当前位置: 仪器信息网 > 行业主题 > >

跨膜运动机制

仪器信息网跨膜运动机制专题为您整合跨膜运动机制相关的最新文章,在跨膜运动机制专题,您不仅可以免费浏览跨膜运动机制的资讯, 同时您还可以浏览跨膜运动机制的相关资料、解决方案,参与社区跨膜运动机制话题讨论。

跨膜运动机制相关的论坛

  • 贵州省生态环境厅办公室关于印发《贵州省危险废物跨省转入生态保护补偿机制试点方案》的通知

    各市(州)生态环境局:《贵州省危险废物跨省转入生态保护补偿机制试点方案》已经厅领导同意,现印发给你们,请积极推动相关工作。[align=right]2023年8月23日[/align](此件公开发布)[align=center][b]贵州省危险废物跨省转入生态保护补偿机制试点方案[/b][/align]为全面贯彻落实习近平生态文明思想和习近平总书记对贵州工作重要指示批示精神,根据中共中央办公厅、国务院办公厅《关于深化生态保护补偿制度改革的意见》及《国务院办公厅关于印发强化危险废物监管和利用处置能力改革实施方案的通知》(国办函〔2021〕47号)要求,结合《贵州省强化危险废物监管和利用处置能力专项行动方案》(黔环综合〔2022〕34号)、《贵州省生态环境厅关于危险废物“以管促调强化防治”工作方案》(黔环综合〔2023〕33号)及我省实际,制定本方案。一、试点目的促进危险废物经营单位(以下简称经营单位)升级改造现有生产工艺技术或环境污染治理设施设备,提升应对环境风险能力,确保跨省转入的危险废物整体风险可控,保障公众健康,维护生态安全。二、试点原则按照“谁污染谁治理,谁受益谁付费”原则,接受省外危险废物进入我省利用处置的经营单位,在不违反跨省转入条件并自愿缴纳危险废物生态保护补偿资金(以下简称补偿资金)后,可适当转入符合条件的危险废物进行利用或水泥窑协同处置。三、试点类别首批试点的危险废物类别为含铅废物、含汞废物、油基岩屑、含锌废物、废油漆桶等包装物、废钒(钛)系催化剂,其他试点危险废物类别由省生态环境厅结合实际动态更新,并在省生态环境厅门户网站公告。四、试点时间自印发之日起一年内,期间国家另有规定的,从其规定。试点期满,如有必要继续实施,另行通知。五、补偿资金缴纳(一)设置专用账户。经营单位自行创建专用银行账户,用于补偿资金的缴纳,独立管理,定期向省生态环境厅报备,接受社会监督。(二)资金缴纳。补偿资金根据试点类别危险废物运输、贮存及利用处置过程中可能发生或次生环境污染事故时所产生的治理费用为计算依据,按照实际签收危险废物数量的一定比例及系数进行缴纳。补偿资金不包括经营单位正常生产时所缴纳的环保税,不含经营单位经营过程中正常的污染治理费用。1.计算公式。经营单位应缴纳补偿资金(万元)=每批次危险废物实际签收量(吨)×方式系数×类别系数(万元/吨)。2.方式系数。危险废物转入我省利用的方式系数取1.0,转入我省处置的方式系数取1.1。含汞废物及含铅废物该系数均取1.0。3.类别系数。根据近三年(2020—2022年)试点危险废物实际跨省转入量的最大值确定(见附件),采取阶梯式递减方式,体现促进危险废物利用处置产业高质量发展导向。4.系数调整。方式系数和类别系数由省生态环境厅结合实际动态调整,在省生态环境厅门户网站上公开征求意见后实施。(三)缴纳方式。经营单位在签收危险废物电子转移联单前根据转移数量向企业专用账户足额缴纳补偿资金,并通过贵州省固体废物信息管理系统(以下简称省固废系统)上传缴纳凭证后,方可办结签收。如存在错缴情况的,应及时向省生态环境厅报备调整。六、补偿资金使用管理经营单位在开展危险废物经营活动过程中,在满足下列条件并报省生态环境厅备案后,可按比例或全额提取使用补偿资金:(一)因危险废物泄漏或处置不当等引发的环境污染事故应急处理,可全额提取补偿资金。(二)用于生产工艺技术或环境污染治理设施设备升级改造的,可提取补偿资金总额70%及以下,一年至多提取一次。(三)经营单位对内开展涉危险废物环境安全教育培训的,可提取补偿资金总额10%及以下,一年至多提取两次。(四)经营单位因破产或倒闭无其他能力支付危险废物处置和治理费用时,报省生态环境厅核实同意后,可全额提取补偿资金优先用于剩余危险废物处置及经营单位场区污染恢复治理。(五)经营单位在申请永久停止危险废物经营活动,符合危险废物经营许可证注销条件后,报省生态环境厅同意可全额提取补偿资金并销户。七、保障措施(一)定期抽查。省生态环境厅借助省固废系统定期抽查相关经营单位补偿资金缴纳情况,经营单位漏缴、少缴、未缴补偿资金,或上传虚假凭证资料的,应及时补缴改正。发现两次以上的,将有条件限制跨省转入危险废物。(二)开展评估。涉及缴纳补偿资金的经营单位,每年均纳入年度危险废物规范化环境管理评估,对补偿资金缴纳和使用情况进行检查,未规范缴纳或使用的将计入评估扣分项。(三)申报登记。涉及缴纳补偿资金的经营单位,每年应在省固废系统如实申报危险废物经营情况、管理计划和上年度补偿资金缴纳及使用情况。附件补偿资金缴纳类别系数[table][tr][td]档次[/td][td]类别系数(万元/吨)[/td][td]说明[/td][/tr][tr][td]1[/td][td]0.1[/td][td]近三年试点危险废物跨省转入最大量不超过500吨(含)[/td][/tr][tr][td]2[/td][td]0.08[/td][td]近三年试点危险废物跨省转入最大量500-1000吨(含)[/td][/tr][tr][td]3[/td][td]0.04[/td][td]近三年试点危险废物跨省转入最大量1000-5000吨(含)[/td][/tr][tr][td]4[/td][td]0.02[/td][td]近三年试点危险废物跨省转入最大量5000-10,000吨(含)[/td][/tr][tr][td]5[/td][td]0.008[/td][td]近三年试点危险废物跨省转入最大量10,000-50,000吨(含)[/td][/tr][tr][td]6[/td][td]0.002[/td][td]近三年试点危险废物跨省转入最大量50,000-100,000吨(含)[/td][/tr][tr][td]7[/td][td]0.001[/td][td]近三年试点危险废物跨省转入最大量超过100,000吨(含)[/td][/tr][/table]说明:新领取危险经营许可证的或近三年未实际跨省转入危险废物的经营单位,按照经营许可规模总量的20%核定类别系数。

  • 整合蛋白和跨膜蛋白区别?跨膜蛋白制备详解

    [b][font=宋体]整合蛋白和跨膜蛋白定义:[/font][/b][font=宋体] [/font][font=宋体]整合蛋白和跨膜蛋白是两类重要的蛋白质,它们在细胞分子水平上起着重要的作用。[/font][font=宋体] [/font][font=宋体]整合蛋白,也称为内在蛋白或跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。它们是生物膜的基本结构成分,许多具重要生理功能的膜蛋白均属整合蛋白,如膜结合的酶类、载体蛋白、通道蛋白、膜受体等。[/font][font=宋体] [/font][font=宋体]跨膜蛋白,是可以跨越细胞膜的蛋白,它在细胞的信号传递系统中担当着重要的角色。跨膜蛋白在结构上可以分为单次跨膜、多次跨膜、多亚基跨膜等,它们具有能够跨越细胞膜的能力。[/font][font=宋体] [/font][b][font=宋体]整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异[/font][/b][font=宋体] [/font][font=宋体]①位置:整合蛋白主要存在于细胞质内,细胞核或其他非细胞膜结构中,它们容易在细胞中自由移动。而跨膜蛋白则嵌入细胞膜中,一部分位于细胞膜的胞外侧,另一部分位于细胞膜的胞内侧,形成了一个穿过细胞膜的通道。[/font][font=宋体][font=宋体]②结构:整合蛋白的结构通常由两个独立的部分组成,一个是靠近细胞膜的膜结合区域([/font][font=Calibri]TM[/font][font=宋体]),另一个是靠近细胞骨架的非膜结合区域([/font][font=Calibri]N-TM[/font][font=宋体])。当接受到外界的信号时,整合蛋白的[/font][font=Calibri]TM[/font][font=宋体]区域会被激活,把来自外界的信号转化为细胞内可以识别的信号,直接参与细胞信号传导系统中。[/font][/font][font=宋体]③功能:整合蛋白主要是用来从外界传达信号到细胞内,充当细胞与外界信号的桥梁。而跨膜蛋白则在细胞的信号传递系统中担当着重要的角色。[/font][font=宋体]总的来说,整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异,这些差异使得它们在生物体中扮演着不同的角色。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达与制备服务[/b][/url],制备流程图:基因合成[/font][font=宋体]→载体构建→细胞转化[/font][font=Calibri]/[/font][font=宋体]转染→蛋白表达→细胞收集→细胞破碎→膜脂提取→膜脂增溶→蛋白纯化→质量检测,同时义翘拥有[/font][/font][b][font=宋体]三大跨膜蛋白制备平台[/font][/b][font=宋体],可以为客户提供全面的多次跨膜蛋白产品和服务。同时,为基础研究和药物研发提供更加优质的原材料。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 运动粘度对润滑油的意义

    流体间产生内摩擦力的性质,称为流体的粘滞性。粘度是流体的 一种属性,是指液体受外力作用移动时,分子间产生的内磨擦力的量度, 不同流体的粘度数值不同。粘度也可通过实验求得,如用粘度计测量。粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指 标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表 示。习惯用厘斯(cSt)为单位。1厘斯=10-6米2/秒=1毫米2/秒。润滑油是用在各种类型机械上以减少摩擦,保护机械及加工件的 液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。粘度是评价润滑油质量的重要参数, 粘度对发动机的启动性 能、磨损程度、功率损失和工作效率等都有直接影响, 只有选用 粘度适当的润滑油,才能保证发动机具有稳定可靠的工作状况,达 到最佳的工作效率,延长使用寿命。粘度增大,流动性能变差,会降 低发动机的功率,增大燃料消耗,甚至造成启动困难。润滑油粘度 过小,则会降低油膜支撑能力,使摩擦面之间不能保持连续的润滑 层,增大磨损,降低使用寿命。喷气发动机燃料及柴油燃料的重要 指标之一。粘度是润滑油分类的依据。一些种类的润滑油产品是以油品的 运动粘度值划分编号的。例如,内燃机油、齿轮用油和液压系统用油等三大类润滑油多用运动粘度来划分牌号,其中汽油机油、柴油机油 按GB/T14906---1994《内燃机油粘度分类》划分牌号,工业齿轮油按 50℃运动粘度划分牌号,而普通液压油、机械油、压缩机油、冷冻机油和真空泵油按40℃运动粘度划分牌号。此外,粘度对于润滑油的输送有重要意义。当油品的粘度增大时, 输送压力便要增加。也是工艺计算的主要参考数据之一。例如,计算流体在管线中的 压力损失,需查出雷诺数,而雷诺数与绝对粘度有关。[color=#333333] [/color]

