当前位置: 仪器信息网 > 行业主题 > >

空间分辨空燃比

仪器信息网空间分辨空燃比专题为您整合空间分辨空燃比相关的最新文章,在空间分辨空燃比专题,您不仅可以免费浏览空间分辨空燃比的资讯, 同时您还可以浏览空间分辨空燃比的相关资料、解决方案,参与社区空间分辨空燃比话题讨论。

空间分辨空燃比相关的仪器

  • 系统主要功能指标:宽光谱测量范围:UV-VIS-NIR, 200-900nm 高系统时间分辨率: =5ps寿命衰减测量时间范围:=50ps—100us 高系统光谱分辨率: 0.1nm宽单次成谱范围: =200nm静态(稳态)光谱采集,瞬态时间分辨光谱图像及荧光寿命曲线系统集成整体控制及数据处理软件超快时间分辨光谱系统 是由光谱仪、超快探测器、耦合光路、系统控制及数据处理软件组成。光谱仪对入射光信号进行分光,分光光谱耦合到超快探测器,入射光由透镜聚焦在阴极上,激发出的光电子通过阳极加速,入射到偏转场中的电极间,此时电压加在偏转电极上,光电子被电场偏转,激射荧光屏,以光信号的形式成像在荧光屏上。转换后的光信号还可以再通过图像增强器进行能量放大,并在图像增强器的荧光屏上成像。最后通过制冷相机采集荧光屏上信号。因为电子的偏转与其承受的偏转电场成正比,因此,通过电极的时间差就可以作为荧光屏上条纹成像的位置差被记录下来,也就是将入射光的时间轴转换成了荧光屏空间轴。系统控制软件用于整个系统的参数设置、功能切换、数据采集等,图像工作站用于采集数据处理分析主要应用方向超快化学发光超快物理发光超快放电过程超快闪烁体发光时间分辨荧光光谱,荧光寿命,半导体材料时间分辨PL谱钙钛矿材料时间分辨PL谱瞬态吸收谱,时间分辨拉曼光谱测量光通讯,量子器件的响应测量自由电子激光,超短激光技术各种等离子体发光 汤姆逊散射,激光雷达。。。。。。 光谱仪建议选型参数列表光谱仪型号Omni-λ2002iOmni-λ3004iOmni-λ5004iOmni-λ7504i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与探测器耦合中继光路1:1耦合,配合二维焦面精密调节一体化底板系统光谱分辨率(1200l/mm)=0.3nm=0.2nm=0.1nm0.08nm一次摄谱范围(150 l/mm)230nm150nm90nm60nm光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合,共聚焦显微收集耦合等多系统灵活组合超快时间分辨光谱测试系统既可以与飞秒超快光源配合完成独立的光谱测试,也可以与卓立汉光的其他系统比如 TCSPC, RTS&FLIM显微荧光寿命成像系统,TAM900宽场瞬态吸收成像系统,以及低温制冷室,飞秒&皮秒激光器等配合完成更为复杂全面的超快测试。Zolix其他可配合超快测量系统lRTS2& FLIM 显微荧光寿命成像系统光谱扫描范围:200-900nm(可拓展)最小时间分辨率:16ps荧光寿命测量范围:500ps-1μs@ 皮秒脉冲激光器激发源: 375nm- 670nm 皮秒脉冲激光器可选,或使用飞秒光源科研级正置显微镜及电动位移台空间分辨率:≤1μm@100X 物镜@405nm 皮秒脉冲激光器OmniFluo-FM 荧光寿命成像专用软件Omni-TAM900 宽场飞秒瞬态吸收成像系统测量模式:1:点泵浦-宽场探测:测量载流子迁移和热导率等;2:宽场泵浦-宽场探测:测量载流子分布和物理态的空间异质性等。探测器:sCMOS相机成像空间分辨率:优于500nm载流子迁移定位精度 优于30nm时间延时范围:0-4ns或0-8ns可选搭配倒置显微镜,可兼容低温,探针台,电学调控等模块20ps 的钙钛矿薄膜ASE 发光寿命曲线
    留言咨询
  • 国内首推科学级制冷型高分辨率ICCD 相机,在像增强器与科研制冷型的CCD相机之间,采用高分辨率的镜头耦合方式耦合成像, 获得60lp/mm 空间高分辨率,实现对高分辨率成像或高分辨瞬态光谱采集。 ● 科学级制冷型ICCD● 18mm口径二代高效像增强器● 宽光谱响应范围:S20:200-850nm & S25R:400-1100nm● 光学快门: 3ns● 延迟与门控调节精度:10ps● 阴极门控*高外同步频率 300KHZ ● 内置时序控制器DDG● 高空间分辨率:Std 50lp/mm,Option :60lp/mm● CCD芯片: 高分辨2750*2200像素阵列● 位深: 16bit● 制冷温度: -10℃ @ 风冷● 配合高分辨光谱仪实现瞬态光谱采集● 专业化数据采集控制软件独特亮点制冷型ICCD-10度芯片制冷温度,有效减低芯片暗噪声,安静读出超快光学门宽3ns 阴极光学门宽,实现**测量内置DDG内置精度10ps 门控与延迟控制发射器,方便随心控制自动步进STEP延迟和门控自动Step 步进功能,一键完成时间分辨光谱采集高空间分辨率高空间分辨率像增强器及镜头耦合,获得60lp/mm 空间分辨IOC 模式300kHZ阴极快门外同步频率,IOC 芯片累积模式提升信噪比Binning and ROI实现芯片FVB Binning以及 多通道光谱同时采集专业化软件采集控制&光谱仪控制,数据处理专业化界面,简单快捷ICCD像增强型高分辨率相机技术参数 CCD相机像素阵列2750*2200阵面尺寸12.48*9.98mm (15.972 mm Diag.)像素大小4.54um*4.54um传感器类型CCD Sensor读出噪声5e-暗电流0.02e- / pixel / s @-10℃位深16bitBining& ROIFVB: 垂直方向全Binning光谱模式& 多通道 ROI及FVB数字接口UBS2.0像增强器MCP光阴极S20BS25R有效口径18mm18mm光谱范围200-850nm400-1100nm峰值量子效率20% @440nm22%@720nm等效噪声(EBI) 2 x 10-7 lux @ 20 °C ± 2 °C 5 x 10-7 Lux光子增益1*1041.4*104荧光屏P20 /P43P43空间分辨率标准:50lp/mm ; 高分辨率选项: 60lp/mm光学门控宽度3ns (Mesh)Fast10ns, Slow 100ns内部DDG 控制延迟和门宽调节范围0-10s延迟和门宽调节精度10ps同步接口外触发输入,触发输出,直接触发输入(Direct gate)触发信号触发阈值 1-5V, 阻抗50欧姆,抖动100ps触发固有延迟40ns @ Direct gate , 120ns@ Ext外触发*增强器光阴极量子效率曲线型号选择SIC: Scientific Intensified Camera● 18/25 18或25m 口径增强器● U/F/S Ultrfast gate =3ns , Fast gate 10ns, Slow gate: 100ns● UV/VN:UV-VIS 200-900nm;VIS-NIR : 400-1100nm● 6M/4M : 600万像素 CCD 2750*2200 400万像素sCMOS 2048*2048● L/F: L高分辨镜头耦合 F 高通量光纤面板耦合 ICCD像增强型高分辨率相机常见型号列表
    留言咨询
  • 空间分辨质谱仪 400-860-5168转0702
    英国Hiden公司的SpaciMS空间分辨质谱仪世界上第一台商业的空间分辨质谱仪,可以进行径向和轴向的物质检测和温度分布绘图,具有极高空间和时间的分辨率,可以排除温度和气流的干扰。16路进气口,连接到hiden的质谱可以自动、快速地绘制温度和气体分布谱图。 SPACI-MS进样系统最初是由橡树岭国家实验室(Oak Ridge National Laboratory)和Cummins, Inc.的研究者们构思和发展起来的,用于柴油催化反应器的狭小空间内的动态采样定量分析反应器内的瞬态和分布 高时间分辨和最小的扰动 对反应器内气体成分可3D成像16路气体进样系统 软件控制样品蒸汽位置 Z轴可控制进样 内置热耦测量样品温度 轴向驱动:0~300mm 空间分辨:0.1mm
    留言咨询
  • 多功能原位空间分辨反应器德国REACNOSTICS公司推出的新型多功能催化反应器,可实现测量和/或模拟反应器内的浓度、温度和流场,可视化呈现出物质在反应器不同位置的实时状态,并通过原位即时空间分辨光谱(Operando Spectroscopy)实现对催化反应动力学的监测与控制。该技术解决了传统“黑匣子”式反应器内部动态无法监测的难题,使得催化反应各项性能指标“透明”。该催化反应器可以与拉曼光谱、质谱、气/液相色谱等联用,达到不断优化催化反应的目的。REACNOSTICS方法与传统方法对比左:传统反应器“黑匣子”;右:REACNOSTICS原位空间分辨反应器应用领域&bull 原位即时空间分辨光谱(Operando Spectroscopy)&bull 传热研究&bull 铑/铂催化甲烷部分氧化制合成气&bull 镍上甲烷的干法重整&bull 氧化钼上乙烷氧化脱氢制乙烯&bull 甲烷选择性氧化&bull 铂网上甲烷催化燃烧&bull 泡沫铂催化剂上的一氧化碳氧化&bull 焦磷酸钒催化氧化正丁烷制马来酸酐&bull 铂网催化剂上的氨氧化(Ostwald工艺)&bull 钛硅沸石上丙烯环氧化生成环氧丙烷(HPPO 工艺)&bull 单颗粒分析反应器型号紧凑型反应器 - CPR(Compact Profile Reactors)多种用途、小巧紧凑的设计、带光学接口特点&bull 带光学通道的紧凑型固定床催化反应器&bull 适合在拉曼显微镜下观察&bull 催化剂床等温区为60 mm&bull 催化剂床直径 4mm&bull 最高温度 550 °C&bull 最大压强 20 bar(高压版本 50 bar)&bull 通过加热反应区外的所有路径,不会使产物冷凝&bull 可与外部分析设备(质谱、气相色谱、拉曼)互联&bull 控制单元&bull 软件 选件&bull 供气&bull 分析软件&bull 采样毛细管内部用于拉曼光谱的光纤和耦合器&bull 带采集光纤的高温计小型台式反应釜(Bench Scale Profile Reactors)适合实验室工作台/通风橱、根据客户流程量身定制、高温/高压特点&bull 中型刨面反应釜&bull 适合放在实验室工作台上或通风橱&bull 可定制催化剂床的尺寸&bull 可定制气体供应和压力控制&bull 最高温度1000 °C&bull 最大压强50 bar&bull 采样毛细管的平移和旋转&bull 通过加热反应区外的所有路径,不会使产物冷凝&bull 可与外部分析设备(质谱、气相色谱、拉曼)互联&bull 控制单元&bull 软件&bull 全自动可控,可实现无人值守的长期运行 选件&bull 分析软件&bull 废气处理&bull 采样毛细管内部用于拉曼光谱的光纤和耦合器&bull 带采集光纤的高温计中试规模反应器根据客户流程量身定制、催化剂床长度长达100 cm、工业管径特点&bull 带通风机架的独立式反应器&bull 可定制催化剂床的尺寸&bull 可定制气体供应和压力控制&bull 最高温度500 °C&bull 最大压强50 bar&bull 取样毛细管的平移和旋转&bull 通过加热反应区外的所有路径,不会使产物冷凝&bull 可与外部分析设备(质谱、气相色谱、拉曼)互联&bull 控制单元&bull 软件&bull 全自动可控,可长期无人值守运行&bull 尾气处理 选件&bull 多个加热/冷却区&bull 分析软件&bull 采样毛细管内部用于拉曼光谱的光纤和耦合器&bull 带采集光纤的高温计&bull 用于快速测量温度曲线的光纤布拉格光栅&bull 液体汽化应用案例反应器中的温度、浓度和光谱曲线测量MoOx/Al3O2催化剂将乙烷氧化脱氢为乙烯的反应中,在 1 bar 反应器压力下,在固定床反应器中测量物质和温度曲线。利用拉曼光谱观测到随着氧分压的降低,MoO3含量逐渐降低。详细信息请参阅:Geske, M. Korup, O. Horn, R. Catal. Sci. Technol. 3 (2013) 169-175.反应器中的空间分辨光谱应用案例1:对涂有 Pt 纳米颗粒的氧化铝泡沫进行空间分辨拉曼光谱分析,Pt颗粒在甲烷催化部分氧化制合成气的反应器中使用过。拉曼光谱显示 Pt 颗粒上形成的 sp2 杂化碳的 D 和 G 带导致催化剂失活。详情请参阅: Korup, O. Goldsmith, C. F. Weinberg, G. Geske, M. Kandemir, T. Schlö gl, R. Horn, R. J. Catal. 297 (2013) 1-16.应用案例2:富甲烷条件下,气相甲烷氧化的空间剖面反应器研究。甲醛是甲烷氧化成一氧化碳过程中所形成的一种低浓度中间物质,通过空间分辨 LIF 光谱进行测量。详情请参阅:Schwarz, H. Geske, M. Goldsmith, C. F. Schlö gl, R. Horn, R. Combust. Flame 161 (2014) 1688-1700. 催化剂本征动力学测量具有沙浴加热、原料气供应和气相色谱产物分析的三重平行等温动力学试验反应器。反应过程的测量和优化应用案例1:利用高分辨率轴向温度分布测量,来确定球体和空心圆柱体填充床的有效轴向导热率。详情请参阅: Sosna, B. Dong, Y. Chromow, L. Korup, O. Horn, R. Chem. Ing. Tech. 88 (2016) 1676-1683.应用案例2: 模拟高温、高流速应用中,用作催化剂载体的开孔泡沫的流动轨迹。中间的圆柱体表示用于空间剖面测量的采样毛细管。反应器建模对壁加热催化固定床反应器内,基于颗粒解析的CFD模拟速度场和温度场。催化剂颗粒形状为空心圆柱体。详情请参阅:Dong, Y. Sosna, B. Korup, O. Rosowski, F. Horn, R. Chem. Eng. J. 317 (2017) 204-214.用户单位获得奖项已发表文章(按应用分类)&bull 原位即时空间分辨光谱(Operando Spectroscopy)Exploring catalyst dynamics in a fixed bed reactor by correlative operando spatially-resolved structure-activity profiling. Wollak, B. Doronkin, D.E. Espinoza,D. Sheppard, T. Korup, O. Schmidt, M. Alizadefanaloo, S. Rosowski, F. Schroer, C. Grunwaldt, J.-D. Horn, R. Journal of Catalysis&bull 传热研究Investigation of Radial Heat Transfer in a Fixed-Bed Reactor: CFD Simulations and Profile Measurements. Dong, Y. Sosna, B. Rosowski, F. Horn, R. Chemical Engineering Journal, Volume 317, (2017), Pages 204-214.Effective Axial Thermal Conductivity in Catalyst Packings from High Resolution Temperature Profiles. Sosna, B. Dong, Y. Chromow, L. Korup, O. Horn, R. Chemie Ingenieur Technik, Volume 88, Issue 11, (2016), Pages 1676-1683.