当前位置: 仪器信息网 > 行业主题 > >

苦参碱氧化苦参碱

仪器信息网苦参碱氧化苦参碱专题为您整合苦参碱氧化苦参碱相关的最新文章,在苦参碱氧化苦参碱专题,您不仅可以免费浏览苦参碱氧化苦参碱的资讯, 同时您还可以浏览苦参碱氧化苦参碱的相关资料、解决方案,参与社区苦参碱氧化苦参碱话题讨论。

苦参碱氧化苦参碱相关的资讯

  • 案例分享 | 同时检测酸性成分与碱性成分
    酸碱共存的多种化合物的分离,在方法开发时,经常会出现酸保留峰型良好时,碱性成分峰型保留不理想,碱性成分保留峰型满意时,酸性成分的峰型与保留又不理想。在这种情况下,可以选择离子对试剂来增加其中酸或碱的保留,再选择合适的流动相pH值及有机相比例,使所有物质均能分离并都有良好的峰型。案例壬二酸、苦参碱的分离:色谱柱:UItimate Polar RP,4.6×250mm,5μm。检测波长:220nm;柱温: 40℃;流速: 1.0mL/min;进样量:20μL。在液相色谱中,pH值对酸碱成分的保留与峰型有很大的影响,pH降低,酸保留增强,碱保留减弱;反之,随着pH值增大,酸保留减弱,碱保留增强。因此对于酸碱样品,选择合适的pH值至关重要。在这个案例中,壬二酸为酸性成分,苦参碱为碱性成分,三氟乙酸具有弱离子对效果,可以适当增加苦参碱的保留。而0.1%三氟乙酸的pH在2.0-2.5之间,壬二酸在酸性条件下保留较强,采用梯度洗脱的方式,使两个成分的峰型和保留均能达比较满意的峰型与保留。
  • 兰州化物所邱洪灯、陈佳等天然产物中酶抑制剂筛选研究取得新进展
    天然产物具有资源丰富、安全有效、环境友好和毒副作用小等特点,是天然酶抑制剂的重要来源之一。从天然产物中筛选有效、低毒、价廉的酶抑制剂具有重要意义。低共熔溶剂(Deep eutectic solvents, DES)作为一类新型离子液体,具有制备简单、蒸气压低、可生物降解、成本低和设计性强等特点。近年来,中国科学院兰州化学物理研究所中科院西北特色植物资源化学重点实验室手性分离与微纳分析课题组在新型碱性DES的设计合成及用于纳米酶分析方面取得了系列成果。最近,研究人员以L-脯氨酸为氢键供体、六水合硝酸铈为氢键受体,结合理论计算合成了新型DES(图1)。图1. L-脯氨酸与六水合硝酸铈以不同的摩尔比形成的混合物的玻璃化转变温度及三维结合模式图研究人员以摩尔比为1:1的L-脯氨酸和六水合硝酸铈组成的DES为溶剂、反应物和模板,制备出CeO2-Co(OH)2复合材料。结果表明,与水溶液中制备的CeO2、Co(OH)2和CeO2-Co(OH)2材料相比,在该DES中制备的CeO2-Co(OH)2复合材料具有更显著的类氧化酶活性,这主要是由于DES中制得的CeO2-Co(OH)2具有丰富的氧空位。基于CeO2-Co(OH)2纳米材料优异的类氧化酶活性,构建了可视化检测乙酰胆碱酯酶活性和不可逆抑制剂筛选的新方法。在此基础上,研究人员将其成功应用于生物碱类天然产物(盐酸小檗碱、咖啡因、喜树碱、苦参碱和吴茱萸碱)中乙酰胆碱酯酶可逆抑制剂的筛选,并通过分子对接和动力学模拟实验探讨了其作用机理(图2)。该研究不仅拓展了DES在纳米酶中的应用,而且为从天然产物中筛选阿尔茨海默病等神经退行性疾病的治疗药物提供了一种新策略。图2. CeO2-Co(OH)2复合材料用于乙酰胆碱酯酶活性检测及抑制剂筛选该研究发表在Analytical Chemistry上,硕士研究生刘芸为该论文第一作者,兰州化物所陈佳副研究员、邱洪灯研究员和东北大学于永亮教授为共同通讯作者。前期相关研究成果发表在Chinese Chemical Letters(2020, 31, 1584)、Analytical and Bioanlytical Chemistry(2020, 412, 4629)、Microchimica Acta(2020, 187, 314)、ACS Applied Nano Materials(2021, 4, 2820)、Talanta(2021, 222, 121680)和ACS Sustainable Chemistry & Engineering(2021, 9, 15147)上。以上工作得到了国家自然科学基金、中科院青年创新促进会和甘肃省自然科学基金项目的支持。
  • 安捷伦公司大力支持2010年全国有机质谱学术会议
    安捷伦公司大力支持2010年全国有机质谱学术会议 由中国分析测试学会主办,清华大学分析中心承办的全国有机质谱学术会议于2010年11月4-9日在美丽的绿城--广西南宁隆重召开,安捷伦公司作为大会的主要赞助商,积极参与了大会新技术研究报告、专题报告、优秀论文评选、专场技术应用推广会等学术交流活动,与近300位会议代表进行了良好的沟通互动,让质谱界专家老师们从多种应用角度充分了解到安捷伦公司液质联用领域的最新技术进展与行业解决方案,同时也再次展示出安捷伦公司作为业界巨擘在液质联用市场发展与开拓领域的雄厚实力。 会议期间安捷伦以多种形式参与技术交流。11月6日举办的&ldquo 安捷伦公司最新技术与应用进展专场介绍&rdquo 活动中,安捷伦公司资深液质联用应用工程师张政祥博士为众多前来听课的老师们详细介绍了安捷伦液质联用技术在食品、药品及组学研究领域的最新应用进展,并同在场用户积极互动,获得广泛好评。 11月7日,安捷伦公司资深液质联用应用工程师冉小蓉博士进行了题为&ldquo 安捷伦蛋白标记物的定性,定量和验证的的综合分析途径&rdquo 的精彩大会报告,报告清晰阐释了安捷伦公司蛋白质组学研究解决方案的完整性、准确性、易用性与可靠性,以及硬件、软件方面独特的优势特点。尤其是安捷伦6500系列Q-TOF MS质谱仪结合安捷伦全新推出的生物信息学软件Mass Profiler Professional(MPP)可以为蛋白质组学及代谢组学中生物标识物发现及确认提供最全线的解决方案,从而应对组学对分析方法提出的重大挑战。 此次大会还举办了分组专题讨论。多位安捷伦公司资深液质联用应用工程师分别带来精彩报告。包括,环境、食品卫生、石油化工分会上张政祥博士带来的&ldquo 安捷伦超高效液质联用系统在染料鉴定与定量分析中的应用&rdquo ;生物医学及药物、机理及方法、天然产物及烟草分会上薄涛博士的&ldquo 超高效液相色谱-三重串联四级杆质谱用于中药提取物中氧化槐果碱和氧化苦参碱的定量分析&rdquo 与王颖博士的&ldquo Determination of Adulterated Antidiabetics in TCM products by using RRLC/MS/MS&rdquo 。其行业分布广泛、报告内容丰富与仪器手段先进均给在场听众留下深刻印象。 11月6日晚,激情四溢的&ldquo 安捷伦之夜&rdquo 隆重登场,在精心的活动安排与策划下,席间宾朋热情互动,欢快气氛此起彼伏,为全体与会嘉宾的南宁之旅增添难忘的一笔。全国有机质谱学术会议主席、清华大学林金明教授与安捷伦公司西南区经理张伟先生分别致辞。 全国有机质谱学术会议主席、清华大学林金明教授致辞祝酒 在多学科、全领域的应用解决方案发展道路上,安捷伦公司始终做到了&ldquo 领先科技,更胜一筹&rdquo ,安捷伦公司将继续秉承服务广大用户,提升人类生活环境及质量的宗旨,一如既往地携手用户,共创双赢!关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18500 名员工在 100 多个国家为客户服务。在 2009 财政年度,安捷伦的业务净收入为 45 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn 。
  • 农业部公布2016年农资打假十大典型案件
    2016年,各级农业部门认真履行农资打假牵头职责,会同公安等部门严厉打击制售假劣农资违法犯罪行为,有效维护了农民合法权益,切实保障了农业生产安全和农产品质量安全。其中吉林、辽宁、山东、湖北、江苏、四川等地农业部门紧抓线索,深挖源头,依法查处了一批制售假劣农资大案要案。为震慑不法分子,农业部对外公布2016年农资打假十大典型案件,其中农药案3件,种子案3件,兽药案3件,饲料案1件。  一、湖北省随州市曾都区农业局查处山西美源化工有限公司生产销售假农药案  2015年12月,湖北省随州市曾都区农业执法大队接到随州市棋盘山众星茶业有限公司举报,称其种植的茶叶使用随州市曾都区何店供销社响堂街综合服务站戴某处销售的0.5%苦参碱水剂农药后,被检测出“啶虫脒”,导致所产茶叶无法出口,直接经济损失339万元。经检测,涉案“苦参碱”农药含有标签未标注成分“啶虫脒”,为假农药。经查,该批农药由山西美源化工有限公司生产销售。2016年2月,案件移送公安机关查处,犯罪嫌疑人被抓捕。  二、江苏省东台市农委查处弶港供销合作社市农业生产资料有限公司前进南路加盟店经营假农药案  2015年6月,江苏省东台市弶港供销合作社市农业生产资料有限公司前进南路加盟店购进75%三环唑粉剂70箱,并全部销售,销售收入13300元。经查,该批农药为山东一黑窝点生产,有效成分未检出,判定为假农药,东台市时堰等镇农民共遭受经济损失92万余元。2016年1月,案件移送公安机关查处,目前已逮捕5人,取保候审2人。  三、湖北省嘉鱼县农业局查处河南郑州大韩农业科技有限公司生产销售假农药案  2015年11月,湖北省嘉鱼县农业执法大队接到农民投诉,称新街镇农资经销商肖某销售的“十字秀”牌“精喹禾灵”(内含2包未标明成分的“赠品”)除草剂致大白菜生长迟缓、叶片外翻等情况。经查,肖某所售农药是从河南郑州大韩农业科技有限公司购进的假冒产品,共计2240包,其中2201包销售给新街镇105户农户,受损面积1533亩,经济损失85万余元。抽检“精喹禾灵”产品有效含量9.9%,标称含量15%,为不合格产品 “赠品”检测出未经登记的农药成分,为假农药,司法鉴定认定“赠品”是造成白菜受害严重的原因。2016年2月,案件移送公安机关查处,犯罪嫌疑人被刑事拘留。  四、江苏省东台市农委查处江苏硕农种子有限公司未取得种子经营许可证生产经营种子案  2015年11月,江苏省东台市农委执法人员在执法检查中发现,江苏硕农种子有限公司正在加工标称生产企业为连云港市四季丰种业有限公司的苏科麦1号小麦种子。经查,江苏硕农种子有限公司未取得种子经营许可证,违法加工小麦种子23.7万公斤,销售20.325万公斤,销售金额67万元。2016年3月,案件移送公安机关查处。  五、吉林省农委联合公主岭市农业、公安部门捣毁种子加工黑窝点案  2015年12月,吉林省种子管理总站、公主岭市公安局和公主岭市农业综合执法大队人员根据举报联合行动,在公主岭市岭西街道新园社区选波机械厂内,发现并捣毁了一个制售假玉米种子黑窝点。现场查获玉米种子11.52万公斤,其中已包装的玉米种子1.22万公斤,散装玉米种子10.3万公斤,种子包装袋15.22万个(涉及43个品种),塑封机2台,封口机1台,搅拌机1台,涉案金额82.36万元。目前,2名嫌疑人已被批准逮捕,7人在逃并被通缉。  六、湖北省襄阳市襄州区农业局查处安徽凝聚力有限公司生产销售劣水稻种子案  2016年8月22日,襄阳市襄州区农业行政执法大队接辖区经营户举报,称从安徽凝聚力种子有限公司购进的“中旱209”、“旱稻1号”、“旱稻502”三个水稻种子给农民造成损失。经鉴定,安徽凝聚力种子有限公司生产经营的三个品种种子纯度不合格,属劣种子。经核实,其销售的三个批次水稻种子共12120公斤,造成2000余亩水稻减产20万公斤、经济损失49万余元。2016年9月,案件移送公安机关查处,犯罪嫌疑人被逮捕。  七、辽宁省畜牧兽医局联合公安机关查处无证经营兽用疫苗案  2015年12月,辽宁省畜牧兽医局接到群众举报,称有违法人员销售假兽用疫苗。随后,辽宁省畜牧兽医局联合沈阳市公安机关对位于沈阳中街附近一平房进行了突击检查,现场发现假冒羊梭菌多联(多联必应)、猪伪狂犬(科卫宁)等疫苗产品32件(917盒),货值金额40万余元。经标称企业回函确认,涉案疫苗均为假冒产品。2016年6月,案件移送公安机关查处。  八、四川省成都市农委查处成都合众动保商贸有限公司无证经营兽药案  2016年4月,四川省成都市农委会同武侯区统筹城乡工作局执法人员对成都合众动保商贸有限公司进行了突击检查,现场查获100个品种、8000余盒、600余公斤兽药产品,经所售产品标称企业确认,均为假冒产品。经查,该公司在未取得兽药经营许可证的情况下非法经营兽药,案值共计200万余元。目前,该案已移送公安机关调查处理。  九、山东省临沂市畜牧局配合当地公安机关查处胡某、李某等无证生产兽药案  2016年10月17日,山东省临沂市畜牧局根据举报线索,配合当地公安机关成功捣毁一兽药黑窝点。该窝点位于临沂市兰山区叶家红埠寺一出租房内,负责人胡某、李某被当场抓获。现场查获标称为强效咳喘宁、混感抗瘟1号、黄金维他命、新生命元素、强力病毒散等兽药成品及原材料等约5吨,查获打码器、封塑机、筛子等制假工具。经查,2012年以来,该窝点根据客户需求无证生产兽药,包装后销售牟利,涉案价值300万余元。目前该案移送公安机关查处。  十、江苏省海安县农委查处崔某生产经营以此种饲料冒充他种饲料案  2015年底,江苏省海安县农委根据举报会同当地公安机关查处了崔某生产经营以此种饲料冒充他种饲料案。经查,崔某将购进的嘉吉牌豆粕掺入玉米皮后重新装入原嘉吉牌豆粕包装袋销售,共1730袋8万余公斤,销售额23万余元。2016年4月,该案件移送公安机关查处。
  • 农业农村部办公厅关于2022年农药监督抽查结果的通报
    各省、自治区、直辖市农业农村(农牧)厅(局、委),新疆生产建设兵团农业农村局: 根据农业农村部2022年农药监督抽查工作部署,20个省(自治区、直辖市)农业农村部门及24家农药检验检测机构,采取随机抽查、重点抽查及专项抽查相结合的方式,完成了2022年部级农药监督抽查。现将有关情况通报如下。 一、抽查结果 2022年我部组织抽查农药样品3615个(其中有7个样品因复检样品寄送丢失等原因按无效样品处理,电商销售农药抽检样品107个,已另行通报)。本次纳入统计的样品3501个,合格样品3370个,总体合格率为96.3%,比2021年农药监督抽查总体合格率95.4%提高0.9个百分点。不合格样品131个,不合格率为3.7%,其中检出假农药(标明的有效成分未检出或擅自加入其他农药成分)53个,占检测样品总数的1.5%,占不合格样品数的40.5%。不合格产品按标称生产企业被检出次数排序汇总情况详见附件1,不合格产品按被抽查单位次数排序汇总情况详见附件2。抽检结果具有以下五个特点。 (一)例行抽查产品合格率较高。共随机抽检农药样品2722个,合格样品2627个,合格率为96.5%,比总体合格率高0.2个百分点;比2021年例行抽查合格率96.0%提高0.5个百分点。 (二)专项抽查产品质量合格率略有下降。本次对生物农药、灭生性除草剂开展了专项抽查,共抽查750个产品(专项抽查和重点抽查有重合),合格产品709个,合格率94.5%,比2021年专项抽查产品质量合格率(95.2%)降低0.7个百分点。其中,抽检敌草快等灭生性除草剂产品639个,合格样品607个,合格率为95.0%,比2021年灭生性除草剂合格率(96.6%)降低1.6个百分点;分别在敌草快、草铵膦5个产品中检出百草枯,占灭生性除草剂样品的0.8%,占不合格灭生性除草剂样品的15.6%。抽检生物农药样品111个,合格样品102个,合格率91.9%,比2021年生物农药产品合格率(90.2%)提高1.7个百分点;9个不合格样品中,有6个标明有效成分未检出,有4个擅自添加化学农药成分,且有1个添加高毒农药克百威。 (三)重点抽查产品的合格率偏低。本次对往年涉及问题较多的生产企业所生产的产品开展重点抽查,共抽查了457个农药样品(重点抽查和专项抽查有重合),合格样品432个,合格率为94.5%,比总体合格率低1.8个百分点,比2021年重点抽查合格率(91.7%)提高2.8个百分点。其中假农药9个,占重点抽查发现不合格产品的36%。 (四)单剂产品质量高于混剂产品。在检测的3501个农药样品中,单剂2506个,占检测总数的71.6%,质量合格2424个,合格率96.7%;混剂995个,占检测总数的28.4%,质量合格的946个,合格率95.1%。 (五)杀虫剂质量合格率低于杀菌剂、除草剂产品。在检测的3501个农药样品中,杀虫剂1483个,占检测总数的42.4%,质量合格的1421个,合格率95.8%;杀菌剂648个,占检测总数的18.5%,质量合格的633个,合格率97.7%;除草剂1201个,占检测总数的34.3%,质量合格的1156个,合格率96.3%;其他169个,质量合格的160个,合格率94.7%。 二、主要问题 从检测情况来看,不合格产品主要存在以下四方面问题(同一产品同时存在几种情况的,重复计算)。 (一)标明的有效成分未检出。标明的有效成分未检出的产品有39个,占质量不合格产品的29.8%。未检出的农药有效成分有:阿维菌素、胺菊酯、高效氯氰菊酯、顺式氯氰菊酯、烯啶虫胺、毒死蜱、马拉硫磷、茚虫威、苏云金杆菌、苦参碱、印楝素、苯醚甲环唑、甲基硫菌灵、氟环唑、三环唑、烯酰吗啉、辛菌胺醋酸盐、噻呋酰胺、草铵膦、草甘膦异丙胺盐、敌草快、二氯喹啉酸、2甲4氯钠、24-表芸苔素内酯、28-表高芸苔素内酯、胺鲜酯、赤霉酸(A4+A7)等。 (二)检出其他隐性农药成分。产品中擅自添加其他农药成分的有26个,占质量不合格产品的19.8%。其中,在1个印楝素产品中检出高毒农药克百威和限制使用农药丁硫克百威,在1个毒死蜱产品中检出高毒农药克百威,在1个高效氯氰菊酯产品中检出毒死蜱。在4个敌草快产品和1个草铵膦产品中检出百草枯(见附件3),在阿维菌素、甲氨基阿维菌素苯甲酸盐等4个产品中检出的二氯异丙虫酰胺属于未登记化合物。 (三)有效成分含量、安全控制项目不符合标准要求。产品中含有标明的有效成分,但达不到标准要求的有83个,占质量不合格产品的63.4%。产品中有效成分外的安全控制项目达不到标准要求的有12个,占质量不合格样品的9.2%。 (四)假冒或伪造农药登记证号。涉嫌非法生产的产品共5个(见附件4)。假冒、伪造农药登记证号的样品有9个,占质量不合格样品的6.9%。 三、处理意见 (一)依法查处违法生产经营单位。对产品质量不合格,未取得农药登记、假冒和伪造农药登记证号的,农药经营者和标称生产企业所在地农业农村部门要及时依法查处,情节严重的要从严从重处罚。涉及吊销农药登记证的,及时报告农业农村部农药管理司。本次抽查中,发现经营2种以上假劣农药的经营单位有8家(见附件5),生产2种以上假劣农药的标称生产企业有17家(见附件6),非法添加百草枯等禁用农药的标称生产企业5家,今后要把上述经营单位和生产企业列为重点监管对象,加强日常执法检查,发现问题依法处理。 (二)对非法添加百草枯等重点监督抽查产品要追查来源。农业农村部自2017年连续开展专项监督抽查以来,灭生性除草剂中检出非法添加百草枯的比例持续下降,由2017年的3.8%降低至2022年的0.8%,敌草快中检出百草枯的比例由19.0%降低至1.4%。各地农业农村部门要继续加强对非法添加百草枯产品的监督检查,紧盯不放。经营单位所在地和标称生产企业所在地的农业农村部门要根据经营台账、物流信息、银行流水等追查不合格产品的来源,依法查处违法行为。涉嫌犯罪的,依法移送司法机关。 (三)依法打击无证生产农药的行为。对于无证生产农药及其产品(见附件4),经营单位所在地和标称生产企业所在地的农业农村部门要认真依法追查不合格产品的来源,经营单位所在地农业农村部门要牵头追查,依法查处非法生产经营者,坚决一查到底,从重从快打击,涉嫌犯罪的,依法移送司法机关。 请有关省(自治区、直辖市)农业农村部门于2023年6月30日前将相关核查处理情况总结及监督抽查查处情况汇总表(见附件7)报农业农村部(电子版发邮箱:pmd@agri.gov.cn;纸质文件邮寄:北京市朝阳区农展馆南里11号农业农村部农药管理司,电话010-59192810)。附件1.不合格产品按标称生产企业被检出次数排序汇总表.xlsx附件2.不合格产品按被抽查单位次数排序汇总表.xlsx附件3.非法添加百草枯产品汇总表.xlsx附件4.无证生产企业及其产品汇总表.xlsx附件5.监督抽查发现的经营2种以上假劣农药的经营单位.xlsx附件6.监督抽查发现的涉及2种以上假劣农药的标称生产企业.xlsx附件7.2022年农药监督抽查查处情况汇总表.doc