  • 运动粘度的测定对润滑油的意义

    流体间产生内摩擦力的性质,称为流体的粘滞性。粘度测定器测定粘度是流体的一种属性,是指液体受外力作用移动时,分子间产生的内磨擦力的量度,不同流体的粘度数值不同。粘度也可通过实验求得,如用粘度计测量。粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表示。习惯用厘斯(cSt)为单位。1厘斯=10-6米2/秒=1毫米2/秒。润滑油是用在各种润滑油分析仪器类型机械上以减少摩擦,保护机械及加工件的液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。粘度是评价润滑油质量的重要参数, 粘度对发动机的启动性能、磨损程度、功率损失和工作效率等都有直接影响,只有选用粘度适当的润滑油,才能保证发动机具有稳定可靠的工作状况,达 到最佳的工作效率,延长使用寿命。粘度增大,流动性能变差,会降低发动机的功率,增大燃料消耗,甚至造成启动困难。润滑油粘度过小,则会降低油膜支撑能力,使摩擦面之间不能保持连续的润滑 层,增大磨损,降低使用寿命。喷气发动机燃料及柴油燃料的重要指标之一。粘度是润滑油分类的依据。一些种类的润滑油产品是以油品的运动粘度值划分编号的。例如,内燃机油、齿轮用油和液压系统用油等三大类润滑油多用运动粘度来划分牌号,其中汽油机油、柴油机油按GB/T14906---1994《内燃机油粘度分类》划分牌号,工业齿轮油按 50℃运动粘度划分牌号,而普通液压油、机械油、压缩机油、冷冻机 油和真空泵油按40℃运动粘度划分牌号。此外,粘度对于润滑油的输送有重要意义。当润滑油分析仪器油品的粘度增大时,输送压力便要增加。

  • 跨膜蛋白与通道蛋白的区别:跨膜蛋白制备平台详解

    [font=宋体]跨膜蛋白是生物体内广泛存在的一类蛋白质,它们在细胞膜上以不同的方式与其相互作用,从而发挥各种生物学功能。根据不同的结构和功能,[/font][b][font=宋体]跨膜蛋白可以分为三种类型:通道型跨膜蛋白、受体型跨膜蛋白和泵型跨膜蛋白。[/font][/b][font=宋体] [/font][font=宋体][font=宋体]通道型跨膜蛋白是跨膜蛋白中最为简单的类型,它们主要的功能是在细胞膜上形成一些具有选择性通透性的孔道,使得离子和小分子物质能够通过。通道型跨膜蛋白具有多个跨膜域,通常由[/font] [font=宋体]α 螺旋和 β 折叠两种二级结构组成。α 螺旋通道如 [/font][font=Calibri]K+ [/font][font=宋体]通道能够容纳阳离子,β 折叠如离子泵[/font][font=Calibri]Na+/K+-ATPase [/font][font=宋体]能够承载各种离子。[/font][/font][font=宋体] [/font][font=宋体]受体型跨膜蛋白是一类比较复杂的蛋白质,它们能够接受信号分子的结合,从而调节细胞内的生物学路径。受体型跨膜蛋白通常由单个跨膜域和两个不同构的端基组成,其中一个端基是细胞外的受体结构域,能够特异性地与信号分子结合;另外一个端基是细胞内的调节结构域,能够将受体活性传递到细胞内部。受体型跨膜蛋白具有多种作用方式,如酪氨酸激酶受体,转录因子受体等。[/font][font=宋体] [/font][font=宋体][font=宋体]泵型跨膜蛋白是一类能够通过能量输入来驱动物质运输的蛋白质。它们能够将离子或者小分子物质从低浓度区域转运到高浓度区域,从而维持细胞内的化学平衡和稳态。泵型跨膜蛋白一般由多个跨膜域组成,并能借助外源性能量如[/font][font=Calibri]ATP[/font][font=宋体]进行运输。常见的泵型跨膜蛋白有[/font][font=Calibri]Na+/K+-ATPase, H+/K+-ATPase[/font][font=宋体]等。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州提供跨膜蛋白制备平台,包括:[/font][font=Calibri]VLP[/font][font=宋体]技术平台[/font][font=Calibri]/[/font][font=宋体]去垢剂技术平台[/font][font=Calibri]/Nanodisc[/font][font=宋体]技术平台。[/font][/font][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体][font=宋体]利用[/font][font=Calibri]VLP[/font][font=宋体]平台制备跨膜蛋白具有以下优势:[/font][/font][font=宋体]? 全长跨膜蛋白,保持完整的天然构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测、抗体筛选等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州搭建了基于[/font][font=Calibri]HEK293[/font][font=宋体]表达系统的[/font][font=Calibri]VLP[/font][font=宋体]([/font][font=Calibri]virus-like particle[/font][font=宋体])技术平台,能够将目的膜蛋白完整展示在[/font][font=Calibri]VLP[/font][font=宋体]表面,使其能够像普通蛋白一样进行检测,义翘神州目前可以为客户提供膜蛋白定制服务,助力药物研发进程。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体]去垢剂技术平台的优势:[/font][font=宋体]? 可精确定量[/font][font=宋体]? 胶束为膜蛋白疏水基团提供保护并稳定构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测等[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体][font=Calibri]SMA-Nanodisc[/font][font=宋体]技术平台的优势:[/font][/font][font=宋体]? 可精确定量[/font][font=宋体][font=宋体]? [/font][font=Calibri]SMA[/font][font=宋体]共聚物包裹的膜蛋白稳定性更好,有助于更好地研究膜蛋白的结构和功能[/font][/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测及细胞实验等[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 运动粘度的测定对润滑油的意义

    流体间产生内摩擦力的性质,称为流体的粘滞性。粘度测定器测定粘度是流体的一种属性,是指液体受外力作用移动时,分子间产生的内磨擦力的量度,不同流体的粘度数值不同。粘度也可通过实验求得,如用粘度计测量。粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表示。习惯用厘斯(cSt)为单位。1厘斯=10-6米2/秒=1毫米2/秒。润滑油是用在各种润滑油分析仪器类型机械上以减少摩擦,保护机械及加工件的液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。粘度是评价润滑油质量的重要参数, 粘度对发动机的启动性能、磨损程度、功率损失和工作效率等都有直接影响,只有选用粘度适当的润滑油,才能保证发动机具有稳定可靠的工作状况,达 到最佳的工作效率,延长使用寿命。粘度增大,流动性能变差,会降低发动机的功率,增大燃料消耗,甚至造成启动困难。润滑油粘度过小,则会降低油膜支撑能力,使摩擦面之间不能保持连续的润滑 层,增大磨损,降低使用寿命。喷气发动机燃料及柴油燃料的重要指标之一。粘度是润滑油分类的依据。一些种类的润滑油产品是以油品的运动粘度值划分编号的。例如,内燃机油、齿轮用油和液压系统用油等三大类润滑油多用运动粘度来划分牌号,其中汽油机油、柴油机油按GB/T14906---1994《内燃机油粘度分类》划分牌号,工业齿轮油按 50℃运动粘度划分牌号,而普通液压油、机械油、压缩机油、冷冻机 油和真空泵油按40℃运动粘度划分牌号。此外,粘度对于润滑油的输送有重要意义。当润滑油分析仪器油品的粘度增大时,输送压力便要增加

  • 运动粘度的测定对润滑油的意义

    流体间产生内摩擦力的性质,称为流体的粘滞性。粘度测定器测定粘度是流体的一种属性,是指液体受外力作用移动时,分子间产生的内磨擦力的量度,不同流体的粘度数值不同。粘度也可通过实验求得,如用粘度计测量。粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下的动力粘度与其密度之比,在国际单位制中以米[sup]2[/sup]/秒表示。习惯用厘斯(cSt)为单位。1厘斯=10[sup]-6[/sup]米[sup]2[/sup]/秒=1毫米[sup]2[/sup]/秒。润滑油是用在各种润滑油分析仪器类型机械上以减少摩擦,保护机械及加工件的液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。粘度是评价润滑油质量的重要参数, 粘度对发动机的启动性能、磨损程度、功率损失和工作效率等都有直接影响,只有选用粘度适当的润滑油,才能保证发动机具有稳定可靠的工作状况,达 到最佳的工作效率,延长使用寿命。粘度增大,流动性能变差,会降低发动机的功率,增大燃料消耗,甚至造成启动困难。润滑油粘度过小,则会降低油膜支撑能力,使摩擦面之间不能保持连续的润滑 层,增大磨损,降低使用寿命。喷气发动机燃料及柴油燃料的重要指标之一。粘度是润滑油分类的依据。一些种类的润滑油产品是以油品的运动粘度值划分编号的。例如,内燃机油、齿轮用油和液压系统用油等三大类润滑油多用运动粘度来划分牌号,其中汽油机油、柴油机油按GB/T14906---1994《内燃机油粘度分类》划分牌号,工业齿轮油按 50℃运动粘度划分牌号,而普通液压油、机械油、压缩机油、冷冻机 油和真空泵油按40℃运动粘度划分牌号。此外,粘度对于润滑油的输送有重要意义。当润滑油分析仪器油品的粘度增大时,输送压力便要增加

  • 《安徽省生态环境厅关于进一步完善安徽省危险废物跨省转移利用“白名单”机制的通知》政策解读

    近日,省生态环境厅印发了《安徽省生态环境厅关于进一步完善安徽省危险废物跨省转移利用“白名单”机制的通知》(以下简称《通知》),现将有关政策解读如下:一、出台背景根据国务院办公厅《关于印发〈强化危险废物监管和利用处置能力改革实施方案〉的通知》(国办函〔2021〕47号)、长三角一体化发展领导小组办公室《关于印发〈推进长江三角洲区域固体废物和危险废物联防联治实施方案〉的通知(第12号)》(以下简称《实施方案》)、长三角三省一市人民政府签订的《长三角区域固体废物和危险废物联防联治合作协议》(以下简称《合作协议》)、长三角区域生态环境保护协作小组办公室《关于印发〈长江三角洲区域固废危废利用处置“白名单”和“黑名单”制定规则及运行机制(试行)〉的函》(以下简称《运行机制》)有关要求,2022年3月,我厅印发了《关于发布安徽省2022年危险废物跨省转移“白名单”企业的函》(皖环函〔2022〕407号),在长三角区域率先建立了危险废物跨省转移“白名单”制度,将我省7家企业及其经营的四类危险废物纳入跨省转移“白名单”。我省毗邻省份及上海市审批转移相应类别的危险废物至“白名单”企业时,无需征求我厅意见,可直接予以审批。截至2022年底,我省“白名单”企业已经成功利用“白名单”方式接收省外危险废物转入38家次,累计7.2万吨,涉及上海市、浙江省、江苏省、山东省、河南省等地区。“白名单”机制进一步简化审批流程,缩短办理时限,获得我省企业一致好评。为进一步优化危险废物跨省转移利用“白名单”机制,在总结2022年“白名单”制度实施情况的基础上,我厅起草了《通知》。 二、起草过程牵头处室固体处联合有关处室和技术支撑单位,深入研究、反复会商形成《通知》初稿。初稿形成后,广泛征求意见,征求并吸纳了毗邻省份及上海市生态环境部门、省交通运输厅、16个市生态环境局、商会协会、部分企业意见建议,按规定进行了合法性审查。经审议通过后,以省生态环境厅名义印发实施。三、主要内容 《通知》共五部分内容。(一)“白名单”运行机制,包括纳入“白名单”范围的危险废物转出地区、“白名单”审批流程等内容。 (二)危险废物类别,包括900-052-31废铅蓄电池,HW08废矿物油与含矿物油废物(不包括900-249-08其他生产、销售、使用过程中产生的废矿物油及沾染矿物油的废弃包装物),772-007-50废催化剂,321-002-48铜阳极泥。 (三)纳入“白名单”的企业条件,包括企业经营范围、近两年清洁生产、遵守生态环境保护法律法规、规范化管理危险废物、公开自律承诺等条件。 (四)“白名单”产生程序,包括各市生态环境局推荐、省生态环境厅审核、公示到正式发布的流程。 (五)“白名单”企业退出程序。 包括“白名单”企业退出情形及退出具体程序。 四、主要特点 《通知》在原有机制的基础上,进一步完善危险废物跨省转移利用“白名单”机制,提升服务质效,努力打造便利、公开、透明的一流营商环境。 (一)延长危险废物转移有效期 《通知》将原407号文中“30日转移有效期”延长为最长不超过十二个月,在加强有效监管的同时,方便企业高效办理跨省转移审批手续,从而进一步提高“白名单”机制的运行效率。 (二)拓宽危险废物转出地区范围 除我省毗邻省份及上海市外,将“其他与我省有危险废物跨省转移合作协议的省(市)”纳入“白名单”转出地区范围,与有关省份共同加强危险废物跨省转移环境管理,协力做好区域环境质量改善工作。 (三)完善申报和退出机制 进一步明确“白名单”企业申报流程和退出机制,动态管理危险废物跨省转移利用“白名单”企业。

