当前位置: 仪器信息网 > 行业主题 > >

空气流体

仪器信息网空气流体专题为您整合空气流体相关的最新文章,在空气流体专题,您不仅可以免费浏览空气流体的资讯, 同时您还可以浏览空气流体的相关资料、解决方案,参与社区空气流体话题讨论。

空气流体相关的资讯

  • 干货 | 粉体流变仪简介
    粉体和颗粒介质几乎可以在任何行业都在使用,它们作为原材料、中间产品或最终产品进行使用和加工。粉体在使用过程中可能会造成一些困难,因此,有效的质量控制和顺利的粉体加工非常重要。粉体行为特性在制造过程中可以改变,特别是当条件或环境改变时,例如粉体在气动输送过程中流态化,在储存过程中固结。当粉体特性已知时,最好对工艺条件进行修改适应,以便在加工过程中不会出现问题(例如分层)。 Anton Paar公司的两个粉体测量池(粉体流动池和粉体剪切池)为此提供了一套完整的工具,可以确定各种粉体特性和加工参数。这套工具有助于描述粉体的特性,以及预测粉体在加工、处理和储存过程中的行为。软件中提供了多种专用的粉体测量方法,大多数只需几分钟即可完成。虽然这两个测量单元在应用和技术上有一定程度的重叠,但它们的专业领域可以根据所涉及的粉体的粘性来划分:粘性粉体在粉体剪切池中工作得更好,而自由流动状态的样品在粉体流动池中工作得更好。下图显示了不同状态粉体适用的测试方法和测量池。在本应用报告中,展示和讨论了表征粉体和颗粒介质的各种方法和相应的参数。可在Anton Paar粉体流动池进行的测试方法概述见表1,表2显示了粉体剪切池方法的概述。Anton Paar联合一些大学和研究实验室正在不断开发出更多的实验方法,最新进展可在我们网站上的科学出版物和其他应用报告中找到。流动池的测量功能1、动态流动测量Anton Paar模块化紧凑型流变仪系列(MCR)可配备粉体流动池和螺旋双叶测量系统,该测量系统可用于扩展粉体的动态测量和测定其运动特性。通过测量系统在粉体样品中的向上和向下运动计算动态流动特性。如基本流动能(BFE)、稳定性指数(SI)、流速指数(FRI)和比流动能(SE)。该测量方法分析了整个粉体床上粉体的动态特性。测量转子动态上下运动,从而根据粉体的阻力建立特定的流动模式。样品的流动模式取决于主要的内部和外部参数。因此,动态流动特性的测定是一种快速简便的粉体质量控制工具。动态流动测量示意图,左:测量系统在样品池中一边旋转一边上下移动,右:同时记录扭矩和法向力的数值变化总流动能通过测量扭矩的积分加上法向力(下式)计算得出,考虑了测量系统轴向和径向运动的总和,其中r为转子半径,α为螺旋桨角度,h为行程。2、压降测量了解用于输送的起始流化和全流化的气体流速对于气动输送水泥、食品粉、粉煤灰、洗衣粉、油漆粉、塑料和金属粉很有意义。样品制备所用的气体流动速率在内聚强度测量、透气性测量和流动曲线测量中非常有用。测量一般包括两个步骤。首先,空气流量从最大值持续减小到最小值,这个过程中可以研究全流化率。在第二步中,空气流量不断增加,这个过程可以测量粉体的初始流化和全流化时的空气流动速率,以及粉体的滞后行为。为了简单起见,下图中只显示了空气流量增加的部分(红色)。通过在控制单元上执行相同的测量,考虑系统(多孔烧结玻璃、过滤器等)的影响是至关重要的。该基线(上图中的灰色线)必须从样品的测量值中减去,结果图如下图所示。测量池内的压力随着体积流量的增加而增加,因为颗粒对流态化空气产生的反压力增加。一旦达到一定的体积流量(取决于颗粒特性),就可以检测到粉体流化和曲线峰值。在这种情况下,可以在0.75l/min的流速下看到初始流化的过冲峰值,在完全流化时,观察到恒定压力信号,这意味着粉体在1l/min下完全流化。此时,颗粒之间的残余张力被消除。3. 内聚强度测量内聚强度描述了粉体流动的内部阻力,从而衡量粉体的流动性。它被定义为测量粉体颗粒之间结合力的强度。粘结强度测量速度快,重复性高,有助于预测粉体行为的质量控制工具。这种测量方法可以作为一种快速简单的质量控制工具,因为它通常具有很高的重复性,有助于区分甚至非常相似的粉体。测量由两步组成:样品制备:样品完全流态化,以重置粉体并消除残余张力和结块。必要的体积流量应事先用压降法确定。样品测量:关闭气流,测量双叶搅拌器的旋转扭矩,如下图所示。默认情况下,测量在100秒后结束。内聚强度S是用测量的扭矩值和转子的特性系数(CSS系数)计算的,因此,计算的结果是相对值。计算结果显示在公式1中扭矩值是通过对过去20个数据点的线性回归得到的(见图5)。对于CSS因子,用碳酸钙(CRM116,标准物质局)进行了校准测量。4. Warren-Spring内聚强度此方法用于测量粉体的内聚强度,特别是强粘结性的粉体(如面粉或水泥)它是基于Geldart的工作,通过使用一种叫做the Warren- Spring-Bradford测试仪的扭转装置进行研究,粉体在固结状态下测量,固结也使粉体均匀化。所得结果可用于分析粘结粉体的流动性和流动函数,该方法也可用于粉体结块的研究。此方法可用于质量控制、粉体特性表征(固结状态下的弹性、内聚强度)、流动性分析(ffc)和结块行为研究。最适用于粘性粉体,如面粉、二氧化钛或碳酸钙,但通常适用于除最自由流动的粉体外的所有粉体。测试包括两步:粉体在粉体流动池中用透气活塞固结,通过消除残余张力和颗粒之间的聚集形成均匀的粉体层。Warren-Spring转子完全插入粉体样品中,然后将粉体以0.1转/分的速度剪切,同时记录扭矩,从而产生Warren-Spring内聚强度。如果Warren-Spring转子不能完全插入样品,建议降低样品固结程度,或者只将转子插入到正常深度的一半。这也是拱起行为的一个方便指示,因为粉体内部很容易形成力链,可能导致粉体堵塞漏斗或管道。粘结性粉体比不粘结性粉体表现出更高的Warren-Spring内聚强度,如果观察到尖锐的峰值,则样品破裂迅速而强烈。另一方面,较宽的峰值表明样品的断裂缓慢。峰值位置靠后表明样品具有弹性特性或可能没有充分的固结。5. 壁摩擦测量壁摩擦力是指颗粒介质与固体之间的摩擦力,它是通过在规定的法向应力下压缩样品,并在记录扭矩和剪切应力的同时旋转圆盘来测量的。所得到的壁摩擦角是漏斗设计中的一个重要参数,目的是防止堆芯流动和实现质量流动,用于测量的圆盘可以很容易地更换,从而可以分析任何壁面材料和粉体之间的摩擦。由壁面材质制成的圆盘安装在测量杆上(如上图),用于测量每种壁面材料和粉体之间的摩擦。用预定法向载荷和0.05rpm的转速压实样品,同时记录扭矩。此测量步骤在不同的法向应力(通常为3、6和9kpa)下进行,扭矩被转换成剪切应力,将剪切应力/法向应力结果值绘制成图表(下图)。图中的红色曲线显示了标准壁面摩擦角测量值,在这种情况下,数据点(壁屈服轨迹)的回归是线性的,并通过原点。壁摩擦角是该趋势线的角度,此值在所有法向力下都是相同的(与法向力无关)。上图中的灰色曲线显示了高黏性粉体的壁摩擦角测量值,趋势线不再是线性的,也不会经过原点。在这种情况下,每个法向力对应于不同的壁摩擦角。因此,有必要估算实际应用和工艺条件下的法向力,在这些值下进行测量,以便得到正确的壁摩擦角趋势线与Y轴的截距给出粘附值,这与粉体具有足够高的粘附力以粘附在垂直壁面上具有相关性。计算出的壁摩擦角可与上图中的图表一起使用,从而得到允许质量流的漏斗角,这有助于避免出现芯流、桥接、拱起、鼠洞等筒仓排放中的问题。6. 压缩性测量压缩性是测量当施加压力或改变压力时样品所产生的相对体积变化,它描述了体积密度与外加压力的关系。压缩性受许多颗粒参数的影响,如粒径和形状、弹性、含水量和温度。尽管是一个简单的测试,它可以用来识别粉体流动的性质,例如,使用堆积密度来避免筒仓和料斗中的鼠洞和拱起。结合壁摩擦角,可以对筒仓进行优化。它也被用来研究侧壁和给料器上的负荷。其他可以分析的参数是Carr压缩指数和Hausner比。使用透气圆盘进行测量下降粉体样品制备盘,直到与样品接触。记录该位置并用于计算未固结体积密度。然后进一步降低,直到达到一定的法向应力(通常为3kPa)。法向应力进一步增加到两个更高的法向应力值(如6和9 kPa)这允许计算固结后体积密度,以及Hausner比和Carr指数。卡尔指数曲线7. 流化态黏度和剪切速率曲线使用粉体流动池,可以测量粉体非流化态、亚流化态和完全流化态下的黏度,以及与剪切速率相关的黏度曲线。这可用于阐明粉体在输送过程中可能遇到的困难,具有高剪切黏度的粉体很难通过窄间隙或弯头,因为那里的剪切速率急剧增加。对于经历不同剪切速率加工步骤的粉体(例如,通过喷嘴喷射后的气动输送),表观黏度也是有意义的。流化态粉体表观黏度的计算方法与复杂流体的完全相似,这种流变特性的估计对于流化床的流体动力学建模、粉末涂料施工性能、反应器设计、气动输送、成型填充过程都很有意义,由于自由落体中的任何粉体都是流态化的,因此它也有助于描述各种排放过程。下图显示了未改性和改性(添加气相二氧化硅)涂料粉末在不同空气流量下的黏度曲线,在未流态(上方的曲线)下,通过添加气相二氧化硅来辅助流动,如改性粉体的表观黏度降低所示。然而,在全流化态粉末的情况下(下图最下方的曲线),添加气相二氧化硅的粉末显示出略高于未改性样品的表观黏度。剪切速率扫描相关测量结果如上图所示。在非流体状态下,可以观察到规则的剪切稀化行为。在亚流化状态下,在低剪切速率下也观察到剪切稀化行为,但随后被剪切速率超过50 1/s时的剪切稠化行为所取代。在全流化状态下,在低剪切速率下可以观察到类似牛顿流体的行为,在较高的剪切速率下,会发生剪切增稠效应。提高流态化和转速会导致颗粒之间的碰撞增加,同时,颗粒之间的摩擦也会减小,这种效应被称为“干扰过渡”。剪切池的测量模式1、剪切屈服测量屈服轨迹分析是剪切测量池中最基本的分析方法。一个屈服轨迹关注样品的“固体”行为与“液体”行为的分界线。它基于Mohr-Coulomb原理,测量样品的失效平面(类似于固体样品的胡克定律)。在开始测量之前,样品被填入测量池。使用专用的填样工具可以避免操作者对测量结果的影响。第一步需要对样品施加预设的预压实,这样可以提高实验的重现性,因为预压实可以消除粉体的残余张力(粉体记忆),这一步与流化测量池中的流化步骤有类似之处。预压实的应力大小可以从样品的实际工艺中计算获得。这样可以保证实验室的测量结果与实际工艺更加接近。这也是在测试中保持湿度和温度控制的重要性。然后,在不同的载荷下进行剪切屈服测试。如下图,是在9kPa压实载荷(灰色曲线),剪切屈服载荷从小到大依次用2.7kPa、4.95kPa、7.2kPa,测量屈服应力曲线(红色曲线),得到屈服应力。通过屈服应力、稳态应力,以及对应载荷,获得下图流动函数和莫尔圆,从而计算得到内聚强度τc、张应力σt、无约束屈服应力σc、主应力σ1、内摩擦角φe、体积密度ρb。进一步通过无约束屈服应力和主应力计算得到流动函数ffc,其中ffc=σ1/σc。通过ffc的数值范围可以判断样品在此载荷下的流动特性,例如ffc大于10时,样品可自由流动,在4到10之间时,样品非常容易流动;在2-4之间时,样品具有粘性;在1到2之间时,样品具有很大的粘性;ffc小于1时,样品不能流动。2、壁摩擦测量粉体剪切池也可以进行壁摩擦测量,配备了不锈钢、铝、PTFE材质的测量板,也可以订制配备其他用户需要的任何材质测量板。用于策略壁摩擦角和摩擦系数,用于筒仓、管道设计方面的参考。3. 压缩性测量粉体剪切池也可以进行压缩性测量,得到体积密度、卡尔指数、Hausner比等数据,及其与载荷的相关曲线。4. 时间固结测量粉体剪切池配备了时间固结台,可以选择不同载荷对样品进行长时间的固结处理,如几小时、几天,甚至几个月,此固结台单独使用,不影响流变仪正在进行的测试。5. 温度和湿度控制下的剪切测量如粉体剪切池配备了控温系统(如CTD180、CTD450、CTD600、CTD1000),就可以在控制样品温度的条件下,对样品进行剪切屈服和压缩等特性的测量,或进行程序升温或降温测试,最大温度范围可达-160℃至1000℃。如配备CTD180控温系统,则还可以选配湿度控制模块,实现5% - 95%范围内的相对湿度控制。为模拟更加真实的粉体生产、加工、使用环境提供可能。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 新型评估体系可详细监测小城市空气质量
    最近,俄罗斯秋明国立大学提出了一种详细评估城市气候和空气质量的体系,有助于在不设大型气象中心的小城市组织环境质量监测。相关论文发表在《环境科学与政策》杂志上。  当空气中含有大量有害物质和灰尘时,会危害环境质量。在这种情况下,空气检测经典统计监测模型不能很好发挥作用,需要扩展性的、一体化的方法和模型。秋明国立大学的科研人员制订出一种扩展方法,可用于更详细地评估城市环境质量。  这种评估体系的关键特点之一是“按需工作”。在大城市可能配备有空气质量连续监测和预报体系,但在问题同样严重的小城市可能没有。根据科学家的说法,当需要详细分析小城市环境质量时,通常方法的缺点也变得尤为明显。  研究人员提出的方法原理与天气预报模型相同,能更详细地计算空气流动。研究人员在俄罗斯北部小城阿帕季特进行了一项计算机试验:一个具有高分辨率的模型显示,污染羽流覆盖了整个城市,与此同时,传统模型却显示污染将被风吹往偏离城市的方向。  “秋明国立大学参与这个方向的研究工作,为在全新水平上研究秋明北部的社会生态问题并测试我们的研究成果提供了机会。我们目前在分析纳德姆市的环境状况。这项研究将帮助我们更深入地理解一些关键生态因素,确保生活在俄罗斯北部严酷自然气候条件下的人们的生活质量。”秋明国立大学低温学和冷冻学国际中心冷冻学术系高级研究员罗曼费奥多罗夫介绍说。  研究人员还指出,空气质量监测是联合国可持续人类发展计划的一部分,为实现这些目标,世界气象组织正在积极发展创建扩展性整体一体化方法,以开展详细环境评估。
  • 检测空气之前,给仪器行业来个体检
    span style="line-height: 1.5em text-align: justify "  /spanspan style="line-height: 1.5em text-align: justify "“一批网红甲醛检测仪全部不符合技术要求”的新闻近日刷屏了。上海市市场监管部门公布了对网红产品“甲醛检测仪”的风险监测结果,结果显示:抽检样品中无一批次“甲醛检测仪”产品示值误差符合技术要求,无一批次“甲醛检测仪”在设定的检测环境条件下的重复性符合要求。/spanp style="line-height: 1.5em text-align: justify "  无独有偶,国家质检总局2017年曾组织开展对网售室内有害物质检测仪产品的风险监测,随机检测电商平台销售的30批次手持“霾表”,但样品无一合格。这些产品的说明书上注明对PM2.5检测精度高,多数还能检测甲醛、挥发性有机物等。/pp style="line-height: 1.5em text-align: justify "  近年来,随着公众对室内装修甲醛问题、PM2.5健康危害了解的深入,“测一测”的要求随之而来。于是,价格便宜、携带方便的甲醛、PM2.5检测仪纷纷登场,成为销售的热点。这些仪器一般只有手机大小,公众可以非常便捷地获得室内空气质量的各种数据。/pp style="line-height: 1.5em text-align: justify "  这样的检测仪看似方便,实际却很不靠谱。专业人士拆解发现,这些检测仪基本使用的是传感器。由于价格低廉、传感器的品质差,测量精度低。技术路线也不靠谱,传感器基本都采取扩散式采样方式,检测结果反映的只是污染物在某一点位的瞬间浓度情况,并不能代表整个空间的污染物浓度值。而甲醛等局部浓度受空气流速、温度、湿度甚至家具数量、摆放位置等因素影响,这导致测出来的数值不稳定,误差率大。拆解样品后还发现,检测仪设计较为简单,部分产品没有辅助的风扇或其他辅助气流进入装置,吸入的空气少,检测的准确程度也就可想而知。其实,空气检测仪是需要定期校准服务的,这些网红检测仪普遍缺乏自动校准、自净功能,也没有企业的后续跟踪服务。一旦在使用过程中,传感器受到粉尘等污染,其敏感性下降甚至失灵,反而误导公众,甚至引起心理恐慌。/pp style="line-height: 1.5em text-align: justify "  过去,甲醛和PM2.5等检测仪属于造价昂贵的专业设备,根据精度要求,售价从几万到几十万元不等,只是少数专业部门和企业才拥有。近年来,随着公众对室外、室内空气质量的重视,类似的检测仪才逐渐“飞入寻常百姓家”。目前我国没有规定民用便携式检测仪需通过认证再上市,民用甲醛检测仪也缺乏统一的技术标准,很多民用甲醛检测仪只是电子元件的简单拼凑。面对如今公众出现的新需求,有关部门除了要对市场上的民用甲醛检测仪等仪器的质量检测外,更要亡羊补牢,尽快制定行业标准和技术规范,遏制目前行业内鱼龙混杂、产品质量参差不齐的乱象 公众也不要盲目追捧所谓的网红产品,尽量请专业机构用专业设备来检测空气质量。/ppbr//p
  • 国产超声波沼气流量计BF-3000的应用优势分析
    超声波流量计是近年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,国际上天然气贸易计量就是采用超声波流量计。相比传统的涡轮流量计和孔板流量计,超声波流量计在测量天然气、沼气流量中的应用更具优势。 超声波频率高,波长短,衍射不严重,具有良好的定向性且穿透能力强。超声波流量计的基本原理是通过测量超声波脉冲顺流和逆流传播时传播速度不同引起的时差来计算被测流体速度,因此这种原理又称为“时差法”。超声波流量计的工作原理 如上图所示,探头1发射信号,信号穿过管壁1、流体、管壁2 后被另一侧的探头2接收到 在探头1发射信号的同时,探头2也发出同样的信号,经过管壁2、流体、管壁1后被探头1接收到 由于流速的存在使得两时间不等,存在时间差,因此根据时间差便可求得流速,进而得到流量值。超声波流量计剖析图 超声波流量计具有以下主要优势: 1.高精度,满足低流量测量 超声波流量计的主要优点之一是高精度,不受气体中固体颗粒和液滴的影响,并且可采用多次反射将声程加长。单路径超声波流量计的精度通常在1%至2%的范围内,而通过使用多条路径,它可以达到0.5或更高的精度范围。此外,由于超声波流量计量程比较宽,它非常契合小型沼气工程的“峰谷”特性,能够满足低流量测量。 2.极少的压力损失 压损是天然气输送中存在的主要问题。孔板流量计流体压力损失的主要原因是孔板前后涡流的形成以及流体的沿程摩擦,它使得流体具有的总机械能的一部分不可逆转地变成了热能,消失在流体内。涡轮流量计依赖转子转速来确定流量,当天然气流经涡轮,引起转子旋转,同样会产生压损。 使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行,因而极少或无压力损失,是一种理想的节能型流量计。 3.无运动部件 运动部件主要是涡轮流量计的问题,涡轮流量计的转子,包括轴承,都会受到磨损。化学品和污垢在影响轴承的同时,也会影响涡轮流量计的性能。超声波流量计不存在易于磨损的运动部件,可保证长期使用精度不变,与此同时,无运动部件也让超声波流量计具有低维护特性。 4.低维护 无运动部件是超声波流量计低维护的原因之一,另一个因素则与它本身无磨损有关。孔板流量计随着时间推移不断遭受磨损,导致测量准确性劣化。当流体中存在污垢或任何其它杂质,则尤其如此。因此,孔板式流量计需要定期检查磨损,并确定它们是否仍然读数准确。与之相反的,由于超声波流量计不会磨损,并且没有运动部件,维护成本非常低。 5.轻松处理大尺寸管径 超声波流量计可以轻松地适用于大尺寸的管道。事实上,用于天然气流量测量的超声波流量计最适合6英寸及更大的管道。为了测量大管道中的天然气流量,例如20、30和36英寸管道,可能需要不止一个的孔板流量计。在这些情况下,流体有时会被转移到一组较小的管道中,以达到测量的目的。这也是为什么超声波流量计可以代替多达十个孔板流量计。超声波沼气流量计BF-3000 四方仪器自主研发的超声波沼气流量计BF-3000,巧妙地在流量计中融入了CH4测量功能,实现了沼气流量、成分的同时测量。不仅能够适应国家沼气产品补贴政策,防止鼓空气获取补贴的现象出现,也能够成为沼气工程运行的可靠数据来源,充当沼气工程验收、监督的“金标准”。 由于超声波流量计利用超声波对流体的流量进行测量,其比传统仪表更能适应工业现场的环境,不仅可以测量常规管道流量,还可以测量诸如具有强腐蚀性、放射性、易燃、易爆等特点的流体,因此测量具有高水分和高H2S的沼气自然也不在话下。 17世纪托里拆利奠定差压式流量计的理论基础,这是流量测量的里程碑。我国开展近代流量测量技术的工作比较晚,早期所需的流量仪表均从国外进口。可以说,超声波流量计的出现是又一个里程碑,它见证了国内涌现的一批科技创新企业,也见证了当今微电子技术和计算机技术的飞跃发展如何极大地推动了流量仪表的更新换代。来源:微信公众号@沼气工程及其测控技术,转载请务必注明出处