&bull 铑/铂催化甲烷部分氧化制合成气Catalytic Partial Oxidation of Methane on Platinum Investigated by Spatial Reactor Profiles, Spatially Resolved Spectroscopy, and Microkinetic Modeling. Korup, O. Goldsmith, C. F. Weinberg, G. Geske, M. Kandemir, T. Schloegl, R. Horn, R. Journal of Catalysis, Volume 297, Year 2013, Pages 1-16.Measurement and Analysis of Spatial Reactor Profiles in High Temperature Catalysis Research. Korup, O. Mavlyankariev, S. Geske, M. Goldsmith, C. F. Horn, R. Chemical Engineering and Processing, Volume 50, Issue 10, Year 2011, Pages 998-1009.Modeling Spatially Resolved Data of Methane Catalytic Partial Oxidation on Rh Foam Catalyst at Different Inlet Compositions and Flow Rates. Nogare, D. D. Degenstein, N. J. Horn, R. Canu, P. Schmidt, L. D. Journal of Catalysis, Volume 277, Issue 2, Year 2011, Pages 134-148.Catalytic Partial Oxidation of Methane on Rhodium and Platinum: Spatial Profiles at Elevated Pressure. Bitsch-Larsen, A. Horn, R. Schmidt, L. D. Applied Catalysis A-General, Volume 348, Issue 2, Year 2008, Pages 165-172.Modeling Spatially Resolved Profiles of Methane Partial Oxidation on a Rh Foam Catalyst with Detailed Chemistry. Nogare, D. D. Degenstein, N. J. Horn, R. Canu, P. Schmidt, L. D. Journal of Catalysis, Volume 258, Issue 1, Year 2008, Pages 131-142.Performance of Mechanisms and Reactor Models for Methane Oxidation on Rh. Williams, K. A. Horn, R. Schmidt, L. D.AIChE Journal, Volume 53, Issue 8, Year 2007, Pages 2097-2113.Methane Catalytic Partial Oxidation on Autothermal Rh and Pt Foam Catalysts: Oxidation and Reforming Zones, Transport Effects, and Approach to Thermodynamic Equilibrium. Horn, R. Williams, K. A. Degenstein, N. J. Bitsch-Larsen, A. Nogare, D. D. Tupy, S. A. Schmidt, L. D. Journal of Catalysis, Volume 249, Issue 2, Year 2007, Pages 380-393.Mechanism of H2 and CO Formation in the Catalytic Partial Oxidation of CH4 on Rh Probed by Steady-State Spatial Profiles and Spatially Resolved Transients. Horn, R. Williams, K. A. Degenstein, N. J. Schmidt, L. D. Chemical Engineering Science, Volume 62, Issue 5, Year 2007, Pages 1298-1307.Spatial and Temporal Profiles in Millisecond Partial Oxidation Processes. Horn, R. Degenstein, N. J. Williams K. A. Schmidt L. D. Catalysis Letters, Volume 110, Issue 3-4, Year 2006, Pages 169-178.Syngas by Catalytic Partial Oxidation of Methane on Rhodium: Mechanistic Conclusions from Spatially Resolved Measurements and Numerical Simulations. Horn, R. Williams K. A. Degenstein, N. J. Schmidt L. D. Journal of Catalysis, Volume 242, Issue 1, Year 2006, Pages 92-102.&bull 镍上甲烷的干法重整Investigating Dry Reforming of Methane with Spatial Reactor Profiles and Particle-Resolved CFD Simulations. Wehinger, G. D. Kraume, M. Berg, V. Korup, O. Mette, K. Schlö gl, R. Behrens, M. Horn, R. AIChE Journal, Volume 62, Year 2016, Pages 4436-4452.&bull 氧化钼上乙烷氧化脱氢制乙烯Resolving Kinetics and Dynamics of a Catalytic Reaction inside a Fixed Bed Reactor by Combined Kinetic and Spectroscopic Profiling. Geske, M. Korup, O. Horn, R. Catalysis Science and Technology, Volume 3, Year 2013, Pages 169-175.&bull 甲烷选择性氧化Fuel-Rich Methane Oxidation in a High-Pressure Flow Reactor Studied by Optical-Fiber Laser-Induced Fluorescence, Multi-Species Sampling Profile Measurements and Detailed Kinetic Simulations. Schwarz, H. Geske, M. Goldsmith, C. F. Schlö gl, R. Horn, R. Combustion and Flame, Volume 161, Year 2014, Pages 1688-1700.&bull 铂网上甲烷催化燃烧Catalytic Methane Combustion on a Pt Gauze: Laser-Induced Fluorescence Spectroscopy, Species Profiles and Simulations. Schwarz, H. Dong, Y. Horn, R. Chemical Engineering Technology, Volume 39, Year 2016, Pages 2011-2019.&bull 泡沫铂催化剂上的一氧化碳氧化Catalytic Methane Combustion on a Pt Gauze: Laser-Induced Fluorescence Spectroscopy, Species Profiles and Simulations. Schwarz, H. Dong, Y. Horn, R. Chemical Engineering Technology, Volume 39, Year 2016, Pages 2011-2019&bull 焦磷酸钒催化氧化正丁烷制马来酸酐Catalytic Methane Combustion on a Pt Gauze: Laser-Induced Fluorescence Spectroscopy, Species Profiles and Simulations. Schwarz, H. Dong, Y. Horn, R. Chemical Engineering Technology, Volume 39, Year 2016, Pages 2011-2019.&bull 铂网催化剂上的氨氧化(Ostwald工艺)Catalytic Methane Combustion on a Pt Gauze: Laser-Induced Fluorescence Spectroscopy, Species Profiles and Simulations. Schwarz, H. Dong, Y. Horn, R. Chemical Engineering Technology, Volume 39, Year 2016, Pages 2011-2019.&bull 钛硅沸石上丙烯环氧化生成环氧丙烷(HPPO 工艺)Work in progress. Coming soon...&bull 单颗粒分析Probing local diffusion and reaction in a porous catalyst pellet. Sosna B. Korup O. Horn, R. Journal of Catalysis
    留言咨询
  • 纳米空间分辨超快光谱和成像系统 “空间和时间的结合”— 纳米分辨和飞秒别的光谱超快光谱技术拥有诸多特色,例如高的时间分辨率,丰富的光与物质的非性相互作用,可以用光子相干地调控物质的量子态,其衍生和嫁接技术带来许多凝聚态物理实验技术的变革等等。然而,受制于激发波长的限制(可见-近红外),超快光谱在空间分辨上受到了一定的制约,在对一些微纳尺寸结构的材料研究中,诸如一维半导体纳米线,二维拓扑材料、纳米相变材料等,无法地进行有效的超快光谱分析。 德国Neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出了全新的纳米空间分辨超快光谱和成像系统,其pump激发光可兼容可见到近红外的多组激光器,probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征。技术原理:设备特点和参数:→ 超高空间分辨和时间分辨同时实现;→ 20-50 nm空间分辨率;→ 根据pump光源时间分辨可达50 fs;→ probe光谱可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)应用领域:→ 二维材料→ 半导体→ 纳米线/纳米颗粒→ 等离激元→ 高分子/生物材料→ 矿物质......应用案例:■ 纳米红外超快光谱分辨率为10nm的InAs纳米线红外成像,并结合时间分辨超快光谱分析载流子衰减层的形成过程参考:M. Eisele et al., Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, Nature Phot. (2014) 8, 841.稳态开关灵敏性:容易发生相变的区域,光诱导散射响应较大参考:M. A. Huber et al., Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams, Nano Lett. 2016, 16, 1421.参考:G. X. Ni et al., Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene, Nature Phot. (2016) 10, 244.参考:Mrejen et al., Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow- gap semiconductor, Sci. Adv. (2019), 5, 9618.■ 范德华材料 WSe2 中的超快研究参考:Mrejen et al., Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging, Sci. Adv. (2019), 5, 9618.■ 黑磷中的近红外超快激发黑磷的high-contrast interband性质使其具有半导体性质,在光诱导重组过程中表面激发的电子空隙对(electron-hole pairs)~50fs并在5ps内消失参考:M. A. Huber et al.,Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures, Nat. Nanotechnology. (2016), 5, 9618.■ 多层石墨烯中等离子效应衰减效应参考:M. Wagner et al., Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump?Probe Nanoscopy, Nano Lett. 2014, 14, 894.发表文章:neaspec中国用户发表文章超80篇,其中36篇影响因子10。部分文章列表:● M. B. Lundeberg et al., Science 2017 AOP.● F. J. Alfaro-Mozaz et al., Nat. Commun. 2017, 8, 15624.● P. Alonso-Gonzales et al., Nat. Nanotechnol. 2017, 12, 31.● M. A. Huber et al., Nat. Nanotechnol. 2017, 12, 207.● P. Li et al., Nano Lett. 2017, 17, 228.● T. Low et al., Nat. Mater. 2017, 16, 182.● D. Basov et al., Nat. Nanotechnol. 2017, 12, 187.● M. B. Lundberg et al., Nat. Mater. 2017, 16, 204.● D. Basov et al., Science 2016, 354, 1992.● Z. Fei et al., Nano Lett. 2016, 16, 7842.● A. Y. Nikitin et al., Nat. Photonics 2016, 10, 239.● G. X. Ni et al., Nat. Photonics 2016, 10, 244.● A. Woessner et al., Nat. Commun. 2016, 7, 10783.● Z. Fei et al., Nano Lett. 2015, 15, 8271.● G. X. Ni et al., Nat. Mater. 2015, 14, 1217.● E. Yoxall et al., Nat. Photonics 2015, 9, 674.● Z. Fei et al., Nano Lett. 2015, 15, 4973.● M. D. Goldflam et al., Nano Lett. 2015, 15, 4859.● P. Li et al., Nat. Commun. 2015, 5, 7507.● S. Dai et al., Nat. Nanotechnol. 2015, 10, 682.● S. Dai et al., Nat. Commun. 2015, 6, 6963.● A. Woessner et al., Nat. Mater. 2014, 14, 421.● P. Alonso-González et al.,Science 2014, 344, 1369.● S. Dai et al., Science 2014, 343, 1125.● P. Li et al., Nano Lett. 2014, 14, 4400.● A. Y. Nikitin et al., Nano Lett. 2014, 14, 2896.● M. Wagner et al., Nano Lett. 2014, 14, 894.● M. Schnell et al., Nat. Commun. 2013, 5, 3499.● J. Chen et al., Nano Lett. 2013, 13, 6210.● Z. Fei et al., Nat. Nanotechnol. 2012, 8, 821.● J. Chen et al., Nature 2012, 487, 77.● Z. Fei et al., Nature 2012, 487, 82.