  • 全自动发动机油边界泵送温度仪GB/T 9171-1988

    SH9171(SH416)全自动发动机油边界泵送温度测定仪是根据中华人民共和国国标《 GB/T 9171-1988发动机油边界泵送温度测定法》要求设计制造的,同时也满足石化行标ASTM D3829 D4684;用来测定机动车发动机油边界泵送温度、(低温)屈服应力和表观粘度的仪器,试验温控范围宽,从-5℃~ -40℃。试验过程全部用计算机自动控制。性能特点1、温度范围:温度范围-5℃到-40℃,温控精度±0.1℃2、全封闭式压缩机制冷,冷量大3、由计算机监控温度、周期及转子运动4、改进型滑轮组件,增强滑轮的稳定性和灵敏度,光电传感器测试5、5支转子可同时检测,多样性6、转子上带有保温透明有机玻璃罩7、微机控制,Windows 操作系统,全中文界面8、程序自动进行非线性曲线控温,测定屈服应力和表观粘度9、清洗控温和温度校准功能 10、粘度计常数校准并储存11、测试结果可储存并打印12、气阻型"和"流动受限型"边界泵送温度的计算及打印功能13、配备专用低温恒温设备14、配备研发的除霜系统 技术参数1、适用标准:ASTM D3829 D4684 GB/T 91712、制冷方式:进口压缩机制冷3、工作温度:80~-40℃4、控温方式:程序控温5、加热方式:电热管加热6、检测方式:光电管检测7、控制方式:计算机全自动控制8、工作单元:5单元9、工作电源:AC220V 50HZ

  • 运动粘度对润滑油的意义

    [font=&][size=18px]流体间产生内摩擦力的性质,称为流体的粘滞性。粘度是流体的 一种属性,是指液体受外力作用移动时,分子间产生的内磨擦力的量度, 不同流体的粘度数值不同。粘度也可通过实验求得,如用粘度计测量。    粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指 标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。 运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为 相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表 示。习惯用厘斯(cSt)为单位。1厘斯=10-6米2/秒=1毫米2/秒。 润滑油是用在各种类型机械上以减少摩擦,保护机械及加工件的 液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。 粘度是评价润滑油质量的重要参数, 粘度对发动机的启动性 能、磨损程度、功率损失和工作效率等都有直接影响, 只有选用 粘度适当的润滑油,才能保证发动机具有稳定可靠的工作状况,达 到的工作效率,延长使用寿命。粘度增大,流动性能变差,会降 低发动机的功率,增大燃料消耗,甚至造成启动困难。润滑油粘度 过小,则会降低油膜支撑能力,使摩擦面之间不能保持连续的润滑 层,增大磨损,降低使用寿命。喷气发动机燃料及柴油燃料的重要 指标之一。 粘度是润滑油分类的依据。一些种类的润滑油产品是以油品的 运动粘度值划分编号的。例如,内燃机油、齿轮用油和液压系统用油 等三大类润滑油多用运动粘度来划分牌号,其中汽油机油、柴油机油 按GB/T14906---1994《[/size][/font][url=https://www.antpedia.com/standard/198076.html]内燃机油粘度分类[/url][font=&][size=18px]》划分牌号,工业齿轮油按 50℃运动粘度划分牌号,而普通液压油、机械油、压缩机油、冷冻机 油和真空泵油按40℃运动粘度划分牌号。 此外,粘度对于润滑油的输送有重要意义。当油品的粘度增大时, 输送压力便要增加。 也是工艺计算的主要参考数据之一。例如,计算流体在管线中的 压力损失,需查出雷诺数,而雷诺数与粘度有关[/size][/font]

  • SH9171 (SH416)全自动发动机油边界泵送温度仪

    SH9171(SH416)全自动发动机油边界泵送温度测定仪是根据中华人民共和国国标《 GB/T 9171-1988发动机油边界泵送温度测定法》要求设计制造的,同时也满足石化行标ASTM D3829 D4684;用来测定机动车发动机油边界泵送温度、(低温)屈服应力和表观粘度的仪器,试验温控范围宽,从-5℃~ -40℃。试验过程全部用计算机自动控制。性能特点1、温度范围:温度范围-5℃到-40℃,温控精度±0.1℃2、全封闭式压缩机制冷,冷量大3、由计算机监控温度、周期及转子运动4、改进型滑轮组件,增强滑轮的稳定性和灵敏度,光电传感器测试5、5支转子可同时检测,多样性6、转子上带有保温透明有机玻璃罩7、微机控制,Windows 操作系统,全中文界面8、程序自动进行非线性曲线控温,测定屈服应力和表观粘度9、清洗控温和温度校准功能 10、粘度计常数校准并储存11、测试结果可储存并打印12、气阻型"和"流动受限型"边界泵送温度的计算及打印功能13、配备专用低温恒温设备14、配备最新研发的除霜系统 技术参数1、适用标准:ASTM D3829 D4684 GB/T 91712、制冷方式:进口压缩机制冷3、工作温度:80~-40℃4、控温方式:程序控温5、加热方式:电热管加热6、检测方式:光电管检测7、控制方式:计算机全自动控制8、工作单元:5单元9、工作电源:AC220V 50HZ

  • 全国团结起来建立PM2.5区域性联防联治机制

    个人认为粉尘传播是无界限的,因此需要各地联合进行。十分赞同代表提议!  全国人大代表张全建议立法建立PM2.5区域性联防联治机制 污染在流动,治理要“抱团”  “大气污染通常是跨区域的,PM2.5的常态半径有300到500公里,沙尘暴更是一吹就到千里之外。”面对流动着的污染,各自为阵的环保力量显然无法全面阻挡。全国人大代表、上海市环保局局长张全拟提交议案,建议打破行政区域的分割,从立法层面建立“区域联防联控”机制,“抱团”迎敌。  地方利益影响“联手”  在重污染天气,人们经常看到大气污染大范围出现,脚步所及,常常“跨市”、“跨省”甚至“跨国”。为了对付类似情况,长三角地区在2008年制定了《长江三角洲地区环境保护工作合作协议》,联手进行区域污染治理。但在区域大气污染防治上,这份协议却没能解决问题。张全直言:“区域内各省市利益不同,难以解决各方利益冲突,合作的稳定性不强,深度不够。”  按照目前的环境管理体制,地方人民政府和环保部门只对所辖区域范围内的环境质量负责。出于地区经济利益的考虑,当地政府习惯将污染严重的工业区或者工业项目设在地区与地区之间的交界处,以周边环境作为发展经济的代价,这自然加剧了大气污染向不同行政区域扩散的趋势。  张全指出,现行的大气污染法律、法规按照行政区划管理,没有关于区域大气污染防治的规定;加之相关地方政府在区域功能定位、大气污染防治目标等方面的不一致,造成区域之间的污染纠纷不断。  立法破除“联手”困局  联防联治在国内有成功案例:2008年北京奥运会期间,北京及周边6省区市探索区域大气污染联防联控管理机制;2010年上海世博会期间,长三角江、浙、沪、皖开展区域大气污染防控。两次合作自有其特殊性,但张全一再强调:“这两个是关键案例,可以为今后的制度设计提供很多借鉴。”  目前,想打破“联手”困局,张全认为“只有在国家层面,通过立法彻底解决区域大气污染问题。”  全国人大正在修订《大气污染防治法》,张全建议在其中增加“区域大气污染防治”专章,明确区域大气污染防治管理体制、联防联控机制。他建议,区域联防联治首先可由国务院成立区域大气污染防治管理委员会,由环境保护部作为管委会的执行机构,在不替代现有地方政府的职责的情况下,负责区域大气污染防治相关事务的协调,并建立区域统一的大气污染防治政策,协调解决跨省市行政区域大气污染纠纷。  最深度的合作是联手进行产业结构调整  张全认为,在长三角、珠三角和京津冀等城市相对比较集中的区域,有必要建立空气质量的联合监测和联合预报机制。  “大气具有流动性,区域内如果发生大气污染事故,往往会影响周边地区,因此,还要建立区域间大气污染事故的应急联动机制,当一个地区发生大气污染事故时,及时通报周边地区,协商采取有效措施,消除事故影响。”  污染治理,如能从源头着手,将大大节约成本。就大气污染而言,最深度的合作,应当是区域城市在产业结构调整上的“统一规划,统一治理”。张全建议,同一区域的不同省市,不妨通过目录管理的形式,在禁止新建高耗能、高污染的项目,推进清洁生产和低碳经济等方面保持较为一致的节奏,“具体高耗能、高污染项目的目录,可由国家发改委、环保部、工信部会同相关省市拟定方案,报区域管理委员会批准后实施。”

