当前位置: 仪器信息网 > 行业主题 > >

抗生素克拉霉素

仪器信息网抗生素克拉霉素专题为您整合抗生素克拉霉素相关的最新文章,在抗生素克拉霉素专题,您不仅可以免费浏览抗生素克拉霉素的资讯, 同时您还可以浏览抗生素克拉霉素的相关资料、解决方案,参与社区抗生素克拉霉素话题讨论。

抗生素克拉霉素相关的论坛

  • 头孢类抗生素和青霉素类的关系

    在GMP法规中,对一些药物的生产厂房设施做出了特殊的规定,跟小伙伴儿们分享一下,青霉素类和头孢类两者之间有没有本质的区别。抗生素是由微生物(包括细菌、真菌、放线菌属)产生、能抑制或杀灭其他微生物的物质。抗生素分为天然品和人工合成品,前者由微生物产生,后者是对天然抗生素进行结构改造获得的部分合成产品,头孢是属于抗生素类。这两者都属于β-内酰胺类抗生素。头孢菌素类(Cephalosporins)是由冠头孢菌培养液中分离的头孢菌素C,经改造侧链而得到的一系列半合成抗生素。其抗菌谱广,对厌氧菌有高效;引起的过敏反应较青霉素类低;对酸及对各种细菌产生的β-内酰胺酶较稳定;作用机理同青霉素,也是抑制细菌细胞壁的生成而达到杀菌的目的.属繁殖期杀菌药。(头孢菌素是青霉素近源的头孢菌属的真菌发酵液离而来。)青霉素一般是静脉滴注的,药效强,但抗菌谱窄,且半衰期短。1.笫一代头孢菌素第一代头孢菌素是60年代初开始上市的。从抗菌性能来说,对第一代头孢菌素敏感的菌主要有β-溶血性链球菌和其他链球菌、包括肺炎链球菌(但肠球菌耐药),葡萄球菌(包括产酶菌株)、流感嗜血杆菌、大肠杆菌、克雷伯杆菌、奇异变形杆菌、沙门菌、志贺菌等。不同品种的头孢菌素可以有各自的抗菌特点,如头孢噻吩对革兰阳性菌的抗菌作用较优,而头孢唑林则对某些革兰阴性菌有一定作用。但是,第一代头孢菌素对革兰阴性菌的β-内酰胺酶的抵抗力较弱,因此,革兰阴性菌对本代抗生素较易耐药。第一代头孢菌素对吲哚阳性变形杆菌、枸橼酸杆菌、产气杆菌、假单胞菌、沙雷杆菌、拟杆菌、粪链球菌(头孢硫脒除外)等微生物无效。本代抗生素中常用品种有头孢唑林、头孢氨苄、头孢拉定、头孢羟氨苄、头孢克罗等。其中除头孢唑林只能供注射外,其他的均可用于口服,也称口服头孢。头孢噻吩、头孢噻啶、头孢来星、头孢乙腈、头孢匹林等均已少用或不用。 2.笫二代头孢菌素第二代头孢菌素对革兰阳性菌的抗菌效能与第一代相近或较低,而对革兰阴性菌的作用较为优异,表现在:(l)抗酶性能强一些革兰阴性菌(如大肠杆菌、奇异变形杆菌等)易对第一代头孢菌素耐药。第二代头孢菌素对这些耐药菌株常可有效。(2)抗菌谱广第二代头孢菌素的抗菌谱较第一代有所扩大,对奈瑟菌、部分吲哚阳性变形杆菌、部分枸橼酸杆菌、部分肠秆菌属均有抗菌作用。第二代头孢菌素对假单胞属(铜绿假单胞菌)、不动杆菌、沙雷杆菌、粪链球菌等无效。临床应用的第二代头孢菌素主要品种有头孢孟多、头孢西汀(美福仙),头孢呋新(西力欣),头孢克罗等。3.笫三代头孢菌素第三代头孢菌素对革兰阳性菌的抗菌效能普遍低于第一代(个别品种相近),对革兰阴性菌的作用较第二代头孢菌素更为优越。(1)抗菌谱扩大第三代头孢菌素的抗菌谱比第二代又有所扩大,对铜绿假单胞菌、沙雷杆菌、不动杆菌、消化球菌、以及部分脆弱拟杆菌有效(不同品种药物的抗菌效能不尽相同)。对于粪链球菌、难辨梭状芽胞杆菌等无效。(2)耐酶性能强对第一代或第二代头孢菌素耐药的一些革兰阴性菌株,第三代头孢菌素常可有效。常用有:头孢哌酮(先锋必素)、头孢三嗪(罗塞秦、菌必治)、头孢噻肟钠、头孢他啶、头孢唑肟等。 4.笫四代头孢菌素第三代头孢菌素对革兰阳性菌的作用弱,不能用于控制金黄色葡萄球菌感染。近年来发现一些新品种如头孢匹罗(Cefpirome)等,不仅具有第三代头孢菌素的抗菌性能,还对葡萄球菌有抗菌作用,称为第四代头孢菌素。关于第一至第四代的划分不仅适用于头孢菌素,其他的一些β-内酰胺抗生素也可按此分代。常用有拉他头孢、头孢匹罗、氨曲南等。1.青霉素和头孢菌素都属于β-内酰胺类抗生素。2.青霉素是青霉菌培养液中提取精致获得的,是一种窄普抗生素,其基本结构是母核6--氨基青霉烷酸(6-APA),其中β--内酰胺环对抗菌活性起重要作用。3.头孢菌素是一类来自头孢菌的广谱抗生素。4.头孢菌素和青霉素类都具有相同的β-内酰胺环,所不同的是头孢菌素系7--氨基头孢烷酸(7--ACA)的衍生物,青霉素由6--氨基青霉烷酸(6-APA),两者的区别只是青霉素母核中五元噻唑环换成头孢菌素的六元双氢噻嗪环。

  • 【转帖】国内抗生素研发的几个误区。

    随着我国市场经济的深入发展和药物研发能力的不断提高,每年向国家食品药品监督管理局申报的抗生素新品种的数量始终保持在较高的水平上,一方面为感染性疾病的治疗提供丁较多的手段,但另一方面,在经济效益的驱动下,我国新抗生素研发方面还存在以下几个误区:1.抗生素复方制剂的合理性有待进一步研究①磺胺增效剂——甲氧苄嘧啶(TMP)与非磺胺类抗生素组方磺胺类药物主要抑制了细菌的二氢叶酸(DHFA)的合成,而TMP则抑制了二氢叶酸还原酶(DHFR)的活性,进一步阻止了四氢叶酸(THFA)的合成,由于两者从不同途径同时阻断了细菌的叶酸代谢系统,故TMP起到了磺胺增效作用。但我国在抗生素复方制剂的研发过程中,把TMP作为万能抗菌增效剂,出现了TMP加头孢氨苄、TMP加四环素、TMP加庆大霉素、甚至TMP加黄连素等不合理的复方制剂。②β-内酰胺类酶抑制剂,如克拉维酸钾、舒巴坦钠和三唑巴坦钠,与各种头孢菌素的复方制剂不宜随意组合,应从各种头孢菌素固有抗菌谱及半衰期与酶抑 制剂的半衰期、毒性大小和两者的最佳配比去考虑组方的合理性。但现在却有开发各种头孢菌素与β-内酰胺类酶抑制剂的复方制剂如:头孢呋辛钠与舒巴坦钠、头孢曲松钠与三唑巴坦钠或舒巴坦钠,未从抗菌谱和两者的半衰期的差别予以全面考虑。