  • 农资打假-农药隐性成分
    农药隐性成分添加情况及其识别介绍农药添加隐性成分是我国农药产品质量监管中的顽疾,不但给农产品质量安全带来较大的危害,而且增加了公众对我国农药行业的不友好认识,给我国农药企业的高质量发展带来较多不利内容。所以,多年来对农药添加隐性成分进行严格监管,是各级农药管理部门农药管理的重点和核心内容之一。一什么是农药隐性成分隐性成分顾名思义就是隐性存在的成分,指的是在农药制剂加工过程中,因生产者人为添加,而导致产品中含有未在产品质量标准中明示的其他农药成分,主要包括:未经登记批准、高活性的已经或即将过专利保护期的农药、国家已经禁限用的高毒农药和生物农药添加化学农药等。二添加农药隐性成分的危害1、影响农产品安全。非法添加的隐性成分如为禁限用的高毒农药,不仅给施药者带来无法预测的暴露风险。另外还有可能导致农产品残留超标,对人群健康带来不可接受的膳食风险。同时,也会因此给我国农产品出口到国际市场带来较大的隐患。2、给生态环境带来风险。除醚菊酯外的菊酯类农药对水生生物的毒性极高,如氟啶脲、氟铃脲等产品(包括杀铃脲、氟虫脲、灭幼脲、伏虫隆)等对甲壳类水生生物的蟹、虾等具有极高的毒性。氟虫腈对甲壳类水生生物和蜜蜂具有高风险,在水和土壤中降解慢。虫螨腈对鱼、溞等水生生物剧毒,对蜜蜂高毒,且在土壤中较难降解。这些有效成分均禁止用于水稻,如作为隐性成分被添加到水稻病虫草害防治的农药中,则会污染水体,导致鱼类、蟹、虾等水生生物死亡。3、增加农药的抗性风险。农药隐性成分的添加,往往造成短期内药效非常好,但长期使用,会导致某种农药多次重复使用和有交互抗性的农药间交替使用,增加了靶标生物的抗药性,导致药效下降,病虫害猖獗。4、增加药害风险。主要针对除草剂产品,如莠去津中添加2,4-滴丁酯,易造成玉米田周围的作物遭受漂移2,4-滴丁酯影响而导致药害。氯嘧磺隆、莠去津等农药作为隐性成分添加到除草剂中,施药者不知情下种植了敏感的后茬作物,就会导致严重的药害。5、导致人畜中毒。农药在生产、使用过程中有着对人畜带来风险的高度可能,尤其是如农药中添加的隐性成分对人畜有较高的毒性,则往往给人畜带来致命的风险,而且由于其隐蔽性,一旦发生人畜中毒,很难做到对症下药,从而延误病情,危及生命。如:常规灭生性除草剂中添加百草枯,杀虫剂中添加禁限用的有机磷农药等。三常见添加农药隐性成分的情况1、肥料中添加农药隐性成分。肥料是指用于提供、保持或改善植物营养和土壤物理、化学性能以及生物活性,能提高农产品产量,或改善农产品品质,或增强植物抗逆性的有机、无机、微生物及其混合物料。目前市场上存在不少添加植物生长调节剂的肥料,只有按照农药进行登记、生产、经营、使用和监管,才能作为合法流通的农药药肥产品。但在叶面肥生产和销售过程中非法添加植物生长调节剂的现象较为严重,扰乱市场秩序,危害农作物安全。一旦肥料中检出植物生长调节剂,且未按农药产品登记的,按假农药处理。2、生物农药中添加农药隐性成分。由于生物农药登记所需提交资料少于普通化学农药,而且生物农药一般防效低、见效慢,为弥补这些缺陷,不少厂家在生物农药中添加化学农药,如苦参碱、苏云金杆菌、核型多角体病毒等生物农药产品中非法添加化学农药情况较严重,其中添加氯虫苯甲酰胺、虫螨腈、噻虫嗪及菊酯类农药的情况较为普遍,但也有不法厂家添加了限用农药如克百威、氟虫腈等。生物农药因毒性低、低风险、低残留而受到国家鼓励,如非法添加隐性成分,虽然表面防效提高了,但可能因此造成对施药者、环境和残留产生不利影响。3、植物生长调节剂中添加农药隐性成分。植物生长调节剂常添加的农药成分主要是芸苔素内酯、赤霉酸、复硝酚钠或杀菌剂,以改善农作物的长势,提高抗逆性,改善农作物产品和果实品质。4、普通化学农药中添加农药隐性成分。(1)杀虫剂中常见被添加的隐性成分。从品种来看添加的隐性成分主要是禁限用农药,如:甲拌磷、水胺硫磷、氟虫腈、硫丹、克百威、灭多威等。从活性上看主要添加刚刚过专利或即将过专利保护期的高活性产品。如:氯虫苯甲酰胺、螺虫乙酯、丁氟螨酯等。从效果上看主要添加氯氰菊酯、高效氯氟氰菊酯等菊酯类农药、阿维菌素、甲氨基阿维菌素苯甲酸盐等品种。(2)杀菌剂中常见被添加的隐性成分。杀菌剂主要添加廉价农药老品种为主,如:代森锰锌、福美双、百菌清、嘧菌酯、吡唑醚菌酯、嘧霉胺、戊唑醇、己唑醇、三环唑、咪鲜胺等。(3)除草剂中常见被添加的隐性成分。除草剂添加的隐性成分有百草枯、敌草快、莠去津、西草净、氯氟吡氧乙酸异辛酯、烟嘧磺隆、莠去津、硝磺草酮、双氟磺草胺、2,4-滴丁酯等,尤其是在速效性差的敌草快、草甘膦、草铵膦等灭生性除草剂中非法添加速效性强的百草枯成分情况比较严重。四农药隐性成分的识别手段1、通过标签内容查找农药隐性成分。针对农药生产企业非法添加其他农药成分,擅自扩大产品功效、提高产品防效,可以通过农药标签上标注的有效成分和防治对象信息,结合农药产品研发、生产和经营最新动态,分析企业非法添加其他农药成分的动机,初步判定农药产品中可能添加的其他农药成分。利用农业执法云平台及执法APP,可实现在线查询农药、化肥等注册号等,目前我司系统平台已经收录近3万个品相;2、通过农药产品理化性质识别被添加的农药隐性成分。根据农药产品外观(颜色、气味、状态)和溶解度等信息判定添加农药隐性成分的化学分类,然后进一步核实农药隐性成分。3、通过分析仪器进行检测。利用气相色谱、液相色谱、气质联用或液质联用等仪器设备和有关分析方法,根据保留时间和谱信息初步筛查,判断农药产品里可能含有的农药隐性成分。4、通过快速检测设备。利用拉曼及红外的技术对农药的主成分及隐形成分进行分析检测。我司与中国农业大学、福建警察学院、上海第二轻工业大学、赛默飞等联合设计开发农药成分快速分析鉴定标准。进一步提升检测方法、技术标准,使得农药中添加隐形成分行为将无处遁形。
  • 守护亿万亩玉米,这场战斗,我们必须打赢
    ——草地贪夜蛾来犯,迅速蔓延云南、广东、广西等多省 不知道大家听说没有,最近草地贪夜蛾频频出现在小托的朋友圈,为了提升大家的防范意识,小托在此整理了一些资料,帮助大家理解一下这件植保领域的大事。生物入侵!“妖蛾子”来了! 2019年1月11日,我国云南省发现并确认草地贪夜蛾侵入为害,随后在云南省西南部地区草地贪夜蛾继续蔓延为害。4月24日,农业农村部新闻办公室通报,草地贪夜蛾已在云南、广东、广西等3省(区)67县(区、市)见虫,发生面积为7万亩左右,农业农村部要求各地严防草地贪夜蛾蔓延。 据悉,草地贪夜蛾俗称秋粘虫,食性杂,繁殖能力强,迁飞扩散快,原产美洲的热带和亚热带地区,是玉米上的重大迁飞性害虫,玉米苗期受害一般可减产10%-25%,严重危害田块可造成毁种绝收。2016年初,草地贪夜蛾首次被发现入侵非洲西部并暴发成灾,2018年在非洲造成的经济损失高达10-30亿美元,玉米毁种面积占总播种面积的5%-6%。2018年7月,草地贪夜蛾首次传入亚洲地区。 据专家介绍,截至1月29日,缅甸在9个邦(市)已经发现草地贪夜蛾,发生面积80多万亩;斯里兰卡玉米发生为害面积120多万亩,可见草地贪夜蛾在境外建立起数量较大的种群虫源。中国农科院植保所吴秋琳博士风温场分析结果显示,3-4月,以玉米种植为主的缅甸东部虫源可依靠自身飞行能力,通过连续多个夜晚进入我国云南西双版纳州、普洱市、临沧市、红河州以及玉溪市等西南部;5月份开始,缅甸虫源可远距离迁入广东、海南、贵州、湖南等南部省份,也可波及四川、重庆、江西、福建等地。夏季缅甸草地贪夜蛾将集中往东北方向迁移,主要进入云南和广西,也有可能迁飞入侵贵州、广东、海南、湖南,或通过连续迁飞进入四川、江西与福建等地区。春季缅甸草地贪夜蛾随东亚季风可能的迁飞路径 以上便是草地贪夜蛾虫情的发展态势,预计未来的虫情将会进一步恶化,如何有效遏制虫情的蔓延呢?我们需要先了解虫情扩散背后的原因。“妖蛾子”为何能够大肆作妖?●天敌少,气候适宜生长 草地贪夜蛾原产于美洲,进入亚洲、非洲的现象属于生物入侵,在传入地缺乏天敌,而气候又适合其生长,因而得以大肆繁衍,四处为害。●迁飞能力强 草地贪夜蛾属于迁飞性害虫,在原产地美洲即可进行长距离的迁飞,在美国,成虫可借低空气流在30小时内从密西西比州扩散到加拿大,可谓是迁飞能力惊人,强大的迁飞能力让草地贪夜蛾可以“打一枪换一地”,进行大规模的游击战转移。●意识不够,防治不到位 草地贪夜蛾就虫情测报防治而言,其实技术难度不算大,但为何能够在非洲等地区为非作歹,导致部分地区颗粒无收呢?主要是因为草地贪夜蛾的主要传播是靠蔬菜里的幼虫与成虫迁飞进行传播的,而非洲部分国家的监管意识与防治技术不够成熟,导致前期未对虫源检测,中期未能有效进行防治灭杀,因此才让虫患成灾,并且持续蔓延。草地贪夜蛾成虫(左为雌蛾,中、右为雄蛾)如何歼灭“妖蛾子”大军? 既然事情已经发生了,那我们如何有效防治草地贪夜蛾呢? 其实,农业农村部已经早就开始关注国际上的草地贪夜蛾的发展态势,提前进行了谋划部署。2018年12月即下发通知,及时组织各地技术人员加密监测预警,在云南、广西等边境省(区)设立重点监测点,架设测报灯和黑光灯,开展灯诱成虫系统监测,力争做到早发现、早报告、早预警。 而在后续工作当中,农业农村部也组织专家研究制定了《草地贪夜蛾测报调查方法》,制定发布了《2019年草地贪夜蛾防控技术方案》,确定采取生态调控、理化诱控、应急防控、区域联防、统防统治等防控策略。当地农业农村部门也在利用救灾资金购置防治物资器械,指导农民选用药剂开展应急防治,全力组织做好防控工作。 总而言之,目前国内已经有了相对成熟的病虫害监测预警与防治措施,小托觉得,草地贪夜蛾的发展趋势还将进一步蔓延,但随着测报工作与灭杀工作的落实,虫情发展态势将会被遏制下来。尽管形式乐观,但过程不容松懈,需要农民与植保部门共同建立防治防线,打赢这场粮食保卫战。 最后也和大家打个广告,我们托普云农一直致力于农业数据的采集以及产业化应用的探索,在植保领域也凝练了一套成熟的解决方案,能够有效实现病虫害监测预警以及绿色防控。它们在本次草地贪夜蛾的攻坚战当中亦能够发挥重要的作用。 首先是我们的田间哨兵——病虫害监测预警系统图片上为新款虫情测报灯图片上为老款虫情测报灯 AI加持的它能够实现病虫害性诱捕捉与智能识别,自动测算病虫害种类及其数量,从而对监控区的虫情进行建模测算,结合系统内的气象监测系统,预估虫情发展趋势,向植保部门发送预警信息,用大数据辅助植保防治工作的开展。它是一年四季坚守在田间地头的植保哨兵。 其次是我们的害虫杀手——风吸式杀虫灯图片为杀虫灯在茶园的实景应用,灯杆可伸缩,适配玉米地使用环境 它是物理防治的头号武器,性诱害虫,风吸杀虫,无害防控,全天续航,宛若24小时伫立于田间的高科技模特型杀手,在害虫眼里它可能是姿态妖娆的异性虫伴,要是害虫进入灯体,等待它们的只有粉身碎骨。总而言之,我们这款杀虫灯功能强大,外型时尚,不仅能在田里迷杀害虫,还可以激发作物争相斗艳,茁壮成长,其实就是少了虫害的困扰。它是7*24小时不停歇的害虫致命杀手。 好啦,草地贪夜的介绍就到此为止了,最后附上农业农村部发布的《2019年草地贪夜蛾防控技术方案(试行)》,希望大家同心协力,共同击退草地贪夜蛾这个难缠的外敌,捍卫粮食国土,绝不姑息。2019年草地贪夜蛾防控技术方案(试行)一、防控目标防治处置率达到90%以上,绿色防控技术应用比例达到30%以上,综合防治效果达到85%以上,危害损失率控制在8%以内。二、防控策略云南侵入区坚持生态防控指导思想,加强防控。南方玉米区做好害虫种群动态监测和控制,减少向长江中下游及以北地区迁入的虫源基数,黄淮海和东北主产区加强监测,做好应急防控准备。利用理化诱杀控制成虫种群数量,抓住低龄幼虫防治关键期,加强普查,注重区域联防和统防统治。三、防控措施(一)监测预警在云南、广西等西南省(区)设立重点监测点,结合高空测报灯和黑光灯监测成虫迁飞数量和动态。在华南、江南、长江中下游、黄淮海、东北地区开展灯诱、性诱监测成虫发生情况。玉米生长季开展大田普查,确保早发现、早控制。(二)分区防控重点云南、广西等周年繁殖区加强成虫诱杀、卵和幼虫防控,黄淮海夏玉米区及东北春玉米区加强迁飞成虫监测和防治。(三)主要技术措施1.生态调控及天敌保护利用:有条件的地区可与非禾本科作物间作套种,保护农田自然环境中的寄生性和捕食性天敌,发挥生物多样性的自然控制优势,形成生态阻截带。2.成虫诱杀技术:成虫发生期,集中连片使用杀虫灯诱杀,可搭配性诱剂和食诱剂提升防治效果。3.幼虫防治技术:抓住低龄幼虫的防控最佳时期,施药时间最好选择在清晨或者傍晚,注意喷洒在玉米心叶、雄穗和雌穗等部位。(1)生物防治:在卵孵化初期选择喷施白僵菌、绿僵菌、苏云金杆菌制剂以及多杀菌素、苦参碱、印楝素等生物农药。(2)应急防治:玉米田虫口密度达到10头/百株时(参考玉米田二代黏虫防控的虫口密度指标),可选用防控夜蛾科害虫的高效低毒的杀虫剂喷雾防治。(联合国粮农组织防控草地贪夜蛾指导手册及国外登记防控该害虫的化学农药有氯虫苯甲酰胺、氟氯氰菊酯、溴氰虫酰胺等)。
  • 菜地虚设检测仪和追溯码 管理及认证混乱
    食品安全问题突出的当下,所谓的“有机食品”让惶惶不安的消费者抓到了一根救命稻草 但这根稻草并不那么可靠  “臭,就是个臭。”  1月19日,走进位于北京大兴区的留民营村,空气中弥漫着奇臭无比的鸡粪味道,很浓很浓。一年四季都是这个味儿,村子里的居民说,他们已经习惯了这里的环境。  但奇臭的留民营村却被赋予了众多美誉:“全球环保五百佳”“中国生态农业第一村”“中国绿色村庄”,等等。  一眼看去,留民营村与京郊其他的村子并没有多大区别。但道路两旁每隔几百米便出现的各种企业和气势恢宏的村委会大楼却向外来人显示闻名京城的留民营村子的富庶:800多人的村子,2008年全村工农业产值却达2.05亿,人均收入15000元。  如今的留民营生态农场,形成了以沼气为中心,串联农、林、牧、富、鱼的生态系统,以及种、养、加、产、供、销一条龙的生产体系,可谓独霸一方。农场成立的北京青圃园菜蔬有限公司(以下简称青圃园)发展有机蔬菜基地500亩,产品销往京津两地24家大型超市及机关团体。据其介绍,几十个大棚每年能生产4000吨左右的有机蔬菜,占据着整个北京有机蔬菜市场50%左右的市场份额。每天都会有3吨左右的蔬菜从这里运往家乐福、沃尔玛等市区超市。  然而,记者调查发现,这个号称北京最大的有机蔬菜生产基地为了最大程度地“满足”市场的需求,很可能并未严格按照有机食品的生产体系进行种植加工。  随处可见的农药与化肥  厂房外整齐分布的大棚便是青圃园的有机蔬菜生产基地。每个大棚门内墙上都贴有生产活动记录:蔬菜品种、生长期、施肥、灌溉、灭虫状况、负责人、采收等详细信息。根据记录,大棚主要是以村里养鸡场发酵后的鸡粪作为有机肥料,而除虫则使用天然药物苦参碱和灭虫灯、人工灭虫等方式。  进入冬季,温度的限制使普通菜地只能处于“农闲”状态,工作的只能是一些钢架大棚。尽管鸡粪的漫天弥散为蔬菜的种植增添了些许“有机理念”,但看似严格管理的过程并非滴水不漏。在青圃园大约40多栋大棚内,随处可见的是多菌灵、吡虫啉、啶虫脒等各种农药,有的包装袋还没有开封。  而有机食品在生产和加工过程中要严格遵循有机食品生产、采集、加工、包装、贮藏、运输标准,绝对禁止使用化学合成的农药、化肥、激素、抗生素、食品添加剂等。  在被问及这里是否会有菜农使用农药或者化肥时,青圃园总经理助理刘梦贤对公司管理十分自信:“从公司来说,如果农民要买化学农药,他就得自己掏钱。基地所有的投入品都由公司统一购买,统一管理,可以保证生产过程中不使用化学农药,并且公司会定期检查大棚生产情况,以确保蔬菜的安全性。”  在基地工作的一位菜农介绍,公司以承包的方式将大棚交给他们管理,蔬菜的种植都由自己负责,种出的蔬菜由公司统一收购,收购价格由蔬菜公司制定,经过包装后供应市区超市。  但是青圃园一办公人员却透露,虫子多的时候,他们会用一些农药。同时,留民营村一位农民说:“只要看不见,他们一样用化肥,都是价格不菲的好复合肥,200多元一袋。在植物生长的关键期还用尿素。”  