  • PALL PM 2.5空气监测膜片满足美国EPA标准
    PM 2.5标准是为了检测可吸入颗粒物的一个标准,来衡量空气的被污染程度  PM,是颗粒物英文全称Particulate matter的缩写  PM2.5,指大气中空气动力学直径小于或等于2.5微米的颗粒物,亦称可入肺颗粒物.  人为来源:主要来自燃烧过程,比如化石燃料(煤、汽油、柴油)的燃烧、生物质(秸秆、木柴)的燃烧、垃圾焚烧。在空气中转化成PM2.5的气体污染物主要有二氧化硫、氮氧化物、氨气、挥发性有机物。  自然来源:风扬尘土、火山灰、森林火灾、漂浮的海盐、花粉、真菌孢子、细菌其粒径小,富含有毒有害物质,因而对人体健康和大气环境质量影响极大  PM10,则指大气中空气动力学直径等于或小于10微米的颗粒物,也称可吸入颗粒物,粒径2.5微米至10微米的粗颗粒物主要来自道路扬尘等,属于粗颗粒物,与细颗粒物相对。  PM2.5的危害  PM2.5主要对呼吸系统和心血管系统造成伤害,包括呼吸道受刺激、咳嗽、呼吸困难、降低肺功能、加重哮喘、导致慢性支气管炎、心律失常、非致命性的心脏病、心肺病患者的过早死。老人、小孩以及心肺疾病患者是PM2.5污染的敏感人群。世界卫生组织(WHO)和一些国家的PM2.5标准(单位:微克/立方米)  PM 2.5的标准最早是由美国在九七年的时候提出来,目前世界上很多的发达国家都把PM 2.5列入了一个评价空气质量的标准,我们国家采用的是新的环境空气评价办法—环境空气质量指数(AQI).  《环境空气PM10和PM2.5的测定 重量法》(中华人民共和国国家环境保护标准,HJ618-2011)  “根据样品采集目的可以选用玻璃纤维、石英等无机滤膜或聚氯乙烯、聚丙烯、混合纤维素等有机滤膜。滤膜对0.3um标准粒子的截留效率不低于99%。”  美国EPA标准,用做PM2.5 检测的膜厂家应该满足的EPA 40 CFR Part 50 (EPA 1997a)  生产标准:  • 大小—圆盘, 46.2-mm ±0.25 mm (带支撑环)   • 材质—带完整支撑环的(PTFE) Teflon  • 支撑环—PMP或相等的惰性材料,0.38±0.04mm厚度,外部直径46.2±0.25mm,宽3.68 mm。支撑环应保持性能一直,否则会影响操作。  • 孔径—2μm (按ASTM F 316-94标准)   • 厚度—30-50μm  其他信息请访问美国环保局网站,http://www.epa.gov/air/particlepollution/health.html  PALL用于PM 10,PM 2.5检测的膜片符合EPA规定  Teflo PTFE膜片  PTFE膜,拥有EPA规定的PMP支撑层,专用于PM-10, PM-2.5,分道采样和其他空气抽样检测技术。在X射线萤光分析下极低的化学背景,低成分也适用于高精度的重量分析测定法。  滤材:带 PMP支撑层的PTFE膜(符合美国EPA法规)  厚度: 1 µ m: 76 µ m (3 mils), 2 µ m: 46 µ m (1.8 mils), 3 µ m: 30.4 µ m (1.2 mils)  典型气溶胶截留 (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求) :1 和2 µ m: 99.99%, 3 µ m: 99.79%  典型空气流速(0.7 bar (70 kPa, 10 psi)): 1 µ m: 17 L/min/cm2, 2 µ m: 53 L/min/cm2 , 3 µ m: 90 L/min/cm2  A/E玻璃纤维  用于各种空气分析的顶级玻璃纤维过滤膜,符合EPA法规推荐使用的要求为:无粘合剂的硼酸硅玻璃纤维。  滤材: 无粘合剂的硼酸硅玻璃纤维  孔径: 1 µ m (nominal)  厚度: 330 µ m (13 mils)  典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)  典型空气流速(0.7 bar (70 kPa, 10 psi)): 60 L/min/cm2  典型水流速度(0.3 bar (30 kPa, 5 psi) ): 250 mL/min/cm2  最大操作温度-空气: 550 °C (1022 °F)  Zefluor™ PTFE膜  低化学本底,高灵敏度,无干扰. 0.5 µ m孔径,满足 NIOSH标准,适合监测酸雨,芳香烃和为例检测.  滤材: 有PTFE支持层的PTFE 膜  孔径: 0.5, 1, 2, 和3 µ m  厚度: 0.5 µ m: 178 µ m (7 mils), 1 µ m: 165 µ m (6.5 mils), 2 and 3 µ m: 152 µ m (6 mils)  典型气溶胶截留 :0.5, 1, and 2 µ m: 99.99%, 3 µ m: 99.98% ((按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)  典型空气流速(0.7 bar (70 kPa, 10 psi))0.5 µ m: 1, 1 µ m: 14.6, 2 µ m: 25.3, 3 µ m: 53 L/min/cm2  Pallflex Tissuquartz™ (石英膜)  纯石英,没有粘合剂,最高化学纯度, 高流速,高过滤效率. 独特的设计适用用高温和热气体的监测应用。  滤材: 纯石英,没有粘合剂  厚度: 432 µ m (17 mils)  重量t: 5.8 mg/cm2  典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)  典型空气流速(0.7 bar (70 kPa, 10 psi)): 73 L/min/cm2  典型水流速度(0.35 bar (35 kPa, 5 psi) ): 220 mL/min/cm2  最大操作温度-空气: 1093 º C (2000 º F)  PM 10, PM 2.5监测配件  滑动盖  保护样品膜的完整性  具体购买事宜,请联系PALL当地代理商:  http://www.ebiotrade.com/custom/ebiotrade/DLS2009/pall.htm  或Email PALL 实验室市场部:  Jessie_jing_chen@ap.pall.com
  • 技术前沿:超声波沼气流量计的优势探讨
    随着沼气集中供暖的逐年发展,沼气流量计得到了广泛应用。目前,有几种流量监测技术在沼气流量监测领域得到了成功应用,直接方法包括涡轮流量计、涡街流量计、孔板流量计、均速管流量计、热式气体质量流量计、超声波流量计,以及光学闪烁相关流量计等。 但由压力低,不耐腐蚀等因素,这些流量测量技术也存在一些具体应用问题,对测量的稳定性和日常维护带来麻烦。本文针对沼气测量方法的优异进行比较,对高性价比超声波沼气流量计BF-3000系列流量计详尽描述。 沼气流量测量的现状对比 沼气流量测量难点在于:流量变动大、不耐腐蚀、粘稠杂质、压力低。超声波流量计与孔板、涡轮、涡街等传统流量计相比,具有适应性强,操作方便等特点,4种流量计对比如下图所示: 超声波沼气流量计BF-3000是针对腐蚀性、低压、低流速、工业或市政现场状况开发的一种流量仪表,满足市政、工业测量需求。通用性强,可单独工作或接入大中小型沼气工程物联网监测系统。超声波沼气流量计BF-3000 工作原理 采用时差法,利用一对超声波换能器相向交替(或同时)收发超声波,通过观测其在介质中的顺流和逆流传播时间来测量流体的流速,再通过流速来计算流量,是一种间接、非接触式的测量方式,测量精度高、量程宽、耐压力、耐腐蚀。 功能特性 1.全数字化电子单元:电子单元采用最新的微电子技术和元件,采用数字算法程序,使仪表信号处理更精准,运算速度更快捷。 2.抗腐蚀性:传统的涡街、涡轮等流量计在高H2S和水分条件下容易被腐蚀破损,超声波沼气流量计探头采用特制陶瓷超声波探测器,具有超强的耐腐蚀性。 3.低流量测量:在传统气体流量计量程比范围窄,适合稳定的流量工艺;小型沼气工程供气具有明显的“谷峰”特性,要求流量计具有很宽的测量范围。超声波气体流量计更适合低流量测量,国际上天然气贸易计量就是采用超声波气体流量计。 4.温度、压力测量:内置防腐型温度、压力传感器,可实现沼气标准流量的测量。 5.CH4浓度测量功能:实施沼气产品补贴政策,沼气CH4浓度测量是关键,否则与城市燃气表盗气相仿,小型沼气工程会出现采用鼓空气的方法获取更多补贴的风险。传统气体流量计均无法完成这项重要功能,超声波沼气流量计BF-3000无需增加成本就可以实现CH4的准确测量。 6.低维护、低运行费用:传感器没有可造成堵塞或聚集残留的部件,内部无被磨损的机械运动部件,少日常维护,低运行成本。 安装要求 1.流量计安装位置应尽可能选择上游大于10倍直管径、下游大于5倍直管径以内无任何阀门、弯头、变径等均匀的直管段,这种安装条件将有助于确保有更加对称的速度分布剖面; 2.为消除沼气管道中凝结水的不良影响,建议用户在直管段前加装排污阀,并适当抬高流量计的安装位置,使冷凝水有效地在前端的排污口排出; 3.在沼气流量计管道旁并联一路旁路管段,以方便流量计的检修维护。沼气流量计入口处的管道必须安装一个关闭气路的阀门。沼气流量计安装好后,应检查联接处的密封性; 4.严禁用明火检漏。进入沼气流量计内的气体压力不得超过其规定的最大压力值; 5.流量计表体的内径与直管段的内径应一致,对于流量计上游的直管段尤其重要; 6.流量计表体与连接的直管段之间的轴线不重合度减至最小,沼气流量计应保证气室水平安装; 7.垫片如突入管道可能会造成对流场分布的干扰。应该采取措施确保垫片是在法兰密封面上且与法兰保持同心,不允许有垫片突入管道; 8.安装时应检查流量计测量管段内腔是否清洁,若有油脂及灰尘,需及时清除干净。 由于准确度高和维修费用低,超声沼气波流量计己被气体工业界所接受,它是自气体涡轮流量计后被气体工业界接受的最重要的气体流量计量器具。至今已有较多国家的政府机构批准气体超声波流量计为法定计量器具。 版权声明:本文转载自微信公众号@沼气工程及其测控技术,如欲转载,请务必注明来源,违者必究。
  • 五大豪华品牌车型车内空气质量排名PK
    在今年北京开始实施实时公布空气质量PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物)数值以来,空气质量问题开始渐渐被更多的人所关注,而在汽车室内也存在着空气质量好坏的问题。近日,全国22家城市消协及消费维权单位联合发布《汽车室内空气质量比较试验报告》,在报告中共公布了5大豪华品牌相应车型的空气质量检测结果,其中包括对甲醛、苯、苯乙烯等有害化合物的检测,本期就为大家介绍下豪华品牌车型在室内空气质量的把控如何。  沃尔沃S60室内空气质量达五星 好于其他车型    【5大豪华品牌相应车型车内空气质量排名】  在全国22家城市消协及消费维权单位联合发布《汽车室内空气质量比较试验报告》中,共涉及了5大汽车豪华品牌的6款车型。如上表所示,沃尔沃旗下的S60车型获得了5星(星数越多空气质量越好)的空气质量表现,好于其他品牌车型。虽然雷克萨斯ES240、奔驰C200等车型在车内空气质量检测中均获得了4星的成绩,但由于综合不同检测物含量的检测结果得出了如上表所示的排名。  6款车型检测化合物含量均低于标准值  【检测物中含醛类化合物检测结果】   【检测物中含苯类化合物检测结果】  如上表所示,在检测项目中共分为对两大类化学物质的检测,一类是醛类化合物一类是苯类化合物,总共针对包括苯、甲醛、乙醛、甲苯、乙苯等8种有害化学物质的检测。公布数据显示,沃尔沃S60、雷克萨斯ES240、奔驰C200、宝马5系、奥迪Q5和A4L虽然在检测的化学物质含量有所不同,但检测坚果均低于标准值。  内饰材料使用的化合物对人身体危害   【8种化合物对人体健康造成的危害】  在《汽车室内空气质量比较试验报告》中针对苯、醛类化合物的检测,这两类化合物在日常生活中长期接触可导致慢性中毒,如乙醛在低浓度时可引起对眼、鼻、上呼吸道的刺激和支气管炎,而甲苯在长期接触后可发生神经衰弱综合征、肝肿大等症状。  消费者购车时应如何选择  新车在出厂后一般都带有&ldquo 新车&rdquo 所特有的味道,气味较为难闻,所以消费者在选购车辆时,最好先打开车门闻闻味道,选择无异味或异味较轻的车型。  新车购买后需要注意事项  在购买新车初期,上车前先打开车门让车内的空气进行流通,行驶中常开窗通风(车窗、天窗均可有效保持车内空气流通),使用空调时多采用外循环模式。另外,尽量不要增添或改装车内饰,吸烟、放置劣质香水也会加重&ldquo 毒气&rdquo 浓度。  在生活水平逐步提高的今天,对于健康的重视程度也在广大消费者中逐渐引起共鸣。现如今汽车已成为我们日常生活中使用较为频繁的活动空间之一,由于车内空间较为局限并且经常处于闭合状态,所以车内空气质量的好坏也直接影响了乘员的身体健康,而在豪华品牌车型中汽车室内空气质量整体水平的把控也相对较高。
  • 祝贺诺泽流体科技微纳米技术卓越中心正式成立
    诺泽流体科技微纳米技术卓越中心(以下简称技术中心)于2020年5月31日在上海正式成立,并邀请复旦药学院副院长王建新老师,中科院药物所课题组组长甘勇老师、张馨欣老师、苏州大学纳米学院执行院长刘庄老师及天津中医药大学博导刘志东老师出席揭幕仪式。 (诺泽总经理张锋和嘉宾一起揭幕)诺泽流体科技总经理张锋为嘉宾们先介绍公司两大核心产品,微射流均质机和超微粉气流粉碎机应用成果,后陪同嘉宾一起参观技术中心。(总经理张锋介绍产品的应用案例)技术中心建有符合GMP要求的C级净化间、分析室、小试粉碎间、规模生产区域;配备超微粉气流粉碎机(实验型、小试型 、中试型、生产型)、微射流均质机(实验型、中试型、生产型),高剪切、粉体特性测试仪、粒径检测设备等仪器,可满足工艺验证,实验用途代加工,放大生产,配置OEB5的粉碎隔离器,还可实现高活性原料药的微粉化。为众多企业解决从研发阶段、中试放大阶段以及大生产阶段的问题。 (参观技术中心)诺泽流体科技(上海)有限公司自2012年成立以来,一直秉承着安全、可靠、创新的理念,赢得全球众多高科技公司与知名药企的认可及一致性好评。此次,企业成立的技术中心,将为业界提供更专业、优质的技术解决方案服务。(诺泽员工与嘉宾合照留念)
  • 专家:车内空气质量检测存在较多问题
    参加车内空气质量联席会议的专家指出  车内空气质量检测存在较多问题  “目前,在车内空气质量检测方面存在很多问题,比如检测方法不规范、检测仪器不规范等,从而导致一些检测结果不真实,对汽车企业及消费者均起到不好的影响。”这是上周在京举行的首次车内空气质量联席会议上一些专家的观点。  此次会议由中国室内环境监测工作委员会牵头组织,国家环保部、国家认监委、中国汽车工程学会、中国汽车工业协会、中国消费者协会、汽车企业等相关单位负责人及专家参加,共同就解决车内空气质量问题群策群力,出谋划策。  中国室内环境监测工作委员会秘书长、国家室内环境与室内环保产品质量监督检验中心主任宋广生在会上介绍说,随着我国汽车产业的快速发展,车内空气污染的问题开始引起人们的重视,特别是2012年3月1日《乘用车内空气质量评价指南》国家标准发布以后,车内空气质量受到越来越多人的关注。车内空气质量安全和食品安全一样,是和老百姓生活息息相关的。2012年,车内空气质量问题已经成为和产业动态、车展论坛排在前三位的热点话题。这和大家的关注度及国家标准的实施是有直接原因的。  宋广生特别提到,标准实施将近一年,但是在车内空气质量检测方面存在很多问题,比如检测方法不规范、检测仪器不规范、检测条件不规范、检测项目不规范、检测结果发布不规范等等,这就可能在市场上造成了一些混乱,其后果是影响了国家标准的正确实施,并且影响了品牌汽车对车内空气质量的控制,对汽车企业的实际工作产生了影响。同时也误导了消费者。  专家举例说,比如标准有严格的控制方法,就是汽车要在一个封闭的环境当中去做检测,这种检测才是有真正意义的。而实际上,很多检测方法是不规范的,包括去年一些很有影响的检测都是在室外进行的。  宋广生说,没有一个封闭的环境舱,把温度、湿度、空气流速进行控制,其检测就是不规范的。对此,宋广生在会上提出建议,应该规范车内空气质量评价活动,包括规范车内空气质量检测实验室、规范车内空气质量检测活动、规范车内空气质量检测结果评价和宣传、规范车内饰件的有害物质检测活动、规范车内空气质量净化治理服务以及规范车内空气净化器和净化技术的检测认证。  国家认监委认证监管处处长王昆介绍说,车内空气污染问题成因比较简单,主要是车内的内饰材料释放的挥发有机物,超标物质对于驾乘人员的健康有很大的影响。而主要的根源还是产品在生产制造过程当中产生的。如何通过认证的手段来控制污染物的产生,这个问题需要认证机构、检测机构做更深入的制度设计和相关的技术安排,确保质量控制工作能更加科学合理。  中国消费者协会消费指导部主任张德志特别提到有一些误区应该重视。他说,车内的污染问题跟汽车厂家当然有关系,但是消费者也不要忽视车内装饰等的二次污染问题。有时,二次污染可能比第一次污染更难控制,问题更严重。比如有消费者购车后,买了几个味道特别大的脚垫,这就有可能导致原来出厂时车内的污染物加一起,都不如后购买的脚垫产生的有害物质多。  据了解,目前车内环境污染问题也越来越受到汽车主机厂和众多配套厂家的重视,如何净化车内环境,保障车主及乘客的身心健康,已成为整个汽车行业迫切需要解决的问题。在这方面一些汽车企业已走在了前面。参会的吉利汽车及沃尔沃汽车在会上介绍了企业在这方面做的大量工作,并受到专家好评。  有关专家表示,车内空气的污染跟乘客的距离是最近的,我们可以最直接地感受到这样的污染。中国的汽车保有量已经超过1亿辆,而且基本上每年以近2000万辆的数量在推进。汽车中这种有机物的挥发不仅仅影响到车内的空气,而且还要往大气中排放。所以,汽车的排放也应该放在同样重要的程度上来考虑。  此次联席会议最后还对2012年车内空气质量十大新闻奖进行了颁奖,吉利控股集团、沃尔沃汽车网络传播、中客华瑞北京车内指导中心等单位摘得奖项。作为唯一的新闻媒体,本报也因一年来对车内空气质量的大力宣传获此殊荣。
  • 《GB/T 18883-2022室内空气质量标准》已批准发布 将于明年实施
