当前位置: 仪器信息网 > 行业主题 > >

空穴生成机理

仪器信息网空穴生成机理专题为您整合空穴生成机理相关的最新文章,在空穴生成机理专题,您不仅可以免费浏览空穴生成机理的资讯, 同时您还可以浏览空穴生成机理的相关资料、解决方案,参与社区空穴生成机理话题讨论。

空穴生成机理相关的资讯

  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 我国学者在有机污染物光催化降解及机理研究方面取得系列进展
    在国家自然科学基金委的持续支持下,中国科学院化学研究所赵进才课题组在光催化降解有机污染物及其机理方面进行了十几年的系统深入研究,取得一系列重要研究进展。  低浓度、高毒性、难降解有机污染物是一类普遍存在、具有长期危害性的环境污染物,用传统方法很难处理。TiO2光催化可利用洁净的太阳光驱动反应,利用环境友好的分子氧为氧化剂,是消除这类污染物最有应用前景的方法之一。TiO2耐腐蚀,光、热和化学稳定性好,是目前最好的光催化体系。但TiO2只能利用紫外光(约占太阳光5%),由于占太阳光主要部分的可见光的激发能较低,从传统半导体光催化的带-带激发原理上很难实现同时满足导带电子活化氧和价带空穴氧化水或污染物两个必需条件的可见光反应。因此,如何实现可见光反应是对TiO2光催化原理和应用提出的一个极大挑战。  赵进才课题组从1995年开始致力于染料污染物可见光光催化降解及其机理的研究。发现染料分子吸收可见光被激发后可以向TiO2导带注入电子实现电荷分离,通过半导体导带的媒介作用实现可见光照射下染料分子和空气中氧分子的同时活化,成功地将有机染料污染物氧化降解。揭示了一个与传统光催化有着本质区别的可见光光降解机理,该机理不涉及半导体的带-带吸收以及空穴的生成和反应,而是利用染料污染物分子吸收可见光诱发的活性自由基和分子氧的共同作用导致污染物降解。  通过对几十种染料污染物降解的研究,发现只要染料的电子激发态电位比TiO2导带电位更负,都能实现有效的电子注入进而降解,证明了该原理的有效性和普适性。该原理还在共存无色小分子污染物的氧化降解、卤代污染物的还原脱卤以及可见光光催化合成化学品等方面有着广泛的应用前景。相关研究成果先后在J. Am. Chem. Soc., Angew. Chem. Int. Ed., Environ. Sci. Technol.等刊物上发表系列论文。  最近应英国皇家化学会综述期刊Chemical Society Reviews的邀请,撰写了题为“Semiconductor-mediated photodegradation of pollutants under visible-light irradiation”的综述论文 (Chem. Soc. Rev. 2010, 39, 4206-4219),系统地介绍了该课题组取得的相关研究成果。  最近,他们在光催化活化分子氧机理研究方面取得新进展。光催化反应过程中分子氧如何活化一直是该研究领域的一个关键科学问题。他们利用同位素标记等实验研究TiO2 光催化氧化醇类分子时,发现在反应过程中醇分子中的氧原子完全被氧分子中的一个氧原子所置换(置换率99%)生成相应的羰基化合物。基于顺磁共振、氧同位素标记拉曼光谱、动力学同位素效应等实验结果,揭示了与以往贵金属等催化氧化机理完全不同的TiO2光催化氧原子转移机理(Angew. Chem. Int. Ed., 2009, 48, 6081-6084,被选为Highly Important Paper (HIP),并作为封面论文发表)。  在这一机理的指导下,他们进一步实现了通过TiO2表面吸附Bronsted酸来加速醇类分子的光催化转化,同时发现由于掺杂SiO2能增加酸的吸附位点,当用Bronsted酸对TiO2/SiO2复合光催化剂进行表面修饰后加速作用进一步加强。表面光谱滴定实验证实了质子能够有效促进TiO2表面形成的Ti-过氧化物中间物种的分解,进而使得表面光催化活性位点再生,因此加速了光催化循环和反应。该研究有助于深入理解TiO2光催化活化分子氧的微观机理,为今后制备新型光催化剂和调控光催化反应提供了重要的科学依据。相关研究成果发表在Angew. Chem. Int. Ed. (2010, 49, 7976-7979),被选为VIP论文并作为内封面(Inside Cover)做了专门介绍,Nature China对此研究成果也做了评述 (Highlight)。
  • Nano-Micro Letters陈棋&陈煜改进空穴传输层的胶凝性能提高鈣鈦礦太阳能电池的性能
    顶尖团队的选择在2023年7月10日出版的《纳米-微米快报》期刊上,北京理工大学材料科学与工程学院的研究人员在陈棋教授和陈煜教授的带领下,发表了一项有关提高钙钛矿太阳能电池稳定性的研究。该研究集中于通过改进空穴传输层的胶凝性能来提高太阳能电池的性能和寿命。这项研究提出了一种新的方法,通过使用对苯二甲酸(TA)修饰spiro-OMeTAD空穴传输层(HTL),形成凝胶状结构,从而提高钙钛矿太阳能电池(PSCs)的性能和稳定性。将TA添加到spiro-OMeTAD中会形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。HTL的凝胶化有效地提高了所得HTL的紧密性,并防止水分和氧气的渗透。此外,TA能够使钙钛矿缺陷被钝化,并促进从钙钛矿层到HTL的电荷传输。研究团队制备的基于凝胶化HTL的优化PSCs表现出PCE (22.52%)的高的转换效率和良好的器件稳定性。凝胶化的HTL还可以防止LiTFSI盐的聚集,并在潮湿条件下保持高导电性。研究团队开发的凝胶化HTL的PSCs,在25°C下连续照射1000小时后仍保持其初始PCE的85%,在25°C环境空气中连续照射2500小时后保持其初始PCE的92%。凝胶化HTL策略也应用于PTAA,并观察到类似的湿度稳定性改进。这些研究团队获得的发现为改进基于spiro-OMeTAD的HTL以实现高效稳定的PSCs提供了简单且有前景的策略。空穴传输层(HTL)。HTL是一种薄膜,有助于从钙钛矿层中提取正电荷(空穴)到电极。常用的HTL材料是spiro-OMeTAD,它具有良好的空穴迁移率和与钙钛矿材料的兼容性。然而,spiro-OMeTAD也存在一些缺点,如其原始状态下的导电性差和对湿度的敏感性。为了克服这些问题,通常会在spiro-OMeTAD中掺杂锂盐,例如LiTFSI,以提高其导电性并降低其能级。然而,掺杂锂盐也会引入新的问题,如由于LiTFSI的吸湿性导致HTL和钙钛矿层的降解,以及由于Li+离子的迁移导致J-V滞后现象的形成。因此,研究团队一直在探索各种改善HTL性能和稳定性的策略,例如开发新的HTL材料,使用替代掺杂剂,以及优化掺杂方法。在本文中,研究团队将回顾该领域最近的一些进展,并讨论其优点和局限性。材料:本文中的实验采用商业获得并按原样使用的材料,例如碘化铯(CsI,99.9%,Sigma-Aldrich)、碘化铅(PbI2,Xi’an Polymer Light Technology)、氯化甲基铵(MACl,Xi’an Polymer Light Technology)以及用于电荷传输层的材料(SnO2(15 wt%胶体分散液,Alfa)、2,2′,7,7′-四[N,N-二-4-甲氧基苯基]胺基]-9,9′-二苯并螺[5,5′-二(苯并)二噁咯](spiro-OMeTAD,Xi’an Polymer Light Technology)、三氟甲磺酰亚胺锂盐(LiTFSI,99.95%,Sigma-Aldrich)、硫辛酸(TA,99%,Sigma-Aldrich))。使用的溶剂包括氯苯(CB,Sigma-Aldrich,99.9%)、N,N-二甲基甲酰胺(DMF,99.99%,Sigma-Aldrich)、二甲基亚砜(DMSO,99.5%,Sigma-Aldrich)、异丙醇(99.99%,Sigma-Aldrich)、乙腈(ACN,99.95%,Sigma-Aldrich)和tBP(99.9%,Sigma-Aldrich)。此外,氟甲酸铵(FAI,Dyesol)在购买后进行了进一步纯化。器件制备:研究团队将ITO基底用超纯水、丙酮和乙醇在超声系统中清洗30分钟。然后,用N2气干燥并经过UV-O3处理30分钟,以提高其润湿性。在基底上以4000 rpm的速度旋涂一层致密的SnO2层,并在150°C下热处理30分钟。在沉积钙钛矿薄膜之前,基底暴露于紫外光10分钟。对于PbI2前体,研究团队将PbI2和CsI溶解在DMF:DMSO的混合溶剂中,并在70°C下搅拌5小时。有机阳离子前体通过将FAI和MACl溶解在异丙醇中制备。两个溶液均经过0.22 μm的PTFE过滤器过滤。采用两步法制备钙钛矿薄膜:首先旋涂PbI2前体,然后是有机阳离子前体。在150°C下热处理10分钟后,旋涂空穴传输层(HTL)在钙钛矿薄膜上。使用了两种类型的HTL前体。对于参考HTL,使用了CB中的spiro-OMeTAD、TBP和LiTFSI的溶液。对于目标HTL,将TA加入到参考HTL溶液中。经过过夜氧化后,沉积了100 nm厚的Au膜作为背接触。使用金属阴影掩模定义了器件面积为0.0805 cm2。表征:研究团队使用Anton Paar仪器(Physica MCR 301,德国)进行了poly(TA)的流变学测量,采用平行板几何形状。应变扫描测量在25°C下进行,角应变范围为0.1至2500%,频率为0.5 Hz。温度扫描测量在25至100°C之间进行,应变为1%,频率为0.5 Hz。傅里叶变换红外光谱(FTIR)采用Magna-IR 750(Nicolet,美国)进行。采用Bruker AVANCE III 300 MHz NMR Spectrometer获得1H NMR光谱。使用Al Kα辐射采集了XPS数据的Axis Ultra XPS光谱仪(Kratos,英国)。使用Hitachi Regulus 8230进行了SEM成像。使用带有PRUM-TNIR-D-10探头的Bruker Dimension Icon IR进行了纳米FTIR实验。ToF–SIMS测量采用PHI NanoTOF II仪器(ULVAC-PHI,Inc.)与30 keV Bi+脉冲主离子束。使用UV–vis漫反射光谱仪(UV–vis DRS,日本Hitachi UH4150)获取了UV–vis吸收光谱。使用具有470 nm脉冲激光和基于galvo的扫描仪的激光扫描共焦显微镜(Enlitech,SPCM-1000)用于2D PL映射。使用带有Cu Kα辐射的Bruker D8 Advanced获得XRD数据。使用FLS1000(Edinburgh Instruments Ltd)和450 W的Xe灯进行了稳态PL和TRPL测量。使用源表(Keithley 2400)和AM1.5G光照从1000 W m-2太阳模拟器(SS-F5-3A,Enlitech)评估了PSC的光伏性能。J-V扫描以50 mV s-1的扫描速度在正向和反向方向进行。使用Enli Technology(中国台湾)EQE测量系统记录EQE曲线。校准的硅二极管用作EQE测量的参考。结果和讨论空穴传输层(HTL)的凝胶化TA是一种天然存在的小分子,具有疏水的1,2-二硫代璘和烷基链基团,以及亲水的羧酸基团。TA的结构包括动态共价二硫化键和非共价氢键,使其成为形成稳健连续网络的潜在交联剂。当TA溶解在氯苯中,并加入LiTFSI,它会发生凝胶化,形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。研究团队进行了流变学测量,研究了凝胶化行为。应变扫描测试显示,在约340%的振荡应变幅值处,凝胶向溶胶转变。在这个临界应变以下,凝胶网络保持稳定,但在存储模量(G’)和损耗模量(G")交叉点附近的340%处发生失效。通过流变分析观察到,凝胶在50°C以上发生可逆的固态到液态转变。这种超分子聚合物在温度升高或被水稀释时会转变为黏稠的聚合物溶液。通过增加单体溶液的浓度或加入Fe3+,Pb2+,Zn2+和Ca2+等金属离子,可以提高凝胶的转变温度。FTIR分析证实了TA与LiTFSI之间的强相互作用,导致交联结构的形成。TA的添加促进了空穴传输层(HTL)前体溶液中凝胶的形成。如甲酸或乙醇等溶剂可以溶解凝胶,使研究团队能够在钙钛矿上制备HTL薄膜。与参考HTL相比,带有TA的凝胶HTL表现出了改善的薄膜形貌。SEM和AFM分析显示凝胶HTL薄膜具有均匀且致密的表面,表明TA在提高薄膜质量方面起到了作用。AFM-IR确认了凝胶HTL薄膜中TA的空间分布。a TA 交联聚合的示意图。 b TA聚合的图片。 c 应变扫描时聚 (TA) 凝胶的储能模量 (G’) 和损耗模量 (G")。 d TA(红色)、LiTFSI 和 TA 混合物(蓝色)、LiTFSI(黄色)的 FTIR 光谱。 e spiro-OMeTAD 和掺杂 TA 薄膜的 spiro-OMeTAD 的扫描电子显微镜 (SEM) 图像。 f 目标薄膜的 AFM 图像和 g 相应的纳米 FTIR 图像。红外频率为 1693 cm–1 的纳米 FTIR(与 TA 的 C&thinsp =&thinsp O 伸缩吸收共振)提高湿度稳定性研究团队使用ToF-SIMS映射评估了凝胶HTL薄膜中添加TA的成分分布。观察到在高湿度条件下,参考薄膜表面明显出现LiTFSI的聚集,而带有凝胶HTL的目标薄膜显示出减轻的LiTFSI聚集。这表明在高湿度条件下,凝胶HTL更加坚固。发现TA与LiTFSI之间的相互作用能够延缓Li的聚集。AFM-IR和深度剖面ToF-SIMS测量进一步证实了凝胶化在防止LiTFSI聚集和迁移方面的有效性。还研究了凝胶HTL策略对钙钛矿薄膜湿度稳定性的影响。将覆有HTL的钙钛矿薄膜在湿润空气中老化,并监测UV-vis吸收光谱。参考薄膜在暴露于湿润空气后显示出吸光度的急剧下降,而目标薄膜显示出微不足道的变化。XRD测量证实参考薄膜分解为PbI2和光不活性的δ相,而目标薄膜显示出延缓的α向δ相转变。经过老化的薄膜的PL映射显示,与参考薄膜相比,目标薄膜具有更窄的波长范围,表明其稳定性更好。凝胶HTL策略也适用于PTAA,观察到了类似的湿度稳定性改进。接触角测量表明,与参考薄膜相比,凝胶HTL薄膜的吸湿性降低。这些发现表明,使用凝胶HTL覆盖的钙钛矿薄膜的湿度稳定性得到了显著改善。a 参考膜和 b 目标膜在 25°C、85-90% 的高相对湿度下老化 200 小时之前和之后的 Li+ 的 2D ToF-SIMS 元素图。 c 参考钙钛矿薄膜和目标钙钛矿薄膜在 700–850 nm 处随时间变化的紫外可见吸收光谱。 d 参考膜和目标膜在 750 nm 处的归一化吸收。参考文献的 e PL 峰位置图和统计图。 f 目标薄膜在 25°C、85–90% 的高相对湿度下老化 500 小时之前和之后设备性能和稳定性的提高:研究团队研究了凝胶空穴传输层(HTL)对器件的光电性能和稳定性的影响。使用ITO/SnO2/钙钛矿/ spiro-OMeTAD(TA)/Au的n-i-p型平面太阳能电池结构来评估光伏性能。使用研究团队开发的凝胶HTL的目标器件显示出较高的平均光电转换效率(PCE),为20.22%,而参考器件为18.11%。它们还显示出改善的重复性和HTL薄膜的致密性。最佳目标器件的PCE达到22.52%,其VOC、JSC和FF的值较参考器件更高。研究团队开发的目标器件的稳定性显著提高,在暴露于环境大气条件(RH约30-60%)下2500小时后,保留了92%的初始PCE。相比之下,参考器件在1000小时后只保留了60%。未封装的目标器件在高湿度(85-90%)下也显示出良好的稳定性,在1000小时后保留了85%,而参考器件在530小时后只保留了75%。此外,目标器件在持续LED照明1000小时后保持了超过85%的初始PCE,而参考器件仅保持约40%。这些结果证实了凝胶HTL策略显著改善了太阳能电池的长期稳定性。a PSC 的结构以及钙钛矿和凝胶 HTL 之间的界面。 b 参考设备和目标设备的 PCE 统计分布。孔径面积为 0.0805&thinsp cm2 的最佳性能目标器件的 c J-V 曲线。 d 参考器件和目标器件的 EQE 曲线及其综合 JSC 曲线。 e 最大功率点附近偏置电压 (1.00 V) 对应的稳定功率输出数据。在 MPP 条件下 f ≈30–50% RH、g 85–90% RH 和 h 连续照明下参考器件和目标器件的归一化 PCE 演变提高光伏性能:为了理解凝胶空穴传输层(HTL)器件中增强的效率和稳定性的原因,研究团队研究了spiro-OMeTAD和凝胶HTL薄膜的电导率。与纯净的spiro-OMeTAD相比,凝胶HTL中TA的存在显著提高了电导率。这种增强归因于TA中S原子的强电负性,促进了spiro-OMeTAD的氧化。稳态光致发光(PL)和时间分辨光致发光(TRPL)光谱表明,凝胶HTL促进了光生空穴在钙钛矿/spiro-OMeTAD界面的传输和提取。光电压与光伏性能改善的关系与PL和TRPL测量结果一致。综上所述,研究团队通过改进空穴传输层(HTL)的胶凝性能,提高了钙钛矿太阳能电池(PSCs)的性能和稳定性。他们使用对苯二甲酸(TA)修饰的spiro-OMeTAD HTL形成了凝胶状结构,防止了水分和氧气的渗透,并促进了电荷传输。研究团队开发的凝胶HTL策略显著提高了钙钛矿太阳能电池的转换效率和稳定性,为实现高效稳定的太阳能电池提供了有前景的策略。a ITO/spiro-OMeTAD/Au 和掺杂 TA/Au 电阻器件的 ITO/spiro-OMeTAD 的 I-V 曲线。 b 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 PL 曲线。 c 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 和 PL 是在短路时测量的。钙钛矿和钙钛矿/TA 薄膜的 Pb 4f 的 d XPS 谱。 TA 和含 PbI2 粉末的 TA 的 e FTIR 光谱。 f 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 是在开路条件下测量的
