当前位置: 仪器信息网 > 行业主题 > >

矿物油芳烃

仪器信息网矿物油芳烃专题为您整合矿物油芳烃相关的最新文章,在矿物油芳烃专题,您不仅可以免费浏览矿物油芳烃的资讯, 同时您还可以浏览矿物油芳烃的相关资料、解决方案,参与社区矿物油芳烃话题讨论。

矿物油芳烃相关的方案

  • LC-GC法检测食品源矿物油中的芳香烃和饱和烷烃总含量
    LC-GC系统联用的技术优势,为我们提供了简单的样品制备和富集手段,同时可以获得最佳的灵敏度和分辨率。LC-GC技术通常对样品中的化合物基团使用正 相液相色谱法(NPLC)进行选择性的分离,之后通过大体积进样的方式将目标物转移至GC进行后续分离检测。LC-GC联用技术已经在食品、香精香料、石油化工和工业样品、环境、药物以及生物样品等领域得到了成功的应用。多年来,科学家们使用LC- GC系统建立了许多有效的应用方法,著名的应用包括:食品中的矿物油和多环芳烃(Mineral oils, PAHs in Foods),质量评估橄榄油中的甲基酯、乙基酯和蜡酯(Methyl, ethyl and wax esters in olive oils),生物柴油中间馏分物中的脂肪酸甲酯(FAMES in middle distillates of Biodiesel blends)等。其中最值得一提的是由著名的瑞士苏黎世食品监督局的首席化学家Koni Grob博士使用LC-GC系统开发的分离检测食品矿物油中的饱和烷烃(MOSH)和芳香烃(MOAH)的方法。该方法使用正相LC分离MOSH和MOAH组分,通过大体积 进样的方式将感兴趣的组分转移至GC进行进一步的分离检测,这为我们检测对人体有害的食品矿物油来源(包装材料、机器润滑油、灰尘吸附物、脱模剂、黄麻纤 维、受污染的动物饲料等)提供了快速有效的手段。
  • 煤制油罐车混装食用油?迪马科技助力食用油中矿物油的检测
    目前关于植物油中矿物油的检测主要参考欧洲标准DIN EN 16995:2017-08,基于植物油和以植物油为基础的食品的在线HPLC-GC-FID分析测定矿物油饱和烃(MOSH)和矿物油芳烃(MOAH)。通过在线HPLC-GC-FID对植物油脂中的饱和烃和芳香烃(从C10到C50)进行测定。检测的样品类型是植物油、蛋黄酱、人造黄油等以植物油为基础的食品。迪马科技始终关注食品安全,针对食用油中矿物油的检测以及食用油检测标准中的多个项目均有完整的解决方案,可供广大分析工作者参考。
  • 微波消解矿物油
    矿物油指的是由石油所得精炼液态烃的混合物,原油经常压和减压分馏、溶剂抽提和脱蜡,加氢精制而得。矿物油为无色半透明油状液体,无或几乎无荧光,冷时无臭、无味,加热时略有石油气味,不溶于水、乙醇,溶于挥发油,混溶于多数非挥发性油,对光、热、酸等稳定,但长时间接触光和热会慢慢氧化 , 用于制造洗衣粉、合成洗涤剂、合成石油蛋白、农药乳化剂等。为检测矿物油中的多种金属元素含量,采用微波消解对其进行前处理,探索最适合的实验参数,有利于后续对多种无机元素的快速准确测定。
  • 微波消解矿物油
    矿物油指的是由石油所得精炼液态烃的混合物,原油经常压和减压分馏、溶剂抽提和脱蜡,加氢精制而得。矿物油为无色半透明油状液体,无或几乎无荧光,冷时无臭、无味,加热时略有石油气味,不溶于水、乙醇,溶于挥发油,混溶于多数非挥发性油,对光、热、酸等稳定,但长时间接触光和热会慢慢氧化 , 用于制造洗衣粉、合成洗涤剂、合成石油蛋白、农药乳化剂等。为检测矿物油中的多种金属元素含量,采用微波消解对其进行前处理,探索最适合的实验参数,有利于后续对多种无机元素的快速准确测定。
  • GCMS法检测法庭科学领域中重质矿物油
