当前位置: 仪器信息网 > 行业主题 > >

扩散系数

仪器信息网扩散系数专题为您整合扩散系数相关的最新文章,在扩散系数专题,您不仅可以免费浏览扩散系数的资讯, 同时您还可以浏览扩散系数的相关资料、解决方案,参与社区扩散系数话题讨论。

扩散系数相关的资讯

  • 北京市理化分析测试中心关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知
    p  strong仪器信息网讯/strong 北京市理化分析测试中心将于2019年10月中旬组织开展“闪光法测定高温合金热扩散系数”实验室间比对。本次实验室间比对秉持自愿申报的原则,暂不收取任何费用,欢迎各相关单位踊跃参加。报名截止日期:2019年9月20日。/pp  实验室间比对是判断和监控实验室能力的有效手段之一。目前,国内外还未开展闪光法测定材料热扩散系数的能力验证活动。2018年,北京市理化分析测试中心在小范围内成功组织了闪光法测定合金样品的热扩散系数实验室间比对。/pp  此次实验室间比对由北京市理化分析测试中心联合热分析专业委员会组织开展。详情见文末附件。/ppbr//pp style="text-align: left "  联系人: 邹涛/pp style="text-align: left "  电话: 010-68723180/pp style="text-align: left "  E-mail: a7670@126.com/pp style="text-align: left "  地址: 北京市海淀区西三环北路27号理化实验楼410房间/pp style="text-align: left "br//pp style="line-height: 16px text-align: left "附件: /pp style="line-height: 16px "a style="color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href="https://img1.17img.cn/17img/files/201907/attachment/e9027b5d-9940-46a4-9027-a49cd69eb871.pdf" title="关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知.pdf"span style="font-size: 16px "关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知.pdf/span/a/pp style="line-height: 16px "a style="color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href="https://img1.17img.cn/17img/files/201907/attachment/0b965b1b-912b-4926-95c2-b16348fbc9b1.doc" title="闪光法测定高温合金热扩散系数实验室间比对报名表.doc"span style="font-size: 16px "闪光法测定高温合金热扩散系数实验室间比对报名表.doc/span/a/pp   br//ppbr//p
  • 中科院新疆理化所在非对称扩散增强的比色传感器件研究中获进展
    超灵敏传感器的构建在危险化学品分析、生物标志物检测和体内成像中发挥重要作用,对环境监测和安全监控具有重要意义。基于探针的传感器是最常用的痕量分析方法之一,具有高灵敏度、高特异性和快速响应等优势。作为常用的加载探针的介质,液相有利于探针分子与目标分析物进行有效碰撞,从而提高反应速度和效率。然而,液体介质中的自由体积扩散特性会导致反应信号的分散,引起来自痕量分析物的信号进一步减弱,影响痕量检测的灵敏度。水凝胶作为含有聚合物网络和液相分散介质的材料,可通过聚合物链的非共价作用以及聚合物网络的筛分效应限制溶质扩散。然而,对于各向同性的水凝胶体系,扩散性质的受限或降低反应的有效碰撞,使得检测反应灵敏度下降。多相界面处产生的化学反应受体系化学势影响,可在不影响溶液自身扩散性质的同时限制反应物迁移方向。因此,在水凝胶体系构建存在非对称扩散性质的反应界面,在保持快速反应的同时有效地限制信号扩散,具有重要意义。中国科学院新疆理化技术研究所爆炸物传感检测团队基于非对称扩散行为对信号分子的限制作用,设计了双层水凝胶体系以增强传感信号,实现了纳克级别亚硝酸盐的比色识别。研究设计了一种双层水凝胶体系,其中聚丙烯酰胺(PAM)进行采样和重氮化亚硝酸盐的瞬时两步反应,而聚乙烯醇(PVA)用于耦合显色反应实现对亚硝酸盐的识别。为了破坏两种紧密接触的水凝胶的扩散对称性,研究通过调控合成方法将PAM和PVA水凝胶之间的孔径比控制为10,扩散系数比控制为1.7。结果表明,显色产物在水凝胶中的扩散具有明显的有界性,且其面内扩散由于PAM和PVA水凝胶的非对称扩散性质得到有效的限制。由此设计的传感器对亚硝酸盐的裸眼检测限为2.898纳克,呈现出优异的灵敏度和抗干扰性。检测图像对目标物残留信息的良好保护性进一步证明了扩散控制对于增强传感信号以及构建适用于实际场景的高性能便携式检测器的重要性,为针对痕量固体样品识别的传感器设计奠定了理论基础。相关研究成果发表在Sensors and Actuators B: Chemical上。研究工作得到中科院“西部之光”人才培养计划、国家自然科学基金、中科院青年创新促进会、中科院基础前沿科学研究计划“从0到1”原始创新项目及国家高层次人才等的支持。a、具有非对称扩散的水凝胶体系示意图;b、用于亚硝酸盐检测的双层水凝胶器件
  • 西安交大科研人员在调控高熵合金的点缺陷扩散方面取得重要进展
    空位和间隙是晶体材料中的两种本征点缺陷。然而,这两种缺陷的动力学行为却有极大差异。在常规的纯金属中(如铜,镍),间隙的扩散速率往往比空位高出若干个数量级。这样巨大的动力学行为的差异对材料的宏观性能带来显著影响,例如材料的耐辐照损伤性能。在辐照环境下,金属内部同时产生大量间隙和空位,而间隙与空位的巨大的扩散速率差异往往导致点缺陷湮灭效率不高,大量的缓慢扩散的空位存留下来从而产生如层错四面体、位错环以至空洞等结构缺陷。因而,降低间隙与空位的扩散速率差异能够帮助改善材料的耐辐照性能,但是目前还缺少大幅度缩减这两者扩散率差的有效调控方法与手段。针对以上问题,西安交大材料学院的丁俊教授与马恩教授团队,利用第一性原理分子动力学模拟对等原子比NiCoCrFe(Pd)合金中点缺陷扩散行为进行研究,提出了一种可以大幅缩减两种点缺陷之间扩散速率差异的合金设计策略。研究表明,将更大的Pd原子加入到NiCoCrFe合金中,形成等原子比的NiCoCrFePd合金,两种点缺陷(空隙和空位)的扩散运动的数值上变得非常相似(图1)。统计NiCoCrFe和NiCoCrFePd合金在不同温度下的扩散速率,并且得到相应的扩散激活能(图2a中拟合直线的斜率),发现Pd的加入使间隙与空位扩散的激活能变得非常接近,这是在单相合金中第一次实现相似的间隙与空位扩散速率(如图2b, c所示)。对合金中空位迁移过程中的局部晶格畸变和键长变化进行分析表明,点缺陷迁移率(特别是它们的差异)变化的起源是大原子Pd阻塞了间隙扩散通道,而同时又通过减少初态和鞍态之间的键长变化降低了空位扩散的能量成本。图1. 1500K下NiCoCrFe合金与NiCoCrFePd合金的间隙和空位的扩散位移及轨迹图2. 不同温度下NiCoCrFe合金与NiCoCrFePd合金的间隙和空位的扩散系数及激活能的对比通过调控高熵合金中组成元素的尺寸差异,本工作首次在单相金属结构材料中实现了近乎相等的空位和间隙两种点缺陷扩散速率。这一长期以来难题的解决,是合金设计调控点缺陷扩散研究方面的重要突破。此结果为抑制空洞生成、材料肿胀提供了新的策略,为设计先进核用的耐辐照合金提供了新的思路。此外,本研究工作关注的合金组成元素的设计,未来可以与高熵合金中局域化学有序结构的调控相结合,来进一步提升材料的抗辐照性能(研究团队的近期论文Z. Zhang et al.,PNAS, 120 (2023) e2218673120详细地阐述了局域化学有序对高熵合金的辐照损伤和缺陷演化行为的影响及其机理)。这一系列工作对设计高性能核用结构合金材料具有重要的指导意义。日前,上述研究成果以“缩小多主元合金中空位和间隙之间的扩散速率差(Minimizing the diffusivity difference between vacancies and interstitials in multi-principal element alloys)”为题发表于《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)。西安交大金属材料强度国家重点实验室为论文通讯单位。西安交大材料学院博士研究生张博召与助理教授张真为论文共同第一作者,材料学院丁俊教授和马恩教授为论文共同通讯作者。该工作得到了科技部重点研发计划、国家自然科学基金和国家级青年人才项目支持计划的共同资助,以及西安交大高算平台计算资源的支持。论文链接地址:https://www.pnas.org/do i /10.1073/pnas.2314248121
  • 锐拓透皮扩散系统应用案例——乳膏的体外释放测试
    扩散池法是执行半固体剂型制剂的体外释放测试(IVRT)可靠且有重复性的方法。美国药典 (USP) 1724 半固体药品性能测试 (SEMISOLID DRUG PRODUCTS—PERFORMANCE TESTS) 收载有扩散池法的具体测定方法和要求。乳膏是用乳剂型基质制成的软膏剂,具有药物释放和穿透性能好、提高局部药物浓度、不妨碍皮肤正常功能等特点,是临床常用剂型。本文将分享使用扩散池法执行某乳膏制剂的体外释放测试案例,希望能给您带来帮助和启发。测试方法实验仪器:锐拓 RT800 自动取样透皮扩散系统装置:锐拓改良式Franz垂直扩散池温度:32±0.5℃介质:技术保密转速:600 RPM人工膜:技术保密上样量:~0.3g介质体积:30mL取样量/补液量:1mL扩散池孔口直径:15mm扩散池孔口面积:1.77cm 测试过程介质体积称量加入扩散池中的介质重量,并根据测试得到的介质密度,计算各个扩散池中加入的介质体积:根据USP 1724 的要求,测试过程中的所有扩散池应具有相同的体积标称值,并且应测量每个扩散池的真实体积。虽然USP 1724 并没有明确要求介质体积的误差范围,但我们建议介质体积误差应不超过1%。 上样量称重并记录样品装载环中乳膏上样量,并确定上样量均在正常范围之内。=根据USP 1724 ,扩散池法测试的样品量一般不小于0.2g。虽然样品的上样量并不参与累积释药量的计算,但超出正常范围的称量数据可以揭示可能发生的样品装载异常,例如有气泡残留在乳膏和滤膜之间。膜的种类半固体制剂体外释放应当选用合适的惰性和商业化的人工膜,常用的有:聚醚砜,醋酸纤维素,尼龙混合酯和聚四氟乙烯膜。其中醋酸纤维素是亲水膜,对有机溶剂不耐受。因此,当释放介质中含有有机溶剂时,另外三种膜是更好的选择。 自动取样根据USP 1724的要求,应在方法规定的取样时间±2 min范围内完成取样。RT800 自动取样透皮扩散系统,能够自动同时完成6个扩散池的取样,并不存在取样时间差的问题。 测试结果根据 USP 1724,计算在各个取样时间点每 1平方厘米孔口面积下的累积释药量(Cumulative Amount Released): 6个测试样品在24小时的累积释药量的相对标准偏差(RSD)为1.53%,本测试的重复性良好。乳膏中药物的释放一般遵循 Higuch 公式,即药物的累积释药量与时间的平方根成正比。将 6 个测试样品在各个取样时间点的累积释药量与取样时间的平方根进行线性回归,得到回归方程和相关系数,并取其斜率值为释药速率常数。 结果讨论结果表明,扩散池法的精密度高,重现性好。可以适用于区分不同乳膏配方的差异,并为乳膏产品的配方开发提供有价值的体外释放度测定数据。得益于锐拓 RT800 自动取样透皮扩散系统的高精度自动化设计,有效地减少实验系统或手动操作引入的误差,让测试结果的重复性更加理想。
  • 锐拓RT8透皮扩散系统应用案例——凝胶贴膏的体外释放测试
    ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍凝胶贴膏是指原料药物与亲水性适宜的基质混合后铺设在背衬材料上制成的贴膏剂。凝胶贴膏具有含水量较高、透气性较好、载药量大、吸收效率高、无异味、皮肤刺激性小等优点,更易被患者和临床医生所接受,已成为经皮给药系统发展的热门方向之一。凝胶膏剂通常采用高分子材料为骨架材料,再加入交联剂、保湿剂、填充剂以及透皮促渗剂等形成具有一定粘度的假塑性流体。在使用时,药物成分会从骨架材料中释放出来并到达皮肤表面,进而经过表皮进入血液循环发挥作用。所以,凝胶膏剂的药物成分的释放速率和透皮吸收速率将直接影响其临床疗效,是评价凝胶膏剂的重要质量指标。凝胶膏剂的体外释放测试(IVRT)和体外透皮测试(IVPT)一般会使用Franz垂直扩散池法。本文将分享某凝胶膏剂的体外释放测试案例,希望能给您带来帮助和启发。‍‍实验方法‍实验仪器:锐拓RT800自动取样透皮扩散系统‍‍装置:锐拓改良式Franz垂直扩散池温度:32 ± 0.5℃介质:技术保密转速:300 RPM介质体积:40 mL取样量/补液量:1 mL凝胶膏剂直径:16 mm筛选滤膜‍‍凝胶膏剂的体外释放测试一般会选择合适的惰性和商业化的人工膜。待测样品在不同滤膜的透过速率可能不同。在进行方法开发时,应充分考察滤膜对样品的释放速率的影响。‍下图展示了在滤膜筛选过程中,凝胶膏剂样品在其中三款滤膜下的体外释放测试结果。综合考量方法开发过程中的其他因素后,决定使用滤膜A作为测试滤膜。‍实验结果通过前期的方法开发,上样量、滤膜、介质、介质体积、转速等关键参数已经确定。并在后续阶段,对测试方法的准确度、重复性和区分力等关键指标进行了验证。按照已经制定的方法,对凝胶膏剂样品进行体外释放测试。然后,根据 USP测试结果如下图所示,累积释药量曲线的横坐标为时间的平方根。凝胶膏剂样品的释放一般遵循 Higuch 公式,即药物的累积释药量与时间的平方根成正比。将 6 个测试样品在各个取样时间点的累积释药量与取样时间的平方根进行线性回归,得到回归方程和相关系数,并取其斜率值为释药速率常数。结果讨论结果表明,Franz垂直扩散池法的精密度高,重现性好。可适用于凝胶膏剂的体外释放测试,为乳膏产品的配方开发提供有价值的体外释放度测定数据。得益于锐拓 RT800 自动取样透皮扩散系统的高精度自动化设计,有效地减少实验系统或手动操作引入的误差,让测试结果的重复性更加理想。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
  • 隆重上市 | 合邦科仪VDC12 Plus透皮扩散仪性能验证表现
    体外释放实验(IVRT)是目前评价半固体制剂(如乳膏剂、软膏剂、凝胶剂等)处方工艺的重要手段,主要用于外用制剂的药学质量控制,是药物关键质量属性之一,可用于表征某些工艺、配方和/或生产的变更对药品的影响,也可用于药品开发过程中处方工艺的筛选研究。扩散池法是进行半固体制剂体外释放实验(IVRT)的可靠方法,该方法在美国药典 (USP) 1724 半固体药品性能测试中有详细记载。合邦科仪现重磅推出新产品——VDC12 Plus透皮扩散仪,用于软膏、硬膏、涂抹剂、洗剂、薄膜、气雾剂等的体外释放测试,其设计满足USP<1724>,FDA、EMA、PMDA等法规和指导原则的标准。VDC12 Plus透皮扩散仪搭载先进的自动取样技术,可完成自动排出气泡、自动取样、自动采集样品、自动补液、自动清洗,使药物透皮释放实验更加准确高效。VDC12 Plus 透皮扩散仪VDC12 Plus 透皮扩散仪产品特点:一体化设计一体化设计使得仪器整体尺寸更小,占用空间更少;同时优化管路设计,减少了管路死体积,让实验数据可靠性获得有效提升;7×2 设计可以两侧设计不同的实验参数,如温度、转速、取样时间。同时每组6+1的设计满足法规要求;一台仪器相当于两台,可以同时完成两组不同实验;空白位满足法规要求的空白位设计,在进行IVPT实验时,更方便设计非给药对照组,可排除皮肤基质及其他潜在杂质的干扰。为了验证VDC12 Plus透皮扩散仪的性能,我们对利多卡因乳膏样品的体外释放速率进行了测试,实验详情如下:01实验目的通过测试样品,对透皮扩散仪在体外释放实验过程中的性能进行验证。02样品信息样品剂型:利多卡因乳膏03主要分析仪器1)VDC12 Plus 透皮扩散仪(HB合邦科仪)2)分析天平3)液相色谱-紫外检测器(HPLC-UV)04体外释放实验参数溶出装置:透皮扩散装置温度:32℃ ± 1℃标准池:12 ml取样量:10ml取样时间:分别在第0.5h、1h、2h、3h、4h、5h、6h时进行取样05液相色谱方法参数流动相:甲醇:0.3%磷酸氢二铵 67:33色谱柱:C18-150×4.6mm流速:1.5 ml/min进样量:20 μl检测波长:210 nm06测试结果6.1 累计释放曲线6.2 拟合曲线在0.5h、1h、2h、3h、4h、5h、6h时间点,以单位面积累计释放量(ug/cm2)(y轴)对时间(h)(x轴)做图,拟合线性回归方程(部分取样模式)如下:6.3 释放速率07结论在0.5h、1h、2h、3h、4h、5h、6h时间点对样品(同时7个扩散池)平行进行实验。0h时,扩散池中未检出目标物;在0.5h-6h的7个取样点分别对7个扩散池的累计释放量做线性考察,释放速率的平均值为430.9;释放速率RSD为3.42%。FDA IVRT测试工业指南中提到,根据每个扩散池的释放速率(斜率)计算的批内精密度,其变异系数(%CV)应不大于15%。在上述实验中,采用合邦科仪VDC12 Plus 透皮扩散仪对利多卡因乳膏进行的体外释放实验(IVRT),7个扩散池的释放速率(斜率)RSD为3.42%,远远小于FDA IVRT测试工业指南中提到的15%,这表明合邦科仪VDC12 Plus 透皮扩散仪的性能完全符合FDA IVRT测试工业指南的法规要求。
  • 中国半导体十大研究进展候选推荐(2022-015)——超高热导率半导体-砷化硼的载流子扩散动力学研究
    以下文章来源于国家纳米科学中心 ,作者刘新风课题组1 工作简介——超高热导率半导体-砷化硼的载流子扩散动力学研究国家纳米科学中心刘新风研究员团队联合休斯顿大学包吉明团队和任志锋团队在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得重要进展,为其在集成电路领域的应用提供重要基础数据指导和帮助。相关研究成果发表在Science杂志上。随着芯片集成规模的进一步增大,热量管理成为制约芯片性能越来越重要的因素。受散热问题的困扰,人们不得不牺牲处理器的运算速度。从2004年后,CPU的主频便止步在了4 GHz,只能通过增加核数来进一步提高整体的运算速度,然而这一策略对于单线程的算法却是无效的。2018年,具有超高热导率的半导体c-BAs的成功制备引起了人们极大兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs不仅具有高的热导率,由于其超弱的电声耦合系数和带间散射,理论预测c-BAs还同时具有非常高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中是非常罕见的,有望将其应用在集成电路领域来缓解散热的困难并且能够实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有非常重要的意义。虽然c-BAs被制备出来,但样品中广泛分布着不均匀的杂质与缺陷,为其迁移率的测量带来极大的困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,然而电极的大小制约着其空间分辨能力,并直接影响到测试的结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。通过大量的样品反复比较,研究团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出了具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数),接近0的拉曼本底,极微弱带边发光的高纯样品。进一步,研究团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到了10-5量级, 空间分辨能力达23 nm。利用该测量系统,详细比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约 1550 cm2V-1s-1, 这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究团队还发现了长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。立方砷化硼高的载流子和热载流子迁移速率,以及其超高的热导率,表明其可以广泛应用在光电器件、电子元件中。该研究工作厘清了理论和实验之间存在的巨大差异的具体原因,为该材料的应用指明了方向。图1. 瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm (B)不同时刻的瞬态反射显微成像(标尺1微米) (C)典型的载流子动力学 (D)0.5 ps的二维高斯拟合 (E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。