  • 飞秒激发拉曼光谱帮助理解光伏电池发电机理
    Solarbe(索比)光伏太阳能网讯:不管你是否相信,我们并不完全了解太阳能电池的工作原理,特别是有机薄膜太阳能电池。但最近加拿大、伦敦和塞浦路斯的科学家使用激光器,将一些光线引入来帮助制造更高效的太阳能电池板。  本周早些时候,来自蒙特利尔科学与技术设施委员会、英国伦敦帝国学院和塞浦路斯大学大学的科学家在《自然传播》上发表的一份新报告中解释他们的发现:&ldquo 我们的发现对机制理解所有的太阳能转换系统方面的分子细节的发电机制非常重要。&rdquo 第一作者,蒙特利尔大学Francoise Provencher称:&ldquo 我们几十年来致力理解有机光伏分子的工作原理图这一' 圣杯' ,终于取得重大进展。&rdquo   &ldquo 我们用飞秒激发拉曼光谱,&rdquo 来自科学和技术中央激光设施理事会的Tony Park说,&ldquo 飞秒激发拉曼光谱技术是一种先进的超快激光技术,它提供了在极快的化学反应里,化学键是如何变化的细节。分子与激光脉冲相互作用时,激光提供了分子的振动信息。&rdquo   Experimental setup used to map defect densities in organic thin films. A pulsed laser beam is used to raster-scan the material of interest, which is assembled in a field-effect geometry, allowing changes in current flow to be detected. The yellow zones indicate sites at which the defect density is particularly high. (Credit: Christian Westermeier)  表征薄膜电池表面活性层结构  由此获得的信息显示了太阳能电池中的分子演化过程。他们发现了两项重点:快速分子重排和极少量分子松弛和重组。重排或响应速度非常快 - 仅300飞秒(femtosecond)。研究人员表示,一飞秒相对于一秒的概念,就象是一秒相对于370万年。  &ldquo 在这些设备中,光吸收加速了电子和带正电荷物质的形成。最终要提供电力,这两个相互吸引的粒子就必须分开,电子必须离开。如果电子不能足够快地移开,则正电荷和负电荷就会简单地再结合,结果是什么变化也没有。太阳能设备的整体效率就在于正负电荷重新组合和分离的比例。&rdquo 斯塞浦路斯大学的Sophia Hayes解释说。  &ldquo 我们的研究结果为未来理解生产高效太阳能电池的系统的差别,或者理解那些系统应该有高发电效率却并没有表现出来的原因,提供了可能的路径。更多更深入的了解什么可行,什么不可行,对将来设计更好的太阳能电池将明显有益,&ldquo 蒙特利尔大学卡洛斯· 席尔瓦,也是这项研究的资深作者进一步表示。  慕尼黑Ludwig Maximilian大学Bert Nicket领导的科学家团队首次成功地用激光激发材料对有机薄膜太阳能电池的活性层进行了功能表征,&ldquo 我们已开发出一种方法用激光对材料进行光栅扫描,聚焦的光束通过旋转衰减器调制成不同的方式。这样我们就能够直接映射分布在有机薄膜上的缺陷空间分布,这是以前从未实现过的,&ldquo Christian Westermeier解释说。  太阳能电池通过光子激发分子产生自由电子和正电空穴,来将光能转换成电能。电荷载流子被电极捕获的时间和电池的活性层详细结构有关。原子规则排列中的缺陷会捕获载流子,也减少可用电流。新的映射方法使研究人员能够检测到与激光激发缺陷局部相关的电流变化。  该研究显示,在并五苯有机半导体中,这些缺陷往往集中在一定位置上。选择并五苯来实验,因为它是目前可用于有机半导体生产的导电最好的材料,理解这些表层热电的特别之处非常有意义。是什么在这些地方产生了缺陷?可能是由于化学污染,或是分子的排列不规则?  飞秒激发拉曼光谱这种新技术,为理解有机薄膜发电的深层机理提供了新的途径。
  • 华大智造单细胞赛道再发力!发布单细胞液滴生成仪及组学新品
    7月29日,在第十二届细胞产业大会的单细胞多组学与临床应用分论坛上,华大智造重磅发布其在单细胞领域的两款最新产品,单细胞液滴生成仪 DNBelab C-TaiM 4(泰山),以及单细胞表观组学产品scATAC建库试剂盒。单细胞液滴生成仪 DNBelab C-TaiM 4(左)及单细胞表观组学产品scATAC建库试剂盒(右)这是华大智造继DNBelab C系列高通量单细胞转录组建库试剂盒产品后,单细胞组学全流程产品家族补充的重要产品,更为完善的产品组合也将更好地赋能全球生命科学实验室开启规模化、标准化的单细胞多组学研究。两款新品加持单细胞测序全流程本次上新的单细胞液滴生成仪DNBelab C-TaiM 4 (以下简称TaiM4)的命名灵感来源自“泰山”,传递了华大智造不断攀登技术极限的理念。TaiM 4能为细胞或细胞核的分离和标签提供稳定的动力。该仪器配备4个独立控制的微流控通路,同时兼容单细胞ATAC文库和3’ RNA文库制备需求,支持1-4个样本的灵活上样。它延续了华大智造单细胞产品小巧轻便、即开即用的优点,适用于2500米以下的海拔实验环境。此外,该设备在单细胞ATAC文库制备过程中的细胞核分离、标记过程仅需6分钟;在单细胞3’RNA文库制备过程中的细胞核分离、标记过程仅需9分钟。华大智造单细胞液滴生成仪DNBelab C-TaiM 4另外一款上新产品是DNBelab C系列高通量单细胞ATAC文库制备试剂盒套装及配套的微流控载片。和DNBelab C-TaiM4 单细胞液滴生成仪配套使用,可以完成数万细胞核的ATAC文库制备。试剂盒套装包含液滴生成使用的百万级标签磁珠、自主开发的液滴生成油、以及适配华大智造测序仪的文库制备试剂等。该产品基于精密压力驱动微流控技术,污染率低,可完成高质量单细胞ATAC文库的制备和数据产出。可用于免疫组学、肿瘤、神经科学、发育生物学等领域的单细胞研究。两篇Nature 科研应用表现不俗值得一提的是,scATAC建库试剂盒已经在科研应用中牛刀小试,早期试用的结果已用于2篇Nature文章中,产品数据表现不俗。一站式平台 助力单细胞多组学标准化、规模化华大智造作为生命科技核心工具缔造者,能够为单细胞测序全流程提供独一无二的一站式平台。其中,针对细胞/细胞核制备环节,华大智造提供小鼠多组织解离试剂盒和50+物种组织解离方案指南;此外,已经发布的DNBelab C系列3’ RNA建库产品,已经产出了 30000+例样本数据,覆盖了40多种物种类型和300多种组织类型,重磅预告了不同物种组织的3’ RNA数据表现白名单,并展示了部分数据;在数据分析环节,提供配套的单细胞高通量、高精度多模态分析平台,不仅能够对单细胞测序数据进行简单的质控,还支持更多功能的分析和多组学数据的整合。华大智造产品市场中心总监汪婧婧博士在发布会现场表示:“华大智造在单细胞领域,除了为科研人员提供单细胞建库产品和基因测序产品MGISEQ-2000、DNBSEQ-T7、DNBSEQ-T20外,还能够提供自动化文库制备系统MGISP-100,将复杂的单细胞文库制备过程转移到自动化平台一键运行,为单细胞行业引入了全新的自动化概念,这将开启单细胞湿实验标准化时代的到来,我们也坚信单细胞多组学标准化、规模化时代终将来临。”汪婧婧博士华大智造产品市场中心总监单细胞产品家族图自动化建库流程图在单细胞产品领域,华大智造通过其率先发布的DNBelab C系列产品,已收获了众多企业及科研用户的好评。在过去的一年时间里,国内已有9个企业认证成为华大智造单细胞产品服务商,终端使用客户数量100多家。在科研产出上,基于华大智造单细胞测序平台,已累计产出高质量文章50多篇,其中包括2篇Nature,1篇Cell,其中有21篇文章IF>10,充分证明了该单细胞平台性能的优越性。小结:单细胞技术是当前测序领域最火的技术之一,相关公司超过50家,其中不乏众多国产企业。作为国内基因测序上游龙头企业,华大智造并非在单细胞领域走的最快的,但其追赶之势十分迅猛,加上本身先天平台优势,大有后来者居上的势头。如其所言:“未来,华大智造将进一步深耕单细胞组学领域,发挥自身在基因测序设备领域、实验室自动化领域的优势,为规模化的科学研究、为单细胞组学全面进入临床及精准健康研究,提供更为优质、标准的系列产品组合,赋能单细胞多组学标准化、规模化时代”。
  • 过程所在单原子界面活化臭氧机理研究中获进展
    催化臭氧氧化是深度去除废水中有机污染物的有效方法,但其界面催化机理尚不明确。近日,中科院过程工程研究所研究员曹宏斌团队开发了一系列石墨相氮化碳负载钴、锰、镍过渡金属的单原子催化剂,加速臭氧(O3)分解并产生高活性的羟基自由基(OH)。基于密度泛函理论模拟和原位X射线吸收光谱,提出了单原子界面活化臭氧过程中中间产物吸附构型对OH与污染物反应区间的影响。相关研究于近日发表在Environmental Science & Technology 上。有机废水污染严重威胁人类健康和生态平衡,高效削减外排废水中难降解有机物成为当前水污染治理面临的重大技术需求。基于原位生成的强氧化性OH,催化臭氧氧化可去除工业废水中难降解有机污染物,催化活性位点的性质决定了O3活化的效率、产生OH和其它活性氧的机理和动力学。但目前活性位点如何与O3作用以及OH生成路径仍存在争议,限制了高效催化剂的开发与设计。此外,在水处理应用中,调控催化剂表面或本体溶液中的OH反应区间可减少自由基无效猝灭,但决定OH攻击污染物反应区间的催化剂确切性质仍然未知。研究团队深入研究了一系列氮化碳负载单原子催化剂M1-C3N4(M=Co、Mn、Ni)活化臭氧的机理。实验结果发现,MN4位点上OH生成的主要路径是O3→ Oads→ *OO→ O3- → OH,而M1-C3N4降解草酸的催化活性为Co1-C3N4Mn1-C3N4Ni1-C3N4。其中Ni1-C3N4活性最低,与活性位点上后续中间产物的低活性有关。Mn1-C3N4上氧结合能更高,因此中间产物*OO在金属原子上以Griffiths构型吸附,这种双Mn-O键导致Mn位点形成饱和配位,因此OH主要在水溶液中攻击有机物。对CoN4位点而言,*OO在金属Co上的吸附以Pauling构型(单Co-O键),不饱和配位的Co位点允许污染物的进一步吸附,因此OH对草酸攻击可同时发生在Co1-C3N4表面和主体水溶液中,这是其催化臭氧氧化性能优于Mn1-C3N4的原因。不同MN4位点上O3活化中间产物吸附构型及相应的OH氧化区间 图源自论文博士生王静为论文第一作者,曹宏斌研究员为通讯作者。以上研究工作得到国家自然基金(51934006)和钒钛资源综合利用国家重点实验室(2021P4FZG04A)的支持。
  • 中国首次破解三聚氰胺引发肾损伤机理
    记者22日从黑龙江省卫生厅获悉,由黑龙江省疾病控制中心专家新近完成的一项科研课题,在国内外首次系统地揭示了三聚氰胺引发动物肾损伤的发病机理、病变特点、肾脏结晶体形成的条件。研究结果为相关部门对三聚氰胺风险评估、制定食品和饲料中三聚氰胺的安全管理限量值提供了重要科学依据。该成果近日获得2009年度黑龙江省医药卫生科技进步一等奖。  因三聚氰胺并非食品添加剂,国内外对三聚氰胺毒性研究资料掌握甚少,对三聚氰胺所造成肾损伤的量效关系、结晶体与肾脏病理损伤的关键环节等问题也缺乏深入探讨。据此,黑龙江省疾病控制中心毒理所主任医师王玉燕等首次成功建立三聚氰胺在肾脏形成结晶的大鼠动物模型,重现了这一疾病的病变过程。该模型方法科学先进,有可重复性。研究结果揭示肾脏为三聚氰胺的毒作用靶器官。其发生机理是三聚氰胺在胃内由胃酸催化水解生成三聚氰酸,两者在肾脏再结合形成三聚氰胺—三聚氰酸结合晶体,晶体充满肾小管,使肾脏体积增大、重量增加,因管壁的挤压作用而使肾组织严重缺血,导致肾脏呈现出特征性土黄色沙石样的外观。  观察结果还表明,三聚氰胺结晶体还可导致肾脏炎症反应和纤维组织增生等病理改变,进一步引发肾脏代谢功能障碍,使血中尿素氮、肌酐等含量增加,最终使实验动物发生肾衰竭。王玉燕等在研究中,首次采用X射线衍射法确定肾脏中形成的结晶体为三聚氰胺—三聚氰酸的结合晶体,进而证实摄食三聚氰胺可使肾脏中形成三聚氰胺—三聚氰酸结合晶体,此手段具有明显的创新性。  专家评价指出,该课题填补了我国三聚氰胺毒理学研究空白,对基础医学、药学和临床医学有重要意义。
  • 最强光催化剂“出手”“水变氢”效率刷新世界纪录