    本文参考GA/T 1941-2021 《法庭科学重质矿物油检验 气相色谱-质谱法》标准相关要求,利用岛津气质联用仪GCMS-QP2020 NX,建立了法庭科学中重质矿物油的测定方法。检材及样品用正己烷溶解稀释后,经GCMS检测,以保留时间、质谱特征离子和丰度比作为定性判断依据,通过对峰范围、形状分布和组分差异进行综合对比,以判断检材与样品中是否含有重质矿物油的结果评价。
  • 固相萃取-PTV-GC法测定食用油脂中饱和烃矿物油
    国内暂无食用油中矿物油检测标准,本文建立了固相萃取-程序升温-气相色谱法(SPE-PTV-GC)测定食用油脂中饱和烃矿物油(MOSH)污染物的方法。
  • 使用安捷伦 7696A 样品制备工作台自动净化样品进行矿物油(烃油指数)的分析
    通常水样中的矿物油(或称碳氢油,烃油)通过液液萃取后,经Florisil 净化,使用GC-FID 测定。本文使用安捷伦7696A 样品制备工作台,可以自动完成样品液液萃取后的干燥和净化操作。通过高效的净化步骤,可使矿物油测定获得较高的回收率和优异的重复性。萃取液通过GC-FID 测定,结合低热容(LTM)GC,可实现样品的自动化和高通量分析。
  • 港东科技:红外光度法测定水中矿物油的技术和应用
    矿物油是由烷烃、环烷烃及芳香烃组成的混合物。早期的各种定量方法都是测量混合组分中部分化合物某一特性基团的特殊吸收(发射),进而推算混合组分总量;一旦具有该特性基团的化合物的相对含量发生变化,吸收系数必然相应变化,所以都存在“标准油”的选择问题,长期以来未能统一。新近颁布的GB/T 16488-1996选了三波长红外光谱法作为统一方法,同时兼顾国情,保留了非分散红外法。本文对新国标的原理及实施中的一些技术问题进行了探讨。
  • 水体和土壤中矿物油的常用测量方法-气相色谱法
    本试验方法采用程序升温式气相色谱法测定柴油、机油、固体等矿物油中的碳组分,以毛细管柱分离,FID检测,选用其中几个特征色谱峰作为矿物油的有效成分峰,以内标法定量。
  • 使用新型水稳定技术进行现场 FTIR 矿物油中水的定量分析
    水是所有润滑油中需要检测的一种重要污染物。红外光谱 (FTIR) 是一种测量水的简单方法。但是,红外方法目前还不能满足润滑油行业所需的测量精度和范围。安捷伦科技公司攻克了关键的技术难题,开发了一种测量矿物油中水的方法。该方法使用 Agilent 5500t 光谱仪,可以测量矿物油中水的浓度,其精度和范围与行业标准的 Karl Fischer 方法相当。本文将讨论这种方法用于汽轮机油的测量,该方法也可用于基于矿物油的液压油及齿轮油的测量。
  • 索氏提取仪测定污泥中的矿物油含量
    污泥是污水处理后的产物,由有机残片、细菌菌体、无机颗粒和胶体等组成。油脂在污水输送中由于降解速率低,因此大多被保留至污泥中。油脂含量过高对污泥的讲解具有危害作用,厌氧消化油脂可产生大量浮渣,造成滤布堵塞;好氧发酵污泥的过程中,油脂易形成油膜,并在区域形成厌氧环境,导致恶臭。因此,污泥中油脂的含量是污水处理厂的重要关注指标之一。污泥中的总油脂包括矿物油和动植物油,本方案给出了利用索氏提取仪测定污泥中的矿物油含量的方法。
  • 索氏提取仪提取城市污水处理厂污泥粗矿物油
    城市污水污泥是污水处理过程中产生的固体废弃物。随着国内污水处理事业的发展,污水厂总处理水量和处理程度将不断扩大和提高,产生的污泥量也日益增加,目前在国内一般污水厂中其基建和运行费用约占总基建和运行费用的20%~50%。污水污泥中除了含有大量的有机物和丰富的氮、磷等营养物质,还存在重金属、致病菌和寄生虫等有毒有害成分。为防止污泥造成的二次污染及保证污水处理厂的正常运行和处理效果,污水污泥的处理处置问题在城市污水处理中占有的位置已日益突出。本实验参照《CJ/T 221-2005 城市污水处理厂污泥检验方法》中的方法对污泥中的粗矿物油进行提取,以供后续检测使用。
  • ASTM D4378-22《蒸汽、燃气及联合循环涡轮机矿物油在运行中监测的标准实施规程》标准解读