国家纳米科学中心副研究员岳帅为文章第一作者,刘新风研究员为通讯作者。文章的共同第一作者为休斯顿大学田非博士(现中山大学教授),共同通讯作者为休斯顿大学包吉明教授和任志锋教授。该研究工作得到了中国科学院战略性先导科技专项(B类)、国家自然科学基金委项目、万人计划青年拔尖人才计划、科技部重点研发计划、科学院仪器研制项目等项目的大力支持。2作者简介通讯作者刘新风,国家纳米科学中心研究员,博士生导师。2004年获东北师范大学学士学位。2007年获东北师范大学硕士学位。2011年获中科院大学博士学位。2015年中科院海外人才计划加入国家纳米科学中心。2021年获中组部人才计划支持。目前担任中国科学院纳米标准与检测重点实验室副主任。研究方向为半导体材料微纳尺度光与物质相互作用光谱和物性研究。近年来在Science, Nat. Mater., Adv. Mater., Nano Lett.等期刊上发表论文210余篇,总引用15000余次,H因子61。担任Nat. Nanotech., Sci. Adv., Nano Lett., Adv. Mater. 等国际学术期刊审稿人。任Journal of Physics: Photonics, Nano Materials编委会委员,InfoMat, Materials Today Physics, Materials Today Sustainability, Frontiers of Physics青年编委。通讯作者包吉明,美国休斯顿大学电子与计算机工程系教授,博士生导师。美国物理学会会士,美国光学学会会士。2003年于密歇根大学获得博士学位,导师Roberto Merlin,2003年-2008年在哈佛大学做博士后研究,合作导师为Federico Capasso。2008年加入美国休斯顿大学电子与计算机工程系。主要研究方向为新型纳米材料的制备与纳米光电子学研究。发表文章250余篇,引用量19000,H因子62。通讯作者任志锋,教授,博士生导师。现为美国休斯顿大学物理系M.D. Anderson讲席教授,德克萨斯州超导研究中心主任。1984年在西华大学获得本科学位,1987年在华中科技大学获得硕士学位,1990年在中科院物理所获得博士学位。他的研究集中在具有高ZT值和高功率系数的热电材料、极高热导及载流子迁移率的砷化硼单晶、用于提高石油采收率的纳米材料、电解水产制氢催化剂、用于捕获和消灭SARS-CoV-2冠状病毒的加热过滤器、碳纳米管、太阳能转换材料、柔性透明电子器件和超导材料及其应用等。第一作者岳帅,国家纳米科学中心副研究员。2016年于中科院物理所获理学博士学位,导师翁羽翔研究员。2017年-2020年在电子科技大学-美国休斯顿大学从事博士后研究,合作导师王志明教授和包吉明教授。2020年加入国家纳米科学中心。长期从事超快光谱研究。在Science, PNAS, Nature Materials 等期刊上发表论文20余篇,申请专利5项。第一作者田非,中山大学材料科学与工程学院教授,博士生导师。2012年本科毕业于南开大学物理科学学院,2013年进入美国休斯顿大学物理系攻读博士学位,导师是任志锋教授。2018年获得博士学位后,继续在任志锋教授课题组从事博士后研究。2020年起加入中山大学材料科学与工程学院。长期从事新型散热材料的合成和制备,基本性质的表征和分析,以及相关应用的设计和开发。目前已在国际主流学术期刊发表论文三十余篇。
  • 涡动相关法测量农田污泥施肥后氨气挥发扩散动态变化
    Dynamics of ammonia volatilisation measured by eddy covariance during slurry spreading in north ItalyRossana Monica Ferraraa, Marco Carozzib,*, Paul Di Tommasic, David D. Nelsond, Gerardo Fratinie, Teresa Bertolinif, Vincenzo Magliuloc, Marco Acutisg, Gianfranco Ranaaa Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Cropping Systems in Dry Environments, via C. Ulpiani 5, 70125 Bari, Italy b INRA, INRA-AgroParisTech, UMR 1402 ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, 78850 Thiverval-Grignon, Francec National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems (CNR-ISAFoM), 80056 Ercolano, Italy d Aerodyne Research Inc., Billerica, MA 01821, United States e LI-COR Biosciences GmbH, Siemens Str. 25a, 61352 Bad Homburg, Germany f Euro-Mediterranean Center on Climate Change (CMCC), Via Augusto Imperatore 16, 73100 Lecce, Italy g University of Milan, Department of Agricultural and Environmental Sciences, via G. Celoria 2, 20133 Milan, Italy摘要2009和2011年春在意大利北部农田两次测量污泥施肥后氨气排放扩散试验,从施肥、耕地作业至排放现象结束用窝动相关法EC测量氨气通量变化。涡动相关法系统配备Aerodyne氨气快速测量仪能持续监测施肥后氨气挥发情况,分别在24h和30h后耕地作业监测到氨气挥发量突然降低。其中两次试验最大氨气排放为138.3和243.5ugm-2s-1,施肥7天后NH4-N总损失为19.4%和28.5%。试验发现涡动相关法和反向拉格朗日随机模型在动态排放量化结果一致,同时由于排放扩散和气象条件关系因素造成两次试验氨损失不同。结果表明为了提高施肥后氮效率耕地作业最好接近24h内进行,气候条件限制氨气排放(如多云、低温)。概述氨气在气候化学和许多与之相关排放和沉降环境问题扮演重要角色。在欧盟27个成员国中90%氨气来源农业肥料的储存和扩散,畜牧业和合成肥料使用。评估施肥作业中氨气损失与田野和农场氮平衡关系提高农业氮效率合适技术。试验地点试验地点时间为2009(SI-09)3.9ha和2011(SI-11)4.3位于意大利北部Po Valley,两块试验田相邻且农业管理相近。SI-09试验时间为2009.3.26-4.3污泥施肥为87m3/ha,8:00am开始,24h后耕地作业深25cm,持续时间分别为7和1.5h,氨态氮总量为95kg/ha NH4-N。SI-11试验时间为2011.4.6-4.13污泥施肥为75m3/ha,8:30am开始,30h后耕地作业深25cm,持续时间分别为5和2h,氨态氮总量为109kg/ha NH4-N。测量方法01两种氨气浓度测量方法ALPHA被动式扩散采样器位于逆风向距离试验田2.3km测量氨气环境背景值,柠檬酸滤纸捕获氨气比色法测量,。Aerodyne QC-TILDAS氨气快速分析仪监测分子在967cm-1处对辐射的吸收测量每摩尔湿空气摩尔氨气,为了保证数据可靠性每6h用标准化氨气罐进行自动校正。02涡动相关法(EC)测量氨气通量把垂直方向的瞬时风速和氨气浓度的协方差定义为氨气垂直方向通量,采样间隔为30分钟,并考虑到空气密度改变WPL对其结果的影响,WPL作用通常取决于气体背景浓度和通量的等级。EC系统放置在试验田中间,离边界SI-09为78m和SI-11为93m,配备Gill-R2 Sonic Anemometer三维声波风速仪和Aerodyne QC-TILDAS氨气浓度测量仪, 模拟信号从QC-TILDAS传导至Sonic Anemometer,通过EddySoft 软件同时将模拟信号和风速数据进行整合,使用EddyPro软件线下计算每半小时氨气通量。在湍流通量计算失效后系统对试验数据自动进行筛选,同时由于EC系统光谱衰减不可避免性使用频率响应修正系数法对通量损失进行校准。03分散模型反向拉格朗日随机模型(bLS)推测氨气的扩散,使用三维声波风速仪的湍流参数u*,L和Aerodyne QC-TILDAS测量的氨气浓度,ALPHA背景浓度值结合GPS记录排放源区进行建模。数据分析01气象数据对SI-09和SI-11气象数据和微气候数据进行整理(雨量、温度、湿度、风速、太阳辐射、摩擦速度u*和稳定参数z/L)对比,总体SI-09比SI-11气候条件更稳定不利于氨气扩散。02通量源区SI-09试验中白天和晚上89和87%通量来源于试验田中,在SI-11试验中白天和晚上96和94%通量来源于试验田中。SI-09白天(40m比61m)和晚上(76m比164m)的通量源区最大峰值都小于SI-11,主要归结于SI-11更高的大气稳定性。03氨气浓度和氨气通量氨气浓度分析:如图Fig.6由ALPHA被动式采样器和Aerodyne QC-TILDAS测量氨气浓度对比结果看出两种测量结果趋势相似,证实了采集数据的有效性,SI-09和SI-11的RMSE为114.3和102.5ugNH3m-3,R2为0.89和0.9,斜率为1.21和0.95,CRM为-0.04和-0.06。在SI-09中ALPHA和QC-TILDAS浓度有明显差别,周围环境条件是实质因素如高湿度97.7%、低温11.7℃和低风速0.88m/s。氨气通量分析:如图Fig7a-d显示两次试验氨气浓度值和通量表以及空气土表温度湿度总辐射和降雨量。两次试验氨气通量巨大差异主要由于天气条件,特别是SI-11空气温度比SI-09高有利于挥发,同时SI-09降雨和空气温度降低减少了氨气挥发;虽然两次试验耕地作业时间不同,但从标准化氨气累计损失看时间动态非常相似,天气条件是影响氨气浓度和通量主要因素。下图Fig.9显示EC系统和bLS对两次试验通量对比,bLS对于SI-09通量数值稍有高估,对于SI-11有些低估。但显出两种试验方法在两次试验的一致性。结论Aerodyne QC-TILDAS气体监测仪在测量粘性气体NH3优势原理:Aerodyne痕量温室气体&同位素气体监测仪使用可调谐红外激光直接吸收光谱(TILDAS),在中红红外波长段,来探测分子最显著的指纹跃迁频率。直接吸收光谱法,可以实现痕量气体浓度的快速测量(1s);采用像散型多光程吸收池技术实现激光可控通道数大于200个,有效测量光程可达76m甚至更长,有效的提高氨气分子的测量精度。NH3、HONO等粘性分子测量优势:粘性气体NH3化学性质活跃,粘性非常大,易于附着在器壁或固体颗粒上,且其易于在气相和颗粒相之间相互转化,这些特性造成了其测量的困难性。★测量精度为ppt级 1S 100SNH3 50ppt 10pptHONO 210 ppt 75 ppt★活性钝化系统(Aerodyne Active Passivation system),提高粘性分子的响应时间,且对高频10HZ测量有着很小的损失量(如图)采用活性钝化系统后,NH3测量的时间常数和高频通量变化(时间常数更快,高频通量损失修正更少)★惰性颗粒分离装置(Aerodyne Inertial Inlet),有效减小颗粒对粘性分子的影响,保证进样口及内部镜片的整洁★特殊渗透管路(permeation tube),减小管路壁的黏着,并有效减小管路中的水凝结及压力★针对全自动动态箱测量,采用特殊telflon材料,具备critical orifice装置,多通路同时进气,并采取气压式控制方式,降低能耗。★采用全新中红外光谱范围,可以测量更多分子,并保证精度,如NH3、O3和CO2;HONO、N2O可在一个激光下测得,如果采用双激光,可测量更多的气体分子。★与普通气体分子具备一致的快速响应时间(10HZ)★适配于涡度协方差测量和全自动箱自动测量,并可通过独特采样系统实现自由切换。活性钝化系统 Aerodyne 双激光直接吸收法分析仪在N2O、NH3、HONO、COS等痕量温室气体及含N同位素气体δ15Nα /δ15Nβ /δ18O;含C同位素气体δ13C/δ18O、H16OH/H18OH/H16O;12C17O16O/13C18O16O 及δ13C/δD/CH4 的应用文献和观测方案,请来电垂询。
  • 让您的真空设备健康快乐的工作——扩散泵篇
    扩散泵的一个主要特点是皮实耐用,如果使用保养得当,可以正常工作很多年。在安捷伦举办的“寻找最长寿安捷伦扩散泵”活动中,我们发现了好多装机20年以上还在正常工作的的安捷伦(原Varian)扩散泵。结合安捷伦技术支持团队众多工程师的多年经验, 本文总结了安捷伦扩散泵使用时的一些比较容易忽略的注意事项,使用其它品牌扩散泵的用户也可以参考。一定要使用原厂泵油安捷伦扩散泵的喷塔、加热功率等是针对特种油品设计的,其抽速、极限真空等性能参数也都是在使用安捷伦官方油品时测试的,使用非安捷伦官方油品会影响我们对扩散泵的质量保证,也不利于安捷伦工程师进行故障排查,因为不同品牌或批次的第三方泵油组分可能会有较大的差异,可能会带来抽速/极限真空不够、结晶、焦化、返油等问题,严重时甚至会在不当操作时引发爆炸等危险。注意观察油位和油的颜色冷态/热态的时候分别应该接近但不要超过Cold Full/Hot Full的标线;油的颜色应该是无色或透明度很高的红棕色,当油的颜色变深、发黑时,要及时更换。如果工艺中会产生大量的粉尘,特别是放出的泵油中能观察到大量颗粒物时,扩散泵的油池内很可能会有大量的沉积物,这些沉积物将会对泵的正常工作产生严重影响,请在每次换油时清除这些沉积物并对扩散泵进行彻底的清洗。温度保护开关一定要接入控制系统安捷伦大部分型号的扩散泵都在泵体上设置了温度保护开关,当由于冷却不足、油位不够等原因造成扩散泵温度异常时,可以及时的给出信号。在设计控制系统时,一定要把温度保护开关(常闭的干接点)接入系统,并与扩散泵加热器的供电进行互锁,以保护扩散泵。加热器不要频繁通断电扩散泵是靠泵油持续大量的汽化所产生的油蒸气来工作的,泵油的汽化量和喷射动能,跟加热器功率成正比。扩散泵正常工作时的油温是油自身的物理特性(沸点)决定的, 泵应该持续工作在沸点温度下,若停止泵油的加热意味着扩散泵将很快失去气载能力,造成抽速下降和返油量增大;因此,切勿通过加热器频繁通断电来控制油温。另外,频繁通断电将使加热器忽冷忽热,会严重影响其寿命。注意监控加热器的状态当有某根加热器烧坏时,可能会出现抽速、真空度下降,返油等问题,需要注意监控扩散泵加热器的工作状态(电流/功率),以便及时发现异常。更换加热器时,务必使用安捷伦原厂相同功率和额定电压的加热器。安装加热器时,加热器与泵底板必须紧密贴合,如果两者之间产生间隙,会造成加热器导热不良,局部温度过高,严重影响加热器的寿命。有些型号的扩散泵加热器设计了一次性的弹性压板(Crush plate),它在压紧时会产生永久变形并与加热器紧密贴合,使加热器的温度更均匀寿命更久,这些型号的扩散泵在更换加热器时,压板也要同时更换。冷却水,流量比压力更重要大型扩散泵的泵壁一般采用冷却水来进行冷却,许多客户会监控冷却水的进水压力,然而,当冷却盘管发生堵塞或部分堵塞时,即使进水压力不发生变化,冷却效果也会受到影响,而只要保证冷却水的流量,冷却水压力的变化对冷却效果的影响不大;因此,监测冷却水的流量比监测其压力更重要。另外,冷却水的连接方式,与某些设备的下进上出不同,扩散泵的冷却水是进气口处进,排气口处出,一定要按照说明书上的图示来接。减少返油,以下几点也很关键使用安捷伦扩散泵 扩散泵工作的压力越高,返油越严重。安捷伦扩散泵在刚刚开启高阀时(几帕到零点零几帕)的抽速较大,会大幅减少该压力段的抽气时间,从而减少总返油量。(请参考文章:90%的订单来自用户指定,安捷伦扩散泵口碑为什么这么好)切勿让扩散泵处理超过其最大排气量的气载 每个扩散泵都有一个最大气载的参数,扩散泵工作时处理的总气载不可以超过该数值,否则将出现严重的返油。高阀开启压力有讲究 在高阀开启的瞬间,原来由粗抽泵处理的气载将会切换至扩散泵处理,假设高阀在系统气载等于扩散泵最大气载时开启,通过公式Q=P*S就可以计算出开启压力;可以看出,使用的粗抽泵抽速越大,越需要在更低的压力开启扩散泵。排气阀门间歇关闭要不得 当前级泵切换至腔体粗抽,或者系统处于待机状态时,不要直接关闭扩散泵排气口的阀门,最好使用维持泵持续对扩散泵排气口进行抽气,保持其压力低于扩散泵可承受的最大排气压力(一般为几十帕)。增配加强型的冷帽 当需要更低的返油率时,可以增配加强型的冷帽。安捷伦提供可内置于扩散泵的加强型冷帽,可以使返油率减少90%以上,并且不增加泵的高度。原厂上门保养服务安捷伦真空提供各型号安捷伦扩散泵的上门保养服务,可以在客户现场进行扩散泵的故障排查、拆解、清洗、重新安装、换油等操作,并可以根据不同客户的具体要求订制年度保养协议,最大化的减少客户因为扩散泵故障造成的停机损失。想要了解更多,欢迎关注”安捷伦真空“公众号在线留言或者拨打下面电话联系我们。安捷伦科技中国 真空产品热线:800 820 6778 (固定电话拨打)/ 400 820 6778 (手机拨打)
  • 天津爆炸烟团朝渤海方向扩散
    据人民日报天津8月13日电(记者卫庶、靳博)有微博称,在风力影响下,爆炸后可能会有有害气体向北京方向扩散。对此,天津市气象台表示,13日9时,滨海新区爆炸事件现场附近风向为西南风,风速2级(3米/秒)。根据数值模拟结果,未来24小时主导风向南至西南风,污染物扩散方向主要为东至东北方向,利于污染物向海上扩散。美国上午过境卫星terra和下午过境卫星aqua的真彩图。可以清楚看到,爆炸后产生的烟团在向渤海传输,同时不断扩散——这种扩散可以理解为“稀释”,大家不必恐慌。
  • 水分活度扩散法名正言顺成测定方法
    由杭州市质量技术监督检测院起草制定的《食品水分活度的测定》国家标准,五月份正式发布实施。其中引人注意的是,此次颁布的条例将水分活度仪扩散法也作为测定食品中的水分活度的有效方法。在此之前,国家标准中只承认康卫氏皿扩散法为标准的测量方法,水份活度分散法虽被广泛应用却&ldquo 无名无份&rdquo 。此次&ldquo 正名&rdquo 对食品质量控制具有重要意义。 水分活度(aw值)是影响食品保质期,及色香味等物理特性的重要因素,是判断食物是否存在变质风险的重要参考,也是控制食品内微生物生产最直观的依据。因此,极小的测量误差也可能严重缩短食品的保存期限,还会引起食品色香味等感官体验的显著变化。在食品领域里,水分活度是食品质量控制的一个重要指标,也是食品安全的重要控制参数。此次颁布实施的《食品水分活度的测定》国家标准中,规定了康卫氏皿扩散法和水分活度仪扩散法测定食品中的水分活度,其中康卫氏皿扩散法为仲裁法。 康卫氏皿扩散法属于实验室测定法,虽然测定的结果非常准确,但是步骤繁多,耗时长,且需专业人员操作,并不适合于企业实际生产中运用推广。水分活度仪扩散法虽然快捷简便,但在此之前,国家标准中只认准康卫氏皿扩散法,水份活度分散法没有国家标准的&ldquo 名分&rdquo ,使得制造商对市面上的水分活度仪犹疑不决。此次新标准正式为水分活度仪正名,让厂商通过检测食品水分活度、提高食品质量的目标成为可能。据悉,该标准广泛适用于预包装谷物制品类、肉制品类、水产制品类、蜂产品类、薯类制品类、水果制品类、蔬菜制品类、乳粉、固体饮料的食品水分活度的测定。 作为一款高精度水分活度测量系统,德图testo 650水分活度测定仪得到众多国际实验室的认证,可提供全球认可的精密仪器DKD标定证书。高稳定性的测量传感器无需经常校准。该仪器同时还可测量其他多种参数,如温湿度、压力、CO、CO2及转速等。testo 650水分活度测定仪能够为食品生产和销售企业、食品质量和安全检测机构、食品出入境检验检疫机构等相关机构的食品水分活度提供准确的检测方案,为监测食品质量和安全提供重要的技术支撑。
  • 猪流感杀入欧亚扩散迹象增强
    中新网4月27日电 世界卫生组织25日宣布,墨美两国的猪流感疫情已构成“国际关注的公共卫生紧急事态”,所有国家应加强监控非正常爆发的流感类疾病和严重肺炎。香港《文汇报》27日报道称,目前猪流感有向世界各地扩散迹象,亚太区、欧洲以至中东均出现怀疑病例,10名新西兰中学生最近到墨西哥游学回国后不适,检验后证实对流感病毒呈阳性反应,可能感染猪流感。  世卫组织在声明中说,根据应对猪流感疫情紧急委员会的提议,世卫组织总干事陈冯富珍已确定目前的情况构成“国际关注的公共卫生紧急事态”,她因此建议各国加强对非正常爆发的流感类疾病和严重肺炎的监控。理论上,世卫将就旅游、贸易限制和关闭边境发出不具约束力的建议。  不过,世卫组织紧急委员会尚不能确定是否应调整目前的流感大流行“三级警告”水平,需要收集更多信息。世卫组织的流感大流行警告共分六级,“三级警告”意味着一种新的亚型流感病毒正在使人发病,但还没有发展到在人与人之间有效和持续扩散。  新西兰10师生疑游学中招  新西兰卫生部长赖亚尔26日称,来自奥克兰朗伊托托学院一个墨西哥游学团,25日回国后有13名学生和一名老师出现疑似流感征状,需在家中隔离接受检测,其中一人病情较严重,曾送院治疗,现已出院。测试结果证实10名学生对甲型流感病毒呈阳性反应,而猪流感正是甲型流感其中一种。  赖亚尔说:“这些学生尚未证实感染猪流感,但有这个可能。他们当中无人病情严重,大部分都逐渐康复。”受感染学生的样本已被送往澳洲墨尔本的世卫实验室,作进一步测试。  朗伊托托学院校长霍奇称,该校22名介乎15至18岁的高年级学生和3名老师,早前到访墨西哥3星期,大部分时间留在墨西哥城进行西班牙语游学行程。当地传媒报道,奥克兰另一中学也有学生刚从墨西哥回国,但无出现不适。