    留言咨询
  • 可见光谱仪是一种应用十分广泛的分析表征设备,广泛布局在科研院所、企业研发实验室等场景,在化学、生物、医药等领域发挥着不可替代的作用。市面上大多数可见光谱仪分为吸收谱仪和发射谱仪,且不具备空间分辨能力,这使得用户需要同时依赖多款设备对样品进行表征分析,不仅降低而分析效率,而且增加了不可靠性。本公司的吸收-发射谱仪实现同一样品位置的吸收-发射谱联采,极大提高了分析效率,而且通过将光斑减小到微米量级,为用户提供空间分辨性能。吸收谱波长范围200 – 1100 nm发射谱波长范围350 – 1100 nm激光波长350 – 800 nm光斑大小10μm – 1 mm
    留言咨询
  • 1920x1152高分辨率液晶空间光调制器(衍射效率:88%!)所属类别: 调制器--空间光调制器 所属品牌:美国Meadowlark optics公司 产品简介1920 x 1152高分辨率液晶空间光调制器! 1920 x 1152高分辨率纯相位液晶空间光调制器! 1920x1152高分辨率液晶空间光调制器(LC_SLM)是美国Meadowlark Optics公司2016年推出的一款产品。该款空间光调制器(SLM)具有分辨率高、大面阵(17.7x10.6 mm)、高填充因子(95.7%)、高衍射效率(88%)、高刷新速率(868Hz)、相位调制稳定性好(1%)等特点。 空间光调制器、纯相位空间光调制器、SLM、液晶空间光调制器、反射式空间光调制器、空间光调制器价格、调制器、相位调制器 液晶空间光调制器的英文名称是Spatial light modulator,即SLM,是一类能将信息加载于一维或两维的光学数据场上,可利用光的固有速度、并行性和互连能力的器件,SLM能够实时对二维空间的像素点进行单独的的位相、光强进行调制。 1920x1152高分辨率液晶空间光调制器(LC_SLM)是美国Meadowlark Optics公司2016年推出的一款高分辨相位调制型SLM产品。这款空间光调制器是基于LCOS(Liquid Crystal on Silicon)技术的反射型光调制器。LCOS技术通过精确的控制电压信号控制液晶的旋转角度及旋转的速度,最终可以实现位相的精确调制。1920x1152高分辨率液晶空间光调制器采用扭曲向列液晶材料,利用扭曲向列液晶的双折射效应,实现了对光束的波前调制。Meadowlark Optics调制器具备多项专利设计,在光能利用率、像素串扰、位相调制的线性度等方面的技术都处于世界领先行列,可实现纯位相调制、位相振幅混合调制。光路搭建方便! 图1. 液晶取向与加载电压示意图 图2. Meadowlark空间光调制器光路图 主要特点:? 空间分辨率高(1920 x 1152)? 大面阵(17.7x10.6 mm)? 高填充因子(95.7%)? 高衍射效率(88%)? 高刷新速率(868Hz)? 相位调制稳定性好( 0.1%)? 400-1620nm宽波段选择 图3. Meadowlark SLM 与其他品牌SLM位相纹波比较 主要应用领域: 光学操纵激?? 显微成像? 成像&投影? 光束分束? 相位调制? 光学镊子? 全息投影等 产品主要参数: 相关产品 超高速DMD数字微镜阵列 PHASICS波前分析仪/波前传感器/波前相差仪/波前探测器 ALPAO 可变形镜 1um 中高功率飞秒激光器(20~400mW)
    留言咨询
  • 简介质谱成像(Mass Spectrometry Imaging)是一种新型的表面原位分析技术,它揭示了样品真正表面或近表面的化学组成,其信息量远远超过了简单的化学成分分析,可以用于表征、鉴定待测样品表面的化学成分。较之其他成像技术,如显微镜成像,基于质谱的成像方法不局限于特异的一种或者几种分子,分析物可以以其最初的形态被检测,不需要对待测物进行标记,大大节省了标记所带来的技术和时间成本。目前主要有三种离子化技术用于质谱成像:基质辅助激光解吸电离(MALDI)质谱、电喷雾解吸电离(Desorption Electrospray Ionization)质谱和二次离子质谱(Secondary Ion Mass Spectrometry)技术,其中MALDI是应用最为广泛的离子化技术。MALDI通过引入基质分子,使分子与基质形成共结晶,当用一定强度的激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量而使分子解吸/电离。MALDI是一种软电离技术,待测分子不易产生碎片,解决了非挥发性和热不稳定性生物大分子解吸离子化的问题,是分析难挥发的有机物质的重要手段之一。在1994年,德国吉森大学(Justus Liebig University Giessen)的Bernhard Spengler教授首次将MALDI MS与成像方法结合用于分析多肽,此后质谱成像技术便受到了广泛的关注,不断的在疾病诊断,病理组织特征,药物代谢和植物代谢等研究中发挥着越来越重要的角色。一、仪器设备概况德国TransMIT AP-SMALDI 10是由世界知名质谱学家Bernhard Spengler教授研制成功并商品化的常压基质辅助激光解吸电离离子源,是目前MALDI质谱成像中分辨率很高的离子源(分辨率高达到1微米),突破了MALDI质谱成像空间分辨有效成像像素限制在50微米的瓶颈。与其他MALDI产品相比,该离子源在提高空间分辨率的同时保证了质谱信号的灵敏度,是检测生物样品中微量以及痕量成分的重要保障。TransMIT AP-SMALDI 10可与超高分辨质谱Orbitrap(Thermo Fisher Scientific)兼容,可同时获得高空间分辨率和高质量准确度和分辨率的二维离子密度图,实现了真正意义上的高分辨质谱成像。TransMIT AP-SMALDI 10与同领域其他设备,其具体优势体现在以下几个方面:1. 常压到中压的操作环境,大大简化了样品制备的方法,节约了成本。传统的MALDI样品分析是在真空条件下进行,操作要求高,且随着分析时间的延长,会导致基质在真空条件下挥发损失,造成分子离子峰的信号衰减和成像误差;2. 小于5微米的高空间分辨率,能够可视化生物组织内化合物在细胞水平上的空间分布,并且可用于单细胞质谱成像分析;3. 采用激光束和离子流的同轴设计,大大提高了样品表面分子离子的产率;4. 采用激光器,即无害免控激光器,在使用过程中对人体无任何危险;5. 配有专用于高分辨质谱成像的数据分析软件;6. 可与Thermo Scientific Q Exactive系列质谱仪兼容,拆装灵活。二、仪器设备应用及性能说明高空间分辨率TransMIT AP-SMALDI 10离子源问世后,已经在生命科学领域展示了自己的优势,受到了国际专家和同行的一致认可,多项研究成果发表在Angewandte Chemie,The Plant Journal, Analytical Chemistry,Analytical and Bioanalytical Chemistry,Rapid Communications in Mass Spectrometry, International Journal of Mass Spectrometry等知名期刊上。在了解生物组织特征,病理组织特征,药物疗效及发现生物标志物等方面表现突出。现对TransMIT AP-SMALDI 10主要优势特色做简要综述:1、 高空间分辨率 高空间分辨率是准确判断生物组织内化学物质分布的前提条件。以大鼠脑组织中的磷脂分布为例,在100×100 μm2像素下,我们仅可以得到脑组织中磷脂的低分辨轮廓图。当分辨率提高到35 μm时,图像清晰度显著提高,可以准确识别脑组织切片中不同功能区内化合物的分布。再次聚焦TransMIT AP-SMALDI 10激光束到3 μm,则可以得到更加精细、无毛刺的磷脂二维离子密度图,这样可以清晰识别大鼠脑组织中微小部位中的代谢产物分布。3×3 μm2二维离子密度图中红、蓝、绿分别代表不同的化合物,红色代表背景离子,蓝色代表phosphatidylcholine(38:1),绿色代表phosphatidylcholine (38:1)。 2、高质量准确度和高质谱分辨率 TransMIT AP-SMALDI 10的另一个优势是其基于Orbitrap设计的一款离子源。Orbitrap无疑是近20年来高分辨质谱技术上最重要的突破,该质谱是目前体积最小的高分辨质谱仪。Orbitrap分辨率可高达140000 @ 200 Da,可同时进行定性和定量分析,尤其能够针对复杂基质中痕量组分的高灵敏度定量分析。集成了TransMIT AP-SMALDI 10的Orbitrap可以为研究者提供超高分辨的二维离子密度图,解决了质谱成像技术中原位鉴定化合物的难点,全面提高了鉴定分子离子的准确率和效率。可同时实现全扫描和MS/MS扫描,获得RMS 2ppm的高质量准确度的二维离子密度图。如图所示,基于Orbitrap的AP-MALDI质谱成像可以分辨质量差仅为0.1Da的两个化合物。如果使用低分辨质谱,将无法区分平均质量同为m/z 726的两个化合物,致使得到的二维离子密度图(图d)实际上是两种离子信号叠加的结果。由此可见,AP-MALDI-Orbitrap技术结合了高空间分辨率和高质谱分辨率,是一种具有优势的质谱成像技术。 3、单细胞质谱成像分析 目前单细胞分析大多依靠显微镜技术,因此需要标记细胞中的分析物,但是细胞中绝大多数分子没有荧光,这不利于细胞中未知分子的检测 其次常用的荧光探针具有一定的波长宽度,在有限光窗下只能检测3-4种分子。单细胞质谱分析因为具有无需标记、多组分同时分析、相对和jue对定量、适于代谢组学和蛋白组分析的特点而受到研究者的青睐。在此基础上单细胞质谱成像成为了近期新的研究热点,常用的单细胞质谱成像技术为二次离子质谱仪(SIMS),虽然SIMS的空间分辨率通常高于MALDI,但其质量检测范围较小,质荷比超过1000时灵敏度显著降低。TransMIT AP-SMALDI 10可以提供1-10 μm的高分辨率,同时弥补了SIMS质量检测范围窄和灵敏度低的缺点,成功应用于磷脂、多肽以及蛋白质等活性物质在单细胞中的空间分布研究。下图展示了首次采用TransMIT AP-SMALDI 10获得的单细胞中化学物质的二维离子密度图,使用 7 μm的激光束可以成功捕获单个HeLa细胞(图a)中荧光标记物(图b)和磷脂(图c和d)的二维空间分布信息。 综上所述,TransMIT AP-SMALDI 10是一款性能优异、实用价值高的质谱成像离子源。整合后的AP-MALDI-Orbitrap在成像空间分辨率、质量准确度及质谱采集时间等方面得到了全面提升,配合其自主研发的数据处理软件 MIRION,更加提高了图像处理的速度和质量。AP-MALDI-Orbitrap在质谱成像领域中具有许多独特优势,势必在多学科交叉领域研究中成为重要的研究工具。
    留言咨询
  • MEEPLIBS可以在微米尺度上做空间分辨的元素分析,实现了与传统的显微镜实现完美结合,标准分析口径大小为15微米和18微米(最小可做到4微米),可在室温大气环境中测试,也可在特定的环境中测试。广泛应用于半导体材料、面板材料的微米尺度空间分辨率的实时元素分析。 系统特点:光源:266nm紫外激光光源具有配衰减器的激光光束整形功能,激光功率软件可调可实现探测系统的自动温控系统中配置摄像机,用户可实时观测测试的样品区域配置电动三维调节台用来精确校准激光聚焦位置、提高实验可重复性精度,可对样品进行序列测量能分析测量包括质量最轻的所有元素无须样品预处理,快速检测
    留言咨询
  • 2048x2048高分辨率纯振幅液晶空间光调制器姓名:陈工(Jack)电话:(微信同号)邮箱:英国ForthDD公司的铁电液晶空间光调制器(FLCOS/SLM)设备研发生产制造企业.其生产的铁电液晶空间光调制器(FLCOS)可用于振幅调制或者二值相位调制,广泛的用于结构光照明超分辨显微(SIM),光片照明显微(Lightsheet),3D测量(3D AOI or 3D SPI),近眼显示(Near-to eye,NET),3D AR头盔(3D AR HMD),抬头显示器(HUD)等领域.2K x 2K高分辨率纯振幅空间光调制器(Spatial Light Modulator,SLM)是ForthDD公司2020年新推出的一款高分辨率空间光调制器,其高分辨率(2048x2048),高填充率(94%),高响应速度(3.6KHz)等特点对客户的科研工作将起到非常不错的助力效果,将受到越来越多科研人员的青睐。 产品指标参数: 主要应用领域:? 结构光照明超分辨显微(SIM)? 光片照明显微(Lightsheet)? 3D测量(3D AOI or 3D SPI)? 近眼显示(Near-to eye,NET)? 3D AR头盔(3D AR HMD)? 抬头显示器(HUD)等
    留言咨询
