当前位置: 仪器信息网 > 行业主题 > >

拉曼光谱研究

仪器信息网拉曼光谱研究专题为您整合拉曼光谱研究相关的最新文章,在拉曼光谱研究专题,您不仅可以免费浏览拉曼光谱研究的资讯, 同时您还可以浏览拉曼光谱研究的相关资料、解决方案,参与社区拉曼光谱研究话题讨论。

拉曼光谱研究相关的论坛

  • 【分享】表面增强拉曼光谱的研究进展

    本文从提高表面拉曼光谱检测灵敏度和空间分辨率两个方面的发展叙述表面增强拉曼光谱和针尖增强拉曼光谱的原理、方法、特点以及最新进展。对利用表面增强拉曼光谱和针尖增强拉曼光谱研究金属表面上分子吸附等方面的应用进行总结,并对他们的应用前景做了预测。

  • 心脏粘液瘤拉曼光谱分析研究

    近日,西安交通大学第一附属医院心血管外科研究人员发表论文,旨在通过测试心脏粘液瘤不同部位的拉曼光谱,寻找新的诊断方法,并探讨其病因学。研究指出,粘液瘤与正常心肌可能具有同源性,拉曼光谱技术对心脏粘液瘤具有诊断价值,对其起源研究具有一定指导意义。该文发表在2014年第11期《陕西医学杂志》上。  运用拉曼光谱原位探测技术分别对6例心脏粘液瘤的不同部位进行测试,得到并分析特征谱峰,辅以病理学光镜及电镜超微观察。  首次测得心脏粘液瘤的拉曼光谱,归属于蛋白质的1370cm-1为特征峰,归属蛋白质、核酸和脂类的1657cm-1、1699cm-1、1754cm-1峰,瘤蒂均强于瘤体,并与正常心肌位置相同。

  • 【转帖】拉曼光谱与红外光谱技术检验书画印泥的方法研究

    来源:知网空间。《第十四届全国光散射学术会议论文摘要集》2007年加入收藏 获取最新拉曼光谱与红外光谱技术检验书画印泥的方法研究余静 张云 【摘要】:正目前,艺术品盗窃已经成为全球主要的犯罪活动之一。书画真伪的判定在案件的侦察过程中具有重要的作用。鉴别书画真伪的方法很多,书画上的印文是书画真伪判定中常见的检验项目。传统的检验方法是书画专家凭经验识别真伪。我们应用拉曼光谱技术与红外光谱技术检验书画用印泥进行了研究,得到了满意的结果。【作者单位】:北京市刑事科学技术研究所 北京市刑事科学技术研究所

