当前位置: 仪器信息网 > 行业主题 > >

颗粒样品

仪器信息网颗粒样品专题为您整合颗粒样品相关的最新文章,在颗粒样品专题,您不仅可以免费浏览颗粒样品的资讯, 同时您还可以浏览颗粒样品的相关资料、解决方案,参与社区颗粒样品话题讨论。

颗粒样品相关的论坛

  • 【转帖】颗粒度测试中样品处理方法(如何分散样品)

    中国颗粒学会颗粒测试专业委员会理事长 胡荣泽) 在粒度分析技术中,如何将颗粒分散是个重要问题,这在沉降分析时尤其突出。沉降时,若颗粒是团聚的或颗粒溶解于介质,就会得到错误的结果。但也不能说,颗粒越分散越好,还要看颗粒工艺的具体情况。  与颗粒分散有关的因素有:沉降介质﹑分散剂﹑分散方法和悬浮液的颗粒浓度。所谓沉降介质是指用于分散颗粒的流体。它可以是液体,也可以是气体,不过后者不常用,分散性能也不好。因此,我们只讨论液体作为沉降介质的情况。  首先,使用的沉降介质,应能将样品很好浸润。化学上,常把易被水(或油)浸润的物质称为亲水(或油)性物质;把难以被水(或油)浸润的物质称为疏水(或油)性物质。金属一般是亲油的,而玻璃和方解石是亲水的。其次,要求沉降介质与测定的颗粒不发生溶解,也不会使颗粒膨胀。第三,为了不带入外来杂质,应当使用高纯度的沉降介质。如使用有机介质时,如果样品或介质内有微量的水,会促使颗粒团聚而难以分散,所以样品应注意脱水,要预先烘干

  • 自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用一、 从静态图像仪到动态图像仪早期的颗粒图像仪都是静态颗粒图像仪,基本上是基于显微镜设备改装的观测设备,制作静态样品,虽然在一定程度上解决了颗粒样品的形貌分析统计问题,但是也表现出了其固有的弱点,即因其参与观测统计的颗粒数量少,导致数据的代表性差。人为误差较大。因此在上世纪90年代末国外就开始进行动态颗粒图像仪的研制,英、法德等国家均推出过动态颗粒图像测试设备。而在本世纪初,国内的上海理工、天津海洋研究所等机构也开始探索颗粒动态测试的有效方法。直到2007济南某厂家首次正式面向市场推出真正意义上国内第一台动态颗粒图像分析仪Winner100。中国才真正具有了动态颗粒图像分析能力。二、 动态图像技术分析对微小颗粒而言,成像光路系统放大倍率越大,其景深也就越小,这一点严重制约动态颗粒图像仪的发展,如何将流动中的颗粒约束到一个平面上,这是动态颗粒图像仪最关键部分。目前国外现有的比较成熟的方式借鉴了细胞测量中的流体聚焦技术----鞘流技术,即将待测颗粒样品流入鞘液中,鞘液对其进行约束,形成一个一个从而获得清晰的颗粒图像。这种技术能够解决颗粒聚焦问题,但是其制备鞘液比较复杂,成本也很高,测量时间也较长,而且鞘液中的颗粒数量仍然不能够太多,因此对于颗粒测试的代表性仍然不强。关键部件鞘流池如果有大的颗粒进入很容易发生堵塞现象,清理疏通也都很费时费力。以国外很多粒度仪厂家也多采取这种实用价值有限的测试技术。近年国内厂家推出一种新型技术,即以流体力学的原理,使用液流的压力将颗粒约束在样品窗表面,使其基本在一个焦平面上运动,使成像效果显著提高。但是问题随之而来,在样品窗表面运动时,经常有颗粒粘连在表面上,越积越多无法处理。因此,此方法的使用价值也大打折扣。2014年济南微纳颗粒推出了一款带超声波自清洗装置的样品窗,才真正解决了这种颗粒在样品窗上粘连的问题,使其实用化程度大大提高,现在在碳化硅、氧化铝等磨料相关等行业已经广泛开始使用,并得到了用户的高度认可。三、 自清洗样品窗技术在以往的动态图像仪中,样品窗污染就会造成测试结果的准确性差。因此样品窗必须每隔一至两周就必须拆卸下来清洗,去除附着在上面的颗粒残留,非常麻烦,而且有的样品自身带有粘性或者静电的,甚至在测试过程中就会粘连到样品窗上,严重影响测试结果。济南微纳推出的可以进行自清洗的样品窗,彻底解决了以上问题,大大减少了样品窗的清洗频次,增加了样品窗寿命,有的甚至可以终生不必拆洗。 自清洗样品窗技术已经应用在微纳的Winner100D动态图像仪、Winner219动静态双模式全自动图像仪上,并解决了样品窗清洗问题。并且自清洗样品窗技术还可以应用在湿法激光粒度仪上,微纳也将进一步自清洗样品窗技术广泛的推广应用,为推动中国颗粒测试事业的发展尽最大努力。 http://ng1.17img.cn/bbsfiles/images/2015/11/201511201552_574512_3049057_3.png