对此刘梦贤感到很愤怒:“这简直无中生有,你不要拿这个来敲诈我们,我们公司做事很放心,是严格按照有机标准来做的。”  有机食品生产基地发现农药,并非只有留民营村这一处。  在位于北京昌平小汤山百年绿源有机种植园(以下简称百年绿源)和金六环农业园(以简称下金六环)基地大棚内,也发现了一些农药和化肥。  百年绿源市场部经理王鹏飞就此问题3次拒绝回答。然而,百年绿源一种植工人却给出了答案:“蔬菜起虫子很普遍,夏天长了虫子,有时就用手拿,但也会用低毒农药。”  金六环虽然曾作为2008北京奥运会农产品供应基地,但在其蔬菜大棚中也发现了尿素和硫酸钾复合肥。  “这些农药和化肥基本都不能使用。这是严重违背有机规则的。”农业部绿色食品管理办公室一负责人告诉《科学新闻》,“不能持续符合标准、技术规范要求的企业,按照《有机产品认证管理办法》第二十七条规定,认证机构应当对这样的企业及时作出暂停、撤销认证证书的决定。”  虚设的检测仪和追溯码  菜农负责蔬菜种植,公司提供生产资料并对整个生产过程进行监督,蔬菜收获后由公司统一收购,检测合格后包装运往超市。从生产到销售,整个过程似乎完全符合有机食品生产标准。  但是,在青圃园记者发现,蔬菜加工过程同样存在问题。虽然刘梦贤一再强调公司对蔬菜都会进行抽查,检测农药残留,以确保蔬菜达标。但菜农的说法却截然相反:“公司对收购的菜基本没有检查,几乎所有的蔬菜都能通过。”  “我们有单独的检测。我们检测了,但是菜农们不知道。”刘梦贤说。但是,青圃园的对外宣传栏上却清清楚楚地定格着“农药残留检测仪一台”——也就是说,检测、筛查程序应该在本处完成。  在公司加工车间可以直接看到待装的蔬菜堆放在公司办公室后的仓库内,没有任何保护措施。仓库旁边就是生产车间,工人甚至没有统一的工作服。形形色色的蔬菜按照一定重量放入一次性塑料盒内包装,并贴上有机食品标志和质量追溯码。“我们就是这样的流程,拿来标志和追溯码,直接粘在上面,就可以发往城里了。”  进一步调查可以发现,追溯码也形同虚设,似乎起不到任何作用。通过查询电话12316,随机输入几个有机蔬菜的追溯码,得到的却是“无法查询到产品,追溯码错误”的语音回复。而另一个查询方法,登陆北京农业局质量追溯系统也只显示生产基地名称,并无其他信息。  “由于消费者层次不齐,给出产地信息即可。只有管理部门(后台)才能看到详细的种植、采收、加工、生产批次甚至哪个大棚生产等信息,而这些信息(对外)都被屏蔽掉了。”北京农业局质量安全处工作人员告诉记者。“有机食品生产时虽然不能使用化学农药,但可以使用生物农药,如果这些信息公布的话,就更容易引起误导。消费者只要知道是哪里生产的,我认为就够了。”  “买回来就直接吃了,谁还会去追踪啊,甚至有的都不知道这码事。”消费者给出了自己的声音。食品追溯体系虽然可以监督和保障食品的合格安全、提高和促进居民生活质量,但是现状遇冷如此。  混乱的认证标志  百年绿源的情况更是不妙。对于2007年刚刚成立的百年绿源来讲,目前只是通过了中国质量认证中心有机转换产品认证,正处于“有机转换期”,还没有走到“有机产品认证”这一关——其转换期要延续到2010年9月16日。  然而在该公司网站上却可以看到“本企业生产蔬菜、水果通过CQC中国质量认证中心有机产品认证”的关于有机食品的宣传和出售口号。  中国质量认证中心有机产品部相关负责人告诉记者:“这是完全没有权利的,而且我们也不会给他们发放有机标志。出现这种情况,我们会对他进行惩治,不可能任其发展。”  一个农场在申请有机产品认证后,要有1~3年的转换期才能正式获得有机产品认证,在转换期内农场要完全按照有机认证标准要求进行生产,但其产品不能叫有机产品,只能叫“有机转换产品”。  按照国家《有机产品认证标志管理》规定:在有机产品转换期内生产的产品或者以转换期内生产的产品为原料的加工产品,应当使用中国有机转换产品认证标志。处于转换期的食品是不能按照有机食品进行出售的,并且只能粘贴“有机转换标志”。“有机转换标志”和“有机食品标志”有着颜色上的本质区别:前者为棕色,后者为绿色。  “企业认证的产品在转换期间,必须使用转换标志。在这个过程中,绝大多数企业是严格遵守这一标准的。但是,个别企业无视规定,有可能是他们自己印制的。”前述农业部官员说。  按照《有机产品认证管理办法》规定第四十二条:对伪造、冒用、买卖、转让有机产品认证证书、认证标志等其他违法行为,依照有关法律、行政法规、部门规章的规定予以处罚。  “所以认证机构和监管部门如国家认监委和农业部都应该根据国家相关规定对此类企业进行监督检查,甚至做出撤销的决定。”前述农业部官员说。  但是一位百年绿源工作人员却认为,虽然“只是有机转换产品,但是也可以当作有机食品,因为我们有‘有机食品标志’。‘转换’可以说是有机的,也可以说是绿色的。”当《科学新闻》记者问到是怎么拿到“中国有机食品”标志的,该工作人员闭口不谈。  利益分割  家乐福、沃尔玛等经过包装的有机蔬菜被整整齐齐地摆放在有机专用货架上,不时有顾客被这包装精美的蔬菜所吸引,而其中大部分顾客看到不菲的价格后转身走开去挑选相对便宜的普通蔬菜。有机蔬菜价格是同类普通蔬菜的3~10倍甚至更高。  “这是什么辣椒,两个竟然要20多块?”一位顾客显然被有机蔬菜昂贵的价格吓到了。而旁边一位阿姨正在将选定的有机蔬菜放进自己的篮子,“贵是贵了点,但主要是花钱买放心。”  记者随机采访了几位购买蔬菜的顾客,没有人知道有机蔬菜的具体标准。“有机食品没有污染、十分安全。”专门负责有机蔬菜销售的售货员告诉记者。虽然售货员尽力向顾客推荐高价有机蔬菜,但她对有机蔬菜了解也明显不足。  高价背后隐藏着的庞大利益空间,被层层分割。  集体管理、个人承包是大部分有机种植基地的管理模式,“一人两个中棚、半个大棚蔬菜统一送到加工厂,然后走超市。加工厂定好价格,种植户只负责将菜送到加工厂即可。到时候有奖金,有提成。”  利益的驱使某种程度上也会导致生厂商从普通种植户那里进货,“要是他们缺菜了,也要到普通村民那里收购,价格稍高些。”留民营一村民告诉《科学新闻》。这种进货的结果是贴着有机标签出卖普通蔬菜,吃亏的只能是不知真相的消费者。  “供货价格根据成本来定,成本包括人工、有机生物农药、有机肥、水电费以及其他损耗。与普通蔬菜价格差别大主要是因为这些成本比较高。”刘梦贤给出了价格的基本出炉参考。  但是《科学新闻》记者调查发现,青圃园从种植户手里的进货价格,每公斤的蔬菜价格在0.44~4.32元之间变化,而其给超市的供货价格则要翻上数倍到数十倍,每公斤都在十几元,然后经销商再以每公斤20甚至30多元的价格卖给普通消费者。这其中巨大的利益空间,基本被生产商和经销商所赚取。  管理漏洞  “个别企业偷偷使用农药和化肥,以及不按规定乱贴有机食品标志这种行为在市场和生产上是存在的。相关管理部门应该根据《有机产品认证管理办法》相关规定对企业进行监督检查,直至企业做出整改措施。如果还继续坚持,将会做出撤销决定。”一位不愿透露姓名的认证机构负责人说。  “认证机构对企业每年进行一次检查,对自己认证的企业每年抽查10%。从国家层面来讲,作为有机认证机构的监督管理部门——国家认监委——也要对认证机构的检测活动、市场上的有机产品的抽查,应该负有主要责任。”  对于有机标志的使用,“伪造也好,冒用也好,企业首先一定要树立诚信,认证监管部门应该加大对有机标志的使用监管。”前述认证机构负责人认为。  化肥农药的随意使用,中国质量认证中心工作人员表示,“如果企业不讲诚信,不按有机行业标准进行生产,只能依法处理,我们也很无奈。但是作为认证、监督机构,在工作中也有疏忽的时候,管理上肯定有漏洞。”那么多企业,不可能每天24小时盯着去检查,“不管哪家都存在这样或那样的问题。目前只能做到不定期对其生产、加工、产品等整个过程进行抽查。”
  • 《质谱学报》"质谱技术在中草药研究中的应用"专辑
    p style="TEXT-ALIGN: center"span style="FONT-SIZE: 20px FONT-FAMILY: 黑体, SimHei COLOR: #0070c0"2017年《质谱学报》第1期“质谱技术在中草药研究中的应用”专辑/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"以下内容原创作者为《质谱学报》主编刘淑莹老师,如需全文(附英文摘要和参考文献)请联系《质谱学报》编辑部或仪器信息网编辑部/span/span/ppspan style="FONT-FAMILY: times new roman"  strong序 /strong传统中医药学是中华民族的宝贵财富和智慧的结晶,是民族赖以生存繁衍的重要保障。随着现代科学的迅猛发展,对于传统中药的物质基础和作用机理研究不断深入。从这个意义上讲,中医药学这个特有的传统医药体系,是我国最有希望的主导原始创新取得突破的,对世界科技和医学发展产生重大影响的学科。2015年屠呦呦教授获得诺贝尔生理医学奖的事实证明了这一点。/span/ppspan style="FONT-FAMILY: times new roman"  20世纪70年代,中国科学家组织团队对于世界上危害最大的疾病之一——疟疾进行攻关研究,屠呦呦最初由中医药书籍“肘后备急方”中记载的“青蒿一握,以水二升渍,绞取汁,尽服之”得到灵感。中国科学家从黄花青蒿中得到提取物青蒿素,经过艰苦的,广泛的临床试验,证明是疗效确切的。已故的梁晓天院士等根据质谱和核磁共振谱数据,正确地推断了青蒿素的过氧桥结构,从化学结构上预示了分子的构效关系。中医药的现代化的确需要传统中医药理论经验与现代科学技术相结合,青蒿素就是一个成功的案例。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanimg title="qinghaosu_副本.jpg" src="http://img1.17img.cn/17img/images/201701/insimg/ed94ff5b-c03c-47ee-8a45-9458b7a1207c.jpg"//ppspan style="FONT-FAMILY: times new roman"   自从软电离质谱技术诞生以来,质谱技术的应用范围得以大大地扩展。很多质谱学家的兴奋点也由传统的物理、化学等学科移动到生命科学相关的领域。在现代分析技术中,质谱以其快速、高灵敏度、特异性和多信息以及能够有效地与色谱分离手段联用等特点备受科学家们重视。当今质谱技术日新月异的发展,喜看各个中医药大学都添置了质谱仪器,中医药界学者逐渐接受和掌握质谱技术并灵活应用到这些组分极其复杂的药材、炮制品、代谢产物的化学成分分析以及中医药科学研究中。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: #0070c0"strong敞开式离子化质谱技术在中草药研究中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"作者:黄 鑫,刘文龙,张 勇,刘淑莹/span/span/ppspan style="FONT-FAMILY: times new roman COLOR: #002060"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"摘要:敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。/span/span/ppspan style="FONT-FAMILY: times new roman"  敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong 1 敞开式离子化质谱技术的基本原理、特点和分类/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型气相离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。/span/ppspan style="FONT-FAMILY: times new roman"  AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括气相色谱-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong2 敞开式离子化质谱技术在中草药研究中的应用/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论,总结的应用详情列于表1。/span/pp style="TEXT-ALIGN: center"strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"表1 敞开式离子化质谱在中草药研究中的应用/span/strong/pp style="TEXT-ALIGN: center"table cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="255" colspan="2"p style="TEXT-ALIGN: center"strong敞开式离子化质谱技术/strongstrong /strong/p/tdtd width="83"p style="TEXT-ALIGN: center"strong中草药/strongstrong /strong/p/tdtd width="272"p style="TEXT-ALIGN: center"strong分析物/strongstrong /strong/p/tdtd width="58"p style="TEXT-ALIGN: center"strong文献/strongstrong /strong/p/td/trtrtd rowspan="25" width="99"p style="TEXT-ALIGN: center"直接电离/p/tdtd rowspan="3" width="156"p style="TEXT-ALIGN: center"DI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"何首乌/p/tdtd width="272"p style="TEXT-ALIGN: center"2,3,5,4’-四羟基芪-2-O-葡萄糖甙-3”-O-没食子酸酯/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子醇甲、五味子醇乙/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Tissue spray/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷、氨基酸、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"11/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Leaf spray/p/tdtd width="83"p style="TEXT-ALIGN: center"生姜/p/tdtd width="272"p style="TEXT-ALIGN: center"姜辣素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"银杏籽/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"圣罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"乌索酸、齐墩果酸及其氧化产物/p/tdtd width="58"p style="TEXT-ALIGN: center"13/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊叶/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"14/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Direct plant spray/p/tdtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"15/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Field-induced DI/p/tdtd width="83"p style="TEXT-ALIGN: center"长春花/p/tdtd width="272"p style="TEXT-ALIGN: center"长春碱、脱水长春碱/p/tdtd width="58"p style="TEXT-ALIGN: center"16/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"iEESI/p/tdtd width="83"p style="TEXT-ALIGN: center"银杏叶/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素、精氨酸、脯氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"17/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、精氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"18/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Field-induced wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀、苹果酸、柠檬酸/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甘草/p/tdtd width="272"p style="TEXT-ALIGN: center"甘草酸、甘草素/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"苦参/p/tdtd width="272"p style="TEXT-ALIGN: center"苦参素、苦参碱、苦参酮/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"Al-foil ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"附子/p/tdtd width="272"p style="TEXT-ALIGN: center"苯甲酰乌头原碱、次乌头碱、苯甲酰新乌头原碱/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd rowspan="7" width="156"p style="TEXT-ALIGN: center"Pipette-tip ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"牛蒡子/p/tdtd width="272"p style="TEXT-ALIGN: center"牛蒡苷及其苷元、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"莲子心/p/tdtd width="272"p style="TEXT-ALIGN: center"莲心碱、甲基莲心碱/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"三七/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子甲素、乙素、五味子酯甲、酯乙/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd rowspan="21" width="99"p style="TEXT-ALIGN: center"直接解吸电离/p/tdtd rowspan="13" width="156"p style="TEXT-ALIGN: center"DESI/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄/p/tdtd width="272"p style="TEXT-ALIGN: center"莨菪碱、东莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"毒参/p/tdtd width="272"p style="TEXT-ALIGN: center"毒芹碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗/p/tdtd width="272"p style="TEXT-ALIGN: center"16种托品烷类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"阿托品/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"24/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"克罗烷型二萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"25/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"青脆枝/p/tdtd width="272"p style="TEXT-ALIGN: center"喜树碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"26/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"27/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贯叶连翘/p/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、糖类/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、长链脂肪酸类/p/tdtd width="58"p style="TEXT-ALIGN: center"28/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"大麦/p/tdtd width="272"p style="TEXT-ALIGN: center"羟氰苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"29/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白毛茛/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"30/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"橙皮甙、柚皮甙、苦橙甙等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"31/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"DAPCI/p/tdtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"萜品烯类/p/tdtd width="58"p style="TEXT-ALIGN: center"32/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参、红参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"33/p/td/trtrtd rowspan="6" width="156"p style="TEXT-ALIGN: center"DCBI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"黄连素、黄连碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄藤/p/tdtd width="272"p style="TEXT-ALIGN: center"黄藤素/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鱼腥草/p/tdtd width="272"p style="TEXT-ALIGN: center"别隐品碱、白屈菜红碱、原阿片碱、血根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄柏/p/tdtd width="272"p style="TEXT-ALIGN: center"药根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"粉防己/p/tdtd width="272"p style="TEXT-ALIGN: center"轮环藤酚碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"两面针/p/tdtd width="272"p style="TEXT-ALIGN: center"两面针碱、白屈菜赤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd rowspan="34" width="99"p style="TEXT-ALIGN: center"解吸后电离/p/tdtd rowspan="27" width="156"p style="TEXT-ALIGN: center"DART/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"阿托品、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"35/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"蒌叶/p/tdtd width="272"p style="TEXT-ALIGN: center"蒌叶酚/p/tdtd width="58"p style="TEXT-ALIGN: center"36/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"芫荽/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"绿薄荷/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"乌头属药材/p/tdtd width="272"p style="TEXT-ALIGN: center"乌头碱类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"38/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗籽/p/tdtd width="272"p style="TEXT-ALIGN: center"托品碱、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"39/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"萝芙木/p/tdtd width="272"p style="TEXT-ALIGN: center"单萜吲哚类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"40/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"姜黄/p/tdtd width="272"p style="TEXT-ALIGN: center"姜黄素类/p/tdtd width="58"p style="TEXT-ALIGN: center"41/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"荜澄茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"荜澄茄油烯/p/tdtd width="58"p style="TEXT-ALIGN: center"42/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"极细当归/p/tdtd width="272"p style="TEXT-ALIGN: center"藁苯内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"朝鲜当归/p/tdtd width="272"p style="TEXT-ALIGN: center"日本前胡素、日本前胡醇/p/tdtd width="58"p style="TEXT-ALIGN: center"43,44,51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白芷/p/tdtd width="272"p style="TEXT-ALIGN: center"白当归脑/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"川芎/p/tdtd width="272"p style="TEXT-ALIGN: center"川芎内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"槟榔子/p/tdtd width="272"p style="TEXT-ALIGN: center"槟榔碱、槟榔次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"延胡索/p/tdtd width="272"p style="TEXT-ALIGN: center"延胡索碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、去氢贝母碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"钩藤/p/tdtd width="272"p style="TEXT-ALIGN: center"钩藤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"丁公藤/p/tdtd width="272"p style="TEXT-ALIGN: center"东莨菪内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"46/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"制川乌/p/tdtd width="272"p style="TEXT-ALIGN: center"单酯和双酯型二萜类乌头碱/p/tdtd width="58"p style="TEXT-ALIGN: center"47/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"48/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"桑叶/p/tdtd width="272"p style="TEXT-ALIGN: center"脱氧野尻霉素/p/tdtd width="58"p style="TEXT-ALIGN: center"49/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"厚叶岩白菜/p/tdtd width="272"p style="TEXT-ALIGN: center"熊果素、岩白菜素、鞣花酸、没食子酸/p/tdtd width="58"p style="TEXT-ALIGN: center"50/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子素、戈米辛/p/tdtd width="58"p style="TEXT-ALIGN: center"51,52/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Nano-EESI/p/tdtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"53/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAESI/p/tdtd width="83"p style="TEXT-ALIGN: center"孔雀草/p/tdtd width="272"p style="TEXT-ALIGN: center"花青素、山奈酚等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"54/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"DAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草叶/p/tdtd width="272"p style="TEXT-ALIGN: center"鼠尾草酸及其衍生物/p/tdtd width="58"p style="TEXT-ALIGN: center"56/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"川皮苷、黄酮醇类、沉香醇/p/tdtd width="58"p style="TEXT-ALIGN: center"57/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"PALDI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、汉黄芩素/p/tdtd width="58"p style="TEXT-ALIGN: center"58/p/td/tr/tbody/tablespan style="FONT-FAMILY: times new roman" /span/ppspan style="FONT-FAMILY: times new roman"  strong2.1 直接电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,液相分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。/span/ppspan style="FONT-FAMILY: times new roman"  姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、移液器头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。