  • 美国药典有关抗生素品种法定标准简介

    1 各版药典抗生素品种的增修订情况 抗生素品种在近五版药典中均有增修订,新增抗生素品种18个,修订抗生素品种48个。1.1 新增品种18个新增的抗生素品种包括原料和制剂,其中复方制剂较多。1.2 修订品种及特点1.2.1 方法趋于合理(1)含量测定由微生物法修订为HPLC法 USP28版增修订硫酸奈替米星(netilmicin sulfate)、苄星头孢匹林(cefapirin benzathine)和头孢匹林钠(cefapirin sodium)。(2)热原检查修订为细菌内毒素检查 USP29版修订环丙沙星(ciprofloxacin)和环丙沙星注射液(ciprofloxacin injection)。(3)重金属测定法由方法I修订为方法II USP28版修订头孢泊肟酯(cefpodoxime proxetil)。(4)干燥失重法修订为卡氏水分测定法 USP27版修订氨苄西林(ampicillin)。1.2.2 有关物质或纯度控制趋于严格 有关物质检查不仅针对原料药,制剂的有关物质控制也成为主要的修订内容,并且包括对已知杂质、单个未知杂质和总杂质的控制。(1)头孢克洛胶囊(cefaclor capsules),USP27版控制单个杂质0.5%,总杂质2.0%。(2)阿奇霉素(azithromycin),USP27版增加控制去氧氨基已糖阿奇霉素0.3%,N-甲基阿奇霉素0.7%,单个未知杂质1.0%,总杂质3.0%。(3)硫酸奈替米星(netilmicin sulfate),USP28版增加控制单个杂质1%,总杂质5%。(4)妥布霉素吸入溶液(tobramycin inhalation so-lution),USP27版增加色谱纯度,控制已知杂质和单个未知杂质和总杂质。1.2.3 严格限定试验溶液的使用 USP28版针对利福平对照溶液的不稳定性,在利福平和异烟肼胶囊(rifampin and isonazid capsules)、利福平、异烟肼和吡嗪酰胺片(rifampin,isoniazid and pyrazinamide tablets)及利福平、异烟肼、吡嗪酰胺和乙胺丁醇片(rifampin,isoniazid,pyrazinamide and ethambutol hydrochloride tablets)的含量测定中,增加对利福平对照溶液应在10min内用完的要求。1.2.4 对不同规格和用途的制剂检查限度不同(1)USP26版修订阿莫西林克拉维酸钾片的水分限度 含阿莫西林250mg以下片剂,限度7.5%;250~500mg之间,限度10.0%;500mg以上,限度11.0%;阿莫西林克拉维酸钾咀嚼片,含阿莫西林125mg以下,限度6.0%;125mg以上,水分限度8.0%;兽用阿莫西林克拉维酸钾片,限度10.0%。(2)USP26版修订阿莫西林克拉维酸钾片溶出度限度 30min时阿莫西林溶出量不低于85%,克拉维酸钾溶出量不低于80%;阿莫西林克拉维酸钾咀嚼片,45min时阿莫西林溶出量不低于80%,克拉维酸钾溶出量不低于80%。(3)USP28版修订了注射用青霉素G钾(peni-cillin G potassium for injection)的pH值限度 pH值为5.0~7.5或6.0~8.5(含柠檬酸钠)。1.2.5 口服混悬剂根据包装规格确定检查项目 USP28版修订阿莫西林和克拉维酸钾干混悬剂(amoxicillin and clavulanate potassium for oral sus-pension)、克拉霉素干混悬剂(clarithromycin for oral suspension)、地美环素干混悬剂(demeclocyline oral suspension)和硫酸新霉素口服液(neomycin sulfate oral solution)的检查项,若为单剂量包装,则检查含量均匀度(uniformity of dosage units),若为多剂量包装,则检查最低装量(deliverable volume)。1.2.6 结晶型和无定型的区分 USP28版修订盐酸多柔比星(doxorubicin hydrochloride)的结晶性检查项,规定若标示为无定型的,则可不呈此现象。USP26版对头孢呋辛酯片(cefuroxime axetil tablets)标签的修订:应标记为无定型或结晶型,若为两者的混合物,则应标示其百分含量。1.2.7 阿奇霉素不同分子结晶水的水分限度不同 由于阿奇霉素有一水物和二水物,USP28版修订其水分限度,由原来未区分结晶水的一个限度4.0%~5.0%细分为限度4.0%~5.0%(二水物)和1.8%~4.0%(一水物)。若水分测定值在4.0%~6.5%范围,但样品标示为阿奇霉素一水物,可进行下列热分析试验:在室温~150℃测定其温度与重量变化曲线,在70℃和130℃两个拐点处通过一阶导数计算其在室温~70℃和70℃~130℃范围失重的百分率,在室温~70℃失重应小于4.5%,在70℃~130℃失重应为1.8%~2.6%的为阿奇霉素一水物。1.2.8 限度精确度的修订 USP28版将地美环素片(demeclocycline hydrochloride tablets)的干燥失重限度从2.0%修订为2%。1.2.9 对储藏条件更加严格 USP26版增加氨苄西林片(ampicillin tablets)和头孢克洛缓释片(cefaclor extended-release tablets)的储藏条件,除了避光外,应储存在控制温度的房间。USP28版规定盐酸多柔比星(doxorubicin hydrochloride)无定型样品的贮藏条件应在零度以下。1.2.10 溶出度方法的修订 阿莫西林胶囊(amoxi-cillin capsules)的溶出度测定方法在USP25版中按不同规格分为两种方法,对250mg胶囊采用仪器1法,转速100r/min;对500mg胶囊采用仪器2法,转速75r/min。虽然在USP26、USP27版和USP28版曾取消了后一种方法,但在USP29版又恢复。1.2.11 HPLC理论板数的修订 USP27版修订利 福平、异烟肼、吡嗪酰胺和乙胺丁醇片(rifampin,isoniazid,pyrazinamide and ethambutol hydrochlo-ride tablets)含量测定项中利福平峰的理论板数,由50000降低为15000。

  • 【讨论】乳制品中青霉素类抗生素的检测

    大家做过乳制品中青霉素类抗生素的谈谈自己的经验以及遇到的各种问题,是用的那种方法,对GB/T 21315-2007 动物源性食品中青霉素族抗生素残留量检测方法-液相色谱-质谱质谱法以及GB/T 22975-2008牛奶和奶粉中阿莫西林、氨苄西林、哌拉西林、青霉素G、青霉素V、苯唑西林、氯唑西林、萘夫西林和双氯西林残留量的测定-液相色谱-串联质谱法这两种方法的检测有什么看法,回收率怎么样?基质干扰明显嘛?样品测定液干净吗?大家共同来探讨一下,分享经验,共同进步!

  • 【抗生素与抗菌药、各类抗菌药物简介】

    抗生素是否等于抗菌药?是抗生素包含抗菌药,还是抗菌药包含抗生素?许多行业内人士也说不清楚,那么,到底二者是怎么回事呢?  抗生素和抗菌药都是指一类抑制或杀灭微生物或细菌的药物,在日常生活和临床使用中,这两个名词常被混用,但人严格的专业角度讲,这两个名词是有明显区别的。  抗生素(an-tibiotics)原意是指这样的一种化学物质,它由某种有机体(一般来说是某种微生物)所产生,,在稀释状态下,对别种微生物有抑制或杀灭作用。抗生素依据它们的作用对象以及功能的不同,可分为抗细菌作用、抗病毒作用、抗真菌作用等。比如由青霉菌属所产生的青霉素,以及头孢菌素、链霉素等是抗细菌的抗生素;治疗单纯性疱疹的阿糖腺苷是抗病毒的抗生素药;两性霉素B既有抗原生动物感染的抗生素。  抗菌药(antibacte-rials)是指一类对细菌有抑制或杀灭作用的药物,除部分抗生素外,还包括合成的抗菌素,比如磺胺类、喹诺酮类等。青霉素、链霉素等抗细菌作用的抗生素也是抗菌药。  抗生素和抗菌药都是化疗药品,同属于抗微生物类药(an-timicrobial drugs)或抗感染药(anti-infective drugs)。  抗生素是抗菌药不太恰当的旧称。  虽是如此,国内外都有人认为,如此将抗生素和抗菌药进行严格区分已无多大意义,因为原来来源于微生物的抗生素现在大都来源于人工合成或半合成,因此主张凡是抑制细菌生长繁殖或杀灭细菌的药物都可称之为抗生素或抗菌药,比如不列颠百科辞典就把喹诺酮类列为抗生素(antibiotics)。但早期抗菌药磺胺类一般按习惯仍称为抗菌药,而不称抗生素。  也有人主张,只要母体结构与自然抗生素相近,不论天然、合成还是半合成抗微生物药,都可称为抗生素,否则为非抗生素。 “抗菌药(antibacte-rials)是指一类对细菌有抑制或杀灭作用的药物,除部分抗生素外,还包括合成的抗菌素,比如磺胺类、喹诺酮类等。青霉素、链霉素等抗细菌作用的抗生素也是抗菌药。”请问:除了青霉素和链霉素,哪些抗生素也可以叫作抗菌药抗生素(Antibiotics)及分类 指由细菌、霉菌或其它微生物在生活过程中所产生的具有抗病原体或其它活性的一类物质。自1940年以来,青霉素应用于临床,现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。其分类有以下几种: (一)β-内酰胺类青霉素类和头孢菌素类的分子结构中含有β-内酰胺环。近年来又有较大发展,如硫酶素类(thienamycins)、单内酰环类(monobactams),β-内酰酶抑制剂(β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。 (二)氨基糖甙类 包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。 (三)四环素类 包括四环素、土霉素、金霉素及强力霉素等。 (四)氯霉素类 包括氯霉素、甲砜霉素等。 (五)大环内脂类 临床常用的有红霉素、白霉素、无味红霉素、乙酰螺旋霉素、麦迪霉素、交沙霉素等。 (六)作用于G+细菌的其它抗生素,如林可霉素、氯林可霉素、万古霉素、杆菌肽等。 (七)作用于G菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、利福平等。 (八)抗真菌抗生素 如灰黄霉素。 (九)抗肿瘤抗生素 如丝裂霉素、放线菌素D、博莱霉素、阿霉素等。 (十)具有免疫抑制作用的抗生素如环孢霉素。