  • 【原创】颗粒度测试的样品准备

    首先要做到典型抽样。测量提取样品时,要确保使用的样品是有代表性的。如果是从瓶子或容器中提取的样品,必须保证样品时充分混匀的,如果样品时粉状,大颗粒易浮于容器表面,小颗粒易沉于底部。大多数样品都是由大小不均的颗粒组成的,所以取样的时候要避免取样误差。在容器中取样,若不混匀,结果偏差就比较大。如果那么从容器表面取样,测量的就大多是大颗粒,测量结果偏大,如果是从容器下部取样结果就偏小,从中间取样,则介于中间,所以一定要保证取样前样品要混合均匀,这样才能保证样品具有代表性。注意:混匀的时候千万不要剧烈摇晃容器,这样反而会加速大小粒子分离,要用两只手慢慢转动,不停改变方向,为了保证样品取样的代表性,也可以借助工具进行取样,采用旋转分样器等。

  • 【分享】颗粒度测试中样品处理方法

    在粒度分析技术中,如何将颗粒分散是个重要问题,这在沉降分析时尤其突出。沉降时,若颗粒是团聚的或颗粒溶解于介质,就会得到错误的结果。但也不能说,颗粒越分散越好,还要看颗粒工艺的具体情况。  与颗粒分散有关的因素有:沉降介质﹑分散剂﹑分散方法和悬浮液的颗粒浓度。所谓沉降介质是指用于分散颗粒的流体。它可以是液体,也可以是气体,不过后者不常用,分散性能也不好。因此,我们只讨论液体作为沉降介质的情况。  首先,使用的沉降介质,应能将样品很好浸润。化学上,常把易被水(或油)浸润的物质称为亲水(或油)性物质;把难以被水(或油)浸润的物质称为疏水(或油)性物质。金属一般是亲油的,而玻璃和方解石是亲水的。其次,要求沉降介质与测定的颗粒不发生溶解,也不会使颗粒膨胀。第三,为了不带入外来杂质,应当使用高纯度的沉降介质。如使用有机介质时,如果样品或介质内有微量的水,会促使颗粒团聚而难以分散,所以样品应注意脱水,要预先烘干。 常用的沉降介质有: 水﹑水+甘油﹑ 无水酒精﹑无水酒精+甘油。这里,甘油是增粘剂,以使颗粒在介质中具有适当的沉降速度。除了甘油,也有用植物油﹑蔗糖浆作增粘剂的。加入增粘剂时,应注意搅拌均匀,并且搅拌时气泡能够逸出。  但很多样品,除非加入分散剂,否则在沉降介质中颗粒不能充分地分散。这是由于颗粒和液体间相互作用所致,添加少量分散剂,可改变颗粒表面与液体间的亲和性。例如,颗粒在水中分散时,很大程度上取决于颗粒表面吸附离子的水合程度,离子水合程度的有亲介质序列是:CsRbLiKNa,BaBrCaMg。加入适量的电解质作分散剂,如六偏磷酸钠,有助于水合作用,即颗粒表面吸附电解质的正离子或负离子,使颗粒间互相排斥,当排斥力大于颗粒间的范氏引力时,使颗粒保持良好的分散状态。  常用的分散剂有:六偏磷酸钠﹑焦磷酸钠﹑氨水﹑水玻璃﹑氯化钠等。分散剂浓度为0.005~0.05%(重量)就可。 颗粒物质容易团聚,特别是细粉。团聚颗粒,即团粒,含有两个以上的颗粒。 每个团粒具有不同程度的结合强度, 要把它分离为各个单个颗粒, 就必须施加外力。 除了分散介质 (沉降介质和分散剂)的分散作用(即浸润毛细管力尖劈作用表面活化),还必须辅以其它分散技术,即:简单的摇动和搅拌,悬浮液在真空中脱气,或煮沸,用球磨机或研钵将悬浮液研磨,超声分散。在实际工作中,常常将上述分散方法结合起来使用。  选择合适的悬浮液浓度,也是颗粒分散的一个重要因素。实际配制悬浮液,颗粒浓度不宜太高,如对光透过法,百分浓度一般以0.02~0.1%为好,其它沉降方法的百分浓度约在0.1~3%范围内。  为了判断各种分散技术的分散效果和各个分散因素的影响,有必要进行分散性试验,试验方法有:①显微镜观察,这是确定分散程度的最简单办法;②流变试验,流变行为是牛顿型的,分散良好。否则分散不良。似固体,如形变时屈服点﹑显示膨胀性等;③[URL=http://www.clgj.net]测量[/URL]沉降颗粒体积。沉降体积越小,分散越好。

