当前位置: 仪器信息网 > 行业主题 > >

均匀度

仪器信息网均匀度专题为您整合均匀度相关的最新文章,在均匀度专题,您不仅可以免费浏览均匀度的资讯, 同时您还可以浏览均匀度的相关资料、解决方案,参与社区均匀度话题讨论。

均匀度相关的资讯

  • 掌握高低温试验箱均匀度要具备的条件
    温度均匀度是高低温试验箱检验设备是否符合要求的一大考核因素。国家标准规定高低温试验箱温度均匀度为±2℃,为保证均匀度在标准范围以内,设备应具备以下这些条件: 箱体与门的密封:高低温试验箱箱门漏气会导致试验箱内温度的不均匀,因此试验箱的密封条要求非常严格,必须具备耐高温及低温的特点。 风循环系统:为保证高低温试验箱箱内的均匀度,试验箱采用风循环,在设备背部有风道,加热管加热空气通过风叶搅拌均匀送入试验箱内达到温度均匀。 保温材料:为保证高低温试验箱箱内的均匀度,保温材质是关键点,若保温材料处理不好,直接影响箱内均匀度偏差过大。 由上可知,用户在选择高低温试验箱时至少应参照以上三点考核设备的均匀性是否符合国家标准。
  • 拟立项《中药混合均匀度与水份快速检测 近红外光谱法》公告
    p style="text-align: justify text-indent: 2em "标准引领产业的发展。近红外光谱技术具有操作方便、分析速度快、应用领域广等优势,在众多分析技术中脱颖而出,成为当前最热门的技术之一,已在农业、石化、制药、食品等各个领域中获得广泛应用,并带来了巨大的经济效益和社会效益。然而,由于近红外分析建模和标准化的技术难度较大,且近红外仪器类型繁多,其标准分析方法发展也相对缓慢。/pp style="text-align: justify " 按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。按照我会标准化工作委员会(SCIS)的标准制定工作流程,经过我会标准化工作委员会的前期项目筛选和审核,拟制定如下标准:《中药混合均匀度与水份快速检测 近红外光谱法》/pp style="text-align: justify text-indent: 2em "(项目申报单位:北京中医药大学,中国仪器仪表学会药物质量分析与过程控制分会)/pp style="text-align: justify "  上述标准制定项目的目的、意义和必要性等参见附件的《CIS标准项目公示表》。/pp style="text-align: justify "  现请各有关单位或个人,针对该标准制定项目如果有相关意见或建议,请按照该表格反馈给我会。/pp style="text-align: justify "  特此公示。公示期自发布之日起4周。/pp style="text-align: justify "  联系人:郭老师/pp style="text-align: justify "  电 话:86-10-82800385,18601013495/pp style="text-align: justify "  email:scis@cis.org.cn 或 gxw@cis.org.cn/pp style="text-align: justify "附件:/pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="2019011610145128.pdf" style="color: rgb(0, 102, 204) font-size: 12px " href="https://img1.17img.cn/17img/files/201901/attachment/02b23118-35cf-44e1-ac69-8f7f6fd6f749.pdf"2019011610145128.pdf/a/pp style="text-align: justify " /p
  • 中药混合均匀度与水份快检 (近红外光谱法)团标启动
    p style="text-align: center "strong《中药混合均匀度与水份快速检测 近红外光谱法》团体标准工作组启动会暨第一次研讨会/strong/pp  2019年4月3日,《中药混合均匀度与水份快速检测 近红外光谱法》团体标准(以下简称团体标准)工作组启动会暨第一次研讨会在京成功召开。团体标准经中国仪器仪表学会标准化工作委员会前期项目筛选、审核和公示,经中国工程院院士庄松林审批立项。北京中医药大学为牵头制定单位,乔延江教授、吴志生研究员为牵头人。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/5908e970-acfe-491f-b764-73d20b96de02.jpg" title="合影.jpg" alt="合影.jpg" width="600" height="270" border="0" vspace="0" style="width: 600px height: 270px "//pp  标准制定起草工作单位由高校、药检机构、制药企业和制药设备企业组成,标准制定起草工作组由北京中医药大学原副校长乔延江教授、福建中医药大学副书记林羽教授、中国食品药品检定研究院尹利辉研究员、陕西中医药大学副校长唐志书教授、湖北中医药大学副校长黄必胜教授、浙江大学刘雪松教授、山东金璋隆祥智能科技有限公司邹振民董事长、浙江寿仙谷医药股份有限公司李明焱董事长、北京同仁堂研究院院长解素花教授级高工、北京康仁堂药业有限公司张志强技术总监、湖南景峰医药有限公司王琼总经理、广州白云山汉方现代药业有限公司许文东总工程师、扬子江药业集团中药研究院姚仲青院长14位领导专家组成。北京中医药大学原副校长乔延江教授为标准制定起草工作组组长。中国仪器仪表学会标准化工作委员会对标准制定起草工作组进行了网上公示。/pp  会议由药物质量分析与过程控制分会秘书长、北京中医药大学吴志生研究员主持。按照会议流程,中国仪器仪表学会标准工作委员会郭晓维主任向与会起草单位介绍了中国仪器仪表学会团体标准工作和主要成果,分析了国家标准化体系改革现状与趋势,并结合本次立项的团体标准任务、目的及标准制定原则进行详细介绍。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/bf7a067a-5c85-463b-af29-f64b88a9753d.jpg" title="吴志生.jpg" alt="吴志生.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/7fdff930-6c39-45b7-b231-cab7c7448bd9.jpg" title="郭晓维.jpg" alt="郭晓维.jpg"//pp style="text-align: center "strong北京中医药大学吴志生教授、中国仪器仪表学会标准工作委员会郭晓维主任/strong/pp  北京中医药大学中药智能制造与全程质量控制创新团队向与会起草单位宣读了标准草案初稿的内容。标准制定起草工作组组长乔延江教授介绍了该团体标准制定工作对政府部门、科研单位和制药企业的意义,并强调标准制定应具备严谨性、创新性和可推广性等特点。会上各位专家畅所欲言,从标准的代表性和适用性等角度分析,就方法学基础和行业应用两个方向展开讨论。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/436804d7-c4d4-4829-b481-543f288e3cbc.jpg" title="乔延江教授.jpg" alt="乔延江教授.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/eea37ad4-7041-4bf9-a01a-0aaaa6b4f5aa.jpg" title="林羽教授.jpg" alt="林羽教授.jpg"//pp style="text-align: center "strong北京中医药大学原副校长乔延江教授、福建中医药大学副书记林羽教授/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/ffe67835-38e6-4cd5-b7fa-444450c43256.jpg" title="解素花高级工程师.jpg" alt="解素花高级工程师.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/4cad543f-4993-4ab5-ab13-f722fae01bbf.jpg" title="尹利辉研究员.jpg" alt="尹利辉研究员.jpg"//pp style="text-align: center "strong北京同仁堂研究院院长解素花高级工程师、中国食品药品检定研究院尹利辉研究员/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/77d88ee1-242b-4ff0-a750-823c1215546d.jpg" title="刘雪松教授.jpg" alt="刘雪松教授.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/a48ad5d3-513f-44d2-a19b-c263efb6f48a.jpg" title="徐伟教授.jpg" alt="徐伟教授.jpg"//pp style="text-align: center "strong浙江大学刘雪松教授、福建中医药大学药学院院长徐伟教授/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/8336c451-85d3-40a8-b243-13c08b722f89.jpg" title="许洪波.jpg" alt="许洪波.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/5cf025bd-43dc-4675-81df-5837927c82b3.jpg" title="余驰.jpg" alt="余驰.jpg"//pp style="text-align: center "strong陕西中医药大学许洪波(代表唐志书副校长/教授)、湖北中医药大学余驰(代表黄必胜副校长/教授)/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/ba2e8d42-b0e6-455b-aed6-50f57480679b.jpg" title="邹振民博士.jpg" alt="邹振民博士.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/552ba465-8ee9-42ac-a112-5954782da79c.jpg" title="胡凌娟高级工程师.jpg" alt="胡凌娟高级工程师.jpg"//pp style="text-align: center "strong山东金璋隆祥智能科技有限公司董事长邹振民博士、浙江寿仙谷医药股份有限公司胡凌娟高级工程师(代表李明焱董事长)/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/ba24d9f8-66ba-41f4-a57f-6495782b2726.jpg" title="张志强高级工程师.jpg" alt="张志强高级工程师.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/b27c7d18-7bbd-46d7-9683-486d2ffd3328.jpg" title="王琼.jpg" alt="王琼.jpg"//pp style="text-align: center "strong北京康仁堂药业有限公司技术总监张志强高级工程师、湖南景峰医药有限公司总经理王琼/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/c04a80f4-14ac-4b72-a3bf-f9e541e58560.jpg" title="许文东总工程师.jpg" alt="许文东总工程师.jpg"/ img src="https://img1.17img.cn/17img/images/201904/uepic/6bdfd559-2754-4c6a-8313-2597b3f32c3b.jpg" title="黄兴国.jpg" alt="黄兴国.jpg"//pp style="text-align: center "strong广州白云山汉方现代药业有限公司许文东总工程师、北京中医药大学黄兴国/strong/pp  本次会议明确了标准制定工作的分工,并提出了一系列标准草案的完善措施。各位起草人共同表态要制定出一份行业满意的团体标准。会议的最后,北京中医药大学吴志生研究员代表工作组感谢与会专家对本标准制定工作的大力支持。/p
  • 蓝菲光学发布LED积分球均匀光源(LED-USS)新品