  • 跨膜蛋白制备流程与平台的详细解析

    [font=宋体][font=宋体]跨膜蛋白按功能可以分为多种类型,其中包括[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体([/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体])、离子通道、转运蛋白以及其他类型受体等。这些蛋白在细胞内发挥着不同的作用,例如在信号传递、物质转运和细胞通讯等方面。[/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]是一类广泛存在于生物体中的跨膜蛋白,它们可以识别并与外界分子相互作用,从而引发各种细胞内信号,因此它们被用作药物筛选的靶标。离子通道则可以调节细胞内外的离子浓度,如钠离子、钾离子、钙离子等,这对于细胞的正常运作至关重要。转运蛋白则可以协助物质的跨膜运输,对生物体代谢进行调控。这些跨膜蛋白虽然功能不同,但是在生物体中发挥着各自独特和不可或缺的作用。[/font][/font][font=宋体] [/font][font=宋体][b]跨膜蛋白表达与制备[/b][/font][font=宋体][font=宋体]多次跨膜蛋白由于其复杂的结构、具有多个疏水跨膜区以及在宿主细胞中表达水平极低等特点,使得其制备具有一定难度。需要采用合适的表达载体、宿主细胞、培养条件和纯化工艺等方法,来优化表达和纯化过程,如添加辅助蛋白,利用[/font][font=Calibri]Flag[/font][font=宋体],[/font][font=Calibri]Strep[/font][font=宋体]等填料进行纯化等方法,最大程度地减少水解和构象异常等问题的发生,从而获得高效、高纯度、正确构象的跨膜蛋白产物。[/font][/font][font=宋体][b]跨膜蛋白制备流程:[/b][/font][font=宋体][font=宋体]基因合成[/font][font=宋体]→载体构建→细胞转化[/font][font=Calibri]/[/font][font=宋体]转染→蛋白表达→细胞收集→细胞破碎→膜纸提取→膜纸增溶→蛋白纯化→质量检测[/font][/font][font=宋体] [/font][font=宋体]随着现代药物研究的发展,对于跨膜蛋白的需求越来越高,传统的跨膜蛋白制备方法已不能满足现代药物研发的需求。义翘神州致力于跨膜蛋白的产品开发,成功实现了多次跨膜蛋白的高效表达、纯化。与此同时,配备完备的技术流程和专业的技术人员,搭建了三大技术平台,可以为客户提供全面的多次跨膜蛋白产品和服务。同时,为基础研究和药物研发提供更加优质的原材料。[/font][font=宋体] [/font][font=宋体][b][font=宋体]①[/font][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/b][/font][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]利用[/font][font=Calibri]VLP[/font][font=宋体]平台制备跨膜蛋白具有以下优势:[/font][/font][font=宋体]? 全长跨膜蛋白,保持完整的天然构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测、抗体筛选等[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]义翘神州提供:[url=https://cn.sinobiological.com/services/membrane-protein-expression-service][b]VLP[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/services/membrane-protein-expression-service][b]形式的膜蛋白表达服务[/b][/url][/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州搭建了基于[/font][font=Calibri]HEK293[/font][font=宋体]表达系统的[/font][font=Calibri]VLP[/font][font=宋体]([/font][font=Calibri]virus-like particle[/font][font=宋体])技术平台,能够将目的膜蛋白完整展示在[/font][font=Calibri]VLP[/font][font=宋体]表面,使其能够像普通蛋白一样进行检测,义翘神州目前可以为客户提供膜蛋白定制服务,助力药物研发进程。[/font][/font][font=宋体] [/font][font=宋体][b]二、去垢剂技术平台[/b][/font][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体] [/font][font=宋体]去垢剂技术平台的优势:[/font][font=宋体]? 可精确定量[/font][font=宋体]? 胶束为膜蛋白疏水基团提供保护并稳定构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测等[/font][/font][font=宋体] [/font][font=宋体][b][font=宋体]三、[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/b][/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]SMA-Nanodisc[/font][font=宋体]技术平台的优势:[/font][/font][font=宋体]? 可精确定量[/font][font=宋体][font=宋体]? [/font][font=Calibri]SMA[/font][font=宋体]共聚物包裹的膜蛋白稳定性更好,有助于更好地研究膜蛋白的结构和功能[/font][/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测及细胞实验等[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url]详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 单次与多次跨膜蛋白的特点和功能:多次跨膜蛋白的意义

    [font=宋体][font=宋体]跨膜蛋白([/font][font=Calibri]TMEM[/font][font=宋体])是一种跨越细胞质膜的蛋白家族,允许细胞[/font][font=Calibri]-[/font][font=宋体]细胞和细胞[/font][font=Calibri]-[/font][font=宋体]环境之间的联系。结构决定性质,性质决定功能,一般单次跨膜主要起锚定作用,多次跨膜能形成疏水孔道,发挥运输的功能。这里我们将讨论膜蛋白的结构,并说明它们与脂质双分子层的不同关联方式。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]对膜成分而言,脂质分子数多,但膜蛋白质量较大[/font][/font][font=宋体][font=宋体]我们知道,脂质双分子层提供了细胞膜的基本结构,并作为膜两侧分子的渗透屏障,但是大多数膜的功能其实是由膜蛋白完成的。在动物中,蛋白质约占大多数质膜质量的[/font][font=Calibri]50%[/font][font=宋体],其余是脂质加上糖脂和糖基化蛋白中相对较少的碳水化合物。然而,由于脂质分子比蛋白质小得多,细胞膜通常含有的脂质分子大约是蛋白质分子的[/font][font=Calibri]50[/font][font=宋体]倍。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]不同类型的膜蛋白发挥诸多功能[/font][/font][font=宋体]膜蛋白不仅通过脂质双分子层运输特定的营养物质、代谢产物和离子;它们还有许多其他功能:有些将膜固定在两侧的大分子上;有些能作为受体,检测细胞环境中的化学信号,并将其传递到细胞内部;还有一些作为酶发挥功能,催化特定反应。每种类型的细胞膜都含有不同的蛋白质,反映了特定细胞膜的特殊功能。[/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]蛋白质可以通过多种方式与膜的脂双层相关联[/font][/font][font=宋体][font=宋体]直接附着在脂质双分子层上的蛋白质(如图[/font][font=Calibri]3-A,B,C[/font][font=宋体])只有用洗涤剂破坏双分子层才能被去除,这种蛋白质被称为膜内在蛋白,其余的膜蛋白称为膜外周蛋白(如图[/font][font=Calibri]3-D[/font][font=宋体]),它们可以通过更温和的提取过程从膜中释放出来,这一过程会干扰蛋白质与蛋白质之间的相互作用,但会使脂质双层结构保持完整。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]许多膜蛋白穿过脂双层,部分区域位于双层膜的两侧[/font][font=Calibri](A)[/font][font=宋体]。这些跨膜蛋白具有疏水性和亲水性区域。它们的疏水区域位于双层膜的内部,紧靠着脂质分子的疏水尾部。它们的亲水性区域暴露在膜的两侧的水环境中。[/font][/font][font=宋体][font=宋体]有的膜蛋白几乎完全位于胞质,与脂质双分子层相互作用的是蛋白表面的[/font][font=宋体]α螺旋结构[/font][font=Calibri](B)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]有些蛋白质完全位于双层膜外(内侧或外层),仅通过一个或多个共价附着的脂类基团与膜相关联[/font][font=Calibri](C)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]还有些蛋白质通过与膜蛋白的相互作用,间接地与膜表面相结合[/font][font=Calibri](D)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4. [/font][font=宋体]多肽通常以α螺旋的形式穿过脂双层[/font][/font][font=宋体][font=宋体]对于许多跨膜蛋白,多肽链只穿过膜一次,这些蛋白质中有许多是细胞外信号的受体。形成[/font][font=Calibri]a[/font][font=宋体]螺旋的氨基酸的疏水侧链与磷脂分子的疏水烃尾相接触,多肽主链的亲水部分在螺旋内部相互形成氢键。一个完全穿过膜的α螺旋结构需要包含[/font][font=Calibri]20[/font][font=宋体]个氨基酸。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]膜蛋白[/font][font=Calibri]x[/font][font=宋体]射线结晶学的进展使许多膜蛋白的三维结构得以确定。根据这些主要特征构建模型(片段包含约[/font][font=Calibri]20-30[/font][font=宋体]个氨基酸、具有高度疏水性),通常可以从蛋白质的氨基酸序列预测多肽链的哪些部分延伸到脂双层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5. [/font][font=宋体]跨膜α螺旋常和其他α螺旋互作或组合形成孔道[/font][/font][font=宋体][font=宋体]有的跨膜蛋白形成水通道,允许水溶性分子穿过膜,这样的孔道不能由具有单一的、均匀疏水的、跨膜螺旋结构的蛋白质形成。形成孔隙的蛋白质更为复杂,通常具有一系列的[/font][font=宋体]α螺旋多次穿过双层膜。许多单通道膜蛋白形成同源或异源二聚体,这些二聚体由两个跨膜螺旋之间的非共价、但强而特异的相互作用结合在一起,这些螺旋的疏水氨基酸序列包含指导蛋白质[/font][font=Calibri]-[/font][font=宋体]蛋白质相互作用的信息。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]在有些包含多个跨膜结构的蛋白质中,跨膜区域是由包含疏水性和亲水性氨基酸侧链的螺旋形成的。这些氨基酸的排列使得疏水侧链落在螺旋的一侧,而亲水侧链则集中在螺旋的另一侧。在脂双层疏水环境中,这类[/font][font=宋体]α螺旋呈环状并排排列,疏水侧链暴露于膜的脂质上,亲水侧链通过脂质双层形成亲水孔的内衬。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6. [/font][font=宋体]一些β折叠片多次跨膜形成大的离子通道[/font][/font][font=宋体][font=宋体]虽然到目前为止,[/font][font=宋体]α螺旋是多肽链穿过脂双层的最常见的形式,某些多肽链却是以β折叠穿过脂双层。膜蛋白以β折叠片的形式穿过脂质双分子层,被弯曲成圆柱形,形成一个开放式的桶状结构,称为β折叠桶。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]β片层的数目变化较大,少的可以有[/font][font=Calibri]8[/font][font=宋体]个,多的可以多达[/font][font=Calibri]22[/font][font=宋体]个。面朝桶内的氨基酸侧链主要是亲水的,而桶外的那些接触脂双层疏水核心的侧链则完全是疏水的。与α螺旋不同,β折叠桶只能形成宽的通道,因为β折叠片弯曲成桶的紧密程度是有限制的,不如α螺旋灵活。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]综上,膜的功能主要体现在膜蛋白的多样性上,膜蛋白的结构决定其功能。不同功能的膜蛋白其结构基础存在差异,因此其与膜骨架的关联方式也有不同。像膜偶联受体、膜偶联酶这些膜蛋白可能通过单次跨膜或者共价修饰,就能锚定在膜上实现其功能。而作用于底物转运的膜蛋白必须提供一个较大的亲水孔道,才能使水溶性的带电离子等底物通过,因此不同的[/font][font=宋体]α螺旋之间倾向于互作,或者同一个蛋白具有多个互作的α螺旋,或者通过β折叠形成桶状孔隙发挥功能。根据跨膜蛋白的疏水特性及跨膜区域的结构特点,可以对跨膜蛋白及其跨膜区段进行预测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体][b]义翘神州提供三大[/b][url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url][b]制备平台,有[/b][/font][font=Calibri]VLP[/font][font=宋体]技术平台、去垢剂技术平台、[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 为什么要测量石油运动粘度

    石油运动粘度是对油品流动性的一种表征,反映了液体分子在运动过程中相互作用的强弱,作用强,流动难。流体在流动时,相邻流体层间存在着相对运动,则该两流体层间会产生摩擦阻力,称为粘滞力。石油运动粘度是用来衡量粘滞力大小的一个物性数据。其大小由物质种类、温度、浓度等因素决定。  石油运动粘度对于各种油品都是一项重要参数。内燃机及喷气发动机燃料的汽化性能、锅炉用燃料雾化的好坏均直接与油品的运动粘度有关,而油品的输送性能也与运动粘度有密切关系。由于粘度在油品实际应用中表现出的重要性,因此不少油品,诸如重质燃料油、某些润滑油等一般以石油运动粘度作为其分级的依据。  如果重质燃料油粘度太大,泵送和喷嘴启动都会发生困难.并可能发生回火和操作波动。石油运动粘度也会影响喷嘴的雾化效果、喷油量和喷出角。如果重质燃料油到达喷嘴时粘度不适,则会造成雾化不良,而使喷嘴结焦、炉墙积炭,或发生其他情况而造成燃烧不良。重质燃料油的粘度随温度的升高而急剧降低,因此,可用加热方法使重质燃料油易于输送和雾化