  • 【求助】请教:样品中小颗粒太少会统计不出来吗?

    用Mastersizer 2000检测样品颗粒,结果为正态分布,图形非常美观,残差小于0.5%。D(0.5)为6微米,D(0.1)为2微米。但是在数据表中,大约0.3微米以下,显示的“体积不足”全部为0.00%。是因为0.3微米下的小颗粒完全没有?还是因为小颗粒所占体积低于0.01%,软件只好显示为0.00%? 用数量统计也是如此。仪器测量下限为0.02微米。请大虾们指教。

  • 请问专家大气沉降颗粒物样品预处理方法

    专家,你好,我打算用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]做大气干沉降颗粒中痕量元素的分析,样品的预处理准备采用微波消解法,那么请问采用微波消解能否消解完全,若不能应附加什么方法,还有请专家详细介绍一下大气沉降颗粒物微波消解预处理的步骤,谢谢。

  • 您知道怎么取大颗粒的样品吗?博文告诉您哦!

    您知道怎么取大颗粒的样品吗?博文告诉您哦!

    您知道怎么取大颗粒的样品吗?http://simg.instrument.com.cn/bbs/images/default/em09507.gif实验室的亲们,众所周知取样很关键。如果在取样的第一个环节就被污染了,那做出来试验的数据也是不准的,所以对取样工具的选择也是很重要的。Burkle大颗粒取样器,适用于流动性好、大颗粒的样品(直径达25px),如榛子、茶叶、谷物和一些类似的样品。http://simg.instrument.com.cn/bbs/images/default/em09511.gif怎么应用呢?1. 将Tubus 插入指定的取样深度, 同时握紧收集端。2. 松手时,样品顺着管子直接流到盛装样品的容器或袋子中。http://ng1.17img.cn/bbsfiles/images/2016/04/201604261052_591463_3766_3.jpg

  • 各位遇到金属颗粒样品是如何检测的?

    各位遇到金属颗粒样品是如何检测的?

    [b][color=#cc0000]各位遇到金属颗粒样品,但不是粉末,是如何检测的?[/color][color=#cc0000][img=,500,375]https://ng1.17img.cn/bbsfiles/images/2020/07/202007080751303663_3701_1841897_3.jpg!w500x375.jpg[/img][/color][/b]

  • 气相色谱的样品颗粒杂质极多,怎么处理

    样品颗粒杂质特别多,高速离心后取上清液可以用吗,我怕堵柱子。微孔过滤膜可以用吗,我看液相上用得多,SPE柱子呢。大家一般用还有别的什么好办法吗?哪种最优?GC7820,毛细管柱DB-5,0.25μm。

  • 【实战宝典】单颗粒分析的样品如何处理?

    【实战宝典】单颗粒分析的样品如何处理?