移液器头模式的分析是将移液器头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种移液器头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.2 直接解吸电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。/span/ppspan style="FONT-FAMILY: times new roman"  DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。/span/ppspan style="FONT-FAMILY: times new roman"  DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.3 解吸后电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。/span/ppspan style="FONT-FAMILY: times new roman"  EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶液相或气相样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.4 在中草药质量评价和质量控制中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。/span/ppspan style="FONT-FAMILY: times new roman"  目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.5 本实验室的研究工作/strong/span/ppspan style="FONT-FAMILY: times new roman"  中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。/span/ppspan style="FONT-FAMILY: times new roman"  1)中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 /span/ppspan style="FONT-FAMILY: times new roman"  2)中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 /span/ppspan style="FONT-FAMILY: times new roman"  3)对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 /span/ppspan style="FONT-FAMILY: times new roman"  4)DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 /span/ppspan style="FONT-FAMILY: times new roman"  5)开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman" strong3 总结与展望/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的气相离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。/span/pp strong /strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"strong《质谱学报》致谢/strong: 此次《质谱学报》组织“质谱技术在中医药研究中的应用”专辑是逢时的,受到中医药界广大质谱工作者的热烈响应。不仅吸引了大陆的同仁,而且两岸三地的质谱工作者,如台湾的李茂荣教授、香港的蔡宗苇教授和澳门的赵静教授等都积极投稿。此专辑包括中药和其他民族药,如藏药、维药等的相关研究,从研究内容上讲,有植物药也有动物药,包括了药材、炮制品和复方药的成分分析和代谢研究。由于本刊篇幅有限,在大量来稿中只能选用19篇,对于其他审稿已通过的文章,将在以后几期中陆续刊登。另外,感谢中国科学院上海有机化学研究所的郭寅龙研究员为本专辑的出版提供指导和帮助 感谢北京大学的白玉老师、北京中医药大学的刘永刚老师、长春中医药大学的杨洪梅老师和南京中医药大学的刘训红老师在组稿过程中的贡献 感谢长春中医药大学药学院为本专辑提供部分药材图片。对于本刊编辑中存在的错误和其他问题,欢迎读者提出宝贵的意见。/span/ppspan style="COLOR: #002060" /span/p
  • 氧化安定性测定仪检测氧化安定性的主要目的
    氧化安定性测定仪测试的一般原理是在一定量的测试油样中,放入金属片作为催化剂,在一定的温度下输入一定量的氧气,经规定的试验时间后,测定油样氧化后的酸值、黏度、沉淀物和金属片的质量变化以及酸值达到规定值所需试验时间。  润滑油的氧化安定性除了主要取决于自身的化学组成外,还与测试的温度、氧压、金属催化片、金属接触面积、氧化时间等条件有关。因此须根据所测试润滑油品的实际使用环境来选择合理的试验条件,目前常用的测试方法GB/T加抑制剂矿物油的氧化特性测定法。该方法概要为检测试样在水和铁-铜催化剂存在的条件下,在95℃条件下与氧反应,定期测定试验的酸值,酸值达到2.0mgKoH/g或试验时间达到10000h,试验结束,使酸值达到2.0 mgKOH/g的试验时间称为试样的“氧化寿命”。由于GB/T试验时间较长,在实际检测中也多采用SH/T润滑油的氧化安定性的测定-旋转氧弹法来评价不同批次相同组成润滑油氧化安定性的连续性或润滑油的剩余氧化试验寿命。  氧化安定性的检测目的:  1.监测润滑油的氧化安定性的变化,防止因润滑油的氧化变质,生成更多有机酸,使设备润滑部件发生腐蚀。  2.防止因润滑油氧化严重所产生的更多油泥、胶质和沥青质,增大润滑油的黏度,不利于设备的润滑和散热。也防止因过多的油泥堵塞油路而影响润滑油的流动,增加设备的磨损。  3.润滑油的氧化变质还会使油品的添加剂发生裂解失效,使油品的有关理化性能发生劣化,如油品的泡沫性、乳化性、抗磨性能等都会明显下降。
  • “十二五”氮氧化物减排思路与技术路线
    摘要  “十二五”期间,氮氧化物的总量控制要突出重点行业和重点区域,推行以防治火电行业排放为核心的工业氮氧化物防治体系和以防治机动车排放为核心的城市氮氧化物防治体系。要推进能源结构持续优化,严格控制新增量 全面开展电力行业氮氧化物减排 采取综合措施加强机动车氮氧化物排放控制 推进以水泥行业为主的其他行业氮氧化物排放控制。  2011年3月14日,全国人大审议通过了“十二五”规划纲要,提出化学需氧量、二氧化硫分别减少8%,同时将氨氮和氮氧化物首次列入约束性指标体系,要求分别减少10%,氮氧化物已经成为我国下一阶段污染减排的重点。  把氮氧化物作为“十二五”减排约束性指标的必要性  ■阅读提示  由氮氧化物等污染物引起的臭氧和细粒子污染问题日益突出,威胁人民群众的身体健康,成为当前迫切需要解决的环境问题。若不加严控制,今后一段时期我国城市光化学烟雾、酸雨污染和灰霾天气还将呈迅速发展和恶化之势。  氮氧化物活性高、氧化性强,是造成我国复合型大气污染的关键污染物。随着国民经济持续快速发展和能源消费总量大幅攀升,我国氮氧化物排放量迅速增长。“十一五”期间,我国氮氧化物排放量逐年增长,2008年达2000万吨,排放负荷巨大。火力发电、工业和交通运输部门三者之和占我国氮氧化物排放总量的85%,基本呈现三足鼎立之势。氮氧化物排放量的迅速增加导致了一系列的城市和区域环境问题。北京到上海之间的工业密集区已成为对流层二氧化氮污染较为严重的地区,“十一五”期间全国降水中硝酸根离子平均浓度较2005年有较大幅度增长。由氮氧化物等污染物引起的臭氧和细粒子污染问题日益突出,威胁人民群众的身体健康,成为当前迫切需要解决的环境问题。若不加严控制,今后一段时期我国城市光化学烟雾、酸雨污染和灰霾天气还将呈迅速发展和恶化之势。综上分析,“十二五”期间我国必须对氮氧化物进行全面控制,针对氮氧化物的污染特征,进入以质量改善为切入点、以主要行业为突破口的大规模削减阶段。  从减排管理的基础条件来看,自“十一五”以来,随着污染减排三大体系能力建设的加强,氮氧化物统计、监测管理工作取得突破性进展。2006年全国环境统计中将氮氧化物因子纳入到环境统计范畴 2007年开展的污染源普查工作对全国氮氧化物排放系数和排放现状进行了全面调查。在污染源监测方面,随着国控重点源烟气排放连续监测设施建设完成,氮氧化物排放重点源大都具备了自动监测的能力,并与省、市监控中心实现了联网。此外,国内火电行业氮氧化物控制技术日趋成熟,除催化剂等核心技术外,基本实现了国产化。这些都为全面实施氮氧化物排放总量控制奠定了良好的基础。  “十二五”氮氧化物总量控制总体考虑及目标的确定  ■阅读提示  在确定国家总量控制目标的同时,也将减排任务分解到了各省(自治区、直辖市),确定了减排项目清单,真正把减排任务落到实处,这是总量控制目标制定的一次突破。  污染物排放总量控制是环境管理的重要手段,我国氮氧化物的总量控制模式要根据排放物的污染特征来确定,氮氧化物排放具有行业、区域集中的特点,因此,“十二五”期间氮氧化物的总量控制要突出重点行业和重点区域,推行以防治火电行业排放为核心的工业氮氧化物防治体系和以防治机动车排放为核心的城市氮氧化物防治体系。强化总量控制对经济发展方式、经济结构调整和能源结构调整的优化作用,严格控制增量,强化结构减排,细化工程减排,实化监管减排,确保减排约束性指标目标的完成。  值得一提的是,此次在总量控制目标确定方面,我国首次采用了“二上二下”的方式。通过印发《“十二五”主要污染物总量控制规划编制指南》(以下简称《指南》),提出了“十二五”氮氧化物减排的总体思路、减排要求、减排技术路线及总量目标测算方法,各省结合本省的环境质量状况、经济社会发展情况及减排潜力,根据《指南》要求编制总量控制规划,测算总量控制目标,提交减排项目清单。在此基础上,统筹考虑国家宏观经济政策、节能减排重大战略、产业布局和结构调整要求,确定国家总量控制目标,实现了统筹协调、上下衔接、部门联动,增强了总量控制目标确定的科学性、合理性和可行性。在确定国家总量控制目标的同时,也将减排任务分解到了各省(自治区、直辖市),确定了减排项目清单,真正把减排任务落到实处,这是总量控制目标制定的一次突破。  “十二五”氮氧化物总量控制基本思路  ■阅读提示  推进能源结构持续优化,严格控制新增量 全面开展电力行业氮氧化物减排 采取综合措施加强机动车氮氧化物排放控制 推进以水泥行业为主的其他行业氮氧化物排放控制。  推进能源结构持续优化,严格控制新增量。严格执行国家产业政策,全面落实淘汰落后产能要求,在单位面积排放强度大的地区要进一步加严产业结构调整要求,遏制高耗能、高污染产业过快发展。严格控制污染物新增量。新建项目必须按照先进的生产技术和最严格的环保要求进行控制,大幅度降低污染物排放强度。煤电及水泥行业新建项目要求配套建设烟气脱硝设施。提高机动车准入门槛,执行国家第Ⅳ阶段排放标准,部分城市提前执行国家第Ⅴ阶段排放标准,供油油品实现配套。进一步改善能源消费结构,控制煤炭消费增量,促进经济发展的绿色转型。  全面开展电力行业氮氧化物减排。电力行业属于高架源,排放的氮氧化物在大气中发生远距离传输和化学转化,不但会影响当地的环境质量,而且存在跨界污染的问题,是造成区域性环境问题的主要原因。截至目前,我国已有80%的火电机组采用了低氮燃烧技术,已建烟气脱硝设施达到9700万千瓦。目前我国正在修订火电厂大气污染物排放标准,氮氧化物的排放标准将会非常严格。这就要求在“十二五”期间,除淘汰的小火电机组外,全面推进现役机组低氮燃烧技术改造及脱硝设施的建设,加大已安装脱硝设施机组的监管力度,提高减排能力。东部地区和其他地区的省会城市单机容量20万千瓦及以上的现役燃煤机组实行脱硝改造,其他地区单机容量30万千瓦及以上的现役燃煤机组实行脱硝改造。  采取综合措施加强机动车氮氧化物排放控制。在一些大城市,机动车排放已经超过工业排放成为重要的大气污染源,氮氧化物的分担率一般在50%左右,由于其排气高度低,对人体的危害非常大,因此机动车氮氧化物的控制对改善城市环境质量具有至关重要的作用。“十二五”期间我国将在有条件的重点城市实行机动车新增量总量控制,并严格执行黄标车淘汰政策。按照东、中、西部差别化的政策,加大黄标车的淘汰力度,到“十二五”末,东部地区基本淘汰所有黄标车,即国0的汽油车和国Ⅲ以前的柴油车。提高机动车准入门槛,实施油品升级改造工程。“十二五”期间,在全国范围内严格实施国家第Ⅳ阶段机动车排放标准,部分重点区域和城市提前实施国家第Ⅴ阶段排放标准 2011年在全国范围内供应国Ⅲ标准的车用燃油,2015年底前基本实现国Ⅳ水平车用燃油的供应,实现车、油同步升级。  推进以水泥行业为主的其他行业氮氧化物排放控制。我国水泥行业氮氧化物的排放占总排放量的10%左右,是我国氮氧化物排放的第三大源。随着水泥行业落后产能淘汰工作的推进,新型干法窑的使用比例将大幅增加,在提高能源使用效率的同时,由于燃烧温度高等原因,氮氧化物排放量将显著增加。“十二五”期间需大力开展水泥行业新型干法窑降氮脱硝工作,根据水泥窑的现状和特性,推进烟气脱硝工程建设,要求长三角、珠三角、京津冀鲁等重点区域氮氧化物年排放量在1000吨以上或熟料生产规模在2000吨/日以上的现役新型干法窑实行脱硝改造。  钢铁、工业锅炉也是氮氧化物的重要排放源,为拓展氮氧化物减排领域,推进氮氧化物持续减排,“十二五”期间应加快冶金行业、工业锅炉等其他行业氮氧化物控制技术的研发和产业化进程,推进烟气脱硝示范工程建设。  “十二五”氮氧化物总量减排的难点  ■阅读提示  电力行业大规模脱硝受多种因素的影响和制约 油品质量保证和机动车排放标准实施进程直接影响到氮氧化物的减排进展 重点行业污染治理技术的发展水平将影响“十二五”氮氧化物的减排效果。  电力行业大规模脱硝受多种因素的影响和制约。为实现氮氧化物“十二五”总量控制目标,“十二五”期间我国电力行业脱硝装机容量比例需达到70%以上(包括新增机组),这将大于“十一五”期间二氧化硫的脱硫装机容量,减排压力非常大。此外,电厂脱硝还原剂氨的需求量将很大,脱硝装置中的催化剂也未实现国产化,这些因素都将增大电力行业氮氧化物减排的难度。  油品质量保证和机动车排放标准实施进程直接影响到氮氧化物的减排进展。车用燃油质量差、含硫量高是制约机动车排放控制的主要因素,尤其是当前柴油品质极不利于柴油机尾气后处理技术的使用,影响氮氧化物减排效果。目前我国还未实现国Ⅲ油品柴油的全面供应,这与“十二五”期间要基本实现国Ⅳ水平车用燃油的供应仍有较大差距,需要多部门加强协调推进这项工作。另外,提高机动车排放标准是控制机动车氮氧化物新增量的主要手段,但标准实施后减排效果需要一定的时间才能显现,因此,“十二五”期间国Ⅳ排放标准能否及时推行是保障机动车氮氧化物减排的关键。  重点行业污染治理技术的发展水平将影响“十二五”氮氧化物的减排效果。尽管我国已有电厂烟气脱硝的控制技术,但火电厂烟气脱硝的一些关键技术仍受制于国外,钢铁、水泥、工业锅炉等行业氮氧化物排放控制技术也处于研究阶段,其研发及应用的发展水平将影响“十二五”氮氧化物的减排效果。“十二五”期间,国家应该对氮氧化物控制技术研究及产业化给予更多的支持及优惠政策,尽快推动国内氮氧化物控制技术的规模化示范应用和产业化,为氮氧化物的大规模削减提供更多技术支撑。
  • 明星产品——即插即用型氮氧化物检测光源模块
    近年来,我国环境污染问题日趋严重,新出现的有机污染物的危害不断加深,环境风险也在不断加大,已经引起了政府的高度重视。德国贺利氏特种光源作为行业领导者,除了可用于测量挥发性有机物(VOCs)和其他气体的光离子化灯,还最新研制了用于烟气和汽车尾气中氮氧化物在线监测仪中的NOX光源模块。氮氧化物是啥?氮氧化物(NOX)是一氧化氮(NO)和二氧化氮(NO2)的总称,它们在大气中会形成各种有毒物质,也是对流层中臭氧形成的元凶。氮氧化物的来源主要是人为的:燃烧用于能源发电的化石燃料,比如燃煤电厂、燃油电站、垃圾焚烧炉某些化学工艺和用于各种水陆空交通工具的石油燃料 传统检测NOX的方法有化学发光法和电化学法,但是这些方法的缺点是需要将NO2转化为NO再进行测量。NOX也可以用红外法检测,但是样品中的水和二氧化碳会产生干扰。 而紫外吸收法则是更加精确的方法,而且在紫外区域测量可以避免水和二氧化碳的干扰。然而,过去基于紫外共振法的系统在调制灯的时候会有问题,也就是说灯的寿命和能量不能发挥到最优。 充入氮气和氧气的无极放电NOX模块则能够辐射200-600nm的光谱,200nm以上可用于检测NO,NO2,H2S和SO2等等。 基于此,贺利氏特种光源新推出了用于烟气和汽车尾气中氮氧化物在线监测仪中的即插即用型NOX检测模块,模块包含预调制好的紫外光源,仪器厂商可以很容易的将其整合到仪器中。其具有尺寸小巧,即插即用,精确度高,直接测量NO和NO2等特点,受到广大仪器厂商的好评。 明星产品 即插即用型氮氧化物检测光源模块贺利氏氮氧化物检测光源模块整合了调制好的无极放电灯及电源。 为啥是明星产品? 1、尺寸小巧 2、无需调制,即插即用,12V直流供电 3、易于整合和维护更换,减少维护费用 4、精确度高,直接测量NO和NO2 5、没有H2O,CO和CO2的干扰 6、寿命可达一年 7、使用时无耗材消耗年来,我国环境污染问题日趋严重,新出现的有机污染物的危 德国贺利氏特种光源作为行业的领导者,始终致力于在线监测仪器用光源的开发。 欢迎大家莅临环博会E3.3521展位,贺利氏的应用专家期待你与您深入交流。展会现场,更有抽奖活动和技术研讨会精彩纷呈,跟贺利氏光博士一起开启绿色环保之旅吧!