    LED积分球均匀光源(LED-USS) 蓝菲光学LED-USS积分球光源提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源基于蓝菲光学40年的光学系统开发经验,独有的高反射率漫反射材料,巧妙的积分球结构设计,是行业内研发测试,质量检查,生产测试的理想解决方案。图1. 通过积分球对相机校正 近年来,随着机器视觉系统的快速发展,越来越多的产线上采用基于工业相机的系统进行快速测量,引导,检测和目标识别。其中一个主要的应用是平板显示检测系统,尤其是OLED面板在消费电子的大规模使用后,对机器视觉系统提出了更高的要求。一个高精度的机器视觉系统需要高性能的光源进行校正。 LED-USS提供了满足国际相机性能测试标准EMVA-1288所需的高性能光源,能够对工业相机进行平场矫正,线性度校正,暗噪声评估等。图2. 积分球开口亮度示意图 该积分球使用蓝菲光学独有的Spectraflect材料,具有以下两个特点:1. 对紫外-可见-红外波段具有超高的光谱反射率,可以实现各类光谱的高流明输出。2. 近乎完美的朗伯反射特性,保证入射光在积分球内壁任何一处均匀分布。 基于以上特性,再结合蓝菲光学特殊的积分球结构设计,可以实现开口处超均匀的输出。 图3. 开口处均匀性测试结果 通过内部自带的散热装置,系统的光输出能够保证很好的稳定性。此外,通过自带高精度的亮度监控器,可以实时观测亮度输出情况。图4. LED-USS亮度输出稳定性(10分钟) LED-USS还提供易用的操作软件,能够便利的设定,调整,输出不同等级的亮度,色温。并能够实时监控系统的各项指标。图5. 控制软件界面系统特点出光面大且超级均匀系统输出稳定性高亮度可调节,可实现从微弱光到高亮度线性输出色温动态可调节自带亮度监控,实时观测亮度输出情况软件提供SDK,可与其他设备联合开发可定制大视场均匀光源可定制从紫外到红外范围内单一或多个波长的均匀光源可定制光谱仪监控光谱输出情况应用领域主要应用于各类相机的平场校正,线性度校正,暗噪声校正,动态范围校正等EMVA1288相关参数校正,在很多行业有广泛应用:平板显示检测相机校正大视场相机,360°全景相机校正各类车载摄像头校正红外相机校正成像式亮度计/色度计校正手机等各类消费电子摄像头校正规格参数 产品型号 LED-USS-030 LED-USS-050料号LCA-00283-000LCA-00284-000积分球尺寸(cm)3050开口尺寸(cm)1020积分球材料SpectraflectSpectraflect亮度范围(cd/m2)*0.5~250000.1~5000亮度均匀性**99%99%调节步数5×1045×104色温范围(K)2800~75002800~7500色温均匀性±15K±15K短期稳定性±0.1%±0.1%预热时间30s30s系统监控硅探测器硅探测器控制软件 自带 自带系统尺寸(mm)510×330×490730×570×720系统重量(kg)2052外接电源100~240VAC 50/60Hz100~240VAC 50/60Hz可定制积分球尺寸/大视场/各类单波长光源/光谱仪/软件开发SDK * 亮度范围指的是某些特定色温下系统能够达到的动态范围 **亮度均匀性指的是基于NIST CoV(Coefficient of Variation)计算公式计算得到 创新点:LED-USS是目前世界均匀性最高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。• 出光面超级均匀,均匀性大于99.5%• 系统输出稳定性高,稳定性达0.1%• 亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出• 色温动态可调节,可实现从低色温2700K到高色温7500K的输出• 自带亮度监控,实时观测亮度输出情况• 软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。• 系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源LED积分球均匀光源(LED-USS)
  • 蓝菲光学超均匀面光源助力机器视觉相机校准
    1、背景介绍 近年来,随着工业4.0及人工智能的发展,越来越多的自动化设备被广泛应用于生产过程中。工业4.0离不开智能制造,我国在2015年提出的“中国制造2025”宏伟计划中,第一项战略对策就是“推行数字化网络化智能化制造”,而智能制造中,最核心的一环就是机器视觉。机器视觉是指通过机器来模拟人眼的功能,对客观事物进行信息提取,处理和分析,最终实现检测和判断,最终交给计算机进行控制。中国是机器视觉产业发展最为迅速的国家,目前已经在工业,航天,医疗,交通,科研等诸多行业进行了广泛的应用。图1 机器视觉代替人眼二、目前机器视觉存在问题 典型的工业机器视觉系统包括:光源,镜头,相机,图像采集卡,软件,监视器,输入/输出等。对于光学检测来说,机器视觉系统的性能主要取决于系统中光学相关部件,比如光源,镜头,相机等的性能。此外,光学检测要求的精度一般都较高,但是大多数相机在出厂时,并没有专门针对光学检测应用进行专门校准,往往会导致机器视觉系统的精度达不到要求,结果会出现误差。 比方说,如果将刚出厂的工业相机对着一个均匀照明的发光面进行拍照,拍摄出的图像四个角往往会出现暗区,这主要是由于相机镜头的余弦响应造成的。此外,由于相机传感器(CCD/CMOS)的非均匀性,也会导致对均匀光场成像的时候,图像的亮暗,颜色不均匀,如下图所示。以上这些因素,都会导致在一些精密的光学检测(比如平板显示检测)时,检测结果和真实情况出现较大偏差。图2 校准前相机平场响应 除此之外,相机对于不同亮度的线性响应也不同。由于相机输出的信号是灰度值,并不具有真实的物理意义。因此,在做光学检测(比如说亮度检测时),需要对相机进行线性度和亮度标定,建立起相机灰度信号和真实亮度的关系曲线。三、工业相机校准解决方案 为了解决以上机器视觉系统中存在的问题,提高机器视觉系统,尤其是AOI等光学检测系统的精度,欧洲机器视觉协会EMVA提出了《EMVA1288:成像传感器和相机性能表征标准》,其中介绍了如何对成像传感器及相机的空间不均匀度,灵敏度,线性度和噪声等一些列指标进行表征和校准的办法。其中明确写到:“最好的均匀光源是积分球均匀光源”,且推荐“光源的均匀性要大于97%”。图3 蓝菲光学相机平场校正方法 用户在使用时,只需要相机对准均匀光源的开口,拍摄一张图像,再经过算法进行计算,就可以对相机的均匀性进行校正,这一过程称为平场校正。经过均匀光源校准后,相机的均匀性可以显著提高。如下图所示,为一个工业相机经过积分球均匀光源校正前后相机的均匀性测试结果。从图中可以很明显看出,校正前相机的均匀性较差,中心场的响应优于周边的响应。校正后相机平面内的响应一致。相机校正前 相机校正后图4 工业相机经过蓝菲光学LED 积分球均匀光源系统平场校正前后对比 四、完美的积分球面光源 工业相机的精度决定了机器视觉系统的检测精度,校准光源的均匀性决定了工业相机的精度。越是均匀的积分球光源,经过其校准后得到的相机均匀性越高。根据积分球的原理,入射到积分球的光在积分球内部进行多次反射,最终在输出端口得到亮度,色度都完全均匀的面光源。积分球的出光口均匀性主要取决于以下几个方面:1.积分球内壁材料的反射特性。材料的反射特性可以分为朗伯反射,镜面反射和混合反射。由积分球原理可知,积分球内壁材料反射特性越接近朗伯特性,其开口处均匀性越高。此外,当入射光是宽谱光时(比如白光),材料的光谱反射一致性决定了开口处的色度均匀性,材料的光谱反射率越一致,也就是对各个波长的反射率越一致,开口处的色度越均匀。2.积分球的设计。如何设计积分球的尺寸,入射光的位置,挡板的位置和方向,都会影响积分球开口的均匀性。 蓝菲光学积分球均匀光源Spectra-CT提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源采用蓝菲光学独有的高反射率完美朗伯反射材料Spectraflect,基于蓝菲光学40余年的光学系统开发经验,精细的积分球结构设计,是机器视觉相机校准的完美解决方案。其主要具有以下特点:出光面超级均匀,均匀性大于99.5%系统输出稳定性高,稳定性达0.1%亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出色温动态可调节,可实现从低色温2700K到高色温7500K的输出自带亮度监控,实时观测亮度输出情况软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源图5 蓝菲光学LED 均匀光源系统(Spectra-CT)及开口处光斑亮度分布 Spectra-CT LED积分球均匀光源是均匀性较高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。
  • 霍尔德发布|石墨COD回流消解器采用石墨面均匀加热
    化学需氧量(COD)是一个重要的水质指标,用于衡量水中有机物污染的程度。COD值越高,说明水中含有的需要被氧化的还原性物质越多,也就是有机物污染越严重。在河流污染和工业废水性质的研究中,COD可以作为一个重要的参数来评估水体的污染状况。同时,在废水处理厂的运行管理中,COD也是一个关键的指标,可以用来监测处理效果,确保出水达到环保标准。石墨COD回流消解器主要由主机、冷却装置、加热装置、玻璃器皿等4大部分组成,采用微机技术进行定时控制加热电炉板和风扇,可对12个回流装置同时进行加热。石墨面加热,均匀度更好,更加安全。石墨COD回流消解器采用玻璃毛刺回流管代替球形回流管,并以风冷加水冷技术取代自来水冷却方式。冷却部分主要由毛刺冷凝管和双风机完成,加上上部分球形回流管内冷却水和机内风机的双重作用,确保了样品的回流冷却。符合水质cod《水质化学需氧量的测定重铬酸盐法》HJ828-2017标准。 产品参数1、测量范围:5~800mg/L,800~10000mg/L (经稀释) 2、同时加热样品数量:8-10-12个3、测量时间:不大于2小时 4、测量误差:邻苯二甲酸氢钾标准溶液(500mg/L),相对标准偏不大于5.0%,工业有机废水(500mg/L),相对标准偏不大于8.0%5、环境温度:0~45℃6、准 确 度:COD与经典回流法比对,结果在正常偏差范围内7、加热功率:3000W平均功率:1600W8、温度可调范围:32-400℃9、恒温精度:±2℃10、升温时间:室温至180℃<30min11、采用石墨材质加热板,温度更均匀。
  • 用于VR传感器测试的高亮度 RGB 积分球均匀光源
    测试VR传感器需要红、绿、蓝 (RGB) 光源。图1 VR工作室的男孩该仪器需要满足:光谱输入可控制,具有非常高的亮度水平且5cm² 开口端具有很高的均匀性。该均匀光源还必须适合特定的、空间有限的工作空间。客户要求Labsphere(蓝菲光学)设计和开发一种红、绿、蓝 (RGB) 积分球均匀面光源。亮度分布要求至少由 30% 的红色(150,000 尼特)、60% 的绿色(300,000 尼特)和 10% 的蓝色(50,000 尼特)组成。总而言之,在可见光谱区域内亮度 500,000 尼特。在正常查看光栅图和离轴 ±30° 的 5cm 亮度开口端上必须有 98% 或更高的亮度均匀性。该解决方案需要有一个带有 NIST 可溯源校准的嵌入式人眼视觉探测器,以监测开口端的亮度。客户要求结构紧凑,且开口上方和周围的严格垂直限制。图2 蓝菲光学高亮RGB积分球光源结构图Labsphere (蓝菲光学)的解决方案该RGB 积分球均匀光源设计核心是对开口端的亮度级别的满足。物理结构设计需保证结构紧凑的基础上,同时满足发光开口端亮度均匀性要求。图3 RGB积分球光源3D图为了提供强光输出亮度级别,Labsphere 采用内部为高反射漫反射材料 Spectralon(99% 的可见光反射率)的小型积分球。光引擎采用Labsphere 设计的 RGB LED 阵列集群。光引擎接口允许其自身与积分球之间的有效耦合。积分球内部包含光引擎、光孔径和光电探测器开口孔径,以监测系统高动态范围内的亮度。光引擎配备了 100W 热电冷却器,以补偿光引擎产生的热量并保持稳定性和可重复性。校准是在 Labsphere(蓝菲光学)先进的辐射测量/光度测量实验室中进行的,校准结果可溯源至 NIST。均匀性映射采用机器人控制自动化的高分辨率成像色度计进行采集的。图4 RGB积分球光源开口处光源输出图5 光谱图规格参数Red Luminance:210k nits Green Luminance: 260k nits Blue Luminance:86k nits Normal Uniformity:98% Angular Uniformity: 99%
  • 蓝菲光学确立国内均匀光源领域领先地位
    上海2010年7月14日电 /美通社亚洲/ -- 中国科学院下属某研究机构于近期和英国豪迈集团(HALMA)子公司 -- 美国蓝菲光学(Labsphere) -- 签署合同,采购了目前国内最大、最复杂和最精密的一套2米直径的均匀光源系统。    由于该研究所使用这个均匀光源系统的目的是为其空间相机做定标和校准,所以要求光源系统具有极高的均匀性和稳定度,并要求供应商可以提供以往的成功案例和数据来证明。凭借其国内外技术专家的努力,以及借鉴其在欧美的成功经验,蓝菲光学(Labsphere)拿出了一套很有说服力的设计方案,不仅满足甚至超过了该研究所的实际需求。  这个项目的成功,确立了蓝菲光学(Labsphere)在国内乃至世界均匀光源领域的绝对领先地位,也展现了该公司对于大型系统设计的创造力和把握程度。该项目也是迄今为止蓝菲光学(Labsphere)在中国获得的最大订单之一。  该项目的负责人赵先生说,“Labsphere团队凭借其耐心的讲解、高效率的沟通和高超的技术设计能力证明了Labsphere是世界上顶尖的均匀光源系统供应商。我们对他们的能力绝对有信心。”欲了解更多,点击进入该公司展位
  • 非均匀物料取样大挑战——如何避免取样污染?