  • 【资料】【转帖】抗生素(Antibiotics)及分类

    抗生素(Antibiotics)及分类指由细菌、霉菌或其它微生物在生活过程中所产生的具有抗病原体或其它活性的一类物质。自1940年以来,青霉素应用于临床,现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。其分类有以下几种:   (一)β-内酰胺类青霉素类和头孢菌素类的分子结构中含有β-内酰胺环。近年来又有较大发展,如硫酶素类(thienamycins)、单内酰环类(monobactams),β-内酰酶抑制剂(β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。   (二)氨基糖甙类 包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。   (三)四环素类 包括四环素、土霉素、金霉素及强力霉素等。   (四)氯霉素类 包括氯霉素、甲砜霉素等。   (五)大环内脂类 临床常用的有红霉素、白霉素、无味红霉素、乙酰螺旋霉素、麦迪霉素、交沙霉素等。   (六)作用于G+细菌的其它抗生素,如林可霉素、氯林可霉素、万古霉素、杆菌肽等。   (七)作用于G菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、利福平等。   (八)抗真菌抗生素 如灰黄霉素。   (九)抗肿瘤抗生素 如丝裂霉素、放线菌素D、博莱霉素、阿霉素等。   (十)具有免疫抑制作用的抗生素如环孢霉素。

  • 【你知道抗生素泛滥吗】

    21世纪的今天,由于抗生素的滥用,中国每年有8万人丧生,年损失800亿,全球每年15万人因为滥用抗生素而死亡;而对于很多耐药性细菌目前世界上无药可治,看到这些,你不觉得细菌耐药性给人类生存带来了很大的威胁吗?自从1929年弗莱明发现青霉素,1941年Florey Chain Heatley等用青霉素粗制品治疗感染性疾病,从此人类便开始了与细菌感染性疾病斗争的新时代,而恰恰在20世纪40年代许多因为细菌感染导致的严重疾病得到了有效的治疗。随着青霉素的广泛使用,慢慢地,金黄色葡萄球菌的耐药性迅速增加,为了解决这一问题,在1961年,半合成甲氧西林诞生了,这种新型抗生素的问世,一时间让金黄色葡萄球菌感染的疾病得到了有效的治疗,可是不久之后,耐甲氧西林金黄色葡萄球菌(MRSA)出现了,让这种菌感染引起的疾病又再次爆发起来,后来万古霉素的出现再次将金黄色葡萄球菌扼杀在深渊之中。但是20世纪90年代,又相继有报道发现耐万古霉素的金黄色葡萄球菌的菌株,可见人类一直在同不同种类的耐药细菌战斗着,人类开发新型抗生素,抑制或者杀灭致病细菌,可是细菌在最短的时间内予以反应,随即便会有耐药菌株的出现,于是人类继续开发,细菌继续对抗着,如此下去,一直循环着……如今,细菌耐药性在全世界范围内都非常严重,面对这样的问题,我们该何去何从?哪里才是我们的出路? 我们都知道,抗生素是战胜细菌感染疾病的良药。自从青霉素开创了抗生素药物的市场后,大量针对不同致病细菌的抗生素类药物问世。然而,我们在这场持久战中似乎越来越不利,35年来,只有一类新型抗菌药物问世,那就是辉瑞公司的Zyyox,现在的医学界比任何时候更需要新型抗生素来抵御无法无天的耐药细菌,由于非常多的细菌对目前市场上有抗生素都有了耐药性,在美国每年有成千上万的人死于肺结核和葡萄球菌感染,当病人感染了导致肺炎、脑膜炎和中耳炎的链球菌后,大约1/3对青霉素产生了耐药性,而一种新抗生素的出现,往往能使人类免于一场世界性的灾难。如今,抗生素耐药性被广泛认为是一个重要的健康危机,因此我们更需要制药行业格外关注并采取相应的行动开发出新型的抗生素;然而,近几十年来,抗生素一直被众多制药公司所忽视,大多数制药公司更关注利润更大的慢性疾病药物市场。不过近日,有些制药公司对抗生素开发恢复了兴趣,也增加了投入,有望为开发新的抗生素奠定基础。现代社会的人们已经意识到了细菌耐药这一问题的严重性和危害,世界卫生组织也发出警告,如果人类不迅速采取一些措施,耐药性危机即将到来。世界卫生组织总干事陈冯富珍做出了这样的预测,人类即将进入“后抗生素时代,到时候甚至对许多普通的感染性疾病都将无药可用,细菌将再一次不能被杀灭。”

  • 【分享】下列中药不宜与抗生素合用

    随着中西医结合治疗疾病的普及,其配伍也应严格掌握。配伍不合理不仅影响疗效,而且会产生毒副作用,下列中药不宜与抗生素合用。  龙骨、珍珠、牡蛎、海螵蛸等含胸种钙质,易与四环素类抗生素形成螯合物影响吸收,降低疗效。  血余炭、艾叶炭、煅瓦椤有强大吸附力,可减少抗生素在胃肠道的吸收。神曲、麦芽含有多种消化酶,某些抗生素使其活性受抑制,减弱其消食健胃功能。  石膏、赤石脂、滑石等含镁、铝、铁离子与四环素抗生素合用,形成螯合物而降低疗效。玄胡、桅子、甘草等抑制胃酸分泌,影响四环素的吸收,四季青、黄药子可损害肝脏,与四环素合用,毒性作用增加。五味子、山楂、乌梅可酸化尿液,使碱性的四环素、红霉素疗效降低。  生姜、龙胆、萝芙木等促进胃酸分泌,红霉素破坏增加。颠茄类中药抑制蠕动,延缓胃排空,红霉素在胃中停留时间延长,破坏增加。地榆、虎杖、石榴皮等所含鞣质可与红霉素结合,阻碍红霉素吸收。中药泻剂巴豆、黑白丑等可加速红霉素通过肠道,影响其吸收。  犀角、珍珠中所含蛋白质及其水解产物(多种氨基酸),可抵抗黄连素的抑菌作用而降低疗效。  茵陈对氯霉素的抗菌作用有拮抗作用,可降低氯霉素的疗效  含有鞣质的中药,如五倍子、诃子、石榴皮、地榆、枣树皮、四季青、大黄等与灰黄霉素、制霉菌素、林可霉素等同服时,可结合成鞣酸盐沉淀,不易被吸收。碱性中药硼砂与氨基酸糖甙类抗生素如链霉素、卡那霉素、庆大霉素、新霉素、妥布霉素同时服用,可增加毒副作用。硼砂与弱酸性呋喃旦啶、青霉素、先锋霉素同用时,可减少这些药物的再吸收,降低血药浓度。

  • 青霉素有望重拾昔日荣耀 美找到给抗生素“升级”的新方法

    科技日报讯 (记者王小龙)美国南卡罗莱纳州立大学的科学家刚刚发现了一种新的方法,不但能使青霉素——这位抗生素名将重拾昔日风采,还可能会让细菌界新近出现的“大反派”——超级细菌闻风丧胆。相关论文发表在《美国化学学会会刊》上。 青霉素,20世纪的科学奇迹之一,是第一种能够治疗人类疾病的抗生素,拯救过亿万人的生命,可谓是战功赫赫,如今在与细菌的战斗中却屡屡败下阵来。“青霉素老矣,尚能饭否”的非议也随之而起。 青霉素曾经在治疗金黄色葡萄球菌感染中能药到病除,但1960年代后,金黄色葡萄球菌变异成了耐甲氧西林金黄色葡萄球菌(MRSA),连青霉素也无能为力了。如今MRSA感染已经成为严重的公共卫生问题,该病菌对常用的杀菌药物——抗生素具有极强的抵抗能力。面对这种病菌,人们几乎无药可用。 青霉素类药物的灭菌效果主要来自于分子核心,一种被称为β-内酰胺的环状四元环酰胺。β-内酰胺是青霉素家族中最常见的一种结构,是青霉素的合成、半合成衍生物以及其他相关分子共同的结构元件。常见的药物阿莫西林、氨苄西林和头孢唑啉都在此列。 这种结构很不讨细菌家族的喜欢,因为它极大阻碍了它们通过细胞分裂进行繁殖的能力。在与抗生素攻防战中,细菌们逐渐进化出了多种耐药机制。其中的一个“必杀技”就是合成和释放β-内酰胺酶,这种酶能够破坏抗生素中普遍存在的β-内酰胺结构,让抗生素失去杀菌效果。 物理学家组织网4月15日(北京时间)报道称,针对这个问题,南卡罗莱纳州立大学化学系和纳米中心的唐传丙(音译)教授所带领的研究团队开发出了一种具有聚合物保护机制的“加强版”抗生素。实验显示,这种名为二茂钴阳离子金属酶的物质大大减缓了β-内酰胺酶对硝噻吩样品中β-内酰胺类结构的破坏。来自该校医学院和阿诺德公共卫生学院的两支跨学科团队也分别证实了这一结果。 研究人员还发现这种金属酶自身也具有很强的抗菌性,实验显示它能裂解细菌细胞而不伤害人体红细胞。经过处理后,这种聚合物可以做到完全无毒,目前已在人体细胞实验中获得了证实。 唐传丙表示,虽然该项目距离临床应用还有很长的一段路要走,但仍然势在必行。因为由“超级细菌”引发的感染问题正在日益严峻。他们希望,通过这一方法不但能制造出新的药物,还能对传统抗生素进行改造,让它们重振雄风。 总编辑圈点: 发现青霉素能抑制细菌,运气必不可少。假如弗莱明当年勤快一点,把实验器皿给洗了,这件“大规模杀伤性武器”仍将多年不为人知。而科学家新研制出类青霉素,就不依赖幸运女神了。化学家们事先了解了青霉素威力所在,拟定几种可能的结构进行实验。这种开发模式类似于转基因工程,其产品都是自然界不存在的品种,只不过功能片断从基因碱基换成了化学环链。化学家真有本事!他们的小小进步,可能会挽救几百万人的生命。来源:中国科技网-科技日报 2014年04月16日