  • 气象专家:爆炸污染物主要往渤海方向扩散
    p  天津滨海新区爆炸是否会对北京的空气造成影响?北京市气象台高级工程师张明英表示,今明两天,北京盛行偏西风,从污染扩散轨迹看,目前爆炸物主要往渤海扩散。/pp  张明英说,从目前最新的气流情况和污染扩散轨迹看,大气层800米以上都是偏西风和西北风,所以污染物基本往渤海方向扩散,对北京没有影响。另外,今天夜间北京地区有明显降雨,对污染有冲刷作用,降雨后明日风向为西北风,所以市民不用担心。/pp  另外,爆炸地点处于天津东部,目前天津也是偏西风,爆炸产生的物质主要往渤海方向扩散,对天津城区的影响不是很大。不过,由于今天京津地区温度较高,气压场比较弱,所以风力不大,污染物扩散速度可能比较慢。/ppbr//p
  • 科学家利用电镜观察到材料内部原子扩散现象
    美国能源部田纳西州橡树岭国家实验室的研究人员,第一次直接在大块材料的内部观察到原子的扩散现象。这项研究可被用来对新材料的有效期和特性等,进行史无前例的洞察研究,相关成果发布在最新的《物理评论快报》杂志上。  &ldquo 这是首次直接观察到单个掺杂剂原子在材料内部四处游移。&rdquo 范德比特大学的罗宾· 米什拉说,他目前在橡树岭国家研究室材料科技分部做访问学者。传统意义上,通过非肉眼观测或理论计算等方式,可以对原子扩散现象进行研究,而单原子扩散显现在材料的表面也被直接观察到过。但直接观察到内部原子的运动尚属首次。  据物理学家组织网10月14日(北京时间)报道,&ldquo 扩散现象掌控着掺杂剂如何进入到材料中,以及掺杂剂如何运动。&rdquo 论文另一作者安德鲁· 鲁皮尼说,&ldquo 选择何种掺杂剂来保证器件持续更长寿命?我们这项研究能帮助做出战略性的决定。&rdquo 新研究可以直接应用在基础材料的设计上。  还有一发现让研究人员吃惊,通过扫描透射电子显微镜观察作为掺杂剂的铈原子和锰原子的扩散过程捕获的图像显示,大一些的铈原子稳定地扩散到材料中,而更小的锰原子仍然胶着在原地。
  • 外用制剂质量控制仪器——透皮扩散仪
    p style="text-indent: 2em text-align: justify "药物的透皮吸收主要包括三个步骤:strongspan style="color: rgb(255, 0, 0) "释放/span/strongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "、/span/spanstrongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "/span渗透/span/strongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "和/span/spanstrongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "/span吸收进入血液循环/span/strong。为了评价外用制剂透皮吸收的效果,可以使用体内和体外模拟的方法来检测。/pp style="text-align: justify "  体内检测透皮吸收的效果可以使用同位素示踪法。待检测药物在动物皮肤表面贴用一定时间后,相关物质会在动物体内到达稳态时。检测血药浓度即可评价。/pp style="text-align: justify margin-bottom: 20px "  体外检测可以选用透皮吸收仪。主要应用的有水夹层透皮扩散仪以及干热透皮吸收仪。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong1.a href="https://www.instrument.com.cn/netshow/SH104382/" target="_self" 美国禄亘LOGAN/a/strong/span/pp style="text-align: justify margin-bottom: 10px "  a href="https://www.instrument.com.cn/netshow/C323148.htm" target="_self" textvalue="LOGAN 913 水夹层全自动透皮扩散取样系统"span style="color: rgb(0, 112, 192) "strongLOGAN 913 水夹层全自动透皮扩散取样系统/strong/span/a/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C323148.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 393px height: 206px " src="https://img1.17img.cn/17img/images/202006/uepic/2c5f94ee-0ac5-4203-8302-c45e5ae480dd.jpg" title="1.1-LOGAN 913 水夹层.png" alt="1.1-LOGAN 913 水夹层.png" width="393" height="206"//a/pp style="text-align: justify margin-top: 10px "  LOGAN 913系统采用模块化设计。全自动透皮取样的系统,将经皮吸收的样品精准的传输到HPLC小瓶或者样品试管中,节省时间。系统包括FDC-6T透皮扩散池控制台、SYP系列注射泵、DSC-800系统控制器和SCR-DL样品收集器。913系统可以配置6个扩散池或12个扩散池。可同时从6、12或24(可选择)个扩散池取样,设20个取样点。配备机械式自动倾斜除气装置。/pp style="text-align: justify margin-bottom: 10px "  a href="https://www.instrument.com.cn/netshow/C323119.htm" target="_self" textvalue="LOGAN SYSTEM 918-12干热透皮扩散仪"span style="color: rgb(0, 112, 192) "strongLOGAN SYSTEM 918-12干热透皮扩散仪/strong/span/a/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 429px height: 251px " src="https://img1.17img.cn/17img/images/202006/uepic/59e68541-2348-4e52-8835-fb737596b4c5.jpg" title="1.2-LOGAN 918 干热.png" alt="1.2-LOGAN 918 干热.png" width="429" vspace="0" height="251" border="0"//pp style="margin-bottom: 15px "  LOGAN SYSTEM 918-12是一款采用新技术、模块化设计的全自动12位透皮扩散系统。主机由2个DHC-6TD干加热透皮扩散仪、SCR-DL样品收集器、SYP-12L-10 mL注射泵和DSC-800系统控制器等多个模块组成。可用于半固体制剂、局部制剂等药物的渗透率和释放率的测试,也可用于日化产品的渗透率测试。如膏剂、凝胶剂、涂剂、透皮贴剂、洗剂、面膜、乳液和防晒霜等。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong2. 日本柯是美span style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C316787.htm" target="_self"span style="color: rgb(0, 112, 192) "CosMed TransView C12药物透皮扩散试验仪/span/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C316787.htm" target="_self"img style="max-width: 100% max-height: 100% width: 295px height: 234px " src="https://img1.17img.cn/17img/images/202006/uepic/2e6bca95-acdc-4d23-9c01-1a8134506d2f.jpg" title="2. 日本柯是美.png" alt="2. 日本柯是美.png" width="295" height="234"//a/pp style="text-align: justify margin-bottom: 10px margin-top: 10px "  TransView C12药物透皮扩散试验仪配有精确的恒温控制系统和结构设计,并且安装扩散池简单方便。适用于外用膏剂,水剂等各种外用剂型。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C316787.htm" target="_self"img style="max-width: 100% max-height: 100% width: 470px height: 329px " src="https://img1.17img.cn/17img/images/202006/uepic/9a2e5015-cc20-466f-91da-a3228c8c3b5f.jpg" title="2.2-日本柯是美.png" alt="2.2-日本柯是美.png" width="470" height="329"//a/pp style="text-align: justify margin-bottom: 15px margin-top: 10px "  铝制恒温槽控制在32℃和37℃恒温。内置速度可调磁力搅拌装置。接收液通过活塞泵分别向12个扩散池供应。根据设置会显示下次取样时间,以及最终取样时间等状态。扩散池种的样品可以被自动收集到HPLC样品瓶中,最多20次采样。扩散池为塑料材质,在实验皮肤表面发生的气泡可以自动排出 接收池适用于纯净水,缓冲液,酒精等接收液。此外,有Franz改良垂直式扩散池。机器既可以全自动操作,也可以手动操作。浓度校正软件TransSoft适配。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong3. Hanson Research/strong/spanspan style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C306167.htm" target="_self"Phoenix™ 干加热式透皮测试系统/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C306167.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 462px height: 253px " src="https://img1.17img.cn/17img/images/202006/uepic/e416feef-f339-46fc-9f2c-d19b111e5a93.jpg" title="3.1-Hanson Research.png" alt="3.1-Hanson Research.png" width="462" height="253"//a/pp style="text-align: justify margin-top: 10px "  Hanson Phoenix™ 干热透皮池系统可用于透皮扩散试验。DB-6样品池6个一组,是RDS扩散工作站的核心系统。相较传统水浴加热套效果显著增强。透皮池内置加热搅拌控制温度和速度(200–900转,温度25–40° C)。可以选择不同的硼硅玻璃透皮池以及各种混合器。接收池10–30 mL,透皮池组的盖子可容纳25 mm膜,孔径9–20 mm,剂量0.25–6.2 mL。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C306167.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 358px height: 312px " src="https://img1.17img.cn/17img/images/202006/uepic/19b961a2-2126-4644-96ad-3825dd8ece5d.jpg" title="3.2-Hanson Research.png" alt="3.2-Hanson Research.png" width="358" vspace="0" height="312" border="0"//a/pp style="text-align: justify margin-bottom: 15px margin-top: 10px "  通过“XYZ平台”探针自动采样,也可以手动使用标准移液枪采样。六个模块允许手/自动取样平滑转换。最多运行两个系统(24个透皮池)。内置监测、诊断、和报告功能,可存储100个协议和50个用户。显示参数包括速度、温度、时间、距下取样点的时间等信息。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong4. 精拓仪器span style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C223341.htm" target="_self"span style="color: rgb(0, 112, 192) "TP-6 透皮扩散仪/span/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C223341.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 252px height: 233px " src="https://img1.17img.cn/17img/images/202006/uepic/3fe38a3d-feb0-495c-a545-ca2de31360ba.jpg" title="4-精拓仪器.jpg" alt="4-精拓仪器.jpg" width="252" height="233"//a/pp style="text-align: justify margin-bottom: 15px margin-top: 10px "  TP-6智能透皮扩散仪是一款借鉴国外透皮扩散实验装置推出的产品。该仪器能客观的将药物制剂通过动物活体皮肤在规定的溶剂中渗透的速度和程度反应出来。TP-6智能透皮扩散仪采用微电脑测控,全数字化电路,高精度温度传感器及独特的水浴恒温系统。操作简便,性能可靠,数据精确。技术指标完全符合国家医药行业相关标准,是药厂、学校、科研单位及化妆品行业检验透皮释放度的仪器。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong5. 天美达/strong/spanspan style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C262802.htm" target="_self"TP-01药物透皮扩散仪/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C262802.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 416px height: 283px " src="https://img1.17img.cn/17img/images/202006/uepic/068c7762-ef4f-47b4-8dfc-8e08a27b14d0.jpg" title="5. 天美达.png" alt="5. 天美达.png" width="416" height="283"//a/pp style="text-align: justify margin-top: 10px text-indent: 2em margin-bottom: 20px "  天美达TP-01药物透皮扩散仪配备两用搭载台。搭载台的上面、下面可以分别用于立式透皮扩散池或卧式透皮扩散池的实验。扩散池带水夹套,采用外循环超级恒温水浴加热系统。卧式扩散池体积4 mL/12 mL 立式扩散池体积7 mL(可定制)。磁力电机转数为300–1,100 r/min。正倒计时电子式计时器:附记忆、时钟(1 s–24 h)、磁铁,超大声、可随身携带、可定时提醒。可选择用于眼角膜、舌及口腔黏膜等的小面积夹片附件(Φ3/Φ5/Φ8 mm 聚四氟乙烯)。span style="background-color: rgb(255, 192, 0) "br//span/pp style="text-align: left margin-top: 10px text-indent: 2em margin-bottom: 20px "span style="background-color: rgb(255, 192, 0) "欲了解更多信息,/span/pp style="text-align: left margin-top: 10px text-indent: 2em margin-bottom: 20px "span style="background-color: rgb(255, 192, 0) "请点击链接进入a href="https://www.instrument.com.cn/zc/1131.html" target="_blank" style="color: rgb(255, 0, 0) background-color: rgb(255, 255, 255) text-decoration: underline "span style="color: rgb(255, 0, 0) background-color: rgb(255, 255, 255) "strong【药物透皮扩散试验仪】/strong/span/a专场。/spanbr//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c4ddd4ec-7712-4479-9761-ff4d6bd40d82.jpg" title="分割线.png" alt="分割线.png"//pp style="margin-bottom: 15px text-align: left "span style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px color: rgb(227, 108, 9) "strong友情链接:药物相关检测仪器/strongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px background-color: rgb(255, 255, 255) color: rgb(63, 49, 81) "strong【点击图片】/strong/spanstrong进入相关文章/strong/spanbr//pp style="text-align: right "a href="https://www.instrument.com.cn/news/20200511/538172.shtml" target="_blank"img style="max-width: 100% max-height: 100% width: 432px height: 150px " src="https://img1.17img.cn/17img/images/202006/uepic/f5a7c5db-6334-41e6-9ad7-0203e20d0055.jpg" title="4.jpg" alt="4.jpg" width="432" vspace="0" height="150" border="5"//a/pp style="text-align: right "a href="https://www.instrument.com.cn/news/20200428/537308.shtml" target="_blank"img style="max-width: 100% max-height: 100% width: 432px height: 157px " src="https://img1.17img.cn/17img/images/202006/uepic/1170d98e-ff8b-40cf-afde-91667adefaa4.jpg" title="3.jpg" alt="3.jpg" width="432" vspace="0" height="157" border="5"//a/pp style="text-align: justify margin-top: 10px "span style="color: rgb(0, 112, 192) "strong【药典——药物检测】系列文章,持续更新中… … /strong/spanbr//p
  • 最新尸检报告出炉,新冠感染后病毒会全身扩散!