  • 涂胶机运动控制系统分析

    [font='微软雅黑','sans-serif'][color=#666666]涂胶机是用于给机柜、灯具、蓄电池、汽车等有密封要求的产品,按照密封轨迹涂密封胶的一种工业生产机床。标准涂胶机运动控制系统为三轴联动,通过直线插补与圆弧插补完成涂胶轨迹。本文主要对三维涂胶机的运动控制系统原理与结构进行分析。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制系统是以电动机为控制对象,以控制器为核心,以电力电子、功率变换装置为执行机构,在控制理论指导下组成的电气传动控制系统。一个典型的现代运动控制系统的硬件主要由上位计算机、运动控制器、功率驱动装置、电动机和传感器反馈检测装置和被控对象等几部分组成。[/color][/font][font='Arial','sans-serif'][color=#666666][/color][/font][font='微软雅黑','sans-serif'][color=#666666]一、涂胶机运动控制器运动控制器根据结构不同的可分为:基于计算机标准总线的运动控制器;[/color][/font][font='Arial','sans-serif'][color=#666666] Soft[/color][/font][font='微软雅黑','sans-serif'][color=#666666]型开放式运动控制器;嵌入式结构的运动控制器。[/color][/font][font='Arial','sans-serif'][color=#666666] Soft[/color][/font][font='微软雅黑','sans-serif'][color=#666666]型开放式运动控制器运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]之间的标准化通用接口。用户在[/color][/font][font='Arial','sans-serif'][color=#666666]Windows[/color][/font][font='微软雅黑','sans-serif'][color=#666666]平台和其他操作系统的支持下,利用开放的运动控制内核,开发所需的控制功能,构成各种类型的运动控制系统。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]嵌入式结构的运动控制器是把计算机嵌入到运动控制器中的一种产品,它能够独立运行。运动控制器与计算机之间的通信依然是靠计算机总线,实质上是基于总线结构的运动控制器的一种变种。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三维涂胶机运动控制器为基于总线的运动控制器。用计算机硬件和操作系统,结合运动控制应用程序来实现的,具有高速的数据处理能力。总线形式上为[/color][/font][font='Arial','sans-serif'][color=#666666]104[/color][/font][font='微软雅黑','sans-serif'][color=#666666]总线、[/color][/font][font='Arial','sans-serif'][color=#666666]RS232[/color][/font][font='微软雅黑','sans-serif'][color=#666666]接口和[/color][/font][font='Arial','sans-serif'][color=#666666]USB[/color][/font][font='微软雅黑','sans-serif'][color=#666666]接口。运动控制器采用[/color][/font][font='Arial','sans-serif'][color=#666666]DSP[/color][/font][font='微软雅黑','sans-serif'][color=#666666]芯片作为[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666],可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]之间的标准化通用接口功能。控制器支持功能强大的运动控制软件库、[/color][/font][font='Arial','sans-serif'][color=#666666]C[/color][/font][font='微软雅黑','sans-serif'][color=#666666]语言运动函数库、[/color][/font][font='Arial','sans-serif'][color=#666666]WindowsDLL[/color][/font][font='微软雅黑','sans-serif'][color=#666666]动态链接库等,根据工艺需求,在[/color][/font][font='Arial','sans-serif'][color=#666666]WINDOWS[/color][/font][font='微软雅黑','sans-serif'][color=#666666]等平台下开发应用软件,组成涂胶机运动控制控制系统[/color][/font][font='Arial','sans-serif'][color=#666666].[/color][/font][font='微软雅黑','sans-serif'][color=#666666]二涂胶机运动控制方式[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制形式有点位运动控制、连续轨迹运动控制、同步运动控制。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]点位运动控制即仅对终点位置有要求,与运动的中间过程即运动轨迹无关。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]同步运动控制是指多个轴之间的运动协调控制,可以是多个轴在运动全程中进行同步,也可以是在运动过程中的局部有速度同步。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三维涂胶机控制方式为连续轨迹运动控制,又称为轮廓控制,主要对胶头的运动轨迹进行控制。该控制方式要求系统在高速运动的情况下,既要保证系统加工的轮廓精度,还要保证胶头沿轮廓运动时的切向速度的恒定。对小线段加工时,有多段程序预处理功能。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三涂胶机运动控制器硬件结构[/color][/font][font='微软雅黑','sans-serif'][color=#666666]涂胶机系统以基于[/color][/font][font='Arial','sans-serif'][color=#666666]“PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机[/color][/font][font='Arial','sans-serif'][color=#666666]+[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制器[/color][/font][font='Arial','sans-serif'][color=#666666]”[/color][/font][font='微软雅黑','sans-serif'][color=#666666]为核心,采用运动控制器、驱动器和交流伺服电动机构成一个开放式硬件结构。在该伺服控制系统中,控制器上专用[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]与[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]构成主从式双[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]控制模式。[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机负责人机交互界面的管理和控制系统的实时监控等方面的工作,例如键盘和鼠标的管理、系统状态的显示、控制指令的发送和外部信号[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]的监控等。运动控制器配备内容丰富、功能强大的运动函数库,供用户使用完成电动机的运动规划。系统采取脉冲输出的位置控制方式,脉冲频率的大小控制电机的速度,信号的正负控制电机正反转,以实现三轴的位置控制。[/color][/font][font='Arial','sans-serif'][color=#666666]X[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴、[/color][/font][font='Arial','sans-serif'][color=#666666]Y[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴、[/color][/font][font='Arial','sans-serif'][color=#666666]Z[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴原点、限位检测是通过接近开关来实现,原点检测开关作为每个轴的零点位置,限位检测开关确保每轴工作行程极限。这些状态信号送入运动控制卡状态寄存器后由[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]随时读出,达到对[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]状态信号的检测。在硬件上,运动控制器上的光电隔离措施既隔离了外设对内部数字系统的干扰,有能有效防止过电压、过电流等外界突发事件对计算机系统的损坏,大大提高了系统的控制精度和可靠性。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]四涂胶机运动控制系统的软件结构[/color][/font][font='微软雅黑','sans-serif'][color=#666666]涂胶机运动控制器配备有运动函数库,函数库为单轴及多轴的步进或伺服控制提供了许多运动函数,如单轴运动、多轴独立运动、多轴插补运动以及多轴同步运动等等。运动控制器组成的控制系统,采用[/color][/font][font='Arial','sans-serif'][color=#666666]VC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]语言开发友好的人机界面应用程序、方便的人机交互和管理。系统的程序结构模块如图所示,除了主体的运动控制程序外,还包括初始化、与[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]实时数据交互、系统保护、状态监测等部分。[/color][/font][font='微软雅黑','sans-serif'][color=#666666][back=white]五结语[/back][/color][/font][font='微软雅黑','sans-serif'][color=#333333][/color][/font][font='微软雅黑','sans-serif'][color=#666666][back=white]综上所述,三维涂胶机运动控制系统采用基于总线的运动控制器,构建了合理的硬件结构和软件结构。通过连续轨迹控制方式,完成既定运动和高精度的伺服控制。实现涂胶机的高速高精度运转。[/back][/color][/font]

  • 一型跨膜蛋白和二型跨膜蛋白图解:结构与功能的剖析

    [font=宋体][font=宋体]跨膜蛋白按功能可以分为多种类型,其中包括[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体([/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体])、离子通道、转运蛋白以及其他类型受体等。这些蛋白在细胞内发挥着不同的作用,例如在信号传递、物质转运和细胞通讯等方面。[/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]是一类广泛存在于生物体中的跨膜蛋白,它们可以识别并与外界分子相互作用,从而引发各种细胞内信号,因此它们被用作药物筛选的靶标。离子通道则可以调节细胞内外的离子浓度,如钠离子、钾离子、钙离子等,这对于细胞的正常运作至关重要。转运蛋白则可以协助物质的跨膜运输,对生物体代谢进行调控。这些跨膜蛋白虽然功能不同,但是在生物体中发挥着各自独特和不可或缺的作用。[/font][/font][font=宋体] [/font][font=宋体]一型跨膜蛋白和二型跨膜蛋白是两种常见的膜蛋白类型,它们在结构和功能上存在差异。下面是它们的简要对比图解:[/font][font=宋体]一型跨膜蛋白:[/font][font=宋体] [/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜外 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]跨膜 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]螺旋 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜内 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体][font=宋体]一型跨膜蛋白具有一个跨越细胞膜的[/font] [font=宋体]α 螺旋结构。它包括一个在细胞外区域的 [/font][font=Calibri]N [/font][font=宋体]端、一个跨膜螺旋结构和一个在细胞内区域的 [/font][font=Calibri]C [/font][font=宋体]端。这种结构使得一型跨膜蛋白在跨越细胞膜时保持稳定,并具有信号传递和细胞识别等重要功能。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]二型跨膜蛋白:[/font][font=宋体] [/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜外 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]跨膜 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜内 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]胞质 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]尾部 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [/font][font=宋体][font=宋体]二型跨膜蛋白同样具有跨越细胞膜的结构,但它包括一个在细胞内区域的[/font] [font=Calibri]C [/font][font=宋体]端和一个在胞质尾部的结构。二型跨膜蛋白通常通过细胞内区域与一些信号转导途径进行相互作用,并发挥重要的调节和调控功能。[/font][/font][font=宋体] [/font][font=宋体]一型跨膜蛋白通过单一的跨膜螺旋结构连接细胞内外区域,而二型跨膜蛋白则包含额外的胞质尾部。这些结构差异导致两种跨膜蛋白在细胞中的功能和相互作用方式上存在差异。[/font][font=宋体] [/font][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达和制备平台[/b][/url],包含[/font][font=宋体][font=宋体]①[/font][font=Calibri]VLP[/font][font=宋体]技术平台:它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象;[/font][/font][font=宋体][font=宋体]②去垢剂技术平台:由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体][font=宋体]③[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台:义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 跨膜蛋白是什么?跨膜蛋白开发常见问题解答(FAQs)