    STM D4378-22《Standard Practice for In-Service Monitoring of Mineral Turbine Oils for Steam, Gas, and Combined Cycle Turbines》,中文译为《蒸汽、燃气及联合循环涡轮机矿物油在运行中监测的标准实施规程》第一版发布于1984年,上一版为2020年,最新版为ASTM D4378-22。
  • 使用 Agilent 1200 系列液相色谱系统满足 EN12916:2006(IP391/07)方法的要求分析柴油燃料中的多环芳烃
    柴油燃料的性能主要取决于它的自燃性,这个参数就是十六烷值。十六烷值表示十六烷和1-甲基萘混合物中十六烷(正十六烷)的百分含量。通常,为了使发动机发挥最优的性能并获得最长的寿命,柴油中的芳香族化合物应尽可能地少。为了分析柴油燃料和沸点150º C到400º C的石油馏出物中的非芳香烃和芳香烃,所遵循的IP方法(391/07)采用了配备示差折光检测器的HPLC法。采用对非芳香烃几乎无亲和力但对芳香烃选择性强的色谱柱和正相HPLC法分离这两类化合物(非芳香烃和芳香烃)。近年来随着生物柴油产量的提高,对矿物柴油和矿物柴油/生物柴油混合物的分析需求也日益迫切。在修订的IP391/07 方法中,生物柴油中的脂肪酸甲酯(FAME)必须在四环芳烃标记物[艹屈]的峰后流出,这可以保证FAME不干扰测定,从而改善大分子PAH分析的准确度。采用示差折光检测器是由于它对非芳香烃和芳香烃均有响应。
  • 使用 Agilent 1200 系列液相色谱系统满足 EN12916:2006(IP391/07)方法的要求分析柴油燃料中的双环芳烃
    柴油燃料的性能主要取决于它的自燃性,这个参数就是十六烷值。十六烷值表示十六烷和1-甲基萘混合物中十六烷(正十六烷)的百分含量。通常,为了使发动机发挥最优的性能并获得最长的寿命,柴油中的芳香族化合物应尽可能地少。为了分析柴油燃料和沸点150º C到400º C的石油馏出物中的非芳香烃和芳香烃,所遵循的IP方法(391/07)采用了配备示差折光检测器的HPLC法。采用对非芳香烃几乎无亲和力但对芳香烃选择性强的色谱柱和正相HPLC法分离这两类化合物(非芳香烃和芳香烃)。近年来随着生物柴油产量的提高,对矿物柴油和矿物柴油/生物柴油混合物的分析需求也日益迫切。在修订的IP391/07 方法中,生物柴油中的脂肪酸甲酯(FAME)必须在四环芳烃标记物[艹屈]的峰后流出,这可以保证FAME不干扰测定,从而改善大分子PAH分析的准确度。采用示差折光检测器是由于它对非芳香烃和芳香烃均有响应。
  • 使用 Agilent 1200 系列液相色谱系统满足 EN12916:2006(IP391/07)方法的要求分析柴油燃料中的单环芳烃
    柴油燃料的性能主要取决于它的自燃性,这个参数就是十六烷值。十六烷值表示十六烷和1-甲基萘混合物中十六烷(正十六烷)的百分含量。通常,为了使发动机发挥最优的性能并获得最长的寿命,柴油中的芳香族化合物应尽可能地少。为了分析柴油燃料和沸点150º C到400º C的石油馏出物中的非芳香烃和芳香烃,所遵循的IP方法(391/07)采用了配备示差折光检测器的HPLC法。采用对非芳香烃几乎无亲和力但对芳香烃选择性强的色谱柱和正相HPLC法分离这两类化合物(非芳香烃和芳香烃)。近年来随着生物柴油产量的提高,对矿物柴油和矿物柴油/生物柴油混合物的分析需求也日益迫切。在修订的IP391/07 方法中,生物柴油中的脂肪酸甲酯(FAME)必须在四环芳烃标记物[艹屈]的峰后流出,这可以保证FAME不干扰测定,从而改善大分子PAH分析的准确度。采用示差折光检测器是由于它对非芳香烃和芳香烃均有响应。
  • 食品和食品包装中的矿物油污染检测最新应用:自动分析MOSH和MOAH图谱和数据处理