    新冠感染最显著的病理改变是破坏肺及呼吸道的正常组织结构。但临床上,新冠感染常导致多器官功能衰竭和休克,一些幸存者也经历了感染后的急性后遗症,常伴有心血管、肺和神经症状。但是,肺外器官在新冠感染后究竟如何变化一直是个谜团,科学家推测新冠病毒可以直接攻击人体的多个脏器,但始终缺乏有信服力的证据。如果证实新冠病毒会全身扩散,那将说明新冠病毒的危害远大于我们的认知。 www.163.com近期,一项针对44名新冠感染死亡患者的尸检报告引起关注。在这项报告中,研究人员系统地检测了包括大脑在内的全身多器官病毒载量,对病毒感染后的扩散特征和对各个器官的不同损害进行了系统研究。这其中有38例患者出现了新冠病毒抗体,3例属于早期感染尚未出现特异性抗体,还有3例因样本原因无法判断是否产生抗体。44例样本中,有11例完成了大脑组织的取样,另外还包括胃肠道、肝、心肺、肾脏、眼睛、肌肉、内分泌腺体、生殖器官等全身主要脏器的取样。所有样本的男女比约7:3,绝大多数患者至少有一个基础疾病,其中高血压(54.5%)最为常见。 www.researchsquare.com/article/rs-1139035/v1这些患者在症状出现后平均9.4天入院,住院26.4天,从出现症状到死亡的平均时间为35.2天,而死后到尸检的时间间隔平均为26.2小时。有81.8%的患者生前接受了插管等有创机械通气,22.7%的患者接受体外膜氧合(ECMO)治疗,另外还有40.9%的患者接受了肾替代(透析)治疗。在所有44例样本中,共涉及85个解剖位置和79种体液样本,所有这些部位均有新冠病毒RNA检出,直接证明新冠病毒会扩散至全身各处。 www.16pic.com在3例早期病例样本中,呼吸道检测到的病毒RNA含量最高,但与此同时,研究人员在早期患者的全身其他样本中也都发现高水平病毒RNA的存在,除了生殖器官。这说明病毒的全身扩散在感染后不久就已经发生。有趣的是,在感染的中后期,全身组织中的病毒RNA呈现下降趋势,但低水平的RNA会持续存在。 www.yedatech.cn总体来看,97.7%的呼吸道组织中检测到新冠病毒RNA,位居所有解剖部位之首。90.9%的脑组织,79.5%的心血管组织,86.4%的淋巴组织,72.7%的胃肠道组织,63.6%的肾及内分泌组织,42.5%的生殖组织和57.9%的眼部组织中有病毒RNA检出。为了进一步证实检测的可信度,研究人员利用原位杂交技术直接在标本切片上观察病毒RNA的分布。他们发现病毒RNA在早期病例的整个呼吸道以及晚期病例的鼻甲窦、气管和肺内均存在。 www.researchsquare.com/article/rs-1139035/v1另外,早期和晚期病例的心肌细胞、内皮细胞和血管平滑肌内均含有病毒RNA。主动脉内膜细胞中也发现了RNA的足迹。早期病例的淋巴结、脾脏和阑尾内的单核细胞和结肠上皮细胞内也含有病毒RNA。而在其他组织中,原位杂交也检出了不同程度的病毒RNA。接下来,研究人员对各个脏器的病理改变逐一观察。他们发现94.5%的病例在死亡时出现急性肺炎或弥漫性肺泡损伤的病理特征。23%的病例出现了肺血栓栓塞症,4例出现心肌浸润,1例有明显的心肌炎。在淋巴结和脾脏内观察到明显的淋巴细胞耗损。 www.researchsquare.com/article/rs-1139035/v1肺外组织的改变主要与并发症或先前存在的合并症有关,例如他们发现有30%的肝坏死和39%的急性肾损伤,这可能与低氧缺血性损伤有关。值得一提的是,在对大脑组织的检查中,研究人员发现了很少有的组织病理改变。例如他们发现脑组织存在血管充血,其中2例患者出现全脑的缺血改变,其病因不明,但推测可能与感染引起的血流动力学改变有关。这项研究首次直接证实,在感染早期新冠病毒就在人体多器官和大脑中扩散,并在出现症状后的第1周就存留多个肺外复制位点。这表明这些肺外组织很可能会延长病毒的复制时间,导致治愈的困难,甚至为以后的复发埋下隐患。 搜狐网研究人员认为,他们研究的主要贡献在于提供了病毒全身扩散的证据,并且证实这种扩散随时间而发生改变。例如早期肺内病毒含量明显高于肺外,但随着病情进展,肺内肺外的病毒含量逐渐接近。而这可能与肺外组织较弱的免疫应答能力有关。新冠病毒的危害远远不止肺损伤,越来越多的研究说明,新冠感染可能会对全身造成长久的后遗症,对康复患者也应该持续追踪。而多器官病毒检出的事实也提醒我们,病毒或许拥有我们还未发现的潜伏能力,这可能正是新冠康复者复阳的原因之一。然而这篇研究的局限性也显而易见:研究人员并未讨论疫苗接种在病情防治中的作用。在接种了新冠疫苗已有保护性抗体的前提下,病毒的病理生理学过程势必会有很多不同。另外,新冠康复者的后遗症大多处于可控范围,与病死者的病毒扩散程度可能也相去甚远。病毒在疫苗的作用下会如何发展,还需要更多的研究来证实。 参考文献https://www.researchsquare.com/article/rs-1139035/v1
  • 科学家首次拍摄到HIV病毒扩散过程
    美国科学家们近日首次拍摄到了HIV在人体内的扩散,他们发现HIV病毒以一种先前未知的方式从感染细胞转移到健康细胞。这是科学家们在了解HIV扩散过程方面所取得的一项重大突破,将有助于研究人员创造出一种可对抗已导致2500万人死亡的HIV疫苗。此项研究成果发表在最新一期《科学》杂志上。  美国加州大学戴维斯分校和西奈山医学院研究人员创建了一个感染HIV病毒的克隆分子,并将一个蛋白插入其遗传编码,此克隆病毒暴露在蓝光下即可发出绿光。这使科学家们可在数字视频设备上看到这些细胞,并捕获感染HIV的T细胞与未感染细胞进行互动的方式。  他们指出,当被感染细胞接触到健康细胞时,它们之间就会建立起一座称为病毒学突触的“桥梁”。这样,研究人员就能观察到绿色荧光病毒微粒向突触移动并进入健康细胞。  此项研究揭示,病毒蛋白正是通过突触聚集和进入未感染细胞的。论文作者、加州大学戴维斯分校生物光子科学技术中心首席科学家托马斯胡塞尔称,此项发现或许可以解释艾滋病疫苗的开发为什么至今都不太成功,研究成果将有助于创建出对抗HIV和艾滋病的新治疗方案。他说:“我们对此种转移模式了解得越多,我们就越有机会搞清楚如何来阻断HIV和艾滋病的扩散。”  数十年来,人们一直相信,HIV主要通过自由流动粒子在身体内进行扩散,这些粒子可将自身附着在一个细胞上,接管其复制机制,然后制作出自己的诸多副本。2004年,科学家就发现,HIV在细胞间的转移可通过病毒突触发生,但是他们无法了解为何这一过程在病毒扩散中如此有效。基于此,以前开发HIV疫苗的努力都集中在启动免疫系统来识别和攻击自由流动病毒蛋白。  新的视频显示,HIV可通过在细胞间直接转移来规避识别。胡塞尔说,他们正在开发可帮助免疫系统识别含有病毒突触格式蛋白的疫苗及以突触形成所需因子为靶标的抗病毒药物。  论文共同作者、西奈山医学院医学和传染病学副教授本杰明陈说,经由病毒突触的T细胞—T细胞直接转移是HIV病毒感染的一个高效途径,也许是最主要的传播模式。  研究人员计划,下一步研究将重点了解这些病毒微粒转移进入新感染细胞后的行为。
  • 北京合邦兴业透皮扩散仪进入中国食品药品检验院
    中国食品药品检验院采购北京合邦兴业公司透皮扩散仪!透皮扩散系统产品特点: 自动采样透皮扩散系统符合USP@1724@ 的要求,用于软膏,硬膏,涂层,洗剂,膜,与营剂等的透皮释放测试,透皮吸收模型用于研究药物通过皮肤的渗透效率。 自动取样透皮扩散系统具有先进的自动取样技术,可完成气泡排出、样品取样、样品采集、培养基补充、取样针自动采样透皮扩散系统符合USP1724》的要求,用于软膏,硬膏,涂料,乳液,薄膜,气雾剂等的透皮释放测试。透皮吸收模型用于研究药物通过皮肤渗透的效率。自动取样透皮扩散系统具有先进的自动取样技术,可完成气泡排出、样品取样、样品采集、培养基补充、取样针清洗,使药物透皮释放试验更加准确高效透皮扩散系统人机界面 8.4英寸触摸屏,预装操作系统,满足数据完整性要求。 采样误差《土 0.1毫升。采样前自动润湿和采样后自动清洗的功能,可以保证采样精度,避免污染残留。T热恒温搅挫装置 高精度恒温加热和搅拌功能。可以同时进行每侧7个扩散池(共14个)的自动采样实验抽样针 采样针可以自动定位并倾斜到扩散池中进行自动采样,然后可以自动收集样品溶液并自动补充介质。样品采集架 适用于10毫升试管架和液相小瓶架。系统自动将样品溶液收集到试管或液相小瓶中补液和清洗罐 采样针自动将新鲜介质提取到扩散池。完成采样过程后,将自动清洁采样针。 改进的Franz垂直扩散池 改进的Franz垂直扩散池更加便携耐用,独特的采样警设计使采样过程更加方便流畅。此外,可以通过使用不同高度的搅拌器来调节扩散罐中介质的体积。灵活抽样方法 您可以设置自动采样的方法。或者用移液管手动取样。自动采集样本 采样针完成采样后,它将自动移动到样品收集架的指定位置,并将样品溶液收集到10毫升的试管或液相小瓶中。它可以同时支持每侧7个扩散池的样品收集。自动清洗采样针 采集样品后,采样针会自动移动到清洗槽,用新鲜的流动介质清洗,等待下一次采样。 完全符合数据完整性的操作系统1)软件系统:软件系统操作简单,使用方便。至少可以存储500溶解实验方法,系统的存储容量可以满足记录存储至少10年的要求。(2)用户权限管理:可以预设至少100个登录账号并保护用户登录密码。至少可以分配三种用户权限(系统管理员、实验室主管和实验分析师),用户可以根据自己的风险评估,灵活定制各种权限级别的权限规则。 (3)审计跟踪:各级个人账户的审计跟踪功能,包括登录记录、实验记录、操作记录、清理记录4)电子数据完整性:可以在实验过程中同时生成准确的电子数据。每个实验都会自动生成相应的实验记录,并支持PDF格式导出。实验记录和所有系统记录都可似检索、导年溶馨等和打印。保护所有电子数据免受随机篡改和删除。
  • 福岛核电站放射性物质乘北风向日本各地扩散
    环球网记者张哲报道 韩联社3月15日援引日本媒体的报道称,因福岛核电站爆炸而泄露的放射性物质正在乘北风向日本各地扩散开。  报道称,包括东京在内的日本关东地区,已检测到比通常更高的放射性物质。在茨城县检测到的放射性物质比平常高出100倍,神奈县的放射性物质含量比平时高出近10倍。此外,在千叶县及市原县也检测到了较高的放射性物质。  日本文部科学省表示,现在检测到的数值虽然对人体健康没有太大影响,但已要求各地的有关部门提高测定频率。  另据日本共同社3月15日消息,福岛核电站3号机组附近测量结果显示,核辐射水平比法定标准高出400倍。
  • ACQUITY UPLC I-Class系统:优化的系统扩散性和UPLC性能
    ACQUITY UPLC I-Class系统:优化的系统扩散性,优化的UPLC性能 目的为证实ACQUITY UPLC I-Class系统可使柱外谱带扩展达到最低,从而使进行高分离度及高通量UPLC分离时的分离效果更佳。以下将通过杂质分析以及弹道梯度说明这些改善的重要性。背景已证实在多种应用中,采用填装亚2-_m颗粒的色谱柱能够改善色谱分离的峰容量以及分离度,从而大幅度提高分离度以及通量。然而,为使一项指定分离所可能达到的分离度达到最大,需要使系统扩散性达到最小。属于进样器后系统流路的任何液体管路或连接均可导致柱外谱带展宽。包括进样阀、溶剂预热装置、连接管路、配件、及光学流通池。许多供应商已尝试改善UHPLC系统的扩散性,但收效甚微。虽然可减小扩散性,但仍无法达到最佳从而可获得窄孔UPLC色谱柱(内径2.1 mm)的全部优点。这些色谱柱要求较低的流速,这使得分析每份样品时的投资回报率更高,从而可在足够的分离度下进行高效分离.解决方案ACQUITY UPLC I-Class系统可减小柱外谱带分布。新设计的UV检测器流通池的光学路径与先前的ACQUITY UPLC的光学路径相同,可获得同样高的灵敏度;另外,已重新设计流体管路以及连接,以使谱带扩散进一步减小。必须使用溶剂预热器以使可导致柱上分散效应的温度梯度减至最低。因此,溶剂预热器的体积应足够小,以确保使样品簇(sample plug)以最小的扩散度到达色谱柱头部,而且即使在高温及高流速下也可提供极佳的溶剂加热性能。根据您实验室的需求,可在两种样品管理器(Sample Manager)中选择一种来构成ACQUITYUPLC I-Class系统。不管是使用固定定量环式(SM-FL)还是流通针式(SM-FTN)进样器,均已通过采用小体积的针头端口、连接管路、及内部阀门通道使由进样器所导致的扩散性减至最低。通常,固定环式进样器的设计可使柱外谱带扩展程度更小,这是由于其减小了注射器流动路径的体积。通过对每一组件进行优化,已使柱外谱带扩展较之任一其他市售LC系统显著降低。表1总结了在使用多种系统(包括UHPLC系统)后所获得的谱带扩展数值。ACQUITY UPLC家族在保持超高效分离的整体性方面的性能优于所有其他系统,其中ACQUITYUPLC H-Class系统的谱带扩展减少至9 _L,而ACQUITY UPLC I-Class系统则减少至低至5.5 _L。降低的系统扩散性可直接导致ACQUITY UPLCI-Class系统的分离度增加。分离可以达到弹道梯度,同时保持典型分析梯度中的分离度。图2说明对丁卡因进行杂质分析的结果。采用ACQUITY UPLC I-Class系统及购自供应商B的UHPLC系统,在相同条件下进行分离,结果ACQUITY UPLC I-Class的分离度显著更佳。供应商B的系统按其建议安装有光路长度为60 mm的流动池,结果发现其产生了明显的谱带扩展,以至于测不到肩峰。小结ACQUITY UPLC I-Class系统具有不可比拟的性能,可用于当今最具挑战性的分离任务。不管您的实验室需要增加分离时的分离度还是需要增加样品通量,它灵活的系统构造都可使得UPLC色谱柱上的柱外谱带扩展最低,从而获得最佳的分离性能。 联系人:张林海沃特世公司市场部86(21) 61562642lin_hai__zhang@waters.com 周瑞琳(Grace Chow)泰信策略(PMC)020-83569288grace.chow@pmc.com.cn
  • 加拿大:三文鱼测到放射元素 福岛核污染扩散至北美
    加拿大维多利亚大学的海洋学专家近日表示,他们在加拿大西海岸的三文鱼身上,首次检测到铯-134放射性元素,证明日本福岛核污染已经扩散到北美地区。这是在欧美媒体近期陆续报道北美太平洋沿岸地区出现遭到核污染鱼类后,加拿大专家首次证实这一消息。央视驻多伦多记者前往维多利亚大学采访了这位专家——杰伊卡伦教授。  杰伊卡伦是维多利亚大学地球和海洋科学院的教授,从2014年开始,他和他的研究团队以及600名志愿者,开始对福岛核污染的扩散进行跟踪研究,他们收集了400多种鱼类和海水样本用来检测。  维多利亚大学地球和海洋科学院教授 杰伊卡伦:为了检测鱼体内的人工放射性元素,2015年我们捕获了一些鱼,这些鱼和我们在过去3年里捕获过的400多条鱼不同。其他鱼我们没有检测出来人工放射性元素,在这些鱼身上我们检测到了另一种人工放射性元素铯-137,于是我们就决定来测定其含量以及与福岛核事故的关系。我们的方法就是找到铯 -134,因为这种同位素有2年的半衰期。我们发现了铯-134,说明鱼已经受到福岛核事故影响。  环境中存在着微量的铯-137与铯-134,它们都是人类核活动的产物。铯-137的半衰期为30年,因此在三文鱼中如果检测到铯-137,也有可能来自其他核活动,如核试验等。铯-134的半衰期约为2年,而福岛核事故发生在2011年,因此如果从太平洋中检测到铯-134,就能确定是来自福岛核泄漏,它也因此被称作是“福岛核污染的指纹”。
  • 猪流感扩散之势凶猛 各国纷纷出台应对措施(图)
    墨西哥士兵为应对猪流感戴口罩上街巡逻。  中新网4月27日电 据香港《文汇报》27日报道,墨西哥爆发猪流感疫情后,至今疑因感染这种新型病毒死亡的人数已达81人,美国确认的病例也增至20例,而纽约市还有8个疑似病例,在举世忧心疫情可能扩散之际,法国、新西兰、以色列纷传疑似病例,益增紧张气氛,各国也纷纷加强防范措施。  日本 东京成田国际机场会加强体温检查,来自墨西哥的旅客所用的入境闸已装上体温侦测仪。机场会树立特别标志,提醒要到墨西哥的游客要戴口罩、洗手和漱口。外务省发出旅游警告,要求打算到墨西哥的旅客再三考虑。  韩国 在口岸加强隔离措施,旅客若来自美国和墨西哥,便需接受安全检查,来自两国的猪肉亦会加强检查。当局已实施紧急隔离系统,出现流感病征的飞机乘客抵韩后,需接受简单的测试。  新加坡 严密监察事态发展,医护人员对疑似个案会特别小心。当局敦促市民在到过美国加州、得州或墨西哥后7天内,若出现猪流感病征,应立即求诊。  菲律宾 农业部长下令在口岸加强监察来自美国或墨西哥的活猪或猪肉,说菲律宾没有爆发猪流感,但会下令政府部门鼓励猪农替猪定期注射疫苗。曾到过墨西哥的飞机旅客若发烧会被隔离。  马来西亚 卫生部门已开始在口岸抽查来往墨西哥的游客,正等待世卫的指示。  越南 启动疾病监控系统,正向世卫要求更多信息。  法国 外交部前日宣布,外交部已设立危机应急中心,并开通电话专线,处理有关墨西哥猪流感疫情的咨询事宜。  俄罗斯 俄罗斯总理普京的发言人称,为防猪流感传入,俄罗斯昨日开始禁止所有于本月21日之后付运、来自墨西哥及美国得州、加州和堪萨斯州的鲜肉和肉类制品进口,来自9个拉丁美洲和美国多个州份的猪肉也在禁制名单之列。
  • 高分子表征技术专题——光散射技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!光散射技术在高分子表征研究中的应用Laser Light Scattering and Its Applications in Polymer Characterization作者:郑萃,刘芷君,梁德海 作者机构:中国石化北京化工研究院,北京,100013 北京大学化学与分子工程学院,北京,100871作者简介:梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究.摘要光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.AbstractLaser light scattering (LLS), which includes static light scattering (SLS) and dynamic light scattering (DLS), has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity, from which the weight average molecular weight, radius of gyration, and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions, from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers, LLS is also suitable for the solutions and suspensions of biopolymers, microbial, colloids, nanoparticles, virus, and vesicles. The history, theory, and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years, the cross-correlation techniques, diffusing wave spectroscopy, and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques, as well as solid light scattering, are also briefly introduced in this review. In the last, we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS, the scaling of hyperbranched polymers as determined by LLS, the polymerization-induced micellization process as monitored by time-resolved LLS, and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.关键词光散射  高分子表征  分子量  回转半径  相关函数KeywordsLaser light scattering  Polymer characterization  Molecular weight  Radius of gyration  Correlation function 1光散射技术的发展简史人们对光散射的认识最早可以追溯到1869年著名的丁达尔(Tyndall)凝胶散射实验. 1871年,瑞利对空气中的光散射现象进行了理论研究[1],推导出了球形粒子的散射公式,解释了晴空蓝和夕阳红的成因[2]. 