    《GB/T 18883-2022室内空气质量标准》已批准发布 将于明年实施《GB/T 18883-2022室内空气质量标准》于2022年7月11日经国家市场监督管理总局(国家标准化管理委员会)批准发布,代替《GB/T 18883-2002室内空气质量标准》,将于2023年2月1日起正式实施。《GB/T 18883-2002室内空气质量标准》(先下载阅读报批稿)运行20年,迎来了第一次修订,本次修订主要更新哪些内容呢?让我们一起比较下新旧版GB/T 18883的区别。首先,调整了5项指标的限值,包括二氧化氮、甲醛、苯、细菌总数、氡,其中有三项关键参数进行了限值缩紧。具体如下:1)二氧化氮NO2限值从0.24mg/m缩紧至0.20mg/m;2)甲醛HCHO限值从0.1mg/m缩紧至0.08mg/m;3)苯C6H6限值从0.11mg/m缩紧至0.03mg/m,缩紧力度较大;4)生物性菌落总数名称变更为细菌总数,限值由2500cfu/m缩紧为1500cfu/m。其次,新版《GB/T 18883-2022室内空气质量标准》参数中将新增细颗粒物PM2.5、三氯乙烯C2HCl3、四氯乙烯C2Cl4三项化学性参数及其限值规定。再次,新版本或将新增4个规范性附录。用以补充甲醛、苯并[a]芘、PM10、PM2.5、氡等有害物质的相关规范性。另外,新版标准还对温度、相对湿度、空气流速、新风量、臭氧、二氧化氮、二氧化硫、二氧化碳、一氧化碳、甲醛(分光光度法)、氨等11项指标的标准检验方法来源,并在附录A中增加参考采样方法参数,甲醛(高效液相色谱法)、苯、甲苯、二甲苯、总挥发性有机物(TVOC)、苯并[a]芘、可吸入颗粒物(PM10)、细颗粒物(PM2.5)、细菌总数、氡等10项指标以附录形式列出完整的检验方法(见附录B –附录 H),三氯乙烯和四氯乙烯可直接参照TVOC的检验方法,细化TVOC的计算方法。新旧GB/T 18883标准比较一览 报批稿下载:《GB/T 18883-2002室内空气质量标准》(报批稿)
  • 瑞德仪器发布室内空气TVOC气相色谱仪新品
    新房装修必有装修污染,若是没有治理达标或急于入住,居住者会很容易生病,甚至引发严重的病变。什么是TVOC?它是一种总挥发性有机物,英文全称Total Volatile Organic Compounds,指室温下饱和蒸气压超过了133.32pa的有机物,其沸点在50℃至250℃之间。室内空气TVOC检测已有国家标准: GB50325-2010《民用建筑工程室内环境污染控制规范》附录G和GB/T18883-2002《室内空气质量标准》 附录C,现有标准均采用热解吸/毛细管气相色谱法。 山东瑞德化工仪器供应国产TVOC气相色谱仪TVOC/热脱附/气相色谱仪方法原理 用以Tenax-TA为吸附剂的TVOC吸附管收集一定体积的空气样品,空气流中挥发性有机物保留在吸附管中。高温下进行热脱附,解吸挥发性有机物,采集管中待测样品随载气进入气相色谱中,分离后进入FID检测。以保留时间定性,峰面积定量。主要仪器配置及试剂1)GC-7890气相色谱仪,带FID检测器;2)一次热解析仪;3)大气采样器;4)TVOC专用分析柱;5)Tenax-TA吸附管6)TVOC系列浓度标准样品电子流量显示气相色谱仪,GC-7890气相色谱仪,可加EPC气相色谱仪★ 仪器内部设计3个独立的连接IP地址,可以连接到工作电脑(实验室现场)、分管电脑(如质检科、生产部等)、以及高管电脑(如环保局、技术监督局等),需要时可实时监控仪器的运行以及分析数据结果; ★ 仪器配备的工作站可以同时支持多台色谱仪接入,实现数据处理以及仪器反向控制,简化文档管理; ★ 仪器可以通过互联网连接到生产厂家,实现远程诊断、远程更新等(需用户设置); ★ 仪器配备的 8 吋彩色液晶触摸屏,支持热插拔,可作手持控制器使用; ★ 仪器采用了多处理器并行工作方式,使仪器更加稳定可靠;可选配多种高性能检测器选择,如 FID、TCD、ECD、FPD 和 NPD,zui多可同时安装三个检测器,满足复杂样品的分析需求。 ★ 仪器采用模块化的结构设计,后期维护简单方便。 ★ 全新的微机温度控制系统,控温精度高,可靠性和抗干扰性能优越;具有八路完全独立的温度控制输出,可实现二十阶程序升温,具有柱箱自动后开门系统,近室温控制能力得到提高,升/降温速度更快; ★ 仪器配置电子流量控制单元(EFC)、电子压力控制单元(EPC)实现了气路的数字化控制,大大提高了仪器的稳定和分析结果的重现性; ★ 色谱机内置低噪声、高分辨率 24 位 AD 电路,并具有基线存储、基线扣除的功能。 ★ 标配的工作站适于 WinXP 、Win2000、Win7、Win8、Win10 等操作系统。 我们提供环保、食品、石油、医药、煤炭、环境等行业色谱分析仪器。创新点:1、之前是压力表控制流量,现在是电子流量显示,也可带EPC控制流量2、原来是工作站不是内置的,目前可内置反控工作站3、外观美观4、应用性广室内空气TVOC气相色谱仪
  • 网约车竟成新冠扩散“载体”,一文告诉你如何安全乘车
    被疫情笼罩的2020年终于过去,在2021年到来之际,新冠疫情在北京顺义、辽宁沈阳、河北石家庄等多地的出现和传播,使得人们还来不及庆祝的心又悬了起来。1月2日,北京市召开疫情防控新闻发布会,北京市疾控中心副主任庞星火介绍,1月1日0时至24时,北京市新增的1例本地确诊病例为网约车司机。此消息一出,市民不免担心起来,作为日常出行的一种方式,网约车已成为大多数人的首选。这不禁让人发出疑问,网约车是否安全?在车内是否需要戴口罩?近日,一篇来自ScienceAdvances的文章给我们提供了一些建议。开窗能降低感染风险吗?由于车内空间狭小,空气密闭,在对陌生人健康状况不确定的情况下,乘客或司机可能都本能地想打开车窗使空气流通起来。这种方式对降低病毒传播风险是否有用呢?这项关于汽车乘客舱内气流模式的研究发现,在乘坐小汽车时,打开离你最近的车窗,并不一定是保护自己免受病毒感染的最佳选择;反而,打开离你较远的窗口更有效。该研究模拟结果显示,打开身边的窗户比不开要好一些,但与打开对面的窗户相比,具有更高的暴露风险。车内可以不戴口罩吗?有网友认为,通过开窗调节车内气流,可以减少司机与乘客的呼吸道飞沫接触,有效降低传播风险。但该文章指出,空气流动并不能代替戴口罩,开窗通风后气溶胶浓度虽然有所降低,但车内交叉感染的风险无法完全消除。因此,虽然疫情目前只是在小部分地区出现,但出行过程中的安全防范意识仍不可松懈。北京市交通委员会在1月4日的新冠肺炎疫情防控工作新闻发布会上表示,营运中驾驶员和乘客全程佩戴口罩,尽量少交谈,对经劝阻后拒不佩戴口罩的乘客,驾驶员可以拒绝提供运输服务。可见乘车戴口罩仍是最有效的防范措施,不容忽视。
  • 环保部:大规模启动空气污染物来源解析
    3月25日,环保部发布《2013年京津冀、长三角、珠三角等重点区域及直辖市和省会城市空气质量报告》(以下简称《报告》)。  《报告》首次对我国自2013年实施环境空气质量新标准的74个城市进行评价。 结果表明,2013年74个城市中,只有海口、舟山、拉萨3个城市各项污染指标年均浓度均达到二级标准,其他71个城市存在不同程度超标现象。  重污染区域的首要污染物为PM2.5。对此,环保部官员表示,2014年要大规模、规范化启动污染物来源解析研究工作,北京等重点城市要在今年上半年提交初步成果。  京津冀区域污染最重  根据《报告》,京津冀、长三角、珠三角区域是空气污染相对较重的区域,尤以京津冀区域污染最重。京津冀13个城市中,有11个城市排在污染最重的前20位,其中有7个城市排在前10位,部分城市空气重度及以上污染天数占全年天数40%左右。  此外,该地区共13个城市,空气质量平均达标天数比例为37.5%,比74个城市低23个百分点,有10个城市达标天数比例甚至低于50%。其中,北京市达标天数比例为48%,重度及以上污染天数比例为16%。  该区域首要污染物为PM2.5,其次是PM10和O3(臭氧)。区域内所有城市PM2.5和PM10年平均浓度超标,PM2.5年平均浓度为106微克/立方米,PM10年平均浓度为181微克/立方米。  &ldquo 在空气质量最差的城市中,河北占了7个,可见河北仍然是重灾区,需要加大治霾力度。&rdquo 中国环科院副院长柴发合对21世纪经济报道分析,希望随着京津冀一体化进程的加快,通过体制与机制创新,河北的空气质量能够有所改善。  从74个城市空气质量状况看,我国大气污染形势非常严峻。环保部监测司有关负责人认为,主要有四个原因:高耗能、高污染的重工业发展过快、比重过大、集中度高 大气污染物长期超环境容量排放 城市化加快以及不利的气象条件。  对第二个原因,该负责人解释称,京津冀、长三角、珠三角区域占全国面积的8%,消费了全国43%的煤炭,生产了55%的钢铁、40%的水泥、52%的汽柴油,二氧化硫、氮氧化物、工业粉尘排放量占全国的30%,单位面积主要大气污染物排放量远远高于全国平均水平。  第四个原因也同样值得关注。该负责人解释,2013年华北平原和山东半岛的大部分区域年均风速同比减少0.1~0.3 m/s,静风、逆温现象增多,空气流动性差,不利于污染物的扩散。同时,这些地区的降水较常年同期偏少,其中河南、天津分别较2012年偏少24%、21%,弱化了对空气污染物的清除,加剧空气污染。  此外,报告显示,2013年空气质量相对较好的前10位城市是海口、舟山、拉萨、福州、惠州、珠海、深圳、厦门、丽水和贵阳。  大规模启动污染物来源研究解析  环保部也在报告中明确了2014年大气环境质量的任务。  根据部署,今年环保部将推动第三阶段空气质量新标准监测能力建设,力争早日完成全国地级以上城市新标准监测能力全覆盖。  环保部监测司副司长朱建平对21世纪经济报道介绍,2014年全国各直辖市、省会城市和计划单列市要启动污染物来源解析研究工作。其中北京、天津和石家庄要在上半年前提交初步成果 其他直辖市、省会城市和计划单列市要在年底前提交阶段性研究成果。  &ldquo 以前各个城市自发地做过,但这是第一次全国大规模地、规范地做源解析,我们将根据这次源解析的结果决定以后多长时间做一次,是不是每年都做。&rdquo 朱建平介绍。  朱建平还介绍,去年环保部开展了监测数据质量督查,&ldquo 还没有发现地方在监测数据上造假的问题&rdquo 。今年,环保部还将重点选择京津冀、长三角、珠三角等重点地区开展监测数据监督监测。  根据环保部的要求,对检查中发现的数据质量问题及时督促整改,对存在行政干预、数据造假等严重问题的单位约谈负责人和相关责任人并给予严肃处理,进一步提高自动监测数据质量,不断增强自动监测数据的公信力和权威性。
  • 广州标际发布医用口罩气体交换压力差测试仪N701新品
    用途适用于医用外科口罩气体交换压力差的测定,也可用来测定其它纺织材料的气体交换压力差。 原理通过气体流量计设定气流的输出,使该气流经过一定面积的测试样品,通过压力传感器检测当前压力并计算压力差。 符合标准:YY0469-2011、YY0969-2013 产品规格项目技术参数气源压缩空气空气流量1 - 10L/min可设置(标准8L/min)试样透气口径Ф25mm;压差传感器量程0~500Pa;显示方式触摸屏;电源220V,50Hz。产品特点1、.配有专用试样夹,使用简单方便。2.内置高清触摸显示屏。3.内置微型打印机,方便打印实验结果。4.配有高精度压差传感器,数字显示试样两测压差;5.配有高精度气体流量控制,流量实时数字显示,稳定控制气流并可手动设置。6.测试时间可根据测试要求,任意调节。创新点:1.配有高精度压差传感器,数字显示试样两测压差;2.配有高精度气体流量控制,流量实时数字显示,稳定控制气流并可手动设置。3.测试时间可根据测试要求,任意调节。医用口罩气体交换压力差测试仪N701
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准  1、范围  本标准规定了室内空气质量参数及检验方法。  本标准适用于住宅和办公建筑物。  2、规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GB 6921-86 大气飘尘浓度测定方法 重量法  GB 9801-88 空气质量 一氧化碳的测定 非分散红外法  GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法  GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法  GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法  GB/T 14669-93 空气质量 氨的测定 离子选择电极法  GB/T 14582-93 环境空气中氡的标准测量方法  GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法  GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法  GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法  GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法  GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法  GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法  GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法  GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法  GB/T 16146-1995 住房内氡浓度控制标准  GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法  GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准  GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法  GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法  GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法  GB/T 18204.25-2000 公共场所空气中氨检验方法  GB/T 18204.26-2000 公共场所空气中甲醛测定方法  GB/T 18204.27-2000 公共场所空气中臭氧检验方法  5 室内空气质量检验  5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。  5.2 室内空气中苯浓度的测定方法见附录 C 。  5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。  5.4 室内空气中细菌总数检验方法见附录 E 。  5.5 室内热环境参数的检验方法见附录 F 。  附录 A  (规范性附录)  室内空气采样技术导则  1、范围  本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。  2、选点要求  2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5 个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。  2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。  2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。  3、采样时间和频率  采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。  4、采样方法和采样仪器  根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。  5、采样的质量保证措施  5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。  5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。  采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。  5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。  5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。  5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。  6、记录和报告  采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。  附录 B  (规范性附录)  室内空气中各种参数的检验方法 *  污染物 检验方法 来源  (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995  ( 2 ) GB/T 15262-94  (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90  ( 2 ) GB/T 15435-1995  (3) 一氧化碳 CO ( 1 )非分散红外法  ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88  , SPAN style="FONT-SIZE: 9pt COLOR: #666666 FONT-FAMILY: 宋体 mso-ascii-font-family: 'Times New Roman' mso-hansi-font-family: 'Times New Roman'"( 2 ) GB/T 18204.23-2000  (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法  ( 2 )气相色谱法  ( 3 )容量滴定法 GB/T 18204.24-2000  (5) 氨 NH3 ( 1 )靛酚蓝分光光度法  纳氏试剂分光光度法  ( 2 )离子选择电极法  ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000  ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93  (6) 臭氧 0 3 ( 1 )紫外光度法  ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995  ( 2 ) GB/T 18204.27-2000  (7) 甲醛 HCHO • AHMT 分光光度法  • 酚试剂分光光度法  气相色谱法  ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95  ( 2 ) GB/T 18204.26-2000  ( 3 ) GB/T 15516-95  (8) 苯 C 6 H 6 气相色谱法 • 附录 C  ( 2 ) GB 11737-89  ( 9 ) 甲苯 C 7 H 8 、  二甲苯 C 8 H 10 气相色谱法 GB 14677-93  (10) 苯并 [a] 芘  B(a)P 高压液相色谱法 GB/T 15439-1995  (11) 可吸入颗粒  PM10 撞击式 —— 称重法 GB/T 17095-1997  (12) 总挥发性有机物  TVOC 气相色谱法 附录 D  (13) 细菌总数 撞击法 附录 E  (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F  (15) 新风量 示踪气体法 GB/T18204.18-2000  (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法  ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995  ( 2 ) GB/T 14582-93  * 注:检验方法中( 1 )法为仲裁法。  