    GERSTEL矿物油污染解决方案HPLC-GC-FID,双GC通道,双FID, 30分钟内获取MOSH和MOAH的图谱,完全符合欧洲标准DIN EN 16695: 2017-08要求。自带企业软件,自动积分计算MOSH和MOAH的含量,轻松获取测试报告,并且保证正确且可重复的结果。
  • 使用 Agilent 1200 系列液相色谱系统满足 EN12916:2006(IP391/07)方法的要求分析柴油燃料中的三环及三环以上芳烃
    柴油燃料的性能主要取决于它的自燃性,这个参数就是十六烷值。十六烷值表示十六烷和1-甲基萘混合物中十六烷(正十六烷)的百分含量。通常,为了使发动机发挥最优的性能并获得最长的寿命,柴油中的芳香族化合物应尽可能地少。为了分析柴油燃料和沸点150º C到400º C的石油馏出物中的非芳香烃和芳香烃,所遵循的IP方法(391/07)采用了配备示差折光检测器的HPLC法。采用对非芳香烃几乎无亲和力但对芳香烃选择性强的色谱柱和正相HPLC法分离这两类化合物(非芳香烃和芳香烃)。近年来随着生物柴油产量的提高,对矿物柴油和矿物柴油/生物柴油混合物的分析需求也日益迫切。在修订的IP391/07 方法中,生物柴油中的脂肪酸甲酯(FAME)必须在四环芳烃标记物[艹屈]的峰后流出,这可以保证FAME不干扰测定,从而改善大分子PAH分析的准确度。采用示差折光检测器是由于它对非芳香烃和芳香烃均有响应。
  • 使用 Agilent 1200 系列液相色谱系统满足 EN12916:2006(IP391/07)方法的要求分析柴油燃料中的总芳香烃
    柴油燃料的性能主要取决于它的自燃性,这个参数就是十六烷值。十六烷值表示十六烷和1-甲基萘混合物中十六烷(正十六烷)的百分含量。通常,为了使发动机发挥最优的性能并获得最长的寿命,柴油中的芳香族化合物应尽可能地少。为了分析柴油燃料和沸点150º C到400º C的石油馏出物中的非芳香烃和芳香烃,所遵循的IP方法(391/07)采用了配备示差折光检测器的HPLC法。采用对非芳香烃几乎无亲和力但对芳香烃选择性强的色谱柱和正相HPLC法分离这两类化合物(非芳香烃和芳香烃)。近年来随着生物柴油产量的提高,对矿物柴油和矿物柴油/生物柴油混合物的分析需求也日益迫切。在修订的IP391/07 方法中,生物柴油中的脂肪酸甲酯(FAME)必须在四环芳烃标记物[艹屈]的峰后流出,这可以保证FAME不干扰测定,从而改善大分子PAH分析的准确度。采用示差折光检测器是由于它对非芳香烃和芳香烃均有响应。
  • 植物油中 18种多环芳烃 的测定
    建立了植物油中 18种多环芳烃的测定 方法。采用岛津 WondaSep FL-PR 产品对植物油样品进行净化,同时采用岛津 SH-I-35Sil MS 色谱柱进行分离,岛津气相色谱 -质谱联用仪 GCMS-TQ8050检测分析。对空白样品 50.0 μg/kg浓度加标后,按照上述前处理方法处理后上机,平行 3份样品考察回收率和 RSD结果显示, 50.0 μg/kg加标浓度的加标回收率为 73.22%- RSD为 0.52%-10.04%,回收率高,重现性好。该方法适用于植物油 中 18种多环芳烃的测定 。
  • 中红外光谱法在电气绝缘油中芳香烃测定中的应用(LUMEX)
    应用最广泛的液体电气绝缘材料之一是变压器油。它用于填充纤维绝缘中的孔隙和绕阻之间的空间,从而增加绝缘的介电强度,并改善变压器绕组和铁芯的热去除。该油还用于高压断路器。绝缘油最重要的质量参数是其介电性能、快速传热和耐湿性。 在原油精炼过程中产生绝缘油,从油馏分中除去杂质,特别是降低耐油氧化性的芳烃在低温下的介电性能和流动性。因此,法规限制了电气绝缘油中芳香烃的浓度。 红外光谱法提供了绝缘油中芳烃含量在1.2~60%范围内的监测。在分析结果的基础上,可以及时响应生产过程中的质量参数的劣化,保证最终产品的高质量,并在性能上得到证明。红外光谱法也可用于矿物绝缘油的质量控制。 ?