  • 【求助】请问甲硝唑、氯霉素和呋喃唑酮都属于抗生素类兽药吗?

    大家好,请问甲硝唑、氯霉素和呋喃唑酮都属于抗生素类兽药吗?中国食品产业网上有这样的分类:1.激素类 如已烯雌酚及其盐、酯和制剂,醋酸甲孕酮及制剂,甲基睾丸酮,丙酸睾酮,氯丙嗪,安定等;2.抗生素类 如氯霉素,呋喃唑酮,甲硝唑等;3.消毒和杀虫剂类 如五氯酚钠,孔雀石绿,硝酸亚汞等。 请问是正确的吗?谢谢各位了!

  • 抗生素残留到底有哪些危害?

    随着人们生活质量的提高,食品安全问题越来越为广大消费者所关注,特别是农药和抗生素等药物残留问题更是广大消费者所关注的焦点问题。在食品安全这个全球关注的热点问题上,如何快速、准确地检测食品安全的问题已成为重中之重。抗生素具有哪些危害人们吃了有抗生素残留的肉、蛋、奶等食物后,会造成抗生素在人体内蓄积,使人产生对抗生素的抗性,引起各种组织器官病变,甚至癌变。对人类健康的危害对人体肠道菌群的影响人体肠道菌群是一个平衡的生态系统,对保持人体健康起着非常重要的作用。如果人们长期摄入含有抗生素的食品后,会使敏感菌群被杀灭或抑制,而耐药菌群却大量繁殖,从而打破原来的平衡状态造成菌群失调,这就可能会导致长期腹泻或营养不良,严重时还可造成耐药菌感染,给临床治疗带来困难。引起过敏和变态反应青霉素、四环素、磺胺类及某些氨基糖苷类抗生素能使部分人群发生过敏反应和变态反应,氯霉素可破坏机体造血功能,诱发再生障碍性贫血。经常食用含抗生素的动物性食品,轻者出现皮肤瘙痒、荨麻疹、关节肿痛,重者导致血管性水肿、休克、甚至死亡。导致细菌耐药性增加目前,由于抗生素的广泛使用,使得细菌的耐药性不断增加,食用含抗生素残留的动物性食品后,人体内细菌的耐药性增加。同时,动物体内的耐药性菌株的耐药性也可能转移到人体细菌中,从而对人类产生极大的危害。其他毒害作用动物性食品中残留的链霉素进入人体后可引起肾损害和听神经受损。长期摄入氨基糖苷类抗生素残留严重超标的动物性食品,可损害第8 对脑神经,出现头晕、头痛、耳鸣、耳聋、恶心、呕吐等症状。四环素会引起肝损伤,与骨骼或牙齿中的钙质结合后,使骨骼及牙齿黄染,还可影响儿童的生长发育。邻氯青霉素、头孢菌素等可引起人类免疫性疾病;氯霉素会损害人的造血功能,抑制蛋白质摘要:文章综述了抗生素残留的来源与途径, 介绍了抗生素残留对人类健康、乳制品生产、环境及其他方面造成的危害,分析了检测抗生素残留的方法,包括微生物检测法、仪器检验法、免疫学分析法等,并指出了这些检测方法的研究现状与发展前景。对乳制品生产工艺的危害由于含有抗生素的奶无法制成酸奶、奶酪等一些高质量牛奶产品,容易造成大量原料奶的浪费,给乳品企业造成经济损失。另一方面,一些不法奶户在高温季节为防止鲜乳的酸败,往往向牛乳中掺杂各种抗生素,从而造成乳中抗生素残留,对人体也造成了很大的危害。对环境的危害一些性质稳定的药物被排泄到环境中仍能稳定存在很长时间,从而造成环境中的药物残留。链霉素、土霉素在环境中不易降解;螺旋霉素低浓度降解很快,但浓度高时需6 个月才能降解完;杆菌肽锌在有氧的条件下完全降解需3~4个月,在无氧环境中降解所需要的时间更长。据报道,动物养殖场污水处理池中红霉素、复红霉素、磺胺甲唑质量浓度可达69g/L,这些药物的排放污染了环境,破坏了生态平衡。

  • 【分享】知道中的抗生素

    抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。现临床常用的抗生素有微生物培养液液中提取物以及用化学方法合成或半合成的化合物。目前已知天然抗生素不下万种。药品作用   抗生素分为天然品和人工合成品,前者由微生物产生,后者是对天然抗生素进行结构改造获得的部分合成产品。 不同的抗生素1981年我国第四次全国抗生素学术会议指出,近些年来在抗生素的作用对象方面,除了抗菌以外,在抗肿瘤,抗病毒,抗原虫、寄生虫和昆虫等领域也有较快发展。有些抗生素具有抑制某些特异酶的功能,另外一些抗生素则具有其他的生物活性或生理活性的作用。鉴于“抗菌素”早已越出了抗菌范围,继续使用抗菌素这一名词已不能适应专业的进一步发展,也不符合实际情况了。因此,会议决定将抗菌素正式更名为抗生素。编辑本段药品发现  很早以前,人们就发现某些微生物对另外一些微生物的生长繁 抗生素分子式殖有抑制作用,把这种现象称为抗生。随着科学的发展,人们终于揭示出抗生现象的本质,从某些微生物体内找到了具有抗生作用的物质,并把这种物质称为抗生素,如青霉菌产生的青霉素,灰色链丝菌产生的链霉素都有明显的抗菌作用。所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用的一类化学物质称为抗生素。  由于最初发现的一些抗生素主要对细菌有杀灭作用,所以一度将抗生素称为抗菌素。但是随着抗生素的不断发展,陆续出现了抗病毒、抗衣原体、抗支原体,甚至抗肿瘤的抗生素也纷纷发现并用于临床,显然称为抗菌素就不妥,还是称为抗生素更符合实际了。抗肿瘤(antineoplastic) 抗生素的出现,说明微生物产生的化学物质除了原先所说的抑制或杀灭某些病原微生物的作用之外,还具有抑制癌细胞的增殖或代谢的作用,因此现代抗生素的定义应当为:由某些微生物产生的化学物质,能抑制微生物和其他细胞增殖的物质叫做抗生素。  细菌“导弹”有望代替抗生素  细菌之间相互拼杀所用的微小蛋白质“导弹”有望在不久的将来代替治疗疾病所用的抗生素。研究该项技术的一个美国研究所希望能够首先在治疗动物(如猪和鸡)的常见病方面取得突破。同时这个研究所也发现用这种蛋白质“导弹”能够在食品无菌包装和保存方面做出突破。由于人体血原对抗生素的反应存在一定的危险,这种物质的使用能够降低医学的危险性,且使用后没有后遗物。滥用危害简介  可以这么说,人类发现并应用抗生素,[/s

  • 为啥动物的抗生素污染国家不查不治理?