附录 C  (规范性附录)  空气中苯浓度的测定  (毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。  1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。  1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。  2、适用范围  2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。  2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。  3、试剂和材料  3.1 苯:色谱纯。  3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。  3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。  4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.3 注射器: 1ml 。体积刻度误差应校正。  4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。  4.5 具塞刻度试管: 2ml 。  4.6 气相色谱仪:附氢火焰离子化检测器。  4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。  5、采样和样品保存  在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。  6、分析步骤  6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。  6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。  6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。  6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。  8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。  附录 D  (规范性附录)  室内空气中总挥发性有机物( TVOC )的检验方法  (热解吸 / 毛细管气相色谱法)  1、方法提要  1.1 相关标准和依据  ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”  1.2 原理  选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。  1.3 干扰和排除  采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。  2、适用范围  2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。  2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。  3、试剂和材料  分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。  3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。  3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。  3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。  3.4 纯氮: 99.99% 。  4、仪器和设备  4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。  4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。  4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。  4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。  色谱柱:非极性(极性指数小于 10 )石英毛细管柱。  4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。  4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。  5、采样和样品保存  将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。  采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。  6、分析步骤  6.1 样品的解吸和浓缩  将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。  表 1 解吸条件  解吸温度 250 ℃ ~325 ℃  解吸时间 5~15min  解吸气流量 30~50ml/min  冷阱的制冷温度 +20 ℃ ~-180 ℃  冷阱的加热温度 250 ℃ ~350 ℃  冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg  载气 氦气或高纯氮气  分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择  6.2 色谱分析条件  可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。  6.3 标准曲线的绘制  气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。  液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。  用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。  6.4 样品分析  每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。  7、结果计算  7.1 将采样体积按式( 1 )换算成标准状态下的采样体积  式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。  7.2 TVOC 的计算  ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。  ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。  ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。  ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。  ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。  ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。  ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。  7.3 空气样品中待测组分的浓度按( 2 )式计算  式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。  8、方法特性  8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。  8.2 线性范围: 10 6 。  8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。  8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。  附录 E  (规范性附录)  室内空气中细菌总数检验方法  1、适用范围  本方法适用于室内空气细菌总数测定。  2、定义  撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。  3、仪器和设备  3.1 高压蒸汽灭菌器。  3.2 干热灭菌器。  3.3 恒温培养箱。  3.4 冰箱。  3.5 平皿 ( 直径 9cm) 。  3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。  3.7 撞击式空气微生物采样器。  采样器的基本要求 :  (1) 对空气中细菌捕获率达 95 %。  (2) 操作简单 , 携带方便 , 性能稳定 , 便于消毒。  4 营养琼脂培养基  4.1. 成分 :  蛋白胨 20g  牛肉浸膏 3g  氯化钠 5g  琼脂 15~20g  蒸馏水 1000ml  4.2 制法 将上述各成分混合 , 加热溶解 , 校正 pH 至 7.4 ,过滤分装, 121 ℃, 20min 高压灭菌。撞击法参照采样器使用说明制备营养琼脂平板。  5 操作步骤  5.1 选择有代表性的房间和位置设置采样点。将采样器消毒 , 按仪器使用说明进行采样。  5.2 样品采完后,将带菌营养琼脂平板置 36 ± 1 ℃恒温箱中 , 培养 48h ,计数菌落数 , 并根据采样器的流量和采样时间 , 换算成每 m 3 空气中的菌落数。以 cfu/m 3 报告结果。  附录 F    (规范性附录)  热环境参数的检验方法  热环境参数测试的要求、方法和仪器 *  测试项目 测试范围 准确度 测试方法和仪器  温度 -10~50 ℃ ± 0.3 ℃ 玻璃温度计(包括干湿球温度计)  数字式温度计(热电偶、热电阻、半导体式包括数字式湿度计或风速计所附的温度计)  相对湿度 12%~99% ± 3% 干湿球温度计  氯化锂露点式湿度计  电容式数字湿度计  空气流速 0.01~20m/s ± 5% 热球式电风速计  热线式电风速计  * 各种测试仪器的使用方法见仪器的使用说明书。  HPLC法测定布洛芬糖浆剂的含量  布洛芬糖浆剂除具有布洛芬片剂的药效外,还具有吸收快、利于儿童服用等特点[1]。但由于布洛芬不溶于水,其糖浆剂中均含有碱性物质以增加其溶解度[2,3],所以不能再用药典规定的中和法测定布洛芬含量。本文采用HPLC法测定了布洛芬糖浆剂的含量,获得了较满意的结果。  1 仪器与试药  日本岛津LC-6A高效液相色谱仪、SPD-6AV紫外检测器、SCL-6B系统控制器、C-R4A数据处理机、LC-6A输液泵。  布洛芬对照品:山东新华制药厂生产,采用本文色谱条件检查为单一色谱峰,含量为99.80% 布洛芬糖浆剂[3]:自制,标示量为2 %(g.mL-1) 二苯胺(内标)及无水甲醇均为分析纯。  2 色谱条件  色谱柱:YWG?C18 4.6 mm×250 mm 流动相:取磷酸二氢钠380 mg与磷酸氢二钠50 mg,加水溶解至1000 mL,用磷酸调pH至3.0,取出250 mL加甲醇750 mL,混匀。流速:1 mL.min-1 检测波长220 nm 进样量20 μL 检测灵敏度:0.01 AUFS。  3 标准曲线制备  精密称取二苯胺适量,加无水甲醇配制成0.7 mg.mL-1的溶液,作为内标溶液。另取布洛芬对照品适量,精密称定,加无水甲醇配制成0.27 mg.mL-1的溶液,作为对照品溶液。精密量取对照品溶液0.5、1.0、1.5、2.0、2.5、5.0mL,分别置于50 mL量瓶中,加入内标溶液1.0 mL,用无水甲醇稀释至刻度,摇匀,进样20 μL。以对照品与内标的峰面积之比为纵坐标,相应对照品浓度(mg.mL-1)为横坐标,得回归方程: Y=75.5X+0.0136 r=0.9997结果表明,布洛芬溶液浓度在3~30 μg.mL-1范围内与峰面积呈良好的线性关系。二苯胺及布洛芬的色谱图图1 二苯胺及布洛芬的色谱图  1.二苯胺 2.布洛芬  4 回收实验  取布洛芬对照品约100 mg,精密称定,定量转移至100 mL量瓶中,按处方加入单糖浆、L-精氨酸、苯甲酸钠、香精,用无水甲醇稀释至刻度,摇匀。精密取上述溶液及内标溶液各1 mL,按“样品测定”项下操作。测得平均回收率为99.89 %,RSD为0.93%,n=6。  5 样品测定  取布洛芬糖浆剂约2.5 mL,精密称定,定量转移至50 mL量瓶中,用无水甲醇稀释至刻度,摇匀。精密吸取上述溶液及内标溶液各1 mL置于50 mL量瓶中,用无水甲醇稀释至刻度,摇匀,进样20 μL。测得样品的含量为标示量的97.23 %,n=5,RSD为0.89 %。  6 讨论  经稳定性试验观察,样品溶液在室温下(约18 ℃)放置,每隔2 h测定1次,测至6 h,样品标示百分含量结果的RSD为0.99%,n=3。说明样品溶液较稳定。  以安定为内标物,效果也较好。但由于笔者想将该法用于布洛芬糖浆剂生物利用度测定,为防止人体内安定类药物的干扰,所以选择二苯胺为内标。  双甘瞵的HPLC分析条件  摘要:  试剂和溶液:  四丁基硫氢酸胺,  色谱纯甲醇  色谱纯磷酸  AR磷酸二氢钾  AR水:二次蒸馏水  双甘瞵标样  流动相:  0.05moLKH2PO4,200mL+50mL甲醇+0.5  色谱柱:Sinochrom ODS-BP 150mmX4.6mm 5um  流量:1mL/min  波长:195nm  柱温:35度。  HPLC同时测定大黄素和大黄酚的含量  大黄的有效成分为大黄素、大黄酚、大黄酸、芦荟大黄素、大黄素甲醚及其甙类等蒽醌类成分。有关大黄及其制剂有效成分含量测定方法报道很多,如比色法、薄层-紫外分光光度法、HPLC法等。这里简单介绍一下HPLC法同时测定大黄素和大黄酚含量时的色谱条件、样品处理方法等。  ⑴《中国药典》2005版大黄含量测定项:以十八烷基硅烷键合硅胶为填充剂 甲醇-0.1%磷酸溶液(85:15)为流动相。检测波长为254nm。对照品为芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚。大黄样品前处理:甲醇回流提取—8%盐酸超声—三氯甲烷回流萃取。  ⑵赵莉,晁若冰测定了大黄通便胶囊中大黄素和大黄酚的含量。色谱条件同⑴。仪器:LC-IOAT vp高效液相色谱仪,SPD-M10A vp光二极管阵列检测器,Class-vp色谱工作站(日本岛津)。用Luna 5 u Cl8(2)柱(150 mm×4.6 mm,ID),ODS预柱Phenomenex ODS guard cartridge system,4.0mm×3.0mm,ID)。样品先用甲醇回流提取,提取物在2.5 mol/L硫酸溶液中加热水解,再用氯仿提取后进行测定。  ⑶张华,雪秦岚,赵宏科,赵海云采用HPLC测定血脂灵片中大黄素、大黄酚的含量。色谱条件同⑴,检测波长428nm。仪器:高效液相色谱仪(包括P200Ⅱ型高压恒流泵,UV-200Ⅱ型紫外检测器,Echrom98色谱数据处理工作站),Shim-Pack型C18分析柱(200mm×4.6mm,5μm)  ⑷常军民,高宏,张煊,赵军,堵年生采用HPLC测定枝穗大黄中大黄素和大黄酚的含量。色谱条件同⑴。仪器:美国Waters 2690高效液相色谱仪,Waters 2487双波长检测器,Waters millennium s 色谱工作站(Waters corporation)。  ⑸魏有良,杨志一,霍彬科采用HPLC法测定化症回生片中大黄素和大黄酚的含量。色谱条件同⑴。样品处理:甲醇回流,再上中性氧化铝柱(100-200目,直径1.5cm,3.5g),先用甲醇洗脱,5%氢氧化钠洗脱,收集盐酸调Ph1-2,乙醚萃取。  ⑹王劲,李洁,马彦,田佩瑶,彭国克采用HPLC法测定中药消毒产品中大黄酚和大黄素的含量。色谱条件:天津特纳Kromasil C18(200mm×4.6mm i.d.,7μ)色谱柱,流动相:φ=0.02mol/L KH2PO4水溶液(H3PO4调pH=3.5)/甲醇=15/85,柱温:室温,流速:1.0mL/min,紫外检测波长:260nm。仪器:美国Waters公司2695高效液相色谱仪(996二极管阵列检测器,MiUennium32色谱管理系统)。  HPLC法同时测定大黄素和大黄酚的含量时,文献报道所采用的色谱条件多为药典所载的条件。流动相为甲醇-磷酸系统,另外还有乙腈-磷酸系统、甲醇-水系统、甲醇-高氯酸系统、甲醇-冰醋酸系统等 检测波长多为254nm,也有采用430、440、438、287nm。也有以甲醇-水-异丙醇(80:10:10)磷酸调pH值为3.0,检测波长:439nm。样品处理方面一般用适当溶剂回流提取,除去溶剂后氧化水解,再以有机溶剂萃取。酸溶液多为盐酸和硫酸。  HPLC法在生物碱分析中的应用  生物碱是植物中一类重要化学成分,许多生物碱或含生物碱的提取物已广泛用于医药领域,因此对不同来源的、存在于较复杂体系或基质中的生物碱进行快速、灵敏、可靠的定性和定量分析一直是受人瞩目的研究课题。  1、生物碱HPLC的分析模式  根据HPLC分析生物碱时所使用固定相性质、流动相组成及极性不同,其分析模式大致可分为:正相吸附色谱法、正相硅胶反相洗脱系统色谱法、反相色谱法及离子交换色谱法。  正相吸附色谱法:通常以硅胶基质为吸附固定相,流动相为不同极性的有机溶剂或不同比例混合溶剂,分离过程主要依靠生物碱与吸附剂吸附作用的差异实现,为了改善分离,提高溶洗脱能力,常于流动相中加浓氨液、二乙胺、三乙胺等。该法应用于生物碱分析的文献较少。  正相硅胶一反相洗脱系统色谱法(NS-RE):通常采用未经化学改性的普通硅胶为固定相,以极性有机溶剂(甲醇、乙腈)和高pH缓冲溶液为流动相,分析包括生物碱在内的碱性药物。该法柱效高,峰形对称,是简便有效的方法。在实际应用中,流动相的组成是主要的影响因素,流动相中除含有调节pH 的缓冲盐外,有时还要三乙胺、溴化四丁基铵等竞争离子或烷基磺酸钠等对离子。因此,影响保留与分离的主要因素是流动相pH、竞争离子种类及浓度 。  反相高效液相色谱法(RP-HPLC):近年来RP-HPLC应用于生物碱分析方面的文献很多,已成为常规的方法。但普通存在色谱峰的展宽拖尾,导致分离效能低,这主要缘于生物碱结构中碱性氮原子与固定相未键台酸性硅醇基的相互作用。即使是所测生物碱在较低浓度下,仍常产生峰漂移及峰对称性差等现象。针对此缺陷,研究工作者从适用于碱性物质分析的反相填料的设计选择,流动相中缓冲盐的使用,流动相添加剂(离子对试剂、有机胺改性剂)等几方面进行了较为广泛细致的研究,并取得了一定的进展。  离子交换色谱法:该法以阳离子交换树脂为固定相,利用质子化的生物碱阳离子与离子交换剂交换能力的差异而达到分离生物碱的目的,有关生物碱高效液相离子交换色谱法的应用报道较少。  