    在太阳光或一缕LED紫外光照拂下,玻璃烧杯中加入一点点白色粉末,无须加热也无须其他能源,烧杯里的水便可源源不绝产生氢气,且经过数百小时的实验,这种白色粉末的量并未衰减。在云南大学材料与能源学院实验室,你能见到这样的“奇观”。  在碳达峰、碳中和背景下,洁净的氢成为未来的重要能源,高效、低成本制氢,特别是光解水制氢是科学家研究的方向。1月10日,国际著名期刊《自然通讯》发表了云南大学柳清菊教授团队与英国伦敦大学学院唐军旺教授团队、华东师范大学黄荣教授团队合作的一项重要研究成果——以单原子铜锚定二氧化钛,成功制备新型光催化剂,其分解水制氢量子效率高达56%,被审稿人称为“世界纪录”。这意味着“水变氢”有了一条可实用化的新路径。  提高催化效率 才能助推光解水制氢走向实用化  氢能是一种清洁无污染的可再生能源,燃烧值很高,可达每千克140兆焦耳,其具有来源丰富、燃烧产物无二次污染等优点,有望代替石油和天然气,因而受到世界范围的广泛关注。若能得以大规模实际应用,将为“双碳”目标的顺利实现作出贡献。  “目前,制备氢的主要方法有化石燃料制氢和电解水制氢,但两种方法都需消耗传统能源。”柳清菊向科技日报记者介绍,化石燃料制氢,二氧化碳排放量大,每生产1千克氢气,将产生10千克左右的二氧化碳;而电解水制氢也存在能耗和成本问题。“在环境和能源问题日益严重的今天,开发清洁、可持续、低成本的制氢技术,推进氢能的发展显得尤为迫切和重要。”柳清菊说,采用光催化技术,利用太阳能驱动水分解制氢是一种极具发展前途的新方法。  自1972年科学家发现二氧化钛半导体具有光催化性能以来,光解水制氢一直受到学术界及产业界的关注与重视。在能量大于或等于半导体禁带宽度的光照射下,光催化材料价带中的电子吸收入射光子的能量跃迁到导带,形成“电子—空穴”对,空穴和电子迁移到材料表面,与表面吸附的水分子发生氧化还原反应,也就是电子与水发生还原反应产生氢气,空穴氧化水产生氧气。  然而,由于电子带负电,空穴带正电,使得光催化材料中光照所产生的“电子—空穴”很容易复合,导致产氢量子效率低下,严重阻碍了光解水制氢的发展。因此,如何阻止“电子—空穴”的复合,提高光催化制氢效率,成为目前国际上光催化研究领域的重大挑战之一,也是制约光催化制氢技术实用化的瓶颈难题。  这其中,光催化材料是核心。而光催化材料的活性、稳定性和成本是决定光催化技术能否实际应用的关键。  铜离子“补位” 新型光催化材料设计制备突破瓶颈  金属单原子催化剂是近年来迅速发展起来的新型催化剂。相比传统金属催化剂,金属单原子催化剂中的原子以单个的形式负载在载体上,在催化反应中可充分参与反应,实现反应活性中心的最大化,利用效率可接近100%,在理论上可以同时提高催化活性并降低成本。然而由于单原子具有极高的表面能,在合成和催化反应过程中容易团聚、稳定性差、寿命短且制备成本高,阻碍了其实际应用。  “这次起光催化作用的二氧化钛,是一种钛和氧规则排列的晶体,我们通过独特的合成工艺,在其中生成大量的钛空位。”柳清菊向记者解释,有了这些钛空位,就可以请铜离子来帮忙“补位”。  “通过对钛基有机框架材料MIL-125中钛空位的设计和可控合成,我们研制出具有大比表面积和丰富钛空位的二氧化钛纳米材料,以此为载体锚定过渡金属铜单原子,使铜与二氧化钛形成了牢固的‘铜—氧—钛’键。”柳清菊介绍,在光催化制氢反应过程中,一价阳离子铜和二价阳离子铜的可逆变化,大大促进了光生“电子—空穴”的分离和传输,大幅提高了光生电子的利用率,使产氢量子效率获得突破,达到56%。这项突破获得了欧洲科学院院士、伦敦大学学院光催化和材料化学终身教授唐军旺团队的验证。  成本、工艺更“亲民” 光解水制氢产业已初露曙光  新研制的二氧化钛基光催化材料,具有性能稳定、无毒、无二次污染等优点,且生物相容性好、制备方法简单、成本低,与传统方法相比优势明显。通常含贵金属的催化剂,催化活性高,但相应的成本也极高。“新材料中,我们用的是‘贱金属’铜,它储量大、价格低、易获得,这是成本降低的第一个方面。” 柳清菊介绍,此外,原有的催化材料中单个金属原子活性很大,很容易形成团簇,使得催化活性降低。研发团队将铜原子牢固地锚定在钛空位上,不容易团聚,创新性地解决了这个问题,稳定时间很长,在常温常湿条件下,样品放置380天之久,仍然具有与新制备样品相当的产氢性能,进一步降低了产氢成本;另外,新型光催化材料制备工艺简单,无需昂贵的设备,使光催化制氢更加“亲民”。  近年来,柳清菊团队在实验室进行了大量的基础研究,包括材料设计、合成工艺、机理研究、性能优化等,已获得稳定的高性能光解水制氢光催化材料的实验室制备工艺,正准备开展放大工艺研发,为后续产业化奠定基础。虽然传统的光催化材料成本高、量子效率低,国内光催化产氢市场尚未成熟,但随着产业链衔接及相关政策的完善,光催化制氢产业化已是曙光初露。  对柳清菊团队而言,56%的产氢量子效率也不是终点。“我们还在继续努力,使效率进一步提高,如果能够提高到70%以上,对生产应用的意义将是不言而喻的。”柳清菊说,找准了方向,效率再提升将不是梦。随着光解水效率进一步提高和成本进一步降低,氢能时代将加速到来,人类也将还地球以绿水青山。
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • 张定、薛其坤研究团队在高温超导机理研究中取得重大突破
    自1986年Bednortz和Müller发现铜氧化物高温超导以来,三十五年已经过去了,但作为凝聚态物理学最重要科学难题之一的高温超导机理至今仍然没有得到解决,甚至在最基本的科学问题,如配对对称性上也尚未达成共识。针对配对对称性这一核心科学问题,清华物理系张定副教授、薛其坤教授带领的研究团队与国内外同事合作,通过制备具有原子级平整界面的高质量约瑟夫森结,发现铜氧化物中s-波配对占主导地位。这个结果颠覆了铜基高温超导是d-波配对的主流认识。该工作不但是铜氧化物高温超导研究的一个重大进展,同时也为破解高温超导机理这一科学难题指明了正确方向。该研究成果以“转角超薄铋锶钙铜氧约瑟夫森结中的s波配对”(Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes)为题在线发表在7月15日的《物理评论X》(Physical Review X)上。超导作为一种宏观量子现象,其量子态的波函数在理论上可以分为s波、p波和d波等。与氢原子波函数的空间分布相似,s波超导各向同性,角动量量子数为0,而p波和d波的超导波函数具有空间各向异性。其中,d波的角动量量子数为2,其振幅的空间分布像四朵花瓣一样(以dx2-y2波为例),而且从一个花瓣转向近邻花瓣时会发生由相位引起的变号。相比于常规超导体的s波配对,多数人认为铜氧化物超导具有d波配对对称性。然而,这一观点也受到了一系列新的挑战。比如,薛其坤教授团队利用扫描隧道镜直接测量铜氧化物的超导层时发现其超导能隙符合s波超导的U型,而非d波的V型。不过,区分s波与d波的最关键信息来自于超导波函数的相位,即前述的变号行为。此前人们通过两个或三个超导体组成花瓣平面内的约瑟夫森耦合开展了相位测量。但是,将多个晶体进行横向的拼接,往往存在拼接处—晶界—的晶格畸变、多晶面交替出现、化学配比剧烈变化等问题,这都使得实验结果存在着不确定性。图1 高温超导转角约瑟夫森结原子结构示意图。图中蓝、绿、红、黄、黑色小球分别代表铋、锶、钙、铜、氧原子。上半部分半个原胞相对下半部分旋转45度。右侧插图表示s波配对中相位在空间中保持相同符号。相比于此,由于铜氧化物超导具有二维层状结构,将其沿纵向拼接而成的约瑟夫森结就有望形成原子级平整的界面。以最典型的铋锶钙铜氧高温超导体为例(图1),该铜氧化物具有层状结构,纵向由超导的铜氧层与不超导的铋氧/锶氧层交替堆叠而成。纵向拼接而成的约瑟夫森结是判定配对对称性中相位的一种理想结构。其原理是,如果将两个d波超导体沿垂直于其d波花瓣平面的方向即纵向进行约瑟夫森耦合时,其耦合强度将在两个超导体相对旋转45度时下降到零,而两个s波超导体在此情况下仍然存在约瑟夫森耦合。过去,人们曾构筑过这样的纵向约瑟夫森结对铜基高温超导的相位问题开展过研究,但没有得到一致的结果:有的实验支持s波,有的支持d波。造成这个结果的主要原因是两个超导体构成的约瑟夫森结的界面质量不够高,而且实验结果中混入了其它约瑟夫森耦合的信号—单边的超导体中也存在本征的纵向约瑟夫森耦合。因此,制备原子级平整、宏观均匀的单一约瑟夫森结是关键。张定副教授、薛其坤教授带领研究团队成功制备出了超薄的具有原子级平整界面的高质量约瑟夫森结,并且能将两边超导层的相对转角进行精确地控制。在这些高质量样品中,他们观察到参与隧穿过程的只有相对发生旋转的两个超导层,避免了本征约瑟夫森结造成的复杂性。通过这种高度精确人为可控的相位敏感测量,他们发现在相对角度旋转到45度时,两片铋锶钙铜氧超导在纵向仍然存在约瑟夫森耦合,而且耦合强度与转角为0度时可比拟,这说明配对对称性是s波。这个结果清楚表明,目前主流的d波配对理论并不适用铋锶钙铜氧高温超导体系。如果这一实验得到进一步验证,并且推广到其它铜氧化物高温超导体系,那么这将是三十多年高温超导机理研究的一个转折点,为最终解决高温超导机理走出了最关键的一步。为了最终确认s波配对对称性,研究团队目前正在瞄准原子极限下两个单层铜氧化物超导间的约瑟夫森耦合——进行强力攻关。这一突破的取得是团队成员潜心攻关和精诚合作的结果。北京量子信息科学研究院(量子院)助理研究员朱玉莹(清华大学物理系原博士后)作为文章的共同第一作者,在加入团队后的四年中未发表一篇作为主要作者的文章,心无旁骛、刻苦攻关。她与清华大学物理系博士生廖孟涵(共同第一作者),在开展该研究的五年内,利用美国布鲁克海文国家实验室Genda Gu教授研究组提供的最优质量的晶体,共尝试了近800多个薄膜样品,制备和测试了300多个具有不同转角的约瑟夫森结。为了验证人工约瑟夫森结的质量,需要获得原子结构的信息,这得到了中科院物理所谷林研究组的全力支持。物理所张庆华副研究员(共同第一作者)对数十个约瑟夫森结样品开展了精细的结构表征,证明了其具有宏观大范围原子级平整的晶界。参与该研究的合作者还包括清华物理系博士生刘耀伍与柏中华、季帅华教授、姜开利教授、马旭村教授,量子院解宏毅副研究员,物理所孟繁琦博士生,美国布鲁克海文国家实验室Ruidan Zhong和John Schneeloch等。该工作得到了国家科技部、自然科学基金委员会、清华大学低维量子物理国家重点实验室、北京未来芯片技术高精尖创新中心等的经费支持。论文链接:https://doi.org/10.1103/PhysRevX.11.031011
  • 武汉物数所一氧化碳转化反应机理的核磁共振研究获进展
    近日,中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室邓风研究组,在一氧化碳直接与苯烷基化生成甲苯的研究方面取得新进展,相关研究结果在《化学通讯》(Chemical Communications)上在线发表。  CO既是有毒有害气体,也是一种常见的C1化学资源,具有广泛的工业应用价值,其转化一直是多相催化中的热点问题。工业化上一般通过费托合成过程直接将CO和H2(合成气)转化为甲醇。烷基芳香烃类是一种非常重要的化学品,广泛应用于化工、农业、医药、香料等领域,它可通过甲醇等在酸性催化剂作用下烷基化芳香烃类来制备。如果能省去费托合成甲醇的这一间接高能耗过程,用CO与芳香烃类通过烷基化反应直接合成,将为CO的转化利用以及烷基芳香烃类的制备提供新的思路。  在该项工作中,徐君副研究员及王秀梅博士等通过调控锌元素改性ZSM-5沸石分子筛的氧化性及表面酸性,实现了CO与苯催化生成甲苯的反应。原位固体核磁共振研究发现,CO可以作为一种烷基化试剂与苯发生烷基化反应,反应过程中,CO通过甲氧基中间体提供了甲苯中甲基上的碳原子,苯提供了甲苯的苯环。以往的研究通常认为CO只能作为羰基化试剂在多种催化过程提供羰基基团,该工作报道的CO可作为烷基化试剂参与目标有机物制备的研究结果,丰富了CO作为C1原料的用途,也为高附加值化学品的合成提供新途径。  在前期工作中,该研究组利用原位核磁共振技术结合其他多种谱学技术,揭示了沸石分子筛催化剂上甲烷、一氧化碳活化与转化的反应机理(Angew. Chem. Int. Ed. 2012, 51, 3850 Chem. Sci. 2012, 3, 2932 J. Am. Chem. Soc. 2013, 135, 6762 J. Phys. Chem. C, 2013, 117, 4018)。  该工作得到了国家自然科学基金委、中国科学院以及武汉市晨光计划的支持。   Zn/H-ZSM-5上CO直接与苯烷基化生成甲苯反应历程图
  • 汇源通过检测将复产 “瞎果”属空穴来风
    安徽省食品药品监督管理局26日表示,该局日前对安徽砀山海升果业有限责任公司、北京汇源集团皖北果业有限公司产品进行了抽检,“棒曲霉素”为未检出,表明果汁原料不含有腐烂成分,其他检测指标均符合标准要求,同意两家企业恢复生产。至此受到社会各界关注的“瞎果” 风波尘埃落定。  业内人士表示,该事件尽管短期对果汁企业造成一定负面影响,但从长远来看,会对行业有所提升。通过此次事件,企业会进一步加强原料和成品质量的管控,对产品质量的细节把控更加用心,将有利于整个行业的长久发展。  汇源检测结果达标近日将复产  针对媒体日前曝光多家果汁饮料生产企业涉嫌使用腐烂 “瞎果”加工果汁的问题,26日安徽省食药监局表示,在调查组送往国家农副加工食品监测中心的样品中,检验指标棒曲霉素未被检出,这表明果汁原料中并不含有腐烂成份,其他检测指标均符合标准要求。因此,安徽食药监部门同意砀山汇源、海升恢复生产。  食品药品监管部门专家解释,果汁是否使用腐烂水果加工,可以通过对果汁特征指标 “棒曲霉素”的检测来认定,烂果率达到5%时,“棒曲霉素”会超过50ppb的欧盟标准规定。  检查组经检查认定,原料输入企业之前,由于收购、装卸、转运等原因,的确存在部分破损、腐烂水果。但食药监部门相关人员到厂检查发现,上述两家企业对腐烂水果的控制和处理均有较严格的操作规范。如规定腐烂面积大于2平方厘米的水果即被认定为坏果,坏果率超过5%的水果拒收 进厂后水果经过高压净水冲洗和人工筛选两道工序,以保证腐烂果不进入榨汁环节。  中国食品土畜进出口商会果汁分会秘书长超军文表示,“烂果如果被加工成果汁,在成品中是一定会被检测出来的,像棒曲霉素、乙醇、乳酸等指标就会超标。这其中棒曲霉素是最重要的监测指标,而这一指标在国内的标准与国际的标准是完全相同的。”  安徽省食品药品监督管理局有关负责人介绍,“腐烂水果做果汁”的报道一经刊出,食药监部门立即派出调查组连夜赶赴事发地展开调查,现场抽样检验,并责令相关企业在情况未查明之前停产自查。砀山县食品安全监管部门也于第一时间对安徽砀山海升果业有限责任公司、北京汇源集团皖北果业有限公司进行了监督检查,现场并未发现有腐烂水果存货。  26日上午,汇源集团党委书记赵金林在接受媒体访时表示,“汇源在收购环节有向果农宣教水果管理知识和收购标准—派员实地考察—进厂检验称重—二道清洗、二道喷淋—分拣筛选等五道关控制果品质量,其中最后一道是经过人工来筛选果品,就是确保不让"烂果"流入生产程序,另外在加工环节还有冷破碎—压榨—过滤—灭菌—灌装—检验等六道关严格控制,汇源对自己的产品质量充满信心。”  “瞎果”到底为何物?果汁产业被“误伤”  经过近日媒体的炒作,“瞎果”也成为了“网络热词”,那么究竟什么才是“瞎果”?之前在某媒体的报道中,认为“瞎果”指的是由于各种原因并没有得到很好保护而腐烂变质,或是在未成熟之前就跌落的水果。  那么,果汁行业是否真的大量使用“瞎果”来榨汁呢?  中国食品土畜进出口商会果汁分会秘书长超军文表示,“果汁行业普遍的一个做法就是使用非商品果,非商品果就是不在鲜销市场上销售的,表面略有瑕疵、果型不是太好,但最重要的一点其内在品质与商品果完全相同”。使用非商品果生产完全不同于烂果加工,一方面烂果加工是不被允许的,另一方面来说,烂果加工是没有经济效益的,只会影响产品的品质。  走访的业内人士也表示,在食品行业里并没有“瞎果”这样的名词,业内将用于榨汁的果品称为工业用果,而用于零售的果品被称为商品果。工业用果与商品果是有区别的,工业用果更多是用于食品业加工。但与“烂果”有本质的区别,烂果是没有加工价值的。  饮料行业专家王玮表示,“从成本角度而言,使用腐烂水果加工对汇源这样量级的企业根本无法节省多少成本,从工艺流程上来说,用腐烂的水果也是非常得不偿失的”。企业普遍通过人工拣选、加工、喷淋等流程阻止腐烂果品流进生产环节中。  据了解,国家食品药品监督管理总局对于果汁企业准入有着严格的标准,而且要符合很多条件。比如,要符合《浓缩果蔬汁(浆)加工行业准入条件》、《食品企业通用卫生规范》,《食品工业用浓缩果蔬汁(浆)卫生标准》以及《食品添加剂使用卫生标准》等。  