之后,德拜(Debye)和甘(Gans)分别把瑞利的散射理论拓展到了非球形粒子[3] 和大尺寸的粒子[4],完善了气体中粒子的光散射理论.在液体等凝聚相(condensed phase)中,散射强度的实测值通常比瑞利理论的预测值小一个数量级以上,这是由散射波的相消干涉造成的. 针对这种现象,斯莫鲁霍夫斯基(Smoluchowski)和爱因斯坦(Einstein)[5]从密度涨落的角度出发,提出了光散射的涨落理论(fluctuation theory of light scattering),极大地拓展了光散射的应用范围. 1940年前后,德拜和齐姆(Zimm)将涨落理论与溶液中的高分子表征相结合,实现了光散射对高分子的分子量、分子尺寸、分子形状和分子间相互作用的测量[6].静态光散射(static light scattering, SLS)也称为弹性光散射,是指不考虑散射波长(或能量)变化的光散射. 1914年,布里渊(Brillouin)预测固体中热声波的散射光频率会出现双峰分布,后被实验所证实,从而开启了人们对准弹性光散射,即动态光散射(dynamic light scattering, DLS)的研究. 由于对光源单色性的苛求,动态光散射技术直到1960年前后激光光源趋于成熟之后,才得到了较好的发展. 1964年,佩科拉(Pecora)[7]利用高分子溶液中散射光的频率变化,计算出了高分子的扩散系数,并得到了高分子的流体力学半径、链柔顺性等信息.当溶液中粒子的浓度增加到一定程度时,就会发生多重散射,即散射光再次或多次与粒子发生作用. 这种浓度下溶液的光散射理论较为复杂. 近年来,科学家们针对这类体系设计了许多特殊的方法或仪器,如折射率匹配法(1991年)[8],微样品池法(1998年)[9,10]、光纤准弹性散射法(fiber optical quasi elastic light scattering, FOQELS,1991年)[11,12]、时间交叉相关法(1981年)[13]、3D交叉相关法(1999年)[14]、互相关法(1997年)[15]等. 2006年,得益于电荷耦合器件(charge coupled device,CCD)以及计算机的发展,基于光斑(speckles)的互相关法得到了实质性发展[16],得以对亚浓溶液或浓溶液进行较为深入的研究. 当溶液体系达到浑浊状态时,极其严重的多重散射使得光在体系中的行进可以按扩散过程来处理,扩散波谱(diffusing wave spectroscopy, DWS)理论应运而生[17],基于该理论的技术可适用于多种不同的浑浊体系.固体介质中也存在光散射现象,但在原理和应用等方面与溶液中的光散射都有很大差别. 固体中很容易产生严重的多重散射,且固体表界面的强烈散射常会对内部的散射造成严重干扰,这些都使得固体的光散射结果难以解读. 早在1922年,布里渊[18]就用光散射对固体振动进行了研究,但这不是严格意义的弹性光散射. 1960年斯坦因(Stein)[19]优化了垂直偏振光散射方法,极大地简化了散射结果,使得固体光散射在测定聚合物的链取向和晶体结构的研究中得到广泛应用[20,21].2光散射原理2.1气体光散射光的本质是电磁波,含有周期变化的电场E. 原子或分子在电场作用下会发生极化,强度与极化率α相关. 原子在周期性变化的电场中会被周期性地极化,从而转变为一个次级光源,向周围发射同频率的电磁波,即散射光(图1).Fig. 1Scattered light generated by a scatterer as it is induced to be an oscillating dipole in the incident beam. θ is the scattering angle, and the inset shows the angular dependence of the scattered light from small particles, such as atoms or molecules. The polarization of incident beam is not considered.单原子产生的散射光强Is由原子的极化率α和入射光波长λ决定. 另外,在空间某点测定的散射光强还与观测点到散射点的距离r有关. 1871年,瑞利推导出如下的散射公式:其中I0为入射光强度. 单个原子、分子和粒子在空气中的散射光强都可以用公式(1)描述. 对于多粒子体系,可表示为体积V中存在N个散射粒子,如果粒子尺寸小(半径小于入射光波长的1/20),且数目较少,粒子之间的散射光不发生干涉,散射光强可表示为:公式(2)表明,散射光强度与波长的4次方成反比,波长短的蓝色光的散射明显强于波长更长的红色光,因此天空在阳光的照耀下显示为蓝色.2.2溶液光散射光散射技术在溶液体系中具有非常广泛的应用. 在稀溶液中,利用静态光散射技术能够测定散射粒子的绝对分子量M、回转半径Rg、第二维里(Virial)系数A2等信息;利用动态光散射技术能够测定散射粒子的流体力学半径Rh及其分布等信息. 光散射技术在亚浓溶液或浓溶液中也发挥了重要作用,但该类体系中的多重散射使得散射理论变得十分复杂. 本文重点介绍稀溶液中的光散射理论,对非稀溶液体系的散射理论只做简要介绍.2.2.1稀溶液中的静态光散射在稀溶液中,根据Clausius-Mossoti公式,可将难以测量的极化率α转化容易测量的折光指数n:其中n0是纯溶剂的折光指数,M为粒子的绝对分子量,NA为阿伏伽德罗(Avogadro)常数,c (=MN/VNA)为质量浓度. 值得一提的是dn/dc, 即溶液折光指数n对溶液质量浓度c的导数,称为折光指数增量,可以用专有仪器测定,或是从相关手册[22]中查到. 当dn/dc = 0时,预示体系中测不到反映溶质结构信息的光散射信号.对于dn/dc ≠0的单组分体系,将公式(3)代入(2)中,可得到瑞利散射公式:其中H称为光学常数,R为瑞利比.忽略由溶剂自身密度涨落引起的散射. 根据涨落理论,散射光强I仅与光学常数H、质量浓度c和渗透压π相关,并遵循如下的关系式:根据van’t Hoff关系式:其中,M为溶液中粒子的绝对分子质量,A2为第二维里系数,用来定量描述溶剂-溶质之间的相互作用. 将公式(6)代入(5)中,可以得到:式(7)中只有2个未知数M和A2. 理论上只要测量2个不同浓度溶液的散射光强I,就可以计算得到粒子的绝对分子量M和第二维里系数A2. 但是,由于每一台光散射仪的探测器面积和探测器到样品的距离都可能不同,激光束的粗细和样品池的大小也可能存在差异,因此对于同一个样品,每台光散射仪得到的信号都可能是不同的. 仪器测得的光强,必须要转化为绝对散射光强,才可以进行下一步的计算. 在实际操作中,常用瑞利比R代替I,并考虑以下这些影响因素:第一步,偏振校正. 取决于样品的性质,散射光的偏振方向会发生变化,且会影响散射光强的大小. 偏振的校正较复杂[23]. 目前绝大多数光散射仪均使用了VV偏振散射设计,即入射光与观测的散射光都是垂直(vertical)偏振的,相应的散射光强标记为Rvv.第二步,散射体积校正. 常见的散射仪器一般用小孔和狭缝来限制检测器接收的散射光. 激光束中被小孔或狭缝截留的光路在空间中所占的体积称为散射体积(图2). 对于同一个体系,散射体积越大,测得的散射光越强. 在激光光束和小孔或狭缝固定的情况下,散射体积与散射角θ (入射光矢量与散射光矢量的夹角)存在sinθ的定量关系. 因此在静态光散射实验中,在θ角测定的散射光强需要进行sinθ的校正.Fig. 2Geometry of a typical laser light scattering setup (top view).第三步,净剩光强校正. 公式(7)中的光强是散射粒子自身的光强,在溶液中又称净剩光强,即溶液的散射光强Isolution减去溶剂的散射光强Isolvent.在实验中,以瑞利比Rvv已知的标准溶剂为参照,在同一台散射仪器上进行样品的测量是最常用的做法. 例如温度为T时,样品在θ角的瑞利比RTθ 通过以下公式得到:其中ITθ、RTθ、nT为样品在温度T下的净剩光强、瑞利比和折光指数,I25θ,standard、R25θ,standard和n25standard分别为标准溶剂在25 oC的散射光强、瑞利比和折光指数,也可以选用其他温度的配套数值. 当样品溶液和标准试剂的折光指数不同时,也需要进行校正. 狭缝和小孔所对应的指数分别为1和2. 甲苯是目前最常用的标准试剂,25 °C和632.8 nm波长下的瑞利比为8.70×10-6 cm-1. 甲苯与苯在不同波长和温度下的瑞利比可以从参考文献中查阅[24,25].将散射光强用瑞利比表示后,公式(7)可改写为:公式(9)适用于描述小粒子(尺寸小于波长的1/20)在溶液中的散射行为. 通常测量多个浓度下的Rvv值,将Hc/Rvv对c作图,从拟合直线的截距和斜率中分别求得M和A2值.当高分子的尺寸较大时,同一高分子内部不同重复单元的散射光会发生干涉现象,从而导致散射光强出现了散射角度的依赖性(图3). 从光强角度依赖性数据可以反推粒子的尺寸和形状. 具体做法是在公式(9)的基础上,引入与散射角度相关的形状因子(form factor)P,其中包含了粒子的尺寸和结构信息.Fig. 3Interference pattern of light scattered from two segments in a large particle or polymer chain. The inset shows the angular dependence of the scattered light.在光散射中,习惯上使用散射矢量q表示散射角. 散射矢量q定义为散射光波矢量与入射光波矢量的差. q与散射角度θ之间的数值关系为[24]:由式(10)可知,散射矢量q的单位为长度的倒数. 在波长和溶液体系固定的前提下,q是由散射角θ决定的变量,此时形状因子可相应地记为P(q). 经P(q)修正后的散射光强公式为[23]:对于小粒子而言,P(q) = 1,与散射角度无关.用回转半径Rg来描述高分子的尺寸,当qRg 1时:将公式(12)代入公式(11)中,并做近似处理,可得到:公式(13)是经典的静态光散射方程. 通过配置若干不同浓度的样品,测定每个样品的散射光强随角度的变化,利用公式(13)就可以得到样品的分子量M,回转半径Rg以及第二维里系数A2. 需要强调的是,对于具有一定多分散度的高分子样品,静态光散射测定的是绝对“重均”分子量和“z均”回转半径. 因此对于关联分子量和回转半径的研究,如确定二者的标度关系,必须采用分布尽可能窄的样品,测得的光散射数据才有分析处理的意义.对于浓度较高或分子量较大的样品,公式(13)有时并不能给出令人满意的结果. 在这种情况下,可以尝试利用改进的公式来进行数据处理:其中k为和第二维里系数相关的常数. 根据公式(14)绘制的图称为Berry Plot,同样可以得到重均分子量和回转半径.当qRg 1时,不同形状粒子的P(q)存在较大差别[23,26].回转半径为Rg的无规高分子线团:半径为R的均匀实心球:半径为R的空心薄球壳:半径为R的薄圆盘:其中J1为一阶贝塞尔函数.长度为L的细圆柱:其中Si(x)为sinus积分函数:通过测定待研究体系的形状因子P(q),并与标准体系进行对比,就能够判断粒子的构象并确定其特征尺寸参数. 当体系浓度足够小,2A2c一项相对于1/MP(q)可以忽略时,公式(11)可转化为:即:在公式(22)中,M/Hc是与散射角θ或散射矢量q无关的量. 因此,测定各个散射角度下的Rvv,用零角度的数值归一化,再对q作图就得到了P(q)曲线. 为了提高用P(q)确定体系构象的准确性,尽量选用窄分布的样品,并在测定时覆盖尽可能宽的散射角度.利用静态光散射来测定共聚物比均聚物要复杂很多. 由公式(4)可知,决定体系散射性能及强度的内在因素是dn/dc. 共聚物等体系包含有2种或2种以上的组分. 当这些组分的(dn/dc)不同时,散射方程将急剧地复杂化. 以AB两嵌段共聚物为例,体系总的(dn/dc)AB = wA(dn/dc)A + wB(dn/dc)B,wA和wB分别为A和B嵌段的质量分数. 按照均聚物的测定方式,利用公式(13)能够得到共聚物的表观分子量Mapp[27]:其中:由公式(23)和(24)可以得到如下结论:(1) Mapp由两嵌段的(dn/dc)决定. 当所选溶剂的(dn/dc)AB接近0时,Mapp趋于无穷大.(2) 公式中有3个独立的未知数Mw,A,Mw,B和wA,因此需要在3种不同折光指数的溶剂中测定样品的Mapp,然后解方程得到两嵌段共聚物的真实分子量Mw [27]. 对大多数嵌段共聚物体系,找到3种可单分散溶解共聚物的溶剂并不容易. 吴奇等人在1994年报道了只用2种溶剂就可利用静态光散射测定共聚物分子量的方法[28],但数据处理稍显繁琐.(3) 当在选用的溶剂中A嵌段的(dn/dc)A= 0时,直接测定的是B嵌段的分子量,反之亦然. 利用这种掩盖法,只需要2种溶剂就能精确测定A嵌段、B嵌段以及共聚物总的分子量.公式(23)还可以改写为:[28]其中P和Q是与嵌段共聚物组分非均匀分布相关的常数.由上式可知,当A和B两嵌段的dn/dc相等或接近时,所测定的表观分子量与真实值一致. 同理,也只有在这种情况下,才能够利用公式(13)来测定共聚物的回转半径Rg. 如果A和B两嵌段的dn/dc相差较大,特别是当(dn/dc)AB接近0时,Hc/Rvv在小角度会出现负斜率,导致外推得到的Rg为负值.利用静态光散射还可以测定粒子的分形维数. 一般来讲,若物体的维数是d,则其质量M和尺寸R应满足如下的标度关系:例如:三维的实心物体,质量M 与 R3成正比,而二维的实心物体,M与R2成正比. 维数d在一定程度上反应了粒子的结构和形状. 而高分子线团、空心粒子或具有不规则形状的物体,其维数通常不是整数. 静态光散射是测定粒子分形维数的有效工具. 对于尺寸为R的粒子,当满足qR 1 (一般大于3)时,绝对散射光强Rvv和散射矢量q之间的标度将满足[23]:Rvv和q的双对数图是一条直线,直线斜率的相反数就是该粒子的分形维数d. 该方法的准确度与q有效的数据范围有关,一般需要跨越数量级. 因此,不是所有体系都适用这种方法. 表1列出了常见拓扑结构的分形维数.2.2.2稀溶液中的动态光散射散射体积一般是固定的,其中往往包含有多个散射粒子. 由于布朗运动,散射体积内粒子的数目和位置都在发生变化,这导致在固定检测位置测定的散射光强会随时间发生涨落. 图4所示是2个高分子相对位置发生改变引起的光强涨落. 看似无规的涨落信号中埋藏了粒子扩散的信息. 挖掘扩散信息的途径是从随时间变化的I ~ t曲线得到光强-光强的时间相关函数.Fig. 4Time dependence of the interference pattern. The inset shows the change of scattered intensity with time at fixed scattering angle.首先介绍相关函数的概念. 在I-t 曲线中,t和t + τ时刻分别对应着光强It和It+τ,τ称为延迟时间. 当τ→0时,总有It = It+τ,而当τ→∞时,It和It+τ则是围绕平均光强It的2个随机值,无任何相关性. 用符号表示对其中的物理量作统计平均. It⋅It+τ是以τ为变量的光强-光强时间相关函数,即It和It+τ乘积的统计平均随延迟时间τ的变化. 当τ=0时,It⋅It+τ有最大值I2t;当τ趋近于∞时,It⋅It+τ有最小值It2:令:g2(τ)称为归一化的光强-光强时间相关函数[29].将动态光散射中的g2(τ)对τ作图,得到如图5中所示的曲线. 如果体系中只包含一种散射体A,则g2(τ)随τ呈现单一的快速衰减,衰减最快处对应的时间τA反映了体系的特征性质.Fig. 5Intensity-intensity correlation function.在现代的光散射仪中,光强的测定和g2(τ)的计算都是由硬件直接完成. 测定光强常用的仪器是雪崩光电二极管探测器(avalanche photodiode detector, APD);从光强到g2(τ)是由相关器来完成的[24].从g2(τ)到粒子扩散的信息,还需要经过以下步骤:第一步,求解电场-电场时间相关函数g1(τ). g2(τ)是光强的相关函数,需要将其转换为电场的相关函数g1(τ),才能和扩散过程直接相关联. 在光的波动理论中,光强是电场的平方. 而g2(τ)和g1(τ)的关系比简单的平方关系要复杂,称为西格特关系式(Siegert relation)[30]:其中β是和测量光路相关的系数. 当检测器前的狭缝或小孔合适,只测到单光斑(speckle)时,β=1.第二步,求解粒子自扩散系数Ds. 这个求解的过程是动态光散射理论的核心. 这里只简单介绍基于van Hove自相关函数Gs(r, τ) 的推导过程. 假定某个粒子在时间t的位置为0, Gs(r, τ)就是在时间t+τ时在位置r处发现该粒子的概率. 由于g1(τ)是随散射矢量q而变化的,可写成g1(q, τ). g1(q, τ)和Gs(r, τ)符合傅里叶变换(Fourier trans-formation)的关系:对于单分散、各向同性粒子的扩散运动(布朗运动或无规行走),Gs(r, τ)仅依赖于距离r = | r |,且符合高斯方程:从Gs(r, τ)的半峰宽可以解出散射粒子的均方位移ΔR(τ)2. 在布朗运动中,ΔR(τ)2与粒子的自扩散系数D0的关系为:求解方程(31)可得:其中Γ=q2D0,称为线宽. 据公式(34),将ln(g1(τ))对τ作图,从直线的斜率直接得到D0.第三步,求解流体力学半径Rh. 利用Stokes-Einstein方程:其中k为玻尔兹曼(Boltzmann)常数(1.38×10-23 J/K),T为绝对温度,η为溶剂黏度,可从扩散系数直接得到流体力学半径. 对于有一定分散度的样品而言,DLS测定的流体力学半径和扩散系数都是z均值.由于粒子各向异性等因素的影响,在不同散射角度测定的扩散系数存在差异,因此在固定角度测定的是表观扩散系数Ds,app. 另外,光散射直接测定的是粒子的互扩散系数(mutual diffusion coefficient),只有在零浓度时才与自扩散系数一致[23,31,32]. 因此,利用动态光散射求算扩散系数的公式包含了散射角度和浓度的依赖性:其中k1和k2是2个常数. k1和样品的分散度以及拓扑形状有关,k2和样品与溶剂的相互作用有关. 公式(36)与静态光散射公式(13)在形式上是类似的. 在实验中,同样需要对不同浓度的样品在不同的散射角进行测量,然后按照公式(36),通过角度和浓度的外推,得到粒子扩散系数D0.以上介绍的是单分散粒子的动态光散射理论. 当样品呈多分散时,扩散系数D0或线宽Γ会出现相应的分布,一般用G(Γ)表示. 由公式(34)可得:g1(τ)是由G(Γ)经拉普拉斯变换得到的,而实际过程中是通过测定g1(τ)来反推样品的分布G(Γ),因此是反拉普拉斯变换. 针对动态光散射实验开发的反拉普拉斯变换的方法有许多,如累积矩(cumulant)法、双指数(double-exponential, DE)法、直方图(histogram)法,离散变换(discrete inversion)法、熵最大化(maximum entropy method, MEM)法、非负值最小二乘法(nonnegatively least squares, NNLS)法、指数抽样(exponential sampling, ES)法和CONTIN法等. 关于各算法的优劣,可参考具体文献[33~36]. 在这些方法中,CONTIN是使用较为广泛且适用大多数多分散体系的算法.2.2.3稀溶液中静态光散射和动态光散射的结合应用不难看出,静态光散射和动态光散射是对同一个样品的浓度系列进行了2种不同方式的测量. 2种测量方式的有机结合,能够得到关于样品更多或更深入的信息.首先,对于单分散样品,比值Rg/Rh反应了粒子的拓扑结构. 表2列出了一些常见粒子的Rg/Rh的理论值.其次,对于双分布或多分布样品,静态光散射只能得到样品Rg和Mw的平均值. 而如果动态光散射能够在不同的散射角对多分布,特别是双分布,进行明确区分,就可以把在该角度的散射总光强按照峰的比例进行分配,从而得到各个组分的光强角度依赖性,再利用静态光散射理论,得到不同组分的Rg和Mw[37~39].最后,结合静态散射理论,能够把动态光散射测到的线宽分布G(Γ)转换为分子量的分布G(M),前提是需要知道样品分子量和扩散系数的标度关系[40~42].2.2.4非稀溶液中的动态光散射非稀溶液体系中的动态光散射研究近年来取得了较多进展,已有不少成功应用的例子,并可以预期它在未来的科研中将发挥更重要的作用. 非稀溶液动态光散射主要面临2个共性问题:多重散射和非遍历(non-ergodicity). 扩散波谱也是一种特别且重要的非稀溶液动态光散射技术. 下面将分别进行介绍.非稀溶液中的多重散射可以通过设计特殊的仪器设备来进行削弱或抑制. 