2、生物碱HPLC分析检测方法  目前,生物碱HPLC分析检测方式多以紫外法为主,在定性分析方面,紫外法检测选择性低,定性专属性差。随着二极管阵列检测器使用的普及,显著提高了液相分析检测的选择性。此外,根据生物碱的理化性质,其它检测方式如荧光法、电化学法、蒸发光散射法亦得到了应用。近年来,液相色谱-质谱联用技术已应用于生物碱分析,增强了对生物碱的定性检测能力,提高了检测灵敏度。新的接口技术及离子化方法的发展.使得HPLC-MS在生物碱的分析中得到较广泛的应用,近年的文献报道日渐增多。  3、生物碱HPLC分析的样品处理方法  因生物碱常具有一定的碱性,一般常用碱化液液萃取或酸水提取等方法从中草药、中成药及生物样品等较复杂体系中提取纯化,以达到富集和去除杂质的目的。近年来,固相萃取(SPE)技术及超临界流体萃取等现代提取纯化技术亦应用于样品的提取纯化。  HPLC法快速测定食品中糖精钠、苯甲酸、山梨酸和咖啡因  苯甲酸、咖啡因等食品添加剂食用过量会对人体造成伤害,国家卫生标准对这几项指标有明确的限量,因此开展了此项调查。试验表明,液相色谱测定各类食品中糖精钠、苯甲酸、山梨酸和咖啡因时,即使是可乐等清凉饮料,样品经过脱气、稀释、过滤的简单处理即上机分析,也极易堵塞色谱柱,造成柱压升高、柱效下降,对色谱柱造成难以修复的损坏 而样品经透析处理耗时太长。本文论述了在常温下用氢氧化钠-硫酸锌作为蛋白质沉淀剂,沉淀处理包括清凉饮料、酸奶、花生乳等比较粘稠的饮料以及固体食品等各类样品中的蛋白质、淀粉等杂质,可以大大降低对色谱柱的损害,在一定的色谱条件下,在常温下即可快速、同时分离四种被测组分,操作极为简单、快速。  1 试验部分  1.1 原理  糖精钠、咖啡因是易溶于水的盐类,样品中的苯甲酸、山梨酸经氢氧化钠溶液(O.50mol/L)浸泡后,转化为易溶于水的苯甲酸钠、山梨酸钠,经沉淀蛋白质、过滤等处理后,四种被测组分滞留于水相中与杂质分离。  1.2 仪器与试剂  岛津LC-10AT高效液相色谱仪  色谱柱:Hypersil-ODS2-C18,4.6 mm X 1 50 mm柱  检测波长215nm,进样量2OμL,流动相为甲醇+O.02mol/L 乙酸铵(35+65),流量0.50mL/min。  苯甲酸标准溶液:1.000g/L,称取苯甲酸0.1000g,加20g/L碳酸氢钠溶液5mL,加热溶解,定容至100mL。  山梨酸标准溶液:1.000g/L,同苯甲酸配制。糖精钠标准溶液:1.000g/L,称取糖精钠0.1702g,加水溶解,定容至200mL。  咖啡因标准溶液:1.000g/L一,称取咖啡因0.1000g,加水定容至100mL。  混合标准液:糖精钠、苯甲酸、山梨酸、咖啡因浓度依次为4.5,5.0,5.0,5.0 mg/L。  氢氧化钠溶液:0.50mo1/L  硫酸锌溶液:0.42 mol/L_  乙酸铵溶液:0.02 mol/L,称取乙酸铵1.54g用水定容至1L。  甲醇(色谱纯)  1.3 试验方法  1.3.1 液体样品  称取样品0.100~5.00g于50mL比色管中(汽水振摇或微温除去二氧化碳,配制酒类水浴加热,除去乙醇),加入纯水约5mL,加入0.50mol/L氢氧化钠溶液1.00mL,搅匀,放置15min,混匀,加人纯水约30 L,加人0.42mol/L 硫酸锌溶液1.50 mL,混匀,加人0.50mol/L氢氧化钠溶液1.50mL,摇匀,纯水定容至50.0 mL,混匀,静置几分钟,上清液过滤(双层滤纸),弃去初滤液5 mL,滤液经0.45μm滤膜过滤,进样量2Oμl,进行色谱分析,以保留时间定性,以峰高定量。  1.3.2 固体样品  称取研碎的样品0.100~2.00g于5OmL比色管中,加人纯水约30mL,加人0.50mol/L氢氧化钠溶液1.00 mL,搅匀,放置15min以上(直到被测组分完全溶出为止),加人0.42mol/L硫酸锌溶液1.50mL,混匀,其它操作同上。  2 结果与讨论  2.1 蛋白质沉淀剂种类的选择  2.1.1 亚铁氰化钾与乙酸锌的沉淀分离效果分别称取苯甲酸、山梨酸0.100Og用10mL甲醇溶解纯水定容至100 mL,配制成标准溶液,纯水稀释至所需浓度,选取饮料杏仁乳一份,做苯甲酸、山梨酸的加标回收试验。称取饮料样品2.00g于50mL比色管中,加人苯甲酸、山梨酸各250μg,加入纯水约25mL,混匀,加人106g/L亚铁氰化钾溶液2.5 mL,混匀,加入220g/L乙酸锌溶液2.5mL,混匀,纯水定容至50mL,静置几分钟,上清液过滤,弃去初滤液5mL,滤液经0.45μm滤膜过滤,进人色谱仪进行分析,进样量2OμL,以保留时间定性,以峰高定量。  试样经亚铁氰化钾与乙酸锌沉淀后,溶液的pH在5~6范围内,对样品中的糖精钠、苯甲酸钠、山梨酸钾(钠)、咖啡因的测定无影响,但对样品中的苯甲酸、山梨酸的测定有影响,加标回收率较低(在78.2~87.8之间)。因苯甲酸、山梨酸在水中的溶解度较低,加人蛋白质沉淀剂以后,与杂质一起被沉淀,影响测定的准确性。由于难以确定饮料中的苯甲酸、山梨酸是否为钾盐、钠盐,建议不采用该蛋白质沉淀剂。  2.1.2 氢氧化钠与硫酸锌的沉淀分离效果  试样经该蛋白质沉淀剂沉淀后,对样品中的糖精钠、苯甲酸(钠)、山梨酸(钾)、咖啡因的测定(加标回收)均无影响,建议采用该蛋白质沉淀剂。  按试验方法进行氢氧化钠与硫酸锌不同比例的试验。  当0.50mol/L氢氧化钠溶液与0.42mol/L硫酸锌溶液用量为5:4时,沉淀效果最好,但保留时间发生滞后现象,不宜采用 两者用量为5:3时,定量与定性均准确,且滤液澄清,过滤速度也较快,这恰好与理论上氢氧化钠与硫酸锌形成完全沉淀时所需的比例(nOH:nZn2+=2:1)相吻和,但两者用量太少时,沉淀不完全 为使杂质完全沉淀,选择氢氧化钠用量为2.50mL、硫酸锌1.50mL为处理0.100~5.0 g饮料、0.100~2.O0g固体样品的最佳用量。  2.2 标准曲线及回归方程  按试验方法进行测定,4种添加剂的线性范围、检出限(按3倍信噪比计算)的测定。  2.3 样品测定结果  选择含不同被测组分的饮料样品,分别平行测定7次。  选择可乐饮料l份,分别做高、中、低浓度的加标回收试验。  2.4 食品中糖精钠、苯甲酸、山梨酸和咖啡因含量的调查  调查了市售饮料其中包括可乐、汽水、果汁、酸奶、牛奶、活性乳、花生乳、果冻、冰棍等共57份,其中5份含咖啡因0.002 3~O.270g/kg,17份含糖精钠0.053~0.966g/kg,7份含苯甲酸0.0038~O.230 g/kg,16份含山梨酸0.090~0.770g/kg 酱菜、熟肉制品、熟面制品40份,4份含糖精钠0.916~1.04g/kg,8份含苯甲酸0.005O~5.68g/kg,3份含山梨酸0.10~0.680g/kg 酱、酱油、醋、料酒共24份,其中15份含苯甲酸0.030~1.73 g/kg,1份含山梨酸0.220g/kg。  HPLC法鉴别五味子与南五味子  五味子为木兰科植物五味子Schisandra Chinensis(Turcz)Bail1.的干燥成熟果实,习称“北五味子”,具有收敛固涩、益气生津、补肾宁心的功效⋯ 。南五味子为木兰科植物华东五味子  Schisandra sphenanthe Rehd.et Wills.的干燥成熟果实,功效与五味子相似。中药成方制剂中都明确指定用何种五味子,且《中国药典)2000年版分别单独制定了质量标准。市场上这两种五味子价格相差较大,因此鉴别很重要。《中国药典)2000年版收载的标准中有薄层色谱鉴别,都采用了五味子甲素作为对照品,再分别用各自的对照药材作对照。作者多次实验结果表明薄层色谱鉴别对两种五味子鉴别专属性不强。本文则采用HPLC法进行鉴别,重复性好、灵敏度高且直接分析的是其特征峰,鉴别结果不受环境等因素干扰,为五味子的鉴别提供了可靠的手段。  1 仪器和试药  1.1 仪器:高效液相色谱仪(泵:SP1000,检测器UV2000,N2000工作站,美国光谱物理公司)。  1.2 试药:五味子对照药材(批号:0922—9803中国药品生物制品检定所) 五味子(毫州恒丰药材公司) 南五味子(毫州恒丰药材公司)。色谱纯甲醇 超纯水。  2 方法与结果  2.1 对照药材溶液的制备:取五味子对照药材粉末约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理(功率250 W ,频率20 kHz)30分钟,取出,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.2 色谱条件:色谱柱:AllitimaC18(4.6 mm×250 mm)。流动相:甲醇.水(13:7)。检测波长:250 nm。流速:0.8mL/min。柱温:25℃ 。  2.3 供试品溶液的制备  2.3.1 五味子药材提取液的制备:取五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.3.2 南五味子药材提取液的制备:取南五味子药材粉末(过3号筛)约0.25 g,置25 mL量瓶中,加甲醇约18 mL,超声处理30分钟,放冷至室温,加甲醇至刻度,摇匀,滤过,即得。  2.4 图谱的绘制:分别精密吸取对照药材溶液与供试品溶液各20 L,注入液相色谱仪,测定,见表1。  从表1中可以看出,五味子对照药材共9个峰,样品五味子共8个峰,南五味子共6个峰,样品五味子与对照药材相比少1个峰,其它峰保留时间都一致,南五味子少了3个峰,且只有1个峰相一致,由此,可以鉴定出五味子。经过多次实验结果,对照药材1、2、6、7、8号峰是五味子的主要特征峰,且峰面积较大。  3 小结与讨论  高效液相色谱法以保留时间为主要鉴别参数,若因仪器厂家、色谱柱等条件不同,则保留时间可能产生较大差异,导致图谱鉴定操作性不强,而采用对照药材作为对照。排除了上述因素的影响。峰号具体成分因无法买到对照品而不能确定。药厂采购五味子时,掺杂南五味子时有发生,应仔细对照药典标准进行鉴别,当初步鉴定为五味子,或者若怀疑有部分为南五味子时,则可以挑选出这两种五味子。再与对照药材分别进行HPLC图谱鉴别,方法简便可行。  HPLC法检查甲硝唑葡萄糖注射液中5-HMF  摘要 采用高效液相色谱法测定甲硝唑葡萄糖注射液中5-羟甲基糠醛,以C18为固定相,以甲醇-0.2%磷酸溶液(25∶75)为流动相,检测波长为284 nm,平均回收率为99.2%(RSD=0.61%)。  《中国医院制剂规范》〔1〕收载的甲硝唑葡萄糖注射液项下5-羟甲基糠醛(5-HMF)检查要求该品1∶25稀释后在284 nm波长处吸收度不得大于0.25。但实验证明,按上法进行甲硝唑葡萄糖注射液中5-HMF检查,其吸收度远大于0.25(1.50以上)。因为甲硝唑在284 nm处有吸收。中国药典1995年版〔2〕对甲硝唑葡萄糖注射液尚未规定5-HMP的限量检查〔2〕。为保证用药安全,本文建立了高效液相色谱法测定甲硝唑葡萄糖注射液中5-HMF的含量,可消除甲硝唑的干扰。现报道如下。  1 仪器与试药  1.1 仪器 Waters 501泵,484检测器,7725进样器(美国)。  1.2 试药 甲硝唑(浙江可立思安制药公司) 5-羟甲基糠醛(美国Sigma公司,H9877) 甲硝唑葡萄糖注射液(浙江省新昌制药厂,971105,971213,980124,980213,980321) 甲醇(色谱纯)。  2 方法与结果  2.1 色谱条件 色谱柱:Nova-pack C18(200 mm×4.6 mm, 4 μm) 流动相:甲醇-0.2%磷酸溶液(25∶75) 检测波长:284 nm 流速:1.0 ml/min。  2.2 试液的配制 精密称取5-HMF适量,加水溶解成0.5 mg/ml的溶液为5-HMF标准储备液。  2.3 标准曲线制备 精密量取5-HMF标准储备液适量,用水分别稀释成5,10,15,20,25 μg/ml的溶液 取10 μl注入色谱仪中,在上述色谱条件下测得峰面积(见图1) 以峰面积Y对浓度X绘制标准曲线,得回归方程y=1254x+47,r=0.9986,表明在浓度5~25 μg/ml范围内线性良好。另取10 μl试样重复进行,峰面积RSD=0.48%(n=6)。  2.4 回收率测定 精密量取已测得5-HMF含量的甲硝唑葡萄糖注射液50 ml,置100 ml量瓶中,精密加入5-HMF标准储备液1 ml,加水至刻度 按样品测定项下方法,计算平均回收率为99.2%,RSD=0.61%(n=5)。  2.5 样品5-HMF含量检测 精密量取甲硝唑葡萄糖注射液10 μl注入色谱仪,按上述色谱条件,测得5-HMF的色谱峰面积 另精密量取5-HMF标准溶液10 μl注入色谱仪中,同法测得峰面积,按峰面积外标法计算,结果5批样品中5-HMF含量分别为6.1,8.3,8.6,10.9,14.7 μg/ml。  3 讨论  实践证明,若生产过程不规范(如灭菌温度过高,时间过长)很容易导致5-HMF含量偏高。因此,控制甲硝唑葡萄糖注射液中5-HMF的限量对确保用药安全具有重要意义。  HPLC法测定紫草油中左旋紫草素的含量  摘要:目的 建立紫草油中左旋紫草素的含量测定方法。方法:采用HPLC法测定紫草油中左旋紫草素的含量,色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 甲醇-0.025mol/L磷酸(85:15)为流动相 检测波长:516nm 柱温:25℃ 进样量:20μL。结果:左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内线性关系良好(r=0.9998) 平均回收率为101.3%,RSD=1.90%(n=5)。结论:该方法简便、准确,能排除其他成分的干扰,可用于紫草油的质量控制和评价。  紫草油是我院的医院制剂,由紫草、银花藤、白芷等中药组成,具有凉血消炎的作用,临床用于烫伤的治疗,紫草为方中君药,其有效成分为紫草素,而紫草素含量的高低,直接影响其临床疗效。本实验采用HPLC法测定紫草油左旋紫草素的含量,方法简便、准确、重现性好,为控制该制剂的内在质量提供了可靠的方法。  l仪器与试药  1.1仪器高效液相色谱仪LC-1OA,SPD-10AVP紫外检测器(日本岛津) CK chrom data acquieition lO 15system (美国TSP)。  1.2试药  左旋紫草素对照品(中国药品生物制品检定所,批号0769—9903) 紫草油(本院制剂室提供) 超纯水 甲醇为色谱纯,其余试剂为分析纯。  2方法与结果  2.1色谱条件色谱柱:岛津Shim-packVP-ODS柱(4.6mm×250mm) 流动相:甲醇-0.025mol/L磷酸(85:15) 流速:1.0 mL/min 检测波长:516nm 柱温:25℃ 进样量:20μL(定量环)。  2.2对照品溶液的制备 精密称取左旋紫草素对照品2.8 mg,置25mL量瓶中,加入甲醇溶解并稀释至刻度,制成每mL含112.0μg的溶液,作为对照品储备液。精密吸取对照品储备液(1 12.0μg/mL)1.0,1.5,2.0,2.5,3.0 mL置于10mL量瓶中,加甲醇稀释至刻度。  2.3供试品溶液制备精密吸取样品10mL,置分液漏斗中,加入1% 氢氧化钠溶液20mL振摇提取3次,每次20mL,合并碱液,加10%盐酸溶液,调pH值至酸性(pH 2.5~3.5),用氯仿萃取4次(30,30,30,20mL),合并氯仿液,水浴蒸干,残渣加甲醇溶解并定量转移至25mL量瓶中,加甲醇溶液至刻度,摇匀,用0.45μm微孔滤膜滤过,作为供试品溶液。  2.4线性关系考察取浓度为11.2,16.8,22.4,28.0,33.6μg/mL的对照品溶液,分别进样20μL,测得峰面积,以浓度(C)对峰面积积分值(A)进行线性回归,回归方程为A=2.521×10000C一4265,r=0.9998。表明左旋紫草素在11.2μg/mL~33.6μg/mL浓度范围内,与峰面积积分值呈良好线性关系。  2.5精密度试验取同一份供试品溶液,每次20μL,重复进样6次,结果平均峰面积为757099,RSD=0.78%(n=6)。  2.6稳定性试验取供试品溶液依上述色谱条件,每隔1h测含量1次(n=5),次日测定2次,积分值无明显变化,平均峰面积为742531,RSD为1.01%(n=7)。  2.7重复性试验取同批样品(批号020816)5份,依2.3项下方法制备,照上述色谱条件测定,结果平均含量为58.0μg/mL,RSD为0.90% (n=5)。  该方法符合重复性要求。  2.8加样回收率试验精密吸取已知含量的样品溶液,精密加入一定含量的左旋紫草素对照品溶液,依法提取、进样、测定。  2.9样品测定取4批样品各10mL,依法制成供试品溶液,均以20μL进样,分别测定吸收峰面积,外标法计算左旋紫草素含量。  3讨论  紫草油为油制剂,方中主药紫草的有效分为紫草素及其衍生物,属于萘醌色素类化合物。有文献报道用紫外分光光度法及薄层扫描测定紫草素的含量 ,本方法采用HPLC测定紫草油中左旋紫草素的含量,简便、灵敏、准确,重复性好,可用于本品的质量控制。样品测定结果表明,各批号紫草油中左旋紫草素含量差异较大,通过对成品颜色的观察发现,左旋紫草素含量高的成品颜色深红,而所测含量较低的成品颜色较浅,这可能与紫草原药材的质量有关,故应严格控制原药材的来源与质量,并且应加强本制剂中间产品紫草素的质量控制。  薄层色谱法的相关知识简介  薄层色谱法,系将适宜的固定相涂布于玻璃板、塑料或铝基片上,成一均匀薄层。待点样、展开后,与适宜的对照物按同法所得的色谱图作对比,用以进行药品的鉴别、杂质检查或含量测定的方法。  1.仪器与材料  (1) 玻板 除另有规定外,用5cm×20cm,10cm×20cm或20cm×20cm的规格,要求光滑、平整,洗净后不附水珠,晾干。  (2) 固定相或载体 最常用的有硅胶G、硅胶GF[254] 、硅胶H、 硅胶HF[254],其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤维素、 微晶纤维素F[254]等。 其颗粒大小,一般要求直径为10~40μm。薄层涂布,一般可分无粘合剂和含粘合剂两种 前者系将固定相直接涂布于玻璃板上, 后者系在固定相中加入一定量的粘合剂,一般常用10~15%煅石膏(CaSO4.2H2O在140℃烘4小时),混匀后加水适量使用,或用羧甲基纤维素钠水溶液(0.5~0.7%)适量调成糊状,均匀涂布于玻璃板上。也有含一定固定相或缓冲液的薄层。  (3) 涂布器 应能使固定相或载体在玻璃板上涂成一层符合厚度要求的均匀薄层。  (4) 点样器 同纸色谱法项下。  (5) 展开室 应使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的盖子,除另有规定外,底部应平整光滑,应便于观察。  2.操作方法  (1) 薄层板制备 除另有规定外,将1份固定相和3份水在研钵中向一方向研磨混合,去除表面的气泡后,倒入涂布器中,在玻板上平稳地移动涂布器进行涂布(厚度为0.2~0.3mm),取下涂好薄层的玻板,置水平台上于室温下晾干,后在110℃烘30分钟,即置有干燥剂的干燥箱中备用。使用前检查其均匀度(可通过透射光和反射光检视)。  (2) 点样 除另有规定外,用点样器点样于薄层板上,一般为圆点,点样基线距底边2.0cm,样点直径及点间距离同纸色谱法,点间距离可视斑点扩散情况以不影响检出为宜。点样时必须注意勿损伤薄层表面。  (3) 展开 展开室如需预先用展开剂饱和,可在室中加入足够量的展开剂,并在壁上贴二条与室一样高、宽的滤纸条,一端浸入展开剂中,密封室顶的盖,使系统平衡或按正文规定操作。 将点好样品的薄层板放入展开室的展开剂中,浸入展开剂的深度为距薄层板底边0.5~1.0cm(切勿将样点浸入展开剂中),密封室盖,待展开至规定距离(一般为10~15cm),取出薄层板,晾干,按各品种项下的规定检测。  (4) 如需用薄层扫描仪对色谱斑点作扫描检出,或直接在薄层上对色谱斑点作扫描定量,则可用薄层扫描法。 薄层扫描的方法,除另有规定外,可根据各种薄层扫描仪的结构特点及使用说明,结合具体情况,选择吸收法或荧光法,用双波长或单波长扫描。由于影响薄层扫描结果的因素很多,故应在保证供试品的斑点在一定浓度范围内呈线性的情况下,将供试品与对照品在同一块薄层上展开后扫描,进行比较并计算定量,以减少误差。各种供试品,只有得到分离度和重现性好的薄层色谱,才能获得满意的结果。