  • Transcan C是由先临三维基于高精度3D数字化技术最新研发的一款主打“可变分辨率”的彩色3D扫描仪。高品质彩色三维数据,可用于产品设计,虚拟展示,数据存档等多个应用领域。 1200万像素彩色专业相机,高度还原物体色彩纹理信息 可调节扫描范围,灵活切换扫描范围,匹配不同物体扫描需求 可变混合分辨率,高中低三种模式自由选择,重现物体精致细节多范围自由切换 机身采用滑轨结构设计,支持150 mm x 96 mm、300 mm x 190 mm 两种扫描范围的切换,满足不同物体的扫描需求。可变混合分辨率 在同一扫描范围下,用户可在Transcan C 扫描软件中自由选择高、中、低三种分辨率 来适配扫描任务,无需额外更换镜头组件, 就可捕获不同精细度的扫描数据;并且支持 同一个扫描物体不同部位,选择不同分辨率 进行数据采集,提升整体扫描效率。高保真品质色彩 搭载两个彩色相机,可以输出高达1200万像素的纹理贴图, 高度还原物体色彩信息。高精度扫描数据 单幅扫描精度≤0.05 mm,准确还原实物的尺寸信息, 充分满足产品开发人员的设计需求。微细节纤毫毕现 在150 mm x 96 mm扫描范围下, 空间点距最小可达0.0375 mm, 清晰重现物体精致细节。 自动化智能易用 全自动扫描转台,搭配混合分辨率拼接算法,无需手动干预, 便可实现高品质三维数据的高效获取。 友好的软件界面、引导式的操作流程,简单方便易掌握。
    留言咨询
  • Piranha3相机系列产品将成像功能提升至全新高度,具有无法逾越的分辨率及数据通量。Piranha3相机系列具备高达16k的水平分辨率,可在多相机系统中呈现更精密画面,实现成本节约。Piranha3的传感器对准精密度,高响应度及优化像素尺寸,3.5 μm(16k),5 μm(12k)及7 μm(8k),使使用本产品的系统更节约成本。“点击具体型号查看产品详细介绍、相关下载以及应用案例!”产品列表型号水平分辨率垂直分辨率数据接口彩色/黑白帧频/行频P3-8X-08K4081922CameraLinkMono33.7KHzP3-8X-12K40122882CameraLinkMono23.5KHzP3-S0-16K20163842CameraLinkMono72KHzP3-S0-16K40163842CameraLinkMono72KHzP3-80-16K40163842CameraLinkMono72KHz典型应用:FPD检测;PCB检测;邮件/包裹分类;高质量文档扫描。
    留言咨询
  • TissueFAXS Q+ 高分辨全景快速扫描系列,可以实现在组织学水平获得样本大批量高分辨全景图像,系统主要从全景成像角度,实现不同规格样本整体组织原位单细胞、特定组织功能区域、特定结构、空间相互作用位置的关系等整体大数据数据结果深度分析。该系统主要以组织化学染色技术,结合高分辨全景扫描无缝拼接成像为基础,良好的解决了传统设备通常用于单视野内特定细胞亚结果或蛋白的成像弊端,无法提供整张玻片上细胞或特定结构的全景空间位置信息的问题。性能特点:高分辨全景快速扫描自动全景明场、宽场荧光、多维度成像搭载高分辨转盘成像模块独立多通道LED光源低光漂白效应支持搭载高通量上样器配备专业级组织流式定量分析平台全景多维度空间位置信息深度量化小鼠脑全脑共聚焦成像(20x物镜)
    留言咨询
  • 角分辨光谱仪 400-860-5168转2332
    一个能“变角度”的光谱系统0~360° 变角度 / 200~2500nm 宽光谱 /绝对反射率 R1 角分辨光谱仪 融合了复享首创的角分辨光谱技术与超精密的光学系统,专为多角度光谱探测需求而设计。通过最新升级的高精度旋转支架,R1 能够精确操控光路 360° 空间旋转,搭配高信噪比的光谱仪,支持绝对光谱效率检测。此外,颠覆性的反射式光学系统,有效消除了 200~2500nm 宽波段色差。旨在为用户提供更多维度、更宽波段的高精度光谱分析体验,以满足微纳光学、发光材料等各领域的应用需求。 典型应用领域: 结构色 在不同角度下呈现多彩的外观是结构色的基本属性,因此需要系统具备多角度光谱检测能力。 光子晶体 光子晶体以其可调的能带结构实现光束偏振、方向、频率等特性的精确调控,因此需要系统具有准确表征能带结构的能力以指导优化制备工艺。 光学薄膜 光学薄膜在不同角度具有反射率差异,因此需要系统能够准确测量薄膜在不同角度下的反射率数据,以进行全面的性能评估和优化。 发光材料 空间光强分布是发光材料至关重要的指标。因此需要系统具有全方位接收发光信息的能力R1 角分辨光谱仪 在以上领域的应用得益于如下几个特点: 1 0~360° 完整角度范围 R1 角分辨光谱仪 采用两颗精密的 Suruga 滑台,实现完整的 0~360° 光谱测试;匹配智能算法,快速实现包括 透射 / 反射 / 散射 / 辐射 在内的 7 种光谱测量模式; 2 最宽 250~2500nm 谱段 R1 角分辨光谱仪 内置 氘气 / 卤素 光源,结合 Polka 分束镜,并选取消除色差的 Fluorite 萤石晶体透镜,提供 250~2500nm 超宽波段光谱测量; 3 精细的 5 维调节 为适应 样品的多样性,R1 角分辨光谱仪采用了 x+y / α+β+θ 的 5 维调节台,精细地对样品进行方向调整; 4 外接 Laser 光源 由于新增的外部激光接口,R1 角分辨光谱仪 可拓展应用于 角分辨荧光光谱 测试领域,充分发挥实验室中更为强大的光源的优势。 注:以上参数如有差异,以官网为准。
    留言咨询
  • 数字化超高分辨小动物PET/CT一、概述 平生公司于2019年底着重推出拥有全球超高分辨率的小动物PET/CT设备,并拥有全部知识产权。该产品采用先进的SiPM数字化技术,具备优异的空间分辨率及系统灵敏度。 数字化超高分辨小动物PET/CT:通过对实验动物(大/小鼠及兔子等中小型动物)进行活体状态下的功能及解剖成像,获得动物身体代谢情况及药物在体内分布情况的各种数据,能够对肿瘤、神经系统、心血管等疾病研究、遗传基因研究以及药物临床前筛选等提供先进的技术支持。该产品增强了小动物PET在啮齿动物尤其是小鼠脑部细微结构的研究,性能优异,可满足各大高校科研结构对小动物PET高分辨的需求。Mira PET/CT (SiPM数字化) 二、技术特点■数字化SiPM探测成像技术■ 全球范围内分辨率 & 灵敏度■ 高通量扫描 & 全视野均匀清晰成像■ 动态成像技术■ 精确的定量分析■ 心电呼吸双门控技术及生理信息监控系统■ 精确配准■ 全套配置的实验平台系统■ 多功能软件系统■ 心电呼吸双门控技术及生理信息监控系统 1. 数字化:基于SiPM的探测成像技术采用新一代的半导体硅光电倍增器件(SiPM),拥有超高的增益一致性。同时采用紧凑的模块化阵列设计,有效地减少了探测盲区。相较传统的PMT探测器,可以获得更高的空间分辨率,显著提高了PET的图像质量。 2. 全球范围内分辨率 & 成像灵敏度l 采用先进的正电子探测技术和图像迭代算法,提供了亚微米级别的图像分辨率。点扩展函数建模的迭代算法保障了全视野空间分辨率0.6mm的均一性。l 采用独有的精细晶体切割及探测环设计,可探测捕获到更多的光子信号提升成像灵敏度。灵敏度14%( 150~750 keV);10% (NEMA标准) 3. 高通量扫描 & 全视野均匀清晰成像l 径向大视野(TFOV 90mm)及多通道的麻醉管路设计,支持2只小鼠的并排扫描。l 高通量特性结合创新的3D-PSF迭代重建技术(探测精度均衡),有助于提升药代动力学研究。 4. 动态成像技术同步实现药物注射和数据采集。实时跟踪示踪剂在动物体内的动态分布,精确分析药物的代谢过程。 5. 精确的定量分析在高低剂量下均可稳定成像,精确反映剂量水平,带来定量分析。 6. 多功能软件系统l 操作便捷:提供中/英双语语言环境,其中中文界面对国内用户更加友好,半自动化操作,简单易学;l 后处理功能强大:提供多种图像处理功能,2D、3D、连续切片、任意角度斜切,多种颜色渲染等;l ROI提取:支持多种勾画方式(自动、手动)、计算ROI大小,药物摄取值分析、自定义ROI颜色等;l 支持多种数据格式:可导为JPG、BMP、PNG、RAW、OBJ、DICOM、STL格式;l 一键传输:可将导出数据一键传输到服务器,节省用户刻盘拷贝的繁琐。 7. 心电门控及生理信息监控系统l 利用先进的回顾性心电门控及呼吸门控技术实现了对心跳运动伪影的有效控制;(1)使用心电门控技术,可有效去除心脏大血管的搏动伪影,提高心脏成像清晰度,提高定量分析准确度,利用门控技术与动态扫描成像技术想配合,可以获得心脏大血管生理功能等信息。(2)使用呼吸门控可以有效减少胸部、腹部扫描时的呼吸运动伪影,图像更清晰,定量分析更准确。l 配备动物的生理信息(呼吸、心跳)监控系统。 8. .全套配置的实验平台系统 标准大鼠安置舱 标准小鼠安置舱 四通道小鼠安置舱(定制款) 开放式大动物安置装置(可定制) 小动物麻醉系统 动物舱预装台 动物预麻醉箱 三、售服 平生医疗科技(昆山)有限公司(简称“平生”)是国内目前专注于分子影像科研设备的制造商,也是目前国产小动物PET/CT以及Micro CT中的领航者,市场装机量高。平生旗下的小动物活体成像产品自推出市场以来,已有诸多成功装机客户,其产品的性能和使用稳定性得到了客户的认可。同时,平生总部在昆山、子公司在上海,全国七大城市设有办事处,拥有自己的售服工程师团队,能为客户提供及时有效的售后相应。售后的服务保障、良好的性价比以及产品的性能可满足客户实验要求:• 重要指标达到国际同类产品的前沿水准• 售服响应与服务质量比国外产品更有优势与保障• 可提供定制化服务,发挥了国产制造商的优势。• 售价合理,并能公开透明设备的维修零部件价等
    留言咨询
  • 阿米精控电容式微位移传感器基于电容电极间均匀电场变化时电容值的变化量来实现纳米级位移的精确测量。该系列产品可实现非接触测量,保证了极高的测量分辨率、线性度以及高测量带宽,满足各种应用场景下纳米级的测量需求,能在恶劣的环境条件下工作。 可根据需求任意组合搭配:单通道、三通道、六通道。技术特点:百微米至数千微米级测量范围超高精度(皮米级极限分辨率)、高线性度、低漂移高带宽高动态测量可针对真空及空间等特殊环境定制 应用领域:压电微位移振动台电子显微镜微调精密位移测量规格参数:型号PC06-12X-XXPC10-12X-XXPC20-25X-XX量程100um200um2000um分辨率2Hz0.02nm0.03nm0.31nm25Hz0.04nm0.08nm0.77nm1kHz0.14nm0.26nm1.93nm2kKz0.39nm0.72nm3.52nm线性度0.15%0.15%0.15%默认带宽2kHz2kHz2kHz重复性0.21nm0.39nm3.3nm主轴误差分析仪 主轴误差分析仪分局GB标准测量和分析主轴误差运动。这些误差会影响工件制造、精密主轴回转运动、精密主轴测量的相关精度。 主轴误差分析仪测量主轴或旋转轴在工作速度下的运动。然后,它会分析并报告降低零件质量的错误运动,这些测量有助于排出故障,防止不必要的主轴重建,提高零件质量,减少废品。系统组成:高分辨率电容式位移传感器精密球形或圆柱形目标坚固的传感器安装硬件数据采集组件用于误差运动分析的专有软件 应用领域:精密回转仪器测试 回转表面检测 功能作用:预测并防止零件错误:表面光洁度、圆等验收前对机器性能进行鉴定/测试找出加工错误的根本原因技术特点:超高精度检测高动态具体测量:径向误差运动轴向误差运动跳动规格参数:性能最大转速无限制最小转速无限制通道/组件1~5动态/旋转轴向√径向跳动√圆度/同步√粗糙度/异步√径向旋转误差√总误差√
    留言咨询