    问题描述:单颗粒分析的样品如何处理?解答:[font=宋体][color=black]单颗粒分析样品不能接触强酸,只可以用水或者合适的提取剂将单颗粒从目标物中提取出来,提取液静置后取上清液,可避光保存在低温冰箱中,不可冰冻。[/color][/font][font=宋体][color=black]若单颗粒比较容易聚合,上机前可加适量的分散剂(如[/color][/font][font='Times New Roman','serif'][color=black]0.x%[/color][/font][font=宋体][color=black]曲拉通或[/color][/font][font='Times New Roman','serif'][color=black]1-10%[/color][/font][font=宋体][color=black]的[/color][/font][font='Times New Roman','serif'][color=black]IPA[/color][/font][font=宋体][color=black]),再用超声分散,超声时间控制在[/color][/font][font='Times New Roman','serif'][color=black]10-30s[/color][/font][font=宋体][color=black]之内,温度需要严格控制在[/color][/font][font='Times New Roman','serif'][color=black]30[/color][/font][font=宋体][color=black]℃以内。[/color][/font][font=宋体][color=black]上机测试溶液浓度应控制在[/color][/font][font='Times New Roman','serif'][color=black]10-100ppt[/color][/font][font=宋体][color=black]左右,过高则[/color][/font][font='Times New Roman','serif'][color=black][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][/font][font=宋体][color=black]难以分辨出单独的脉冲信号,过低则单颗粒数不足,难以说明溶液整体情况。[/color][/font][font=宋体][color=black][/color][/font][align=center][img=,479,162]https://ng1.17img.cn/bbsfiles/images/2022/07/202207041304591518_7677_3389662_3.jpg!w479x162.jpg[/img][img=,262,177]https://ng1.17img.cn/bbsfiles/images/2022/07/202207041304594193_2555_3389662_3.jpg!w262x177.jpg[/img][img=,249,206]https://ng1.17img.cn/bbsfiles/images/2022/07/202207041304591606_7412_3389662_3.jpg!w249x206.jpg[/img][/align][font=宋体][color=black]图为[/color][/font][font='Times New Roman','serif'][color=black]TEM[/color][/font][font=宋体][color=black]观测到的纳米颗粒尺寸与[/color][/font][font='Times New Roman','serif'][color=black]SP-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][/font][font=宋体][color=black]统计出的颗粒尺寸有很好的相关性。[/color][/font]以上内容来自仪器信息网《[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]实战宝典》