  • 仪器开机指南 | 磨刀不误砍柴工,仪器自查好开工
    度过了一个居家隔离的新年假期以后,小伙伴们是不是已经按捺不住想出门的心,随时准备上班了呢!在保护好自己身体的同时,也要为假期结束后的工作做好准备。长假结束回到实验室,第一件事当然是打开仪器,然而您以为经过一个假期的修正,仪器会更好的配合您的步伐,殊不知过了个超长假期的仪器跟您一样,可能有“节后综合征”,搞不好会闹别扭的,那么如何正确打开您的仪器呢?进入实验室后,第一步工作是什么呢?接通仪器的电源并打开开关?不。第一步:打开室内的空调和抽湿机,将室温和湿度保持在规定条件下,避免仪器设备受到温湿度影响。然后打开实验室的新风系统,保持室内外空气流通,以防有毒有害气体留在室内,对实验人员造成危害。无论在节前有没有做过大扫除,开工时也要记得重新检查实验室卫生,对藏污纳垢处进行打扫清洁。第二步:接通仪器电源,打开开关,观察仪器是否正常完成自检复位;第三步:一、HPFE系列 高通量加压流体萃取仪: 使用溶剂对空萃取罐运行一次做样方法。目的:清洗仪器各通道管路,检查仪器各功能部件运行状况,并观察加热温度及密封效果。二、Fotector系列 高通量全自动固相萃取仪: 用溶剂或纯水运行简单的做样方法;目的:清洗仪器各通道管路,观察仪器各功能部件运行状况,并检查各管路接头密封性。清理排废液槽及废液收集瓶。三、EVA系列 全自动浓缩仪: 清洁水浴槽并重新添加纯净水; 打开氮气,运行浓缩方法。运行过程确认水浴温度及氮吹针吹气量。四、MPE系列 高通量真空平行浓缩仪: 用常规溶剂,进行一次浓缩方法。运行过程观察仪器真空度是否稳定,检查加热效果是否正常。希望这些开机Tips可以帮助您顺利开机,顺利复工,开机开的顺,一年的实验都顺利!同时,复工期间,要注意防护,保护好自己,才能更好的工作。
  • 空气质量测试设备领导者—TSI庆祝公司成立50周年
    气流测量仪器及其它设备顶级提供商&mdash TSI公司成功走过半个世纪的历程,迎来了光明的未来 中国北京2011年3月22日讯:TSI公司官员日前表示,TSI公司已经成功地走过半个世纪,迎来又一个50年的光辉未来。几十年来,这家空气质量测试设备公司一直在设计和制造精密测量仪器领域居于领导地位。 &ldquo 我们非常激动地迎来公司五十年华诞。&rdquo TSI公司总裁Tom Kennedy说,&ldquo 在我们参与竞争的领域,能成功地走到今天,再次证明了我们的承诺及对质量的专注。&rdquo 1961年,一群毕业于美国明尼苏达大学工程专业的研究生成立了TSI公司。50年来,众多客户已经习惯于依赖TSI,解决气溶胶科学、室内健康和安全、通风、流量计和处理、生物医学设备和流体动力学中棘手的测量挑战。 现在,TSI公司生产气流测量仪器和其它设备,员工数量超过430人,工作地点分布在圣保罗、明尼苏达州、德国、英国、新加坡、中国和印度。 &ldquo TSI为确立了测量和设备标准而感到骄傲。&rdquo Kennedy说,&ldquo 我们希望在未来50年内,再度引领这个行业。&rdquo 关于TSI公司TSI公司(http://www.tsi.com)研究、识别和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体动力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球多个市场建立了机构。每天,我们专业的人员都在把科研成果转化成现实。
  • 气流筛分仪在制药行业中的应用
    据数据显示早在2017年,我国粉体行业市场总生产总值已达到约60万亿元,在世界范围内继续名列前茅。如今,在粉体行业迎来快速发展的背景下,筛分设备企业赢得商机,同时也面临着不少挑战。 近年来,随着医药、食品等行业对粉状物料筛分精度等要求的提升,气流筛分仪设备也亟待改进升级。 例如小于4000um粒度的微细粉末如中西药微细粉在筛分过程中,非常容易发生团聚、起静电和堵塞空气喷射筛筛孔的现象,传统的振动筛分仪无法对中西药微细粉、玻璃纤维微细粉等物料的微细粉进行准确地、快速地筛分。而气流筛分仪是针对微细粉末快速、准确筛分需要而设计,可以满足粉体气流筛分的需求,适用于医药、食品、橡胶、塑料、机械、矿业等行业粉状物料的筛选分级。 气流筛分仪的工作原理是:通过气流筛分仪专用除尘器产生负压,气压产生筛分气流后经过气流喷射技术筛分喷嘴,将此负压转化为气流喷射力量,这种喷射力量能将颗粒推向筛分筛盖,使之与筛盖碰撞以消除团聚,继而呈分散状态的颗粒被负压吸引至标准筛网处,大颗粒停留在标准筛网表面,小颗粒顺利通过标准筛网,从而实现气流喷射筛分目的。关于德国Hosakawa Alpine  作为气流筛分仪的专业制造商,ALPINE气流筛分仪的特点是操作简单,测试结果可靠。在产品性能提升的道路上,ALPINE也一直努力增加舒适度的同时,提高分析测试效率和速度。 e200LS气流筛分仪在仪器的功能和设计上,继续延续了200LS-N气流筛分仪机型的优势,具有众多特点:高效工作  所有标准功能与评估功能都已集成在气流筛分仪e200LS中。系统界面的设计充分考虑人员的操作,力求简单可靠。操作更加快捷,工作更加舒适,同时减少配套的辅助设备。自动负压控制  气流筛分仪e200LS集成自动控制器,用于对筛分室内压力进行监控,从而监控喷嘴对物料的分散效果,该控制器可以使得在整个筛分过程中保持压力稳定。意味着操作更加高效、可靠与舒适。Alpine筛网识别器  Alpine筛网均配有识别芯片,能够被气流筛分仪内置软件自动识别和记录。无需手工输入筛网孔径,可以防止输入错误。自动生成分析日志。这对于在实验室中需要用不同的筛网设置来分析不同的物料,无疑是个巨大的优势。工艺参数如筛分时间和负压值等能被单独储存,在筛分操作时能够自动读取。智能筛分时间确定  应用eTimeSave功能,可以确保用户选择正确的筛分时间。筛分时间是筛分过程中关键的参数,既不能多也不能少。这将决定筛分是否成功,即样品是否被筛分或筛分结果是否可重复。技术规格测量范围:直径200/203mm筛网(20μm~4mm) 直径76mm筛网(10mμm~2.5mm)屏 幕:高清晰7"IPS触摸屏筛 网:筛网带芯片可自动识别气 流 量:30-115m3/h负 压:1500~5500pa尺寸 LBH:503*370*380
  • 燃料电池测试系统的背压、相对湿度、空气化学计量比对测试结果的影响
    聚合物电解质膜燃料电池(PEMFC)凭借高效、低排放的优点被普遍认为是一种最有前途的能源设备和电力运输系统。解决掉PEMFC的高成本以及耐用性有限、稳定性差的问题,就成为了实现商业化应用的关键。研究发现,PEMFC的性能与相对湿度、背压、氢气和气体化学计量比、电池温度等各种操作参数密切相关。1、背压对PEMFC的极化曲线和EIS曲线的影响图1 不同背压下PEMFC的极化和功率密度曲线(0、0.3和0.6 bar)图1中显示了0、0.3和0.6 bar背压下,商业Pt/C(Johns Manville Corporation GM Pt/C)在25cm² 的PEMFC中极化和功率密度曲线。随着背压从0到0.6 bar变化,PEMFC在0.4V电压下电流密度从1370 mA/cm² 分别增加到1400 mA/cm² 和1450 mA/cm² , 而0.7V电压下电流密度从476 mA/cm² 增加到588 mA/cm² 和708 mA/cm² 。可以发现,PEMFC的电流密度随着背压增大而明显增大。图2 不同背压下PEMFC的电化学阻抗 (0、0.3和0.6 bar)图2中显示了0、0.3和0.6 bar背压下,该PEMFC在0.8 V下频率范围为0.1Hz至10kHz的阻抗图谱。经过Zahner和Zview软件解析发现不同背压下,R1(欧姆电阻)从1.54 mΩ略微下降到1.52 mΩ,而R2(阴极电荷传递阻抗)从7.48 mΩ显著下降到5.29 mΩ,最后降低至3.48mΩ。相反的是,R3(阳极电荷传递阻抗)从0.76 mΩ增加到1.29 mΩ。在不加背压时,极化曲线显示了一个明显的欧姆极化电压降,这与阻抗图谱中显示的变化一致。在较高的背压下,使气流饱和所需的水,比低背压下所需的水少。证实了较高的背压下,质子膜的加湿性和导电性得到改善,从而降低了欧姆电阻和阴极电荷转移电阻。2、相对湿度对PEMFC的极化曲线和EIS曲线的影响图3 不同相对湿度下PEMFC的极化和功率密度曲线 (64、70、80和100%)图3显示了0.3bar背压下,PEMFC的极化曲线和能量密度在不同相对湿度下的变化。当相对湿度从64%增加到70%时,0.4 V电压下的电流密度从764 mA/cm² 增加到790 mA/cm² ,在0.7 V电压下,从405 mA/cm² 到453 mA/cm² 。然而,在相对湿度从70%到80%再到100%的情况下,0.4 V电压下电流密度分别降至744和588 mA/cm² , 0.7 V电压下电流密度分别降至424和364 mA/cm² 。可以发现,在同一背压下,PEMFC的电流密度随着相对湿度升高呈现出先增大后减小的趋势。图4 不同相对湿度下PEMFC的电化学阻抗 (64、70、80和100%)通过拟合解析可知,在不同的相对湿度下,PEMFC的欧姆阻抗(R1)都在1.92 mΩ间波动。当相对湿度提高到70%时,阴极转移电阻(R2)首先从8.34 mΩ下降到8.23 mΩ。相对湿度为80%和100%时,阴极转移电阻继续增大,分别达到9.32 mΩ和9.49 mΩ。阳极电荷转移电阻(R3)也有类似的变化趋势,相对湿度在64%时为1.19 mΩ,为70%时达到最低值0.54 mΩ,在80%时为2.48 mΩ,在100%时为3.24 mΩ。在相对湿度为64%时,Nafion型膜无法吸收足够的水分以获得适配的水合作用,从而影响离子电导率,从而产生更高的电池电阻。当相对湿度从70%增加到100%时,阴极和阳极电荷转移电阻急剧增加,造成PEMFC性能急剧下降。3、空气化学计量比对PEMFC的极化曲线和EIS曲线的影响图5 不同空气化学计量比下PEMFC的极化和功率密度曲线 (2.5、3、3.5)当空气化学计量从2.5变为3和3.5时,0.7V电压下的电流密度从621 mA/cm² 变化到584 mA/cm² 和598 mA/cm² ,0.4V电压下的电流密度从1417 mA/cm² 增加到1564 mA/cm² 和1686 mA/cm² 。由此可见,不同空气化学计量比下,PEMFC在低电流密度区域和高电流密度区域性能呈现出差异性变化。当进入流道的空气流速增大时,电化学反应更平稳,整体性能更好。然而,在低电流密度范围内,空气化学计量比为2.5时表现出较好的性能。这可能是由于流速较慢,水合条件较好,对空气量的需求较低。图6 不同空气化学计量比下的PEMFC的电化学阻抗(2.5、3、3.5)不同空气化学计量比下,欧姆电阻(R1)和阳极电荷转移电阻(R3)基本保持稳定,分别为1.59 mΩ和2.38 mΩ左右。空气化学计量量为2.5时阴极电荷转移电阻最高,随着空气化学计量量从3提高到3.5,阴极电荷转移电阻从5.36 mΩ仅变化到5.5 mΩ,几乎无变化。当空气化学计量比由2.5变化至3.5时,PEMFC在高电流密度范围内的性能得到明显改善,而在低电流密度范围内的效果不太明显。阴极电荷转移电阻随着空气化学计量比的增大而减小(图6)。可以推断,在空气化学计量比为2.5,空气含量相对不足,大多数电流密度范围内,自产水较少和膜的含水量较低,使得膜的离子电导率相对较低。当空气化学计量量为3和3.5时,空气供应充足,水管理得到改善,PEMFC的阴极转移电阻也就几乎保持恒定。4、结论燃料电池的背压对其性能有着重要影响。背压较高时,可以提高湿化率、降低阻力损失、加快反应速度,从而改善整体性能。研究还发现,相对湿度转折点设置在70%时,可以平衡膜的干燥和水合作用,保持适当的电池含水量,避免局部水淹。同时,适度提高空气化学计量比可以改善燃料电池的整体性能和低电压空间电流。燃料电池测试系统980pro最后,研究中对背压、相对湿度和空气化学计量比与PEMFC极化曲线和阻抗的变化规律进行了探究,为相关研究提供了参考和依据。但不同MEA实际的变化趋势和测试需求可能不同,因此未来还需更多样本的多样化研究。参考文献[1] Zhang,Q,Lin,et al.Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution[J].ENERGY -OXFORD-, 2016.以上内容由理化有限公司技术中心整理,有不足之处请指正,转载请注明出处。
  • “磐合科仪Markes产品培训会”117种化合物用户测试体验报告
    磐合科仪2019年Markes产品培训会(首期)让用户学员们的整体水平得到提升,特别是实际操作演练效果更明显。会中,技术专家与学员共同操作,检测分析VOCs中117种化合物,相关报告详情如下: 一、仪器配置前处理系统:Markes Ultra-xr + Unity-xr + Kori-xr + CIA Advantage-xr气相色谱-质谱联用仪:安捷伦 GC-MS(7890B-5977B)(配FID检测器)二、测试物质PAMs+TO15+醛酮三、测试方法电子制冷+Deanswitch中心切割四、实验部分1、Markes 热脱附条件(软件版本 2.0中文版)Kori冷阱低温:-25 ℃;高温:300 ℃Unity冷阱低温:-30 ℃;高温:300 ℃升温速率:MAX分流流量:10 mL/min2、柱温程序3、GC-FID分析条件FID温度:300℃空气流量:400 mL/min氢气流量:40 mL/min尾吹气流量:25 mL/min4、其他载气控制方式:恒流进样方式:直接进样接口温度:270℃离子源温度:230℃ 四级杆温度:150℃采集方式:SIM和SCAN5、测试结果5.1 117种化合物出峰情况5.2 甲醛出峰情况5.3 甲醛线性其他所有物质线性R2 ≥ 0.990第二期培训会将于9月5-7日举办,欢迎所有Markes用户踊跃参加,共同学习!扫描二维码在线报名!
  • 新品上市|盛奥华SH-16S智能消解仪带您体验升级加倍...
    SH-16S型新款智能消解仪整机采用一体化模具设计,外观流行时尚,颜色层次分明,整机采用易于空气流通学设计,更加利于散热,内部采用引流导向设计避免腐蚀关键部件,仪器操作更加智能化、更加人性化。可广泛应用于科研院所、环境工程、冶金钢铁、机械电子、石油化工、生物制药、有色金属、毛纺染整、光伏能源、食品饮料、造纸电镀、油墨涂料、服装皮革、水产养殖和市政给排水以及第三方检测等行业。
  • 欧美大地提供高性价比流体科学教学实验设备
    欧美大地仪器公司提供系列流体科学教学实验设备,助推高职高校实验教学水平的高水平发展。欧美大地仪器所提供的流体科学服务单元FS-SU被设计用来配合Armfield提供的流体科学实验。该实验教学装置主要包括一个泵和转子流量计来改变水的流量和一个加热系统。高精度元件以模块化托盘系统的形式提供,与流体科学服务单元、多功能工作面板和仪器配合使用,使学生能够进行个人或团体实验。 FS-3.1 流体科学管壳式换热器流体科学管壳式换热器托盘包括实验来演示在管壳式换热器中,当被固体壁分开时,通过从一种流体流到另一种流体流的传热(流体到流体的传热)来间接加热或冷却。该托盘介绍学生的概念,如传热系数,热阻,控制阻力和传热驱动力。热交换器可以采用并流或逆流配置。 FS-3.2 流体科学管式换热器流体科学管式换热器托盘包括实验来演示在管式换热器中,当被固体壁分开时,通过从一种流体流到另一种流体流的传热(流体到流体的传热)来间接加热或冷却。该托盘介绍学生的概念,如传热系数,热阻,控制阻力和传热驱动力。热交换器可以采用并流或逆流配置。 FS-3.3 流体科学交叉流换热器流体科学交叉流热交换器托盘包括实验来演示在交叉流热交换器中,通过热水到空气的热量传递(流体到空气的热量传递)间接加热或冷却。该托盘介绍学生的概念,如传热系数,热阻,控制阻力和传热驱动力。热交换器可以采用并流或逆流配置。 FS-3.4 流体科学板式换热器FS-3.4流体科学板式换热器托盘包括实验来演示在板式换热器中,当被固体壁分开时,通过从一种流体流到另一种流体流的传热(流体到流体传热)来间接加热或冷却。该托盘介绍学生的概念,如传热系数,热阻,控制阻力和传热驱动力。热交换器可以采用并流或逆流配置。 想要了解更详细的技术文档和解决方案,可搜索“欧美大地”进入公司网站浏览。 英国Armfield公司成立于1963年,设计并生产用于工程教学和研发的实验设备,它们应用于大学和研究中心,Armfield产品因为其创新设计和高质量而知名。Armfield的产品涵盖了所有主要工程学科,并且不断地创新以满足工程实验教学与研发需求。欧美大地公司作为我国高科技测试仪器全面解决方案提供者,已成立超过35年,一直以来凭借高水平的本土化技术服务,赢得了广大用户的信赖与支持!
  • 新疆理化所在空气过滤材料的设计及优化研究中获进展
    燃气轮机是高效清洁的能源转换装置,被誉为工业装备制造业“皇冠上的明珠”。燃气轮机通过将干燥洁净的空气与燃油混合以产生能量,其进气过滤系统的主要功能是保护燃气轮机免受空气中颗粒物的污染,以保证燃气轮机发电机组安全可靠运行。纤维类材料具有比表面积大、孔径分布可控、体积蓬松、价格低廉等特点,是空气过滤领域的主流产品。针对复杂环境下的空气过滤需求,玄武岩纤维因优异稳定性,成为新型高效空气过滤材料。然而,由于纤维材料内部微观结构的复杂性以及过滤参数(颗粒直径分布、气流速度等)耦合作用,过滤效率和压降存在“trade-off”权衡关系,对过滤材料的设计和优化带来了挑战。   近期,中国科学院新疆理化技术研究所提出了一种基于计算流体力学(CFD)模拟与响应曲面法(RSM)相结合的纤维过滤过程预测与优化方法,对纤维过滤过程进行了可视化研究。该工作通过数字重构纤维过滤材料的三维微尺度模型,以CFD-DPM模型预测纤维介质的过滤性能,追踪粒子在滤材中的运动轨迹和特征流场,分析拦截、碰撞和布朗运动耦合过滤机理对粒子捕获的影响规律。进一步,该研究通过建立过滤性能与过滤参数之间的映射关系,结合RSM实现对过滤参数的多目标优化。RSM分析发现,过滤参数对过滤效率的影响存在耦合效应,利用过滤原理与Stk数和Pe数变化详细解释了其耦合效应。而压降随固体体积分数和气流速度的增大而增大,但不受颗粒直径的影响。综上,本研究通过CFD模拟与RSM优化相结合,阐明过滤参数之间的相互作用关系,这为高效筛选过滤材料和滤材设计与优化开辟了新途径。   近日,相关研究成果近日发表在《化学工程科学》(Chemical Engineering Science)上。新疆理化所为该工作的第一完成单位。研究工作得到新疆维吾尔自治区自然科学基金和新疆天山英才-科技创新领军人才项目等的支持。基于CFD-RSM方法的纤维过滤介质设计及优化流程
  • 2015年两会打响空气 土壤及水污染防治“三大战役”