  • 超高分辨活细胞荧光红外显微成像系统 【 产品简介 】荧光作为生物学特异性识别的主要手段,一直以来在生命科学中发挥着重要作用。但是这需要被分析的物质具有荧光或者可以被荧光所标记。振动光谱(IR & Raman)是成熟无标记的技术,能够直接提供物质本身的结构信息,能够为生命科学提供广泛的大分子、药物、材料、脂质体等无标记物质的表征能力,在生命科学研究中具备重大潜力。具有亚微米和同步拉曼能力的O-PTIR克服了传统红外显微镜分辨率不足和在不平整表面米氏散射严重的问题,使得这种广泛的大分子表征现在可以在500 nm的生物相关空间尺度上进行,实现红外与拉曼和荧光成像分辨率相匹配,具备真正意义上的共定位能力。 现在,mIRage-LS将这些技术完全集成到一个系统上,仅需一台设备即可实现样品的全面红外、拉曼、荧光信号分析,获得任意一种单一技术本身都无法获得的额外信息和见解。【产品特点】  ☆ 荧光红外共定位成像分析  ☆ 亚微米尺度红外拉曼分辨率  ☆ 红外拉曼同步测量  ☆ 非接触式测量,同时支持透射、反射模式并且无米氏散射问题  ☆ 可测试活细胞(液体环境)【优势领域】单细胞分析:  ☆ 正常/患病细胞分化  ☆ 药物-细胞相互作用  ☆ 细胞内(脂滴) 成像研究组织分析:  ☆ 细胞分型  ☆ 钙化、疾病状态区分  ☆ 胶原蛋白取向细菌观测:  ☆ 单细菌鉴定  ☆ 细菌代谢研究光学光热红外O-PTIR在生命科学领域应用的显著优势  ☆ 亚微米级的空间分辨率;  ☆ 可直接获取液体中活细胞的红外成像;  ☆ 灵敏度高,可直接观测单细胞 (如细菌、哺乳动物细胞等);  ☆ 无米氏散射干扰,即使在细胞边缘也不受影响;  ☆ 超高光谱分辨率;  ☆ 无需直接接触即可测量软组织的红外光谱;  ☆ 可实现红外和拉曼同步测量;  ☆ 可实现超过10 μm厚的样品测试,直接置于载玻片上观察分析;  ☆ 可配置极化的红外光源超分辨红外技术O-PTIR理想空间分辨率横向对比 (FTIR, QCL and O-PTIR microscopes)专为生物样本设计的新型“双区(C-H/FP)”QCL新型“双区(C-H/FP)”QCL能够在在一台设备中同时涵盖了C-H拉伸和指纹区 (3000-2700、1800-950cm-1) 反射模式下收集的O-PTIR光谱在数据库(Wiley KnowItAll)搜索结果,匹配率超过95%。【应用案例】1. 荧光成像与O-PTIR联合表征  荧光成像对于分子生物学机制的研究具有十分重要的意义,而传统红外很难原位测量细胞的红外图谱,因此无法将蛋白定位与原位细胞的红外图谱进行原位叠合,这对于红外在生物学的机制研究中的应用十分不利。而O-PTIR能够直接在不损伤细胞的情况下测量不同区域的红外图谱,与荧光图像相结合探究蛋白结构与分布上的变化。图1. 阿尔兹海默症脑组织切片样品,左侧白光图,中间荧光图,右侧O-PTIR在中图中的红色与蓝色区域的采集的红外图谱2. 感染疟原虫的红细胞表征  疟原虫属寄生虫引起的疟疾是威胁生命的主要疾病之一,而疟原虫引发的感染周期十分复杂,因此在细胞和分子水平观察疟原虫的变化对于研究疟原虫的致病有着重要意义。Agnieszka M. Banas等人通过使用O-PTIR对疟原虫感染的红细胞在亚微米尺度的分子特征变化进行了表征,结果显示正常红细胞的蛋白呈现环状分布,而感染后的红细胞蛋白质则呈现无规则分布。通过对比传统FTIR与基于O-PTIR技术能够发现,O-PTIR能够提供更为详细的图像分辨率并且能够测量红细胞不同位置的光谱信息。而传统FTIR受制于米氏散射限制,效果较差。图2. 对比FTIR与O-PTIR对红细胞成像的结果:(a)红细胞的白光图;(b)图a中红色方块放大的区域;(c,e)FTIR的蛋白/脂质空间分布的红外成像;(d,f)O-PTIR的蛋白/脂质空间分布的红外成像;(g)红细胞的FTIR红外光谱;(h)红细胞的O-PTIR红外光谱 (g,i)疟原虫感染红细胞和正常红细胞的PCA(PC1&PC2,PC1&PC3)得分;(h,j)疟原虫感染红细胞和正常红细胞的PCA(PC1&PC2,PC1&PC3)得分  参考文献:B. [Malaria] “Comparing infrared spectroscopic methods for the characterization of Plasmodium falciparum-infected human erythrocytes” (Nature Communication Chemistry). Advantages: 1, 3, 4, 5, 63. 单个病毒的红外成像  受制于红外极限分辨率的限制,单个病毒的红外光谱成像一直以来都是十分困难的,对于只有100 nm左右的病毒进行红外光谱成像显得十分无力。Yi Zhang等人使用O-PTIR技术成功实现对单个痘病毒进行了检测,并成功观测到了病毒的外形,同时对病毒表面的蛋白的光谱进行了表征。图3. 单个痘病毒的光谱和成像表征。(a)痘病毒的干涉散射图像;(b)痘病毒1550cm-1波数下的MIP图像;(c)痘病毒1650cm-1波数下的MIP图像;(d)随机选取病毒上4个点的光谱  参考文献:“Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy” (Analytical Chemistry). Advantages: 1, 3, 4, 5, 64. 光学光热红外O-PTIR与Raman光谱协同分析固定或活的单细胞  英国曼彻斯特大学的Peter Gardner教授近期发表了他们关于活(和固定)细胞振动光谱分析的研究结果。作者使用光学光热红外O-PTIR与Raman光谱,并借助于两个激发源(QCL和OPO激光器),对细胞进行了宽光谱范围的覆盖,从而使所有与生物学相关的分子振动都能被检测到,且保持一致的亚微米的空间分辨率。此外,红外光谱采集与拉曼光谱有效的结合起来,在相同的激发位置,形成振动互补,得到一套完整的振动光谱信息。如下图所示,该红外和拉曼的组合方式可以用来分析液体环境中固定或活细胞的亚细胞结构,其中的蛋白质二次结构及富脂体均可以在亚微米尺度上被有效地识别出来。图4. O-PTIR观测固定未染色MIA PaCa-2细胞成像。(a)固定的未染色的MIA PaCa-2细胞的光学图像;(b)红色方块区域的放大图像;(c)OPO波束段的O-PTIR红外光谱;(d)QCL波束段O-PTIR的红外光谱;(e)黑色区域的拉曼和红外光谱  参考文献:D. [Mammalian cancer cell] “Analysis of Fixed and Live Single Cells Using Optical Photothermal Infrared with Concomitant Raman Spectroscopy” (Analytical Chemistry). Advantages: 1, 2, 3, 4, 5, 6, 75. O-PTIR与S-XRF联用探究阿尔兹海默症  阿尔兹海默症(AD)是老年痴呆症常见的病症之一,而淀粉样β蛋白沉淀是引发AD的重要病因之一,因此对于淀粉样β蛋白分布的研究就显得十分重要。Nadja Gustavsson等人通过O-PTIR成功观测到了神经中的淀粉样β蛋白分布,并且结合S-XRF分析发现铁簇与淀粉样β-折叠结构和氧化的脂质存在共定位关系。这项研究充分预示了O-PTIR/S-XRF联合技术可在AD疾病的研究中发挥重要作用。图5. 单个神经元的O-PTIR与X光荧光成像。(a)单个神经元的光学(左)与O-PTIR图像(中和右);(b)神经元上铜、铁的分布;(c)铁与蛋白叠合图;(d)铁与脂质的叠合图【测试数据】单细胞分析  ☆ 正常/患病细胞分化  ☆ 药物-细胞相互作用  ☆ 细胞内(脂滴) 成像研究细胞内的荧光+红外共定位分析  利用荧光同时观测细胞结构和细胞中的脂滴分布,研究脂滴在细胞中的共定位分析,提供潜在活体无标记相互作用分析数据。磷脂成像 (2856cm-1(CH2) / 2874cm-1(CH3) 100 nm pixel size. ~5 mins. 荧光染色细胞核(蓝色),蛋白(红色))活体细胞的组分分布分析磷脂成像,可观测活细胞内的脂滴的分布并且基本不会受到水的干扰,这是传统红外所难以达到的。 (2856cm-1(CH2)/ 2874cm-1(CH3) 100 nm pixel size. ~5 mins.)固定细胞的组分分布分析磷脂成像没可观测到细胞内的脂滴分布情况。 (2856cm-1(CH2)/ 2874cm-1(CH3) 100 nm pixel size. ~5 mins.)组织分析  ☆ 细胞分型  ☆ 钙化、疾病状态区分  ☆ 胶原蛋白取向组织切片分析观测肿瘤组织钙化分析1050cm-1,传统的FTIR只有大约12微米的空间分辨率,这往往比实际特征大得多,这就是为什么以前没有看到如此小的局部钙化。细菌观测  ☆ 单细菌鉴定  ☆ 细菌代谢研究红外拉曼联合细菌表征,可以同时观测到细菌的红外和拉曼图谱
    留言咨询
  • 系统主要功能指标:宽光谱测量范围:UV-VIS-NIR, 200-900nm 高系统时间分辨率: =5ps寿命衰减测量时间范围:=50ps—100us 高系统光谱分辨率: 0.1nm宽单次成谱范围: =200nm静态(稳态)光谱采集,瞬态时间分辨光谱图像及荧光寿命曲线系统集成整体控制及数据处理软件超快时间分辨光谱系统 是由光谱仪、超快探测器、耦合光路、系统控制及数据处理软件组成。光谱仪对入射光信号进行分光,分光光谱耦合到超快探测器,入射光由透镜聚焦在阴极上,激发出的光电子通过阳极加速,入射到偏转场中的电极间,此时电压加在偏转电极上,光电子被电场偏转,激射荧光屏,以光信号的形式成像在荧光屏上。转换后的光信号还可以再通过图像增强器进行能量放大,并在图像增强器的荧光屏上成像。最后通过制冷相机采集荧光屏上信号。因为电子的偏转与其承受的偏转电场成正比,因此,通过电极的时间差就可以作为荧光屏上条纹成像的位置差被记录下来,也就是将入射光的时间轴转换成了荧光屏空间轴。系统控制软件用于整个系统的参数设置、功能切换、数据采集等,图像工作站用于采集数据处理分析主要应用方向超快化学发光超快物理发光超快放电过程超快闪烁体发光时间分辨荧光光谱,荧光寿命,半导体材料时间分辨PL谱钙钛矿材料时间分辨PL谱瞬态吸收谱,时间分辨拉曼光谱测量光通讯,量子器件的响应测量自由电子激光,超短激光技术各种等离子体发光 汤姆逊散射,激光雷达。。。。。。 光谱仪建议选型参数列表光谱仪型号Omni-λ2002iOmni-λ3004iOmni-λ5004iOmni-λ7504i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与探测器耦合中继光路1:1耦合,配合二维焦面精密调节一体化底板系统光谱分辨率(1200l/mm)=0.3nm=0.2nm=0.1nm0.08nm一次摄谱范围(150 l/mm)230nm150nm90nm60nm光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合,共聚焦显微收集耦合等多系统灵活组合超快时间分辨光谱测试系统既可以与飞秒超快光源配合完成独立的光谱测试,也可以与卓立汉光的其他系统比如 TCSPC, RTS&FLIM显微荧光寿命成像系统,TAM900宽场瞬态吸收成像系统,以及低温制冷室,飞秒&皮秒激光器等配合完成更为复杂全面的超快测试。Zolix其他可配合超快测量系统lRTS2& FLIM 显微荧光寿命成像系统光谱扫描范围:200-900nm(可拓展)最小时间分辨率:16ps荧光寿命测量范围:500ps-1μs@ 皮秒脉冲激光器激发源: 375nm- 670nm 皮秒脉冲激光器可选,或使用飞秒光源科研级正置显微镜及电动位移台空间分辨率:≤1μm@100X 物镜@405nm 皮秒脉冲激光器OmniFluo-FM 荧光寿命成像专用软件Omni-TAM900 宽场飞秒瞬态吸收成像系统测量模式:1:点泵浦-宽场探测:测量载流子迁移和热导率等;2:宽场泵浦-宽场探测:测量载流子分布和物理态的空间异质性等。探测器:sCMOS相机成像空间分辨率:优于500nm载流子迁移定位精度 优于30nm时间延时范围:0-4ns或0-8ns可选搭配倒置显微镜,可兼容低温,探针台,电学调控等模块20ps 的钙钛矿薄膜ASE 发光寿命曲线
    留言咨询
  • 显微CT技术在农业领域中的应用适用农林领域的高分辨台式显微CT近年来,随着前沿生物技术的发展和精密仪器的引入,农业领域的研究取得了许多突破性进展和成果。显微 CT 技术以 X 射线成像为原理,为研究人员提供了一种强大的工具,能够深入探究农作物、植物和土壤的微观世界,为农业科学研究和生产带来新的视角与方法。1、 显微CT技术简介显微 CT 技术利用 X 射线照射样品,通过探测器记录透射的 X 射线强度分布,再利用计算机算法重构出样品的三维内部结构。其独特之处在于能够在非破坏的情况下,提供高分辨率和全方位的三维图像。显微 CT 结构示意图:射线源和探测器不动,样品台旋转显微 CT 技术可以无损地提供详细的材料内部信息,包括:结构信息:如直径、体积、表面积、圆度、连通性、空间分布......密度信息:如空腔孔隙、元素轻重、成分分布......三维模型:如有限元分析、3D 打印......2、 显微CT技术在农业中的应用1. 植物内部结构分析显微CT 技术能够无损地获取植物内部结构的高分辨率三维图像,这对于研究植物的茎秆维管束、叶片结构、果实和种子内部结构等具有重要意义。通过显微CT 技术,研究人员可以详细观察植物内部结构的微观特征,从而更好地理解植物的生长、发育和适应性。(1)植物茎秆维管束研究显微 CT 技术可以精确地揭示作物茎秆中的维管束分布、形态和结构特征,为作物的遗传解析、抗倒伏性评估、高通量表型数据获取以及数据库构建等方面提供了强有力的工具。(2)作物种子内部结构分析显微 CT 技术允许对种子进行无损检测,可以探索种子内部种皮、胚芽、胚乳等,并进行体积分析,帮助评估种子的萌发潜力、出芽率和质量。使用显微CT 技术预测番茄种子的萌芽潜力,发芽测试结果示例:正常幼苗、异常幼苗、死亡种子、未发芽种子。图片源于文献【2】。A)严重变形的胚胎,B) 轻微变形的胚胎,C) 严重缩小的胚乳,D) 侧向弯曲的子叶,即垂直方向 种子横切面,E)反折子叶,即种子内的一个或两个子叶急剧反折,F)胚乳中的孔,G)子叶中的裂缝,N)正常种子结构。图片源于文献【2】。复纳科技2.土壤结构及植物根系结构分析(1)土壤结构研究土壤团聚体微结构对土壤的物理、化学和生物特性有显著影响。显微CT 技术可以用于扫描土壤样品,获取土壤团聚体的三维图像,进而分析土壤孔隙度、孔隙分布、团聚体稳定性等特性。这对于评估土壤质量、指导土壤管理和改良措施具有重要价值。(A)非饱和多孔土壤团聚体的 X 射线计算机断层扫描(X 射线 CT)切面、饱和孔隙和非饱和孔隙以及颈部区域;(B)带根土壤的显微计算机断层扫描重建切面;(C)土壤核心中根网络的三维可视化;(D)利用同步加速器 X 射线 CT 表征土壤团聚体;(E)在体积密度为 1.3 g cm-3 的土壤微生态系统薄切片中 DAPI 染色的荧光假单胞菌细胞(亮蓝色)。