    抽样操作是整个实验室检测流程的*步,也是首先应当保证的重要环节。经常会有这样的情况:样品检测结果出现异常,我们排查了检测流程的方方面面都没有出现偏差,结果是样品在抽样时已经被污染。 问: 这样的情况事实上并不鲜见,如何杜绝呢?答: 还得从规范抽样操作开始,要做到无菌抽样,避免交叉污染。无菌抽样的规范性是保证样品检测准确性的前提,因此我们在取样时应规范操作,确保从源头杜绝污染。 我们面临的挑战 不均匀物料的取样工具难以清洁! 制药行业对工业生产的药品的一部分进行采样以确保混合均匀性污染物是确保高质量水平的 重要监管步骤。 然而,用于非均匀样品的可重复使用、可高压灭菌的取样工具,例如传统不锈钢粉末或者液体取样器,由于它们的运动部件而难以清洁经常会对采样结果污染。 案例分享 图1:传统不锈钢粉末取样器 Marlene 在一家制药公司的质量控制部门工作,并对*产品的桶进行采样以检测任何可能的污染物。在一周的时间里,她发现所有的样本都被同一个小分子污染了。她被要求检测全部失败并丢弃产品。 Marlene 没有意识到的是,在她的不锈钢粉末取样器中留下的小分子污染,并没有通过清洗或高压灭菌去除。 解决方案 图2:Sterileware 粉末取样器 Sterileware 液体和粉末取样器提供了一种简单的解决方案,用于对药品取样以确保质量。 这些一次性使用的工具消除了因重复使用而引入的任何污染,确保一致的结果并减少污染的风险。Sterileware 液体和粉末取样器均经过伽马射线辐照,达到 10-6 的无菌保证水平 (SAL),并且每件产品都随附一份灭菌处理证书,以确保无菌。 Sterileware 液体和粉末取样器# 由符合 FDA 和欧盟标准的材料制成;可安全用于食品、药物和化妆品;# 高密度聚乙烯 (HDPE) 取样器热封在单独的聚乙烯袋中;# 伽马辐照无菌 (SAL 10-6);# 一次性使用和处置;# 为准确追踪而盖章的批次;随附灭菌处理证书。 参考文献:[1]WHO Technical Support Series, No. 929, 2005.
  • 卓立汉光可调单色光源的应用 — 均匀光源
    技术介绍:目前市场上有多种灯源,这些灯源只一般提供复色光,不能根据用户的实际应用提供单一或是较短波段范围的光,因此可调光源也就孕育而生。光源经过不同特点的分光器件(一般为单色仪),输出或是高分辨高窄线宽光,或是高能量的复色光,从而可以在不同的应用场景中使用。产品应用:均匀光源是可调光源一个重要分支,一般可用于探测器如(CCD,CMOS)的响应均匀性测试等光电领域测试。CCD像素非均匀性测试:CCD芯片是由多个像素组成。在CCD制造过程中,因为硅基材料本身质量,以及生产工艺等因素,即使在同一个采集参数下(曝光时间,读出速率等),各像素的暗电流,量子效率还是会有细微的差别。在一些大面阵相机使用的场景,如天文观测,需要在CCD相机使用前对感光芯片的各像元的响应非均匀性做统一的测试。 均匀光源是该测试中的重要环节,光源的均匀性和稳定性都会影响到测试的准确性。 图1:CCD芯片非均匀性测量流程图,内含TLS(可调光源)和积分球如上图所示灯源经光谱仪分光后由积分球输出成为均匀光源,然后照射待测CCD相机进行测试。根据测试响应波段的要求,一般灯源可以选用卤素灯作为光源,用光功率计放置于积分球出口,测量光源在不同电流时的能量输出。经过长时间开启后,(一般30分钟以上),再次测量输出能量数值。经过对比,得到一个电流最佳值使得灯源在长时间工作后仍可保持1%以内的稳定性。光源均匀性测试可以用光功率计在XY电移台上以一定间隔(如1cm),在CCD测试位置获得光源照射到CCD面上的不同位置的照射强度均匀程度。在光源的强度稳定性和均匀性符合测试指标后,接下来可以进行CCD非均匀性测试。分别在挡光和不挡光状态下获得相机在同一AD等参数的情况下图像数据。然后在逐一针对不同曝光时间分析像素点的数值输出。最后得到对CCD芯片的响应均匀性测试,并重新建构测试芯片的暗电流和光电流的分布情况。 图2:卓立汉光推出的基于可调光源的均匀光源系统卓立汉光经过多年的研发,针对不同的光源需求,推出基于不同光源和单色仪的可调光源系统(TLS系列光源) 图3:不同灯源组合灯源加320mm焦距谱仪组合TLS光源灯源不稳定性输出范围氙灯(75W、150W)1%200-2000nm氙灯(300W、500W)10%200-2000nmEQ光源1%200-2000nm溴钨灯(150W、250W)1%350-2500nm40W红外光源1%1.1-12um 灯源加200mm焦距谱仪组合TLS光源灯源不稳定性输出范围氙灯(75W、150W)1%200-1000nm氙灯(300W、500W)10%200-1000nmEQ光源1%200-1000nm溴钨灯(150W、250W)1%350-2500nm40W红外光源1%1.1-8um 引用文献:1, Liang Shaolin, Wang Yongmei, Mao Jinghua, Jia Nan, Shi Entao,Infrared and Laser Engineering, 0417004, 48(2019)2, EMVA Standard 1288,Standard for Characterization of Image Sensors and Cameras,2021Wang Shushu, Ping Yiding, Men Jinrui, Zhang Chen, Zhao Changyin,Proc. SPIE 11525, SPIE Future Sensing Technologies, 115252I (2020)
  • CEM 微波技术:高效与均匀的完美结合
    01 微波加热简介微波是一种低能量的电磁波,其波长在0.001到0.3米的范围内(图1)。虽然微波通常与加热剩余食物联系在一起,但它们在其他应用中也发挥着重要作用,比如加热实验室实验。图1. 电磁频谱像其他电磁波一样,微波由两个垂直振荡的场组成:电场和磁场。对于微波而言,电场主要负责产生热量,通过两种作用模式与分子相互作用:偶极旋转和离子传导(图2)。在偶极旋转中,分子不断地来回旋转,以使其偶极与不断变化的电场对齐;每个旋转分子之间的摩擦导致热量产生。在离子传导中,自由离子或离子种类通过空间平移移动,以与变化的电场对齐。就像在偶极旋转中一样,这些移动物种之间的摩擦导致热量产生,反应混合物的温度越高,能量传递的效率就越高。在这两种情况下,物种的极性和/或离子性越强,热量产生的效率就越高。图2. 微波加热的机理:偶极旋转和离子传导由于微波直接与反应混合物的内容物相互作用,能量传递比传统加热技术更高效。传统加热技术依赖于热传导,热量首先从源头传递到容器,然后从容器传递到溶液。微波与溶液均匀地相互作用,实现均匀且定量的加热(图3)。图 3. 加热方法:传导加热和微波加热02 CEM 微波合成仪比较指南
  • 【小坛微课】标准物质必修课—标准物质的均匀性和稳定性!
    标准样品的均匀性,是标准样品的基本性质。均匀性即是物质的一种或几种特性具有同组分或相同结构的状态。通过检验有规定大小的样品,若被测量的特性值均在规定的不确定度范围内,则该标准样品对这一特性值来说是均匀的。不论在制备标准样品过程中是否经过均匀性初检,凡成批制备并分装成最小包装单元的标准样品,由大包装分装成最小包装单元时,都需进行均匀性检验。这是制备标准样品过程中不可缺少的程序,也是确保标准样品定值准确的最基本条件。进行均匀性检验的目的,一方面通过均匀性检验说明特性值在各个部位之间是否均匀,另一方面要了解标准样品特性值在不同部位之间不均匀的程度,进而判断不均匀性程度是否可以接受,是否可以作为标准样品使用。本期小坛微课我们就如何定义标准物质的均匀性与稳定性,如何判断、检验标准物质的均匀性稳定性,以及标准物质均匀性、稳定性监测的意义等方面一起来进行讨论。如果您对标准物质的均匀性和稳定性课程有其他的问题,可以留言给我们哦~主讲人 谢珂 | Xie Ke坛墨质检无机质检经理
  • 小菲课堂|导致热像仪卡顿,非均匀性校正该如何选择?