    北极星节能环保网讯:近年来,环保问题一直是公众广泛关注的焦点,也是历届两会热议的话题。今年全国两会上,生态保护、环境治理再次成为代表、委员讨论建言的热点领域。谈到当前中国正在进行的大气污染、水污染、土壤污染防治“三大战役”,全国政协委员、环保部南京环境科学研究所所长高吉喜说,雾霾形成表面上看主要是能源结构的问题,但深层次来看,还有产业结构的问题。不同产业,能源需求不一样。西方发达国家产业结构以高新技术产业为主,能耗较低,中国则以中低端制造业为主,能耗较高。所以雾霾治理,也是个产业升级、结构调整的过程。只有从根本上去调整,排放量才能从源头上得到控制。高吉喜指出,相比已经得到足够重视的空气污染问题,从长期危害性和治理难度等方面看,水污染和土壤污染问题更值得关注。他说,空气污染因为空气流通性问题,只要措施得当,治理起来相对容易。但水污染治理难度比空气污染治理要难得多,特别是湖泊污染治理,一般需要几十年甚至上百年的时间。而土壤污染治理,周期更长,难度更大。高吉喜介绍,环保部对环境污染治理有一套顶层设计。“大气十条”(即《大气污染防治行动计划》)已经颁布设施,“水十条”(即《水污染防治行动计划》)应该是在今年上半年出台,“土十条”(即《土壤污染防治行动计划》)现在已经制定完成,预计下半年能够出台。此外,包括生物多样性保护等措施也在设计当中,环保部不会因为治理雾霾而忽视其他环境问题。“土壤对人类的生存发展太重要了,不仅仅关系到粮食安全,而且与整个生态环境密切相关。”全国政协委员、中国科学院南京分院院长周健民说,土壤直接关系到人类可持续发展,联合国把今年定为国际土壤年,就是希望唤起全世界对土壤保护的关注。土壤保护是周健民今年两会关注的主要问题之一。作为土壤保护专家和十届、十一届、十二届全国政协委员,周健民多次在全国两会上提交关于土壤污染防治和耕地保护的提案。周健民建议,相关部门应制定更为合理的评价标准,科学施治,以解决“土壤病”。土壤污染最大的问题是家底不清,同时多部门管理造成职责交叉、界限不清,建议尽快开展第三次土壤普查。土壤污染防治工作目前面临的另一个挑战是法律法规的不健全。土壤污染防治工作一定要有法可依,建议尽快出台《土壤污染防治法》,实现土壤污染依法防治、依法监督、依法管理,这也是许多代表、委员的共识。周健民强调,我国土地资源紧张,要合理地利用,对不同污染程度的土地,可以采用不同的利用方式,边利用边修复。同时,还应加强宣传教育和科学普及,增强全社会土壤保护意识。“公众真正了解了土壤状况,就能更加合理地利用,能够有防范意识,同时也不至于对土壤污染过分恐慌。”周健民说。“要形成绿色导向和绿色制度,优化绿色布局,保护绿色资产,促进绿色转型,共享绿色福利,‘十三五’规划就应将强化水资源保障与水生态环境保护投融资体系建设列入重要内容。”全国政协委员、台盟福建省委副主委骆沙鸣用一连串绿色作为他提案的开场白。骆沙鸣认为,“十三五”规划的制定应按照以水定城、以水定地、以水定人、以水定产的新思路和体现生态承载力的新理念,严守生态红线。为此,他建议,对不同的水资源实施动态管理,全面推行严格的水资源制度考核,并细化水资源水量紧缺和水污染突发应急事件处理预案。对于水资源管理,骆沙鸣表示,应明确“十三五”期间我国污水资源化利用目标和生态清洁水流域治理目标,加强水资源管理与推广水务高新技术,形成“江河湖库海”全水域整治格局,高标准达到节水型社会目标,明确节水就是治污理念。同时,他建议建立清洁水基金。开放水环境治理的公共服务领域,鼓励社会各方面利用基金优惠政策加大环境保护的投入,形成政府、企业、社会和公众四位一体的多元投融资模式。作为一名环保工作者,全国政协委员、湖南省环保厅副厅长潘碧灵委员打算在此次会议上提交11份建议,绝大多数与环保、生态有关。他透露,其中一个提案将建议由政府及相关部门支持,加快建设具有中国特色的生态文明智库并纳入国家重点建设50~100个专业化高端智库之中,充分发挥生态文明专业化智库作用,统筹利用国内外各类智库资源和专业人才,围绕生态文明建设中的重大问题,从把握政策需求、决策参考、体制机制创新、法规制度等角度,提供有效的咨询服务,为党中央国务院推动生态文明建设提供高质量的决策参考。原标题:两会热点:打好空气 土壤及水污染防治“三大战役”
  • 文献解读丨超临界流体色谱串联质谱法在普通白菜乙酰甲胺磷和甲胺磷对映体分离分析中的应用
    本文由农业农村部环境保护科研监测所课题组所作,通讯作者为耿岳博士,文章发表于Journal of Separation Science(J Sep Sci. 2022,1– 12, https://doi.org/10.1002/jssc.202200006)。 Part 01 研究背景 乙酰甲胺磷是一种广谱有机磷杀虫剂,在作物中可通过酰胺水解转化为毒性更大的代谢物甲胺磷。乙酰甲胺磷和甲胺磷均由一对对映体组成,虽然不同对映体的理化性质相同,但在活性、毒性和降解行为方面存在显著差异。因此,开发高效的乙酰甲胺磷及其代谢物甲胺磷对映体的分离和测定方法,并开展对映体选择性研究对乙酰甲胺磷及其代谢物的评估具有重要意义。目前手性分离主要采用手性色谱柱结合HPLC、GC、GC-MS/MS和LC-MS/MS进行,但对于部分手性农药存在分析时间长、分离度差等问题。 SFC-MS/MS因具有分析时间短、分离度高、有机溶剂消耗低等优点,已广泛应用于手性农药对映体的分析。本研究建立了一种绿色、灵敏、高效的SFC- MS/MS检测普通白菜中乙酰甲胺磷和甲胺磷对映体残留的方法。为了验证所建立的方法,在中国北方温室条件下,通过盆栽试验研究了乙酰甲胺磷及其代谢产物甲胺磷在普通白菜中的残留情况。此研究系利用SFC - MS/MS对蔬菜样品中乙酰甲胺磷和甲胺磷对映体的选择性进行报道,为手性杀虫剂乙酰甲胺磷的科学评价提供了基础资料。 Part 02 研究结果 1、对映体拆分方法的优化采用Nexera UC SFC-MS/MS系统,经过手性固定相、流动相、有机改性剂种类及比例、背压和柱温的优化等,确定最终的仪器条件。 1)色谱条件色谱柱:Chiralcel OD-H column (250 × 4.6 mm, 5 μm) ;流动相:A (CO2)/B乙醇= 95/ 5,v /v;流速:3 mL /min;柱温:40℃;背压:10 MPa;补偿溶剂 (0.1% 甲酸甲醇溶液) 流速:0.1 mL/min; 2)质谱条件离子源参数:雾化气流速:3 L/min (N2, 99.5%);加热气流速:10 L /min(干燥空气);接口温度:300℃;DL温度:250℃;加热块温度:400℃;干燥气体流速:10 L/min (N2, 99.5%)。 质谱参数:按上述条件,不同对映体出峰时间为:R-乙酰甲胺磷(4.20 min)、S-乙酰甲胺磷(4.91 min)、R-甲胺磷(5.97 min)、S-甲胺磷(6.68 min) 。不同条件下的对映体拆分结果见(图1)。图1 SFC-MS/MS上乙酰甲胺磷和甲胺磷对映体的色谱图、分离度和保留时间 2、方法学考察 对建立的对映体分析方法进行系统的方法学考察,包括线性、回收率、精密度、定量限等。不同对映体在溶剂和基质标准中均有良好的线性(具体见表1)。通过比较溶剂标和基质标进行基质效应评价,乙酰甲胺磷和甲胺磷对映体在普通白菜基质中表现出较强的基质抑制效应,为了消除基质效应,本研究采用基质匹配标准溶液进行定量。乙酰甲胺磷和甲胺磷对映体的定量限均为0.005 mg/kg。在3个添加水平(0.01、0.1和1 mg/kg)下对普通白菜空白样品中乙酰甲胺磷和甲胺磷进行回收率试验,评价方法的准确性和精密度。化合物在普通白菜中的日内平均回收率(RSDs)为70.4−98.5% (1.4−10.9%),日间平均回收率(RSDs)为75.4−87.5% (6.1−13.4%)。结果表明,所建立的方法精密度和重现性良好,可满足普通白菜中乙酰甲胺磷和甲胺磷对映体的测定要求。 表1 不同对映体的线性、相关系数和基质效应图2 R-乙酰甲胺磷、S-乙酰甲胺磷和Rac-乙酰甲胺磷(外消旋乙酰甲胺磷)及其代谢产物R-甲胺磷、S-甲胺磷和Rac-甲胺磷的残留量 图3 R-乙酰甲胺磷(A)、S-乙酰甲胺磷(B)、Rac-乙酰甲胺磷(C)及其代谢产物R-甲胺磷(D)、S-甲胺磷(E)、Rac-甲胺磷(F)(外消旋甲胺磷)在普通白菜中的消解曲线 3、方法应用 为验证SFC-MS/MS分析方法的有效性,对普通白菜样品中乙酰甲胺磷和甲胺磷的对映体进行了分析。结果表明,乙酰甲胺磷和甲胺磷对映体在普通白菜中的降解均符合一级动力学方程,R2在0.944 ~ 0.992之间(图3),半衰期分别为:4.39 (R-乙酰甲胺磷)、2.91 (S-乙酰甲胺磷)、3.9(Rac-乙酰甲胺磷)天、10.91(R-甲胺磷)、6.24(S-甲胺磷)和9.10(Rac-甲胺磷)天。R-乙酰甲胺磷的半衰期是S-乙酰甲胺磷的1.51倍,表明其降解具有对映体选择性;在普通白菜中甲胺磷半衰期比乙酰甲胺磷长,表明甲胺磷比其母体具有更强的持久性。 Part 03 结论 基于岛津Nexara UC系统,建立了一种快速、简便、灵敏的测定普通白菜中乙酰甲胺磷及其高毒代谢物甲胺磷对映体的分析方法,本方法可在8分钟内实现手性对映体的基线分离,每针样品仅消耗1.2 mL有机溶剂(乙醇)。同时进一步应用该方法评价了乙酰甲胺磷及其代谢产物对映体在普通白菜中的手性选择性消解规律研究。本方法具有良好的精密度和重现性,满足普通白菜样品中乙酰甲胺磷和甲胺磷对映体残留测定的要求。 关联仪器Nexera UC 所提供的解决方案• 临界流体的低粘度以实现快速分离• 提高峰容量与分离度• 利用高渗透性,对异构体或手性化合物实现快速分离• 差异化的分离模式提高灵敏度• 无分流样品导入技术提升灵敏度• 减少有机溶剂消耗,在降低成本的同时降低对环境的影响 文献题目《Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry》 使用仪器岛津Nexera UC 作者Linjie Jiang1,2,3 Yue Geng1,2,3 LuWang1,2,3 Yi Peng1,2,3 Wei Jing4 Yaping Xu1,2,3 Xiaowei Liu1,2,31 Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, P. R. China2 Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and RuralAffairs, Tianjin, P. R. China3 National Reference Laboratory for Agricultural Testing, Tianjin, P. R. China4 Shimadzu (China) Co., LTD. Beijing Branch, Beijing, P. R. China 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。 本文内容非商业广告,仅供专业人士参考。
  • 白小白交付首台套GMP大通量安瓿瓶专用清洗机
    吸入剂安瓿瓶灌装线专用清洗机成功交付记实验室清洗机顾名思义,一般是用于实验室器皿的清洗,可以被广泛应用于制药、食品、化妆品、高校、科研等实验室领域。用于药品罐装生产线是比较罕见的,用于安瓿瓶的罐装生产就更是难上加难。近期,白小白就完成了这个看似不太可能的应用交付。药品安全是涉及民生的大事,关乎用药人的生命安危。国家对药品的生产有着严格的管理规范和要求,以确保药品的质量和安全。因此,药品罐装生产线对罐装容器清洗也有着严格的要求。同时,安瓿瓶本身的特点也给这款专用清洗设备的研发带来了诸多困难。客户需求口服液体制剂车间生产亚硝酸异戊酯吸入剂品种,新增一台安瓿瓶洗烘一体机,需要对1ml的安瓿瓶进行清洗、烘干。罐装车间工艺流程(仅供参考)法规标准要求设备用于药品的包装生产,因此必须符合相关标准/要求:中国《药品生产质量管理规范(2010年修订)》、TJ36-79工业企业设计卫生标准、GB-52261-2002 机械安全机械电气设备第一部分:通用技术条件、GB-8196-87 机械设计防护罩安全要求、GB-12265-90 机械防护安全要求。工艺性能要求能够满足直径Ø 10mm,瓶口内径Ø 4mm,高度60mm的1ml安瓿瓶的洗烘;能够满足三班连续生产要求,设备洗烘能力≥1300瓶/柜;每柜的流程不大于1小时;洗烘瓶完好合格率应>99.9%;设备放置在洁净区(D级区)灌装间,上瓶方式:整盘人工上瓶。连续运转要求应具备长时间持续运行能力,且设备运转稳定。机械要求(部分)设备与产品/药瓶接触部件材质为316L不锈钢,软连接/垫片等部件应采用硅胶、PTFE/EPDM等符合GMP要求的材料。其余部分采用符合GMP要求的其它材料(不锈钢至少为304)制成,并提供相关材质证明。设备内壁为镜面抛光,Ra<0.65μm,焊接部分应有焊接相关证明材料/记录。所有附件设计及制作应符合GMP环境要求,无污染,无生锈,表面易清理。项目难点与实现在综合考虑GMP法规符合性、总成本、交付周期以及各项技术指标要求等主要因素后,白小白研发团队决定在现有制药实验室清洗机BS580D基础上进行客户所需安瓿瓶灌装线专用清洗机的专项开发。这样既可以在最短的时间内实现交付,也可以为客户节约经济成本,是最佳的选择。BS580D外观图白小白BS系列实验室清洗机经过国际公认的测试、检验和认证机构SGS的合格性检测,通过IEC60068运行稳定性测试标准检验,完全具备长时间持续稳定运行能力。BS580D是针对制药行业定向研发的实验室清洗机,所有设计均以满足GMP的合规性要求为前提。腔体采用316L镜面不锈钢,表面粗糙度Ra<0.2μm,采用激光焊接工艺,平整度和粗糙度可通过无线探伤仪器进行拍照检验,管路材质达到医用级和食品级,均有认证证书;内置审计追踪、权限管理、数据统计的合规性模块完全符合FDA法规21CFRpart11的条款要求。现有机型的上述软硬件配置为本次实现GMP要求下的安瓿瓶罐装线清洗机的研发打下了坚实基础,主要攻克对象便落在了工艺性能方面的要求满足上。清洗对象为1ml安瓿瓶,内径最小处仅为4mm,且靠近瓶口位置,清洗容量不低于1300个,在1小时内实现清洗和完全干燥,合格率>99.9%。看似简单的几个数字,却在实践过程中给开发工程师们带来了极大的困难与挑战。难点一、1728个安瓿瓶清洗篮架设计现有机型针对的是实验室的应用场景,没有清洗安瓿瓶的专用篮架,需要进行全新的设计与开发。根据现有舱体的空间容量,经过工程师的测算可以实现一次最多清洗1728个安瓿瓶的结构设计,远大于客户要求的1300个。这个结果无疑是令人振奋的,但数量越多需要打破的现有平衡也就越多,意味着开发难度越大。现有设备的配套能力能够实现的是400余个安瓿瓶的清洗烘干,要增加到1728个,无疑是小马拉大车,系统性改进的难度可想而知。经过认知思索,研发部门决定接受这个高难度的挑战,这样可以最大化地为客户提高清洗效率,这也是工程师们非常希望看到的结果。大方向确认后,经验丰富的工程师们很快就设计出了第一版安瓿瓶清洗篮架,并迅速进行了开模与加工。但是在上机测试完成后,大家却完全没有了最初的兴奋。清洗效果与实际要求差距太大,完全超出了预期设想。这该怎么办呢?工期本就很紧张,工程师们的压力一下子就上来了。经过反复的研究、探讨,终于发现了问题的症结所在。实验室清洗机清洗孔位总量通常不会超过600个,现有设备BS580D最大清洗量是400+。同时清洗1728个安瓿瓶,与其对应的是匹配1728个喷淋管和出水孔位。放眼整个行业也很难找到先例,遇到的困难自然也是前所未有。同等舱体容积前提条件下倍增量级增加的孔位数,造成的是滞空率的极大提升。滞空率越高,表示流体在流动过程中受到的阻力越大,清洗用水在喷淋过程中的流动越困难。这直接导致了流体匹配的失衡,严重打破了现有清洗水用量的平衡,需要对水路系统进行整体性的设计调整(因系统性改造过于复杂,本文略,下同),可谓牵一发动全身。从篮架设计的角度,受安瓿瓶内径尺寸4mm的限制,喷淋管内径尺寸基本固定,几乎没有可调整空间。工程师们遂将设计重点放在了对篮架底部储水箱体结构的调整上,主要是箱体的容量以及结构形态,经过一次次的测算和调整,最终找到了新的平衡,解决了滞空率大幅增加带来的喷淋失衡问题。其中非常值得一提的是,工程师们打破惯有思维,采用了斜面式的形态设计,最终成为了取得成功的关键因素。难点二、1小时内实现清洗和完全干燥仔细观察安瓿瓶的结构,具有颈部狭长细窄的特点。这种结构特征,会导致里面的水不易流出。因为较细的瓶口会增加水的表面张力,在瓶口处形成一个张力膜,阻碍水的流出。经过简单的测试发现,几乎无法通过正常倾倒的方式使安瓿瓶里面的水出来,需要借助一定的外力才可以实现。因此,不难得出超窄径安瓿瓶的清洗和烘干难度都非常大的结论。尤其是烘干,让工程师们几近崩溃。为了保证洁净度,工程师们选择了难度最大的注射式清洗方式,问题也随之而来。喷淋管距离瓶子底部近,利于瓶子下半部分的干燥,但是颈部的水汽很难得到完全烘干;距离底部稍远,则呈现相反的效果。这样经过反复测试才调整到了最佳尺寸位置。如果停留在这里就太好了,但问题还远不止如此。在1小时内实现清洗和完全干燥,对于现有条件下的烘干效率要求是极高的。为了使瓶子里的水可以尽可能多且快速的流出来,工程们增加了独创的“脉冲式”烘干。为了进一步提高烘干效率,增加了相应的外路烘干系统。但完成率也仅仅从70%提升到85%左右,还是远低于预期目标。问题出在了哪里呢?经过反复测试发现,随着风路系统的增加,完成率是不增反降的。不合常理必有缘故,需要进一步深挖。此时,交付期马上就要到了,工程师们已经焦虑到几近彻夜难眠的程度。这也是考验工程师耐性的关键时刻,越是在这样的时刻越要看谁能够稳得住。大胆假设,小心求证。通过一个因素一个因素的排查,最终锁定了核心因素。原来,随着风量倍增到一个临界值时,舱体内压会极具升高,导致空气流动受到阻碍,原有的进出气平衡被打破,里面的气流出不去,外面的气流进不来。空气流动效率下降,烘干效率自然也就随之下降了。找到问题的症结后,工程师们随即对气路进行了系统性的改造,这一困局也在交付前得以成功打破。难点三、循环水过滤精度200目药品包装生产必须符合中国《药品生产质量管理规范(2010年修订)》要求。据此,安瓿瓶专用清洗机的过滤精度需要达到200目,即有效过滤清洗水中肉眼难以分辨的微小颗粒、悬浮物等,才能保证清洗水中的残留物达到要求。水过滤网目数是指过滤网每英寸长度上的网孔数量。它是用来衡量过滤网孔径大小的一种标准。一般来说,目数越大,网孔越小,过滤精度越高,过滤出的水就越纯净,水通过滤网的效率也就越低。200目是现有设备过滤精度的2倍,这一改变同样也打破了现有水过滤系统的平衡。随着目数的增加,水流速急剧下降,清洗水无法按照需要的速度循环,导致清洗流程无法正常进行。必须提升水通过滤网的效率,才能保证水循环系统的正常运转。滤网的孔隙变小,上面的水形成表面张力,堵塞滤网下面的空气,使得下面的气压变高,导致滤网上面的水难以下去。这就像我们日常使用带有滤网的茶杯泡茶时的经历,滤网太细,水很难倒进茶杯里。下面堵塞的空气进入水泵后还会产生大量气泡形成汽蚀现象,对水泵的叶轮、叶片等部件造成不同程度的损坏,危害性也是比较大的。在密封性能卓越的舱体空间内解决这一问题的难度是巨大的。容易想到的办法是增加水泵的吸力,靠增加外力的方式把水从下面吸过来,提高水流效率,但这还远远不够。此时,发挥工程师们聪明才智的时刻又到了。他们采取了反向操作,在滤网上开一个气孔。当然不是普通的气孔,既要保证清洗水中的杂质不会从滤网上漏下去,又能改善滤网下方空气的流通性。经过精心的设计,一个完美的解决方案最终被呈现了出来,这一难题又得以顺利突破。难点小结清洗机是由多系统组成的一个相对庞杂的清洗系统,通过各个系统之间环环相扣紧密配合来完成整个清洗任务。因此,改动一个点,可能涉及的是一个线或者是一个面的联动,是系统性的改进。在本项目的实际研发过程中,还有非常多的小难点,篇幅有限不能一一列举,仅以以上三个难点作为攻克典型进行简单分享,希望大家能够对于设备厂家的工作有一个更深层面的了解。也希望在大家的支持和鼓励下,我们的工程师们能够更多的发挥所长,打磨出更多的好产品,让清洗设备的服务领域更深更广,更好的贡献社会,服务社会。验收交付工厂验收经过2个月艰苦卓绝的奋战,全新开发的吸入剂安瓿瓶灌装线专用清洗机迎来了客户的实地验收。验收当天,研发负责人和所有工程师们都信心满满,像刚打了一场胜仗从战场归来的将士等待胜利的检阅一样。虽疲惫,但内心充满了喜悦,因为他们深知所有难题都已经被解决。结果毫无疑问,顺利通过了客户的工厂验收,且获得了高度评价。交付安装随后,安装工程师们抵达客户所在药厂,完成了设备的安装与调试。至此,白小白吸入剂安瓿瓶灌装线专用清洗机成功交付。白小白的研发能力得到了进一步的提升和认可。