  • 汽油中芳烃检测方案(液相色谱仪)
    Agilent 6820气相色谱系统分析汽油中芳烃前言车用无铅汽油对苯和芳烃含量有要求,苯和芳烃是致癌物,世界范围内建立许多常规的监控标准。中华人民共和国国家标准GB 17930-19991要求苯含量不大于2.5% (V/V) ,芳烃含量不大于40 % (V /V) ,在欧洲和日本,汽油中苯含量必须小于或等于1% (W/W) ,对芳烃总含量也有限制。分析芳烃的方法较多,有用单根极性HP-INNOWax 毛细柱的单体芳烃分析2,也有使用非极性柱的单体烃的分析方法3,此方法分析时间较长(90 分钟),美国试验与材料协会(ASTM)通过了一些分析汽油中芳烃的方法,如ASTMD 57694 ,该方法运用气质联用(GC/MS)来测定成品汽油中的苯、甲苯和总芳烃含量。ASTM D36065 也是采用GC 方法分析车用和航空汽油中苯、甲苯,但不包括重于C8的芳烃。ASTM D55806可分析汽油中的苯、甲苯、乙苯、对/间二甲苯、邻二甲苯,C9芳烃或重于C9的芳烃、总芳烃。在另一篇应用中8介绍了在同一台配置相同的色谱仪系统上运行ASTM D 4815 方法9和ASTM D5580 方法。中华人民共和国石油化工行业标准SH / T0693-20007 是等效采用ASTM D5580 -1995 ,本文的应用引用了ASTM D5580-1995 标准。
  • 油中多环芳烃检测方法
    多环芳烃(Polycyclic Aromatic Hydrocarbons PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的碳氢化合物,是重要的环境和食品污染物.迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并[α]芘,苯并[α]蒽等.目前国家的检测标准中只将苯并[α]芘列入了必检的项目,市场上也有一些检测苯并[α]芘的小柱及方法。本文通过橄榄油中多环芳烃的检测实验来向大家介绍油中多环芳烃的检测方法。
  • 食品和食品包装中矿物油污染( MOSH & MOAH )HPLC-GC-FID解决方案
    GERSTEL的HPLC-GC-FID系统可在线全自动检测MOSH和MOAH矿物油污染物方案完全符合欧洲标准DIN EN 16695: 2017-08要求。使用双通道GC进样,双FID检测器,30分钟完成MOSH和MOAH的分析,实时显示LC和GC的色谱图。所有部件自行研发制造,无须额外的控制盒来控制样品的分析参数和载气的压力,系统更稳定,控制更容易,并且节省空间。哲斯泰的MAESTRO软件,完全嵌入安捷伦菜单,可以控制LC泵,LC检测器,以及“溶剂蒸发出口”的电磁阀开关时间,以及整个分析序列。自行研发制造的样品制备模块,由MAESTRO软件统一控制,以实现各种样品的自动化制备步骤。如“全自动环氧化”,“馏分收集”以及“油脂中固醇和PAH的分析”等。自带图谱分析软件,自动积分计算MOSH和MOAH的含量,轻松获取测试报告
  • 二维气相色谱采用中心切割技术分析汽油 中的氧化物和芳烃
    本文描述了二维气相色谱方法分析汽油中氧化物添加剂和芳烃。本方法采用的 Agilest 6890N 气相色谱系统,配备了Deans switch 设备动态地进行中心切割将汽油基体切入到第二根色谱柱。这一技术增强了分离度,使得氧化物和芳烃化合物与烃类基质完全地分开。独特设计的中心切割装置,可快速简便地设定切割时间。Agilent 6890N 电子流量控制 (EPC) 使得系统具有更好的保留时间的精密度,就保证了更窄的切割时间从而获得更好的分离度和定量的精密度。这一设计也大大改善了系统的过载和峰形不好的情况。因此提高了极性低含量添加剂分析结果的可信度。多种常用的氧化物添加剂和芳烃化合物的测定证实了系统卓越的校正和定量性能。Agilest 6890NGC EPC 采用反吹技术可以大大的减少分析时间,提高了分析效率。