图片源于文献【3】。(2)植物根系结构研究根系是植物的重要器官,用于从土壤中吸收水分和养分。为了有效地吸收水分和养分,植物发展了不同形态和功能的根系,如主根和侧根以及根毛。这些不同根系类型在土壤中的空间分布被称为根系结构(RSA)。显微 CT 技术可以深入研究植物根系结构、生长状态和吸收养分的情况。通过高分辨率的三维图像,科研人员可以观察到根系的分支、长度和形态,从而更好地理解植物在不同环境条件下的生长状况,为优化农业生产提供科学依据。利用显微CT 技术实现水稻根系结构的高通量三维可视化:(a) X 射线 CT 容积按比例放大的水平切片,使用核大小为 1、3、5、7 和 9 的三维中值滤波器进行过滤,图像上方的数字表示核大小,图像上的数字表示对比度与噪声比。最左侧图像中的箭头表示具有代表性的根碎片;(b) 模糊滤波器核大小对边缘检测的影响。图像上方的数字表示内核大小,箭头表示有代表性的树根片段,使用内核大小 5 时,白色箭头表示的树根几乎不可见,而使用大内核大小(如 57)时,黄色箭头表示的树根会粘连在一起;(c )图像处理后 CT 容积的水平投影,未进行阈值处理或尺寸开放;(d )图像处理后 CT 容积的水平投影,进行了阈值处理和尺寸开放。图片源于文献【1】。3.作物育种显微CT 技术可以无损地获取作物种子或组织的高分辨三维图像,使研究人员可以详细地分析作物内部结构和表型特征。它为作物遗传改良、功能基因研究、品质评价以及抗性机制研究提供了一种新的研究手段。随着技术的发展和应用的深入,显微CT 技术有望在作物育种中发挥更加重要的作用。使用显微CT 研究稻米垩白的形状和位置(a)。白腹(X220)、白核(X226)、白全(香早仙)和白背(X191)垩白精米;分别具有白腹(b)、白核(c)、白全(d)和白背(e)垩白的精米的横截面图像、重建的3D稻米图像和重建的3D垩白图像。红色箭头所示的深色区域代表稻米垩白的位置。图片源于文献【4】。4.病虫害防治显微CT 技术可以帮助研究人员在不破坏样品的情况下,观察植物内部的病虫害情况,如昆虫在植物体内的取食痕迹、病原菌的侵染路径等。这有助于开发更有效的病虫害防治策略和方法。复纳科技总体而言,显微CT 技术在农业领域的应用为农业科研和生产提供了全新的手段,通过对微观结构的高精度观测,为优化农业生产、改善土壤管理和提高农产品质量提供了重要的数据支持。未来随着技术的不断进步,显微CT 技术在农业领域的应用前景将更加广阔。三、关于 Neoscan 台式显微CTNEOSCAN 是一家专注于设计和生产显微 CT 仪器的公司,由 Alexander Sasov 创立于比利时。目前 NEOSCAN 推出三款显微 CT 产品:N60、N70、N80,可在不破坏样品的同时,得到样品的结构信息(空腔孔隙)、密度信息(组分差异),同时可以输出三维模型,进行仿真分析。N80 高分辨台式显微 CT参考文献【1】Shota Teramoto. et al. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography . Plant Methods. 16, Article number: 66 (2020).【2】Laura Gargiulo. et al. Micro-CT imaging of tomato seeds: Predictive potential of 3D morphometry on germination. Biosystems Engineering 200, 112–122 (2020).【3】Ghosh Tridiv, Maity Pragati Pramanik, Rabbi Sheikh M.F., Das T. K., Bhattacharyya Ranjan.(2023).Application of X-ray computed tomography in soil and plant -a review. Frontiers in Environmental Science【4】3D Visualization and Volume-Based Quantification of Rice Chalkiness In Vivo by Using High Resolution Micro-CT. Rice 13, 69 (2020).
    留言咨询
  • 显微角分辨光谱仪 400-860-5168转2332
    显微角分辨光谱仪最小 0.1° 角分辨 / 400~1700nm 超宽谱段 / 微米级样品 ARMS 显微角分辨光谱仪 支持微米级样品全自动角分辨多模式光谱测量。得益于优秀的色差、像差控制及分波段的光路设计,ARMS 可在显微尺度、400~1700nm 和 0.1° 角分辨率的能力下,同时获得角度 (k) 、频率 (ω)、光谱 (λ) 完整信息,为您在光子晶体、拓扑光子学、超构材料和光-物质强耦合等研究领域提供卓越的解决方案。ARMS 显微角分辨光谱仪 典型应用领域: Nano Photonics 随着以光子晶体、SPP 材料、超材料为代表的微纳光子材料的开发和应用,单纯光谱分析技术已无法满足完备表征该类光子材料光学性质的需求,更精细化的角分辨光谱技术应运而生。 微腔光子器件 微腔光子器件受构型影响,光学性质具有角分布特征,需在不同角度下实现光谱探测。 超表面透镜 利用超表面技术(meta-surface)设计的超表面透镜具有强大的光场调控能力,能够实现亚波长的汇聚和微米级的聚焦,需要一种新型的基于显微平台的角分辨光谱探测手段。 ARMS 显微角分辨光谱系统 在以上领域的应用得益于如下几个特点: 1 超过 60° 的角度 ARMS 优选 Olympus 大 N.A. 平场复消色差物镜,收集超过 60° 的角向辐射光谱;匹配智能算法,快速实现包括 透射 / 反射 / 辐射 (荧光) 等 9 种光谱测量模式; 2 达 5 个维度的空间选择 ARMS 内置一个可调 Aperture,可以实现 X / Y 方向开口距离调节,XY 两维平面位置平移,及平面内 θ 方向旋转,准确抓取 复杂形貌 的微区样品; 3 最小 0.5° 角分辨率 ARMS 采用特殊优化的消色差、消相差光路,能够将角度分辨率提升至 0.5°,显著提升光谱分析能力; 4 1.65 μm 近红外拓展 NEW ARMS 重新对角分辨光路系统进行构型, 在近红外波段 900~1650 nm 实现角分辨光谱测量,对推动光通讯、超表面、激光雷达等领域研究具有重要价值; 5 低温 + 磁场拓展 新一代 ARMS 也拓展了对低温和磁场环境的支持,可适配最低 2.7K 低温恒温器 和最高 5T 磁场强度 超导磁体; 6 除此之外,ARMS 还可与外部光源及 Princeton Instruments 光谱仪衔接,实现包括时间分辨、空间相干性、瞬态光谱采集等功能。 技术起源:角分辨光谱技术(Angle-resolved Spectroscopy, ARS),诞生于复旦大学,是一种 精细化 的光谱技术。基于该技术而生的角分辨光谱仪具有在 不同角度下 探测材料光谱性质的能力,突破传统光谱技术不能分辨角度的局限,是获取光子材料色散关系,实现光学性质“全面表征”的重要手段,在 微纳光子学、低维材料、发光材料 等领域具有重要应用价值。注:以上参数如有差异,以官网为准
    留言咨询
  • 惠然科技FE-SEM整机“风”系列F-6000介绍惠然科技FE-SEM整机“风”系列F-6000是一款高分辨广适配热场发射扫描电子显微镜,采用惠然科技自主研发的电子光学系统,具有行业标准的纳米级分辨率,最高可达1 nm,配置多种类型探测器,可实现二次电子和背散射电子同时成像,兼容多种应用模式,可覆盖生命科学、材料科学、失效分析、地质科学等多学科科研应用场景,标配五轴高精度运动平台及自主设计样品载台,可实现多个钉台同时放样或单一大尺寸样品的观测。F-6000采用多项自主研发专利技术,主要具有三大核心技术特点:大视野、高速、全自动技术优势:1、“视情式” WR-AdapColTM电子光学镜筒设计,采用双物镜组合,最大视场达到8 mm且无畸变,实现宏观到介观到微观的沉浸式成像体验;2、WR-HybriColTM磁电混合式电子束扫描偏转系统,在实现大偏转范围的同时保证高偏转速度,最短有效驻留时间为15 ns,将SEM跨越至视频级纳米摄像机时代;3、优化设计的图像算法三键成像:抽真空、ABC(自动亮度对比度)、AFC&ASC(自动聚焦消像散),可实现全景导航,快速样品定位,亮度、对比度自动调节,自动对焦等功能,简化步骤、操作易上手。4、搭配高效的AI图像后处理能力,图像快速降噪、锐化的同时,最大限度保留图像有效信息,并可根据应用场景定制化开发粒径分析、特征提取、图像拼接和分割等功能模块。产品竞争力:①国产电镜,区别于逆向仿制和复制,惠然科技坚持核心技术的正向自主研发,分辨率性能达到通用型科研电镜水平,支持产品的后续迭代和再开发;②数据安全,软件系统自主开发,可支持Windows、Linux、麒麟等系统,满足客户信息与数据的安可和信创需求;③操作方便,界面中文为主,支持英文,可选专家级页面模式和极简模式,适应不同类型用户应用习惯;④客户定制,核心技术的自主正向研发和研发团队的工程化产品化能力,可根据用户需求和不同应用场景,定制化开发硬件系统和升级软件系统;⑤优质售后服务,先进的售后理念和完善的运维体系,最快的速度响应用户的需求,支持用户的应用;⑥供应链国产化率高,零部件不受国外技术封锁影响,可以保证电镜按时交付以及电镜的售后维保。产品参数:惠然科技有限公司FE-SEM整机“风”系列高分辨广适配热场发射扫描电镜-F6000
    留言咨询
  • 产品说明Super-resolution Ultrasound Microvascular Microscopy(SUMM)正在引领超声医学影像迈入全尺度血流高清成像时代,它尤其在微小血管的结构和血流功能成像方面独有专长 。SUMM系统可适用于如甲状腺、乳腺、神经肌肉、腹部脏器、肿瘤等众多部位的血流成像,相较于传统超声成像、MRI、CT等现有血流成像手段,具有安全性高、空间分辨率高、成像速度快等优点。超快超声计算成像系统能实现每秒数百帧甚至上千帧的超高扫描帧率,实现超声造影信噪比和信背比的双重飞跃。超分辨血流的重建和分析基于原始微泡造影信号,通过降低衍射极限造成的影响,在不损失成像视野的条件下可达到10倍空间分辨率增强,实现全尺度血流高清成像。应用实例临床用超声仪+LLMB: 兔子肌肉超分辨血管成像SUMM超分辨血流动态成像, 空间分辨率:40μm 肌肉血管3D超分辨重建无创、长时小鼠肿瘤发展监测:结构完整的4T1肿瘤血管高分辨3D成像实验参数:中心频率:15MHz 成像帧率:500Hz, 单切面采集帧数:1000,采集切面个数:30
    留言咨询
  • Bioquell ICE-pod: 感染控制封闭空间 & 更安全的病房环境 Bioquell ICE-pod是一个依照单人床尺寸为病人定制的封闭空间,是感染控制应用的理想之选,能够极好地保护病人的隐私。它是一个定制的临时构造,通过三维扫描创建精确的线槽和病房服务,可在一天内完成一个单人病房或两个邻近病房的建造,且不影响永久性建筑结构。★ 特点:● 限制病房环境中病原体的传播;● 适用于疑似或已确证感染艰难梭菌、诺瓦克病毒或其他病原体的病人;● 通过内部空间最大化,优化病人护理区;● 为有保护隐私需求的病人提供单独的房间;● Bioquell过氧化氢蒸汽(HPV)技术显示出成本效益;● 避免昂贵的开放式空间及病房关闭;★ 应用:● 隔离已感染的病人,限制病原体传播和防止病房关闭;● 提供单独的床位空间保护病人的隐私和尊严;● 与病人入住侧室相比,改善了病人的可视范围(如有摔跤风险的病人);● 可让受感染的ICU/HDU病人转入,减少床位拥堵;● 在某些情况下,作为额外的分性别病人专用病房;● 相对永久划分的病房,提供了更灵活、更经济的选择;
    留言咨询