据超军文介绍,中国的浓缩果汁行业比较特殊,国人一直以来没有饮用习惯,起步就是出口导向型的,一直以来都在使用国际标准,这也是产业发展的一个特性。因为中国的浓缩果汁90%以上要出口,中国浓缩果汁出口已经十余年,尤其在浓缩苹果汁领域,中国是世界上最大的出口国。  而据中国海关数据显示,仅在2013年8月,中国共出口浓缩苹果汁44033吨,金额达6343万美元,平均单价1440.6美元/吨。其中向美国出口24944吨,金额3519万美元。  业内人士表示,国内浓缩果汁企业一直以来都是100%使用天然原料,完全零添加。因为添加一方面反而会增加成本,另一方面,一旦掺假后果非常严重,掺假企业将直接被出口国封杀,失去海外市场。目前国内国际对于浓缩果汁的监测相对成熟,一个批次果汁要经过几十项的指标检测,不断与国际接轨。苹果汁的主要进口国是美国,中国的产品不仅仅要经得起中国监管部门的检测,还要经受住美国食品药物管理局(FDA)的检测。  饮料行业专家王玮认为,从逻辑上来分析,这次被推到风口浪尖的汇源,其设备在整个饮料行业、果汁行业都是公认最好的企业之一,生产出来的产品品质应该是比较稳定且有保障的。另外,从可口可乐曾打算收购汇源这个角度来看,无疑汇源的生产设备、生产工艺在国内外应该都具有相当高的水准,不然可口可乐为何要花巨资收购汇源而不直接自行建厂?  专家称“瞎果”事件或将助推行业进步  作为国内知名果汁企业,涉事三家企业均为行业内佼佼者,而汇源果汁更是从水果制备浓缩汁(浆),到浓缩汁生产果汁,形成具备上下游产业链的业内龙头。  事件发生后,汇源集团首先发声,当日发表声明做出澄清,表示不存在使用变质水果加工果汁的情况。  9月25日,汇源再次发公告表示,集团未曾使用变质腐烂的水果用于生产。其中,北京汇源集团平邑有限公司主要加工的水果是苹果,而直至秋天才是苹果的丰收季节,因此该生产设施在本年度尚未开始生产浓缩果汁。安德利和海升也分别公告称,未曾使用变质水果加工浓缩果汁。  数据显示,在目前国内果汁饮料市场,汇源在100%浓度果汁和中高浓度果蔬汁中,市场份额分别占54.2%和44.1%,均位列第一,与其他竞争对手相比,优势明显。  根据汇源果汁此前公布的上半年业绩,收益达到20.64亿元,按年增加22% 毛利为6.36亿元,涨幅达51.4%。  “目前来看,这个事件对市场并未造成影响。一些消费者出于对果汁行业的关心,期待国家权威检测机构的检测结果。现在结果出来了,再次证明汇源的产品是经得起考验的,反而提振了市场信心,更有利于促进全年业绩的提升”,汇源集团党委书记赵金林平静地表示。  中国食品土畜进出口商会果汁分会秘书长超军文表示,“通过这个事件,长远来看,肯定对行业有所提升。企业通过这个事件会进一步加强原料的管控、成品质量的管控,注意生产管理环节”。  饮料行业专家王玮也认同上述意见,他表示,此次事件的发生将助推净化行业,企业会对产品质量的细节和把控更加用心,有利于整个行业的长久发展。  赵金林表示,作为企业来说,以后会更加透明、更加开放。这同时也需要企业自身更加自律,更加严格要求自己,经得起媒体、公众的检验和监督。从这个角度来说,此次风波未尝不是一件好事。
  • 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能
    1. 文章信息标题:Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation中文标题: 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能 页码:958-968 DOI: 10.1016/j.renene.2021.11.030 2. 期刊信息期刊名:Renewable EnergyISSN: 0960-1481 2022年影响因子: 8.634 分区信息: 中科院一区;JCR分区(Q1) 涉及研究方向: 工程技术,能源与燃料,绿色可持续发展技术 3. 作者信息:第一作者是 施伟龙(江苏科技大学)、孙苇(北华大学)(共同一作)。通讯作者为 林雪(北华大学),郭峰(江苏科技大学),洪远志(北华大学)。4. 光催化活性评价系统型号:北京中教金源(CEL-PAEM-D8,Beijing China Education Au-Light Co., Ltd.);气相色谱型号:北京中教金源(GC7920,Beijing China Education Au-Light Co., Ltd.)。本工作利用SiO2微米球为硬模板和三聚氰胺为前驱体,通过空气化学气相沉积 (CVD)方法合成洋葱圈状结构的g-C3N4(OR-CN),且基于溶剂热法与0D Bi3TaO7量子点(BTO QDs)复合,形成0D BTO QDs/3D OR-CN S型异质结复合物光催化剂,在λ 420 nm的可见光驱动下,讨论了不同质量比的BTO/OR-CN化合物催化剂在2小时内的析氢性能。其中,0.3wt% BTO/OR-CN样品赋予了最佳的光催化析氢速率为4891 μmol g-1,且在420 nm处的表观量子产率(AQY)为4.1%,约是相同条件下的OR-CN的3倍。其增强的光催化活性归因于0D BTO量子点与OR-CN之间形成了S型异质结,有助于促进光生电荷载流子的分散,且增强了可见光吸收强度,此外,通过4次循环实验,发现0D BTO QDs/3D OR-CN S型异质结复合物光催化剂具有优异的稳定性,有应用前景。图1. 制备BTO/OR-CN化合物的实验过程如图1所示,BTO/OR-CN的制备是通过加入0.2 g的OR-CN在BTO的合成过程中,合成的样品命名为xBTO/OR-CN,其中x代表BTO在化合物中的质量比,分别为0.1%,0.3%,0.5%,1.0%。此外,为了比较,合成了块体g-C3N4(B-CN)和0.3%BTO/B-CN复合物,B-CN的合成是通过一步煅烧3 g三聚氰胺,550 °C加热4小时,升温速率为2.3 °C/min,从而得到黄色的产物。0.3% BTO/B-CN复合物的合成类似于0.3% BTO/OR-CN复合物的合成过程,仅仅用B-CN代替OR-CN。图2. BTO、OR-CN和不同复合物的XRD图如图2示,OR-CN、BTO以及不同质量比的BTO/OR-CN化合物(0.1%、0.3%、0.5%和1.0%)的XRD图表征晶体结构和结晶度。对于BTO样品,2θ在28.2°、32.7°、46.9°和58.4°属于Bi3TaO7的(111)、(200)、(220)和(222)面(JCPDS:44-0202)。OR-CN拥有两个衍射峰在13.1°(100)和27.4°(002),分别归因于芳香单元的层内结构堆积基序和层间堆积基序。至于BTO/OR-CN化合物,引入BTO没有影响OR-CN的相结构,当负载0.1%、0.3%、0.5%和1.0%的BTO在OR-CN上,很难发现额外的BTO特征峰,这很可能是因为少量的BTO QDs。图3. OR-CN的SEM图(a)0.3% BTO/OR-CN复合材料的SEM图(b)TEM图(c)HRTEM图(d)和EDX图(e)如图3所示,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析制备的样品的结构和形貌。OR-CN样品呈现了洋葱圈形状,尺寸大约在150-200 nm。负载BTO QDs在OR-CN的表面上形成BTO/OR-CN复合物之后,OR-CN的洋葱圈结构没有改变,但表面变得更粗糙。为了进一步清晰地观察BTO/OR-CN化合物,0.3%BTO/OR-CN的TEM图展现了BTO QDs均匀地分布在OR-CN表面上且与OR-CN底物亲密的接触,这有助于电荷的分散和转移。同时,化合物的高分辨透射图(HRTEM)反映了BTO和OR-CN之间有好的界面接触,其中,晶格间距为0.27 nm与Bi3TaO7晶格面(200)相匹配。展现了成功地构造了0D/3D BTO/OR-CN异质结催化剂。0.3%BTO/OR-CN的EDX图揭示了C,N,Bi,Ta,O元素的存在,进一步证实BTO QDs锚定在OR-CN的表面上。图4. 光催化产氢(a)析氢速率(b)B-CN、OR-CN、及其0.3%化合物光催化产氢(c)析氢速率(d)循环实验(e)循环实验前后的XRD图(f)如图4所示,以300 W的氙灯作为光源(λ 420 nm),研究了制备的样品的光催化析氢活性。结果表明制备的BTO样品几乎不产氢,而OR-CN在2小时辐照过程中产生了相对较低的氢气,约为1736 μmol g-1,这是由于BTO对可见光的吸收较低和电子-空穴的快速重组所致。当耦合OR-CN和BTO之后,光催化析氢活性显著的增强,其中,最佳的0.3% BTO/OR-CN复合材料展现了析氢量大约是4891 μmol g-1,是单组分OR-CN样品的3倍左右。同时,0.3% BTO/OR-CN异质结光催化剂在420 nm波长表现出较高的表观量子产率(AQY)为4.11%。当BTO QDs的加入量从0.1%增加到1.0%时,光催化析氢性能呈现出先增后减的趋势,其中,最优的0.3% BTO/OR-CN样品的光催化性能优于其他复合样品,这是因为构建了S型异质结,加速了光生电荷的传输和分布。此外,在OR-CN上引入BTO QDs可以增加比表面积、提供更多的活性位点、增强光响应强度和延长光诱导电荷寿命。随着进一步增加BTO QDs的量,光催化产氢速率减小,这是因为过量的BTO QDs负载在OR-CN表面可能会影响BTO QDs的分散,且由于屏蔽效应阻碍OR-CN的光吸收效率。因此,负载合适量的BTO QDs有利于光催化产氢。此外,最优样0.3% BTO/OR-CN的产氢速率为2445.5 μmol g-1。为了比较,还合成了0.3%BTO/OR-CN复合物,制备的样品的析氢量和析氢速率的排序:0.3%BTO/OR-CNOR-CN0.3%BTO/B-CNB-CN,这表明CN的洋葱圈结构和化合物的异质结界面有利于提高光催化活性。经过四次循环实验,可以清晰地发现光催化析氢有轻微的降低。同时,XRD图也用于评价样品的稳定性,循环前后的XRD图没有发生改变。这些结果展现了制备的 BTO/OR-CN样品拥有优异的稳定性和光催化析氢活性。图5. MS图(a和b)S型异质结机理(c)BTO/OR-CN复合物光催化析氢中光生电荷分离转移机理(d)利用Mott-Schottky(MS)图确定OR-CN和BTO的能带结构。OR-CN和BTO样品的质谱图在1000、2000和3000 Hz处呈现正斜率,说明OR-CN和BTO具有典型的n型半导体特征。OR-CN和BTO在接触前的带位置存在偏差,OR-CN是一种费米能级较高的还原型光催化剂,而BTO是一种费米能级较低的氧化型光催化剂。此外,通过紫外光电子能谱(UPS)计算了OR-CN 和BTO的功函数,分析了界面电荷转移过程。确定OR-CN和BTO样品的二次电子截止边的结合能(Ecut-off)分别为16.921 eV和16.054 eV。然后,BTO和OR-CN在黑暗中密切接触后,OR-CN的CB上的电子自发地流向BTO,直到二者的费米能级达到相同水平。因此,OR-CN组分失去电子并携带正电荷,导致OR-CN的CB边缘向上弯曲,同时,BTO组分得到电子,电子在其CB上积聚,BTO带负电荷,导致CB边缘向下弯曲,从而,OR-CN和BTO界面形成内部电场。在可见光的照射下,电子在内部电场和库伦相互作用的驱动下由BTO的CB转移到OR-CN的VB上与空穴复合,此外,保留在OR-CN的CB上的电子和BTO的VB上的空穴将分别参与光催化氧化还原反应。基于以上的分析,提出了BTO/OR-CN光催化反应的可能的S型机理,在可见光的照射下,BTO和OR-CN中价带(VB)上的电子跃迁到导带(CB)上,价带上形成空穴,BTO导带上的电子可以转移到OR-CN的价带上并与空穴结合。由于OR-CN导带的电势比H+/H2(0 eV vs. NHE)更负,所以,H2O分子可以与电子反应生成H2。用三乙醇胺(TEOA)猝灭BTO价带上积累的空穴。
  • 大化所“煤取代石油”制烯烃技术机理研究再升级
    p  现代化学工业原料主要依赖于石油裂解产生的乙烯丙烯等低碳烯烃。我国作为一个石油进口国,石油进口依存的现实限制了石化产品的发展。以中科院大连化学物理研究所刘忠民院士,魏迎旭研究员的团队,在甲醇制烯烃的生成机理方面取得了新的进展。这一技术进步我国石化产业发展,实现“石油替代”战略,保证我国能源安全具有重大战略意义。这一团队又创造了新的功勋。/pp  乙烯、丙烯等低碳烯烃是重要的基本化工原料,随着我国国民经济的发展,特别是现代化学工业的发展对低碳烯烃的需求日渐攀升,供需矛盾也日益突出。目前,乙烯、丙烯主要依赖于石化路线生产,但我国石油资源短缺,石油进口依存度逐年增加,在一定程度上限制了以石化路线生产乙烯和丙烯产品的发展。/pp  甲醇制烯烃(Methanol to Olefins,MTO)是重要的C1化工新工艺,是指以煤合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。由于我国特殊的能源结构特点——煤炭资源相对富裕,这种以煤炭资源为原料的,非石油路线制取低碳烯烃的技术表现出了很大的优势。/pp  什么是DMTO?/pp  DMTO是中国科学院大连化学物理研究所的专利专有技术,MTO代表甲醇制烯烃技术,D代表二甲醚/大连/double的意思,最初的研究是基于二甲醚制烯烃,后来技术改进从甲醇开始,而从甲醇开始的过程也包含甲醇转化为二甲醚,二甲醚转化烯烃的过程,故引用double的意思 由于大连化物所地处大连,大部分人认为这个D也是大连的意思。/pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/93dc63c8-3fe4-45b0-9038-bd1079fd8afc.jpg"//pp style="text-align: center "strongDMTO技术荣获2014年国家技术发明一等奖/strong/pp  DMTO工业化技术解决了煤制烯烃的技术瓶颈,是连接煤化工和石油化工的桥梁,为煤化工行业和煤制烯烃产业提供了有力的技术支撑。DMTO工业化技术可缓解我国石油资源的不足,使低碳烯烃生产原料多元化。在当今国内石油资源短缺的背景下,该技术对于实现我国“石油替代”战略,保证我国的能源安全具有十分重大的战略意义。/pp  DMTO技术目前的发展/pp  DMTO工业化技术研发成功,对于减少我国石油进口、开辟我国烯烃产业新途径具有重要意义。同时,这也标志着我国甲醇加工能力将由万吨级装置一举跨越到百万吨级大型装置。DMTO成套技术的开发与应用,无论从经济上还是战略上对我国发展新型煤化工产业、实现“石油替代”的能源战略都具有极其重要的意义。2010年甲醇制烯烃国家工程实验室与合作单位研发的具有自主知识产权的DMTO技术成功应用于世界首套煤制烯烃工业项目、国家示范工程神华包头年产180万吨甲醇制取年产60万吨烯烃装置,技术指标达到国际领先水平。目前DMTO技术已实现技术实施许可1313万吨烯烃/年,已投产646万吨烯烃/年。/pp style="text-align: center "img title="02.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/f46d15fd-c2b3-41bd-a8ba-9e51c85c645f.jpg"//pp style="text-align: center "strong2015年底第九套神华榆林年产180万吨甲醇制取年产60万吨烯烃DMTO装置投产/strong/pp style="text-align: center "img title="03.