例如:扁平池光散射仪[43]就是采用光程非常小的扁平样品池(厚度可小至10 μm),并辅以相应的散射体积校正,从而大幅减少多重散射,使得测量体系浓度可以比通用光散射仪大1000倍左右.光纤准弹性光散射仪(FOQELS)[11,12]是利用背散射来消除多重散射的影响. 入射光通过光纤导入到待测溶液中,该光纤同时也是信号接收器,接收(180±3)°范围内的散射光,背散射光和主光束用单模光纤定向耦合器进行区分. 浓度高达40 wt%的浑浊乳胶样品中也能利用该仪器进行DLS研究,且无需除尘.利用2束激光进行交叉相关是抑制多重散射的有效方式[14,44]. 双色交叉相关仪采用2束不同波长的激光同时照射样品;3D交叉相关仪则采用2束同波长但分别略高和略低于散射平面的激光同时照射样品. 这2种仪器大致上是利用非相干光的相关性为0,来消除有限次多重散射对相关函数的影响,从而得以对高浓体系进行光散射的测量. 这类仪器的测量角度也是大幅度可变的,在这一点上比FOQELS具有明显的优势. 双色交叉相关仪对光路准直的要求非常高,甚至0.01 oC的温度涨落所导致的光路波动都有可能破坏仪器的准直性. 相对而言,3D交叉相关仪对此的要求低得多.在非稀溶液中,由于粒子运动过慢或粒子过大等因素,导致实际的测量结果不是对样品所有可能状态的综合,这就是非遍历问题. 非遍历测量的直接后果就是数据不具有统计性,导致测得的g2(τ)数据无法解出样品真实的g1(τ).解决非遍历问题的首要思路是如何尽可能多地得到g2(τ)的信息. 可采用的方法包括对同一个体系用不同的方法测得g2(τ),如用CCD面探测器测得多个光斑的变化然后进行互相关,对不同位置的测量结果取平均,或是用串联的双样品池进行目标样品和参考溶液的相关等.如何从g2(τ)中解出接近真实的g1(τ)也是解决非遍历问题的必经步骤. 目前常用的方法是对西格特关系式(公式(30))进行变换,如其中f(g1(τ))是与实验装置相关的函数,具体的装置设计和对应的算法可参考文献[45]. 根据公式(37)可在非遍历条件下求得较准确的g1(τ).扩散波谱是针对极浓溶液的一种特殊的动态光散射方法,基本思路和常规的动态光散射法相同:仪器测定g2(τ),算出g1(τ),通过变换得到扩散系数Ds,从而算出Rh. 所不同的是,从g1(τ)到Ds涉及了特殊的理论,具体的推导过程可参考文献[17,45,46]. 对于单分散样品,g1(τ)和Ds的关系式可表示为:将ln(g1(τ))对τ−−√作图,数据将呈现一条直线,从斜率即可求出Ds. 可以看出,对于极浓溶液,g1(τ)和q或散射角无关,这也是合理的.更重要的是,扩散波谱能够测定介质的储能模量G' 和损耗模量G' ' 的频率依赖性,也就是介质的黏弹性[47~49],这类似于流变仪扫频实验得到的数据. 由Stokes-Einstein方程(公式(35))可知,扩散系数D与ηR的乘积呈反比关系,这3个参数可以知二求一. 对于常规的动态光散射而言,溶剂黏度η已知,可求出Rh. 在极浓溶液中放入给定尺寸Rh的小球,根据小球的D(τ)能够得到η*(ω),即溶液复合黏度随频率的变化曲线. 由该曲线可计算求得G' (ω)和G' ' (ω).2.3固体光散射固体光散射在高分子球晶的研究中发挥了重要作用,可得到球晶分布、取向和尺寸信息. 虽然球晶也可用偏光显微镜(POM)和原子力显微镜(AFM)进行观测,但偏光显微镜有光学分辨极限,对尺寸小于5 μm的球晶几乎无法观测,而原子力显微镜对样品制备有着较为严格的要求,也无法观测固体内部的球晶形态. 因此,在球晶研究方面,固体光散射有着不可替代的优势. 球晶固体光散射的理论比较复杂[19~21], 本节仅简单介绍球晶呈现的四叶草瓣形状的散射图样和球晶尺寸的求算.2.3.1球晶的VH散射四叶草瓣图样光穿过具有取向的结构后,沿非取向方向偏振的光将被抑制或滤去(图6(a)),这也是许多偏振片的工作原理. 常用的VH固体光散射的光路设计是在样品的前后分别放置偏振片,偏振方向相互垂直(图6(b)). 这样的实验设计滤去了偏振不变的散射光,只有改变了偏振方向的那部分散射光才能被检测到. 对于许多结晶高分子而言,球晶的散射信号是唯一偏振有变化的散射信号.Fig. 6Spherulite studied by solid light scattering.球晶内部的取向结构是中心对称的(图6(c)). 经过第一个V偏振片的入射光,在球晶的V方向和H方向上遇到的球晶内部的取向结构均是垂直或平行于V方向的,光将直接通过或是被完全滤去,方向不发生偏转. 因此,在这2个方向上的散射光在第二块H偏振片后面,完全不会被检测到. 而除了V方向和H方向,散射光均和球晶内部的取向结构有一定夹角,光将偏转方向,得以被最终检测到. 因此,散射图样常出现黑十字消光现象(图6(d)),呈现四叶草瓣形状. 消光十字的方向分别平行于2个偏振片的取向方向. 图6(d)还表明散射图样不是连续的,而是由多个分散的斑点所构成,其中每一个亮斑都是之前动态光散射理论中所说的斑点(speckle). 这不是因为检测器的精度不够造成的.2.3.2球晶的尺寸计算球晶属于大粒子,其固体散射也存在形状因子P(θ). 在VH光路下[19],其中:R' 为球晶半径.对于无取向的球晶时,理论和实验均表明,在花瓣散射光强最亮点处,近似有U=4.0[19]. 因此:其中θm即最亮点处的散射角. 公式(42)即广泛使用的无取向球晶的尺寸计算公式. 对于有取向的球晶,最亮点处的U值有时会发生变化. [21]3实验技巧在上面介绍的光散射技术中,稀溶液体系的光散射应用目前最为广泛,所得到的信息也最丰富,但相应的样品制备和实验过程也比较复杂. 本节将简要介绍稀溶液光散射的实验技巧和数据处理方式.3.1样品溶解首先是要选择合适的溶剂来溶解样品. 重点考虑光散射衬度,即(dn/dc)的大小. 若(dn/dc) = 0,将得不到任何散射信号. 在保证溶解性能的前提下,通常选择折射率和溶质差别较大的溶剂. 对于共聚物体系而言,需要根据体系的性质和实验的需求来选择溶剂. 例如:在测定有机共聚物的精确分子量时,则应当选择多种良溶剂或共溶剂进行实验.其次是要选择合适的样品浓度来进行测量. 一方面浓度要足够稀,使得分子间的相互作用可以忽略. 高分子的临界交叠浓度(overlap concen-tration) c*是浓度上限的参考点. 另一方面,浓度越稀,散射信号也越弱,测量将变得困难. 对于未知且不易估算c*的高分子体系,0.1 mg/mL可以作为初始的浓度进行尝试.最后需要溶解样品,形成均一体系. 高分子的溶解过程耗时较长,通常需要2~24 h. 搅拌仅能有限地加速溶解过程. 升温会使得高分子体系氧化,应尽量避免. 超声也是不推荐的.3.2除尘由于散射光强与粒子尺寸的4~6次方成正比,直径在微米级的灰尘粒子会对高分子样品的散射实验造成毁灭性的破坏,因此要尽量避免样品溶液中掺杂有灰尘粒子. 灰尘是极性的. 水溶液体系的除尘往往比有机溶液体系要困难. 除尘操作包括样品瓶除尘和溶液样品除尘.光散射样品瓶的除尘通常采用类似于索式提取的装置,利用蒸发后再冷凝的丙酮间歇性地对倒置样品瓶的内部进行多次冲刷. 除尽灰尘的样品瓶要封口并倒置保存.样品的除尘通常有过滤法和离心法. 过滤法更易操作,需要在空气尽量净化的环境中,使用孔径在样品尺寸之上,且在灰尘粒径之下的滤膜,用注射器将待测样品过滤后注入到除尘后的样品瓶中. 可供选择的商业化滤膜有很多,可选用的孔径在200~600 nm之间. 过滤时滤膜上的压力不宜过大,因此过滤需缓慢进行. 如果所测体系较为复杂,没有合适的滤膜可选,则可考虑离心法.3.3仪器准直仪器的准直性是光散射实验的前提. 溶剂分子(一般选甲苯)的散射光强在校正散射体积后是没有角度依赖性的(图1),可用来验证仪器的准直程度. 对除尘后的甲苯样品进行角度扫描,角度范围一般在20°~150°. 如果每个角度的散射光强都围绕某一平均值波动,且波动不超过2%,则可认为仪器的准直是良好的. 若该条件不满足,则需要对仪器的准直进行校准.3.4实验过程静态光散射实验中散射角度的选择很重要. 原则上,只有在qRg 1的情况下才能用公式(13)准确测定粒子的回转半径. 对于尺寸较大的样品,需要在小的散射角度或q范围内测量多个数据点(减小角度间隔),以保障角度外推的可靠性. 另外,在小角度时,灰尘的影响会变得更加明显,这对样品特别是水溶液中的样品的除尘提出了更高的要求. 大尺寸样品的光强角度依赖性很强,小角度的光强比大角度会高出有4~5个数量级,因此要注意检测器的线性响应范围,必要时可用非偏振类滤光片调节入射光的强度.动态光散射数据的根源是g2(τ). 在样品除尘合格的前提下,选择合适的延迟时间τ范围,并累积足够长的时间是获得可靠g2(τ)的前提.检测器前端的小孔(pinhole)或狭缝是可调的. 对于静态光散射,通常需要选择较大尺寸(如1 μm)以测得具有统计性的散射光强. 对于动态光散射,通常需要选择较小的尺寸(如200 nm),以保证只测到单一光斑,从而使得西格特关系式中的β值趋近于1.对于碳纳米管、石墨烯、金纳米颗粒、荧光分子等具有光吸收能力的样品,静态光散射和动态光散射的校准方式也是不同的. 静态光散射需要通过测定光吸收系数,通过朗伯比尔定律来校正不同角度的净剩散射光强;而动态光散射则需要测定在不同入射光强下的样品扩散系数,通过外推到零入射光强的方式来消除光吸收对扩散的影响. 如果样品的吸光性太强,引入的误差增加,不提倡用光散射进行测量.3.5数据处理绘制Zimm图是静态光散射最常用的数据处理方法. 这是一个初学者经常会出错的处理过程,其中最关键的是各物理量单位的转化. 简单的处理方式是采用非国际单位:q以nm作为长度单位,其他所有物理量的长度单位均转化为cm. 光学常数H和质量浓度的单位则分别为cm2⋅g-2⋅mol和g⋅cm-3. 在绘制Zimm图时,如果数据点偏离了线性,可以从样品是否多分散、是否聚集以及是否满足qRg 1等方面进行分析.尺寸小于激光波长1/20的粒子通常不会出现散射角度的光强依赖性,不需要做角度扫描. 为了尽量降低灰尘对散射实验的影响,一般选择90°进行各浓度溶液的测量,然后直接运用公式(9)计算M和A2.如果实验中只关注回转半径,且要求的准确度不高,可选择一个较低的样品浓度进行角度扫描,不需要dn/dc的测量. 具体处理如下:取x列为散射角度θ,y列为光强值I原始数据,将x列转换为q2,单位为nm-2,将y值转换为(I - Isolvent)⋅sinθ(即只做净剩光强校正与散射体积校正),单位任意;(2)将x和1/y作图,线性拟合,取3倍截取/斜率,并开平方,即得到回转半径Rg,单位为nm.对于多组分体系的动态光散射,尺寸相差2倍以上的粒子才有可能被分辨为2个组分. 如果体系中组分的数量大于3,或得到的Rh分布图的峰数量大于3,则需要对结果的准确性持较谨慎的态度,需要从原理上判断结果是否合理,或通过其他手段适当进行辅证.3.6(dn/dc)测量(dn/dc)通常需要专用的仪器进行测量. 折光指数和原子极化率相关,极大地受原子序数的影响. 相对于C和H元素而言,Na和K等元素的原子序数要大得多,因此溶剂中的微量溶盐将极大地影响(dn/dc)的测量准确性. 为了确保对未知体系的准确测量,最好使用同一批溶剂,分别进行(dn/dc)的测量以及所有的光散射实验.4典型应用光散射技术在高分子表征中的应用非常广泛. 感兴趣的人士可以查阅相关书籍、专著和文献. 从掌握光散射基本理论和实验技巧、了解光散射技术发展趋势的角度出发,结合实验体系的代表性, 我们选取了4个经典的应用案例,来具体说明动、静态光散射的使用技巧,二者相结合的必要性,时间可分辨光散射技术的优势,以及如何开发光散射技术在复杂溶液体系中的应用.4.1动、静态光散射相结合表征溶液中高分子行为动、静态光散射技术相结合能够对溶液中的高分子进行深入、系统的表征. 跟踪高分子链从线团到球的转变(coil-to-globule transition)过程是该技术最典型的应用之一. 在不良溶剂中,高分子链会发生塌陷,同时会伴随着高分子链之间的聚集. 如果观测单个高分子链在不良溶剂中的构象转变,要考虑多方面的因素[50,51],一般采用尽可能高的分子量、尽量窄的分布、并在尽可能稀的溶液中来进行. 一方面可以避免分子链之间的聚集,另外也可以保持较高的净剩散射光强. 吴奇课题组结合分级和过滤得到了分子量极高、多分散度窄的水溶性聚N-异丙基丙烯酰胺(PNIPAM)样品(Mw=1.3×107 g/mol,Mw/Mn 1.05),并配制了10-7 g/mL级别的极稀水溶液,用光散射首次观测到了高分子单链塌缩的构象转变.PNIPAM的低临界溶液温度(lower critical solution temperature,LCST)约为32 °C. 图7对比了6.7×10-7 g/mL PNIPAM在相变前后的动、静态光散射结果. 在35.9 °C时,水是PNIPAM的不良溶剂,Rg从30.1 oC的127 nm减小到17.9 nm,Rh也发生了类似变化. Rg/Rh在2个温度的数值分别为1.5和0.72,表明PNIPAM在30.1 oC时为线团构象,而升温到35.9 °C时则转变为密实球的构象.Fig. 7Typical angular dependence of Hc/Rvv of PNIPAM in water at two different temperatures, where the polymer concentration is 6.7×10-7 g/mL. The inset shows the corresponding hydrodynamic radius distributions f(Rh) of the PNIPAM chains respectively in the coil and the globule states. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).在连续的升温和随后的降温过程中,Rg/Rh随温度并不是单调变化的. 如图8(a)所示,在升温过程至30.6 °C之前,Rg/Rh基本保持在1.5左右,表明PNIPAM为无规线团构象;在30.6~31.6 °C 温度区间,Rg/Rh 从1.5快速降低到1.0,此时的链构象可归结为褶皱的线团(crumpled coil);继续升温到32.4 °C时,Rg/Rh骤降到0.56,所对应的是熔融球构象(molten globule),即表面密度低、内部密度高的球体;在随后的升温过程中,Rg/Rh逐渐增加到0.775, 所对应的是常规的球体. 图8(b)对比了不同温度时PNIPAM的链构象示意图及相应的链密度分布. 在随后的降温过程中,Rg/Rh的变化过程出现了明显的滞后,这可能是在球体状态下形成了某种链内结构所造成的.Fig. 8(a) Temperature dependence of Rg/Rh of PNIPAM chains during coil-to-globule (heating) and globule-to-coil (cooling) transitions. (b) Schematically showing the four thermodynamically stable states and their corresponding chain density distributions (W(r)) along the radius during coil-to-globule transitions. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).4.2光散射测定超支化分子的标度关系除线性高分子外,光散射在测定具有复杂构型的高分子样品中也具有独到的优势. 以支化高分子为例,李连伟课题组制备得到了支化点间长度等同的“完美”支化高分子,并利用光散射技术确定了支化高分子尺寸和聚合度之前的标度关系[52].对于满足支化随机、支化点间长度等同的单分散高分子样品,其回转半径Rg与支化分子总的单体数Nt以及临界支化点间的单体数Ns之间存在如下的标度关系:其中b是库恩长度. 对于在θ溶剂中ν值的大小,不同理论有着不同的认识. 平均场理论认为 ν=0.25,而Flory理论则预测ν=0.44. 由于理想的支化高分子难以得到,在此之前尚无实验数据进行验证.李连伟课题组合成了不同分子量的支化聚苯乙烯(h-PS),并用静态光散射测定了重均分子量. 对于高分子量样品,qRg 1,采用Berry plot(参见公式(14))进行数据处理. 低温下,环戊烷是h-PS的不良溶剂,而高温下是良溶剂. 通过测量多个温度下体系的第二维里系数A2,找到其由正值转变为负值的临界点,即可得到θ温度,其值为304~307 K.通过对静态光散射数据进行处理得到了形状因子Rvv(q)/Rvv(0) (图9(a)). 线性拟合qRg 3的数据,利用公式(27)得到支化分子的分形维数为2.4,并进一步求得ν约为0.42. 另外,ν值还可以从支化样品的Rg~Mw 的双对数关系中直接得到. 如图9(b)所示,h-PS在环戊烷溶剂中302.1 K的ν约为0.47. 2种方法得到的结果是吻合的,均支持Flory理论的预测.Fig. 9(a) qRg dependence of the normalized excess Rayleigh ratio [RVV(q)/RVV (q=0)] for h-PS and (b) weight-average molar mass (Mw) dependence of chain size (R) for different h-PS in cyclopentane at 302.1 K (Reprinted with permission from Ref.‍[52] Copyright (2020) American Chemistry Society).4.3用时间分辨光散射表征体系的动态变化前文中介绍的光散射理论都是针对平衡态体系的. 如果体系发生变化所需的时间远超过光散射的采样时间,就能够在保证准确度的情况下,利用光散射技术原位、在线跟踪聚合、组装、解离、降解等过程,获得分子量、尺寸等随时间变化的信息,并以此来剖析机理,也就是常说的时间分辨的光散射技术. 这里以聚合诱导的胶束化过程为例来说明该技术的特点和优势[53]. 类似的经典案例还有利用GPC-LLS联用技术监测高分子的降解过程[54],监测支化高分子的聚集与解散[55],以及监测噬菌体喷射DNA的过程[56]等.氯仿是聚氧乙烯(PEO)的良溶剂, 苯乙烯(S)和马来酸酐(MAn)交替共聚物的不良溶剂. 运用可逆加成断裂转移(RAFT)活性聚合技术,让含有PEO(聚合度114)的大分子链转移剂在氯仿中进行苯乙烯和马来酸酐的交替共聚,生成PEO-b-P(S-alt-MAn). 当P(S-alt-MAn)的聚合度达到某临界值时,就会发生胶束化. 取决于浓度、温度、链长等因素,该过程的时间跨度可达10 h,因此适合用时间可分辨的光散射技术进行表征.聚合反应的各种试剂和溶剂经滤除尘后,收集于无尘的光散射样品瓶中,并用高纯氮吹扫5 min以除去体系中的氧气. 把样品瓶放入恒温(55±0.01) °C散射仪中,计时开始,交替进行SLS和DLS测量. 取决于散射光强,DLS的采样时间从10 s到2 min不等. 图10 是PEO引发剂为1.38 mg/mL时,Rh分布随时间的变化情况. 在229 min时,体系中除了聚合物单分子外(Rh为2~3 nm),还出现Rh约100 nm聚集体(图10(A)),但散射光强弱,证明此类聚集体比较松散. 随时间推移,单分子含量减少,聚集体含量增加,尺寸分布也变窄(图10(B)). 在373 min时,体系中出现了Rh约20 nm的另外一种聚集体(图10(C)),并伴随着大分子单体和100 nm聚集体含量的减少(图10(D)),此时散射光强开始急剧增加,说明新聚集体的链密度较高. 最终体系中仅存在尺寸为20 nm的聚集体,即大分子胶束.Fig. 10Distribution of hydrodynamic radius during polymerization at different time at 30°. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.[53] Copyright (2008) American Chemistry Society).由于在373 min之前体系中存在多分布,用静态光散射测定分子量和Rg没有实际意义. 当体系中只存在20 nm的聚集体时,就可以用静态光散射测定Rg,并结合动态光散射的结果,对粒子构象进行分析. 由于光强随时间在发生变化,而Rg的测定需要同一时间的光强角度依赖性数据. 可行的做法是依次测量30°、45°、60°、75°、90°这5个角度下光强数据,并记录时间,直至反应结束. 这样就得到了5条不同角度的散射光强随时间的变化曲线. 使用MATLAB中的cubic spline平滑拟合并插值,可得到任意时间下的光强角度依赖性数据,从而分析得到Rg和分子量. 尽管胶束化过程与浓度相关,无法进行浓度外推,但从严格意义上来讲,这种单一浓度测定的胶束尺寸仍然是表观数据. 