    在小伙伴们使用热像仪的过程中,一定会发现在进行热图像拍摄时,有时会卡顿并且热像仪会发出咔嚓的声音,这时候没必要惊慌,它这是在进行非均匀性校正(NUC),为什么会这样呢,小菲来为你详细解答下~执行非均匀性校正可产生更高质量的图像非均匀性校正(NUC)是针对场景和环境变化时发生的微小探测器漂移进行调整。一般情况下,热像仪自身的热量会干扰其温度读数,为了提高精度,热像仪会测量自身光学器件的红外辐射,然后根据这些读数来调整图像。NUC为每个像素调整增益和偏移,生成更高质量、更精确的图像。在NUC过程中,热像仪快门落在光学和探测器之间,发出咔哒声,瞬间冻结图像流。快门作为一个平面参考源,用于检测器校准自身和热稳定。这种情况在非制冷红外热像仪中经常发生,但在制冷红外热像仪中也会偶尔发生,它也被称为FFC(平场校正)。1热像仪进行NUC的时间在初始启动时,热像仪会频繁地执行NUC。随着热像仪升温并达到稳定的工作温度,NUC将变得不那么频繁。虽然您可以在开机后约20秒获得热成像图,但大多数热像仪需要至少20分钟的预热时间,在稳定的环境下,测量精度。热像仪将自动执行一个NUC,但您也可以在测量重要温度或拍摄关键图像之前手动使用NUC功能。这将有助于确保准确性。2控制NUC的发生如上所述,NUC对于提高温度读数非常重要,如果没有NUC,你就有可能得到不稳定的温度读数。在大多数手持红外热像仪上NUC不能被禁用,但在大多数自动化和科学设备上,NUC可以从自动模式设置为手动模式。这将使您可以通过软件或硬件信号精确控制热像仪执行NUC的时间。3执行NUC的关键以手动控制FLIR A35和A65中的非均匀性校正(NUC)为例,在执行时考虑两个因素:当热像仪执行NUC时,禁止其他所有命令这样操作是因为NUC需要使用来自传感器的原始视频输出来计算每像素偏移校正。为了正确计算偏移量,所有命令必须在其操作期间被阻止,否则计算可能会受到影响,并且可以正确加载NUC查找表。如何控制NUC的长短在高增益运营模式时,热像仪的核心加热或冷却到大约0℃、40℃或65°C时,需要“长NUC”操作。例如,如果核心动力在-10°C下通电,然后加热到+10°C,则需要长NUC。“长NUC”(~0.5 s)操作比正常的“短NUC”(~0.4 s)操作大约长0.1 s,并允许核心自动加载适合当前工作温度量程的校准项。此外,在高增益和低增益模式之间切换时,必须执行长NUC,以便加载增益开关完成所需的新校准项。主机系统不需要监控上述条件,因为核心有一组NUC标志,将识别何时需要长或短NUC,除非热像仪处于手动NUC模式,在后一种情况下,将按照上面的描述发送一个长NUC命令。对于非均匀性校正(NUC)菲粉们还有哪些疑问呢?留言给小菲将详细为您解答哦~
  • 蓝菲光学|Labsphere RGB积分球均匀光源
    用于校准摄像机和传感器的超均匀,高动态范围,亮度/ CCT可调的面均匀光源。本产品是专门为大视场摄像头平场校正设计的均匀可调球形光源。本款产品经过特殊设计,被测摄像头可以安装在专用的夹具上,在出光口处向积分球内部拍摄。蓝菲光学目前可以为高达 220 度视场角的大视场摄像头提供平场校正和白平衡校正。本系统配软件简单易操作,能够便利的设定,调整,输出不同等级的亮度、色温,并能够实时监控系统的各项指标。对于高级应用程序,例如多系统集成,可以使用软件API。Spectra-CT是研发和制造应用中相机和传感器校准的理想均匀光源。特征出光面大且超级均匀;高动态亮度输出范围;准确,快速的LED控制,以实现预设的CCT和亮度;自带亮度监控,实时观测亮度输出情况;软件便于操作;应用主要应用于各类相机的平场校正,线性度校正,暗噪声校正,动态范围校正等EMVA1288相关参数校正,在很多行业有广泛应用:平板显示检测相机校正大视场相机,360°全景相机校正各类车载摄像头校正红外相机校正成像式亮度计/色度计校正手机等各类消费电子摄像头和环境光传感器校正软件软件界面光源可编程驱动电流用户可选亮度等级用户在2800K-7500K间CCT可选RGB光源可选显示光源驱动电流设置亮度光源亮度设置CCT亮度监控增益和控制亮度输出稳定性(500cd/m2时10min)规格参数
  • 遥感卫星大型传感器测试用大孔径积分球均匀光源
    背景图1 卫星遥感在制造用于卫星和望远镜的传感器的过程中,最重要的步骤之一是表征传感器的辐射性能,并建立到达传感器的光与传感器的数值输出之间的关系。 某国家航天局需要一套积分球均匀光源系统,用于在大型传感器的开发中进行校准测试。 开口尺寸需要1.5 米才能使发光面完全覆盖整个设备。另外还要求控制外部温度,确保可靠的长期使用。图2 成像传感器Labsphere(蓝菲光学)解决方案图3 蓝菲光学研发的大孔径积分球均匀光源图4 最大的辐亮度为此开发的系统需要大的积分球,获得超大开口端和总共 37 个灯以实现测试所需的均匀性和光谱辐射。Labsphere(蓝菲光学) 善于定制产品的开发,该系统具有以下独特功能:通过两个侧面安装的电动活塞自动调节高度;稳定性好,具有调平千斤顶工业脚轮;包含软件和硬件的完全集成的计算机系统;可控制灯产生的热量:开口周围的定制散热器,用于吸收大部分热量开口处的手动百叶窗,用于保护用户和设备免受测试后过热的影响后半球隔热罩,防止意外伤害三个温度探头来监测积分球内部的热量三个外部鼓风机连接到积分球周围的通风口具有带宽和 FOV 滤光片的可拆卸硅探测器;具有热电冷却功能的可拆卸 InGaAs 探测器;更新了具有附加功能的 HELIOSense 软件。特点先进的热重定向系统,可防止组件和材料损坏并保护用户免受意外伤害;高度可调和开口端缩孔器,可以灵活地对各种不同的传感器系统进行测试;具有针对客户应用程序优化的软件,最大限度地提高效率和可用性;可控制和获得宽光谱,通过 Labsphere(蓝菲光学) 的 HELIOSense 软件微调光谱辐射、色温和波长分布;满足所有光谱要求, 97% 以上的均匀性提供覆盖可见光和红外带内辐射度;照度 (lux)176,737光谱辐射度(W/m2-sr)1,605面均匀性 (100% Power)97.32%面均匀性(10% Power)95.08%角度均匀性 (±10°)99.5%角度均匀性 (±45°)99.2%短期(5s) 稳定性99.995%长期(30s) 稳定性99.994%硅探测器非线性度0.42%InGaAs 探测器非线性度0.37%最高外部温度39.5°C总灯功率17,680W
  • 飞秒激光烧蚀制备大面积均匀纳米结构进展
    最近,在中国科学院院士徐至展领导下,中山大学光电材料与技术国家重点实验室与中国科学院上海光机所强场激光物理国家重点实验室展开合作研究,在飞秒激光烧蚀制备大面积均匀纳米结构方面取得重要进展,相关成果发表在《光学快报》(Optics Express) (2008, 16, 19354-19365))。纳米科技领域国际著名期刊Small (2008, 4, No. 12, 2099)在News from the micro-nano world栏目以“大面积均匀纳米结构”(Large-area Uniform Nanostructures)为题专门报道了这项研究成果,并将它与美国科学家近期实现的“大面积组装单壁碳纳米管三维结构”并列为微纳结构合成制备新方法 另外,自然中国网站于2008年12月10日在Research Highlights栏目中也专栏推荐并重点介绍了该成果。  飞秒激光烧蚀具有低的破坏阈值及小的热扩散区的特点,可实现对材料的“非热”微加工,从而大大减小传统长脉冲激光加工中热效应带来的负面影响,显著提高加工精度,在光电器件微加工领域具有广阔的应用前景。但是由于传统激光直写方法的效率较低,目前飞秒激光烧蚀制备微纳结构在实际应用中尚不具备高的经济性。因此,探索如何直接用飞秒激光烧蚀高效地制备大面积均匀纳米结构是当前飞秒激光微加工领域的一个研究热点。  博士生黄敏及其导师徐至展等采用飞秒激光辐照自诱导亚波长纳米结构的途径,通过调控飞秒激光脉冲的波长、能量、偏振等条件并采用新颖的快速非相干调制技术,成功地在氧化锌、硒化锌等宽带隙材料及石墨表面实现了纳米光栅、纳米颗粒及纳米方块结构的大面积制备。这种利用飞秒激光烧蚀直接制备纳米结构的方法具有均匀性好,效率高,热效应小,通用性高,环保等优点,并克服了以往飞秒激光烧蚀制备纳米结构过程中的二度污染问题。更为重要的是,经过这种方法处理后,材料表面的光电特性发生了显著的改变,并可随纳米结构的改变而呈现不同的光谱特征。这种方法在新型光电器件等方面具有重要的潜在应用价值,有望提高LED照明器件的发光效率和增加太阳能电池的吸收效率。(来源:中科院上海分院)  (《光学快报》(Optics Express ),Vol. 16, Issue 23, pp. 19354-19365,Min Huang,Zhizhan Xu)
  • 华东理工大学光重构非均匀螺距软物质超结构研究获新突破
    图片说明:实现高不对称因子圆偏振发光以及宽光谱圆偏振滤波片采访对象供图近日,华东理工大学化学与分子工程学院、材料生物学与动态化学教育部前沿科学中心朱为宏教授和物理学院郑致刚教授在光可重构的非均匀螺距软物质超结构研究中取得突破性进展。相关研究成果以“抗疲劳、光可逆、可重构的非均匀螺距软物质”为题,发表在国际权威期刊《美国化学会志》上。利用光,实现液晶软物质超结构的多自由度动态操控在信息光子学、分子工程与软凝聚态物理领域具有十分重要的科学与应用意义。然而,受限于传统光响应分子的热稳定性和抗疲劳度,实现软物质超结构的多自由度控制,进而对光谱信息的波段、带宽、反射率、偏振响应等实时操控仍然是一个具有挑战性的问题。液晶是典型的软物质光学超材料,具有优异的外场响应性、自组装性、光学各向异性和动态可控性,广泛应用于光信息处理、成像和显示。该研究工作基于液晶材料的独特性质,创造性地设计并引入一种具备宽吸收光谱的光控吸收剂,结合朱为宏课题组发展的内源手性光开关,实现对液晶螺旋超结构的多自由度(螺距和螺距分布)的可逆光操控。通过对液晶施加电场,可将液晶螺旋结构从站立螺旋转变为躺倒螺旋,从而实现对液晶螺旋超结构的多自由度操控。这种结构多自由度操控使光谱的波段、带宽、反射率、偏振响应的动态实时光控这个长期困扰学术和工程领域的难点问题得以解决。近年来,朱为宏教授与郑致刚教授充分发挥光控材料和光学各自的优势,在光调控液晶螺旋超结构等领域已取得一系列卓有成效的合作,为实现高质量圆偏振钙钛矿发光和器件化应用开辟了新思路。该研究工作得到了材料生物学与动态化学教育部前沿科学中心、国家自然科学基金基础科学中心项目、国家优秀青年科学基金等项目的支持。
  • 爱威森举办在线药品混合均匀性监测系统讲座