    [font=宋体][font=宋体]跨膜蛋白具有多种生理功能,包括蛋白连接、识别、转运、锚定和转导等,其功能的异常与诸多疾病相关。膜蛋白是重要的药物靶点,据统计,约[/font][font=Calibri]50%[/font][font=宋体]药物的靶向分子为膜蛋白。然而,由于表达量低、体外不溶、纯化不稳定、难保持天然构象等问题的存在,限制了跨膜蛋白在药物开发方面的应用。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州聚焦于多次跨膜蛋白产品的开发,成功搭建了三大技术平台,为药物早期研发提供重要的原材料。目前产品包括四次跨膜蛋白[/font][font=Calibri]Claudin-6[/font][font=宋体]、[/font][font=Calibri]Claudin-9[/font][font=宋体]、[/font][font=Calibri]Claudin-18.1[/font][font=宋体]、[/font][font=Calibri]Claudin-18.2[/font][font=宋体],七次跨膜蛋白[/font][font=Calibri]GPRC5D[/font][font=宋体]、[/font][font=Calibri]CXCR4[/font][font=宋体]、[/font][font=Calibri]SSTR2[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][b]三大跨膜蛋白研发技术平台一览:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台:[/font][font=Calibri]VLP[/font][font=宋体]技术平台能够将完整天然构象的膜蛋白展示在类病毒颗粒表面,产生非常适合免疫和抗体筛选的全长跨膜蛋白。[/font][/font][font=宋体][font=宋体]去垢剂技术平台:去垢剂技术平台利用传统的膜蛋白提取方法[/font][font=宋体]——去垢剂制备较纯的膜蛋白产品,满足药物早期筛选的需求。[/font][/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台:[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,用于免疫和抗体筛选等场景。[/font][/font][font=宋体] [/font][font=宋体][b][font=宋体]下面是关于跨膜蛋白开发常见问题解答([/font][font=Calibri]FAQs[/font][font=宋体]):[/font][/b][/font][font=宋体] [/font][font=宋体]①如何选择膜蛋白开发平台?[/font][font=宋体]不同膜蛋白平台具有不同的优势和劣势,应根据下游应用、成本、周期等因素进行考量。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]HPLC[/font][font=宋体]分析是否可以表征[/font][font=Calibri]VLP[/font][font=宋体]形式膜蛋白的纯度?[/font][/font][font=宋体][font=Calibri]HPLC[/font][font=宋体]方法可用于检测产品溶液中[/font][font=Calibri]VLP[/font][font=宋体]颗粒的大小和均一程度,而[/font][font=Calibri]VLP[/font][font=宋体]平台产生的蛋白除目标蛋白外还包括其他内源性的蛋白,故无法表征目标蛋白的纯度;由于[/font][font=Calibri]VLP[/font][font=宋体]产品为混合物,目前对[/font][font=Calibri]VLP[/font][font=宋体]产品的检测主要以活性检测为主,纯度仅作为一项参考指标。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]③我想购买膜蛋白产品做免疫和抗体筛选,应该怎么挑选?[/font][font=宋体][font=宋体]目前,我们的[/font][font=Calibri]3[/font][font=宋体]个平台的产品各有特点,客户可以按照实际情况进行选择。[/font][font=Calibri]VLP[/font][font=宋体]平台产品是一个混合物,与细胞免疫相比靶标蛋白的丰度有所提高,在没有其他平台的产品时可以用于免疫和抗体筛选。由于[/font][font=Calibri]Detergent[/font][font=宋体]平台的产品存在去垢剂,因此,需要考虑去垢剂对于免疫动物的毒害和免疫过程中蛋白变性的风险。比较而言,[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台的产品既拥有较高的靶蛋白丰度,又能维持好的天然构象,特别推荐用于动物免疫和抗体筛选实验。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/services/platform/multi-pass-transmembrane-protein]跨膜蛋白[/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/platform/multi-pass-transmembrane-protein[/font][/font]

  • 【分享】运动模拟系统

    【分享】运动模拟系统

    运动模拟系统: (1)、运动系统应为6个自由度即X、Y、Z方向的平动与转动。 (2)、系统控制周期20ms。 (3)、系统运动指标应达到: 序号运动指标运动范围速 度加速度 1升降0~600mm175mm/s0.8g 2左右方向-400~400mm200 mm/s0.8g 3前后方向-400~280mm200 mm/s0.8g 4俯仰-18~+18deg20deg/s90deg/s2 5侧倾-20~+20deg20deg/s90deg/s2 6横摆-25~+25deg30deg/s90deg/s2 (4)、运动平台响应与动力学模型仿真结果一致性应达到90%及以上。 (5)、运动系统应具有安全检测、安全限位功能,确保平台运行安全。 (6)、运动系统六自由度平台选用3.5吨产品。 (7)、运动系统运动控制服务器选用工业控制计算机; (8)、实时车辆动力学模型仿真周期1ms。 (9)、实时车辆动力学模型的仿真精度应经过实车国标场地试验验证,仿真与实验结果的一致性应达到90%及以上,达到国际先进水平。 (10)、实时车辆动力学模型应能准确仿真以下极限工况:①非水平路面的仿真;②起步-停车工况的准确仿真;③制动到0车速和斜坡制动的准确仿真;④转向回正力矩的精确计算;⑤车辆自动回正、稳定性的仿真;⑥中心区的准确仿真;⑦可实现车辆急剧转向时大滑移、大非线性的准确仿真。 [img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911302201_187168_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911302202_187169_1602049_3.jpg[/img][~187170~][~187171~][~187172~][~187173~]

  • 石油产品运动粘度测定的方法原理和意义

    石油产品运动粘度指标是考量油品物理性质的一个重要指标,粘度是流体流动时内摩擦力的量度,即液体分子在外力作用下发生相对运动时分子内部产生的一种摩擦力,在油品粘度检测方法中,运动粘度指标采用多。  一 石油产品运动粘度测定的方法和原理:  本方法大致流程是:在某一恒定的温度下,测定一定体积的液体在重力作用下流过一个标定好的玻璃毛细管粘度计的时间,粘度计的毛细管常数与流动时间的乘积,即为该温度下被测液体的运动粘度。在温度r时运动粘度用符号vt来表示,这种方法也是对油品粘度进行测定的方法中的仲裁试验方法。  二 石油产品运动粘度指标检测意义概述:  1.粘度是石油产品重要的性能指标和使用指标之一,在油品生产、输送和使用过程中都有大量的应用。  2.在设计生产装置、输送管线时,粘度是工艺计算的主要参数之一,流体在输送管线中的设计线速、产生的压降,都与粘度密切相关。  3.粘度的大小与石油产品的馏程以及结构特点也有关系。通常情况下,粘度随馏程的升高而增加,馏程相同的馏分,化学组成不同,其粘度也不相同,链烷烃较小,芳烃和环烷烃较大。  4.度是润滑油重要的质量指标。大部分润滑油的牌号都是以某一温度下的粘度值来确定的。反映润滑油粘温性能的粘度指数(VI)也是由润滑油在40℃和100℃的粘度值计算出来的。  5.对于航煤、柴油等燃料油来说,粘度的大小与燃料在发动机内的雾化情况有关,因而直接影响到燃料的燃烧效率。  三 运动粘度的检测范围:  运动粘度测定方法适用于测定透明和不透明液体石油产品的运动粘度,其单位为m2/s 通常在实际工作中,单位使用mm2/s,所得的粘度结果与样品的特性有关,其主要适用于剪切应力和剪切速率成比例的液体(即牛顿液体)。如果液体的粘度受剪切速率的影响十分明显,采用不同内径的毛细管粘度计所得结果可能会不同,这在实际试验过程中要特别注意,为了保证试验指标更具可比性,需要明确检测要件:温度和毛细管内径,在检测报告中应予以注明!

  • 科学家将“自旋塞贝克效应”放大千倍 有助于推动新型热电发动机研究

    中国科技网讯 热电循环需通过“塞贝克效应”来产生热,据物理学家组织网7月11日报道,俄亥俄大学找到了一种新方法,能将“自旋塞贝克效应”放大1000倍,将其向实际应用推进了一大步。该研究有助于热电循环的实现,从而最终有望开发出新型热电发动机,还可用于计算机制冷。相关论文发表在本周出版的《自然》杂志上。 热电循环是电子设备循环利用自身产生的部分废热,将废热转化成电。根据“塞贝克效应”,当导体被放在一个温度梯度中时,会产生电压使热能转变为电能。而2008年日本发现了“自旋塞贝克效应”,即在磁性材料中,自旋电子会产生电流使材料接点产生电压。这以后,许多科学家都在试图利用自旋电子学来研发读写数据的新型电子设备,以便在更少空间、更低能耗的条件下更安全地存储更多数据。但这种“自旋塞贝克效应”产生的电压一般非常小。 目前新方法是将此效应放大为“巨自旋塞贝克效应”。研究人员利用锑化铟及其他元素掺杂制成所需材料,并将温度降低到零下253℃至零下271℃附近,外加3特斯拉磁场。当他们将材料一面加热使其升高1℃时,在另一面检测到电压为8毫伏,得到比以往的5微伏高三个数量级的电流,是迄今为止通过标准“自旋塞贝克效应”产生的最高电压,且功率提高了近百万倍。 俄亥俄大学物理学与机械工程教授约瑟夫·海尔曼斯说,科学家认为热是由振动量子所组成,他们能在半导体内部引发强大的振动量子流,在流过材料时撞击电子使电子向前运动。而由于材料中原子使电子自旋,电子最终就像枪管中的子弹那样旋转前进。 以往人们只在磁性半导体和金属中发现过“自旋塞贝克效应”,而此次“成功的关键是选择材料,”该校材料科学与工程夫教授罗伯托·梅尔斯说,但由于材料是非磁性的,还需要外加电场和低温环境,这是实验的不足之处,他们还在进一步研究其他材料。 海尔曼斯表示,其最终目标是开发出一种低成本高效率将热转化为电能的固态发动机。这些发动机没有运动部分,不会磨损,可靠性几乎是无限的。“这是真正的新一代热电发动机。17世纪我们有了蒸汽机,18世纪有了燃气机,19世纪有了第一个热电材料,而现在我们正要用磁来做同样的事。”(常丽君) 《科技日报》(2012-07-13 二版)

  • 石油产品运动粘度测定仪可以检测什么

    石油产品运动粘度测定仪可以检测什么

    [size=16px]  石油产品运动粘度测定仪可以检测什么  在石油化工行业中,对于各类石油产品的检测和控制是保证产品质量和性能的关键环节。其中,运动粘度是衡量石油产品性能的重要指标之一,对于指导生产、质量控制以及产品研发都具有重要的意义。为了准确、高效地测定石油产品的运动粘度,石油产品运动粘度测定仪应运而生,成为行业内备受推崇的检测仪器。  检测范围  喷气燃料油:适用于检测喷气燃料油的粘度,以确保其具有良好的流动性,满足发动机的运行要求。  柴油:通过测定柴油的运动粘度,可以评估其在中国市场的适用性,以及在发动机中的燃烧性能。  润滑油:润滑油的运动粘度对于机械设备的润滑和保护至关重要。该仪器可快速测定润滑油的运动粘度,保障设备正常运行。  深色石油产品:对于颜色较深的石油产品,如重油、渣油等,该仪器同样能够准确地测定其运动粘度。  使用后的润滑油:通过对使用后的润滑油进行运动粘度检测,可以评估润滑油的性能衰减程度,为更换润滑油提供参考。  原油:在炼油过程中,对原油的运动粘度进行检测,有助于评估其加工性能和产品质量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311161125495196_2481_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 文双春:基金申请在高校已成为一场自发的群众运动