    据山东广播电视台生活频道《生活帮》报道,有些养猪场,为了防止猪得病,会喂些像土霉素、头孢、阿莫西林一类的抗生素,那么,养猪过程中,为什么要注射这样的抗生素呢?为了调查养猪场是否存在滥用药物的情况,记者走访了济南、潍坊的多个养猪场。在调查过程中,记者发现,对于养猪过程中是否使用药物,这些养猪场场主并不避讳。让记者吃惊的是,多名养猪场场主说,为了预防猪生病,从仔猪刚生下开始,就会注射一些土霉素、阿莫西林一类的抗生素。一位养了六年猪的工作人员表示,小猪出生三天后,就使用土霉素,这是他们经过多年实践后,总结出来的“宝贵经验”。据了解,土霉素是抗生素的一种,属于兽用处方药,小猪刚出生三天,为什么就要注射抗生素呢?“那就是给它补血,就是壮,小猪壮。”通过调查,记者了解到,从小猪出生到最后出栏,一些养殖户会通过使用抗生素来防病,这已经成为了养猪行业公开的秘密。不仅如此,猪一旦生病,养殖户也会大量使用抗生素来给猪治病。位于潍坊的一家规模较大的养猪场,大批仔猪跟母猪出现了拉稀、食欲不振等病症。工作人员为猪注射了穿心莲注射液,“治疗病毒性腹泻的”。国内首份抗生素污染清单操刀者为中科院广州地化所应光国课题组。应光国博士是国内抗生素研究领军人物,从2006年开始研究抗生素污染问题,南征北战,足迹遍布中国58条主要河流,以及广东、广西、湖南、河北等省份的主要养殖场。中国科学院污染地图首次详细披露了各地抗生素使用和排放量:中国2013年使用的16.2万吨抗生素中,兽用52%,人用48%。此次研究选取36种最常被检出的抗生素作为研究对象,总量达9万多吨,其中畜用抗生素占84%;大部分抗生素通过人畜排泄至体外,一年有超过5万吨抗生素排放进入水土环境中。中国在抗生素的使用上,可划分成明显的东部和西部两个部分,东部的抗生素排放量强度是西部的6倍以上。其中:京津冀海河流域、长江和西江是全国抗生素排放量最大的区域,而珠江单位面积中的抗生素含量排名全国第一。从污染地图颜色可以看到,广东、江苏、浙江、河北等经济相对较好地区颜色较深,即意味着是污染重灾区。这些处于污染重灾区的地方,意思就是喝水就能治感染呗!与国外相比,中国河流总体抗生素浓度较高,测量浓度最高达7560纳克/升。然而除了对比国外数据,我国自来水和地表水质检测的国家标准中,均没有将抗生素纳入。水中抗生素从何而来?环境中抗生素的来源主要包括生活污水、医疗废水以及动物饲料和水产养殖废水排放等。环境中的抗生素残留又会通过各种方式可能重新进入人体,最主要的就是喝了含有抗生素的水、吃了存在抗生素残留的肉类和蔬菜,另外还可以通过生态循环的方式回到人体。在生猪、肉鸡、水产等养殖过程中,因养殖密度高,不少养殖户为降低感染发病率,提高效益,习惯在饲料中添加各类抗生素。比如生猪饲料中,硫酸粘菌素、金霉素都是常用抗生素,最多时一吨饲料能添加1斤抗生素药物。应光国介绍,珠江流域人口密度高,广东又是养殖大省,鸡、猪的消费量在全国范围内算很高的,水产养殖发达,广东鱼塘在全国最多,因此珠江流域抗生素使用量、排放量大,排放密度高。另外,我国的污水处理水平也较低,农村地区几乎直接排放污水。中科院团队在广东、广西、湖南的猪场、鸡场、鸭场检测显示,养殖业使用了不同的抗生素:猪粪检出的抗生素中浓度最高为四环素5.6毫克/千克。“这些兽药经常打得多到我们自己都怕!” 广东省肇庆市莲花镇大步村生猪养殖户老廖说。老廖的猪场有2000多头猪,养了几十年猪,“打药”对老廖来说稀松平常。猪现在主要的病有几十种,打针、灌药效果越来越差,用药越来越猛。一旦猪出现咳嗽、瘦弱,就必须不断打药,一直打到让猪吃食。“光是用药,养猪都养不起了,猪药太贵了。”一头猪从小养到240斤的7个月里,养殖成本中,饲料费用1300元,药费就要300多元。千把头猪的规模养殖,一年用抗生素等各种兽药花费就达50万元。在鸡鸭粪中检出的多种抗生素中浓度最高为6.11毫克/千克。奶牛场也在使用抗生素。“我们去了广西的、广东大型养牛厂,奶牛也在用抗生素,因为挤奶时间长会发炎。”走地鸡同样不安全。“我开始以为走地鸡不用药,最后发现也用。”应光国看到云浮、清远、江门等地养殖户为了让鸡长得快、防鸡瘟,大量使用抗生素。养鱼业同样没能幸免。鱼塘底泥中检出了7种抗生素,最高浓度为3400微克/千克,平均浓度为524微克/千克。[img]https://ng1.17img.cn/bbsfiles/images/2018/10/201810301329009762_6420_3167735_3.png[/img]

  • 有关抗生素试剂

    欲做抗生素的相关实验,在这请教各位 实验室用的抗生素药品(四环素,土霉素,红霉素,磺胺嘧啶等)在哪有购买的?实验室的供货商没有这些试剂卖啊,愁啊

  • 请教关于抗生素效价的测定和定义

    1.效价如何定义的?2.如何测定效价?3.购买标准品随带的质检报告中是否应该有效价的说明?4.使用抗生素过程,一般怎么方便快速的测定效价?5.请您把有关效价的只是给出,谢谢。我先把我了解的放在这儿。抗生素的计量单位 抗生素依性质不同,分别以重量单位或效价单位来计量。 (1)理论效价 理论效价是指抗生素纯品的重量与效价单位的折算比率。一些合成、半合成的抗生素多以其有效部分的一定重量(多为1μg)作为一个单位,如链霉素、土霉素、红霉素等均以纯游离碱1μg作为一个单位。 少数抗生素则以其某一特定的盐的1μg或一定重量作为一个单位,例如金霉素和四环素均以其盐酸盐纯品1μg为1单位。青霉素则以国际标准品青霉素G钠盐0.6μg为1单位,参见表2-2。 表2-2一些常用抗生素的理论效价表 链霉素碱 1000单位/mg 链霉素硫酸盐 798单位/mg 土霉素碱 1000单位/mg 土霉素碱(含二分子结晶水) 927单位/mg 土霉素盐酸盐 927单位/mg 红霉素碱 1000单位/mg 红霉素碱(含二分子结晶水) 953单位/mg 红霉素乳糖酸盐 672单位/mg 金霉素盐酸盐 1000单位/mg 四环素盐酸盐 100O单位/mg 四环素碱 1082单位/mg 青霉素钠 1670单位/mg 青霉素钾 1598单位/mg 普鲁卡因青霉素 1009单位/mg 苄星青霉素(长效西林) 1211单位/mg 新霉素 1000单位/mg 卡那霉素 1000单位/mg 多粘菌素B 10000单位/mg 庆大霉素 1000单位/mg 巴龙霉素 1000单位/mg 说明:表中各抗生素的理论效价系折算的标准。各抗生素的盐类的理论效价是根据标准计算出来的。 非合成的抗生素通常采用特定的单位来表示效价,如制霉菌素等,不采用重量单位。 (2)原料含量的标示 理论效价是指抗生素纯品的效价单位与重量(一般是mg)的折算比率。但实际生产出来的抗生素原料都含有一些许可存在的杂质,不可能是“纯品”。如乳糖酸红霉素的理论效价为672单位/mg。而中国药典规定此药按干燥品计算,每1mg的效价不得少于610个红霉素单位。所以产品的实际效价(含量)在610单位/mg~672单位/mg之间,需要在瓶上标出具体数字。 在制备制剂时需进行计算,如用效价为650单位/mg的乳糖酸红霉素原料来制备25单位/mg的软膏1300g,需取用原料量计算如下: (25单位/mg)/(650单位/mg)× 1300g=50g(称重) (3)处方计量单位 药剂制品标示的和处方上开写的抗生素重量单位数均指该抗生素的纯品量。如硫酸链霉素1g,系指含有链霉素纯品1g(1百万单位),因此又称为重量效价单位。如果处方开写硫酸链霉素1g,需用称重法取药时,则应按原料实际含量,通过计算求得应称取的重量。