  • 冷冻电镜单颗粒技术样品制备载网支持膜的选用

    冷冻电镜单颗粒技术样品制备载网支持膜的选用

    冷冻电镜技术是现今结构生物学里最常用的解析生物大分子三维结构的技术之一。虽然其样品制备过程比另一种同样非常常用的技术——X射线晶体学简便,但成功制备出一个适合进行高分辨数据收集的样品仍然是经验、运气、努力与创新相结合的结果。为了承载样品,使其能送入透射电镜进行观察,样品需要与带支持膜的载网接触并冷冻固定在一起。目前,可供选用的载网支持膜大体分两种:一种是有孔支持膜,包括常用的微栅碳支持膜、碳微阵列支持膜(如Quantifoil,GiG,Cflat等)、金属微阵列支持膜(如Quantifoil金膜,镍钛膜等)等,可直接购买使用。另一种是在有孔支持膜上再加一层连续超薄支持膜,添加的超薄支持膜常用的为超薄碳膜,近期又出现了氧化石墨烯膜等基于石墨烯的超薄膜类型。这种通常需要使用者对市售的有孔支持膜再加工,在其表面多加一层超薄支持膜。无论使用哪种膜,由于提供支撑的有孔膜较厚引入的噪音很高,数据收集都发生在孔内。[align=center][img=,690,728]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260954438579_6129_3224499_3.jpg!w690x728.jpg[/img][/align][align=center]图1.常用有孔支持膜类型[/align][align=center][img=,690,550]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260954588204_7034_3224499_3.jpg!w690x550.jpg[/img][/align][align=center]图2.有孔支持膜加连续超薄支持膜类型[/align]适合单颗粒技术数据收集的冷冻电镜样品需符合以下要求:①生物大分子群体主要为同种分子或者组分相同的复合体,且它们稳定在一种或有限的几种彼此能被计算机图像处理分类技术区分的构象;②样品颗粒彼此分离,同时分布密度又能满足在一次数据采集区域内获得足够的颗粒数量;③样品颗粒的空间取向随机分布。[align=center][img=,690,262]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260955256336_8129_3224499_3.jpg!w690x262.jpg[/img][/align][align=center]图3.理想化的样品颗粒在冰层中的分布示意图[/align]这些要求看似与载网支持膜的选用无太大关联,但实践经验告诉我们,有时同一个样品使用不同的载网支持膜进行样品制备,其数据收集质量有区别。导致这种差别的原因之一是支持膜表面性质的不同对进孔样品分布密度的影响。使用有孔碳支持膜常见的一个问题是样品大部分粘附在支持膜上,而在孔内的样品数量很少。根据经验,碳支持膜对部分样品的吸附性能相当强,溶液中的样品会优先吸附到碳膜上,以至于游离的样品颗粒浓度大大降低,而分布在支持膜孔内的样品来源于游离的样品颗粒群体。使用添加了连续超薄膜的载网则少有这个问题,毕竟孔内孔外都有碳膜,同时由于碳膜对样品的吸附在一定程度上具有样品富集效应,还可降低制样时所需样品浓度。此外,使用金属材质的有孔支持膜(如金膜,镍钛膜等)能缓解这种情况,因为金属支持膜表面性质与碳支持膜有区别,其对样品的吸附也可能有差异。[align=center][img=,690,263]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260955370487_1473_3224499_3.jpg!w690x263.jpg[/img][/align][align=center]图4.连续碳膜上的样品颗粒在冰层中的分布示意图[/align]导致这种差别的原因之二是冷冻样品制备时气液界面对样品的影响。由于电子能穿透的样品厚度很有限,样品被冻住前必须先进行减薄。目前最简单也最通用的减薄法是使用滤纸移除大部分液体而仅剩厚度在几十至上百纳米范围的水膜。根据现今通用的制样方式,从水膜的形成到它被快速冷冻成非晶态冰膜的时长在秒的量级。水膜的上下两层气液界面之间的距离如此短,水膜中样品被冷冻固定前的时间如此长,以至于样品颗粒有成千上万次机会与气液界面接触。每次接触样品颗粒都机率变性,或变成无定形的多肽链,或解体成更小的亚基组合。最终我们看到的样品颗粒或是被“已牺牲”的变性样品所保护而未能接触气液界面,或是幸运地多次接触气液界面而仍未变性。更多关于气液界面对样品影响的介绍,可参考孙飞(2018)以及Glaeser 和Han (2017)发表的综述。[align=center][img=,690,285]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260955485024_3909_3224499_3.jpg!w690x285.jpg[/img][/align][align=center]图5.现实的样品颗粒在冰层中的分布示意图[/align]使用有孔支持膜无可避免地会受到来自上下两层气液界面的影响,某些样品会因此而在冷冻后无法观察到完整颗粒。而使用连续超薄支持膜一面由气液界面转换为固液界面,另一面由于支持膜对样品的吸附而远离气液界面,有效地降低了气液界面对它的影响。既然添加连续超薄支持膜的载网有这么多好处,为什么很多样品仍然使用有孔支持膜呢?原因之一是长期使用的超薄碳支持膜对于小蛋白(特别是分子量小于500kDa)仍然太厚,引入的噪音太多,导致小蛋白数据取向搜索结果不够精确,影响重构分辨率提升。而石墨烯类超薄支持膜理论上为单分子层,比超薄碳膜更薄,在这方面可以帮上忙。但石墨烯类支持膜添加到载网上的方法仍在发展中,目前使用上仍不及有孔支持膜便利。[align=center][img=,690,541]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260956026943_9251_3224499_3.jpg!w690x541.jpg[/img][/align][align=center]图6.样品直径与碳膜厚度的选择(感谢友情出镜的大蛋黄颜值担当评审嘉宾)[/align]原因之二是添加超薄支持膜更大机率引起样品的取向优势,导致某些取向数据采集量远远不足,同样影响重构分辨率提升。[align=center][img=,690,396]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260956143795_3302_3224499_3.jpg!w690x396.jpg[/img][/align][align=center]图7.样品颗粒取向优势示意(感谢友情出镜的大蛋黄实力客串样品颗粒)[/align]纯有孔支持膜与添加超薄支持膜两种方案可谓各有优缺。有孔支持膜的缺点很明显,在于受气液界面的两面夹击。如果有一种方法能缩短样品减薄到冷冻固定的时长至毫秒级别,那么样品颗粒将没有足够的时间多次接触气液界面,同时也减少与支持膜本身的接触,从而使用有孔支持膜的各种问题将可能迎刃而解。Bridget Carragher实验室研发了一种特殊的载网,命名为纳米线载网(nanowire grids)。这种载网具有自减薄功能,即载网孔内多余的液体会被固定在载网梁上的纳米线所吸走,留在载网孔内的液体厚度自然下降。当然纳米线吸附液体体积是有上限的,需要配合他们实验室研发的微量加样设备(Spotiton robot)加注皮升级别的样品量。虽然目前还未得到普及,但这种设置可以实现将减薄步骤的时长降低到百毫秒级别的水平。目前该文章未正式发表。推荐阅读文献:Fei Sun. Orienting the future of bio-macromolecular electronmicroscopy. Chin. Phys. B. 2018, 27(6): 063601Glaeser RM, Han BG. Opinion: hazards faced by macromolecules whenconfined to thin aqueous films. Biophys Rep. 2017, 3(1):1-7Noble AJ, Wei H, Dandey VP, Zhang Z, Potter CS, Carragher B.Reducing effects of particle adsorption to the air-water interface in cryoEM.doi: https://doi.org/10.1101/288340Palovcak E, Wang F, Zheng SQ, Yu Z, Li S, Bulkley D, Agard DA, ChengY. A simple and robust procedure for preparing graphene-oxide cryo-EM grids.doi: http://dx.doi.org/10.1101/290197Russo CJ, Passmore LA. Electron microscopy: Ultrastable goldsubstrates for electron cryomicroscopy. Science. 2014, 346(6215):1377-80.Sader K, Stopps M, Calder LJ, Rosenthal PB. Cryomicroscopy ofradiation sensitive specimens on unmodified graphene sheets: reduction ofelectron-optical effects of charging. J Struct Biol. 2013, 183(3):531-536来源:【生物成像中心】欢迎大家分享讨论使用过的载网支持膜[img]https://simg.instrument.com.cn/bbs/images/default/em09505.gif[/img]