如图11所示,随着聚合反应的进行,Rh,app从380 min的23 nm单调增加至840 min的40 nm;而Rg,app在500 min之前快速减小,从53 nm减至20 nm,后基本保持不变. Rg,app/Rh,app则从~1.8降低至~0.5,说明了该聚集体的构象从松散的聚集体向密实球转变. 由于最终聚集体的核是P(S-alt-Man)形成的密实球,而外围的PEO链仍然处在良溶剂中,为线团构象,因此Rg,app/Rh,app可低至0.5左右,类似熔融球构象. 这些结果表明,当P(S-alt-MAn)的聚合度到达临界聚集值时,嵌段共聚物并不是一步组装成胶束结构,而是首先形成具有松散结构的聚集体,继而发育成胶束结构.Fig. 11Time dependence of Rg,app and Rh,app in the polymerization-induced self-assembly process. The inset shows the changes in Rg,app/Rh,app. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.‍[53] Copyright (2008) American Chemistry Society).4.4去偏振光散射表征生理介质中的纳米粒子随着现代生物医学技术的发展,纳米粒子在药物缓释、基因传递、生物传感和成像等领域得到了长足发展. 纳米粒子与生物介质的相互作用决定了纳米粒子的细胞中的归宿,包括吸附、分布、代谢和清除,因此原位、无扰跟踪纳米粒子在生物介质中的动态过程就显得尤为重要. 荧光标记是目前最常用的方法,但荧光基团毫无疑问会改变纳米粒子的表面性质.原位、无扰对体系进行检测是光散射技术的优势. 由于生物介质中高含量的蛋白质等物质会严重干扰纳米粒子的散射光,这使得常规的偏振光散射(VV)并不适于复杂生物体系的研究(图12(a)). 但由于多晶结构的存在,无机纳米粒子不会是完美的球形,总会存在非均质的内部结构,从而能够改变偏振光的方向. 因此采用去偏振动态光散射(depolarized DLS,DDLS),即入射光为V方向偏振,但收集H方向偏振的散射光,就能够有效滤除生物介质产生的背景散射光(图12(b))[57].Fig. 12Depiction of nanoparticles and the bio-matrix background as seen in standard polarized (a) and depolarized (b) dynamic light scattering experiments, respectively. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).Balog团队利用DDLS技术对比研究了柠檬酸稳定的金纳米颗粒以及不同端基聚乙二醇链包覆的金纳米颗粒在四种不同的生物介质(磷酸盐缓冲液PBS、牛血清白蛋白的PBS溶液、培养基DMEM以及添加了牛血清蛋白的DMEM)中的动态行为. 所使用的仪器是商业化的3D光散射仪. 激光光源为21 mW,632.8 nm的氦氖激光器,散射光信号由装有集成准直光学元件的单模光纤收集,并传递至2个高灵敏度的APD探测器进行分析. 结果表明,DDLS有效地屏蔽了背景散射光,从而能够跟踪金纳米颗粒在不同介质中的聚集过程. 如图13所示,金纳米颗粒形成的聚集体尺寸及其分布既与颗粒表面的涂层有关,更受介质组分的影响. 所得结果得与扫描电镜的结果一致,证明了DDLS原位、无扰跟踪研究复杂体系动力学过程的可靠性.Fig. 13Time-resolved DDLS study started promptly after incubating the Au NPs in the biological media. The dashed lines correspond to the Au NPs in PBS buffer. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).5结语与展望本文介绍了分别对应高分子稀溶液、浓溶液和固体的光散射技术. 其中针对高分子稀溶液的动、静态光散射技术和针对高分子球晶的固体散射技术都是比较成熟的手段,在高分子体系的研究中发挥着不可替代的作用. 光散射技术最显著的优势是能够对体系实现原位、无扰的表征. 伴随着生物医学、活性软物质等领域的发展,针对复杂体系的光散射技术将具有更广阔的应用前景.致谢感谢赛普瑞生的牛爱珍博士和布鲁克海文的王继军工程师提供商业化仪器的相关资料.参考文献1Rayleigh L. Phil Mag, 1871, 41: 107-1202Rayleigh L. Phil Mag, 1899, 47:566-572. doi:10.1080/147864499086212983Debye P. Ann Phys, 1915, 351: 809-823. doi:10.1002/andp.191535106064Gans R. Ann Phys, 1925, 381: 29-38. doi:10.1002/andp.192538101035Einstein A. Ann Phys, 1910, 338: 1275-1298. doi:10.1002/andp.191033816126Berne B J, Pecora R. Dynamic Light Scattering. With Applications to Chemistrys, Biology, and Physics. New York: Dover Publications, Inc., 2000. 57Pecora R. J Chem Phys, 1964, 40: 1604-1614. doi:10.1063/1.17253688MegenVan, Pusey P N. Phys Rev A, 1991, 43: 5429-5441. doi:10.1103/physreva.43.54299Urban C, Schurtenberger P. J Colloid Interface Sci, 1998, 207: 150-158. doi:10.1006/jcis.1998.576910Lehner D, Kellner G, Schnablegger H, Glatter O. J Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532711Lilge D, Horn D. Colloid Polym Sci, 1991, 269: 704-712. doi:10.1007/bf0065740812Wiese H, Horn D. J Chem Phys, 1991, 84: 6429-6443. doi:10.1063/1.46027213Phillies G D J. J Chem Phys, 1981, 74: 260-262. doi:10.1063/1.44088414Pusey P N. Curr Opin Colloid Interface Sci, 1999, 4: 177-185. doi:10.1016/s1359-0294(99)00036-915Meyer W, Cannell D, Smart A, Taylor T, Tin P. Appl Opt, 1997, 36: 7551-7558. doi:10.1364/ao.36.00755116Zakharov P, Bhat S, Schurtenberger P, Scheffold F. Appl Opt, 2006, 45: 1756-1764. doi:10.1364/ao.45.00175617Maret G, Wolf P E Z. Phys B, 1987, 65: 409-413. doi:10.1007/bf0130376218Brillouin L. Ann Phys, 1922, 17: 88-122. doi:10.1051/anphys/19220917008819Stein R S, Rhodes M B. J Appl Phys, 1960, 31: 1873-1884. doi:10.1063/1.173546820Stein R S, Chu W. J Polym Sci, Part A: Polym Chem, 1970, 8: 1137-1157. doi:10.1002/pol.1970.16008070921Van Aartsen J J, Stein R S. J Polym Sci, Part B: Polym Phys, 1971, 9: 295-311. doi:10.1002/pol.1971.16009020622Huglin M B. Light Scattering from Polymer Solutions. London: Academic Press, 1972. 204-28923Wolfgang S. Light Scattering from Polymer Solutions and Nanoparticle Dispersions Series. Translated by Zheng Cui, Liang Dehai. Beijing: China Machine Press, 2012. 1-2524Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 19. doi:10.1016/b978-0-12-174551-6.50005-725Hua W. Chem Phys, 2010, 367: 44-47. doi:10.1016/j.chemphys.2009.10.01926Zhao Zeqing(赵择卿), Lu Danian(陆大年), Yang Dingchao(杨定超). Light Scattering Technology(光散射技术). Beijing(北京): China Textile&Appare lPress(纺织工业出版社), 1989. 28-3027Bushuk W, Benoit H. Can J Chem, 1958, 36: 1616-1626. doi:10.1139/v58-23528Wu C, Fai K, Luo W, Zhu X, Ma D. Macromolecules, 1994, 27: 6055-6060. doi:10.1021/ma00099a01829Teraoka I. Polymer Solutions: An Indroduction to Physical Properties. New York: John Wiley&Sons, Inc. 2002. 168-171. doi:10.1002/047144026430Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 84. doi:10.1016/b978-0-12-174551-6.50005-731Kanematsu T, Sato T, Imai Y, Ute K, Kitayama T. Polym J, 2005, 37: 65-73. doi:10.1295/polymj.37.6532Delaye M, Gromi Ec A. Biopolymers, 1983, 22: 1203-1221. doi:10.1002/bip.36022041333Vanhoudt J, Clauwaert J. Langmuir, 1999, 15: 44-57. doi:10.1021/la980747r34Gulari Esin, Gulari Erdogan, Tsunashima Y, Chu B. J Chem Phys, 1979, 70: 3965-3965. doi:10.1063/1.43795035Kim S H, Ramsay D J, Patterson G D, Selser J C. J Polym Sci, Part B: Polym Phys, 1990, 28: 2023-2056. doi:10.1002/polb.1990.09028111136Benmouna M, Vilgis T A, Hakem F. Macromolecules, 1992, 25: 1144-1152. doi:10.1021/ma00029a02237Buhler E, Rinaudo M. Macromolecules, 2000, 33: 2098-2106. doi:10.1021/ma991309+38Litmanovich E A, Ivleva E. M Polym Sci, 2010, 52: 671-678. doi:10.1134/s0965545x1006014339Corrotto J, Ortega F, Vázquez M, Freire J J. Macromolecules, 1996, 29: 5948-5954. doi:10.1021/ma950739740Murphy R M, Yarmush M L, Colton C K. Biopolymers, 2010, 31: 1289-129541Casassa Edward F. Polym J, 1972, 3: 517-525. doi:10.1295/polymj.3.51742Chi W. Polym Adv Technol, 2015, 8: 177-18343Lehner D, Kellner G, Schnablegger H, Glatter O J. Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532744Stieber F, Richtering W. Langmuir, 1995, 11: 4724-4727. doi:10.1021/la00012a02445Zakharov P, Scheffold F. Light Scattering Reviews 4. Bremen: Berlin Heidelberg: Springer-Verlag, 2009. 433-467. doi:10.1007/978-3-540-74276-0_846Pine D J, Weitz D A, Chaikin P M, Herbolzheimer E. Phys Rev Lett, 1988, 60: 1134-1137. doi:10.1103/physrevlett.60.113447Mason T G, Gang H, Weitz D A. J Opt Soc Am A, 1997, 14: 139-149. doi:10.1364/josaa.14.00013948Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N. Am Inst Phys, 2008,1027: 1150-1152. doi:10.1021/la802323x49Morse D C. Macromolecules, 1998, 31: 7044-7067. doi:10.1021/ma980304u50Wang X, Qiu A X, Wu C. Macromolecules, 1998, 31: 2972-2976. doi:10.1021/ma971873p51Wu C, Zhou S. Macromolecules, 1995, 28: 8381-8387. doi:10.1021/ma00128a05652Zhu M, Yang J, Li L, Duan X, Li L. Macromolecules, 2020, 53: 7980-7987. doi:10.1021/acs.macromol.0c0140753Ji W, Yan J, Chen E, Li Z, Liang D. Macromolecules, 2008, 41: 4914-4919. doi:10.1021/ma800531254Yang J, Li Y, Hao N, Umair A, Liu A, Li L, Ye X. Macromolecules, 2019, 52: 1173-1187. doi:10.1021/acs.macromol.8b0178455Hao N, Duan X, Yang H, Umair A, Zhu M, Zaheer M, Yang J, Li L. Macromolecules, 2019, 52: 1065-1082. doi:10.1021/acs.macromol.8b0236456Löf D, Schillén K, Jönsson B, Evilevitch A. Phys Rev E, 2007, 76: 011914. doi:10.1103/physreve.76.01191457Balog S, Rodriguez-Lorenzo L, Monnier C A, Obiols-Rabasa M, Rothen-Rutishauser B, Schurtenberger P, Petri-Fink A. Nanoscale, 2015, 7: 5991-5997. doi:10.1039/c4nr06538g原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21184&lang=zhDOI:10.11777/j.issn1000-3304.2021.21184《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放
    黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放背景图片背景介绍:几十年来,像黄石国家公园这样的热液环境中气体的释放一直是热门研究方向。先前在黄石公园进行的研究量化了火山口和大气之间交换的二氧化碳量,强调了黄石公园如何通过火山口每年排放约4.4×107公斤的二氧化碳。诺里斯间歇泉盆地(Norris Geyser Basin, NGB)位于黄石公园的西北部,是蒸汽船间歇泉的所在地。蒸汽船间歇泉在公园的数百个间歇泉中脱颖而出,是因为它向空气中喷射的流体-气体混合物可以超过115米的高度,使其成为世界上最高的喷发活跃间歇泉。气体主要由可冷凝蒸汽和不可冷凝CO2组成,还有少量其它不可冷凝气体,如CH4。虽然蒸汽船并不定期喷发,但间歇泉最近变得非常活跃。2000年至2017年期间,发生了11次火山喷发;然而,在2018年3月至2021年2月24日期间,蒸汽船喷发了129次。为了研究气体排放的变化是否可以作为间歇泉喷发的前兆,2019年6月12日,我们连续测量了间歇泉在一次喷发事件前后30米处甲烷和二氧化碳的扩散排放。实验方法:本研究使用了两台仪器来测量地表通量。Eosense自动呼吸室(AC)被安装在距离间歇泉约30米的地面上,在间歇泉和蓄水池泉之间。AC被编程为关闭15分钟,允许气体从地下逸出积聚,打开5分钟冲洗一次,完成一个周期,期间共进行17次测试,其中喷发前完成了7次测量(包括前兆测量),喷发后进行了10次测量。自动呼吸室(AC)通过管路连接到Picarro G2201-i CO2、CH4浓度及同位素分析仪,组成CRDS-AC通量及同位素观测系统,该系统可以测量CH4和CO2的浓度及其碳同位素组成,δ13C-CH4和δ13C-CO2大约每4s测量一次。在浓度-时间曲线稳定1 - 2分钟后的前3 - 4分钟,用斜率乘以自动呼吸室(AC)内部体积和底座横截面积的商来估算通量。CRDS仪器放置在多功能车(GorrillaCartsGORMP-12)上。在车上,由两节12V直流深循环船用电池并联连接,通过直流-交流电源逆变器为分析仪供电。期间还使用了仅测量CO2通量的单个便携式呼吸室(PAC)。该PAC是一个闭路EGM-5便携式CO2气体分析仪(PP Systems, Amesbury, MA),腔室直接连接到分析仪,提供二氧化碳浓度的高频繁测量(10赫兹)。使用线性模型计算CO2通量。PAC系统在另外三个标有标记的位置进行移动测量,这增加了本研究期间测量的空间足迹。图1所示:诺里斯间歇泉盆地东南部的地图。蒸汽船间歇泉(六边形)位于酸性到中性的地热区域。地图上还标注了20世纪初钻探的三口井。气体通量测量结果:在单次蒸汽船间歇泉喷发前~3 h、喷发中和喷发后~ 2 h测量了地表CO2和CH4通量以及其碳同位素组成。以观察扩散排放活动的变化是否与喷发的特定阶段有关,从而揭示诺里斯间歇泉盆地中地下气体的运移机制。在喷发之前和整个喷发过程中,我们使用Picarro CRDS分析仪测量弥漫性气体排放,我们将其报告为地表通量。对于CH4,喷发前后的通量在误差范围内相同,平均值分别为42.3±1.3和42.3±1.6 mg m&minus 2 day&minus 1。