  • 乳制品中的抗生素

    在人类征服病菌的道路上,可以说有2个转折点:60多年前,当世界上第一个抗菌药物青霉素面市后,曾被誉为细菌的克星,当时正值二次世界大战,多少人的性命因此而被挽救。 但人类陶醉于对自然界的胜利没多久,就发现道高一尺,魔高一丈,细菌耐药产生的速度远远快于人类新药的开发速度,世界卫生组织的专家甚至担心:新生的、能抵抗所有药物的超级细菌,将把人类带回感染性疾病肆虐的年代。 细菌种类多、繁殖快、适应环境能力强,广泛分布于自然界,在水、土壤、空气、食物、人体和动物的体表、以及与外界相通的腔道中,都有各种细菌的存在。细菌在自然界的物质循环中起重要作用,不少细菌对人类有益,使人致病的细菌只是少数。 细菌为什么会耐药?其原因主要有三个:(1)产生β-内酰胺酶使β-内酰胺类抗生素开环失活,这是产生耐药的主要原因。目前发现的β-内酰胺酶已超过300种,它通过与β-内酰胺环上的羰基共价结合,水解酰胺键从而使β-内酰胺类抗生素开环而失活。(2)改变抗生素与青霉素结合蛋白(penicillin binding proteins,PBPs)的亲和力。当β-内酰胺类抗生素与PBP结合后,PBP就会失去酶活性,使细菌细胞壁的形成部位破损而引起溶菌,反之,则成为耐药菌。PBP基因的变异,使β-内酰胺类抗生素无法与之结合或结合能力降低,这是形成耐药的根本原因。(3)细胞膜和细胞壁的结构发生改变,使药物难以进入细菌内。如生物膜的形成。(4)细菌体内的能力依赖性主动转运机制,将已进入细菌内的抗生素泵出体外,也可导致耐药性。 而其中β-内酰胺酶为耐药性的罪魁祸首,是80%耐药性产生的原因。β-内酰胺酶在上世纪五、六十年代被国外,特别是美国科学家广泛研究,直到1984年美国乳品科学协会第79届年会,威斯康辛大学研究人员报道了β-内酰胺酶分解牛奶中抗生素残留的研究,β-内酰胺酶开始被用于添加在牛奶中,以分解残留的青霉素。然而,由于各种超广谱β-内酰胺酶的发现,以及其对细菌耐药性造成的严重影响,很快这种添加在国外被禁止了。 我国对β-内酰胺酶的研究也很早就开始了,学者们也注意到了其导致耐药性的机理,但是同时由于国家政策要求牛乳中抗生素要求限量,各个乳制品厂商便顺水推舟,大打“无抗”牌,声称其乳制品中无抗生素残留,而造成“无抗”的原因便是“解抗剂”——β-内酰胺酶。 因青霉素超标而在牛乳中添加β-内酰胺酶分解残留的青霉素以通过残留检测,于是青霉素的使用则更肆无忌惮,而乳牛因大量接受青霉素治疗而耐药性进一步严重。如此的恶性循环,造成了各种耐药菌株的肆意传播,同时,由于β-内酰胺酶的超量添加,更有可能诱导了本无耐药机制的菌株产生耐药性。 耐药性已经对人们的生命安全造成了重大的影响,尤其是对于那些抵抗力较差的新生儿。根据1994~2004年对505例新生儿死因回顾分析,发现由于肺部感染而导致窒息或者并发症而死亡的新生儿占70%之多,而又有临床数据表明12年间新生儿致病菌株对青霉素的耐药率高达83.1%,也就是说平均每2个死亡的新生儿中便有1个是由于细菌耐药,无法治愈而亡,这是多么恐怖的数字啊。 基于上述事实,国家已经明令禁止销售各类“无抗奶”,一来是为了抵制虚假广告,二来也是为了防止各类β-内酰胺酶的传播以及扩散所造成的影响。因此,对于β-内酰胺酶的检测以及监控也将是近年来的热点话题之一。

  • 【分享】LC-MS/MS 测定牛奶中六种青霉素类抗生素残留

    LC-MS/MS 测定牛奶中六种青霉素类抗生素残留黄百芬 莫燕霞 任一平浙江省疾病预防控制中心 中国浙江省杭州 310009 本文建立了应用LC-MS/MS 快速测定牛奶中六种青霉素类抗生素残留的方法。采用液相色谱-电喷雾串联四极杆质谱仪,多离子反应监测(MRM)定量。通过对试样净化预处理、色谱条件、质谱参数等的优化选择和方法回收率、精密度等的验证,建立了定量测定牛奶中青霉素类抗生素含量的理想方法。实验结果表明,方法检出限:青霉素G0.02ng/mL、青霉素V 0.06ng/mL、苯唑西林 0.04ng/mL、氯唑西林 0.11ng/mL、奈夫西林0.02ng/mL、双氯唑西林0.19ng/mL;在0.2-2.0ng/mL 浓度范围内,相关系数R 为0.991,回收率大于90%,方法精密度RSD 为4.87%。结论采用液相色谱-电喷雾串联四极杆质谱仪,可快速测定牛奶中六种以上青霉素类抗生素残留的含量,结果准确可靠,重复性好,灵敏度高。 液相色谱-电喷雾串联质谱、牛奶、青霉素类、残留Determination of β-Lactam Residues in Milk by Liquid ChromatographyTandem Mass SpectrometryHuang Baifen Mo Yanxia Ren YipingZhejiang Provincial Center for Disease Prevention and Control,Hangzhou 310009Abstract Liquid chromatography coupled with electrospray ionization tandem massspectrometry (LC-MS/MS) was applied to the quantification of β-lactam residues in milk. Thesamples was cleaned up and concentrated by solid phase extraction (SPE) with OASIS HLBcartridges. β-lactams were detected with a C18 column using acetonitriLe (0.1% acid) andwater(0.1% acid) as mobile phase. The Linear range was from 0.2ng/mL to 20.0ng/mL, r=0.991.The average recovery is above 90%, RSD=4.87%(n=6). The analytical method in the presentstudy was well validated and good results were obtained with respect to precision, repeatabilityand spiked recovery.Keywords HPLC-MS/MS;β-lactam residues, milk

  • 【资料】检测牛奶中抗生素残留三法

    长期使用抗生素会造成畜禽免疫力下降,引起畜禽内源性感染和残留,而食用过抗生素超量的畜产品的人,会产生抗药性,或大量蓄积而对机体产生毒害。近年,牛奶中的抗生素残留成为人们日益关注的话题。   奶牛乳腺炎是世界奶牛养殖业中发病率最高、流行最快、造成损失最大的疾病之一。根据美国奶协统计,亚临床型奶牛乳腺炎发病率高达50%,而总发病率可占整个牛群的70%。  抗生素是目前国内外普遍采用的一种治疗奶牛乳腺炎的手段。欧美等国多年前明文禁止抗生素残留超量的牛奶上市。1990至1991年期间,美国奶业基金会规定超过允许量标准的牛乳及其乳品全部废弃处理,不得食用。近年来,我国也颁布了相关管理条例,但是牛奶中抗生素残留问题仍然不时发生。  目前抗生素的检测方法,按照检测原理和使用的仪器可分微生物法、免疫法、理化仪器法等3类:  微生物测定原理是根据抗生素对微生物的生理机能、代谢的抑制作用,来定性或定量确定样品中抗微生物药物残留。微生物法的优点是费用低,一般实验室都能操作。缺点是时间长、显色状态判断通过肉眼辨别、易产生误差、对微红色者无法做出准确判断、操作复杂。  免疫分析技术最突出的优点是操作简单,速度快、分析成本低。免疫测定法取样量小,前处理简单、容量大,仪器化程度低,检测牛奶的灵敏度高。是目前奶牛场和牛奶公司使用最广泛、快速、灵敏的检测抗生素残留的方法。目前部分抗生素已经建立了免疫测定法,如磺胺二甲基嘧啶、氯霉素、沙拉沙星、链霉素、四环素、莫能菌素等。该法适用于现场监控和大量样品的筛选,具有广阔的应用前景。但是免疫法直接测定也存在样本信息量太少,假阳性和理化分析技术选择性低等不足,当样品中含有与某类抗生素结构相似的化合物时,可能出现免疫交叉反应而呈现假阳性结果。  最常用的理化仪器分析方法是高效液相色谱和质谱联用技术。高效液相色谱法(HPLC)是目前广泛应用的一种理化检测方法,分离速度快、效率高和操作可自动化,已成为大多数抗生素残留的常规分析方法。由于奶样品中药物残留量少,背景干扰往往很严重,因此一般都通过柱前衍生反应来提高紫外检测器检测残留的灵敏度。目前,HPLC方法已用于红霉素、庆大霉素、羧苄青霉素和吩羧青霉素残留的测定。  近期,国外在抗生素残留检测方法上正在由各种分析技术联用代替单一的色谱技术。例如检测氯霉素的联用技术有液相色谱/质谱联用([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/质谱联用(GC-MS)、高效液相色谱/光阵列检测器(HLPC/PAD)、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/电子捕获检测器(GC-ECD)等,目前[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]已进入实用阶段。  目前国家食品质量安全监督检验中心研制出一种液相色谱/离子阱多级质谱联用仪,它可完成对复杂基体的定性及定量分析。适于分析食品、小分子量药物、药物代谢产物、农药、除草剂等样品。