    2009年6月, 公司经理JASON陪同加拿大C-Therm公司Managing Director在中国广州,西安,上海举办了多场公司代理的Mathis在线药品混合均匀性监测系统技术讲座. 多家药品生产厂家,设备制造厂家的相关生产质检部门领导及技术人员应邀参加了会议. 对于其先进的技术特点有了进一步地了解. 我公司正在此基础上大力开展相关技术咨询及业务联系. 详细技术特点请参阅 http://www.aws.cn/C14761.htm
  • 小菲课堂|热像仪突然卡顿?别担心,它在进行非均匀性校准
    在我们使用热像仪的过程中一定会发现在进行热图像拍摄时有时会自动频繁地卡顿并且热像仪会发出“咔嚓”的声音这时候没必要惊慌它这是在进行非均匀性校准(NUC—Non-Uniformity-Correction)那为什么会如此呢?非均匀性校准(NUC)非均匀性校准(NUC)是针对场景和环境变化时发生的微小探测器漂移进行调整。一般情况下,热像仪自身的热量会干扰其温度读数,为了提高精度,热像仪会测量自身光学器件的红外辐射,然后根据这些读数来调整图像。NUC为每个像素调整自身热噪声的增益和偏移,生成更高质量、更精确的图像。执行非均匀性校准可产生更高质量的图像在NUC过程中,热像仪快门落在镜头和探测器之间,发出咔哒声,瞬间冻结图像流。快门作为一个平面参考源,用于检测器校准自身和热稳定。这种情况在非制冷红外热像仪中经常发生,但在制冷红外热像仪中也会偶尔发生,它也被称为FFC(平场校准)。热像仪进行NUC的时机在初始启动时,热像仪会频繁地执行NUC。随着热像仪升温并达到稳定的工作温度,NUC将变得不那么频繁。虽然您可以在开机后约20秒获得热成像图,但大多数热像仪需要至少20分钟的预热时间,在稳定的环境下,实现良好的温度测量精度。热像仪将自动执行NUC,但您也可以在测量重要温度或拍摄关键图像之前手动使用NUC功能,这将有助于确保准确性。有效控制NUC的发生如上所述,NUC对于提高温度读数非常重要,如果没有NUC,你就有可能得到不稳定的温度读数。在大多数手持红外热像仪上NUC不能被禁用,但在大多数自动化和科学设备上,NUC可以从自动模式设置为手动模式。这将使您可以通过软件或硬件信号精确控制热像仪执行NUC的时间。执行NUC的关键以手动控制FLIR A35和A65中的非均匀性校准(NUC)为例,在执行时考虑两个因素:当热像仪执行NUC时,禁止其他所有命令这样操作是因为NUC需要使用来自传感器的原始视频输出来计算每个像素自身热噪音的偏移校正。为了正确计算偏移量,所有命令必须在其操作期间被阻止,否则计算可能会受到影响,并且可以正确加载NUC查找表。如何控制NUC的长短在高增益运营模式时,热像仪的核心加热或冷却到大约0℃、40℃或65°C时,需要“长NUC”操作。例如,如果核心动力在-10°C下通电,然后加热到+10°C,则需要长NUC。“长NUC”(~0.5 s)操作比正常的“短NUC”(~0.4 s)操作大约长0.1 s,并允许核心自动加载适合当前工作温度量程的校准项。此外,在高增益和低增益模式之间切换时,必须执行长NUC,以便加载增益开关完成所需的新校准项。主机系统不需要监控上述条件,因为核心有一组NUC标志,将识别何时需要长或短NUC,除非热像仪处于手动NUC模式,在后一种情况下,将按照上面的描述发送一个长NUC命令。红外热像仪执行非均匀性校准可产生更高质量的图像但随着时间的推移电子元件老化会导致校准数据偏移并产生不准确的温度测量值为了保证热像仪的准确性你需把它送到热像仪制造商进行定期实验室标定—Calibration我们建议您一年标定一次关于热像仪和红外热成像技术相关知识如果您想要系统学习和掌握可以报名参加我们的课程ITC红外培训在这里不仅可以学习理论知识还可以上手实操检测
  • 蓝菲光学成功交付研究所HELIOS® 太阳光积分球均匀光源
    某研究所需要一套能在高色温下输出高亮度的均匀光源。输出将通过准直器发送,以模拟太阳光进行某些测试程序。该系统将与其他单元一起在光学平台上使用,从而要求设备紧凑。蓝菲光学的标准HELIOS系统可满足客户对光谱输出和均匀性的要求。为了使系统能够与光学平台匹配紧凑,需要对产品进行设计更新,产品特点:大功率氙灯光源,在6,000K时亮度输出在100,000 lux以上具有可在3,000K下输出50,000 lux的QTH光源每个灯都装有可变衰减器,可连续调节带有自动快门的光谱仪带有快门和滤光片轮的硅探测器,包括光度学和900 nm带通滤光片定制的泡沫开口端盖可连接到其他光学元件,而不会损失光或污损设备标准的HELIOS(蓝菲光学)尺寸为14 x 28 x 23英寸,但是客户需要更紧凑的配置。 Labsphere(蓝菲光学)能够重新排列组件,使所有组件都能放在17 x 18 x 28英寸的框架中。尽管比标准的HELIOS系统小很多,该系统仍能满足亮度和极高的均匀性要求,从而保证测量的准确性和可靠性。特点结构紧凑,客户能够将Labsphere(蓝菲光学)的系统集成到他们的测试配置中;后半球没有开口孔,在积分球的背面创建了一个宽阔的无缝区域,以实现完美的均匀性;泡沫开口端盖使客户可以轻松地将准直仪连接到积分球上,而不会影响其数据的准确性;宽光谱控制和可用性,可通过Labsphere(蓝菲光学)的HELIOSense软件轻松调整光谱辐射度,色温和波长分布;精确可调的光源使用户可以在任何光照水平下(高达太阳光直射水平)进行测试。同时使用卤钨灯和氙灯时的光源均匀性光谱均匀性均匀性99.07%非均匀性偏差0.25%角度均匀性y均匀性97.93%非均匀性偏差0.44%灯信息安装灯泡色温(K) 照度(lux) 只有卤钨灯305041,790只有氙灯6372160,000同时安装两个灯5335205,000
  • 北大杨林团队等人在Nature发文:首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象
    纳米材料具备优异的力学特性,能够承受远超块体材料的应变,从而调节其物理/化学性能(如电子、光学、磁性、声子和催化活性)。基于力学应变工程,过去的研究优化设计了一系列前所未有的先进功能材料和器件,包括高迁移率芯片、高灵敏度光电探测器、高温超导体、和高性能太阳能电池以及电催化剂等等。尽管对基于应变调控电子输运性能和能带结构等方面进行了广泛研究,但由于单一施加应变梯度而不引入其他混淆因素(例如界面和缺陷)的困难,以及将纳米尺度热输运测量与原子尺度局域声子谱表征相结合的挑战,非均匀应变下的导热机制仍未被系统研究。这尤其令人沮丧,因为精确热管理被视为制约先进芯片和高端设备效率和寿命的关键瓶颈。针对这些挑战,北京大学工学院杨林研究员与北京大学物理学院高鹏教授、杜进隆高级工程师及西安交通大学岳圣瀛教授等人提出了实验探究非均匀应力对导热调控的新策略,他们揭示了均匀应力下不存在的,由应变梯度导致的独特声子谱扩展效应及其对导热的反常抑制现象。通过在自制的悬空微器件上弯曲单个硅纳米带(SiNRs)来诱发非均匀应变场,并利用具有亚纳米分辨率的基于扫描透射电子显微镜的电子能量损失谱(STEM-EELS)技术表征局域晶格振动谱,他们的研究结果显示,0.112%/nm应变梯度将导致热导率(κ)显著降低34±5%,这是先前文献中均匀应变下热导率调制结果的3倍以上(图1)。相关工作以“Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain”为题发表于Nature。图1. 非均匀应力对硅纳米带导热的显著抑制现象。(a)实验测得的(实心符号)和理论模拟的(空心符号)结果表明,在均匀应变下,块体硅和硅纳米线的热导率基本保持不变,而弯曲硅纳米带的测量结果随着应变的增加急剧上升(半填充)。(b)基于悬空热桥微器件的热导率测试原理示意图。(c)高分辨透射电子显微镜显示弯曲硅纳米带的单晶特性。(d)实验测得的弯曲硅纳米带相较于无应力样品的热导率降低百分比为了揭示应变对声子传输的影响,直接测量弯曲硅纳米带的局域声子谱,并表征沿应变梯度声子模式的演变现象是非常必要的。与先前文献中观察到的在异质界面或缺陷周围的EELS峰移不同,运用同时具备亚纳米级空间分辨率和毫电子伏特(meV)能量分辨率的STEM-EELS技术,该工作首次表征了完全受非均匀应变调控的声子模式,揭示了应变梯度下奇特的声子谱扩展效应(图2)。图2. 表征受应变调控的局域声子谱。(a)基于STEM-EELS的局域声子谱表征技术示意图。带有弯折的弯曲硅纳米带HAADF图像(b)和EELS测量区域的放大视图(c)。(d)在不同位置(P1至P5)沿应变梯度测得的TA和TO声子模式的EELS谱。(e)弯曲硅纳米带的HAADF图像。(f)沿电子束移方向TA和TO声子模式的振动谱图。(g)在e中标记的区域沿应变梯度测得的EELS谱线与均匀应变下每个声子支具有的特定单一线条色散关系不同,不均匀应变的存在导致了在给定波矢处的声子频率分布区间(图3)。这种奇特的声子谱扩展效应增加了声子频率的多样性,以满足声子-声子散射的能量守恒约束,因此加速了声子-声子散射率并缩短了声子寿命,引发了一种均匀应变不存在的全新声子散射机制。图3. 声子谱扩展增强声子散射率。(a)受应变梯度调制的声子色散示意图。(b)左侧,硅在不同弹性应变下的声子色散。右侧,应变梯度为0.118% /nm下声子谱扩展引发的声子散射率,τsg−1通过开发跨微米-原子尺度的实验表征技术,并结合第一性原理的理论模拟,该工作为长期以来有关非均匀应变对声子传输影响的难题提供了关键线索。因此,这项研究不仅清楚地揭示了非均匀应变对固体导热的调制机理,而且为基于应变工程的功能性器件的创新设计提供了重要思路。例如,基于应变梯度引起的晶格热导率降低,与此前已证明的载流子迁移率增强之间的协同作用,为开发高性能的热电转换器件提供一种新颖策略。此外,基于非均匀应变调制热导率可实现功能性热开关器件,用于动态控制热通量。杨林和岳圣瀛是该论文的共同第一作者,杨林、高鹏、杜进隆是共同通讯作者。合作者包括东南大学陈云飞课题组、北京大学戴兆贺课题组、北京大学宋柏课题组和美国范德堡大学Deyu Li课题组。北京大学杨林课题组主要研究方向为功能性热材料和器件,包括先进微纳结构设计制造,极端尺度导热微观机理表征与调控,超高温储热技术研发,高性能热功能器件制备。研究成果以第一作者或通讯作者发表于Nature、Nature Nanotechnology、 Science Advances、Nature Communications、Nano Letters等国际顶级期刊。杨林曾入选2021年国家高层次海外青年人才计划,获得2019Nanoscale 年度精选热门文章、2020PCCP年度 精选热门文章等奖项。
  • 无人机 RGB-NIR 导航和 ISR 相机标定的多光谱积分球均匀光源