  • AccuSizer 780 SIS 对于微量样品颗粒大小和数量分析

    AccuSizer 780 SIS 对于微量样品颗粒大小和数量分析

    AccuSizer 780SIS 对于微量样品颗粒大小和数量分析 摘要:在不同的行业,很多种技术都可以用来检测微量样品。特别是在医药蛋白质领域,往往要对于小于1mL的样品进行各种性质分析。美国PSS粒度仪自主生产的AccuSizer 780系列可以对微量样品中的颗粒进行大小和数量的分析,本文将通过一系列数据来证明这项技术的可行性。技术介绍:单颗粒光学传感技术(SPOS)技术是一种可以提供超高准确性和分辨率的颗粒大小和数量分析技术。通过让悬浮在液体中的颗粒通过LE-400的传感器,通过光阻挡和光散射的双重探测器同时得到关于粒径大小和颗粒数量的结果,通过进样体积得到样品的颗粒浓度,因此,在测量的过程中样品的体积必须是确定的。本文通过测量不同体积的样品,来验证AccuSizer 780SIS对于样品体积,颗粒大小和浓度的准确性。 材料和方法: 本文提到的所有测试样品,是MML公司提供的15μm的标准粒子。该标准粒子的浓度为3,118-4,218个/毫升。所有的测量是基于美国PSS粒度仪的AccuSizer 780 SIS产品,使用LE-400传感器,校准和使用的流速为15mL/min。在AccuSizer 780SIS安装一个1mL的注射器型进样器。具体的测量方法如下:--在测试之前用0.5ml的清洗液进行冲洗;--所有测试的样品,都取自相同规格900μl的标准样品;--在抽取样品之前的气隙为0.05mL;--每次测量时注射器的净体积为0.15mL;测量结果:从实验中获得的结果如表1,以及图1所示:所有的浓度测量数据,都在标准里面的偏差范围内,包括50μL的样品。在图一显示了期望的结果,样品体积和颗粒数量成很好的线性关系。http://ng1.17img.cn/bbsfiles/images/2016/08/201608051349_603569_3181_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608051349_603570_3181_3.jpg结论:这个实验证明,AccuSizer 780SIS可以精准的对微量样品的颗粒大小和浓度进行准确的测量。尽管数据显示AccuSizer 780 SIS可以测量低至50μL的样品,但是我们依然建议测量尽量采用较多的样品体积,因为这样对操作者来说会比较方便。

  • 环境空气 总悬浮颗粒物样品采集数量

    [list=1][*][size=24px]根据日常检测TSP操作一般厂界上风向一个,下风向三个,根据现场操作专家提出意见说需要在现场放置一个空白样。平时检测一直上风向一个,下风向三个,一共四个样品。[/size][*][size=24px]这样一来需要在原始记录上填写空白样吗??每一次检测厂界颗粒物都需要放置空白样吗。不放置空白样这样采样规范吗,符合要求吗?? 哪位专家讲解一下、[/size][/list]