  • 食品中抗氧化剂检测解决方案
    食品抗氧化剂是能阻止或延缓食品氧化变质、提高食品稳定性和延长贮存期的食品添加剂。氧化不仅会使食品中的油脂变质,而且还会使食品退色、变色和破坏维生素等,从而降低食品的感官质量和营养价值,甚至产生有害物质,引起食物中毒。但过量使用抗氧化剂也可能对人体的肝脏、肾脏等产生有不利影响,有的甚至还有致畸、致癌。 近期某知名品牌爆出非法添加过量抗氧化剂。Sigma-Aldrich积极响应热点话题,提供食品中抗氧化剂检测解决方案,提供HPLC和GC两种方法。 美国AOAC 983.15是检测油、脂肪、黄油中酚类抗氧化剂的方法。依据AOAC方法,采用Ascentis RP-Amide液相色谱柱能将方法中的物质在13min内实现完全分离。Sigma-Aldrich同时提供气相色谱解决方案,能分离几种常见的抗氧化剂。 AOAC 983.15方法液相分离抗氧化剂色谱柱:Ascentis RP-Amide, 15 cm x 4.6 mm内径, 5 &mu m (货号565324-U)流动相A:5%乙酸溶于去离子水流动相B:95:5 甲醇:乙腈流速:2.0 mL/min.温度:30 ° C检测器:UV,280 nm进样量:10 &mu L样品:分析物各10ug/ml溶于乙腈:2-丙醇 50:50中梯度:MinA%B%065351259516595 1. 乙氧喹2. 没食子酸丙酯3. 2,4,5-三羟基苯丁酮(THBP)4. 叔丁基对苯二酚(TBHQ)5. 去甲二氢愈创木酸(NDGA)6. 叔丁基对羟基苯甲醚(BHA)7. 2,6-二叔丁基-4-羟甲基-苯酚(Ionox 100)8. 没食子酸辛酯9. 3,5-二叔丁基-4-羟基甲苯(BHT)10. 没食子酸月桂酯气相色谱方法分析常见抗氧化剂色谱柱: SAC-5, 30 m × 0.25 mm内径, 0.25 &mu m (货号24156) 柱温: 200 ° C 检测器: FID, 250 ° C 载气: 氦气, 30 cm/s进样量: 2 &mu L,分流 100:1 样品: 200 &mu g/mL 每个组分 1.叔丁基对羟基苯甲醚 (BHA)2.3,5-二叔丁基-4-羟基甲苯 (BHT)3.叔丁基对苯二酚 (TBHQ)4.乙氧喹5.2,6-二叔丁基-4-羟甲基-苯酚(Ionox 100)6.2,4,5-三羟基苯丁酮(THBP)7.没食子酸丙酯 (PG)色谱耗材货号描述规格目录价(元)565324-UAscentis RP-Amide液相色谱柱15 cm x 4.6 mm, 5 &mu m3037.2524156SAC-5气相毛细管色谱柱30 m × 0.25 mm x 0.25 &mu m4899.96标准品货号中文名英文名CAS包装目录价471683,5-二叔丁基对甲酚 (BHT)3,5-Di-tert-4-butylhydroxytoluene128-37-0500mg228.1531519-250MG乙氧喹Ethoxyquin91-53-2250mg226.9891215-100MG没食子酸Gallic acid149-91-7100mg1120.86PHR1118-1G没食子酸丙酯Propyl gallate121-79-91g656.3747863L-抗坏血酸L-Ascorbic acid50-81-71g198.947783DL-&alpha -维生素EDL-&alpha -Tocopherol10191-41-0100mg290.1676524-100MG甘氨酸Glycine56-40-6100mg1178.1940048-U酚类抗氧化剂标准品套装Phenolic Antioxidant Kit 2          Kit1729.26         没食子酸丙酯 (PG)Propyl gallate500mg叔丁基对苯二酚 (TBHQ)tert-Butylhydroquinone500mg去甲二氢愈创木酸 (NDGA)Nordihydroguaiaretic acid500mg叔丁基对羟基苯甲醚 (BHA)Butylated hydroxyanisole500mg2,6-二叔丁基-4-羟甲基-苯酚2,6-Di-tert-butyl-4-hydroxymethylphenol(Ionox-100)500mg3,5-二叔丁基-4-羟基甲苯 (BHT)3,5-Di-tert-butyl-4-hydroxytoluene500mg没食子酸月桂酯Lauryl gallate500mg没食子酸辛酯Octyl gallate500mg乙氧喹Ethoxyquin500mg 关于Supelco美国Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验,拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco(上海:021-61415566-8209 北京:010-65688088-6812 广州:020-38840730-5001)正式加入美国Sigma-Aldrich公司,成为Sigma-Aldrich公司旗下分析业务的专业品牌。
  • 江西食检检出腌腊肉过氧化值不符合标准
    腌腊肉主要包括以畜禽肉或其可食内脏为原料,辅以食盐、酱料硝酸盐或亚硝酸盐、糖或香辛料等,经原料整理、腌制或酱溃、清洗造型、晾晒风干或烘烤干燥等工序加工蔼成的一类生肉制品。也是人们日渐青睐的传统食物之一。近期,江西省市场监督管理局组织食品安全监督抽检食用农产品、餐饮食品、蛋制品、炒货食品及坚果制品、罐头、冷冻饮品、茶叶及相关制品7大类食品共224批次样品,发现食用农产品、餐饮食品、冷冻饮品共10批次不合格产品,涉及微生物污染、农兽药残留、食品添加剂和质量指标问题。其中一批次过氧化值不符合国家标准。由横峰县欢乐家人餐馆销售的腌腊肉,过氧化值不符合食品安全*家标准规定。检验机构为江西省产品质量监督检测院。过氧化值是衡量油脂在自动氧化初期阶段酸败程度的指标,以每千克油脂中的活性氧毫克当量表示。过氧化值是一种指示油脂氧化酸败程度的关键指标,具有重要意义。首先,在我国食品卫生标准中对食用油脂及含油脂的加工食品的过氧化值具有明确的要求和限制,是食品卫生监督、检测时的一个常规分析。过氧化值含量越高,说明油脂和脂肪酸被氧化程度越高,食用油的变质就越严重,对人体的危害也越大。食用过氧化值超标的食品可能会导致腹泻,加速衰老,皮肤长斑等多种不良后果。深圳市芬析仪器制造有限公司生产的食品过氧化值含量检测仪能够快速检测食用油、食品等中的过氧化值的总量。适用于粮油监测中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自查、工商质监部门用于市场快速筛查等。
  • 环保部召开减排核查会 氮氧化物首次下降
    环境保护部6月27日在京召开2013年上半年主要污染物减排核查核算视频会。环境保护部副部长翟青部署2013年上半年主要污染物减排核查核算工作,并对2013年环保专项行动和环境安全检查工作提出要求。  翟青说,2013年年初,环境保护部会同有关部门对2012年主要污染物减排情况进行了核查核算。总体情况看,2012年全国四项污染物排放量均同比下降,尤其是氮氧化物首次实现下降,达到了预期目标。2012年国家目标责任书要求完成1272个重点项目,实际完成1131个,完成率近90% 全国水泥行业烟气脱硝及农业源、机动车等新增领域减排工作均取得突破性进展。根据《&ldquo 十二五&rdquo 主要污染物总量减排考核办法》和《&ldquo 十二五&rdquo 节能减排综合性工作方案》,环境保护部对3省区、1个企业集团和6个地级市实行了环评限批,对32家企业实行挂牌督办并予以经济处罚。2013年以来,总量减排各项工作正在稳步推进。从监测数据看,1至5月,全国907个地表水国控断面高锰酸盐指数和氨氮月均值分别为3.86和1.04毫克/升,同比下降5.6个百分点和6.3个百分点。325个地级以上城市二氧化硫和氮氧化物浓度分别为39微克/立方米和33微克/立方米,同比基本持平。  翟青指出,在充分肯定工作取得成绩的同时,我们也要看到总量减排工作面临的压力和困难:一是一些地方对减排约束性要求思想上有所淡化,对面临的严峻形势分析不够深入,导致减排推进力度有所减弱。二是一些地方对减排考核的&ldquo 三条红线&rdquo 认识还不到位。所谓&ldquo 三条红线&rdquo ,第一条是指年度四项污染物总量减排目标全部完成,第二条是指重点减排项目按目标责任书要求全部落实,第三条是指监测体系建设运行情况达到相关要求。三是由于部分行业产能过剩,企业效益普遍较差,治污设施的运行效率出现滑坡。  在部署2013年环保专项行动时,翟青要求,要进一步提高对执法监管工作重要性的认识,不断强化信息公开,及时发布专项行动进展情况、查处情况、挂牌督办案件等相关信息,保障群众的环境知情权、表达权、监督权和参与权。要强化责任追究,对排查不到位、整治工作没有实质进展的,要公开点名批评,约谈地方人民政府或有关部门主要负责人 对环境违法案件没有查处、隐瞒案情、包庇纵容违法行为的,要依法依纪严肃追究相关人员的责任 对群众反映强烈、社会影响恶劣的重大环境污染问题和环境违法案件,要实行挂牌督办,督促其查处到位、整改到位、责任追究到位 对经整改仍不到位、突出问题没有得到有效解决的,要实施限批 情节严重的违法案件,各地应按照新出台的司法解释,移送司法机关依法处理。  在强调环境安全检查时,翟青指出,国务院召开常务会议研究加强安全生产工作,要求各地区、各部门开展一次彻底的安全生产大检查。各级环保部门要利用好这次机会,向地方政府和相关部门汇报好、解释好安全生产和环境安全的关系,将环境安全检查纳入政府安全生产大检查工作中,提高地方政府、相关部门和企业对环境安全重要性的认识,在处置各类事故时高度重视保障环境安全。  环境保护部相关司局、在京相关派出机构、直属单位负责人以及中石油、中石化、华能、大唐、华电、国电、中电投、神华集团公司等相关人员在主会场参加了会议。各省、自治区、直辖市和新疆生产建设兵团环境保护厅(局)主要负责人、负责减排工作的同志和各环保督查中心相关人员在分会场参加会议。
  • 如何有效测试各类油品的氧化稳定性和抗氧化效果
    各种类型的食用油可用于烹饪和在厨房使用。油的范围包括植物油,如葵花籽油、大豆、花生、棕榈、椰子、橄榄油、混合油到动物脂肪,如鲑鱼油。抗氧化剂通常用于提高保质期和保存食用油和脂肪的质量。它们通过各种机制参与或干扰脂质自氧化反应级联来抑制氧化反应。不同的油有不同的氧化率,抗氧化剂在提高其保质期和保持其质量方面有不同的效果。利用VELPOXITEST油脂氧化分析仪进行了分析,检测每一种测试油的不同特点。油的氧化稳定性和抗氧化剂的添加食品最重要的质量改变之一是由于游离或酯化的不饱和脂肪酸对氧的吸收。脂肪的自动氧化是一种由光、高温、金属痕迹和有时影响产品保质期的酶促进的化学反应。防腐剂和其他物质被添加,以抵消和减缓这一食用产品的质量改变过程。抗氧化剂通常用于提高保质期和保护食用油和脂肪的质量。它们通过参与或干扰脂质自氧化反应级联来抑制氧化反应。意大利VELP油脂氧化分析仪OXITEST方法和对各种类型的油品进行的分析OXITEST氧化稳定性反应器被用来测定各种样品的氧化稳定性,不需要进行初步的脂肪分离。OXITEST方法是一项公认的分析技术,用于测定食品、脂肪和油的氧化稳定性。对各种类型的油进行了测试,以分析氧化稳定率,并比较所有含有和不含有抗氧化剂的油的配方。
  • 土壤氧化还原电位仪(土壤氧化还原电位仪的作用)
    前言: 土壤氧化还原电位仪是一种专门用于测量土壤中氧化还原势(Eh)的专业仪器,其在揭示土壤健康状况、指导农田管理和环境保护等方面具有重要价值。 产品链接https://www.instrument.com.cn/netshow/SH104275/C307153.htm 一、【实时检测土壤,评估土壤环境】 土壤氧化还原电位仪可以实时准确地测定土壤的氧化还原电位值,这一参数反映了土壤环境中电子转移活动的程度。通过持续监测和分析,能够判断土壤是处于氧化还是还原状态,进而评估土壤肥力水平、污染物降解能力及微生物活性等多方面土壤健康状况。 二、【指导科学施肥与改良措施】 利用土壤氧化还原电位仪得到的数据,农业生产者可以更准确地了解土壤对养分的有效性以及潜在的重金属污染风险。据此调整施肥策略,避免过度施肥导致的土壤酸化或盐碱化问题,并采取针对性的土壤改良措施,提高农作物产量与品质,实现土壤资源的可持续利用。 三、【环保治理与生态修复的重要工具】 在土壤污染治理和生态修复领域,土壤氧化还原电位仪同样发挥着关键作用。通过对受污染土壤Eh的动态监测,可为污染物迁移转化规律的研究提供依据,指导实施有效的土壤修复方案。此外,在湿地保护、矿山复垦等领域,该仪器也能帮助科学家和工程师深入理解并调控土壤系统的氧化还原过程,促进生态环境恢复。
  • Quantum Design中国子公司参加2017中国材料大会
    7月7日-12日,Quantum Design中国子公司参加了由中国材料研究学会主办的207材料大会。20多名中国科学院和中国工程院院士,来自欧洲、亚洲和北美等地区的数十名著名学府和科研机构的海外学者等近5000名材料领域专业人士参会。大会期间,举行“中国材料大会2017”的37个分会,930余人在各分会场做报告,1200余人做口头发言。中国材料大会2017报告现场(图片来源:中国网) 此次大会以“新材料,新技术,新发展”为主题,Quantum Design中国子公司作为参展商,向众多学者、老师和同学展示了新的设备技术,主要涵盖样品制备、材料物理、低温物理以及表面成像等领域。很多客户出于对产品的性能、应用方面的兴趣前来展台,与我们的工程师共同交流探讨产品技术。另外,大会同时向客户展示了全二维探测技术的X射线残余应力分析仪μ-X360s,让客户亲身体验其简单的操作和便携性,得到客户的一致好评。 客户与工程师在现场进行技术交流客户现场体验X射线残余应力分析仪 Quantum Design中国子公司在大会期间还举办了别有风趣的“材料知识竞猜”活动,不仅设置了丰厚的奖品,终答题前三名还能获得“学霸奖金”500元。“在辛苦参展的同时,还能参加这样趣味的知识小游戏,不仅放松了身心,还能有这么丰厚的奖品,为你们的活动点赞!”某位客户这样评价道。 后感谢众学者、老师和同学在这样的酷暑天气前来参展,也感谢材料大会主办方及各承办方对本次参展工作的支持,同时还要感谢我们Quantum Design 中国子公司各位辛苦的参展人员。我们相信,通过材料大会这样的平台,定能加深材料领域的学术交流,从而推动新材料科学研究、开发和产业化发展,同时可以搭建起研究者和设备供应商之间的桥梁,互通需求,为科研实验提供更优质的服务。
  • 【莱恩德】农业生产:土壤氧化还原检测仪的应用
    点击此处可了解更多产品详情:土壤氧化还原检测仪  土壤是农业生产的基础,也是地球生态系统中不可或缺的一部分。土壤的氧化还原状态是影响土壤质量的重要因素之一。为了更好地了解和改善土壤状况,农业生产者和研究人员需要一种能够准确检测土壤氧化还原状态的仪器。本文将介绍一种常见的土壤氧化还原检测仪器——土壤电位计。    土壤氧化还原检测仪是一种用于测量土壤氧化还原状态的仪器,它基于电化学原理,通过测量土壤中的氧化还原电位来评估土壤的氧化还原状态。土壤中的有机质和无机物质可以影响土壤的氧化还原电位,从而影响农作物的生长和养分吸收。因此,准确测量土壤的氧化还原电位对于农业生产具有重要的指导意义。    土壤氧化还原检测仪的主要特点包括操作简单、快速、准确度高、维护方便等。该仪器通常由电极、测量仪表和附件组成。电极是用来测量土壤中的氧化还原电位的传感器,一般采用不锈钢或铜合金等材料制成。测量仪表则是用来显示测量结果和控制电极的设备,一般采用数字式或指针式等显示方式。    土壤氧化还原检测仪的应用范围非常广泛,主要应用于以下几个方面:    1. 农业生产:农业生产中需要了解土壤的氧化还原状态,以确定适宜的作物种类和施肥方案。通过使用土壤氧化还原检测仪,农业生产者可以了解土壤的氧化还原电位,进而制定合理的农业生产计划。    2. 环境保护:土壤的氧化还原状态受到环境污染的影响,例如废气、废水和废渣等。通过使用土壤氧化还原检测仪,环境保护工作者可以了解土壤的氧化还原状态,进而制定相应的环境保护措施。    3. 科学实验:土壤学、植物学和生态学等领域的研究需要进行土壤氧化还原状态的研究。通过使用土壤氧化还原检测仪,研究人员可以获得准确的实验数据,进而得出科学的研究结论。    总之土壤氧化还原检测仪作为一种检测土壤氧化还原状态的仪器在农业生产、环境保护和科学实验等领域具有广泛的应用前景。它能够帮助我们更好地了解和改善土壤状况提高农业生产的效益保护环境的研究结论。同时也能为环境保护提供更加准确科学的数据支持对于保护我们共同的家园具有重要意义。【莱恩德】农业生产:土壤氧化还原检测仪的应用