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/16d0361f-b74f-4b59-9bb3-28ce81cbe63e.jpg"//pp style="text-align: center "strong至2015年底已经投产的九套DMTO装置/strong/pp style="text-align: center "img title="04.png" src="http://img1.17img.cn/17img/images/201707/insimg/f0058c83-9e05-42ce-b6ad-11485cd9fd79.jpg"//pp style="text-align: center "strong甲醇制烯烃国家工程实验室下属部分研究组/strong/pp  DMTO机理研究再升级/pp  甲醇制烯烃国家工程实验室一直坚持应用研究与基础研究并重,不但在MTO过程工业化方面取得巨大成功,而且长期致力于该化学过程中的基础科学问题研究。虽然MTO过程稳态反应阶段的间接机理已形成广泛的共识,但MTO反应中从C1物种甲醇或者二甲醚生成第一个C-C键的反应一直是C1化学中极具挑战性和争议性的课题。由于转化发生在反应的最初始阶段,难以捕获中间物种,一直以来所提出的反应机理缺乏直接证据。/pp  最近,大连化学物理研究所刘中民院士、魏迎旭研究员团队在甲醇制烯烃初始C-C键生成机理方面取得新进展,相关研究成果以热点文章形式发表在《德国应用化学》(Angewandte ChemieInternational Edition)杂志上(doi: 10.1002/anie.201703902),并被推荐为内封面文章。/pp style="text-align: center "img title="05.png" src="http://img1.17img.cn/17img/images/201707/insimg/2fc60744-3054-46ac-8e25-b01bfc64fb6c.jpg"//pp style="text-align: center "strong刘中民院士/strong/pp style="text-align: center "img title="06.png" src="http://img1.17img.cn/17img/images/201707/insimg/bd29ddc7-114e-4d33-9913-0e12d736492a.jpg"//pp style="text-align: center "strong魏迎旭研究员/strong/pp style="text-align: center "img title="07.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/151b78ee-4a38-4db9-a765-e6708247d5ab.jpg"//pp style="text-align: center "strong研究成果论文文章/strong/pp  本项工作中,研究人员通过在线监测最初始反应阶段,推测初始烯烃来源于催化剂表面C1吸附物种的直接转化 随后通过催化剂液氮淬冷和固体核磁表征,确定了催化剂上最初始反应阶段存在的表面C1吸附物种(甲醇和二甲醚)和C1活性物种(表面甲氧基和三甲基氧鎓离子) 进一步通过原位固体核磁研究,在真实甲醇转化反应条件下,成功捕捉到二甲醚C-H键活化后生成的类亚甲氧基(methyleneoxy analogue)物种,由此获取了C1物种活化生成第一个C-C键的直接证据 在此基础上提出了初始烯烃生成的反应路径—表面甲氧基/三甲基氧鎓离子协助甲醇/二甲醚活化转化的协同反应机理。/pp style="text-align: center "img title="08.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/9041f9be-cf2f-4f62-8d8b-748c8a90871e.jpg"//pp style="text-align: center "strong反应机理示意图/strong/pp  这是首次在MTO反应过程中原位观测到C1物种的初始活化和转化,这一发现将关联甲醇初始转化的直接机理和高效转化阶段的间接机理,建立甲醇转化反应完整的反应历程。此前在MTO反应稳定阶段烃池(Hydrocarbon Pool)机理的研究中,研究人员曾直接捕捉到最为重要的反应中间物种—苯基和环戊烯基碳正离子中间体,并确定了分子筛催化甲醇制烯烃的催化循环途径(J. Am. Chem. Soc. 2012,134(2),836—839 Angew. Chem. Int. Ed. 2013,52(44),11564-11568)。/pp style="text-align: center "img title="09.png" src="http://img1.17img.cn/17img/images/201707/insimg/7439a642-45a7-4f32-88e1-0ba6fe8afebd.jpg"//pp style="text-align: center "strong分子筛催化甲醇制烯烃的催化循环途径/strong/pp  这些基础机理研究的工作,不但丰富了C1催化化学的基本理论,也对DMTO的工业应用具有重要的促进和支撑作用。/p
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew. Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 德国SciDre高温高压光学浮区法单晶生长系统助力超导材料探索及机理研究
    高温铜氧化物的超导电性是凝聚态物理中的一个重要问题。围绕该研究,目前国内外科学家在该领域已经做了大量工作,其中包括研究具有相似结构的替代过渡金属氧化物中的三维电子机制。遗憾的是,在这些类似的化合物中没有一种呈现超导性。 近期,美国阿贡实验室科研人员研究发现低价准二维三层化合物Pr4Ni3O8没有出现La4Ni3O8中的电荷条纹序,取而代之的是从而表现出金属性。X射线吸收光谱表明,金属Pr4Ni3O8在费米能之上的未被占据态具有低自旋构型,具有明显的轨道化和明显的dx2-y2特征,这正是铜氧化物超导体的重要特点。密度泛函理论计算也证实了这一结果,并表明dx2-y2轨道在近Ef能占据态中也占主导地位。因此,Pr4Ni3O8属于空穴掺杂铜氧化物的3d电子机制,它是迄今为止报道的接近铜氧化物超导的类似材料之一,如果可以实现电子掺杂则有望在该体系中实现高温超导性。相关结果发表在Nature Physics(Volume 13, pages 864–869 (2017), DOI: 10.1038/NPHYS4149)。 该项研究工作所用R4Ni3O10 (R=La,Pr)单晶样品由德国SciDre公司推出的HKZ系列高温高压光学浮区法单晶炉成功制备。其中,La4Ni3O10单晶生长采用20bar氧压条件,Pr4Ni3O10单晶生长采用140bar氧压条件,O2流速为0.1L/min;R4Ni3O8单晶样品由R4Ni3O10单晶样品去除O2获得。高温高压光学浮区炉垂直式双镜设计加热区原理图 德国SciDre公司推出的高温高压光学浮区法单晶炉高可实现高达3000℃高温,高压力可达300bar,多种规格可根据用户需求提供选择,该单晶生长系统一经推出便备受国内广大同行青睐!目前中国科学院物理研究所、中国科学院固体物理研究所、北京师范大学、复旦大学、上海大学、南昌大学以及中山大学等众多用户均选择了该设备!
  • 缺陷Zn3In2S6光氧化还原促进二氢异喹啉和H2O2共生产
    1. 文章信息标题Photoredox-promoted co-production of dihydroisoquinoline and H2O2 over defective Zn3In2S6中文标题:缺陷Zn3In2S6光氧化还原促进二氢异喹啉和H2O2共生产 页码: 2210110 DOI: 10.1002/adma.202210110 2. 期刊信息期刊名:Advanced Materials ISSN:1521-4095 2022年影响因子: 32.086 分区信息: JCR分区(Q1),中科院1区TOP 涉及研究方向: 综合性期刊 3. 作者信息:第一作者是 华东师范大学罗娟娟 。通讯作者为 中国科学院上海硅酸盐研究所施剑林院士、华东师范大学陈立松副教授 。4. 光源型号:北京中教金源CEL-HXF300E7光功率计型号:北京中教金源CEL-NP2000文章简介光合成以低成本和环境友好的方式生产过氧化氢(H2O2)是最可持续和最有前景的方法之一。然而,但光合成存在光生载流子利用率低和H2O2产率低的问题。虽然通过添加质子供体(异丙醇或乙醇)可以降低合成H2O2的氧化屏障进而提高H2O2产量,但是将不可避免地提高成本,与此同时,光生空穴(h+)的氧化能力被完全浪费。因此,找寻一个特定的质子供体能以高选择性的方式自身氧化成高附加值的产物,同时促进光催化产H2O2,是提升光催化体系整体经济效益的有效策略。二氢异喹啉衍生物(DHIQs)是药物合成和制药工业中非常有价值的中间体,由四氢异喹啉衍生物(THIQs)的催化脱氢生产,然而存在生产成本高,操作程序复杂,选择性差和破坏环境等缺点。通过大量文献调研,已知通过光催化反应得到四氢异喹啉的半脱氢产物是十分困难的,这通常伴随有不理想的全脱氢产物异喹啉(IQs)的生成。因此,寻找一种高效的光催化剂在温和条件下光合成高纯度半脱氢产物(DHIQs),将是一个极具吸引力的策略。此外,充分利用THIQs脱氢产生的氢质子可以提高原子利用率和产物价值。基于此,中科院上海硅酸盐研究所施剑林院士和华东师范大学陈立松副教授等人将THIQs用作独特的质子供体,用于热力学上可行的选择性半脱氢反应,生成具有高附加值的DHIQs,同时在双功能光催化剂Zn3In2S6的催化下,在一个光氧化反应中耦合并促进H2O2的生成。缺陷Zn3In2S6在可见光(λ≥400 nm)照射下分别以66.4 mmol h-1 g-1 和62.1 mmol h-1 g-1的高速率生成H2O2和DHIQ。此外,作者还详细探讨了反应机理和途径。原位ESR分析、自由基捕获实验及溶液中活性氧(ROS)的检测实验表明,ROS(O2和1O2),h+ 和质子供体(THIQs)之间的协同作用在光催化共生产H2O2和DHIQs反应中起关键作用,这在以前的研究中基本上被忽略。同时,原位FTIR表明通过*OOH中间途径在Zn3In2S6表面生成H2O2。该研究不仅有效地利用光生电子(e-)、h+以及多种活性氧的氧化还原能力来实现最大的原子利用效率,而且同时生成了太阳能液体燃料和高附加值化学品。
  • IKA奖学金 激励学子致力科研事业
    德国IKA集团一直致力于科研仪器的开发和生产,位于中国的独资子公司广州仪科实验室技术有限公司(IKA WORKS GUANGZHOU, 即IKA中国公司),自2000年在广州成立以来快速发展,得到国内诸多高校的大力支持,为回报社会、鼓励莘莘学子持续深造,激励教师改革创新,鼓舞大家积极投身生化领域的科研事业,自2007年起,IKA就在国内设立了奖学金项目。首个获得IKA奖学金项目的大学是北京大学深圳化学生物学与生物技术学院,自2007年以来,IKA奖学金得到了北京大学深圳研究生院领导及师生的高度重视和热情参与,讫今为止,共有15名成绩卓越的学生获得“IKA进步奖学金”;2011年1月7日,第三届化学生物学前沿论坛在北京大学深圳研究生院E-104报告厅如期举行, “IKA进步奖学金”在这浓厚的学术氛围里举行了颁奖仪式, IKA大中华区市场总监李波小姐在颁奖仪式上致辞,并同吴云东院士、杨震教授一起为“IKA进步奖学金”获奖同学颁奖。此外,2009年,IKA奖学金进驻武汉华中师范大学化学学院, “IKA进步奖学金” 评审委员会正式设立,该奖学金用于奖励学院有机合成化学研究方向的优秀研究生,以助力他们在有机合成领域开展更深入的研究,讫今为止,已有10名成绩优异的研究生获得“IKA进步奖学金”。IKA中国公司总经理KLAUS JACUK先生于2010年底在奖学金颁奖典礼上致辞IKA奖学金是中长期的持续性项目,是IKA回馈客户、回报社会的举措,也体现了IKA勇于承担社会责任的企业理念,IKA奖学金旨在激励学子积极深入科研事业,不断奋进,为中国乃至世界生化科学领域作出自己的贡献。关于 IKA ( www.ika.com, www.ikaasia.com ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西等国家都设有分公司.IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 玩肥皂泡也能发顶刊?机理揭示全靠这台仪器
    p  strong仪器信息网讯/strong 吹泡泡是大多数人儿童时的回忆,玩肥皂泡听起来似乎只是儿童的游戏。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/34e56cb0-4de4-426d-a6b9-7ec5db9d9ae3.jpg" title="儿童吹泡泡.jpg" alt="儿童吹泡泡.jpg"//pp  在科学家眼中,同一件事却有不同的视角。美国弗吉尼亚理工学院的Jonathan Boreyko及同事研究了肥皂泡冻结的热传递过程,并在Nature Communications上发表的研究成果,揭示了肥皂泡的冻结机理。/pp  在零下十多度的环境中,把肥皂泡放在在冰表面,肥皂泡中的水就会逐渐冻结。在这个过程当中,会出现像雪花一样的冰晶。特定条件下冻结时,可以观察到内部有大量不断生长的冰晶在盘旋这些冰晶会散布在气泡表面并逐渐生长变大,直到整个气泡都被冻结。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/noimg/ee365d0c-7932-40ae-a0d7-01876473a833.gif" title="肥皂泡结冰GIF图.gif" alt="肥皂泡结冰GIF图.gif"/  /pp  Boreyko等在不同环境温度下,将肥皂泡置于冰冷的表面,并记录下了冻结过程。他们观察到了两种不同的冻结机制。第一种是将过冷的气泡放置在冰面上,由于气泡的初始状态是低于熔点的过冷状态,当气泡接触冰面时就会迅速产生小冰晶,并且在底部生成的小冰晶会自发的飘到气泡上部,随着冰晶不断生长和并合,肥皂泡完全冻结。第二种是将室温下的气泡放在冰面上,气泡从底部向上逐渐冻结,不形成“雪花”。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 317px " src="https://img1.17img.cn/17img/images/201908/uepic/485f7565-2f10-4dc5-8ace-2c63a3498909.jpg" title="两种情况下气泡的冻结行为.png" alt="两种情况下气泡的冻结行为.png" width="500" height="317" border="0" vspace="0"//pp  揭示这种神奇现象用到的主要仪器就是a href="https://www.instrument.com.cn/zc/1763.html" target="_self"strongspan style="color: rgb(255, 0, 0) "热成像仪/span/strong/a。自然界中的一切物体,无论是北极冰川,还是火焰、人体,甚至极寒冷的宇宙深空,只要它们的温度高于绝对零度-273℃,都会有红外辐射,这是由于物体内部分子热运动的结果。红外成像技术就是根据探测到的物体的辐射能量的高低,经系统处理转变为目标物体的热图像,以灰度级或伪彩色显示出来,即得到被测目标的温度分布从而判断物体所处的状态。热成像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生成热图像和温度值,并可以对温度值进行计算的一种检测仪器。/pp  Boreyko等通过热成像设备测量发现,第一种情况下,由于水结冰会发出热量,小冰晶附近的温度要高于气泡上部的温度。这种温度差异会引起表面张力的差异,产生温度梯度引起的马兰戈尼流动。马兰戈尼流动的方向是从高温流向低温,即从气泡下部到气泡上部。从热成像图像可以清楚地看到气泡上的温度梯度;在第二种情况下,气泡的初期温度是高于熔点的。在放到冰面上以后,再逐渐冷却结冰。这样会形成上部温度高,下部温度低的温度梯度,与第一种情况相反,自然也就不会有小冰晶飘到上部。此时气泡的结冰过程是由下往上逐渐冻结。冻结界面会缓慢向上扩展,最终在肥皂泡中间位置由于传导不良而停止。半冻结的肥皂泡先会保持均衡状态,直到最后液体圆顶坍塌。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/201908/uepic/a7268429-516b-42ea-8f8d-48e6e7e20ca9.jpg" title="第一种情况.png" alt="第一种情况.png" width="500" height="333" border="0" vspace="0"//pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 360px " src="https://img1.17img.cn/17img/images/201908/uepic/b294f5e6-bf71-4fb6-a561-3e59f2dfcdbe.jpg" title="第二种情况.png" alt="第二种情况.png" width="500" height="360" border="0" vspace="0"//pp style="text-align: center "strong两种结冰过程的热成像图像 /strong/pp  红外热成像仪得到的的温度梯度图谱对文章的结论提供了有力的支撑,你学到了吗?/ppbr//p