    图1 无人机RGB CMOS 摄像头无人机 (UAV) 使用 RGB CMOS 摄像头为其驾驶员提供视野,并为其人工智能 (AI) 计算机导航系统提供导航。在大多数情况下,这些摄像头必须“足够好”,驾驶员才能在合理的距离内看到并识别现实生活中的物体。在战术应用和越来越多的自主应用中,RGB 摄像头的连续数据流不仅用于导航,还用作任务期间周围活动的时间记录。这些时间序列视频对于识别场景中的活动非常有用,这些活动为关键决策提供背景和历史记录。图2 UAV(无人机)例如,无人机可以长时间(数小时)观察一个特定区域,并随着时间的推移“看到”人类正在重复进行的活动,这些活动可能意味着监视、行为模式或潜在危险的战术情况。摄像机可以在其分辨率范围内提供很好的缺席或存在记录,但现在,在许多情况下,观察到的场景的颜色和真实渲染成为了主要细节。汽车的真实颜色是什么?衬衫的真实颜色是什么?可能会影响是否找到正确目标的关键细节。持续长时间(8 小时以上)飞行意味着摄像机观察所处的光照条件不是恒定的,因为日光光谱会发生变化,天气条件也可能会改变光照条件。目前,这些RGB相机使用基本的方法(IQPC #)进行测试,该方法是为手机使用设计的,在实际使用条件下,无法呈现真实颜色。为此需要一种更好的方法来测试和验证这些摄像机的显色性,以提高任务视频的保真度并促进更好的决策能力。图3 摄像机商业挑战客户目前正在使用由氙灯照射的 Macbeth ColorChecker 进行辐射颜色校准,如下所示。图4 标准色卡这大致模拟了“日光”照明条件 - 或 D65 (6500K)。该方案无法将较低或较高的色温(黎明、黄昏、阴天)或人造照明条件(路灯、前灯、建筑照明)考虑在内。 较好的解决方案是使用光谱可调积分球光源在实际光谱下照亮这些标准色卡,以验证真实环境条件下的相机性能。具体来说,客户想要在所有相关条件下对这些标准图卡的反射颜色进行光谱测量,然后对相机模拟每一种测量到的颜色。阴天、万里无云的天空、一天中的时间(黎明、黄昏)演变以及各种人为光源,只是测量标准图卡颜色时积分球均匀光源模拟的一部分。图5 标准色卡不同颜色光谱反射率对于客户来说,关键的颜色是Macbeth的颜色红色,绿色,蓝色,青色,黄色,品红,紫色,橙色。我们需要一种具有通用性的仪器来“学习”任何颜色,并快速复制这些光谱,并以绝对校准的x,y色度坐标球作为完整测试的连接点。这位顾客一直认为积分球实际上只能用来做一件事。Labsphere (蓝菲光学)的解决方案图6 蓝菲光学Labsphere积分球均匀光源通过直接控制单个表面的光谱和强度,Labsphere(蓝菲光学) 的 CCS 积分球均匀光源(现升级为Spctra-FT 光谱可调积分球均匀光源)具有许多优势。图7 蓝菲光学积分球均匀光源界面图标准积分球光源系统采用16通道, 光谱“拟合”的改进或光谱范围的增加,可以通过具有更多通道的光引擎来实现。 定制系统采用 24 通道光引擎,并通过选择光源优化所需光谱。 客户只需提供在相关照明下测得的反射光谱。CCS 提供了一个mathematical solver,可以将系统光谱通道拟合为与测量的色谱最接近的光谱和幅度匹配。 解决后,可以非常准确地保存和访问新的测试光谱。 光谱可以在不到一秒的时间内切换,从而能够在宽范围颜色和条件下进行快速测试。优点用于战术和制导摄像机的真实颜色、真实光谱、真实条件验证模拟光谱的准确 x、y、渲染值光谱引擎变化可涵盖可见光谱、400-900nm 或以上光谱solver可在几分钟内导入和创建光谱。热稳定和直流电流稳定的 LED 技术,可提供数千小时的绝对校准操作紧凑外形,便于生产或研发易于对系统进行编程以直接或远程控制光谱之间切换速度快,稳定性1 秒
  • 蓝菲光学发布光度和辐射度校准光源 SPARC新品
    光度和辐射度校准光源 SPARC 设计简洁的SPARC系列均匀光源系统可以快速而准确的对相机和传感器进行平场校正并且可实现从极低到极高等级光度和辐射度响应校准。 SPARC在提供高可靠性的测量的同时拥有良好的用户体验,高动态范围。是高性价比的“交钥匙”级解决方案。一个强大而全面均匀光源系统,用于简单的相机和传感器测试。测试类型 亮度响应 图像验证和校正 均匀度 平场校正 可变CCT校准对象 CCD和CMOS相机 小型遥感设备 电子成像设备 医疗内窥镜 环境光传感器 安防摄像头创新点:一个强大而全面均匀光源系统,用于简单的相机和传感器测试。高动态范围高度均匀光源设计简单易用性价比高光度和辐射度校准光源 SPARC
  • 如何在药物开发中制定有效的粒度标准?
    本文摘要本文将介绍马尔文帕纳科全新升级的激光粒度仪Mastersizer 3000+在药物开发中的部分应用,以及我们是帮助客户如何制定有效的粒度标准?如何在药物开发中制定有效的粒度标准? 制药行业中,原料药的粒度分布可能会对产品的性能 ,如溶解度、生物利用度、含量均匀度、稳定性等,产生显著影响。ICH Q6A指导原则中给出了何时需要制定粒度标准的决策树,建议对固体制剂或含不溶原料药的液体制剂,当粒度大小是以下几方面的关键因素时,需要建立粒度标准。溶出度、溶解度或生物利用度;制剂生产;制剂稳定性;制剂含量均匀度制药行业内最广泛使用的粒度分析技术之一是激光衍射技术,具有广泛适用性,适用于粒径在0.1微米到3500微米范围内的湿法或干法系统。下文将以激光衍射法为例,讨论如何进行粒度标准制订。标准制订-选择合适的粒度指标测量不同粒度指标对样品配方变化的敏感性是作为参数选择的重要依据之一。图1中使用激光衍射法(马尔文帕纳科的Mastersizer)测量混合了不同比例细颗粒的样品,显示了随着细颗粒含量增加不同粒径指标的变化。图1. 不同粒度指标对细颗粒含量的敏感性这个例子中,显然Dv10和D[3,2]只在细颗粒含量占比低于10%时对粒径有相应的敏感性,而Dv90在细颗粒含量高于40%时能反映出粒径的变化。相比之下,Dv50和D[4,3]始终表现出对粒径变化好的表征效果,因此建议采用Dv50和D[4,3]制定粒径控制标准较为合适。标准制订-设定偏差范围激光衍射等技术具有出色的重复性、重现性和稳定性,能够提供高质量的数据。高重复性意味着在相同系统上运行的同一样品获得的结果一致,因此测量结果的好坏更多的取决于样品分散的重现性。重现性是一个更严格的参数,用于量化由操作员、样品、时间和仪器变化引入的误差;采样方法也至关重要。测量误差直接影响标准制定中偏差的设定。图2粒度分布曲线,红色实线是典型读数,黄色和橙色虚线表示偏差范围。如果该产品的标准规定是Dv50 =10 μm,那么图中对应的测量误差是+/- 5%。但是,不能因此就错误的以为小于10 μm的偏差也是该数值。如果标准规定样品中小于或等于10 μm的颗粒累积体积分布百分比为50%,测量误差就是+/-14%。图2 测量精度受指标规定的影响。随着测量误差的增加,测量结果更不可靠。这很容易理解,但在标准制订中并没有充分考虑这一点。以下是一个片剂混合物的标准要求(Evolutions in Direct Compression, Douglas McCormick, Pharmaceutical Technology, April 2005. Pg 52-62):Dv10 30 μm D[4,3] 80 μm Dv90 1000 μm上述标准设定没有考虑到任何由测量引入的误差,只是描述了最理想的结果。参照USP 的要求,中位值Dv50 RSD≤10%,两侧值Dv10和Dv90 RSD≤15%。那么 30 μm样品允许的Dv10最大测量值是34.5 μm(误差15%)。如果想确保样品的实际Dv10大于30 μm,需要调整相应的指标要求。调整后如下:Dv10 34.5 μm D[4,3] 88 μm Dv90 850 μm精度较低的方法则需要制定更严格的粒度标准。因此建议使用重现性更高的仪器和开发更稳定的方法。结论粒度和粒度分布是原辅料及药物颗粒的关键质量属性,直接影响药效,需要严格控制。激光衍射法是一种适用于多种行业的粒度分析技术。经典的马尔文帕纳科Mastersizer 3000激光粒度仪可提供高重现性的结果(+/-1%),避免因测量方法不准确而需要缩小偏差范围。今年马尔文帕纳科推出全新的Mastersizer3000+系列产品,提供更智能、准确的粒度解决方案。感兴趣的老师可观看新品发布回放,了解更多内容。 关注马尔文帕纳科微信公众号,观看回放视频:Mastersizer3000+新品发布(医药行业专场)参考资料https://www.malvernpanalytical.com/en/learn/knowledge-center/whitepapers/wp110325pharmamanufacspecs
  • 王秋良小组研制出无须补充液氦的超导磁体系统
    2月8日,记者从中科院电工研究所获悉,该所王秋良研究组在国家支撑计划支持下,采用多级振动隔离制冷机振动与分离小腔液氦液化回流技术,研制出国际上首台商业化主动冷却零挥发液氦400 MHz核磁共振谱仪磁体系统和10~12T/100mm高稳定度超导磁体系统。  高场及高均匀度超导磁体系统对磁场均匀度和振动有着较高要求,一般需要在中心区域产生达到10~8量级的磁场均匀度,为了达到磁场的高均匀性,需要对系统的振动进行有效约束。对上述两套高场、高均匀度超导磁体系统进行的低温实验表明,在超导磁体产生的磁场强度和均匀度满足设计要求的情况下,磁体系统的振幅减小至0.02~0.1mm量级,完全满足了超导磁体对磁场均匀度和振动方面的苛刻要求。  据介绍,目前我国液氦资源主要依赖美国进口,而中科院电工所研发的两套无须补充液氦、零挥发高磁场磁体技术的系统,标志着我国率先实现了商业化、微弱振动高场、高稳定度超导磁体系统样机的研制,这将在很大程度上降低超导磁体对液氦资源的依赖性,也将进一步扩大超导磁体的应用领域。
  • 溶出度方法学验证的一般内容探讨