  • 抗生素与病原菌耐药水平之间的量化关系

    长期以来,人们对于病原菌耐药的认识基本上停留在特定病原菌对特定抗生素的耐药机制,以及特定抗生素对病原菌的抑菌机理上。然而相关研究表明,在抗生素使用与病原菌耐药水平之间存在着一种宏观的量化关系,即一定范围内的抗生素使用可以导致病原菌整体耐药水平以及耐药菌感染率的变化,这种关系就是抗生素与病原菌之间的量化关系。 有关抗生素与病原菌之间量化关系研究的历史不长,而对其集中、深入的研究也只是近几年才展开的。在发达国家,特别是对抗生素使用严格控制的北欧国家此类研究开展较多,而在发展中国家则基本为空白。造成这一领域研究起步晚,发展不均衡主要有两方面因素。 首先,相关研究需要通过一定范围内大样本的调查,收集、处理各种病原菌和抗生素使用的相关数据。在发达国家,有关病原菌耐药和抗生素使用的监测机构健全,可以方便地获取和处理大量的相关数据,加之有流行病学、统计学、药理学、微生物学以及临床医学等多学科的协作,可以深入、细致、及时地研究抗生素使用与病原菌耐药之间的量化关系。 而在发展中国家,相关的监测机构不健全。以国内为例,目前各级医疗机构有关病原菌耐药的数据和抗生素使用的数据,由不同的职能科室、部门管理,信息交流困难,导致了我们在这一领域中的研究远远落后于发达国家。 第二,不同抗生素剂量单位以及常用剂量差别很大,在大范围研究中无法比较和叠加。早期相关研究只能以抗生素的使用率和抗生素的费用消耗为指标,不能准确反映抗生素的实际使用情况。为解决这一难题,人们用成人每日常用剂量作为标准剂量,将不同抗生素的消耗量换算为统一标准单位,并命名为每日约定剂量(defined daily doses,DDD),以使用的DDD数表示抗生素的消耗量。每一种抗生素消耗量换算成DDD后可以比较和叠加。WHO于1996年推荐采用此方法来研究、监测抗生素的使用情况。正是在这一标准建立后,相关研究在短时间内取得了很大进展。这一领域的研究大致分为以下二类: 1、针对社区居民的大范围研究 此类研究的对象多为一个地区、一个国家,甚至可以是对多个国家的超大规模研究。研究结果对于指导相关国家和地区制定、修改控制抗生素使用的法规,检验相关控制措施的有效性具有重要指导意义。通过不同国家的对比研究还可以探讨自然条件、环境因素、社会因素、经济发展水平对抗生素使用与病原菌耐药水平之间量化关系的影响。 瑞典在1994年设立专门机构,率先启动了一项针对抗生素使用与病原菌耐药的全国性系统工程STRAMA,采取有针对性的措施消除抗生素不合理的使用,若干年后,瑞典抗生素的消耗量减少了22%,病原菌耐药水平也明显降低。 2、针对医疗机构的小范围研究 此类研究主要关注不同医院、不同病区、不同基础疾病条件下抗生素使用与病原菌耐药之间的量化关系,发现并证实了多种抗生素的消耗量与常见病原菌的感染率和耐药率之间存在密切的关系。 此类研究的重点通常是临床常见、对患者威胁最大的病原菌,如金黄色葡萄球菌、铜绿假单胞菌、肺炎球菌和肠球菌,以及临床重点关注的抗生素,如万古霉素、大环内酯类抗生素和第三代头孢菌素等。其研究结果对于指导临床抗感染治疗即控制病原菌耐药水平的上升具有重要实用价值。 一项研究采用多元回归的方法,分析了以色列一家医院6个内科病区抗生素使用与病原菌耐药的数据,结果表明,这些病区阿米卡星和第3代头孢菌素的消耗量与临床耐药菌感染率密切相关。 目前只有为数不多的研究通过改变临床抗生素的使用,降低病原菌的耐药水平和耐药菌的感染率,可以说是这一领域研究的前沿,也是这一领域探索者的希望所在和最终目的。 Landman等通过减少医院中头孢菌素、亚胺培南、克林霉素和万古霉素的使用,增加含β-内酰胺酶抑制剂抗生素的使用,成功地降低了耐甲氧西林金黄色葡萄球菌(MRSA)和耐头孢他啶肺炎克雷伯菌的感染率。 近期研究还发现,临床增加氨苄西林/舒巴坦的使用量可以明显降低奇异变形杆菌和阴沟肠杆菌的耐药水平;而增加头孢吡肟的使用量可以降低MRSA的感染率。 有研究者曾对其所在医院烧伤病区抗生素使用和病原菌耐药的相关数据进行了统计分析,发现含β内酰胺酶抑制剂类抗生素的使用量与金黄色葡萄球菌耐药水平呈负相关。此外,他们目前已累积了该院烧伤病区8年来临床抗生素使用和病原菌耐药的全部数据,并建成了查询方便的数据库,为进一步进深入研究奠定了基础。 总之,抗生素使用与病原菌结构和耐药水平之间量化关系的研究对于指导临床抗感染治疗、合理使用抗生素,以及制定控制抗生素使用的相关法规具有重要意义,但目前在这一领域有许多方面有待进一步探索。目前国内有关抗生素和病原菌的相关信息的交流存在诸多障碍,这需要包括医疗机构管理者、相关专家以及临床医师共同努力,加强信息交流,通过深入研究抗生素使用与病原菌耐药之间的量化关系,为指导临床抗感染治疗,降低病原菌的耐药水平提供具有实际应用价值的信息。

  • 特定抗生素致聋的新启示

    http://www.biomart.cn//upload/userfiles/image/2011/12/1322738581.png2011年12月,美国俄勒冈健康与科学大学(Oregon Health & Science University)耳聋科学家彼得-斯特格(Peter Steyger)在《自然》杂志出版集团的《科学报告》(Scientific Reports)期刊上发表一篇突破性的个人研究论文,第一次证实氨基糖苷类抗生素能够跨越保护感觉毛细胞免受伤害的内耳血迷路屏障,从而杀死能够让我们产生听力的感觉毛细胞。这就给科学家们研究为什么这种特定类型抗生素导致耳聋带来新的启示。而48年前也正是这类抗生素导致当时还是婴儿的斯特格耳聋。除了其他方法之外,人们广泛地使用氨基糖苷类(aminoglycoside)抗生素来阻止发展中国家人们患上结核病同时还广泛用来阻止危害生命的细菌感染,尤其是对全世界早产儿而言。斯特格和共同作者李洪哲(音译)研究长期以来大家都知道的使用氨基糖苷类抗生素带来的重要问题---这类抗生素如何进入内耳并且杀死能够让我们产生听力的感觉毛细胞(sensory hair cells)。杀死这些感觉毛细胞是耳聋的一个主要原因。六十年来,科学家们一直探究这类抗生素如何进入内耳。斯特格和李洪哲的这篇论文尽管还不能提供一个明确的答案,但也是给出迄今为止最强有力的证据:这类抗生素跨越保护感觉毛细胞免受血液中潜在性损伤性组分伤害的内耳血迷路屏障(blood-labyrinth barrier)。血迷路屏障主动地运输重要的矿物质和营养物---比如离子、氨基酸和葡萄糖---到内耳以便发挥灵敏的听觉功能。斯特格说,这些氨基糖苷类抗生素有可能利用这些营养物运输通道来“偷渡”这些药物到内耳。因为斯特格已经知晓主要的偷渡路径,他和其他科学家们就能够测试单个营养物运输通道来鉴别推动氨基糖苷类抗生素跨越血迷路屏障的机制。因此,斯特格的这篇论文是通往终极目标的一次意义重大的里程碑。一旦完全揭示其中的机制,人们就可以阻断这些药物偷渡到内耳,从而阻止杀死毛细胞和随后的听力丧失和耳聋。斯特格说,“在利用这类抗生素杀死细菌的同时,我们应该能够施加一种抑制剂保护耳朵不受它们的伤害,从而挽救病人的听力。”单在美国,大约80%的早产儿被施予氨基糖苷类抗生素来阻止将可能杀死他们的感染。斯特格说,更少比例的受到感染的早产儿必须持续几天服用抗生素,因而处于丧失听力的极大危险当中。斯特格说,就这些婴儿和其他病人而言,“如果我们能够发现一种阻断剂,那么在美国我们每年就能够挽救最高达5万个人的听力”。斯特格的听力丧失要追溯到他14个月大时感染上脑膜炎。当时,他的家人和他住在英国斯托克波特市。他接受得到广泛使用的第一批氨基糖苷类抗生素之一的链霉素治疗。链霉素虽然拯救了他的生命,但是也导致他听力重度到极重度丧失。斯特格的研究得到美国国家卫生研究院分支机构国家耳聋和其他沟通障碍研究所的资金资助。在这项重要的研究之后,斯特格和他的实验室已经正在研究氨基糖苷类抗生素和其他毒性药物跨越血迷路屏障的精确分子机制。随着他们了解得越多,他们希望开发新的更加有效的策略来阻止药物引起的听力丧失。他说,因为“这些药物导致的听力丧失是完全可以预防的。我的研究小组和我讲继续努力开展研究以便找出阻止它的方法”。

  • 【转帖】常用抗生素溶液!