  • 新光电子能谱仪助力研究氨生产催化反应机理
    瑞典斯德哥尔摩大学研究人员首次研究了氮和氢生成氨时铁和钚催化剂的表面特性。这一成果为更好了解催化过程,找到更高效材料,为化工行业绿色转型打开了大门。研究结果发表在1月10日的《自然》杂志上。哈伯法是一种通过氮气及氢气产生氨气的方法。利用该方法生产的氨年产量为1.1亿吨,而氨是目前生产化肥的基础化学品之一。《自然》杂志在2001年提出,哈伯法是20世纪人类最关键的科学发明之一。因为有了哈伯法大量生产化肥后,预防了大规模饥饿,拯救了大约40亿人的生命。不过,在真实的氨生产条件下,科学家还无法通过表面敏感方法对催化剂表面特性进行实验研究。在足够高的压力和温度下具有表面敏感性的实验技术尚未实现。斯德哥尔摩大学化学物理学教授安德斯尼尔森表示,关于铁催化剂的状态是金属的还是氮化物的不同假设,以及对反应机理重要的中间物种的性质,都无法得到明确的验证。研究人员此次建造了一台光电子能谱仪,可研究高压下的催化剂表面特性。因此,他们能观察到当反应直接发生时会发生什么,可检测反应中间体,并为反应机理提供证据。新仪器为理解氨生产催化打开了一扇新的大门。研究人员表示,新工具可开发用于生产氨的新型催化剂材料。这些材料可更好地与电解生产的氢气配合使用,实现化学工业的绿色转型。
  • 上海交大最新《Nature》!石墨烯超导又有重大发现
    近日,上海交通大学物理与天文学院李听昕课题组、李政道研究所刘晓雪课题组在《Nature》上发表题为“Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene”的研究论文。该项研究首次在单晶石墨烯中观测到电子掺杂情况的超导电性,这对于理解晶体石墨烯及转角石墨烯系统的超导机理,设计制备基于石墨烯系统的高质量新型超导量子器件等具有重要意义。论文链接:https://www.nature.com/articles/s41586-024-07584-w 超导这一宏观量子现象最早由荷兰科学家H. K. Onnes于1911年在研究汞在低温下的电学输运性质时被首次观察到,是凝聚态物理学中里程碑式的发现之一,有关超导材料和超导机理的研究是物理学及相关领域研究中经久不衰的课题。2018年,有关魔角双层石墨烯的研究首次在石墨烯系统中观察到超导电性,这一研究立即引起了国际物理学界的广泛关注,引领了有关二维莫尔超晶格研究的热潮。此后,研究者们在转角多层石墨烯莫尔超晶格系统中也观测到了超导电性,而转角石墨烯中超导与平带之间的关系、超导的配对机制等,至今仍是领域内备受关注的重要科学问题。魔角双层石墨烯对两层石墨烯之间的转角要求十分苛刻,容忍度仅在魔角1.1度正负偏差0.1度的范围,这在一定程度上限制了对魔角石墨烯中超导电性的深入研究。图一 样品结构示意图和光学显微镜照片2021年,研究者首次在不需要莫尔超晶格的亚稳态单晶石墨烯,即菱方堆垛的三层石墨烯中,通过栅极静电调控,观察到空穴掺杂的超导现象,其超导转变温度约为100 mK,这一研究结果也马上引起了广泛的关注。随后,2022年,在施加约0.15 T平行磁场和垂直位移电场(约1 V/nm)的条件下,人们在空穴掺杂的Bernal堆垛双层石墨烯也观察到了超导态,但其超导转变温度仅约为30 mK. 不同于魔角石墨烯和菱方堆垛石墨烯系统,Bernal堆垛的双层石墨烯是天然石墨的基本组成单元,是一种稳定的晶体结构,这为可控制备高质量样品、以及未来研制基于石墨烯的新型超导量子器件提供了理想的实验平台。之后的研究发现,将半导体过渡金属硫族化合物二硒化钨(WSe2)与Bernal堆垛的双层石墨烯组合形成异质结构时,由于近邻效应,增强了石墨烯体系的自旋轨道相互作用,有趣的是,这使得双层石墨烯的超导态能在零磁场下显现,并且超导转变温度被显著提升至约300 mK. 但由于实验中可实现的位移电场范围的限制,无法完全揭示双层石墨烯空穴超导态随位移电场变化的性质与规律;而且,其超导配对机制以及二硒化钨对石墨烯系统超导态的影响机制仍是悬而未决的问题。此外,之前有关高质量双层石墨烯器件中自发对称性破缺态和超导态的研究主要集中在价带(空穴掺杂),而对导带(电子掺杂)的关注较少。图二 实验揭示的双层石墨烯与二硒化钨异质结系统的相图,以及观察到的空穴和电子掺杂情况的超导态通过优化样品制备方法,上海交大实验团队成功制备出高质量双层石墨烯与二硒化钨异质结样品,使得可以对其施加高达1.6 V/nm的垂直位移电场。通过开展系统的极低温量子输运测量,结合电场调控和静电掺杂调控,他们揭示了该系统中空穴掺杂超导随位移电场和载流子浓度变化的完整相图;更为重要的是,实验上在电子掺杂的情况也观察到超导态,这是在单晶石墨烯中首次观察到电子掺杂的超导电性。空穴端和电子端的超导态强度都可以通过外加的垂直位移电场进行有效调节,实验上测量到的最高超导转变温度分别约为450 mK和300 mK,这也是目前在单晶石墨烯系统中观察到超导转变温度的最高记录。图三 在外加高垂直位移电场下,Bernal堆叠双层石墨烯电子端量子振荡及费米面分析通过测量高质量石墨烯样品的纵向电阻随垂直磁场的量子振荡(即Shubnikov-de Haas效应,简称SdH振荡),可以得到有关能带费米面的重要信息,这对于理解体系中由于电子关联相互作用导致的自发对称性破缺态,以及超导配对机制等都具有重要的意义。该研究工作详细测量了在不同位移电场下,低磁场区间空穴掺杂和电子掺杂时的SdH振荡。分析结果表明,在较高的位移电场下,双层石墨烯在空穴掺杂和电子掺杂时均出现了一系列自发对称性破缺态,这些态的出现与能带的范霍夫奇点以及电子-电子相互作用相联系。特别地,当施加电场使得双层石墨烯中的电子或空穴靠近二硒化钨层时,SdH振荡的频率发生了进一步的变化,这是因为当电子和空穴靠近二硒化钨层时,感受到了明显的自旋轨道耦合作用,从而导致电子态的简并度和费米面的结构发生变化。实验结果表明,空穴掺杂和电子掺杂的超导的正常态均对应于费米面为部分极化的情况。最后,该工作详细对比了双层石墨烯中电子掺杂超导和空穴掺杂超导的性质。出乎意料的是,在选取的超导转变温度,超导临界垂直磁场等超导性质类似的情况下,空穴掺杂超导和电子掺杂超导展现了截然不同的平行磁场依赖性。具体而言,空穴掺杂的超导态违反了泡利顺磁极限,而电子掺杂的超导性却始终遵循泡利顺磁极限。之前的研究工作认为,二硒化钨对石墨烯系统超导态的增强效果可以通过近邻效应引入的Ising自旋轨道耦合相互作用的角度来理解,而超过泡利顺磁极限的空穴掺杂超导是Ising自旋轨道耦合相互作用的直接结果。而在此项工作中,尽管通过费米面分析在导带中也观测到明显的Ising自旋-轨道耦合相互作用,但电子掺杂的超导电性却没有违反泡利顺磁极限。这一观察预示着二硒化钨对双层石墨烯中超导的增强效果可能不仅仅来自于近邻效应引入的Ising自旋轨道耦合相互作用。该成果上海交大团队主要成员:(从左至右)刘晓雪、李佳熠、李楚善、徐凡、李听昕这一研究工作突显了在高位移电场下双层石墨烯系统中涌现的丰富量子物态,其中很多现象和性质还值得进一步的理论和实验研究。该工作不仅为理解单晶石墨烯乃至魔角石墨烯的超导机理提供了重要的实验信息和约束,而且为基于稳态结构的单晶石墨烯设计和制造新型超导量子器件奠定了坚实基础。论文第一作者为上海交通大学物理与天文学院博士研究生李楚善。共同通讯作者为物理与天文学院李听昕副教授,李政道研究所刘晓雪副教授和武汉大学吴冯成教授。论文的合作者还包括上海交通大学贾金锋教授,博士研究生徐凡,李佳熠;武汉大学博士研究生李泊浩;中科院物理研究所吕力研究员,沈洁研究员,仝冰冰副主任工程师,博士研究生李国安,以及日本国立材料研究所Kenji Watanabe研究员和Takashi Taniguchi研究员。此项研究涉及的器件微纳加工部分在上海交通大学物理与天文学院微纳加工平台完成,极低温测量在中国科学院综合极端条件实验装置完成。本工作得到科技部、国家自然科学基金委、上海市和上海交通大学的资助。
  • 助力碳中和!兰大吴剑峰团队揭示CO2加氢反应催化机理 | 前沿用户报道
    成果简介2021年4月,兰州大学吴剑峰课题组在ACS Catalysis上发表题为&ldquo Insights into Bimetallic Oxide Synergy during Carbon Dioxide Hydrogenation to Methanol and Dimethyl Ether over GaZrOx Oxide Catalysts&rdquo 的论文,研究了GaZrOx催化剂在CO2加氢制甲醇反应中的活性位点、协同作用及反应机理。 背景介绍二氧化碳(CO2)是一种温室气体,其排放量过多会引起全球性气候变化,如全球变暖、海平面上升等。为了实现可持续发展,科学家们提出将CO2和可再生的绿色H2共同反应生成甲醇这一解决方案。既能减少CO2的排放,又具有开发清洁能源的潜力,可谓一举两得(图1)。甲醇(DME)不仅是重要的平台分子,而且可以作为储氢化合物进一步转化为燃料和其他有价值的化学品。 图1 减少二氧化碳含量的三种方式(内圈)以及二氧化碳氢化的主要产物(外圈) 在该反应中,双金属氧化物催化剂因其优异的CO2加氢制甲醇性能而备受关注,但目前的研究仍然缺乏对其结构与催化活性之间关系的深入理解。兰州大学吴剑峰课题组利用溶剂挥发诱导自组装方法合成了一系列GaZrOx催化剂,并从原子和电子层面对其在CO2加氢制甲醇反应中的活性位点、协同作用及反应机理进行了研究(图2)。 图2 GaZrOx双金属氧化物催化CO2加氢制甲醇的协同机理研究 图文导读图3 GaZrOx双金属氧化物催化CO2加氢制甲醇反应协同机理研究思路示意图 催化活性测试本工作中,使用溶剂挥发诱导自组装方法合成了一系列GaZrOx双金属氧化物催化剂。该方法可以合成出孔径分布均一、Ga 分散性好、比表面积大的介孔催化剂,从而提高其在CO2加氢制甲醇反应中的催化活性。对其进行了催化活性测试,结果表明Ga和Zr之间存在很强的协同作用。 活性位点研究基于X射线光电子能谱、飞行时间二次离子质谱、原位漫反射红外傅里叶变换光谱、电子顺磁共振以及固体核磁共振等技术,提出GaZrOx催化剂的协同效应源自Ga-O(H2活化位点)和Zr3+-Ov(CO2活化位点)两个相邻位点。反应机理探究结合固体核磁共振实验结果,我们观测并提出了GaZrOx催化剂上CO2加氢制甲醇反应的详细机理。 提出反应机理基于以上研究思路,作者提出了GaZrOx催化剂催化CO2加氢制甲醇的反应机理,具体包括以下步骤:(1)H2在GaZrOx催化剂上极化的Ga&ndash O位点发生活化,生成Ga&ndash H物种和&ndash OH基团。(2)氧空位和Zr3+离子均参与CO2的活化。氧空位用于捕获CO2,同时Zr3+将电子转移给CO2形成激活的CO2分子,随后活化的CO2插入Ga&ndash H键中,从而产生关键中间体表面甲酸盐物种。(3)表面甲酸盐物种进一步氢化产生表面甲氧基物种、甲醇。同时GaZrOx催化剂也在氢化过程中再生。此外,甲醇也有可能通过表面甲氧基物种的水解和氢化生成。 仪器推荐本研究中使用了HORIBA LabRAM HR Evolution光谱仪进行了拉曼光谱的测试。针对GaZrOx催化剂,通过传统XRD检测方法无法区分四方相和立方相ZrO2,但拉曼光谱可以对两者进行区分。此外,拉曼光谱不需要对样品进行前处理,且具有样品无破坏可回收的优点。LabRAM HR Evolution 高分辨拉曼光谱仪配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪 如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。 吴剑锋简介吴剑峰,博士,硕士生导师,兰州大学青年研究员。致力于固体核磁共振技术在多相体系下的反应机理研究(C1化学)和多相催化剂的催化评价研究。先后在J. Am. Chem. Soc., Angew Chem., Chem.&ndash Eur. J., ACS Catal., J. Catal.和Appl. Catal. A: Gen.等杂志发表过学术论文。为J. Catal., Ind. Eng. Chem. Res., ACS Catal.等期刊担任审稿人。联系作者:fengwh18@lzu.edu.cn 文献信息英文原文标题:Insights into Bimetallic Oxide Synergy during Carbon Dioxide Hydrogenation to Methanol and Dimethyl Ether over GaZrOx Oxide Catalysts发表期刊:ACS Catalysis文章署名作者:Wen-Hua Feng, Ming-Ming Yu, Li-Jun Wang, Yu-Ting Miao, Mohsen Shakouri, Jiaqi Ran, Yongfeng Hu, Zhiyun Li, Rong Huang, Yi-Lin Lu, Daqiang Gao, and Jian-Feng Wu原文链接 :https://doi.org/10.1021/acscatal.0c05410
  • 大连化物所利用飞秒瞬态吸收光谱发现天然防晒霜防晒机理