  • FlowMaster 4D-PTV / Shake-the-BoxShake-the-Box is the most advanced 3D Lagrangian Particle Tracking Velocimetry (PTV) method for densely seeded flows at highest spatial resolution. Compared to the voxel-based Tomo-PIV approach Shake-the-Box is a purely particle-based technique using an Iterative Particle Reconstruction (IPR) technique in combination with an advanced 4D-PTV algorithm using the time-information for track reconstruction. Shake-the-Box achieves a higher reconstruction accuracy at much faster processing speed compared with its TR-Tomo-PIV counterpart. Beside different DaVis software packages FlowMaster systems for TR-Tomo-PIV and Shake-the-Box are using the same hardware.FlowMaster Shake-the-BoxSystem Featurestime-resolved PTV for 4D flow analysis at high seeding densitiesaward-winning particle reconstruction and tracking algorithm:4th International PIV Challengeunsurpassed precision for velocity and acceleration of particle tracksvery fast processing speedhardware compatible with FlowMaster TR-Tomo-PIV setupsMiniShaker: compact 3D camera for volumetric flow measurementsThe MiniShaker is an aligned multi-sensor system in a compact housing for quick and easy volumetric flow measurements. Integrated into LaVision’s DaVis software, Shake-the-Box (4D-PTV) as well as Tomographic PIV flow fields are readily obtained. The power supply and data transfer of the system both use USB-3 interfaces largely simplifying installation and operation. The MiniShaker is available in three models and with adaptable lenses for diverse measurement tasks. In combination with LaVision’s cost-effective LED-Flashlight it is ideal for measurements of water applications. Mounted to a robotic arm and combined with Helium-filled Soap Bubble seeding, the flexible system is most appropriate for large-scale flow analysis of low- to mid-speed wind tunnel and convective air flow applications.Flow field of a large thermal air plume calculated with Shake-the-Box applying Helium-filled soap bubble seeding, courtesy DLR GoettingenLarge Scale PIV/PTV in airAir seeding with μm-particles is not suitable for large scale PIV/PTV experiments due to their limited scattering power. Neutrally buoyant Helium-filled Soap Bubbles (HFSB) with a diameter of 0.3 mm and a response time less than 15 μs scatter 10000x more light than μm-particles and, therefore, are suitable for large scale PIV/PTV experiments in the lower subsonic regime. LaVision’s HFSB Seeding Generator can deliver 0.3 mm mono-sized bubbles at a production rate of 40000 bubbles per second and per nozzle and can operate simultaneously up to 60 nozzles in parallel. The typical life time of the Helium-filled soap bubbles is a few minutes. Furthermore, the increased scattering intensity allows to switch from laser to LED illumination, greatly reducing the cost of the light source.Time-Resolved 3D Flow Field Imaging in a Wind Tunnel for Full Scale Automotive TestingTime-resolved 3D flow fields have been successfully measured behind a serial car in a large wind tunnel at Volkswagen. The field-of-view was 2 m x 1.6 m with a light sheet thickness of 0.2 m. The air flow was seeded with 0.3 mm in diameter Helium-filled soap bubbles applying seeding rates of more than 2 million bubbles per second operating 60 seeding nozzles. Four high-speed cameras recorded the 3D wake flow at wind speeds of 60 km/h and 120 km/h, respectively. A high-speed laser was used for illumination. LaVision’s Shake-the-Box time-resolved 3D-PTV technique was applied to calculate the time-resolved 3D flow fields.Product Information 3D Particle TrackingTime-Resolved 3D-PTV: ?Shake-the-Box“MiniShaker 3D camerasHelium-filled Soap Bubble Seeder
    留言咨询
  • 多模态超分辨显微成像系统MS4000提供出色的STED超高分辨率和共聚焦成像品质,还可实现FED、NFOMM等点扫描成像方法;在探测路采用多通道并行探测,可进行airysplit成像、VIKMOM成像。可实现横向分辨率1/2到1/30波长的多色超分辨三维成像。满足不同的应用需求。 主要特点:l 集成多种成像模式:共聚焦、FED、FLIM 、STED、NFOMM 探测路增加并行探测,可进行airysplit成像、VIKMOM成像l 成像分辨率:通过选择不同的模式,可以覆盖1/2到1/30波长 STED模式:X,Y横向分辨率(XY):~20nm,Z轴轴向分辨率(Z):~50nml 成像软件:包括控制、检测、分析功能,支持多种成像模式 多模:用户可在共聚焦、FED、FLIM 、STED、NFOMM之间轻松切换 主要技术参数:MS4000多模态超分辨显微成像系统光源超连续白光光源STED抑制光波长775nm脉冲激光器,相较于连续光抑制,可减少对样品的光漂白效应光强调节AOM调节声光调制器(AOTF)激光器由声光调制器(AOTF)协调控制,实现各通道激光的高速独立调节;激光强度可调。空间光调制器2个,用于实现不同成像模式下的光斑调制,软件控制实现相位图加载STED模式空间分辨率横向:1/8λ-1/30λ成像速度1fps @ 512×512 pixels图像尺寸8192×8192 pixels,94μm×94μm @ 100X 物镜共聚焦模式空间分辨率横向:1/2λ-1/3λ成像速度4fps @ 512×512 pixels图像尺寸8192 x 8192 pixelsFED模式空间分辨率横向:1/3λ-1/4λ图像尺寸8192 x 8192 pixels
    留言咨询
  • 国内首推科学级制冷型高分辨率ICCD 相机,在像增强器与科研制冷型的CCD相机之间,采用高分辨率的镜头耦合方式耦合成像, 获得60lp/mm 空间高分辨率,实现对高分辨率成像或高分辨瞬态光谱采集。 ● 科学级制冷型ICCD● 18mm口径二代高效像增强器● 宽光谱响应范围:S20:200-850nm & S25R:400-1100nm● 光学快门: 3ns● 延迟与门控调节精度:10ps● 阴极门控*高外同步频率 300KHZ ● 内置时序控制器DDG● 高空间分辨率:Std 50lp/mm,Option :60lp/mm● CCD芯片: 高分辨2750*2200像素阵列● 位深: 16bit● 制冷温度: -10℃ @ 风冷● 配合高分辨光谱仪实现瞬态光谱采集● 专业化数据采集控制软件独特亮点制冷型ICCD-10度芯片制冷温度,有效减低芯片暗噪声,安静读出超快光学门宽3ns 阴极光学门宽,实现**测量内置DDG内置精度10ps 门控与延迟控制发射器,方便随心控制自动步进STEP延迟和门控自动Step 步进功能,一键完成时间分辨光谱采集高空间分辨率高空间分辨率像增强器及镜头耦合,获得60lp/mm 空间分辨IOC 模式300kHZ阴极快门外同步频率,IOC 芯片累积模式提升信噪比Binning and ROI实现芯片FVB Binning以及 多通道光谱同时采集专业化软件采集控制&光谱仪控制,数据处理专业化界面,简单快捷ICCD像增强型高分辨率相机技术参数 CCD相机像素阵列2750*2200阵面尺寸12.48*9.98mm (15.972 mm Diag.)像素大小4.54um*4.54um传感器类型CCD Sensor读出噪声5e-暗电流0.02e- / pixel / s @-10℃位深16bitBining& ROIFVB: 垂直方向全Binning光谱模式& 多通道 ROI及FVB数字接口UBS2.0像增强器MCP光阴极S20BS25R有效口径18mm18mm光谱范围200-850nm400-1100nm峰值量子效率20% @440nm22%@720nm等效噪声(EBI) 2 x 10-7 lux @ 20 °C ± 2 °C 5 x 10-7 Lux光子增益1*1041.4*104荧光屏P20 /P43P43空间分辨率标准:50lp/mm ; 高分辨率选项: 60lp/mm光学门控宽度3ns (Mesh)Fast10ns, Slow 100ns内部DDG 控制延迟和门宽调节范围0-10s延迟和门宽调节精度10ps同步接口外触发输入,触发输出,直接触发输入(Direct gate)触发信号触发阈值 1-5V, 阻抗50欧姆,抖动100ps触发固有延迟40ns @ Direct gate , 120ns@ Ext外触发*增强器光阴极量子效率曲线型号选择SIC: Scientific Intensified Camera● 18/25 18或25m 口径增强器● U/F/S Ultrfast gate =3ns , Fast gate 10ns, Slow gate: 100ns● UV/VN:UV-VIS 200-900nm;VIS-NIR : 400-1100nm● 6M/4M : 600万像素 CCD 2750*2200 400万像素sCMOS 2048*2048● L/F: L高分辨镜头耦合 F 高通量光纤面板耦合 ICCD像增强型高分辨率相机常见型号列表
    留言咨询
  • 理学高分辨 纳米CT 400-860-5168转2204