  • 二氧化氯测定仪支持疾控系统饮水安全检查工作
    百灵达水晶版二氧化氯测定仪秉持百灵达水质检测产品一贯具有的检测精确可靠、操作方便快捷、设备轻巧便携等卓越的性能特点,并在此基础上将二氧化氯与余氯的检测有机结合,特别适合于采用不同二氧化氯消毒产品的小型水处理厂使用。无论所采用的二氧化氯消毒技术是高纯型二氧化氯发生器、复合型二氧化氯发生器或稳定型二氧化氯试剂,水晶版二氧化氯测定仪都能够准确、快速地检测出二氧化氯的投加浓度及残留浓度,而能够有效排除余氯以及亚氯酸盐等物质对检测带来的干扰。特别值得提出的是,这款仪器的最低检出限可以达到0.02mg/l,分辨率可以达到0.01mg/l,能够充分满足我国卫生部《生活饮用水卫生标准GB 5749-2006》中对于自来水采用二氧化氯消毒时,管网末梢浓度所规定的标准。 正是由于水晶版二氧化氯测定仪所具备的这些技术特性,这款仪器已经在国内多个省级疾控单位得到了认可,并广泛配备在地区疾控系统中,重点用于在广大采用二氧化氯消毒的农村地区,对饮用水水质卫生安全检测工作起到了强大的技术支持作用,并获得广泛好评。一些典型案例包括:1、甘肃省疾控中心为省内下级各县市统一采购配备,已交货11台;2、广西省疾控中心组织技术交流会介绍相关产品技术资料,并已有十余个县市疾控或自来水司等单位采购;3、福建、广东、贵州等地区也已有二十余个县市的疾控部门采购。产品链接:http://www.instrument.com.cn/netshow/SH101270/C106252.htm
  • 郝吉明院士:控制氮氧化物排放是改善空气质量关键
    中国许多城市目前正遭受着严重的空气污染,而氮氧化物被认为是导致空气污染的罪魁祸首。原因在于,氮氧化物排放造成的二次污染可以产生多种环境影响:酸沉降、水体富营养化、臭氧、PM2.5、气候变化……  “因此,NOx(氮氧化物)排放控制是改善我国环境空气质量的关键。”近日,中国工程院院士、清华大学教授郝吉明在贵阳“第七届全国环境化学”大会报告上如此表示。  氮氧化物主要来自电厂燃煤烟气和汽车尾气。郝吉明说,仅通过锅炉优化燃烧和机内净化控制氮氧化物远不能满足日益严格的排放标准,“而选择性催化还原(SCR)氮氧化物为氮气是最有效的净化方法”。  该方法要用到脱硝催化剂——其功能在于促使还原剂选择性地与烟气中的氮氧化物发生化学反应。郝吉明说,关键在于高效低成本脱硝催化剂的设计,目前该领域主要聚焦在“高性能催化体系设计和复杂环境下技术适应性”两个方面。  SCR催化剂可以分为金属氧化物和分子筛两类催化剂,前者主要应用于燃煤烟气脱硝,后者用在柴油车尾气氮氧化物控制。  郝吉明说,我国燃煤烟气脱硝主流技术为NH3-SCR,但这一技术存在高温选择性差、抗中毒能力弱、工作温度窗口窄等问题,难以满足我国电厂复杂烟气排放特征(高灰高钙高硫),及不同负荷宽工作温度下脱硝的需求。  而影响催化剂选择性及抗中毒和温度窗口的关键因素是脱硝催化剂的氧化还原性和酸性。  因此,郝吉明提出通过合理调控催化剂的氧化还原性和酸性,设计新的催化剂体系,从而最终解决上述难题的思路。  我国2003年前建设的电厂,由于没有预留脱硝空间,烟气脱硝装置被安装在除尘或脱硫之后,此时烟气温度已经降到200℃以下。要在如此低温条件下,将氮氧化物还原为氮气,对国内外学术界和工业界都是一个挑战。  郝吉明认为,解决这一问题的关键,仍然是探索新的活性组分。由于锰具有很好的低温活性,研究人员将二氧化锰应用到低温脱硝领域,最终发明了锰铈锡三元复合氧化物催化剂体系。目前该团队已完成了从原材料到脱硝催化剂制造的整个产业链工作,相继完成了小试、中试和产业化应用全过程。  在分子筛研究方面,当前国际上主要聚焦在小孔高硅CHA分子筛上。郝吉明研究团队发现,Cu/CHA分子筛具有优异的脱硝活性和氮气选择性,铜含量的增加会有效提高低温活性,且具有优异的抗水热老化和抗积碳能力,成为柴油车尾气净化的关键催化材料。  郝吉明说,下一步需要对不同排放源的氮氧化物开展污染控制,但关键的脱硝催化剂材料研究及应用仍然面临着三个方面的挑战。  一是再生及废弃催化剂如何资源化利用。“十二五”期间将大规模安装脱硝装置,脱硝催化剂市场良莠不齐,很难保证所有的脱硝催化剂都能够达到设计寿命,所以脱硝催化剂寿命和稳定性仍然是一个挑战。此外,将来大量的废旧催化剂如何再利用是下一阶段的研究课题。  二是推动烟气多污染物的协同控制。零价汞是全球性的大气污染物,燃煤烟气是汞的主要排放源之一,燃煤烟气汞的排放控制成为需要迫切解决的问题,研究如何能够在高效脱硝的同时氧化汞。  三是研发高效低成本分子筛脱硝催化剂。对于柴油车尾气中氮氧化物控制,虽然小孔分子筛负载铜的催化剂体系具有良好的脱硝性能及高热稳定性和抗积碳特性,但针对国内的劣质柴油,仍然需要解决催化剂的抗硫性能。  此外,替代燃料车尾气排放控制也面临难题。含氧替代燃料会造成尾气中氮氧化物排放量增加,提高了脱硝难度 不同燃料车尾气中非常规污染物(醛类、酸类等)的排放和危害也成为环境化学家必须关注的问题。
  • 得利特新品推荐---全自动润滑油氧化安定性测定仪
    能源是当今社会发展的三大支柱之一,是制约国家经济发展的瓶颈。目前我国能源结构主要是煤,石油,天然气,核能等,这些能源都是一次性不可再生且污染的能源,所以油品的合理利用能促使社会可持续发展,通过加强油品质量检验,能够有效的检验出油品质量的高低,及时的发现油品的质量问题,确保企业的利益不受到损害。血液的健康关乎人体的生命与健康,通过血液检查能够了解人体的健康。同样,通过油品检测能够及时的了解机器设备的健康损耗状况。润滑油是工业机器设备运行中及为关键的一环,正如人体中的血液对于生命及健康的重要性一样,润滑油保护着设备的关键部件并改善其运行状态。通过油品检测能够及时的发现问题解决问题,挽救机器设备于危难,帮助企业规避风险,降低设备维修成本。而油品检测分析基于一系列专为评估设备内部硬件及润滑油状态的测试,是一项通过分析油品成分监测设备状态的快速,非侵入性方法。润滑油检测出的结果,性能,污染物,磨损金属等因素由油品检测专家在实验室进行分析。通过定期测试,企业得以监控油品状况。确保机器及其它关键设备达到使用寿命。基于此油品检测的重要性溢于言表,我们得利特全新打造升级了全自动润滑油氧化安定性测定仪。下面是具体产品的介绍:A1100润滑油氧化安定性测定仪是依据SH/T0193 、ASTM D2272标准设计制造的,适用于测定具有相同组成的(基础油和添加剂)新油和使用中汽轮机油的氧化安定性。技术参数1.工作电源:AC220V±10%,50H2.加热功率:≤3.4KW3.控温范围:室温~200℃控温精度:±0.1℃数字式精密压力4.传感器精度:±2‰5.电机转速:100±3r/min6.外形尺寸:600mm×750mm×850mm产品升级特点:1.仪器采用微机自动进行检测、计算和控制,整个测试过程中无需人员值守,自动化程度高。同上位机实时通讯,连接方式简单、可靠。2.可随时校对温度和压力,确保压力和温度的准确性。自动记录测试过程中的数据和测试结果。可以对过往记录进行查询、比对,并打印出压力变化曲线。3.自动判断压力拐点,并自动结束试验。4.**旋转装置,转速稳定且噪音小。可同时实验两组油样。5.**水银滑环,信号可靠,寿命长。
  • 携领新品,震撼来袭|抗氧化剂检测样品预处理方法包(气相法)
    我们新研发推出的气相色谱法检测液态油脂中3种合成抗氧化剂(TBHQ、BHA、BHT)——样品预处理专用方法包B系列产品,从常温下呈液态的食用动植物油脂和含油食品提取的液态油脂样品中,实现同时提取、分离和净化这3种合成抗氧化剂,以用于气相色谱技术对这些合成抗氧化剂的检测。本系列样品预处理方法包主要用于叔丁基对苯二酚(TBHQ)、叔丁基对羟基茴香醚(BHA)和 2,6-二叔丁基对甲酚(BHT)的检测,这三种合成抗氧化剂是我国广泛使用的、合法的油溶性合成抗氧化剂,其作用主要是减缓食用油脂(包括含油食品中的油脂)氧化变质的速度,其zui大添加限量(以油脂中的含量计)均为200mg/kg。目前,国家标准中用于气相色谱检测这些合成抗氧化剂的预处理技术为凝胶渗透色谱技术(GPC),GPC法是一种使用多孔填料或多孔交联高分子凝胶作分离介质的液相色谱技术。需要昂贵的专用仪器——凝胶渗透色谱仪,以及专用耗材——凝胶渗透色谱柱,色谱柱损耗也较快,成本高昂。由于GPC技术需要大量的流动相,每预处理一个样品,需要消耗上百毫升的有机溶剂,且单次只能处理一个样品,效率较低。预处理后收集的溶液量比较大,单次实验要对几十毫升溶剂进行浓缩蒸干,对实验人员危害较大。并且GPC难以去除与目标分子大小相近的杂质分子,影响气相检测效果。本系列方法包分型:气相色谱法检测液态油脂中3种合成抗氧化剂(TBHQ、BHA、BHT)样品预处理专用方法包分为BL-1型和BL-2型。本系列方法包主要的优势1预处理成本低:无需昂贵的仪器和耗材,仅需多管涡旋振荡器、离心机等实验室常规仪器和耗材;2预处理效率高:每次实验可对多个样品进行预处理操作,最短耗时可控制在15min左右;3有机溶剂用量少:每个样品预处理操作消耗不到30mL;4安全环保:无需对大量有机溶剂进行蒸发浓缩的操作,减小对实验人员的危害;5净化效果好:可去除绝大部分的甘油三酯及其衍生物,有效防止对气相色谱仪器和色谱柱的污染,同时降低油脂中的其它杂质对气相检测合成抗氧化剂的干扰;6回收率高、稳定性好:一般情况下,TBHQ、BHA、BHT的回收率在80%~110%之间,各自回收率的重复性RSD5%。典型气相色谱检测条件和检测色谱图1气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2进样口温度:230℃;3升温程序:初始以80℃的柱温维持1.5min,然后以10℃/min的升温速度将柱温升到250℃,并维持5min;4检测器温度:250℃;5进样量:1μL;6进样方式:进样后以不分流模式维持1.5min,然后以1:10的分流比进行分流模式的检测;7载气:氮气,纯度≥99.999%,流速1mL/min。8检测色谱图:
  • 内蒙古具备检测乳制品过氧化苯甲酰的能力
    记者9月11日从内蒙古出入境检验检疫局获悉,内蒙古出入境检验检疫局技术中心理化实验室技术人员成功开发出了乳制品中过氧化苯甲酰的高效液相色谱检测方法,具备了检测乳制品中过氧化苯甲酰的技术能力。  今年,美国、澳大利亚等国家的乳制品大量进入中国市场,其质量问题也令人关注。其中,乳清粉中被查出违规使用化学物质苯甲酸和过氧化苯甲酰成为受消费者关注的一件大事。苯甲酸是一种沿用已久的防腐剂,在酱油和果汁等食品中较为常见,而过氧化苯甲酰则是小麦粉处理剂,用于起到增白效果,我国对其添加量有明确的规定,这两种物质在乳制品中则不允许添加。  此次确定的检测方法干扰小、简便、快速,可以在短时间内完成过氧化苯甲酰的检测。
  • 高灵敏快速比色-荧光双模检测典型氧化剂研究获进展
    近日,中国科学院新疆理化技术研究所爆炸物传感检测团队在高灵敏快速比色-荧光双模检测典型氧化剂的研究获得进展,相关研究成果发表在Analytical Chemistry上。   高锰酸钾(KMnO4)、次氯酸钠(NaClO)等典型氧化剂是代表性非制式爆炸物原料,而过量排放会造成环境污染。因此,开展氧化剂的高灵敏、高选择性、现场快速检测和分析对维护国家公共安全与环境保护具有重要意义。   有机光学探针因具有结构可调、官能团多样、发光效率高、反应快、识别位点特异等优点,被广泛应用于典型氧化剂检测。目前,相关研究集中在调控探针结构增强单个目标物检测性能方面,如何通过探针设计实现对不同氧化剂的同时区分检测颇具挑战。   中国科学院新疆理化技术研究所爆炸物传感检测团队基于KMnO4和NaClO皆可氧化双键,以及氧化能力和反应机制不同的特征,提出了基于D-π-A(电子给体-π共轭桥-电子受体)结构的“一箭双雕”探针分子设计策略,实现了对KMnO4和NaClO的比色-荧光双模区分识别。   研究基于多氰基呋喃(TCF)中甲基易与醛基进行羟醛缩合反应生成双键的特点,以自身含有碳碳双键的TCF为拉电子基,以对二甲氨基苯甲醛为推电子基,设计制备了TCF基D-π-A型比色-荧光探针分子(DMA-CN)。由于KMnO4可以同时打断TCF和π共轭桥中的碳碳双键,而NaClO仅可以打断π共轭桥中的碳碳双键,进而生成具有不同光学性质的产物,从而产生不同的比色和荧光信号。   研究发现,DMA-CN对KMnO4的荧光-比色检测限分别达60 nM和 91 nM,而对NaClO的荧光-比色检测限达13 nM和214 nM,响应时间均1 s,并对10余种干扰物具有良好的选择性。与已报道的荧光探针检测方案相比较,该成果在检测限、响应速度与选择性方面均具有优势。   此外,研究还通过将设计的荧光探针与静电纺丝技术相结合,制备了纳米纤维素纸基传感器,并用于实际环境中痕量KMnO4和NaClO的准确、快速、可视化识别。该研究为环境监测、工业产品风险管控和爆炸物检测等领域荧光传感原理探针分子的高效设计及应用奠定了实验和理论基础。   研究工作得到国家自然科学基金、中科院青年创新促进会、中科院基础前沿科学研究计划从0到1原始创新项目、中科院“西部之光”人才培养计划和新疆维吾尔自治区等的支持。新疆大学科研人员参与研究。
  • 聚焦3.15,海能在行动:食品酸价和过氧化值的检测解决方案
    消费者权益日3.15黑名单之夜刚刚过去,消费安全不容忽视。无论你来自何方,从事什么样的职业,我们都有一个共同的名字——消费者。今年央视3.15晚会的主题是:“信用让消费更放心”。消费领域一些失信和侵犯消费者权益的情况在很大程度上影响着消费者的满意度和消费信心,制约着消费潜力的进一步扩大。从晚会曝光的情况来看,各类食品安全问题依旧层出不穷:生产车间“辣眼睛”的辣条、“化妆”出来的“土鸡蛋”……针对以上问题,海能实验室迅速做出反应,为各位消费者总结了最新解决方案,希望对大家有所帮助。辣条是近年来非常热销的小零食,但很多三无辣条的生产车间是真的“辣眼睛”,不仅卫生毫无保障,还存在违规使用添加剂的情况。晚会中曝出的一家辣条厂商,生产车间内满地的粉尘与机器渗出的油污交织在一起,水桶、水瓢都被厚厚的污垢所覆盖,这样的辣条你还敢吃吗?不合格辣条怎样识别? 其实大家可以发现辣条一般都含有大量的油脂,这些油脂的品质在一定程度上可以反映辣条的品质。油脂品质一般体现在酸价和过氧化值两项检测指标上。酸价即酸值,是脂肪中游离脂肪酸含量的标志,酸价越小,说明油脂质量越好,新鲜度和精炼程度越好。过氧化值则是衡量油脂酸败程度的指标,一般来说过氧化值越高其酸败程度越高。那么,这两项指标怎么测呢?莫慌,我们已经为您准备好了检测方案。当当当当~海能实验室电位滴定法检测食品中的酸价和过氧化值仪器与试剂1、仪器T960电位滴定仪,Hamilton pH复合电极 铂复合电极,10mL滴定管单元T960电位滴定仪2、试剂氢氧化钾滴定液(0.0991mol/L,滴定液的浓度用邻苯二甲酸氢钾基准物质标定);硫代硫酸钠滴定液(0.01mol/L,滴定液浓度用重铬酸钾基准物质标定);异丙醇:乙醚=1:1(v:v);异辛烷:冰醋酸 =2:3(v:v);碘化钾。实验方法1、样品制备食品样品按照国标要求经过干燥、粉碎,使用石油醚浸提或者抽提,得到待测油脂试样。如果样品为液态澄清食用油脂,也可充分混匀后直接取样。2、实验过程2.1 酸价准确称取20g左右制备好的油脂样品,置于滴定杯中,加入异丙醇-乙醚混合溶液50mL溶解,搅拌均匀,用氢氧化钾滴定液,以pH非水电极为工作电极,滴定至终点。2.2 过氧化值准确称取5g左右样品,置于滴定杯中,加入冰醋酸-异辛烷混合液50mL溶解,搅拌均匀,向滴定杯中准确加入0.5mL饱和碘化钾溶液,搅拌反应60s,立即向滴定杯中加入40mL去离子水,插入电极和滴定头,用硫代硫酸钠滴定液,以铂复合电极为工作电极,滴定至终点。数据分析与讨论1、实验数据2、酸价实验典型谱图3、过氧化值实验典型谱图4、讨论由酸价实验谱图可知,不同的样品走势不同,所以需要根据国标中提供的参考图仔细分辨。另外,酸价图谱前端均出现高突跃量的杂峰,所以应设置相应的预控pH值,以免影响最终结果的判定。过氧化值图谱明显,但由于滴定体积较小,建议使用0.01mol/L的硫代硫酸钠溶液进行滴定。结果表明,T960对两种指标测试的结果平行良好,且手工的结果无明显差异,能够满足实验需求。另外,煎炸油的酸价明显高于普通食用油,而辣条中若使用类似的劣质油、地沟油,会给消费者带来健康隐患。