    药物的质量研究与质量标准的制定是药物研发过程的重要研究内容之一,贯穿于研发的整个生命周期。在药物质量研究工作中,分析方法学的开发及验证是其重要的组成部分之一。分析方法开发验证的目的是判断所采用的分析研究方法是否科学、合理,能否有效控制药品的内在质量特性,做到质量可控。本文旨在和大家一起交流溶出度方法学验证内容的一般研究思路,如有存在表述不当之处还请各位批评指正。溶出度方法学验证的步骤主要有:1)初步确定分析方法,UV法或HPLC法;2)制定验证的方案,包括前期文献材料调研、验证目的、验证项目及不同项目验证的可接受标准;3)开始验证工作,积累收集数据及相应图谱;4)对验证的结果进行判断,评价分析方法是否通过验证。溶出度方法学验证的项目与其他分析方法基本一致,常规验证项目包括:专属性、线性及范围、准确度、精密度和耐用性等,方法验证的指导原则可参考中国药典、ICH Q2(A/B)、USP通则1225、1226、1092等。1. 专属性专属性系指在其他成分(如杂质、降解产物、空白辅料等)存在时,采用的分析方法能正确测定出被测物的能力。专属性测定环节,应分别分析加有杂质、降解产物等控制成分的样品和实际样品,比较两组测试结果,结果合格的标准应该为:空白溶剂对主峰的检测无干扰,不超过1%;主成分与有关物质完全分离,分离度r≥1.5;峰纯度符合相应规定。辅料对专属性的干扰:空白辅料是指除了活性成分以外的所有辅料和包衣材料,还包括油墨和胶囊壳。具体操作方法可按处方比例配制空白辅料(含油墨或胶囊壳)的混合样品,将该混合样品溶解或分散在溶出介质中,然后向溶液中加入一定量药物,作为供试品溶液,可接受标准为:辅料(包括胶囊壳等基质)对主峰的检测无干扰,不能超过2.0%。对于溶出实验方法而言,还需要特别注意的一点是:取样时所采用的过滤装置,如滤膜、滤头等,必须要经过药物的吸附验证,防止对测定结果产生一定干扰,这一部分应在溶出方法开发阶段做充分论证研究。2. 线性和范围可取对照品适量,按照标准方法配置一系列浓度的溶液。一般操作是在容量瓶中配成一定浓度的储备液,分别精密移取储备液适量,稀释成系列浓度的溶液,通常至少使用5个浓度点(参见1225),1225中说明:对原料或成品药(制剂)的含量测定:一般应在测试浓度的80-120%,该范围是应考虑的最小规定范围,若超出此范围,应有正当理由,主要是根据剂型的特点;对于溶出度试验,应为规定范围的±20%,例如如果是控释制剂,规定1h后达到20%,24h达到90%,它的验证范围应为标示量的0-110%。另外,若线性贮备溶液制备过程中为了增加药物的溶解度,可能会用到有机溶剂,除非经过验证外,有机溶剂的量均不得超过总体积的5%(v/v)。例如取头孢克肟对照品55.37mg,置100ml容量瓶中配置为储备液,然后就依次精密移取稀释成一系列梯度浓度,以浓度为纵坐标,相应峰面积为横坐标进行线性回归,结果表明头孢克肟浓度在0.48-477.84μg/ml范围内,进样量在9.34-9337.66ng范围内,进样量与峰面积呈良好线性关系。3. 准确度准确度即回收率实验。回收率试验目的是考察采用拟定方法测定结果与真实值或参考值接近的程度,且应应在规定的线性范围内进行试验。在回收率实验进行之前,USP1092建议:在回收率实验之前,过滤器、滤膜等对药物的吸附要进行全面评估,同时要设法排除由于仪器的玻璃材质部分对样品吸附而对测定结果造成的干扰影响。具体的实验方法包括:在规定范围内,取同一浓度(相当于100%浓度水平)的供试品,用至少6份样品的测定结果进行评价;或考虑设计至少三种不同浓度,每种浓度至少平行配制3份,用至少9份样品的测定结果进行评价,回收率验证的浓度范围一般要求为限度的±20%。两种分析方法的选定应考虑分析的目的和样品的浓度范围。回收率供试样品溶液配制:按处方比例混合的空白辅料+不同浓度的主成分对照品或原料,再按照拟定的质量标准配制溶液,必要时可超声使主成分溶解。配制溶剂尽量与溶出介质体系一致。如果药物溶解性较差,可以将药物溶解在少量有机溶剂(一般不超过5%)中制备储备液,并用溶出介质稀释到最终浓度。可接受标准一般为:各浓度下的平均回收率应在98%-102%之间,相对标准偏差RSD应不大于2.0%。例如取头孢克肟对照品适量各三份,按照100%比例加入空白辅料,加溶出介质振摇溶解,作为50%、75%和100%供试溶液,回收率结果表明其方法回收率良好。4. 重复性重复性即在同样的操作条件下,在较短时间间隔内,由同一分析人员测定所得结果的精密度。可在规定浓度范围内,取同一浓度(分析方法拟定的样品测定浓度,相当于100%浓度水平)的供试品,用至少6份样品溶液的测定结果进行评价;或设计至少三种不同浓度,每种浓度分别制备至少三份供试品溶液进行测定,用至少9份样品的测定结果进行评价(浓度设定应考虑样品的浓度范围)。实际实验操作中,可能有几种方法,方法一:取6个单独制剂分别测定溶出度,计算RSD,但该方法测定时受制剂个体差异影响比较大,如果测定结果重复性不好,可能是因为制剂含量差异所导致,用该方法时最好是挑选质量较好,例如含量均匀度较好的片剂进行实验;方法二即取供试品1片(粒),置于一个溶出杯中,按照溶出度方法测定,至规定取样点时去处六份供试液分别测定溶出度计算RSD值。结果接受标准为RSD不超过2.0%。例如取头孢克肟颗粒6袋,按照溶出度方法进行溶出,30min取溶出液滤过,进样计算溶出度,结果表明该溶出测定方法重复性良好。5. 中间精密度中间精密度即在同一实验室内的条件改变,如不同时间、不同分析人员、不同设备等测定结果之间的精密度。研究过程中的典型的变化,包括不同天、不同操作人员和设备。USP 1092中建议:可选用同一批次质量特征较好的制剂(如较好的含量均匀度)的溶出试验可以由同一实验室至少两个不同的分析人员进行,每个分析人员制备标准溶液和溶出介质和依据明确的提取和定量步骤进行。通常情况下,分析人员用不同的溶出液、分光光度计或HPLC(包括色谱柱)和自动进样器,在不同天进行试验。可接受标准:USP 1092建议:当该时间点的溶出量小于85%时,两个分析员溶出结果的平均值相差不得超过10%;当该时间点的溶出量大于85%时,两个分析员溶出结果的平均值相差不得超过5%。当然,具体的可接受标准可根据特定产品做具体规定。6. 溶液稳定性溶液稳定性考察的具体时间区间可根据不同的项目需求去做不同的考察。稳定性包括对照品溶液稳定性和供试品溶液稳定性。对照品溶液稳定性:取对照品溶液适量,在室温下放置,分别于不同时间点测定吸光度值,计算其RSD值;供试液稳定性:取自制样品适量,用相应介质制备成供试液,在室温下放置,分别于不同设置时间点测定吸光度值,计算其RSD值。对于UV法测定的供试液,一般稳定性做到24小时即可,缓控释制剂可相对延长时间;对于HPLC法测定的供试液,一般需满足一条溶出曲线所有样品测定完全的时间。如果溶液不稳定,还需要考虑温度(需要冷藏)、避光(透明容量瓶+棕色容量瓶)、以及容器材料(塑料或玻璃)等对稳定性结果的影响。可接受标准一般为:取每时间点的吸光度值,计算其RSD,应不大于2%,则说明该溶液在此时间段内的稳定性良好。7. 耐用性耐用性主要评估溶出条件故意做微小改变时对溶出方法耐用性的影响。对于该实验,最好选用具有较好质量特征(如具有较好含量均匀度)的制剂批次进行,排除制剂个体差异对该结果造成的干扰。HPLC法可根据具体情况考虑流动相组分差异、流速、PH值、色谱柱类型、分离温度、波长等变化对测定结果耐用性的影响;UV测定方法可结合不同项目溶出度方法的具体情况对表面活性剂浓度、pH值、溶出介质是否脱气处理、转速、温度、体积、取样时间、不同型号品牌的溶出仪等进行方法的耐用性研究,对比溶出条件的微小变化对产品测定结果的影响。例如若选择的溶出介质是缓冲液介质体系或是含有表面活性剂的介质体系,需要做pH值变化、表面活性剂浓度变化对溶出速度的影响,以确定溶出介质的耐用性。根据品种特点考察耐用性,推荐但不仅限于上述变动条件。8. 溶出均一性溶出均一性试验包括批内均一性和批间均一性。这两项指标既能检验药品本身质量特性是否符合规定,同时也可以检验溶出方法是否满足准确性、精确性良好的要求。批内均一性可取同一批次产品的6或12个剂量单位测定溶出曲线,计算各取样时间点的RSD值。其中,早期的一些取样时间点(如5min),要求RSD≤20%;其他时间点,要求RSD≤10%。批间均一性:取不同批次产品的6或12个剂量单位测定溶出曲线,比较各批次的溶出曲线是否相似。综上,溶出方法验证的一般项目基本如上几项,当然并不局限于该些项目,具体的验证项目及可接受标准可根据产品自身特点所设定。参考文献:[1]. 《中国药典》2020年版四部9101:分析方法验证指导原则[2]. USP通则 1092、 1225 [3]. 山广志,药物制剂质量研究——方法选择与验证[4]. 胡利敏,杨丽,头孢克肟颗粒溶出曲线方法学验证[J]. 中国抗生素杂志,2017,5(42):373-376.
  • 中国科大利用火星上的波动观测对合声波激发理论模型进行测试
    合声波是广泛存在于地球和其他行星磁层中的一种电磁波动。将合声波的电磁信号转化为声音后听起来像清晨群鸟的合唱声,因而得名合声波。合声波能够通过共振的方式加速空间中的高能电子,在磁暴活动期间引发地球辐射带电子通量的快速上升;同时,合声波能够将空间中的高能电子散射到大气层中,形成弥散和脉动极光现象。   合声波的特征之一是其频谱通常呈现出窄带的快速扫频结构。该扫频结构的激发机制引起了人们的兴趣,科学家对此提出了多种理论模型。然而,关于合声波为何会出现扫频以及如何计算扫频率的问题存在争议。其中,一个主要争论点是背景磁场的不均匀度是否在合声波的扫频中起到关键作用,以及这种不均匀度如何影响合声波的扫频现象。此前,中国科学技术大学队提出的合声波“Trap-Release-Amplify”(TaRA)模型基于现代等离子体物理理论,认为磁层中合声波的扫频是非线性过程与背景磁场不均匀度共同作用的结果,并提供了相应的扫频率计算公式。然而,地球磁层中的磁场不均匀度变化有限,无法在更大的参数空间内对TaRA模型开展测试。   火星与地球之间存在不同的磁场环境:地球拥有全球性的类偶极磁场,而火星则只存在局地的岩石剩磁。在火星的剩磁环境中,MAVEN卫星也曾观测到类似合声波事件。图1展示了在火星和地球上观测到的波动事件以及相应的背景磁力线轨迹。研究通过计算发现,火星与地球的背景磁场不均匀度相差了五个数量级。对比研究地球和火星上的波动事件,可在更加极端的条件下测试此前所提出的TaRA模型。   本研究基于MAVEN卫星对火星粒子分布的观测,结合相应的火壳剩余磁场模型,采用基于第一性原理的粒子模拟方法,重现了火星上观测到的类合声波动现象。研究通过对粒子相空间分布的分析,确认了这种波动的扫频过程与地球上的合声波一致,即均由非线性过程引发。此外,该研究进一步使用TaRA模型提供的两种不同方法来计算合声波的扫频率,并将其与观测和模拟结果进行对比。研究发现,基于非线性过程和背景磁场不均匀度计算出的扫频率与模拟结果之间存在高度一致性。研究表明,尽管火星和地球拥有不同的磁场和等离子体环境,但在火星上观测到的类合声波动与地球磁层中的合声波动遵循相同的基本物理过程。同时,本研究还在磁场不均匀度相差五个数量级的极端条件下验证了TaRA模型所描述的扫频基本物理过程的广泛适用性。这一发现不仅确认了火星上存在合声波动,而且为在极端条件下验证和应用TaRA模型提供了重要支持。   相关研究成果以Whistler mode chorus waves at Mars为题,发表《自然-通讯》(Nature Communications)上。日本京都大学、美国加州大学洛杉矶分校、意大利ENEA非线性等离子体物理中心及浙江大学的科研人员参与研究。研究工作得到中国科学院类地行星先导专项、国家自然科学基金和中央高校基础研究经费的支持。火星和地球上的磁力线位型以及观测到的合声波频率-时间谱图
  • 如何应对药企更高准确度、更高生产效率、更高质量的片剂检测要求?