    日本理学Rigaku nano3DX是一款真正的X射线显微镜(XRM),能够以高分辨率测量相对较大样品的3D计算机断层扫描(CT)图像,这是通过使用高功率旋转阳极X射线源和高分辨率探测器来实现的。nano3DX允许通过改变X射线波长来增强对比度或穿透力,拓展了可检测样品的类型,包括那些具有低吸收对比度的样品(例如CFRP)、或更密集的材料(如陶瓷复合材料),因此,nano3DX扩展了无损成像的范围,使研究中至关重要的灵活性和洞察力有了重大突破。nano3DX特征◆ 高功率旋转阳极X射线源◆ 多种靶材可供选择(Cr,Cu和Mo),可得到不同波长的特征X射线,以优化不同样品基质的成像◆ 光学耦合高分辨率探测系统,多种物镜可供选择◆ 快速数据采集,源自于高亮度的X射线源和高分辨率探测系统,速度比同类产品快3倍以上◆ 低Z材料的高对比度,实现了优于0.13g/cm3的密度分辨率◆ 支持原位实验◆ 高分辨率:空间分辨率优于400nm(特殊定制可达100nm)◆ 宽视野:采用相同分辨率和扫描时间,FOV比同类系统大5倍以上nano3DX典型应用日本理学nano3DX适用于逆向工程、产品研究、失效分析、高可靠筛选、质量评价、改进工艺等无损检测和评估工作。常用于各类材料(如合成材料、陶瓷复合材料等)、电子半导体元器件、地矿标本、仿生材料、生化物质等的计算机断层扫描成像,现已广泛应用于以下领域:◆ 材料学:结构材料、复合材料的微观特性分析,探讨/解析样品内部结构l金属材料、合金/铸造:航空航天, 精密制造, 半导体零部件l复合材料l高分子材料/聚合物:纤维材料, 发泡材料, 橡胶, 树脂, 高分子聚合物◆ 工程材料:建筑材料内部孔隙度、连通度和渗透性分析◆ 储能设备:质量控制、新产品开发的结构试验、失效分析等◆ 农牧业:动植物组织,木材和农产品(如种子)的质检和分析◆ 古生物学和考古学:种系鉴定、化石的结构分析,文物保护和修复◆ 地质:矿物勘察、地质分布、油气藏开发等 ◆ 半导体:元器件的结构分析应用案例:CFRP材料曾被认为很难通过X射线成像分析。由于nano3DX具有0.13g/cm3的密度分辨率,可以清晰的区分CFRP中碳纤维、环氧树脂和材料孔隙的显微结构,以三维形式观察,并可测量空隙数量、体积和方向。碳纤维增强聚合物(CFRP)。图像为1.8mm×1.8mm×1.4mm,体积由3300× 3300×2500体素表示。在相同的分辨率、时间范围内,单次扫描的测量体积比其他系统大25倍。
    留言咨询
  • 超分辨率显微镜 400-860-5168转2045
    简介: 随机光学重建显微(STORM)技术通过探测显微标本内的各荧光团的精确定位信息重建超分辨率荧光影像。 N-STORM利用NIKON的强大Ti-E倒置式显微镜应用3维高精度多通道分子定位和重建,从而实现了比传统显微镜 高10倍(横向约20nm)的超高分辨率。此强大技术能够观察到纳米级分子相互作用,开启研究的全新境界。 主要特点: &bull 比传统光学显微镜高10倍的超高分辨率(横向约20nm) N-STORM利用显微镜样本内部数以千计的离散荧光体分子,实现2D或3D高精度定位信息,展现无比壮观 的超高分辨率图像,与传统光学显微镜相比,空间分辨率可提高10倍。 &bull N-STORM还能提供比标准光学分辨率高10倍的纵向分辨率(约50nm) 除了侧向超高分辨率之外,N-STORM更运用专有技术,令轴向分辨率也同样提高十倍,有效提供纳米 级3D信息 &bull 使用各种荧光探针的多色成像 通过将各种&ldquo 活化&rdquo 探针和&ldquo 报告&rdquo 探针组合在一起,实现了多色超分辨率成像。从而能够对多个蛋白质 的共定位分析和相互作用进行重要的分子级研究。
    留言咨询
  • 美国Spectroglyph LLC公司的MALDI/ESIInjector采用新型双离子漏斗接口,实现MALDI/ESI双离子源结合,在生物样本中可实现组织成像与结构鉴定,通过配置t-MALDI、MALDI-2等技术并搭载Thermo Scientific&trade QExactive"/Orbitrap Exploris"系列超高分辨率质谱检测仪,使成像系统兼具高灵敏度、高空间分辨率、高质量分辨率和高质量精度的特性,操作简单,适用范围广。该系统能够快速有效的进行生物组织样本的成像检测,可实现单细胞或亚细胞分辨率下的成像检测,将会助您探索更多的科学奥秘。1、质谱成像技术优势::(1)无标记检测技术,无需放射性同位素或荧光标记,无需染色 (2)待检测物质多样,不局限于特异的一种或几种分子,可以对非目标性物质同时进行成像分析 (3)既可获得分子的空间分布信息,还能够提供目标物质的分子结构信息 (4)可直接分析组织切片或细胞,样本兼容性高。2、独特的Dual lon Funnel设计,实现MALDI与ESI源之间快速转换DPSS固态激光器,搭载可视化光学系统 同时搭载MALDI与ESI离子源,可进行质谱成像与结构鉴定 双离子漏斗结构,可以进行快速离子源切换 MALDI-2激光诱导后电离技术,提高检测灵敏度 采用Transmission透射模式,提高空间分辨率 序列编辑器,可依次对靶板上的不同组织区域进行分析。3、样本类型各种组织:植物器官,动物新鲜组织、冷冻组织,培养细胞,类器官等各类分子:脂类 (磷脂:PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物数百种分子同时成像:筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构非靶向性检测,无需任何标记4、MALDI ESI INJECTOR 透射式超高分辨质谱成像系统特点:1um高空间分辨率,可实现单细胞及亚细胞水平成像分析;DDAlmagingMode质谱成像数据采集模式;高分辨质谱成像专用数据分析软件;高空间分辨率和高质量分辨率保证分子化合物的最佳成像效果;搭载Thermo Scientific&trade QExactive&trade /Orbitrap Exploris&trade 等多个系列质谱仪,提供高质量精度和分辨率(1ppm RMS)。性能参数:应用方向:一、单细胞高分辨成像 细胞是组成生命体的基本单元,了解特定细胞的生物分子组成是了解潜在生物和生化过程的关键因素。由于细胞的异质性,在群体细胞乃至组织水平上的采样可能使得一些重要的分子信息淹没在大量的正常细胞中而被忽略。Spectro-glyph LLC t-MALDI-2-MSI成像系统,采用激光透射模式将空间分辨率提升至1um以内,并且应用MALDI-2激光后电离技术提高了检测灵敏度,对于单细胞成像提供了丰富的表型特征信息,为单细胞研究提供了坚实的技术支持。通过t-MALDI-2在单细胞和细胞培养物中进行成像分析,以Vero B4细胞作为研究对象,通过比较明场图像与MSI成像发现t-MALDI-2可获得亚细胞级的分辨率,并且在负离子模式下获得了和正离子模式测量中相似的高质量图像。图1 a ITO载玻片上生长的Vero B4细胞明场显微图像;b来自基质的特征性背景离子(m/z=633.042)图像;c-e 代表性t-MALD1-2-MS离子图像,,像素大小为1.0um;f a图明场显微镜图像中红色轮廓区域放大图;g三个物质的叠加图像,分别来自背景离子(b;蓝色);PE(40:6),[M+H](c绿色);PC(34:1),[M+K,(d,橙色);h基质涂覆细胞培养物的显微明场图像,区域为f中的轮廓区域。参考文献:Transmission-mode MALDl-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods, 16,925-931 (2019).二、脂类研究 脂质具有区分和识别不同组织和细胞类型的可能性,脂质的重要生物功能与机体的生理、病理过程有着紧密的联系。脂质的变化对疾病背后的相关生化途径提供着重要的价值意义,并且脂类代谢异常也是引发多种疾病的重要原因,研究脂类分子的组织空间特异性分布对阐明脂代谢异常疾病的相关机制也有着重要的意义。MALDI-2激光诱导后电离技术能够对传统MALDI检测中生成的中性脂质分子再次进行电离,提升了脂质分子的检测灵敏度。图2所示为应用Spectroglyph LLC MALDI Injector的MALDI-2 技术在大鼠的脑组织切片中对130mDa m/z质量窗口下的脂质分子进行成像。传统的MALDI下只检测到一种脂质分子,使用MALD1-2额外检测到三种脂质分子,大大提升检测的灵敏度。脂类分子大鼠脑组织中的空间分布图2 大鼠脑组织切片 MALDI(底部)和MALDI-2(顶部)质谱图的放大截面和对应离子图像。除MALD1-2中[PC(34:1)+Na]+(3.4 ppm)和MALDI中[PC(36:4)+H]+ (-2.7 ppm),其他质量误差均小于2 ppm。 参考文献:Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging olipids.Chem.Commun,53,7246-7249 (2017).
    留言咨询
  • Infinity Line 专家型STED超高分辨率显微镜是一个复杂而高度灵活的开放平台,购买后也可以扩展和升级。可调节针孔尺寸的多色共聚焦扫描系统门控检测器已有的光机设计,开放的电子和软件平台,随时可以实现您自己的成像想法最佳性能-从 STED 显微镜中获得优异的分辨率QUAD 四光束扫描仪技术我们为您的应用定制显微镜的功能,提供无与伦比的灵活性我们会在您的实验室安装好现成的超分辨显微镜,同时包括软件/操作培训等,可直接使用。Infinity Line 专家型 STED 超高分辨率显微镜可以与所有模块(左侧可看到的)、 STEDYCON 和其他许多模块结合起来。活细胞STED记录活细胞本身就是一个挑战,而当对活细胞进行超分辨率成像时,又要同时处理许多事情,因此难度更大。为了使您能够专注于获得最佳图像,Abberior Instruments提供了一个独特的活细胞功能包,包括STED 和RESOLFT 显微镜:脉冲STED (波长分别在 595 nm / 775 nm)和自适应照明 RESCue STED:它们结合在一起,将样本中的光照量降至绝对最小。水浸物镜:使用最佳的水浸活样品。长时程远程控制器:无需实验者,自动处理那些枯燥的深夜实验连续STED自动对焦:保持锐利聚焦许多小时。可使用恒温箱将样品加热至37°。所有组件都已完全集成到我们的软件Imspector中。感兴趣区域(ROI)序列成像下面是一个例子,其中abperior 仪器的活细胞功能模块包用于连续记录五个预定义的感兴趣区(roi)。一个强大的连续100帧,在进入下一个感兴趣区之前,每隔50秒记录一个区域。因此,每个ROI在显微镜下记录约1.5小时,总采集时间约为7.5小时。在此期间,我们的easy3D-STED显微镜完全自动完成。如果没有活细胞功能模块包,这是不可能的:脉冲激光和自适应照明功能模块RESCue减少漂白,自动对焦工作以保持对焦稳定,我们使用水物镜并将样品加热到37°C,长时程自动控制实现该任务。在用SiR微管蛋白染色的活样本中选择5个感兴趣的区域easy3D STED空间光调制器(SLM)技术在xy和z之间可调的分辨率单STED光束允许使用不同的物镜分辨率通常为75×75×75 nm专为最大稳定性而设计光学像差的校正Abberior 仪器的 easy3D STED 模块使用可编程空间光调制器(SLM)来产生2D和3D-STED显微镜耗损光(STED光)所需的相位图纹。同时,它也可以用来校正光学像差。Easy3D STED能够获取组织深处的3D-STED的体成像自适应光学easy3D 3d-STED可对透明化后的成人肾脏样本进行深度成像常规3D-STED成像和easy3D STED成像对肾小体深部XZ切片的比较。easy3D允许使用油镜对透明化处理后的大鼠肾组织进行深达80μm的成像。在没有自适应光学的情况下,浸油和样品之间的不匹配会导致信号完全丢失。标签:Nephrin(红色,缩写为635P)和Podocin(绿色,AlexaFluor594)。样品由瑞典斯德哥尔摩KTH公司D.UnnersjóJess和H.G.Blom制备提供。 大鼠成年肾标本双色easy3D-STED体成像的表面渲染图示为肾小体的一个简单的3d STED体成像的重建,显示在Podocin狭缝(绿色,AlexaFluor594)之间的Nephrin(红色,缩写为STAR635P)结构。775STED模块使STED显纳镜能以前所未有的分辨率成像远红色光谱中的荧光染料。775nm脉冲STED激光器,具有两个超分辨率STED通道分辨率高达20纳米;一般情况下分辨率30纳米两个脉冲激光激发光源@561nm和@640nm,其他按要求提供595sted模块能够让STED显纳镜以前所未有的分辨率成像绿色光谱中的染料或荧光蛋白。595nm脉冲STED激光,具有两个超分辨率STED通道分辨率高达25纳米;一般情况下分辨率40纳米488nm和518nm两个脉冲激光激发光源,其他按要求提供荧光寿命图像模块升级您的abperior STED显微镜与全荧光寿命成像(FLIM)功能!我们提供全面的FLIM附件组合,具有以下主要功能:STED 荧光寿命图像结合我们的脉冲STED激光测量过程同时在线显示FLIM图像在线荧光寿命计算和/或基于荧光寿命数据计算后的染料拆分可在多达4个光谱通道中同时采集FLIM(基于 Becker & Hickl 或 PicoQuant 公司的SPCM硬件)完整的软件集成到Imspector中,包括评估功能(也包括数据的实时评估)
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制