  • 红外光谱法在油结构族组成测定上的应用
    摘要:矿物油依据习惯,把通过物理蒸馏方法从石油中提炼出的基础油称为矿物油,加工流程是在原油提炼过程中,在分馏出有用的轻物质后,残留的塔底油再经提炼而成。 矿物油是指从石油中提炼精制的液体绝缘材料。石油的主要成分是烷烃、环烷烃和芳香烃,这些组分的电气性能和老化稳定性优良。根据具体用途适当的控制各组分的含量,可以得到变压器油、开关油等绝缘油以及各种润滑油。例如,芳香烃成分可有效吸附气体可用于制作电缆油或电容器油、环烷烃成分可以降低油份的凝固点用于制作低温润滑油。 根据DL/T 909-2005 《矿物绝缘油、润滑油结构族组成的红外光谱测定法》,利用红外光谱仪器可以准确快速的对油品中的结构族组成进行定性、定量的测定。 关键词:红外光谱法 矿物绝缘油、润滑油 结构族组成
  • 高效液相色谱法测定柴油中芳烃含量
    本文建立了高效液相色谱测定柴油中芳烃含量的方法。选择氨基柱,以正庚烷为流动相,辅以反冲技术将样品分离成非芳烃、单环芳烃、双环芳烃和三环+芳烃等组分,采用示差折光检测器进行检测。实验结果表明,不同芳烃类化合物的保留时间和峰面积RSD分别在0.02% ~ 0.11%和0.10% ~ 0.66%之间,仪器精密度良好。以邻二甲苯、1-甲基萘和菲作为不同芳烃的标准物质,所得校准曲线的相关系数在0.9999以上。该方法可以应用于柴油样品中芳烃含量的测定,能够很好的满足柴油芳烃的检测要求。
  • 汽油中芳烃含量测定方案
    本方法采用一个配有切换阀和火焰离子化检测器的双柱气相色谱系统,可以一次测定汽油中苯、甲苯、乙苯、二甲苯、C9和C9以上芳烃及总芳烃的含量。
  • 二维气相色谱采用中心切割技术分析汽油 中的氧化物和芳烃
    本文描述了二维气相色谱方法分析汽油中氧化物添加剂和芳烃。本方法采用的 Agilest 6890N 气相色谱系统,配备了Deans switch 设备动态地进行中心切割将汽油基体切入到第二根色谱柱。这一技术增强了分离度,使得氧化物和芳烃化合物与烃类基质完全地分开。独特设计的中心切割装置,可快速简便地设定切割时间。Agilent 6890N 电子流量控制 (EPC) 使得系统具有更好的保留时间的精密度,就保证了更窄的切割时间从而获得更好的分离度和定量的精密度。这一设计也大大改善了系统的过载和峰形不好的情况。因此提高了极性低含量添加剂分析结果的可信度。多种常用的氧化物添加剂和芳烃化合物的测定证实了系统卓越的校正和定量性能。Agilest 6890NGC EPC 采用反吹技术可以大大的减少分析时间,提高了分析效率。
  • 成品油中芳烃的测定:方法 ASTM D5580 应用
    对配备 Agilent 化学工作站和自动液体进样器 Agilent 6890系列气相色谱系统进行了优化,并依照 ASTM D5580-94 方法对芳烃进行了分析。ASTM D5580-94 是一种分析成品汽油或一些与汽油相关样品中苯、甲苯、乙苯、邻/间/对二甲苯(BTEX)、C9+芳烃和总芳烃的标准方法。本文描述了一种能够确保符合 D5580 要求的分析系统,使用该系统约需 45 分钟即可得到完整的分析报告。文中同时介绍了该系统的配置、条件和样品谱图。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制