    文双春:基金申请在高校已成为一场自发的群众运动2012-03-01 18:34 来源:丁香园 作者:文双春 http://img.dxycdn.com/cms/upload/userfiles/image/2012/03/01/1330413497_small.jpgNature, 16 February 2012, vol. 482, pp. 429国家自然科学基金申请到了最后交本子的时候,从我院的统计来看,所有教学科研一线人员,能够申请的,或作为项目申请人,或作为项目参与人员,几乎全部披挂上阵了。前几年,学校和各学院还不时举行基金申请动员或推介会,参会人员踊跃;这两年类似的会议很少了,即使偶有举办,参会者也是寥寥无几,但基金申请时却是一派全民皆兵的景象。可以说,基金申请在高校已经成为一场既不需要动员也不需要推介的自发群众运动。可以从申请和批准两个方面考察这场群众运动的成因。从申请方来看,全民自发申请主要源自高校教师的科研动力或压力,对科研有兴趣和追求的,自然有申请项目的动力,在科研方面尚无或尚缺基础和专长的,迫于强大的科研压力也赶鸭子上架了。虽说高校教师的天职是教学,但在现有的考核和评价机制中,科研依然是最重的砝码,而且只有更重没有最重,没有科研,高校教师将变得愈发难以生存和发展。特别是近几年,高校的科研又前所未有地突出强调项目和经费,领导的关注点从论文数转移到了钱数,项目和经费成了高校教师卡脖子的事情。在这种背景下,无论是科研为主还是教学见长,无论是科研新手还是教学老兵,男女老少都必须见“钱”眼开,任何项目申请机会都要全力以赴扑上去,申请了不一定有希望,但不申请肯定是完蛋。就国家自然科学基金而言,首先它毕竟是“金”,是实实在在白花花的米米。虽说“金”不是万能的,但于今天的高校教师来说,没有“金”的确是万万不能的。科研不做不行,而想做点科研,招收和培养研究生要“金”,起个炉灶要“金”,买点柴火要“金”,发表文章要“金”,一举一动都要“金”。前不久nature发表一篇谈科学基金申请的文章,文章篇头的巨幅招贴图不是什么只有科学家才感兴趣的双螺旋或中微子之类的神秘东东,而是人见人爱的一堆堆“粪土”般的洋money,人家老外就是那么露骨或坦然:科学基金靠“金”勾引,科研人员奔“金”而去。科学无国界,申请科学基金的动力或动机应该也无国界吧!其次,也是最重要的,即使咱中国人比老外高尚,申请基金纯粹是为科学献身,丝毫没有拜“金”主义思想,那基金也是“基”——高校教师的生存之“基”,发展之“基”!高校的科研大多以基础或应用基础研究为主,基金已成了很多高校岗位聘任、职称晋升、研究生导师资格审核、人才选拔等的关键性指标,有了基金,就有了根基、阶梯、跳板。基金,从名字看,它似乎就是为高校教师而生、管高校教师死活的把戏;有了它,既可为自己奠“基”,又可到别处掘“金”;缺了它,可就要时刻提心吊胆自己的“基”被捣、“金”被扣啰!从受理、评审和批准方看,国家自然科学基金是自由申请、来者不拒,自主选题、海纳百川,既可凭实力取胜,也有撞大运的可能,活要活的正当,死也死的明白,这些因素在客观上为基金申请成为自发群众运动创造了条件。相对来说,国内现有其它科研资助体系,绝大多数既不自由,也不自主,更不公平,衙门八字开,有题无钱莫进来,你明着申请,他暗箱操作,宰你没商量,你想讨个说法比秋菊打官司还难。这类项目自然是即使米米堆积如山也很难勾起无权无势无门道的普罗大众的兴趣了。当然了,这类项目本身也许就不需要人民群众的参与,特别是广泛参与。在今天的高校,没有任何其它一件工作或一项活动象国家自然科学基金申请这样,成为几乎每位教师的自觉自愿尽心尽力行为。基金申请在高校已成为一场自发的群众运动,这到底是好事还是坏事?我个人认为有利有弊,但总体来说,利大于弊。毕竟,它是一场全民科学运动,一场科研意识的唤醒和提升、科学知识的普及和增长、科学思维的训练和梳理、科学思想的交流和碰撞的全民运动。国家自然科学基金在高校科学研究和人才培养中已经并将继续发挥极其重要的作用,其整体作用是目前国内其它任何一种科学资助体系都无法比拟和取代的。如何从国家、地域、单位等不同层面引导和组织这种热情高涨的大规模自发群众运动,使其更有效地服务于科学发展和经济社会发展的需求,也许是一个值得思考的问题,因为,一个自由但有序的运动其威力兴许更加强大。

  • 【转帖】鲁苏联手破解跨界污染困局

    上游污染,下游叫苦。在我国一些地区,处同一流域但分属不同行政区的上下游地区之间普遍存在着跨界污染的矛盾。由于缺少统一的联合治污机制,上下游各自为政,治污脱节现象比较严重,经常引发群体性事件。针对这一难题,山东省、江苏省接邻的部分县市开拓创新,从2006年开始探索建立跨行政区域的联合治污合作机制。两年来,双方通过这一机制在有效防控流域水污染的同时,更促进了两省边界和谐。鲁苏九县探索联合治污新机制位于山东省最南端的郯城县,南与江苏省东海、新沂、邳州三县市毗邻,北与罗庄、河东、临沭、苍山四县区接壤。沂河、沭河、白马河纵贯县境南北,出境后分别流入江苏邳州、新沂两市。2006年由郯城县发起,山东省郯城县、苍山县和江苏省新沂市、东海县、沭阳县、邳州市六县(市)环保局共同研究在两省交界地建立了环境保护联席会议制度,以求破解跨区域河流污染难题。截至目前,这一制度新增临沭、赣榆、连云港市连云区三个成员,变成了“6+3”。郯城县环保局局长胡友飞说,建立环境保护联席会议制度就是为改变以往治理河流污染缺乏有效沟通的问题,打破在污染治理中各自为战的局面。他认为,要想确保边界环境安全,走联合治污、团结治污的路子是个必然。据了解,按照当前的我国环境保护法律,环保实行属地管理的原则,一条河流上游发生污染,而下游处于另一省份,则无权到上游进行执法,只能在本省内逐级上报,如果处理不及时,容易引发基层纠纷。鲁苏边界并非像今天这样“平静”。据胡友飞介绍,跨界河流污染曾给双方屡次造成矛盾,两省部分相邻市县环保部门曾经不断向上级政府或环保部门告状,相互指责。其中,最为典型的就是白马河污染事件。这条河是发源于郯城县的一条过境河,最终流入江苏境内,上个世纪90年代,白马河两岸有一些造纸厂排出的污水直接进入河道,造成污染,下游县市怨声载道,多次向国家环保总局反映,给双方都带来很大的负面影响。“白马河变成了黑马河,当地人对这个曾经形容河流污染的形象描述至今记忆犹新。”胡友飞说,此后,郯城加大了污染治理,同时加强与下游市县的沟通,为联合治污机制的形成奠定了基础。江苏省新沂市环境监察大队队长陈雷如今经常往来于鲁苏两地之间,参与两地环保部门共同组织的治污联合行动。他说,跨界污染涉及面广、影响大,由于分属不同的行政区域,治理难度大。当前,我国不少河流都面临着跨界污染纠纷的难题,不少环保人士都呼吁在跨区域的河流上建立统一的治污机制。联席市县定期会晤“升级”合作机制记者采访了解到,自鲁苏边界环保联席会议制度建立以来,双方各县市区通过定期召开会议的方式,不断完善合作机制,力求紧跟环保新形势。胡友飞说,按照最初鲁苏边界六县市确定的制度,联席会议实行轮流牵头的制度,在没有特殊情况时,原则上每个季度召开一次会议,加强信息交流与沟通,及时通报上、下游之间的环境质量,并提出针对联合治污切实可行的新措施和政策,边完善边合作。

  • miRNA的作用机制

    miRNA在发挥作用之前,需要同细胞内一些协同因子结合形成蛋白质- RNA复合物(miRNA-containing ribonucleoprotin,miRNP),在miRNP的作用下指导其识别同源mRNA。在Hela细胞裂解液中发现这类核糖核酸蛋白复合物的大小在15S左右,其主要成分为Germin3、Germin4和Argonaute蛋白家族成员eIF2C2因子,后两种蛋白质与运动神经元的存活(survival of motor neurons,SMN)有关。研究认为,miRNP即为RISC.miRNA与靶mRNA作用的典型方式主要有两种(如图3,图4):在大多数情况下(例如在动物中),复合物中的单链miRNA 与靶mRNA的3' UTR不完全互补配对,阻断该基因的翻译过程,从而调节基因表达。这种方式只影响蛋白表达水平,并不影响mRNA的稳定性。目前,该翻译抑制的详细机理尚不清楚。最近有研究对此提出质疑,他们认为,正常衰退途径引起的mRNA降解速度的升高也会导致蛋白质表达水平的下降,且miRNA不仅能作用于翻译起始后的延长阶段,还能够抑制翻译的起始。被抑制的靶mRNAs和miRNAs共同聚集于胞浆中被称为P-bodies的区域,这个区域还浓缩了许多参与mRNA降解的酶类。然而,P-bodies可能是作为未翻译mRNA进行暂时的可逆储存的容器,并且,减少一些特定P-body组成蛋白的表达能够缓和miRNA介导的基因表达抑制。P bodies 是胞浆中的一定区域(如图3),它包含参与多种转录后过程的蛋白质,例如:mRNA降解(mRNA degradation)、无义介导mRNA衰退(nonsense-mediated mRNA decay ,NMD),转录抑制及RNA介导的基因沉默(RNA-mediated gene silencing)。尽管P bodies不是介导基因沉默所必需的,但阻断siRNA或miRNA基因沉默途径的任何一步都会阻碍P-body的形成,这表明P-body是基因沉默的结果。因此,尽管P-body成分在mRNA沉默及衰退中起重要作用,但P-body中的这种聚集并不是介导基因沉默机制所必需的,而只能作为他们活动的结果。图3 P bodies的作用机制另一种作用方式是,当miRNA与mRNA完全互补配对时,引起目的mRNA在互补区的特异性断裂,从而导致基因沉默,这种作用方式与 siRNA类似。如大多数植物在可读框(ORF)中与它的靶位点几乎完全配对。这种mi/siRNA介导的基因沉默机制已得到了相关的阐释。以siRNA参与的RNAi为例进行说明,siRNA可与RISC结合,作为模板识别mRNA靶子,通过碱基互补配对原则,mRNA与siRNA中的反义链结合,置换出正义链。双链mRNA在Dicer酶、ATP和解旋酶共同作用下产生22nt左右的siRNA,siRNA继续同RISC形成复合体,与siRNA互补的mRNA结合,使mRNA被RNA酶裂解。这个过程也称为转录后基因沉默(PTGS)。miRNA以何种方式与目的基因作用和miRNA与目的基因的配对程度有关。MiRNA与目的基因配对不完全时,miRNA就以抑制目的基因的表达方式作用;miRNA与目的基因某段序列配对完全时,就可能引起目的基因在互补区断裂而导致基因沉默。图4 miRNA的两种作用机制这两种作用机制是最早被发现和熟知的,除此之外,近期,PNAS刊载一项最新的发现:快速脱腺苷酸化(accelerated deadenylation)是 miRNA 抑制基因表达的新机制。Wu 等以miR-125b 和 let-7 两种代表性的miRNA为研究对象,在哺乳动物细胞中发现它们能够促进mRNA 聚腺苷酸尾巴 (polyA tail)的去除。他们认为miRNA去除聚腺苷酸尾巴的能力不是由于降低翻译水平或需要poly(A)为存在的翻译抑制。为证明这点,Wu 等用 3′组蛋白茎-环结构取代聚腺苷酸尾巴,结果发现不但可以消除 miR-125b 对 mRNA 含量的影响,还可以降低对蛋白质合成的作用。由此可知,miRNA 通过降低翻译效率和聚腺苷酸化 mRNA 的浓度来抑制基因表达远比阻遏翻译强而全面,而且,不像翻译阻遏那样导致 mRNA 的解体是不可逆转。总之,miRNA 与靶mRNA 不完全互补后有两种转录后作用机制,除了阻遏翻译外还可引起mRNA 快速脱腺苷酸化而被降解以抑制基因表达。对 miRNA作用机制的不断深入研究不仅在理论上丰富了我们对基因调控的认识,miRNA应该具有潜在的多种调节基因表达方式,这还有待于实验技术的进步和人们的进一步发现。