  • 颗粒测试技术的进展与展望

    颗粒测试技术的进展与展望摘 要:本文简述了当今颗粒测试技术六个方面的进展,对颗粒测试技术的近期发展趋势作了简短的展望,提出了七个颗粒测试领域需要统一认识的基本问题,对促进颗粒测试技术发展提出了几点建议.关键词:颗粒测试;技术进展;发展趋势;基本问题;知识产权1 前 言随着颗粒技术的发展,颗粒测试技术已经受到广泛的关注与重视. 本文就目前颗粒测试领域的新进展,谈一点个人的浅见,请各位指教. 本文谈及的问题有:颗粒测试技术进展、颗粒测试技术展望、颗粒测试的基本问题和促进颗粒测试技术发展的几点建议.2 颗粒测试技术进展近年来颗粒测试技术进展很快,表现在以下几个方面:1) 激光粒度测试技术更加成熟,激光衍射/散射技术,现在已经成为颗粒测试的主流. 其主要特点:测试速度快,重复性好,分辨率高,测试范围广得到了进一步的发挥.激光粒度分析技术最近几年的主要进展在于提高分辨率和扩大测量范围. 探测器尺寸增加,附加探头的使用扩大了测量范围;多种激光光源的使用、多镜头、会聚光路、多量程、可移动样品窗的使用提高了分辨率,采样速度的提高则进一步改善了仪器的重复性. 英国马尔文公司GM2000系列激光粒度仪采用高能量蓝光辅助光源和汇聚光学系统,测量范围达到0.02?2000微米,不需更换透镜. 贝克曼库尔特公司采用多波长偏振光双镜头技术将测量范围扩展到0.04?2000微米.代表了当前的先进水平. 国产的激光粒度仪在制作工艺和自动化程度上尚有欠缺,但大多数在重复性准确度方面也达到了13320国际标准的要求. 目前激光粒度分析仪在技术上,已经达到了相当成熟的阶段.米氏理论模型可以提高仪器的分辨率,但是需要事先了解被测样品的折射率和吸收系数,才可能获得正确的结果.测试结果的优劣不仅取决于测试系统和计算模型,更加取决于样品的分散状态.激光粒度仪对样品的分散要求是,分散而不分离. 仪器厂家应更加注意样品分散系统设计. 尽量避免小颗粒团聚,大颗粒沉降,大小颗粒离析,样品输运过程的损耗,外界杂质的侵入. 对于不同样品选用不同的分散剂和不同的分散操作应该引起测试者的注意.任何原理的仪器测试范围都不是可以无限扩展的. 静态光散射原理的激光粒度分析向纳米颗粒的扩展和向毫米方向的扩展极限值得探讨. 毫米级的颗粒只需光学成像技术就可以轻易解决的测量问题采用激光散射原理则并不是优势所在.2) 图像颗粒分析技术东山再起图像颗粒分析技术是一种传统的颗粒测试技术,由于样品制备操作较繁琐、代表性差、曾经作为一种辅助手段而存在,他的直观的特点没有发挥出来.为了解决采样代表性问题,有人使用图像拼接技术或者多幅图像数据累加技术可以有效提高分析粒子数量,采用标准分析处理模式的图像仪则可以将操作误差减小,这些改进取得了一定的效果.最近几年动态图像处理技术的出现使传统度颗粒图像分析仪备受关注,大有东山再起之势. 动态图像处理的核心是采用颗粒同步频闪捕捉技术,拍摄运动颗粒图像,因此减少了载玻片上样品制备的繁琐操作,提高了采样的代表性,而且可用于运动颗粒在线测量. 这就大大扩展了图像分析技术的应用范围和可操作性. 荷兰安米德公司的粒度粒形分析仪是有代表性的产品。它采用CCD+频闪技术测颗粒形状、采用光束扫描技术测颗粒大小。可测最大粒径为6毫米。如果颗粒在光学采样过程不发生离析现象,此种仪器在微米与毫米级颗粒测量中可能会得到广泛的应用.颗粒图像分析技术需要解决的另一个问题是三维测量. 动态颗粒图像采集由于颗粒采集的各向同性因此可以解决在载波片上颗粒方位的偏析问题,但是仍然无法解决如片状颗粒厚度问题. 厚度测量对于金属颜料,云母、特种石墨都是一个急需解决的实际问题.3) 颗粒计数器不可替代颗粒本身是离散的个体,因此对颗粒分级计数是一种最好的测量方法. 库尔特电阻法在生物等领域得到广范应用已经成为磨料和某些行业的测试标准. 但是他受到导电介质的限制和小孔的约束,在某些行业推广受到阻力.最近光学计数器在市场上异军突起,他将在高精度和极低浓度颗粒测量场合发挥不可替代的作用. 美国Haic Royco 公司颗粒计数器/尘埃粒子计数器是才进中国不久的老产品;美国PSS(Particle Sizing Systems)公司采用单粒子光学传感(SPOS)技术生产的系列仪器可用于湿法、干法、油品等各种场合的颗粒计数。国内颗粒计数器的研究工作起步并不晚,但是除了欧美克的电阻法计数器外,尚未见光学计数器商业化的产品。4) 纳米颗粒测试技术有待突破纳米颗粒测试越来越受到重视.电镜是一种测试纳米颗粒粒度与形态最常用的方法.电镜样品制备对于测试结果有重要影响,北京科技大学在拍摄高质量电镜照片方面作了出色的工作. 由于电镜昂贵的价格和严格的使用条件,以及取样代表性问题,电镜在企业推广不是最佳选择.根据动态光散射原理设计的纳米级颗粒测试技术是一种新技术,近年来获得了快速发展.马尔文,布鲁克海文、贝克曼库尔特等公司提供了优秀的商品,马尔文公司已将动态光散射的测量范围扩展到亚纳米范围,HPPS高性能高浓度纳米粒度和Zeta电位分析仪测试范围0.6-6000纳米,可以测量大分子真溶液粒径。国内开展此项技术研究的单位日益增多,上海理工大学、浙江大学、北京大学、清华大学、济南大学等许多高校都有学者和研究生在做工作. 数字相关器仍然是制约国产动态光散射仪器的瓶颈技术,如果数字相关器问题得到解决,中国自己的动态光散射纳米粒度仪出现在市场上将不会太远.X射线的波长比纳米还要短,因此X射线小角散射是一种测量纳米颗粒的理想方法,(类似于激光衍射原理)国外有商品仪器. 国内,此方法已经列入国家开发计划,国家钢铁研究总院对此方法研究已经作了大量工作,但是尚未见商品问世.5) 光子相关技术独树一帜动态光散射原理纳米颗粒测试采用的技术主要是光子相关谱,光子相关技术是一种70年代兴起的超灵敏探测技术,他根据光子信号的时间序列的相关性检测被测信号的多普勒频移或时间周期性,比通常的光谱仪分辨率高一个数量级,因此此技术也被用于颗粒运动速度的测定和其他场合. 上海理工大学浙江大学利用此原理已经研制成功在线用的颗粒粒度与颗粒流速的探针. 它可用于物料管道内部检测物料的平均大小和物料的流速. 对于在线控制具有指导意义。有报道称使用光子探测技术可以对高压空气喷嘴中的颗粒计数,说明颗粒测试正在向更加精密更加灵敏的方向发展.6) 颗粒在线测试技术正在兴起