    近日,中国科学院大连化学物理研究所复杂分子体系反应动力学研究组研究员韩克利团队发现了植物体叶表面防晒分子的超快反式-顺式光异构化机理及一种新的防晒霜分子,相关研究成果发表在《物理化学快报》(JPC Letters,DOI: 10.1021/acs.jpclett.7b00083)上。  紫外线照射到生物体上会引起DNA损伤,相对于动物,植物所受的光照时间更长。为防止紫外线造成不良影响,十字花科植物表面均匀分布了一层苹果酸类似物(Sinapoyl Malate,SM),其为一种芥子酸(Sinapic Acid,SA)的脂衍生物,可有效将紫外线的能量耗散到环境中,从而防止紫外线的破坏作用。但是,在溶液环境中,SM抵抗紫外线损伤的机理尚不清楚。  该研究团队利用飞秒瞬态吸收光谱技术和时间相关的密度泛函理论计算,发现在中性水溶液中,SM和SA都是去质子化的,它们吸收紫外线到达电子激发态后,会通过超快的光异构化方式内转换回到基态,有效地将紫外线的能量传递到环境中,避免了对遗传物质的伤害。但是,去质子化的SA发生光异构化后吸收紫外线的能力大大降低,而SM几乎没有变化,从而解释了自然选择SM作为防晒霜的原因。此外,该团队还发现处于质子化状态的SA能够在6个皮秒内通过反式-顺式光异构化的方式回到基态,生成的顺式产物也具有良好的吸收紫外线能力,为开发新型防晒霜指明了方向。  上述工作得到科技部“973”计划和国家自然科学基金的支持。
  • 浙江省计量院新建γ谱仪溯源能力
    近日,浙江省计量院取得γ谱仪校准装置计量标准考核证书,成为浙江省唯一具有γ谱仪校准能力的计量院所,填补省内相关领域能力空白。γ谱仪是常用的辐射环境监测仪器,广泛应用于放射性环境监测、核应急和核事故处理中,其计量性能直接影响监测结果的准确可靠,关乎核电安全、生态环境安全和公众健康。γ放射性核素释放出的γ光子会打到锗晶体上,γ光子的能量会传递给价带中的电子,从而产生离子空穴对,这些离子空穴对会向两极漂移,被后端电子学收集。经过后端电子学的处理生成γ光子谱,通过解谱即可实现γ放射性核素的定量和定性分析。最近,日本福岛核污水的大量排放,给海洋安全、海产品和食品安全都来了极大的危害,而γ谱仪是这些放射性核素最佳的测量手段之一。通过建立γ谱仪校准能力,实现γ谱仪测量装置的量值传递,对于保障海洋安全、食品安全和公众健康具有重要意义。
  • Picarro | 人为减排增强了大气新粒子生成:2022年北京冬奥会期间的观测证据
    随着工业化和城市化的快速发展,人类活动对环境的影响日益严重。其中,大气污染是人们最为关注的问题之一。为了改善大气质量,人们采取了各种措施,其中之一就是人为减排。人为减排对大气环境的影响以及机理也成为重要的研究方向,中国科学院大气物理研究所在2022年冬奥会举办之际,开展了相关研究。研究背景气溶胶颗粒对地球-大气系统具有深远的影响。作为对流层气溶胶的重要来源,新粒子生成(NPF)在云凝结核(CCN)形成中起着重要作用,并导致中国特大城市严重的雾霾事件。在受污染的大气中,NPF和参与成核的气态物质的行为尚不清楚。硫酸(SA)是清洁大气中参与成核的主要物质,其他气态前体物,例如氨、二甲胺(DMA)和二羧酸,会在污染环境中增强成核。由于气态前体和可凝蒸气丰富,成核机制在不同位置会有所不同。COVID 19封锁期间的研究表明,NPF事件的生成率(J3)和增长率(GR)的结果各不相同。在未来空气质量改善的情况下,大气NPF在污染大气中的行为仍不确定,需要进一步评估。2022年北京冬奥会为研究人为减排对中国特大城市成核和生长过程的影响提供了难得的机会。这项研究的重点是冬季奥运会前后NPF事件和气态前体的演变,以了解它们在雾霾形成中的作用并为未来制定污染减排政策提供信息。研究方法中国科学院大气物理研究所的研究团队于2022年1月1日-3月31日在北京2022年冬季奥运会主会场附近的北京IAP场地进行观测活动。该地点代表了典型的城市区域,与北京城市的平均颗粒物水平有很好的相关性。研究人员观测了气溶胶颗粒物的粒径分布、细颗粒物化学组成(有机物(OA)、硫酸盐(SO42-)、硝酸盐(NO3-)、铵(NH4+)和氯化物(chl))、气体物质浓度(O3、NO2、CO、SO2)、PM2.5质量浓度及气象参数(温度、相对湿度、辐射、海平面气压、风速和风向)以调查NPF事件及其气态前体的演变,了解不同时期气态前体在NPF和雾霾形成中的作用。NH3排放测量利用Picarro G1103氨气分析仪测量NH3浓度结论WOG和冬季残奥会(WPG)期间成核事件有所增强,NPF事件的频率( 52.4% 38.5% )高于Pre-WOG (25.0%)和Post-WOG(27.8%),这主要是由CS较低造成的。此外,WOG(6.4±4.1 cm-3s-1 )和WPG(6.1±2.9 cm-3s-1)期间的平均J3也高于Pre-WOG(5.6±2.9 cm-3s-1)和Post-WOG(5.7±3.1 cm-3s-1),而GR ( 2.3±1.8 nmh-1,2.7±1.4 nmh-1)略高于Pre-WOG (2.1±1.5 nm&sdot h-1)和Post-WOG (2.2±1.6 nm&sdot h-1)。研究发现,硫酸和氨浓度较低,WOG和WPG期间较高的J3可能是由较高的胺贡献的。log J3和SA之间的相关性,与CLOUD实验结果高度一致,表明胺增强了硫酸成核。进一步证明了上述结果。硫酸对GR3-7nm的贡献超过20%,在WOG和WPG期间,大气氧化能力大大增强,颗粒生长到10 nm以上时,有机化合物的贡献迅速增加。此外,还发现硝酸铵在NPF引发的雾霾事件中发挥着重要作用,其特点是WOG之后,NPF事件生长后期的硝酸盐产量高于WPG,建议采取措施控制NH3和NO2排放,以减少新粒子生成和生长造成的PM2.5污染。
  • 手持式X射线荧光光谱仪在高压隔离开关触头镀银层腐蚀故障分析中的应用
    摘要:针对一起110kV隔离开关触头的腐蚀故障,采用手持式X射线荧光光谱仪分析故障隔离开关触头镀层的化学成分,发现厂家使用银氧化锡(Ag-SnO2)镀层代替镀银层。分析认为在工业含硫大气环境中,Ag-SnO2镀层中的银被SO2、H2S等硫化物腐蚀,铜基体在潮湿环境下腐蚀生成Cu2(OH)2CO3,从而导致隔离开关触头导电回路的接触电阻升高,引发过热故障。针对此次故障,提出了解决措施和建议。关键词:手持式X射线荧光光谱仪;隔离开关触头;电刷镀银;银氧化锡;腐蚀中图分类号:TQ153.16 文献标志码:A 文章编号:1004 – 227X (2019) 23 – 1 – 04高压隔离开关是电力系统中使用最多、应用最广的一次设备。由于高压隔离开关多在户外运行,长期受风吹、雨淋、雷电、潮气、盐雾、凝露、冰雪、沙尘、污秽,以及SO2、H2S、NO2、氯化物等大气污染物的影响,因此各部件会发生不同程度的腐蚀[1-2]。高压隔离开关触头是关键部件,承担着转接、隔离、接通、分断等任务,其工作状态的好坏直接影响整个电力系统的运行[3]。高压隔离开关触头的基体为纯铜,但纯铜易被腐蚀,会造成表面接触电阻升高,引发过热故障,影响开关设备和电网的安全稳定运行[4-6]。为了减小接触电阻,DL/T 486–2010《高压交流隔离开关和接地开关》、DL/T 1424–2015《电网金属技术监督规程》和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》[7]中明确规定:隔离开关触头表面必须镀银,且镀银层厚度不小于20 μm,以获得较低的接触电阻,从而保证良好的导电性。然而,在实际运行中,很多厂家生产的高压隔离开关产品会出现触头腐蚀、变色发黑、发热等故障,一般是由触头镀锡代替银或镀银层厚度不足造成,这些缺陷都可以通过国家电网公司开展的金属专项技术监督检测隔离开关触头镀银层厚度而发现[8]。近期,四川电网在金属技术监督中发现一起高压隔离开关触头腐蚀案例,镀银层厚度检测结果合格,但在采用手持式X射线荧光光谱仪分析镀层化学成分时发现,厂家竟然使用银氧化锡(Ag-SnO2)镀层代替镀银层,该造假手段通过颜色判断和镀层测厚无法发现,非常隐蔽,很容易因未进行镀层成分分析而误判合格,严重威胁电网的安全运行,希望引起各运维单位注意。 1 高压隔离开关触头的腐蚀故障某110 kV变电站于1991年投运,当地大气污秽等级为E级,大气类型为工业污染。周边潮湿多雨,化工、煤炭、玻璃等重工业污染企业密集,空气中SO2、H2S等硫化物浓度较高,大气的腐蚀性较强。2013年更换隔离开关触头,防腐措施为铜镀银。2017年站内巡检发现某110 kV隔离开关触头腐蚀严重,动、静触头接触面大部分呈绿色,少部分呈黑色(见图1)。红外测温发现该隔离开关触头存在过热故障,若继续运行,可能会造成隔离开关烧毁,甚至大面积停电等恶性事故,运维单位国网泸州供电公司紧急安排停运该隔离开关,并与国网四川电科院联合开展故障分析。图1 某110 kV隔离开关触头的腐蚀情况2 手持式X射线荧光光谱仪的检测原理X射线荧光光谱分析是用于高压隔离开关触头表面金属成分检测的一种非常有效的分析方法,具有快速、分析元素多、分析浓度范围宽、精度高、可同时进行多元素分析、无损检测等优点,被广泛应用于元素分析和化学分析领域[9]。其原理[9-12]为:由激发源产生高能量X射线照射被测样品,样品表面元素内层电子被击出后,轨道形成空穴,外层高能电子自发向内层空穴跃迁,同时辐射出特征二次X射线。每种元素都有各自固定的能量或波长特征谱线,具体与元素的原子序数有关。检测器测量这些二次X射线的能量及数量或波长,仪器软件将收集到的信号转换成样品中各种元素的种类和含量。X射线荧光光谱仪通常可分为波长色散型和能量色散型两大类,各自原理如图2 [11]所示。波长色散型光谱仪一般采用X射线管作为激发源,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成分,属于台式仪器。能量色散型光谱仪是利用荧光X射线具有不同能量的特点,将其分开并进行检测,从而确定元素成分和含量,可以同时测定样品中几乎所有的元素,激发源使用的X射线管功率较低,且使用半导体探测器,避开了复杂的分光晶体结构,因此仪器工作稳定,体积小,便携性高,价格也较低,能够在数秒内准确、无损地获得检测结果,被广泛应用于金属材料中元素的精确定量分析[12-13]。 图2 波长色散型(a)和能量色散型(b)X射线荧光光谱仪的检测原理目前市售手持式X射线荧光光谱分析仪基本都是能量色散型X射线光谱仪。图3是目前四川电网基层供电公司使用的美国Thermo Fisher Scientific Niton XL2 800手持式X射线荧光光谱仪,它不受分析样品的大小、形状、位置限制,无需拆卸隔离开关,可以携带至变电站现场,能够分析Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Re, Au, Pb, Bi等25种元素。图3 手持式X射线荧光光谱仪3 现场检测结果3. 1 镀层化学成分分析使用XL2 800手持式X射线荧光光谱仪对110 kV隔离开关触头不同颜色区域的镀层和铜基体进行分析,结果见表1。银白色区域中Ag、Cu和Sn的质量分数分别为91.48%、1.83%和5.71%。Cu是隔离开关触头的基体成分,查阅文献[14]可知,该银锡比例是第二相SnO2颗粒弥散分布于银基质层中的Ag–SnO2金属基复合材料,不符合DL/T 486-2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中隔离开关触头应镀银的要求。黑色区域的Ag含量低至75.33%,Cu含量和Sn含量则较高,这是因为Ag-SnO2镀层中的Ag与空气中的SO2、H2S等含硫化合物反应生成黑色的腐蚀产物β-Ag2S和Ag2SO3。随着腐蚀反应的进行,Ag-SnO2镀层表面逐渐由银白色转变为深灰色及黑色。绿色区域的Cu质量分数已升至82.31%,Sn的质量分数则与灰色区域相近,而Ag已检测不到,表明Ag-SnO2镀层中银的腐蚀产物发黑并脱落后,镀层中分散的SnO2无法保护铜基体,使得铜在潮湿环境下与空气中的O2、CO2和H2O反应生成绿色的碱式碳酸铜Cu2(OH)2CO3(俗称铜绿)。将绿色区域打磨后分析铜基体发现其中含99.72% Cu和0.15% Sn,说明该隔离开关触头的基体材质为纯铜,检出的少量锡来源于残余的镀层。表1 110 kV隔离开关触头镀层上不同颜色区域及铜基体的元素成分分析结果3. 2 镀层厚度检测使用XL2 800手持式X射线荧光光谱仪检测110 kV隔离开关触头的镀银层厚度,结果显示银白色、黑色和绿色区域的镀银层厚度分别为23.953、16.885和0.000 μm。这说明随腐蚀反应的进行,镀层逐渐被消耗,直至完全损失。DL/T 486–2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中明确规定隔离开关触头的镀银层厚度不应小于20 μm。为节约成本,厂家最常用的造假手段就是用镀锡代替或减少镀银量,这两种手段都可直接通过镀层测厚发现。但本次的造假是采用Ag-SnO2层代替Ag层,也是呈银白色,并且镀层厚度大于20 μm,仅通过颜色判断和测厚均无法发现,隐蔽性较强。Ag-SnO2镀层触头因为电导率较纯银低,主要用于继电器、低压开关等低压电器。若用于高压隔离开关,在大电流下很容易发热,存在严重安全隐患。4 结语和建议针对一起110 kV隔离开关触头腐蚀故障,使用手持式X射线荧光光谱仪分析触头的镀层成分,发现厂家使用Ag-SnO2镀层代替Ag镀层,Ag-SnO2镀层中的银被空气中的硫化物腐蚀后,铜基体被腐蚀,导致导电回路接触电阻升高,引发过热故障,是造成该故障的主要原因。为保证此类故障不再发生,应采取以下措施:(1)高度重视在役高压隔离开关触头表面镀银层的腐蚀发黑、发绿现象,发黑说明镀银层已被腐蚀,发绿说明镀银层已被腐蚀完,腐蚀延伸到铜基体,会导致隔离开关触头的接触电阻升高,易引发隔离开关过热、烧毁、全站失压等安全事故,应尽快安排停电,及时更换失效的高压隔离开关触头。(2)联系生产厂家,将同批次产品全部更换为合格产品,以消除安全隐患。(3)加强对新建输变电工程高压隔离开关触头镀银层的检测,镀层成分和厚度均合格后方可入网。参考文献:[1] 曹胜利, 苑金海, 赵昌. 户外高压隔离开关腐蚀与防护分析[J]. 电气制造, 2007 (6): 46-48.[2] 钟振蛟. 户外隔离开关导电回路过热的原因及对策[J]. 高压电器, 2005, 41 (4): 307-312.[3] 闫斌, 邓大勇, 何喜梅, 等. 高压导电触头电镀工艺与失效分析[J]. 青海电力, 2008, 27 (3): 6-9.[4] 梁方建, 张道乾. GW5-110型隔离开关触头发热缺陷分析及检修处理[J]. 高压电器, 2008, 44 (1): 88-90.[5] 刘海龙, 龚杰, 万亦农, 等. 某110 kV变电站隔离开关普遍发热原因分析及防范措施[J]. 电工技术, 2016 (8): 99-101.[6] 赵庆, 茅大钧. 户外高压隔离开关触头发热机理分析及预防过热故障措施探讨[J]. 电气应用, 2016, 35 (3): 72-76.[7] 国家电网有限公司. 国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明[M]. 北京: 中国电力出版社, 2018.[8] 刘纯, 谢亿, 胡加瑞, 等. 电网金属技术监督现状与发展趋势[J]. 湖南电力, 2016, 36 (3): 39-42.[9] 徐雪霞, 冯砚厅, 柯浩, 等. 高压隔离开关触头镀银层质量检测分析[J]. 河北电力技术, 2013, 32 (3): 3-5, 11.[10] 胡波, 武晓梅, 余韬, 等. X射线荧光光谱仪的发展及应用[J]. 核电子学与探测技术, 2015, 35 (7): 695-702, 706.[11] 赵晨. X射线荧光光谱仪原理与应用探讨[J]. 电子质量, 2007 (2): 4-7.[12] 金鑫, 金涌川, 李学斌, 等. 电气设备金属元素检测分析[J]. 电气应用, 2018, 37 (18): 80-85.[13] 何翠强. 手持式X射线荧光光谱仪在金属材料分析中的应用研究[J]. 冶金与材料, 2018, 38 (4): 134-135.[13] 谢明, 王松, 付作鑫, 等. AgSnO2电接触材料研究概述[J]. 电工材料, 2013 (2): 36-39.