  • 【分享】环境保护部关于预防与处置跨省界水污染纠纷的指导意见

    环境保护部关于预防与处置跨省界水污染纠纷的指导意见(环发〔2008〕64号)各省、自治区、直辖市环境保护局(厅),新疆生产建设兵团环境保护局,各环境保护督查中心:     近年来,跨省界水污染纠纷不断增加,逐渐成为引发社会矛盾、影响社会安定的重要因素。国务院领导要求在跨省界重点河流、湖泊、海域建立跨省际联防治污机制,互通情况、相互监督,注重日常监测、预警、检查的协同,防患未然,形成治污工作合力,及时有效地预防和处置跨省界水污染纠纷,维护社会和谐稳定。为贯彻落实国务院领导的指示,有效预防与处置跨省界水污染纠纷,现提出如下指导意见:     一、从源头上预防跨省界水污染纠纷的发生     为预防跨省界水污染纠纷,涉及跨省界流域的相邻地区特别是上游地区,要根据该地区环境容量及出境水质目标,合理制定规划、优化区域布局、调整产业结构、严把环境准入关和项目验收关,采取更加严格的环保措施。从源头上防范跨省界流域水污染纠纷。     (一)合理规划布局,促进产业结构调整。跨省界流域交界地区尤其是上游地区应实行环境优先政策,根据当地的环境容量及跨省界水质要求,制定经济发展总体规划、专项规划,合理布局、优化产业结构。要限制、禁止发展重污染项目,加快产业结构调整步伐,加大对钢铁、造纸、酒精等12个高耗能、高污染行业落后生产能力的淘汰力度,尽早完成强制淘汰或关闭落后工艺、设备与产品任务。     (二)注重源头控制,严把环境准入关和验收关。跨省界流域交界地区尤其是上游地区应严格控制新污染源的产生,按照国务院批准、由七部门印发的《关于加强河流污染防治工作的通知》(环发〔2007〕201号)要求,自2009年起,停止审批向河流排放重金属、持久性有机污染物的项目。毗邻上游地区拟建项目,经环境影响评价预测可能会严重影响跨省界断面水质或造成超标的,在审批前应采取适当方式征询下游相邻环保部门的意见。相邻省级环保部门对该项目的环境影响评价结论有争议的,其环境影响评价文件报环境保护部审批。新建设项目未批先建、未经验收擅自投产的,要依法责令停产停建。     (三)强化监督执法,加大污染整治力度。加大对跨省界流域环境整治力度,水污染物排放必须达到国家或者地方规定的水污染物排放标准和重点水污染物排放总量控制指标。对未按照要求完成重点水污染物排放总量控制指标的市、县予以公布,对超过总量指标的地区,暂停审批新增重点水污染物排放总量的建设项目环评报告。对长期超标排污、私设暗管偷排偷放、污染直排、影响跨省界水质的企业,依法停产整治或关闭。加快城镇污水处理厂的建设,并严格控制流域农业面源污染。     (四)落实治污责任,严格实行跨省界流域断面水质考核。敦促政府确保跨省界流域水质达到《“十一五”水污染物总量削减目标责任书》中确定的目标。我部对跨省界断面水质按年度目标进行考核评定,对不能按期完成工作任务的,暂停审批影响跨省界流域水质的主要区域新增排污总量的建设项目环评报告。因跨省界水污染引起的损害赔偿责任和赔偿金额纠纷按《水污染防治法》有关规定执行。国家加快制定上下游流域生态补偿政策,并鼓励地方积极探索和建立生态补偿机制。     (五)加强沟通协调,合理确定跨省界流域的水环境质量适用标准。部分流域省界相邻地区执行水环境质量标准不协调,适用标准不合理,影响监督管理与责任考核,应加强相邻省界地区执行水环境质量标准的统一性和合理性。重要流域跨省界流域的水环境质量适用标准由我部会同水利部门和有关省、自治区、直辖市人民政府确定,其余流域由相邻省级环保部门会同有关部门和当地政府确定。如确实无法协调的,由我部协调确定。     二、建立预防与处置跨省界水污染纠纷长效工作机制     根据跨省界流域水污染情况及省界断面水质目标要求,省级环保部门要督促并协助有关地方政府,在与相邻省级环保部门和地方政府共同协商的基础上,建立预防与处置跨省界水污染纠纷长效工作机制。     (一)定期联席会商。督促并协助跨省界流域上下游地区人民政府建立联席会商机制,下游地区政府至少每年汛期前主动召集一次联席会议,相互通报并商讨跨省界水污染防治工作,上游地区政府应予以配合。督促流域省界相邻地区政府要组织制定科学合理的闸坝调控方案,并监督落实。     (二)信息互通共享。流域省界地区相邻环保部门定期互通水污染防治进展、断面水质等情况。环保部门要与水利、渔政等部门定期互通省界断面水质、水量、水文、闸坝运行等信息。当上游地区发生污染事故或污染物排放、流域水量水质水文等出现异常并可能威胁下游水质时,除按规定上报外,上游政府或环保等有关部门应立即通知下游政府或环保等有关部门,并对重点污染源采取限产、限排或暂时关闭等措施。当下游地区发生水质恶化或死鱼等严重污染事故并确认由上游来水所致时,除按规定上报外,应及时通报上游政府和环保等相关部门。上游地区应积极采取措施控制污染,并向下游地区及时通报事故调查处理进展。     (三)联合采样监测。由我部组织跨省界流域相邻两省环保部门共同制定跨省界水质监测方案,明确采样断面与时间、监测指标与方法,定期开展联合监测。敏感时期增加监测频次,环保部门要组织水利、渔政等部门及时通报监测数据等情况。一旦发生跨省界水污染事故,相邻环保部门立即启动环境突发事件应急监测预案,在规定时间内到达同一断面共同采样监测,一方无故不到或不按规定监测的以另一方监测数据为准。双方对监测数据提出异议时,应保存水样,由中国环境监测总站负责监测。     (四)联合执法监督。在定期会晤、信息共享和联合监测的基础上,跨省界流域相邻环保部门要定期或不定期地组成联合检查组,共同对两地水污染防治情况开展现场检查,加强流域重点水污染源、城镇污水处理厂等环保措施落实情况的督查,预防跨界水污染事故的发生。同时要互相通报在联合检查中发现问题的整改情况。环境保护部区域环境保护督查中心要加强跨省界流域交界地区的环境监管和督查。     (五)敏感时期预警。在敏感时段(如枯水期、汛期)和河流敏感区域(如饮用水源地),跨省界流域相邻环保部门要及时了解重点污染源排污变化情况,必要时采取限产限排等控制排污总量的措施。加强与水利、渔政等部门的协调与沟通,及时了解江河流量、闸坝调控、污水处理厂运行等情况,在确保跨省界断面水质未明显下降的前提下,实施小流量排放等措施,保障水环境安全。     (六)协同应急处置。一旦发生跨省界水污染突发事件,交界地区环保部门要立即报请当地政府迅速启动环境突发事件应急预案,提出控制、消除污染的具体应急措施,协助当地政府控制和处置水污染。并按有关程序及时上报情况。     (七)协调处理纠纷。跨省界水污染纠纷发生后,应依法由相邻两省人民政府共同协商处理。经协商确实无法达成共识的,相邻两省人民政府提出申请,由我部进行协调。经协调并达成共识时,按协调意见落实。经协调仍无法达成一致意见时,由我部提出处理意见上报国务院批准,并按国务院批复意见执行。     (八)开展后督查工作。对于引发跨省界水污染纠纷的企事业单位,当地政府和环保部门要依法处罚并提出限期整改要求,由相邻两省环保部门组成联合督查组对其整改情况开展后督查,确保整改措施落实到位。必要时,由我部组织进行督查、督办。     各级环境保护部门要高度重视跨省界流域环境污染问题,加强协调与合作,联防治污、联动预警、联合处置,积极有效地预防和处置跨省界水污染纠纷问题,维护环境安全和社会稳定。  二○○八年七月七日

  • 航空涡轮发动机润滑油必须具备的几种品质

    1.具有适当的粘度和良好低温流动性航空涡轮发动机润滑系统的工作特点是:主要润滑件为滚动轴承.润滑油循环周期短,采取喷雾润滑。因此,润滑油的粘度不宜过大,通常100℃时的运动粘度为3-8mm2/s。,下限为涡轮喷气发动机润滑油的要求,上限为涡轮螺旋桨发动机润滑油的要求。 根据亚音速喷气飞机的飞行表明,在外界条件的影响下,润滑油的温度可低至-4O℃以下,有时由于空气的冷却,前轴承的温度低至-60℃。同时,涡轮喷气发动机起动时,涡轮压缩机轴的转速需达到1200-1500r/min。这些条件都要求润滑油应有良好的低温流动性。在多数情况,要求航空涡轮发动机润滑油的凝点不高于-60℃,检测仪器为YT-265D低温运动粘度测定仪。 2.其有良好的高温抗氧化安定性 飞机随着速度的提高.对润滑油高温抗氧化安定性提出了更高的要求。从目前情况看,因矿物油难以承受150℃以上的高温,在150-175℃的温度条件下,矿物油往往生成不溶性固体沉淀和结焦,使发动机不能正常工作。因此已逐渐以酯类油作为航空涡轮发动机的润滑剂。酯类油按使用温度,分为以下三型: Ⅰ型使用温度为:-54~175℃ Ⅱ型使用温度为:-40~204℃ Ⅲ型使用温度为:~250℃。 目前,我国使用的脂类油有癸二酸二-2-乙墓己醋、聚异丙二醇复酯、季戊四醇醋、三羟甲基丙烷酯。前两种属Ⅰ型油,后两种属Ⅱ型油。 Ⅰ型油在涡轮发动机上,只要大量油的温度(在油槽中的温度)不超过149℃,回油温度不超过260℃,就能发挥足够的性能。这类油在亚音速飞机上得到广泛应用,在M=0.9的巡航条件下,在油槽中记录的油温是150℃,从轴承出来的回油温度是200℃。但是,Ⅰ型油不适于轴承回油温度超过200℃左右的涡轮发动机,因为它在高温下会分解为酸和稀烃。酸的存在会加速各类金属的腐蚀,同时烯烃容易被存在的高温空气氧化而生成不溶物,这些不溶物表现为油路中的油泥和漆膜沉淀。因此,要满足高温的润滑要求,应使用Ⅱ型酯类油。 3.具有低挥发性 航空涡轮发动机润滑油,在高温、低压条件下应其有低挥发性。因为高挥发性油,不仅仅蒸发损耗增大,而且由于轻馏分被蒸发掉,使润滑油的粘度迅速增大。通常,合成润滑油的蒸发性比矿物油小得多。 4,不腐蚀各种金属 润滑油氧化后不腐蚀各种金属,特别对易反应的金属如铅、铜、镁等不产生腐蚀,并能有效地防止外来物质的腐蚀。因为当喷气发动机轴高速旋转时、在轴承滚动体上有很小的毛病也能招至轴承的损伤和毁坏,常规检测仪器室YT-5096铜片腐蚀测定仪。 5.不引起橡胶过度的膨胀或收缩 橡胶油管和密封件的膨胀或收缩,郁可能引起润滑油的泄漏,因此要求润滑油对橡胶应有良好的适应性。 6.有良好的消泡性 润滑油消泡的好坏与使用添加剂有关。通常加人微量的二甲基硅油以改善润滑油的消泡性。

  • 环肽作用下金属离子的跨膜传输

    [font=&]【题名】:[font=微软雅黑, &][color=#333333]环肽作用下金属离子的跨膜传输[/color][/font][/font][font=&]【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200020008.htm[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制