    抗生素 贮存液a 工作浓度 浓度 保存条件 严紧型质粒 松弛型质粒 氨苄青霉素 50mg/ml(溶于水) -20℃ 20μg/ml 60μg/ml 羧苄青霉素 50mg/ml(溶于水) -20℃ 20μg/ml 60μg/ml 氯霉素 34mg/ml(溶于乙醇) -20℃ 25μg/ml 170μg/ml 卡那霉素 10mg/ml(溶于水) -20℃ 10μg/ml 50μg/ml 链霉素 10mg/ml(溶于水) -20℃ 10μg/ml 50μg/ml 四环素b 5mg/ml(溶于乙醇) -20℃ 10μg/ml 50μg/ml a:以水为溶剂的抗生素贮存液通过0.22μm滤器过滤除菌。以乙醇为溶剂的抗生素溶液无须除菌处理。所有抗生素溶液均应放于不透光的容器保存。b:镁离子是四环素的拮抗剂,四环素抗性菌的筛选应使用不含镁盐的培养基(如lb培养基)。

  • 【转帖】谈抗生素的合理应用

    一、概述(一)抗生素的定义抗生素,广义地讲,就是在非常低的浓度下对所有生命物质有抑制和杀灭作用的药物。比如针对细菌、病毒、寄生虫的药物,甚至抗肿瘤的药物都属于抗生素的范畴。家里使用的消毒剂,也能杀灭生命体,但只能用在体外的环境消毒使用,不属于抗生素。因此,抗生素的定义严格地讲是在很低浓度下,能够在人体内使用,毒性比较低安全性比较高,能够杀灭感染我们的微生物,目的是把病原体杀灭,控制疾病,最终治疗疾病的药物。抗生素的种类相当多,大概可以分成十余种大类。在临床上常用的有一百多品种,比如我们常用的青霉素一类有很多的品种。头孢菌素、红霉素类也有很多种。每一种类都有自己的特点,应针对不同的的疾病、人群、细菌等适当地选用。(二)抗生素与抗菌素及消炎药的区别抗生素的品种繁多使用广泛,在普通人群中间的知名度很高,这样就造成了它在名称方面比较混乱的状态。长期以来,不光在普通民众,甚至在一些专业人员对严格的抗生素的界定都不是非常有把握。老百姓一般所指的消炎药估计就是抗生素,但实际上严格意义上讲消炎药和抗生素应该是不同的两类药物。我们所用的抗生素不是直接针对炎症来发挥作用的,而是针对引起炎症的微生物,是杀灭微生物的,而消炎药是针对炎症的,比如常用的阿斯匹林等等非甾体类消炎镇痛药。抗菌药和抗生素是什么关系呢?他们是大范围和小范围的关系。抗生素是针对所有能够医治杀灭的生命体,包括细菌、病毒、寄生虫、肿瘤细胞等,抗菌药物主要是杀灭细菌的。因为能引起人体感染的,除了细菌以外还有很多的微生物,比如去年流行的非典,它是病毒感染,需要用抗病毒的药物,抗病毒和抗细菌的药物都可以算在抗生素的范畴里面去。抗生素是比较广义的,而抗菌药物是比较专一的。(三)抗生素的神奇效果自从本世纪40年代青霉素问世以来,很多抗生素在各种常见细菌性疾病的治疗中,发挥了重要的作用。在许多情况下,抗生素的功效可以说是神奇的,说它们"药到病除"、"起死回生",一点也不算夸张。正因如此,抗生素就成了临床各科医师最常用的一类药物。几十年来,用抗生素救活的人不计其数。因此可以说,抗生素济世救人,具有划时代的意义。然而,抗生素也会害人。特别是在使用不当例如剂量过大或用药时间过长时,抗生素会引起种种不良反应,有的还相当严重。

  • 抗生素残留检测仪是什检测仪

    [font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#05073b]  抗生素残留检测仪是什检测仪,抗生素残留检测仪是一种专门用于检测食品、环境和临床样品中抗生素残留的设备。以下是关于抗生素残留检测仪的详细介绍:  工作原理:  抗生素药物残留检测仪的工作原理主要基于荧光定量检测技术。它首先将样品中的抗生素进行萃取和分离,然后加入特定的荧光染料。通过检测荧光信号的强度,可以计算出样品中抗生素的含量。  另一种常用的技术是生物传感器和色谱法。生物传感器利用生物分子(如酶)与特定的抗生素结合并产生可检测的信号。色谱法则通过分离和分析样品中的抗生素,根据其在色谱柱中的滞留时间和吸收谱来确定其存在和浓度。  检测项目:  抗生素检测仪可以检测多种类型的抗生素,包括但不限于四环素类、硝基呋喃类、磺胺类、氟沙星类、喹诺酮类、氯霉素、庆大霉素、链霉素、喹乙醇代谢物、硫酸链霉素、羧苄西林、硫孢菌素钠、阿莫西林、氨苄西林、红霉素等。  特点:  抗生素残留检测仪具有高灵敏度、高精度和快速的特点,可以大大提高抗生素检测的效率和准确性。  仪器智能化程度高,具有自检功能和重复性自动检测功能,确保了检测的可靠性和稳定性。  一些抗生素残留检测仪还具备便携性,方便在实验室外进行现场检测,满足抗生素残留监测的即时需求。  应用:  抗生素残留检测仪广泛应用于食品、环境和临床样品的抗生素残留检测。它可以检测各类食品样品,如肉类、禽类、水产品、奶制品和农产品等,以及饲料和环境中的抗生素残留情况。  通过及时检测,可以发现潜在的抗生素滥用、违规使用或交叉污染等问题,并采取相应的措施,确保食品的安全和质量。  综上所述,抗生素残留检测仪是一种高效、准确、可靠的设备,为抗生素残留的检测提供了重要手段,有助于保障食品的安全性和合规性,保护消费者的健康。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405280958259248_1155_6098850_3.jpg!w690x690.jpg[/img][/color][/size][/font]

  • 【转帖】刚流点鼻涕就喂抗生素(图)

    【转帖】刚流点鼻涕就喂抗生素(图)

    抗菌用药三大误区让孩子很受伤[img]http://ng1.17img.cn/bbsfiles/images/2007/02/200702131408_42278_1631012_3.jpg[/img]天一冷,医院里就挤满打吊瓶的儿童。(高俊峰 摄)   生活日报2月2日讯(记者 高俊峰)5岁的童童治疗气管炎连打了一个多月吊瓶还是时而发烧,焦急的家长听从医生建议给孩子停掉抗生素,孩子竟然很快康复了。检验学专家接受记者采访时指出,抗生素用多了会导致药源性疾病,目前正值儿童感冒高发期,儿童应用抗生素三大误区值得关注。   误区一:没指征也用抗生素   两岁的楠楠又开始流清鼻涕了,他的父亲张先生“熟练”地拿出一种儿童用抗菌药喂他,“前几次都是吃这种药,提前用上抗生素避免感染更严重,吃点抗生素没坏处。”   事实上,像张先生这样想的市民还不在少数,有关专家指出,家长们必须正视抗生素滥用给儿童健康带来的危害。抗生素本身有毒副作用,由于儿童身体内的各种器官发育还不成熟,危害容易产生。例如许多抗生素都是通过肝脏代谢的,滥用抗生素就容易造成肝脏功能的损害,喹诺酮类药物如环丙沙星等对儿童软骨有潜在损害;氯霉素则可导致骨髓抑制和儿童灰色综合征。   再次,对儿童滥用抗生素,还会造成儿童体内正常菌群的破坏,进而引起真菌等条件致病菌导致的二重感染。滥用抗生素增加了药物引起人体过敏的机会。   误区二:用上“好药”好得快   “给孩子治病多花点钱没关系,只要让孩子快点好,别老这么难受就行。”今天上午,省城某三级医院小儿内科专家周女士多次听到家长们的要求。   有关专家指出,对于抗菌药物应用,“药品越贵越好”的说法是没有根据的,其实每种抗生素优势劣势各不相同,要因病、因人选择。比如红霉素是老牌抗生素,价格很便宜,它对于军团菌和支原体感染的肺炎具有相当好的疗效,而价格非常高的碳青霉烯类的抗生素和三代头孢菌素对付这些病就不如红霉素。   另外,价格比较贵的药物多是高级别抗生素,给患儿一下子就用上高级别抗生素导致的危害不仅仅是金钱的浪费,更容易造成患儿耐药,损害他们的远期健康。   误区三:联合用药更彻底   “抗病毒药和抗菌药一起用上,或者把针对不同菌群的药物一起用上,在儿童呼吸道感染的高发季节,这种治疗方法非常流行。”一位资深儿科专家指出。   山东大学第二医院呼吸内科车晓文副主任医师介绍,联合用药看似负责,其实对患者的健康会造成很大危害。例如针对不同菌群的抗生素联合应用,无论是致病菌还是原本的有益菌,同时被药物消灭或抑制,容易导致患者体内菌群失调,并导致耐药菌株产生。事实上,根据国家卫生部制定的《抗菌药物临床应用指导原则》,医生采取联合用药的治疗方法必须要有通过实验室检测获得的证据。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制