  • 岛津原子力显微镜——KPFM在光催化中的应用
    二氧化钛(TiO2)是一种宽禁带N型半导体,其表面受到光的照射时,若光子的能量大于或等于其禁带宽度(波长低于400nm的紫外光),价带的电子将受到激发跃迁至导带,形成自由电子,同时带正电荷的空穴留在价带上,从而产生了电子-空穴对。电子和空穴分别发生氧化和还原反应,使反应体系中的原子基团被催化分解,完成光催化的功能。因此TiO2纳米颗粒有良好的光催化功能。但是因为TiO2纳米颗粒吸收截面非常小,所以光激发产生的电子与空穴复合率高,导致光催化效率降低。如何提高TiO2纳米颗粒对近紫外光的吸收截面是提升其光催化性能的一条重要途径。 通过研究发现,加入贵金属纳米颗粒可以提高电荷转移的效率,降低电子与空穴的复合率,从而提高其光催化性能。其可能的原因是贵金属纳米颗粒与光相互作用时表面产生等离子体共振,完成了能量传递,增加了光催化能力。 金纳米颗粒(AuNP)增强光催化是当前能源、环境领域的一个研究热点。AuNP和TiO2的复合材料的催化机理已被广泛研究,反应过程中对表面电荷的分布进行观察可以有效阐明催化过程。原子力显微镜的开尔文探针力显微镜(KPFM)功能是一种将开尔文定律应用于扫描探针显微镜(SPM)的分析技术,不仅可以测量样品的表面形状,还可以测量样品的表面电位分布。 因此,尝试在紫外光照射下的对AuNP和复合材料进行表面KPFM扫描,可表征样品表面上的光致电荷分布(电荷分离)。 利用生物素-链霉亲和素复合物可将AuNP有效结合到TiO2颗粒表面。设计实验,制备两种样品,一种是没有生物素-链霉亲和素复合物的对照样品,以及使用生物素-链霉亲和素复合物的样品,在照射紫外光及不照射紫外光的条件下,分别测量固定在TiO2上的AuNP的表面电位分布,以可视化光致电荷分布。 生物素-链霉亲和素复合物与AuNP作用示意图 AuNP与TiO2 复合材料表面电位分布测量图 岛津SPM-9700HT使用光照射单元通过光纤对样品表面进行紫外光照射 没有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图 有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图 从上面两组图可以看出,这两种样品,在紫外光照射时AuNP的相对电位都低于TiO2表面的相对电位。 没有生物素-链霉亲和素复合物(蓝色),有生物素-链霉亲和素复合物(红色)时AuNP对TiO2表面的相对电位统计对比 将两种样品在有紫外光照射和没有紫外光照射情况下的表面电位进行统计分析。白色框图柱表示没有紫外光照射,颜色柱表示有紫外光照射。误差条显示6-7个粒子的测量值的中值±IQR。当AuNP形成组装体时,在紫外光照射下AuNP与TiO2表面的相对电位显着降低。 本实验通过在紫外光照射下通过KPFM测量表面电位分布,实现了固定在TiO2上的AuNP杂化物的光致电荷分布的可视化。这表明使用SPM的KPFM 模式,辅助以光照射单元可以有效地观察光催化是表面的电荷分离情况。 本文内容非商业广告,仅供专业人士参考。
  • 从连续流技术看吉利德Remdesivir的合成
    吉利德公司的广谱抗病毒药物瑞德西韦(Remdesivir),针对2019新型冠状病毒(2019-nCoV)显示了好的疗效。这一令人振奋的结果一经报道,即刻吸引了众多制药企业的关注。康宁反应器技术作为连续流技术的倡导者,从连续流技术的角度来看看吉利德Remdesivir的合成。图1:Remdesivir分子结构化学名:(2S)-2-ethylbutyl2-(((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo [2,1f] [1,2,4] triazin-7-yl)-5-cyano-3,4-dihydroxy tetrahydrofuran-2-yl)methoxy) (phenoxy) phosphoryl) amino) propanoateCAS号:1809249-37-3当下,国内很多药企也纷纷将目光聚焦到了Remdesivir,不少企业和研发机构已经开始立项开发此药。甚至连化学中间体商也加入了这股热潮。合成路线图:Remdesivir合成为Nature2016年报道的第二代合成方法,实验室可放大至百克级。共6步反应,收率分别为40%,85%,86%,90%,70%,69%,中间体6合成需要两步,收率分别80%,39%。化合物3的合成是低温有机强碱加成反应,该步反应收率低,放大困难。而微通道在此类反应展现了很强大的优势,有潜力来解决这类问题。图4:化合物4的合成化合物4的合成,可以用连续流的方式进行。为此,Gilead在中国也申请了专利(CN107074902)。该氰基化反应,采用连续流反应器,温度控制在-40℃,而釜式工艺中需要降温到-78℃。在化合物6的合成中,第一步反应先合成化合物9,该取代反应极易发生二取代而造成选择性降低。连续流可以精准控制反应物料摩尔比及反应温度,在一定程度上提高反应选择性。纵观Remdesivir合成,有多步反应使用了低温。而低温反应在工艺放大过程中,普遍存在着控制难,收率低等问题。康宁微通道反应器,模块化设计,相比于传统釜式反应,具有100倍传质效率,1000倍换热面积,精确控制停留时间。特别适用于非均相反应、放热量大、具有安全风险以及小试工艺无法放大的反应。参考文献:Nature, 2016, Doi:10.1038 /nature 17180 pages381–385微通道连续流技术作为化工研发和生产的一项技术创新越来越受到重视。它在很大程度上改善物料的传质和反应的放热情况,提高反应的安全性及中间体的不稳定性,从而在反应选择性和收率上与传统釜式反应相比具有明显优势。当进行有机金属类化学反应时,通常有两种过程机理如下图1所示。控制有机锂中间体的稳定性作为内温函数 (IT)和停留时间(τ)第一种机理从上图1中a)曲线可以看出在反应进程中在亲电试剂猝灭前增加芳基锂中间体的半衰期来延长停留时间(最多分钟)。在这种情况下,混合效率起次要作用。停留时间(反应)可以被很好地优化,最大化地转换芳基卤化物为相应的芳基锂中间体。这类反应通常可以在反应器中在-78°C进行放热的卤素和锂的交换,然后用亲电试剂在-78°C下偶合。第二种机理是对于极快速反应(反应时间小于1秒),如图1中b)曲线所示,相反侧重于瞬时、高效混合和停留时间较短的反应。在这种情况下,反应时间是由准绝热条件下的混合时间和相变条件来决定。这种类型的操作通常在微反应器中进行,通过快速捕获不稳定芳基锂物种避免其分解。有各种文献报道的例子显示在反应时间小于1秒尺度上化学合成,如不稳定芳基锂中间体的生成与具有功能性亲电试剂结合生成新奇,令人印象深刻的新型化学品。对于金属有机类型的反应,微通道连续流反应器可以在低温下很好地控制反应温度及有机锂试剂及底物的混合。基于微反应器高效混合及精准控制反应温度的优点,可以在药物研究的不同阶段快速提供少量或批量的产品。再如图3所示,变换不同的亲电试剂和底物,可以得到不同的偶合产物。微通道反应器可以作为一个药物开发和批量生产的强有力的工具,因为其独特的混合和换热及温度精准控制的功能,为新奇药物的开发打开了一个新的窗口。康宁研发型反应器平台开发的工艺到康宁工业化生产无放大效应,可以更快、更好地应对市场的需求。康宁公司不仅对低温有机强碱反应经验丰富,对其他类型反应也有很好的经验。比如Remdesivir合成的最后的一步(水解反应),康宁在其类似底物的反应中展现了很大的优势,收率得到了大幅度的提升。如您想了解更多成功案例,欢迎来康宁反应器技术有限公司深度交流。参考文献:Org. Lett. 2016, 18, 3630?3633康宁反应器技术康宁生产和销售系列微通道反应器;• 为客户提供研发平台整体方案,协助客户进行工艺筛选和工艺开发;• 提供连续流微反应技术培训及售后服务;• 为客户进行研发工艺论证,提供工业化可行性方案• 为客户定制工业化整体方案并加以实施;• 为教育系统提供教学设备教师培训,提供合作交流机会;• 为园区化工企业提供连续流技术培训;协助园区进行本质安全教育;康宁与世界最领先科技持续公司密切合作,打造化工、医药企业的研发和生产的前瞻性可持续创新技术。康宁反应器技术有着10年的工业化业绩,积累了大量工艺开发及工程放大经验,可有效地帮助客户实现这一革命性创新带来的价值。用心做反应既是康宁微通道反应器通道设计的写照,更是康宁反应器团队多年来坚守的职业操守。
  • 物理所铁基高温超导体超导能隙对称性和轨道相关性研究取得新进展
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室丁洪研究组与日本东北大学高桥隆教授小组合作,在铁基高温超导体超导能隙对称性和轨道相关性研究的中取得新进展。  高温超导电性一直是一个热门的研究课题。最近发现的铁砷化合物超导体的超导转变温度达到55K,从而结束了铜氧化合物在高温超导领域内的统治地位,更是将这一课题的研究推向了一个新的高潮。和铜氧化合物超导体的情况一样,揭示出这种新型超导体的物理性质,特别是超导能隙对称性和轨道相关性成为理解这种高温超导机理和相关物理特性的最关键的问题。  丁洪及其合作者利用高分辨角分辨光电子能谱仪,对新发现的超导体Ba0.6K0.4Fe2As2 (Tc = 37 K)进行了研究。他们观察该材料具有两不同值的超导能隙:较大的能隙(Δ~12meV)处在两个小的类空穴和类电子费米面上 较小的能隙(~6meV)处在一个大的类空穴费米面上。两个能隙都在体转变温度(Tc)处同时闭合,在其各自的费米面附近无节点且几乎各项同性。随着在不同能带上耦合系数2Δ/KBTc从弱耦合变化到强耦合,各向同性的配对相互作用表现出强烈的轨道依赖性。这种相同且相当大的超导能隙归因于两个小费米面上的强配对作用,而这两费米面通过母系统(parent compound)中反铁磁自旋密度波矢量联系。这就表明配对机制源于两个相互嵌套费米面的带间相互作用(inter-band interactions)。  该项工作以发表在 Europhys. Lett 83 (2008) 47001。美国阿贡国家实验室的Michael Norman最近为美国物理学会今年创刊的Physics杂志中“trends”栏目撰写了关于铁基超导体物理研究的短评文章,重点介绍了此项工作。同时 EuroPhysics News以 Pairing symmetry of iron-based superconductors为题目选作研究亮点进行报道。2008年8月1号日本《科学新闻》以“铁系高温超导体的超导电子对对称性的成功确定对于物质结构的解析带来很大进步 ”为标题对这项工作进行了报道。  此外,他们还对多种铁基超导体进行了一系列深入的研究,其中包括母体材料、空穴型和电子型掺杂材料、欠掺杂和过掺杂材料。主要成果包括:观察到了一种可能是电子配对媒介的反铁磁性玻色子模式,同时对电子结构进行了完整描述,并发现了超导能隙和费米面随掺杂浓度变化的演变。这些成果已被写成6篇论文,即将发表在Physical Review Letters等刊物上。  以上研究工作得到中国科学院、国家自然科学基金委和科技部相关项目的资助。
  • Molecular Devices的成像系统助力Recursion公司生成最大的公开可用的人类细胞形态学数据集来用于COVID-19治疗研究
    助力科研,携手战“疫”——Molecular Devices在行动!COVID-19的流行已影响全球数百万人,在这个没有硝烟的战场中数字生物学公司Recursion和Molecular Devices硬核出击。2020年6月25日,Recursion免费公开了世界上最大的影像数据集RxRx19,这个数据集是关于目前已被批准或参考的1600种治疗化合物分子在SARS-CoV-2感染的人源细胞上的效应。其图像和数据都是使用Molecular Devices ImageXpress Micro Confocal高内涵成像系统获得的,在不到四周的时间内得到了30.5多万张高分辨率、多通道的COVID-19细胞图像。在COVID-19的研究中,RxRx19为日益增多的科学数据做出了重要贡献,这些图像和数据集都可以在网上免费获得,研究人员可以自由预览这些图像和进行相应的深度学习,以便他们进行分析或应用到实验假设中。Recursion的Ronalfa认为我们最大的挑战我们需要很多的时间去了解医学相关的科学,Recursion的自动化仪器夜以继日的工作,生成了大量的生物学数据,他们将创建人源生物学谱,致力于新药的研究。Recursion合伙人兼CEO Christopher Gibson特别介绍了他们用Molecular Devices高内涵成像系统整合的自动化生物平台,其具有巨大的可扩展性和数据相关性:“每周我们会有超过25万个实验在进行,会产生500万以上的图像,超过1.5 PB的专有生物图像数据。通过这些图片,我们能更深度的去了解生物学。Molecular Devices的总裁 Susan Murphy说:“我们感谢Recursion的RxRx19为研究人员提供相关统计数据,从而促进我们对COVID-19细胞反应的理解和药物发现。在这个非常时期是相当有价值的,因为今年许多实验室都在缩减空间,或者由于疫情完全关闭。这个强大的实例说明我们创新的高内涵成像技术能为客户提供快速,可靠的数据从而有助于探索COVID-19的治疗方法。”Recursion用 ImageXpress Micro Confocal 对细胞板进行成像,在宽场模式下选择20倍物镜,每个孔设置4个区域,每个区域有5个通道。Recursion采用了一种独特的光学技术,能够降低背景噪点而提高图像的清晰度,因此能获得复杂形态结构的高质量的图像,而这一切都是在宽场成像速度下且不牺牲通量的情况下实现的。Molecular Devices继续领跑细胞成像领域,其功能强大且易于使用的高内涵成像系统一直致力于寻求新的发现。更多信息,请访问公司官网。关于Molecular DevicesMolecular Devices是提供高性能生物分析测量系统、软件和生命科学研究、制药和生物治疗开发所需耗材的先进的供应商之一。其广泛的产品线包括高通量筛选,基因组和细胞分析,克隆挑选和微孔板检测。这些尖端产品有助于科学家提高生产力和效力,最终加速新疗法的研究和发现。Molecular Devices致力于不断的为生命科学应用提供解决方案。该公司总部位于加州硅谷,在全球各地设有办事处。关于RecursionRecursion是一家致力于药物研发产业化的数字生物公司。Recursion可实现自动化、人工智能、机器学习、体内验证能力的结合,如此高度交叉功能的团队用来发现新药而扩展我们对生物学的认知。公司机器人平台的丰富的,4.7千兆字节的生物图像数据库能够让用户学习到更先进的关于揭示药物候选,作用机制,创新化学和潜在毒性的方法,最终达到解码生物学和研究新治疗方法的目标,进而从根本上改善人们的生活。Recursion公司的总部位于盐湖城。了解更多信息请访问www.recursionpharma.com,或在Twitter和LinkedIn上联系。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制