  • 【求购】颗粒检测与标准样品的配置

    我有一瓶配置好的水溶液需要检测一下里面各微米颗粒的数量,还需要分别配置介质为水和油的标准液各一瓶(约400毫升),要求溶液中2um 5um 10um 15um 25um的颗粒含量各为500个/毫升,50um的颗粒含量300个/毫升,100um的颗粒含量为100个/毫升,请各位兄弟推荐一个能测颗粒数量和配置标准液的地方,谢谢!能做的请留言!

  • 做低浓度颗粒物,采了3个样品每个样品采样1小时值评价

    做低浓度颗粒物,采了3个样品,每个样品采样1小时值,用3个小时的平均值评价还是3个小时值中最大小时值评价,我是把三个小时值丢上面,然后后面写个限值,然后后面再是达标二字,相应氮氧化物和二氧化硫又是怎样评价,三个小时均值还是每个小时值中最大值

  • 关于固定污染源颗粒物采样样品数量的问题?

    关于固定污染源颗粒物采样样品数量的问题?

    [img=,690,626]https://ng1.17img.cn/bbsfiles/images/2018/12/201812181705556508_6701_3038116_3.png!w690x626.jpg[/img]像标准中说的这样,假如用滤筒去采集固定污染源的颗粒物。如果采样频次是1天3次,按16157的要求没次至少采集3个样品,是不是1天3次就要采集9个样品?? 按照这个要求,如果一个企业的固定污染源排气筒直径1.5m-2m。而且数量较多,每个排气筒采9个样品,这样去采集下来,一般很少有检测机构这样去做。像请教一下众位大神?求助求助!!!!!!!!!!!!!!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制