    7月25日,国家药监局批准河南真实生物阿兹夫定片用于治疗新冠肺炎适应症注册申请,并于8月11日成为首个获批上市的国产新冠*药,目前已被纳入医保。根据2020年版《中国药典》要求,批准上市后的药品投入生产后,每一批次都需要做QC质检,以保证药品的质量。那么,作为片剂的阿兹夫定,硬度值的测定当然也必不可少! 为什么要检测片剂硬度?片剂硬度片剂硬度,又称药片断裂力,用于检测片剂在储存、运输和使用前的断裂点和结构完整性。是保证药片质量的检测项目之一。那么为什么要检测片剂硬度呢?药品作为一种特殊的商品,其质量直接危及病人的生命和健康,因此药品的质量检测是药品质量的可靠保证。而片剂是药品中常用的剂型之一,在2020年版中国药典中,片剂已占全部制剂的40%以上,而且药典中充分阐明了片剂在生产与贮藏期间应符合的规定,确立了片剂的重量差异、崩解时限、溶出度或释放度、含量均匀度等检查方法。对保证片剂的质量至关重要。 片剂除应保证以上指标外,还应有适宜的硬度,以便完整成型,符合片剂外观的要求且不易脆碎。片剂的硬度涉及片剂的外观质量和内在质量,硬度过大,会在一定程度上影响片剂的崩解度和释放度,因此,在片剂的生产过程中要加以控制。随着我国片剂的研究和生产的现代化。片剂硬度的检测已列为压片工序非常重要的检测项目之一。片剂硬度检测的发展趋势片剂检测已经列为重要检测项目,因此药企在生产过程中也越来越重视这方面的检测,且随着片剂生产规模的越来越大,药企对片剂硬度检测仪也提出了更高的要求,其不仅要求硬度检测仪精度高,质量好,而且对生产效率要求更高。面对新的市场需求,智能片剂硬度仪日渐走向药企,其以测量精度高,速度快,使用方便等优势受到制药厂、医药教研、药检部门等单位的欢迎。全自动片剂测试仪满足现代药企需求那么针对现阶段药企更高准确度、更高生产效率、更高质量的检测要求,Pharma Test 全自动片剂测试仪WHT 4可以:1、同时测试硬度,质量,厚度和直径Pharma Test 全自动片剂测试仪WHT 4同时测试硬度,质量,厚度和直径,高效且*。质量:统一的质量、有效成分含量的均匀性厚度:物性上的一致性、检查药片膨胀情况、厚度可能影响到包装;直径:物性上的一致性、片剂长短均可能影响包装;硬度:较软的片剂在运输过程中可能会解体、较硬的片剂可能会破碎、影响吞咽后片剂的崩解时间; 2、适合所有形状的药片检测Pharma Test 全自动片剂测试仪WHT 4具备独特的*Flap机械结构,适合所有形状的药片检测(圆形、椭圆形,三角形,菱形等),可准确对齐各种类型片剂,且不需要额外的工具;3、满足在线和离线检测WHT 4-SM 多批次自动进样器可用于10种样品的离线检测,而WHT 4-SM1单批次自动进样器则可以搭配压片机进行在线检测,同时具备自检功能 搭配WHT 4-SM多批次自动进样器 搭配WHT 4-SM1单批次自动进样器4、集成PC和WHT32软件,方便数据处理Pharma Test 全自动片剂测试仪WHT 4集成PC和软件,无需担心软件适配与后期升级,而且WHT32软件可以实时显示测试数值以及统计结果,并可通过图表的形式来展现。
  • 全自动在线稀释型乌氏黏度仪在pvdf领域的应用
    聚偏氟乙烯(PVDF)材料是一种高度非反应性热塑性含氟聚酯,独有的链式结构让PVDF具有较高的介电性能,被广泛应用于新能源锂电池隔膜、电极粘结剂、光伏、涂料、水处理膜等领域之中。“特性黏度“是PVDF材料品控环节中的重要技术指标之一,根据相关标准,将PVDF材料完全溶解于有机溶剂制成稀溶液,再经乌氏粘度仪自动测量并计算得出相应指标。一些企业或研究机构会采用稀释外推的方法测试PVDF的”特性黏度”测试的流程相较于“一点法”更繁琐复杂。由杭州卓祥科技有限公司自主研发生产的IV8000X系列全自动在线稀释型乌氏粘度仪,适合聚丙烯酰胺(PAM)、聚偏氟乙烯(PVDF)、纤维素、碳纤维、聚乳酸、聚丙烯酸(PAA)等聚合物通过外推法测量黏均分子量、极限黏数(特性黏度)、聚合度测定;还可用于新型高分子材料聚合物的研发及实验分析方法的建立。IV8000X系列全自动在线稀释粘度仪可实现自动连续测量、在线自动连续稀释样品、自动混匀、自动清洗/干燥,在多次测量及清洗干燥整个测试过程中无需人员看管,能有效的节约时间和人力成本。IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动粘度仪:1 具有更高的温控精度以及均匀度:由杭州卓祥科技有限责任公司所研发的HCT系列高级度恒温浴槽的温控精度优于“±0.01℃”,使实验得出的数据更精准,数据重复性更稳定。2 实验流程更安全:杭州卓祥科技有限公司自主研发生产的IV8000X系列全自动在线稀释型乌氏粘度仪,可实现多次自动测试和自动清洗干燥的功能,减少操作人员在实验过程中接触有机试剂,让实验流程更安全。 3 操作更简便: 在整个特性黏度的测量流程中,由IV8000X系列全自动在线稀释型乌氏粘度仪替代人工完成大多数操作,有以下优势:1特殊的检测方式,采用不锈钢铠装光纤,可满足测量不同颜色的样品,耐腐蚀,且使用寿命长。 2独有的自动在线稀释技术,无需人工多次重复配样,仪器可自动完成测试-稀释-混匀-测试的循环过程。3仪器自动排废液、清洗并干燥黏度管,黏度管无需从浴槽中取出,黏度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。4 独特的清洗干燥模式,采用高压脉冲往复式的清洗方式和带温吹气干燥,可有效减少试剂消耗并缩短清洗和干燥流程所耗费的时间。
  • 苏州医工所在低成本桌面磁共振波谱仪研究中取得进展
    p style="line-height: 1.5em "  核磁共振波谱(NMR)技术已被广泛应用于生命科学、医学、化学、工业等领域。然而,目前NMR技术的主要应用都是基于超导磁体的高场波谱仪,其场强最高可达11T。然而由于超导磁体需要液氦冷却,其重量、体积以及维护成本等约束了NMR的使用,特别是在一些对于体积要求比较小、可移动、可实时在线检测的场景。比如部分化学合成、催化实验中需要实时监测反应结果 在工业非侵入检测质量控制中,需要高通量检测等。在这些场景下,常用的超导NMR的使用受到限制,因此桌面小型NMR的研究有广泛的开发和应用前景。/pp style="line-height: 1.5em "  目前国外对于桌面小型波谱技术开展研究比较多。2010年德国Danieli等人设计了基于HALBACH磁体的0.7 T的桌面NMR系统,其磁体均匀度可以达到0.15 ppm,并将其应用在化学反应实时监测上。2008年,哈佛大学的Lee等人成功研制了片上NMR系统,磁场强度0.5 T,用于高通量细胞分子分析。国内开展的相关研究较少,且主要集中在低场、低均匀度、驰豫测量的应用。其磁体强度小于0.5 T,均匀度高于50 ppm,谱分辨率比较低。/pp style="line-height: 1.5em "  近日,中国科学院苏州生物医学工程技术研究所医学影像室杨晓冬、郁朋等人,研究了一种基于Halbach磁体的低成本紧凑型小型核磁共振系统。该系统具有结构紧凑和场强高的优势。考虑到制造和组装磁性块的成本,系统采用3层Halbach磁体和楔形机械结构用于磁体快速组装。初始磁场强度分布的仿真和计算结果的比较表明,设计理论和实践相吻合。在使用两个磁性块和钨钢片进行无源被动匀场后,在同一区域内均匀性达到120 ppm,开发并测试了具有数字调制和解调功能的紧凑型单板数字化磁共振谱仪以实现结构紧凑和改善信噪比,并使用自制探头进行波谱实验,在直径为1.5 mm,长度为1 mm的圆柱区域内,波谱半高宽达到20 ppm,达到国内领先地位。系统紧凑的结构和低成本的优势将促进和扩展桌面核磁共振系统在各领域内的应用,具有重要的意义。/pp style="line-height: 1.5em "  相关成果发表于Journal of Magnetic Resonance(PengYu,Yajie Xu,Zhongyi Wu,Yan Chang,Qiaoyan Chen, Xiaodong Yang *, A Low-cost home-built NMR using Halbach magnet, Journal of Magnetic Resonance, 21,July,2018)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1224f644-6c53-4782-9ecc-0c21aaf1c208.jpg" title="W020180727384251385456.jpg"//pp style="text-align: center "基于Halabch磁体的桌面波谱仪及其匀场结构示意图/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/4d9b8836-3b6a-424d-aeea-042326bda229.jpg" title="W020180727384251465853.jpg"//pp style="text-align: center " (a)z =0平面5mm长度正方体磁场分布,场均匀度为576ppm;(b)使用磁块匀场后磁场分布图,均匀度达到350ppm (c)增加钨钢片匀场后磁场分布图,均匀度达到120 ppm/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/86c5c0c6-9809-4054-bc32-64fbb4c9e6c9.jpg" title="W020180727384251546164.jpg"//pp style="text-align: center "(a)单板磁共振数字化谱仪;(b)自制磁共振波谱探头/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/6dfe0ceb-83f8-4e70-aae3-68b57f00516d.jpg" title="W020180727384251620116.jpg"//pp style="text-align: center "(a)数字解调后的FID信号波形;(b)水样本的波谱频率图/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制