同样,CO2在喷发前(50.3±1.8 g m&minus 2 day&minus 1)和喷发后(52.3±2.2 g m&minus 2 day&minus 1)表现出相似的通量。然而,在喷发之前(不到25分钟),与之前6次Picarro CRDS分析仪测量的平均值有偏差。这第七组测量发生在从静息期阶段到预演期阶段的过渡期间,显示CH4和CO2的通量分别下降了58%和50%。这种偏离发生在静息期(a)的结束和预演期(b)的开始,在绘制的时间序列中清晰地说明了这一点,该阶段称为前体测量(图2)。图2所示:测量期间CH4和CO2通量的时间序列(左y轴)和平滑的1分钟平均连续浓度测量值(右y轴)。当气体室关闭时,气体浓度开始增加,然后在通量测量结束时打开,气体浓度恢复到环境浓度,形成锯齿状图案。浅阴影区域表示喷发前(b)和小喷发(c)阶段。较暗的阴影区域描绘了主要的喷发,倒数第二个区域突出了液体主导阶段(d),最暗的阴影区域显示了主要喷发的蒸汽主导阶段(e)。稳定碳同位素测量结果连续的CRDS-AC δ13C测量表明,重同位素在每个腔体中都有富集。在每个气室围封期间最后10次δ13C测量值的平均值作为δ13C源值。结果得出δ13C-CH4 = - 27.5±0.3‰,δ13C-CO2 = - 3.9±0.1‰(图4a)。这些源组成比各自的大气端元(CH4≈&minus 47‰和CO2≈&minus 8‰)的同位素重。唯一的例外是一组前体测量,其中δ13C-CH4为&minus 35.7±2.1‰,δ13C-CO2为&minus 6.2±0.4‰(图4b)。前驱体测量值明显比非前驱体测量值轻,并且更接近大气成分。将测量到的通量和气源同位素组成结合在一个图中(图3b),突出了前驱体测量的异常性质。图左下角的基准面表示在图2所示的时间序列中也可以观察到的前兆信号。图3所示:(a)测量期间的碳同位素值。阴影区域表示喷发开始后的时期。两幅图中黑色的水平虚线表示大气的碳同位素组成,而浅灰色的虚线表示地幔源。(b)配对δ13C和通量测量。δ13C数据(左图为δ13C- CH4,右图为δ13C- CO2)利用近10次测量的平均值估算了气源气体的稳定碳同位素组成。图4所示:二氧化碳(δ13C-CO2)和甲烷(δ13C-CH4)的碳同位素比较。每个圈地都用观测到的喷发时间序列的阶段(a-e)来标记,在同一阶段出现的测量顺序是连续的数字(参见图2,以获得阶段名称的完整解释)。“前兆”测量被清楚地指出。颜色方案表示在15分钟的腔室封闭期间记录基准的相对时间,其中深色出现在开始,浅色出现在结束。每个图中的黑色菱形代表大气同位素组成的近似端元。气体扩散途径模型:虽然蒸汽船喷发的具体机制不能仅由气体测量来支持,但通过整合收集的数据和先前发布的信息,这里共享了该系统的概念模型(图5)。大量证据表明,温泉水起源于渗入并流经流纹岩的大气水,以补给NGB和公园其他地方的间歇泉。从热成因δ13C-CH4特征和地幔样δ13C-CO2组成来看,系统中大部分气体来源于深部。在两次喷发之间,我们认为存在地幔气体从深层源向上的稳态输送(图5a)。这些气体溶解在水中,在含水层顶部溶解,向地表迁移,与浅层气体混合,然后以恒定的速率从地表排出。图5所示:说明地下管道和扩散气体到地面的途径的概念模型。注意深层烃源岩和补给储层之间的区别。(A)突出显示间歇泉在喷发之间的状态,(B)展示了前兆窗口(喷发的~ 10-25分钟)。结论:在距离蒸汽船间歇泉开口30 m处进行的光腔摔荡光谱测量显示,在2020年6月12日观测到的一次喷发开始前约10-25分钟,CH4和CO2的通量分别急剧下降58%和50%。这一证据表明,就在这次喷发之前,充满气体的水向间歇泉管道流动。同样,CH4 (δ13C-CH4)和CO2 (δ13C-CO2)的前体碳同位素测量值(分别为- 35.7±2.1‰和- 6.2±0.4‰)明显轻于非前体碳同位素测量值(- 27.5±0.3‰ &minus 3.9±0.1‰),δ13C在喷发开始后立即恢复到稳态值。热水和天然气的高估计平衡温度表明,至少在470米深处有一个深源。之前的研究呼吁监测黄石间歇泉的气体排放率,而这项研究为如何有效地进行弥漫气体测量和研究提供了一个模型。原文链接:https://doi.org/10.1016/j.jvolgeores.2021.107233研究应用相关仪器:
  • ADVANCE RIKO发布激光闪光法热常数测量系统新品
    激光闪光法热常数测量系统TC-1200RH采用符合JIS/ISO标准的激光闪光法测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 第3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(最高1200℃)最大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:最多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:最高可达1500℃创新点:使用红外加热炉直接加热样品可以迅速使温度稳定,大大缩短测量时间;控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而提高测量精度。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。激光闪光法热常数测量系统
  • 福建省计量院新建成一项福建最高计量标准
    日前,由福建省计量院建立的“氯离子电通量和扩散系数测定仪”福建省最高计量标准通过了专家组考核。  氯离子电通量和扩散系数测定仪是测定混凝土抗氯离子渗透性能的试验仪器,混凝土抗氯离子渗透性能是衡量混凝土耐久性的一个重要指标。该类仪器已在厦深铁路、向莆高速铁路、厦漳跨海大桥、翔安海底隧道、平潭海峡大桥等以钢筋混凝土为主体的基础设施建设中得到了广泛应用。省计量院建成氯离子电通量和扩散系数测定仪校准装置,将为我省相关仪器使用单位提供校准技术服务,为保障我省重大基本建设工程质量提供技术支撑,社会效益和经济效益显著。文章转载自:国家质量监督检验检疫总局
  • 结构材料及缺陷、界面、表面,相变与扩散分会场日程安排-2018年全国电子显微学学术年会
    p 2018年全国电子显微学学术年会将于10月23-27日(28日离会)在成都市禧悦酒店召开。结构材料及缺陷、界面、表面,相变与扩散分会场日程安排如下:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/94f5ce05-13b6-456c-8448-d2a2488b8688.jpg" style="" title="03.jpg"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/e1df6f04-6306-440a-aaba-20b7424f0a7f.jpg" style="" title="02.jpg"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/ec1ad9c6-8e33-4ab4-a183-e4d0fbb9eaf8.jpg" style="" title="04.jpg"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/272b0937-ce70-4c9c-b549-7cc04ef38665.jpg" style="" title="01.jpg"//ppbr//p
  • 分子筛限域传质机制研究获进展
    近日,中国科学院精密测量科学与技术创新研究院郑安民研究团队在沸石分子筛限域扩散领域取得新进展。该研究利用分子筛限域环境实现长链烷烃分子自由度的精准调控,通过分子“悬浮”效应实现其超快扩散。相关研究成果发表在《自然-通讯》(Nature Communications)上。  亚纳米级别的多孔材料是典型的限域反应器,其中,吸附质的物理化学性质与常规体相下有显著差异。前期研究表明,分子筛限域孔道中的扩散系数与常规体相下呈现出跨越数量级的区别。常规情况下限域孔道会抑制分子的扩散,进而影响催化剂的反应和分离效率。如何在这种限域空间中实现快速的扩散是催化和分离工艺中亟待解决的难题, 也是近年来科学家的目标。  该团队基于多尺度理论模拟发现,在一定孔径范围内,分子筛限域孔道中存在孔径越大长链烷烃扩散越慢的反常扩散现象。受到超级高铁运行原理的启发,科研人员建立了一系列亚纳米直孔道模型,确定了长链烷烃实现快速扩散的条件——客体分子“悬浮”在孔道正中心运行并保持线性构型(图1)。研究人员根据该模型筛选出一系列真实存在的孔径适中的分子筛(TON、MTW、AFI和VFI),验证了这一理论模型的正确性。进一步,研究基于主客体相互作用、弯曲角度、扩散轨迹和扩散自由能分析(图2),揭示了调控长链分子自由度达到分子“悬浮”的条件从而实现超快扩散的微观机理。该团队进一步与中科院大连化学物理研究所叶茂团队合作,基于吸附速率法扩散实验验证了分子筛中长链烷烃的超快扩散行为。在TON、MTW和AFI分子筛中短链(C4)和长链烷烃(C12)的扩散趋势与孔径呈现出完全相反的状态:短链烷烃的扩散系数随着孔径的增大而增加,而长链烷烃的扩散系数随着孔径的增大而减小。该工作利用红外实验验证了不同孔径中长链分子的形变差异(小孔径中分子形变较小,大孔径与之相反),这与分子动力学模拟的结论一致,揭示了线性长链烷烃在限域孔道中的超快扩散机制。  本工作根据超级高铁的运行原理结合限域分子的扩散“悬浮”效应,设计出长链烷烃的超快扩散模型,将其推广到分子筛筛选体系中,并结合理论和实验证实了该模型的可行性和准确性。这为限域孔道中长链分子的扩散调控提供了新视角,也为分子筛的设计和筛选提供了理论指导。研究工作得到科技部和国家自然科学基金的支持。
  • 兰光发布C130H气体渗透测试系统新品
    Labthink面向全球同步推出纪念款创新力作——C130H气体渗透测试系统,一款基于压差法测试原理的实验室精密试验仪器,帮助食品、制药、包装等科研及检测领域实现薄膜、片材的气体透过率、溶解度系数、扩散系数、渗透系数测试,高效推进其成品质控、新品研发进程。C130H,彻底颠覆了Labthink以往阻隔性仪器的外观和结构,汇聚了兰光30年众多关键技术创新,我们希望通过简单的操作、强大的功能和全面的定制服务,帮助用户在工作时间内完成更多的试验任务,获得更加可靠的试验结果。C130H气体渗透测试系统,基于压差法测试原理,专业适用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片在各种温度下的气体透过率、溶解度系数、扩散系数、渗透系数的测定。符合GB、ISO、ASTM等多项国家及国际标准要求。产品特点:1、机构设计革新,自动化创新升级:全新自动弹出屉式测试腔,易学更易用自动夹紧试样,省时省力,夹紧力度一致,密封更佳配件均采用世界知名品牌进口元器件,性能稳定可靠智能测试模式,仅需设定试验温度,一键测试,自动停机科研测试模式,提供灵活的参数与功能设置,便于分析试样的气体透过率、溶解度系数、扩散系数以及渗透系数2、精度效率,突破升级:原装进口高精真空传感器,实现0.01~0.09 cm3/ m2• 24h• 0.1MPa超高阻隔材料的准确且可重复性测试原装进口气动控制系统,具有超低故障率和超长使用寿命,确保系统整体密封良好,保障测试精度原装进口高精真空泵,极限压可达0.2Pa,抽真空速率提升系统自动控制真空泵,无需人工开启/关闭,增效降耗中、低阻隔性材料,测试时间<4小时(含抽真空时间)高阻隔性材料,测试时间<8小时(含抽真空时间)高效三腔,数据独立,运行独立,支持随时更换试样测试3、温度压力,恒稳出色:360°气流循环恒温技术,实现测试温度波动低于0.05℃,避免外界环境影响兰光独有的试验过程自动补压技术,实现高压腔压差恒定,压力变化小于0.2 KPa支持10KPa~210KPa范围内灵活设定高压腔压力,系统精确保压4、功能丰富,立足标准支持个性定制:支持单一气体、混合气体以及易燃易爆等危险气体测试(危险气体需特殊定制)支持不同湿度的试验气体测试,自动精确控制,无需人工干预(加湿需特殊定制)兰光独有的数据拟合功能,可拟合极限温度下材料的气体透过率、渗透系数、溶解度系数、以及扩散系数提供标准膜快速校准,保证检测数据的准确性和通用性提供试验温度、压力校验口,可快速校准实时显示压力-时间曲线、透过率-时间曲线,温度-时间曲线真正符合压差法测试标准对系统的要求,并可计量5、高端嵌入式计算机系统平台,安全易用:一体化设计,仪器与软件合二为一,从根本上杜绝了由计算机病毒、误操作等引起的系统软件故障,保证了设备运行的可靠与数据的安全搭配标准显示器、鼠标、键盘,采用Windows操作界面,方便试验操作及数据展示系统内嵌USB接口和网口,方便系统的外部接入和数据传输符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选)测试原理:C130H采用压差法测试原理,将预先处理好的试样放置在上下测试腔之间,夹紧,首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空;当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调);这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测分析,从而得出所测试样的各项阻隔性参数。参照标准:ISO 15105-1、ISO 2556、GB/T 1038-2000、ASTM D1434、JIS K7126-1、YBB 00082003技术参数:测试范围:0.01~50,000 cm3/ m2• 24h• 0.1MPa分辨率:0.001 cm3/ m2• 24h• 0.1MPa试验温度:10℃~50℃(室温23℃)温度分辨率:0.01℃温度波动:±0.05℃温度准确度:±0.3℃(校验口)真空分辨率:0.01 Pa真空精度:示值±0.2%(传感器规格的1%-100%)测试腔真空度: 10 Pa试样数量:3件(数据各自独立)其他数量可定制:试样尺寸:Φ97 mm透过面积:38.48 cm2试验气体: O2、N2、CO2等气体(气源用户自备)试验气体加湿功能(需特殊定制)试验压力:10kpa~210kpa(任意设定)气源压力:0.5 MPa~0.6 MPa(73psi~87psi)接口尺寸:Φ6 mm聚氨酯管外形尺寸:710mm(L) × 350mm(W) × 630mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:约100kg产品配置:标准配置:主机、显示器、键盘、鼠标、取样器、真空油脂(美国)、滤纸真空泵(英国)、Φ6 mm聚氨酯管(3m)选购件:GMP计算机系统要求、DataShieldTM数据盾、空压机备注:本机气源进口为Φ6 mm聚氨酯管;气源用户自备创新点:C130H气体渗透测试系统,基于压差法测试原理,专业适用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片在各种温度下的气体透过率、溶解度系数、扩散系数、渗透系数的测定。符合GB、ISO、ASTM等多项国家及国际标准要求。C130H是Labthink面向全球同步推出纪念款创新力作,彻底颠覆了Labthink以往阻隔性仪器的外观和结构,汇聚了兰光30年众多关键技术创新,我们希望通过简单的操作、强大的功能和全面的定制服务,帮助用户在工作时间内完成更多的试验任务,获得更加可靠的试验结果。(1)外形采用全新自动弹出屉式测试腔,易学更易用;自动夹紧试样,省时省力,夹紧力度一致,密封更佳;(2)智能测试模式,仅需设定试验温度,一键测试,自动停机;(3)精度效率,突破升级——配件均采用世界知名品牌进口元器件,性能稳定可靠;原装进口配件,确保测试数据精准稳定;C130H气体渗透测试系统
  • 单分子追踪技术助力一篇Nature子刊!实现整合素相互作用蛋白的功能与作用机制研究
    研究背景:  FERM结构域的蛋白家族中,黏着斑蛋白(kindlin)和踝蛋白(talin) 是进化上高度保守并且在FERM结构域中表现出高度同源性。kindlin家族在整合素(integrin)活化中发挥重要作用,参与integrin的双向信号传导,对整合素受体介导的细胞与细胞外基质的黏附、细胞-细胞外基质的黏附、细胞迁移、胚胎发育、损伤修复等过程中发挥关键作用。此外kindlin的异常还可以导致多种遗传性疾病的发生,同时kindlin家族作为重要的信号分子还参与了肿瘤的发生发展过程。  近日,《Nature Communications》刊登了Grégory Giannone等学者的最新研究成果,该团队使用Abbelight 3D单分子超分辨成像系统SAFe 360的超分辨-单分子追踪技术(SPT-PALM)研究了kindlin和talin等蛋白在细胞质膜中的扩散机制。  研究内容:  焦点黏着斑蛋白(FAs)家族广泛参与整合素依赖型细胞粘附、极性和迁移等过程,通过直接或间接的方式结合在细胞外基质(ECM)和肌动蛋白细胞骨架之间,并与具有不同结构、信号或支架功能的蛋白建立物理联系。然而FAs蛋白如何被引导到特定的纳米层以促进与特定靶点的相互机制目前尚不清楚。为探究其机制,Grégory Giannone等将kindlin的蛋白分子行为和3D纳米级定位与其在FAs内integrin激活中的功能联系起来,通过单蛋白追踪、超分辨成像以及功能分析kindlin在上膜的定位和扩散对integrin激活、细胞扩散和FAs形成过程,并通过研究发现kindlin通过与talin不同的途径来达到和激活integrin,为integrin激活期间的互补性提供了可能的分子基础。  首先,作者通过追踪integrin在细胞中不同区域的单分子运动轨迹,计算单个β1-integrin或者β3-integrin分子的扩散系数,并比较integrin在FA内和FA外的扩散系数,发现integrin在FA中有自由扩散(绿色轨迹),被束缚的区域扩散(黄色轨迹)和固定不动三种不同模式。不同的细胞中,integrin在FA外普遍表现出更快的扩散速度,更多倾向于纯自由扩散。同时Mn2+的处理会让更多的integrin分子倾向于固定不动,也即参与同kindlin和或talin相互作用。经过计算kindlin突变体和talin突变体中β1-integrin或者β3-integrin的扩散系数并比较,发现对于这两个突变体,Mn2+处理结果略有不同,kindlin突变体中integrin分子倾向于固定不动的比例相对于talin突变体较低一些。integrin,kindlin和talin在细胞中的扩散的轨迹分布于扩散系数分布  为了进一步分析kindlin和talin与integrin相互作用的机制,观测比较kindlin和talin单分子扩散轨迹可发现integrin和kindlin通过细胞膜自由扩散独立进入焦点黏着斑(FAs),而talin和paxillin通过胞浆自由扩散到达FAs。在FAs中integrin展现自由扩散和被束缚的扩散两种扩散模式,两种模式都是通过kindlin和talin的结合触发。自由扩散时integrin,kindlin和talin同时以正确的取向结合的概率非常低,Grégory Giannone等学者研究显示三者更倾向于如上图所示的模型,也即在质膜上自由扩散的integrin和kindlin会先形成不可移动的integrin-kindlin复合物(i);这种复合物可以限制整合素β端的方向,并有利于talin与近端NPxY基序的结合,从而形成短暂integrin-kindlin-talin的三元复合物(ii);kindlin可以间歇性地解离(iii)并再次(ii)与寿命更长的integrin-talin复合物重新结合。这种瞬态的integrin-kindlin-talin三元复合物的相互作用会大大延长integrin和talin的相互作用的持续时间。talin和kindlin脱附后integrin会继续恢复自由扩散的模式,直至再次和kindlin结合。kindlin和talin激活整合素的示意图模型  实验设备简介:  本实验中实用的单分子示踪系统是abbelight公司研发的3D单分子定位显微系统—SAFe 360,利用其特有的DAISY技术将xyz方向的定位精度提高至15 nm,可以精确观测蛋白颗粒的定位分布及其运动轨迹。除此之外,该设备还具备大视场和一键式操作,能够大幅度降低单分子定位操作技术的门槛,帮助研究者从事分子机制的研究。  典型采集实例:神经元超分辨成像大肠杆菌线粒体三维结构外泌体成像  参考文献:  [1] Orré, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." Nature communications12.1 (2021): 1-17.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制