试数据误差带来的不利影响。更为重要的是,这些机器学习算法赋能的光学解决方案显著促进了建立从数据出发的统一、快速、低成本、无损的测量方法和标准,进而有力推动了二维材料的工业级应用落地。   该综述系统总结了传统光学技术与机器学习算法深度融合面临的发展机遇与难题,提出检测对象的多样性、物理性质的差异性、测试环境的不稳定性、光学技术的易干扰性和相关算法的准确性对跨实验室标准制定带来的潜在风险与挑战。机器学习算法将对二维材料厚度测定的传统研究方法带来深刻的变化,将人工劳动从现有的繁琐材料表征过程中逐渐解放出来,有助于推动研究的快速发展并逐步走向实际应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制