  • 赫施曼助力生产环境中纳米二氧化钛粉尘浓度的检测
    纳米二氧化钛是白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域。作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。在纳米材料生产环境中,粉尘颗粒面积较大,氧吸附较多,在有粉尘的环境中存在可燃性气体时,会大大增加粉尘爆炸的危险性。另外人体吸入粉尘会引起以肺为主的全身性疾病。根据GB/T 41456-2022,将空气中纳米二氧化钛粉尘采集到捕集液中,形成二氧化钛粉尘分散液。当分散液浊度T≤T0时,用二安替吡啉甲烷分光光度法测定其浓度;当分散液浊度TT0时,用过氧化氢分光光度法测定其浓度。注:分散液浊度T0 :取生产现场的纳米二氧化钛产品配制成1.8 mg/L的分散液,用浊度计测得的浊度值即为T0。以分散液浊度T≤T0为例,测定方法如下:1.配置溶液(1)二安替吡啉甲烷溶液称取25.0g二安替吡啉甲烷于1000mL烧杯中,加入400mL7.4%盐酸(采用37%盐酸配制而成),加热并搅拌至完全溶解,冷却,转移至500mL的容量瓶中,用7.4%盐酸定容至刻度,混匀,保存于棕色瓶中,4℃±2℃下冷藏。使用前1h取出。有效期1个月。(2)消解液向1000mL烧杯中加入350mL浓硫酸和200g硫酸铵,置于电热板上加热至硫酸铵全部溶解,然后自然冷却至室温,转移至500mL广口瓶中。(3)二氧化钛储备液称取500.0 mg二氧化钛产品于100mL烧杯中,加入消解液10mL,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变为无色透明时取下,冷却,转移至1000mL容量瓶中,用蒸馏水定容至刻度,混匀。(4)二氧化钛使用液用移液管移取二氧化钛储备液5mL置于250mL容量瓶中,用蒸馏水定容至刻度,混匀。2.工作曲线的绘制(1)取6个50ml容量瓶,分别加入二氧化钛使用液0mL、1.0mL、2.0mL、3.0 mL、4.0mL和5.0mL。(2)向上述6个溶液中均依次加入8.0mL5.9%盐酸、2.0mL10g/L抗坏血酸和10.0mL50g/L二安替吡啉甲烷溶液,用蒸馏水定容至刻度,播匀,得到不同浓度的溶液。(3)分别移取(2)的6个溶液到比色皿中,用紫外-可见分光光度计在波长390nm处,以试剂空白为参比,测试吸光度,每个样品测试3次,计算其平均吸光度。(4)以二氧化钛浓度为横坐标,平均吸光度为纵坐标,绘制工作曲线。工作曲线的直线拟合相关系数R² 应不小于0.999,否则重新绘制。3.分散液中纳米二氧化钛粉尘浓度的测试(1)将分散液样品至少超声5min。(2)用移液管取(1)分散波样品50mL于100mL烧杯中,在80℃条件下烘干。(3)在(2)样品中加入10mL消解液于烧杯中,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变成无色透明时取下,冷却,转移至50 mL容量瓶中。(4)在(3)样品中,依次加入8.0mL的5.9%盐酸、2.0mL的10g/L抗坏血酸和10.0mL的50g/L二安替吡啉甲烷溶液,用蒸馏水定容至50mL,摇匀。(5)将(4)溶液转入比色皿中,用紫外-可见分光光度计在波长390nm处,测定吸光度,每个样品测试三次,计算其平均吸光度。最后计算纳米二氧化钛粉尘质量浓度。实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中盐酸等的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 化妆品中二氧化钛等7种禁限用物质检测方法征求意见
    关于征求化妆品中二氧化钛等7种禁用物质或限用物质检测方法(征求意见稿)意见的函   食药监许函[2010]374号   各省、自治区、直辖市食品药品监督管理局(药品监督管理局),有关单位:  为进一步加强化妆品安全评价工作,规范化妆品中禁用物质或限用物质检测方法,我司组织起草了化妆品中二氧化钛等7种禁用物质或限用物质检测方法(征求意见稿)。现向社会公开征求意见,请将修改意见于9月24日前反馈我司。  联 系 人:马辰,陈志蓉  联系电话:010-88330402  传  真:010-88373268  电子邮件:machench@163.com  附件:  1、《化妆品中二氧化钛检测方法》(征求意见稿)  2、《化妆品中氧化锌检测方法》(征求意见稿)  3、《化妆品中二乙氨基羟苯甲酰基苯甲酸已酯检测方法》(征求意见稿)  4、《化妆品中二乙基己基丁酰胺基三嗪酮检测方法》(征求意见稿)  5、《化妆品中二苯酮-2检测方法》(征求意见稿)  6、《化妆品中亚苄基樟脑磺酸检测方法》(征求意见稿)  7、《化妆品中二噁烷检测方法》(征求意见稿)  8、反馈意见表  国家食品药品监督管理局食品许可司  二〇一〇年九月十五日
  • 氮氧化物监测目标需适度完善
    p  NOx(氮氧化物)是城市环境空气质量监测关注的主要指标之一,其通过诱发多种呼吸道疾病而影响人体健康,并产生一系列次生危害。NOx是“十二五”4项约束性控制指标之一, 2012年3月,新修订的《环境空气质量标准》(GB3095-2012)收紧了NOX浓度限值。未来一段时间,我国NOX污染走势如何,应怎样优化NOx监测,成为业界普遍关注的话题。/pp  城市环境空气中NOX的监测/pp  根据第一次全国污染源普查公报,我国NOX主要来源于电力行业、机动车尾气和非金属矿物制品业,这三大领域合计排放量占NOX排放总量的83%。由此可见,NOX的总量控制要抓住重点行业和重点区域,构建以防治火电行业排放等为核心的工业NOX防治体系和以防治机动车排放等为核心的生活NOX防治体系。/pp  总体来看,我国城市环境空气中NOX的年均浓度相对稳定、安全。从2013年监测结果看,年均浓度全部达标,且75%以上符合一级标准。就年变化趋势而言,2008年以来,城市环境空气中 NO2的浓度稳中有升,与工业经济增长较快、机动车排放增加等因素有关。从季度变化趋势看,NOx浓度在冬季较高,夏季最低。每年污染最严重的月份集中在11月~次年2月,而6月~8月的NOx浓度最低。/pp  究其原因,冬季气温低,燃煤采暖等加大了NOx排放,同时,冬季大气环境容量最小,NOx在压缩了的大气空间里易发生累积。而大气环境容量在夏季变大,同时,由于盛行南风或东南风,大气环境相对洁净,稀释作用强,因此NOx的污染较轻。/pp  我国城市环境空气中NOX的监测情况与美国具有可比性。美国从1979年开始要求监测环境空气中的NO2,对人口超过100万的城市,最少要布设两个监测点位。其中,一个监测城市内的最高NO2浓度,另一个要求设在NO2排放量最高区域的下风向。2006年完成的回顾性评价结果表明,在全美范围内,NO2浓度值一般远低于标准限值,是相对安全的环境空气质量指标,因此不再提强制监测要求,得到美国环保局批准后,可撤销原设点位。/pp  根据国内外监测数据,城市环境空气中的NOX主要源自化石燃料的燃烧,特别是机动车的普及,推动城市NO2日浓度变化呈“双峰双谷”分布特征。两次峰值分别出现在上午9:00~11:00和夜间19:00~21:00,且夜间峰值高于白天 两次谷值出现在凌晨5:00~7:00和下午15:00~17:00,明显受机动车排放影响。交通早高峰后,NO2不断累积,从7点到11点,浓度不断升高,之后有所回落,下午3~5点达到低谷 随着交通晚高峰到来,NO2浓度又逐渐上升,并在夜间19:00~21:00达到最高值。此后,随着人群夜间活动减少,NO2浓度开始缓慢下降。/pp  完善NOX监测的建议/pp  NOX减排处于非常艰难的胶着状态。一方面,重化工业比重大,结构性污染问题突出,消化存量污染压力大 另一方面,家庭汽车保有量增加,新开工企业为数众多,NOX排放增量依然较大。这也是在很多城市观测到环境空气中NOX浓度呈升高趋势的主要原因。就全国而言,2013年地级及以上城市NO2的年均浓度为0.032mg/m3,较2012年增加了14.3%。/pp  我国一直坚持对SO2和NOX的监测,总体来看,SO2污染减轻,NOX污染有加剧趋势。与此同时,灰霾天气数量增多。由此看来,NOX排放量增加,以及新增挥发性有机物和氨气等的排放,可能引发更为复杂的光化学反应,从而使城市环境空气质量急剧下降。因此,NOx可能是比SO2更敏感的指标,应密切跟踪NOX浓度的变化,并分析其对光化学反应和PM2.5生成的影响。/pp  一是重新确定NOX监测目标。美国1971年就制订了NO2监测标准,但直到1979年才提出监测要求,而且考虑到人口过百万的城市才会出现NO2污染问题,只对此种特大城市才作监测要求。早期的NOX监测主要考虑健康影响,后来同时关注光化学活性。自美国开展NO2监测以来,点位数量一直相对稳定,即使自2006年不再强制要求监测,对NO2的监测也未终止。其原因在于尽管NO2的健康威胁并不大,但O3模型等需要NOX数据,加上公众参与、溯源前驱物等原因,因此仍坚持对NO2的监测。/pp  目前美国保留的对NO2的监测,仍有近一半是针对健康影响的。其中,超过36%的点位特意设在人口密集区。另外,还包括最高浓度区监测、污染点源监测、背景监测、区域传输监测、生物生态影响监测等目的。/pp  从国内监测情况看,环境空气中NO2的浓度并不对健康构成严重威胁。然而,SO2浓度下降、NO2浓度升高后,灰霾污染立即加重,这表明NO2的其他化学或物理效应较强。因此,NO2监测目的设计及监测点位确定,是很有研究价值的。调整NO2监测网络时要综合考虑多种因素,使其既满足健康保护需要,又能达到科研目的。/pp  二是加强点源和减排监测。NOX污染主要来自化石燃料的燃烧,火电、水泥、钢铁烧结、炼焦等工业企业是重要贡献者。要加强针对这些点源的减排并监测其效果。/pp  机动车占NOX排放量的40%~60%。机动车属于近地面排放,对城市环境空气中NO2浓度升高的贡献在70%以上,是环境NOX污染的主要来源。在城市内可观测到,在交通拥堵路段,NO2浓度明显偏高。机动车限行,加强机动车尾气治理,以及改善路网结构等都是防治NOX污染的有效措施。同时,应在典型路段开展定位监测,用以评价控制效果。/pp  三是加强对NOX环境效应的研究。NOX除了直接引起呼吸道疾病,还会产生其他次生环境危害,如其转化为硝酸根离子后,导致酸沉降 作为前驱物,可以使地面臭氧浓度升高 生成细小颗粒物,带来PM2.5污染 沉降到地面后,使水体富营养化等。NOX参与环境化学的机理非常复杂,催化作用明显,应加强相关基础研究,以更好地了解NOX的环境效应,并指导NOX减排工作。/p
  • 今年中秋节,你吃的月饼检测过抗氧化剂了吗?
    佳节团圆不忘食品安全月饼是我们中华民族中秋节传统的美食,深受大家的喜爱。但你们知道吗,月饼可是典型的高油脂含量食品,虽然不同种类的月饼其配方也不同,但一般而言,月饼的含油率在20%左右,甚至更高。同时,月饼还是高蛋白含量、高糖含量的食品,所以月饼是典型的“三高”食品,再喜欢吃,也要少吃。正是由于月饼营养丰富,所以月饼的保质期比较短,一般为20天~90天左右。为此,许多生产厂家就千方百计的、想方设法延长月饼的保质期,其中在生产月饼所用的食用油脂原料中添加合成抗氧化剂,就一种有效而低成本的方法。根据《食品安全国家标准 食品添加剂使用标准》(GB 2760-2014)的规定,目前共有4种化学合成的酚类物质,可作为合法的食品抗氧化剂,分别为没食子酸丙酯(PG)、叔丁基对苯二酚(TBHQ)、叔丁基对羟基茴香醚(BHA)和 2,6-二叔丁基对甲酚(BHT)。这4种合成抗氧化剂一般具有较好油溶性,并表现出延缓各类食品氧化变质速度的作用,主要添加于各类食用动植物油脂、油脂制品(如人造奶油等)和含油食品(如油炸面制品、月饼、饼干、焙烧食品、膨化食品等)。其中又以叔丁基对苯二酚(TBHQ)抗氧化效果比较好、油溶性较稳定而在食品行业中应用的最为广泛。但作为化学合成的物质,若TBHQ在食品中添加量过多,就会对人体建康造成不利的影响,所以《食品安全国家标准 食品添加剂使用标准》对食品中TBHQ的添加量是有严格限制的,在食品生产中超限量添加TBHQ是严重违反食品安全法的行为。此外,若在月饼生产过程中添加TBHQ,按照我国现行相关的食品安全法律法规的要求,必须在月饼包装的配料表中明确标明,该月饼产品中添加了TBHQ,否则,即使添加量未超过限量,也属于违法行为。那如何检测月饼中是否添加了TBHQ? 目前高效液相色谱技术是国内主要测定食品中TBHQ含量的检测技术之一。但是由于月饼的成分复杂,且多变,极易对高效液相色谱技术的检测造成干扰,甚至污染、堵塞宝贵的液相色谱柱,所以从月饼中提取、分离和净化各种合成抗氧化剂的技术——样品预处理技术就成为了检测的关键。在这里向大家推荐我们月旭科技(上海)股份有限公司研发的新产品——高效液相色谱检测食品中合成抗氧剂专用样品预处理方法包(AL-1型)。其具体的操作如下:月饼中油脂的提取. 1将一定量的月饼将其完全研磨捣碎并混匀,加入其样品体积3-6倍的石油醚(30℃~60℃沸程),搅拌分散后,静置浸泡过夜。再过滤取清液收集于烧瓶中,于45℃的的水浴中,将石油醚全部旋转蒸发蒸干,剩余的不挥发的液体为月饼中提取的食用油脂。样品预处理. 2取2g所提取的油脂样品,按照AL-1型样品预处理方法包的操作说明书进行TBHQ的提取、分离和净化操作。如流程示意图所示。高效液相色谱检测. 3液相检测色谱条件:1)液相色谱柱分析柱:Ultimate XB-C18,4.6mm×250mm,5μm,(货号:00201-31043);保护柱:Ultimate XB-C18,4.6mm×10mm,5μm,(货号:00808-04001)(配不锈钢保护柱柱套,货号:00808-01101)。2)流动相A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序4)流速:1.0mL/min;5)检测波长:280nm;6)柱温:35℃;7)进样体积:20μL。液相检测样品预处理专用方法包操作流程示意图典型检测结果. 4采用月旭科技(上海)股份有限公司研发的高效液相色谱检测食品中合成抗氧剂专用样品预处理方法包(AL-1型),货号:ATOX4-P01,可以快速、高效的从各种月饼提取的食用油脂中分离、提取和净化TBHQ,从而可以保障最终高效液相色谱技术对其中TBHQ含量的测定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制