  • 白小白交付首台套GMP大通量安瓿瓶专用清洗机
    吸入剂安瓿瓶灌装线专用清洗机成功交付记实验室清洗机顾名思义,一般是用于实验室器皿的清洗,可以被广泛应用于制药、食品、化妆品、高校、科研等实验室领域。用于药品罐装生产线是比较罕见的,用于安瓿瓶的罐装生产就更是难上加难。近期,白小白就完成了这个看似不太可能的应用交付。药品安全是涉及民生的大事,关乎用药人的生命安危。国家对药品的生产有着严格的管理规范和要求,以确保药品的质量和安全。因此,药品罐装生产线对罐装容器清洗也有着严格的要求。同时,安瓿瓶本身的特点也给这款专用清洗设备的研发带来了诸多困难。客户需求口服液体制剂车间生产亚硝酸异戊酯吸入剂品种,新增一台安瓿瓶洗烘一体机,需要对1ml的安瓿瓶进行清洗、烘干。罐装车间工艺流程(仅供参考)法规标准要求设备用于药品的包装生产,因此必须符合相关标准/要求:中国《药品生产质量管理规范(2010年修订)》、TJ36-79工业企业设计卫生标准、GB-52261-2002 机械安全机械电气设备第一部分:通用技术条件、GB-8196-87 机械设计防护罩安全要求、GB-12265-90 机械防护安全要求。工艺性能要求能够满足直径Ø 10mm,瓶口内径Ø 4mm,高度60mm的1ml安瓿瓶的洗烘;能够满足三班连续生产要求,设备洗烘能力≥1300瓶/柜;每柜的流程不大于1小时;洗烘瓶完好合格率应>99.9%;设备放置在洁净区(D级区)灌装间,上瓶方式:整盘人工上瓶。连续运转要求应具备长时间持续运行能力,且设备运转稳定。机械要求(部分)设备与产品/药瓶接触部件材质为316L不锈钢,软连接/垫片等部件应采用硅胶、PTFE/EPDM等符合GMP要求的材料。其余部分采用符合GMP要求的其它材料(不锈钢至少为304)制成,并提供相关材质证明。设备内壁为镜面抛光,Ra<0.65μm,焊接部分应有焊接相关证明材料/记录。所有附件设计及制作应符合GMP环境要求,无污染,无生锈,表面易清理。项目难点与实现在综合考虑GMP法规符合性、总成本、交付周期以及各项技术指标要求等主要因素后,白小白研发团队决定在现有制药实验室清洗机BS580D基础上进行客户所需安瓿瓶灌装线专用清洗机的专项开发。这样既可以在最短的时间内实现交付,也可以为客户节约经济成本,是最佳的选择。BS580D外观图白小白BS系列实验室清洗机经过测试、检验和认证机构SGS的合格性检测,通过IEC60068运行稳定性测试标准检验,具备长时间持续稳定运行能力。BS580D是针对制药行业定向研发的实验室清洗机,所有设计均以满足GMP的合规性要求为前提。腔体采用316L镜面不锈钢,表面粗糙度Ra<0.2μm,采用激光焊接工艺,平整度和粗糙度可通过无线探伤仪器进行拍照检验,管路材质达到医用级和食品级,均有认证证书;内置审计追踪、权限管理、数据统计的合规性模块符合FDA法规21CFRpart11的条款要求。现有机型的上述软硬件配置为本次实现GMP要求下的安瓿瓶罐装线清洗机的研发打下了坚实基础,主要攻克对象便落在了工艺性能方面的要求满足上。清洗对象为1ml安瓿瓶,内径最小处仅为4mm,且靠近瓶口位置,清洗容量不低于1300个,在1小时内实现清洗和干燥,合格率>99.9%。看似简单的几个数字,却在实践过程中给开发工程师们带来了极大的困难与挑战。难点一、1728个安瓿瓶清洗篮架设计现有机型针对的是实验室的应用场景,没有清洗安瓿瓶的专用篮架,需要进行全新的设计与开发。根据现有舱体的空间容量,经过工程师的测算可以实现一次最多清洗1728个安瓿瓶的结构设计,远大于客户要求的1300个。这个结果无疑是令人振奋的,但数量越多需要打破的现有平衡也就越多,意味着开发难度越大。现有设备的配套能力能够实现的是400余个安瓿瓶的清洗烘干,要增加到1728个,无疑是小马拉大车,系统性改进的难度可想而知。经过认知思索,研发部门决定接受这个高难度的挑战,这样可以地为客户提高清洗效率,这也是工程师们非常希望看到的结果。大方向确认后,经验丰富的工程师们很快就设计出了第一版安瓿瓶清洗篮架,并迅速进行了开模与加工。但是在上机测试完成后,大家却没有了最初的兴奋。清洗效果与实际要求差距太大,超出了预期设想。这该怎么办呢?工期本就很紧张,工程师们的压力一下子就上来了。经过反复的研究、探讨,终于发现了问题的症结所在。实验室清洗机清洗孔位总量通常不会超过600个,现有设备BS580D最大清洗量是400+。同时清洗1728个安瓿瓶,与其对应的是匹配1728个喷淋管和出水孔位。放眼整个行业也很难找到先例,遇到的困难自然也是从未有过。同等舱体容积前提条件下倍增量级增加的孔位数,造成的是滞空率的极大提升。滞空率越高,表示流体在流动过程中受到的阻力越大,清洗用水在喷淋过程中的流动越困难。这直接导致了流体匹配的失衡,严重打破了现有清洗水用量的平衡,需要对水路系统进行整体性的设计调整(因系统性改造过于复杂,本文略,下同),可谓牵一发动全身。从篮架设计的角度,受安瓿瓶内径尺寸4mm的限制,喷淋管内径尺寸基本固定,几乎没有可调整空间。工程师们遂将设计重点放在了对篮架底部储水箱体结构的调整上,主要是箱体的容量以及结构形态,经过一次次的测算和调整,最终找到了新的平衡,解决了滞空率大幅增加带来的喷淋失衡问题。其中非常值得一提的是,工程师们打破惯有思维,采用了斜面式的形态设计,最终成为了取得成功的关键因素。难点二、1小时内实现清洗和干燥仔细观察安瓿瓶的结构,具有颈部狭长细窄的特点。这种结构特征,会导致里面的水不易流出。因为较细的瓶口会增加水的表面张力,在瓶口处形成一个张力膜,阻碍水的流出。经过简单的测试发现,几乎无法通过正常倾倒的方式使安瓿瓶里面的水出来,需要借助一定的外力才可以实现。因此,不难得出超窄径安瓿瓶的清洗和烘干难度都非常大的结论。尤其是烘干,让工程师们几近崩溃。为了保证洁净度,工程师们选择了难度最大的注射式清洗方式,问题也随之而来。喷淋管距离瓶子底部近,利于瓶子下半部分的干燥,但是颈部的水汽很难得到烘干;距离底部稍远,则呈现相反的效果。这样经过反复测试才调整到了最佳尺寸位置。如果停留在这里就太好了,但问题还远不止如此。在1小时内实现清洗和干燥,对于现有条件下的烘干效率要求是很高的。为了使瓶子里的水可以尽可能多且快速的流出来,工程师们增加了设计的“脉冲式"烘干。为了进一步提高烘干效率,增加了相应的外路烘干系统。但完成率也仅仅从70%提升到85%左右,还是远低于预期目标。问题出在了哪里呢?经过反复测试发现,随着风路系统的增加,完成率是不增反降的。不合常理必有缘故,需要进一步深挖。此时,交付期马上就要到了,工程师们已经焦虑到几近彻夜难眠的程度。这也是考验工程师耐性的关键时刻,越是在这样的时刻越要看谁能够稳得住。大胆假设,小心求证。通过一个因素一个因素的排查,最终锁定了核心因素。原来,随着风量倍增到一个临界值时,舱体内压会升高,导致空气流动受到阻碍,原有的进出气平衡被打破,里面的气流出不去,外面的气流进不来。空气流动效率下降,烘干效率自然也就随之下降了。找到问题的症结后,工程师们随即对气路进行了系统性的改造,这一困局也在交付前得以成功打破。难点三、循环水过滤精度200目药品包装生产必须符合中国《药品生产质量管理规范(2010年修订)》要求。据此,安瓿瓶专用清洗机的过滤精度需要达到200目,即有效过滤清洗水中肉眼难以分辨的微小颗粒、悬浮物等,才能保证清洗水中的残留物达到要求。水过滤网目数是指过滤网每英寸长度上的网孔数量。它是用来衡量过滤网孔径大小的一种标准。一般来说,目数越大,网孔越小,过滤精度越高,过滤出的水就越纯净,水通过滤网的效率也就越低。200目是现有设备过滤精度的2倍,这一改变同样也打破了现有水过滤系统的平衡。随着目数的增加,水流速急剧下降,清洗水无法按照需要的速度循环,导致清洗流程无法正常进行。必须提升水通过滤网的效率,才能保证水循环系统的正常运转。滤网的孔隙变小,上面的水形成表面张力,堵塞滤网下面的空气,使得下面的气压变高,导致滤网上面的水难以下去。这就像我们日常使用带有滤网的茶杯泡茶时的经历,滤网太细,水很难倒进茶杯里。下面堵塞的空气进入水泵后还会产生大量气泡形成汽蚀现象,对水泵的叶轮、叶片等部件造成不同程度的损坏,危害性也是比较大的。在密封性能较好的舱体空间内解决这一问题的难度是巨大的。容易想到的办法是增加水泵的吸力,靠增加外力的方式把水从下面吸过来,提高水流效率,但这还远远不够。此时,发挥工程师们聪明才智的时刻又到了。他们采取了反向操作,在滤网上开一个气孔。当然不是普通的气孔,既要保证清洗水中的杂质不会从滤网上漏下去,又能改善滤网下方空气的流通性。经过精心的设计,一个较好的解决方案最终被呈现了出来,这一难题又得以顺利突破。难点小结清洗机是由多系统组成的一个相对庞杂的清洗系统,通过各个系统之间环环相扣紧密配合来完成整个清洗任务。因此,改动一个点,可能涉及的是一个线或者是一个面的联动,是系统性的改进。在本项目的实际研发过程中,还有非常多的小难点,篇幅有限不能一一列举,仅以以上三个难点作为攻克典型进行简单分享,希望大家能够对于设备厂家的工作有一个更深层面的了解。也希望在大家的支持和鼓励下,我们的工程师们能够更多的发挥所长,打磨出更多的好产品,让清洗设备的服务领域更深更广,更好的贡献社会,服务社会。验收交付工厂验收经过2个月艰苦卓绝的奋战,全新开发的吸入剂安瓿瓶灌装线专用清洗机迎来了客户的实地验收。验收当天,研发负责人和所有工程师们都信心满满,像刚打了一场胜仗从战场归来的将士等待胜利的检阅一样。虽疲惫,但内心充满了喜悦,因为他们深知所有难题都已经被解决。结果毫无疑问,顺利通过了客户的工厂验收,且获得了高度评价。交付安装随后,安装工程师们抵达客户所在药厂,完成了设备的安装与调试。至此,白小白吸入剂安瓿瓶灌装线专用清洗机成功交付。白小白的研发能力得到了进一步的提升和认可。上海汉尧自去年开始成为白小白上海、浙江、江苏地区制药行业总代理商。汉尧一直专注于为中国的生物制药/食品/化工实验室行业用户提供高品质的产品和技术服务,秉持一贯的服务宗旨,践行“诚信、利他、感恩"的价值观,以客户满意度为前提,提供周到的服务,与我们的客户和合作伙伴共同成长的同时,努力为社会创造更多价值。
  • 市场监管总局关于批准启用和替代部分国家计量基准的公告
    根据《中华人民共和国计量法》《中华人民共和国计量法实施细则》以及《计量基准管理办法》相关规定,现将国家计量基准批准启用和替代事项公告如下:一、批准启用“(0.2~30)m/s空气流速基准装置”“水量热计加速器光子水吸收剂量基准装置”“乳腺X射线空气比释动能基准装置”等3项新建国家计量基准。二、批准启用“同轴功率基准装置”“漫透射视觉密度基准装置”等2项新建立的国家计量基准替代“同轴功率基准装置(国基证〔2002〕第065号)”“漫透射视觉密度基准装置(国基证〔2002〕第087号)”等2项国家计量基准。特此公告。附件:1. 新建国家计量基准名单2.新建替代国家计量基准名单3.废除国家计量基准名单市场监管总局2021年8月2日
  • 新冠病毒检测,警惕气溶胶感染风险
    新型冠状病毒肺炎疫情防控自2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,诊断为病毒性肺炎/肺部感染,此新型病毒命名为“2019-nCoV”,该病毒传播性极强,与已知可引起中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病,同属一个大型病毒家族。近日,来自于三联生活周刊微信平台发布的专访中提到:武汉一家医院检验科的检验师在没接触病人的情况下,感染了此新型冠状病毒,这其中是否有科学根据呢?信息来源:三联生活周刊微信平台新型冠状病毒国家卫生健康委办公厅、国家中医药管理局办公室在1月27日发布了《关于印发新型冠状病毒感染的肺炎诊疗方案(试行第四版)》文件。文件指出,实验室检测病人的咽拭子,痰,下呼吸道分泌物,血液等样本中均可检测出新型冠状病毒。2月1日,中国科学家又发现了新型冠状病毒存在粪口传播的科学证据。所以,实验人员在实验室进行样品处理的过程中,若不慎接触病人样本中的冠状病毒,即有感染的风险。另外,样品处理过程中产生的气溶胶(aerosol)也需要引起大家的高度重视。什么是气溶胶?气溶胶(aerosol)由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。其分散相为固体或液体小质点,其大小为0.001~100μm,分散介质为气体。液体气溶胶通常称为雾,固体气溶胶通常称为雾烟。气溶胶的产生?气溶胶的产生是因为某些外力的作用下样品中的分散体系向空气中扩散,从而形成分散体系。而在实验室检验的实验过程中,有许多操作是会形成气溶胶的。首先是离心机。离心机在高速运行的时候,周围的空气流动可能很高:通风型离心机4.5 M / sec,冷冻型离心机1M / sec。这种空气流动会从离心机周围和下方吸收污染物,并扩散到实验室的空气中,并且这些灰尘或污染物会在高速运转的过程中产生气溶胶。另一方面,由于离心的样品都是不同种类病人的标本,会含有病原微生物和生物分子,在这些样品进行离心运行的同时,也同样会产生气溶胶。另外在移液过程中,部分样本可能会在移液器吹吸力的作用下分散成小液滴,弥漫在移液器和吸头连接的空气柱中形成具有污染力的气溶胶。这些弥散到空气中的污染颗粒,会造成两种隐患:1) 污染移液器,进而威胁实验人员的健康。2) 产生样本的交叉污染,造成实验结果假阳性。气溶胶的危害?气溶胶会直接对人体的呼吸系统、消化系统、神经系统等产生很大的损害。有些检验人员没有接触到病人也感染到了冠状病毒。为了避免这种情况发生,想在离心过程中减少气溶胶的危害,需要离心机与生物安全柜的共同配合。首先,要进行完善的个人防护,正确穿戴防护服,口罩,眼罩等;其次,离心机应使用带生物安全性认证的转头达到有效防止气溶胶泄露的目的。对于极危险样品,建议把样品转移到生物安全柜内进行操作。必要时,连着转头一并转移到安全柜内后再进行开盖操作,能极大减少危害暴露的风险。因此,让赛默飞三大核心技术助力缔造更健康,更清洁,更安全的实验室。01ClickSeal™ 防生物污染密封盖● 提供 HPA(Porton Down, UK,原CAMR)第三方生物安全认证;创新的锁定设计确保病原微生物样品以及离心机内的灰尘或污物在高速运转过程中产生的气溶胶能够被安全隔离,有效防止气溶胶泄漏。● 透明的聚醚酰亚胺( PEI)密封盖具有优异的化学防腐性及热稳定性,方便在打开前检查离心管是否破裂或泄漏,并且便于手套操作及习惯单手操作的用户设计。● 对于具有最高风险的样品(比如结核病痰液或传染病样本),我们还可以在试管周围再增加一层密闭性(比如分立式密封套筒),有助于防止试管之间发生交叉污染。同样,在整个实验室中运输样品时,这种密封等级还可以更轻松,更安全地进行处理。02Auto-Lock™ Ⅲ转头自锁系统● 只需一个按键,可在数秒内完成转头的装卸,而且确保转头锁牢;● 根据不同的应用场景,可迅速更换转头;● 对于极其危险的样本方便把转头和样品整体卸下,搬运至生物安全柜中进行操作,减少风险。03SmartFlow Plus 双风机系统具有专利设计的、独特的自动补偿、节能双直流无碳刷风机,不论 HEPA 过滤器处于任何负载水平下,都能确保适当的气流平衡, 给操作者带来持续保护。Thermo Scientific Multifuge X4 Pro 系列通用台式离心机● 现代化、直观的触摸屏操作界面. 智能化控制,可实现更方便地使用及编程,更快地实现结果。● Auto-Lock™ 转头自锁,一键三秒更换转头。● ClickSeal™ 防生物污染密封盖,具有国际机构认可第三方认证,有效防止气溶胶泄露。● Fiberlite™ 碳纤维转头,重量轻耐磨耐腐蚀,提供15年质保。Thermo Scientific HeraSafe 2030i 生物安全柜● SmartFlow Plus双风机系统,能根据HEPA负载智能自动调节风速,确保上下气流平衡,为人员提供持续的保护。 ● 全彩色触摸屏用户界面,便捷操作导航,气流安全性和相关数据的即时可见,消除用户关于安全柜能否正常运作,实验室人身安全能否得到保护的顾虑。● Smart Clean Plus可全开铰链式前窗设计,便于病毒检验后清洁消毒。Tips滤芯吸头,向气溶胶污染说NO赛默飞世尔科技提供多个系列的优质滤芯吸头。如:QSP滤芯吸头、ART自封闭滤芯吸头。赛默飞世尔科技滤芯吸头将有效屏蔽气溶胶对于移液器的潜在污染。在处理高传染性的新型冠状病毒时,不仅可以保证实验结果的准确可靠,更可以保护实验人员的安全健康。赛默飞世尔科技的滤芯吸头均具备无菌、无核酶、无PCR抑制、无人鼠源核酸认证,保证结果的安全可靠。ART自封闭滤芯吸头,对科研人员的安全防护会更上一个等级:自封闭滤芯能阻止液体、微生物、气溶胶、核放射性元素等通过滤芯,实现新型冠状病毒样本的安全移液。TipsE1可调电动移液器移液器是疫情检测环节必备精准移液工具,保持移液器的清洁无污染是实验必须的。常见的移液器的清洁办法有:1) 高温高压灭菌法,即121度20min,擅长针对非耐热性的细菌微生物进行灭活。2) 酒精擦拭法,即在移液器表面擦拭75%酒精进行消毒灭菌,隐蔽部位难以擦拭,有死角。3) UV照射法,移液器一直放在安全柜/超净台,经常辐照UV线,如无必要尽量不要取出,隐蔽部位无法辐照,灭菌不彻底。4) 灭菌/去酶水等浸泡法,主要去除酶类污染物,需要拆解移液器,污染物不容易彻底降解。对于气溶胶污染的移液器,曾经有客户尝试上述4种方法,结果都不能令人满意,气溶胶颗粒物都不完全去除,仍有再次漂浮和污染的风险,而清洁处理都需要花费大量时间。有资深专家建议大家,移液器一但被气溶胶污染,更换新移液器或确认未污染的移液器使用,是最经济实用的办法,被污染移液器可选做他用,不建议参与核酸提取PCR等实验。赛默飞世尔科技E1可调电动移液器,八通道,可调间距设计,足以媲美小型化的移液工作站,跟同类产品相比,装吸头省力87%,退吸头省力93%。希望所有检测人员在进行实验时注意安全。你们守护病人,而我们更关心你们的安全和健康!
  • 路透社使用TSI仪器对里约热内卢的空气污染进行测量
    随着2016年奥运会的临近,此次举办地里约热内卢的环境污染问题引发热议。据最新的路透社文章表示,多年来,里约在空气污染物中固体颗粒物(PM)上的指标已超过世卫组织给定的最危险的空气污染物上限。而这种污染的来源正是由于里约交通堵塞,从而导致数百万辆汽车大量排放汽车尾气,并由此产生了这些数量惊人的固体颗粒物。近日路透社使用TSI的仪器对里约热内卢的空气污染进行测试,TSI的监测仪提供的连续、实时的空气质量测量可确定空气中多种元素的浓度水平。据世卫组织官方网站发布的相关数据显示,2012年,全世界有370万人因室外空气污染问题而死亡,而室外空气污染最大的杀手正是固体颗粒物。"我们对TSI的DustTrak系列产品可以发挥作用,帮助里约奥运会评估空气污染和质量问题而感到非常荣幸”,TSI高级全球产品经理 Steve Boehm说,"我们的 DustTrak 组合可提供广泛的、可应用于室内和室外的、连续的、实时的环境监测产品。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制