  • 拉曼光谱技术的原理及应用研究

    拉曼光谱技术的原理及应用研究

    [b][font=宋体]第1章 [/font][b][font=宋体]拉曼光谱发展历史[/font][/b][/b][font='Times New Roman']1928[font=宋体]年印度科学家拉曼实验发现[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]单色入射光透射到物质中的散射光包含与入射光频率不同的光,即拉曼散射。[/font][/font][font=宋体]他也[/font][font='Times New Roman'][font=宋体]因此获得诺贝尔奖。[/font][/font][font=宋体]但拉曼效应很弱,且当时[/font][font='Times New Roman'][font=宋体]散射光强度低[/font][/font][font=宋体],使得以拉曼效应为基础的拉曼光谱法[/font][font='Times New Roman'][font=宋体]经历[/font][/font][font=宋体]了[/font][font='Times New Roman']30[font=宋体]年的应用发展[/font][/font][font=宋体]严重[/font][font='Times New Roman'][font=宋体]限制期。直到[/font]1960[font=宋体]年后,激光技术的[/font][/font][font=宋体]引入[/font][font='Times New Roman'][font=宋体],拉曼光谱仪以激光作为光源,光的单色性和强度大大提高,[/font][/font][font=宋体]拉[/font][font='Times New Roman'][font=宋体]曼光谱技术才得以迅速发展。[/font][/font][font=宋体] [/font][b][font=宋体]第2章 [/font][b][font=宋体]拉曼光谱原理[/font][/b][/b][font='Times New Roman'][font=宋体]用波长比试样粒径小得多的单色光照射试样[/font][/font][font=宋体]时,大部分光会透过该样品,而小部分光被样品分子发生各个方向上散射。通过散射光的不同,这些散射过程又被分为瑞利散射和拉曼散射。[/font][font=宋体] [/font][b][font=宋体]第2.1节 [/font][b][font='Times New Roman'][font=宋体]瑞利散射[/font][/font][font=宋体]及[/font][font='Times New Roman'][font=宋体]拉曼散射[/font][/font][/b][/b][font=宋体]入射光的光子与物质分子的碰撞,既有弹性碰撞,又有非弹性碰撞,二者对于光子能量(频率)的影响是不同的。[/font][font=宋体]在光子和样品分子发生弹性碰撞的过程中,光子和分子之间没有能量交换,即光子只改变运动方向,而频率保持不变,因此散射光能量和入射光能量相同。这种弹性散射被称为瑞利散射。[/font][font=宋体]当光子和样品分子发生非弹性碰撞时,光子与分子之间发生能量交换,使得散射光能量和入射光能量大小不同,光的频率和方向都有所改变。这种由于非弹性散射导致出现其他频率的散射光的现象被称为拉曼效应,该过程被称为拉曼散射。[/font][font=宋体]拉曼散射的散射光强度约占总散射光强度的[/font][font='Times New Roman']10[/font][sup][font='Times New Roman']-6[/font][/sup][font=宋体][font=Times New Roman]~[/font][/font][font='Times New Roman']10[/font][sup][font='Times New Roman']-10[/font][/sup][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] [/font][b][font=宋体]第2.2节 [/font][b][font='Times New Roman'][font=宋体]拉曼[/font][/font][font=宋体]光谱理论[/font][/b][/b][table][tr][td][img=,272,167]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447256018_6817_3237657_3.jpg!w341x209.jpg[/img][/td][/tr][/table][table][tr][td][img=,272,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447351945_8433_3237657_3.png!w341x37.jpg[/img][/td][/tr][/table][font=宋体]样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。总的来说,就是散射物质光子吸收部分能量,或把自身的部分能量加到光子身上去,再发射出的光子就和原光子不相干,形成新的谱结构。[/font][font=宋体] [/font][font=宋体]我们将[/font][font='Times New Roman'][font=宋体]频率未变的[/font][/font][font=宋体][font=宋体]散射线(即[/font][font=宋体]ν[/font][/font][font='Times New Roman']=[/font][font=宋体]ν[/font][sub][font='Times New Roman']0[/font][/sub][font=宋体])称为[/font][font='Times New Roman'][font=宋体]瑞利线,[/font][/font][font=宋体][font=宋体]频率变低的散射线([/font][font=宋体]ν[/font][font=Times New Roman][/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体])[/font][/font][font=宋体]称为反斯托克斯线。[/font][font=宋体]由上图可知,[/font][font=宋体][font=宋体]瑞利线(黑[/font][font=Times New Roman]-[/font][font=宋体]蓝线):处于基态[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的分子受入射光[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的激发而跃迁到受激虚态后很快地跃迁回基态,将吸收的能量[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]以光子形式释放;处于激发态[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]的分子受入射光[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的激发而跃迁到受激虚态,然后跃迁回激发态,释放能量为[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体]的光子。[/font][font='Times New Roman']stokes[font=宋体]线[/font][/font][font=宋体][font=宋体](左边红[/font][font=Times New Roman]-[/font][font=宋体]黑线):从基态跃迁至受激虚态的分子,跃迁回[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]激发态,释放能量为[/font][font=Times New Roman]h[/font][font=宋体](ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=Times New Roman]-[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体])的光子。[/font][font='Times New Roman']anti-stokes[font=宋体]线[/font][/font][font=宋体][font=宋体]:从[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]激发态跃迁至受激虚态的分子,跃迁回基态,释放能量为[/font][font=Times New Roman]h[/font][font=宋体](ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=Times New Roman]+[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体])的光子。[/font][font=宋体]拉曼位移:即[/font][font='Times New Roman']Stokes[font=宋体]与[/font][font=Times New Roman]Anti-stokes[/font][font=宋体]散射光的频率与激发光之间频率的差值[/font][font=Times New Roman]Δ[/font][/font][font=宋体]ν。[/font][img=,426,39]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447471220_851_3237657_3.jpg!w533x49.jpg[/img][font='Times New Roman'] [/font][font=宋体] [/font][font=宋体]对于同一物质,[/font][font='Times New Roman'][font=宋体]拉曼位移与入射光频率无关,取决于分子振动能级的变化[/font][/font][font=宋体],其数值决定于振动的第一激发态与振动基态的能级差。因而,同一振动方式产生的拉曼位移频率与红外吸收的频率吧范围是相同的。[/font][font='Times New Roman'][font=宋体]不同的化学键或基态有不同的振动方式,决定了其能级间的能量变化,与之对应的拉曼位移是[/font][/font][font=宋体]具有[/font][font='Times New Roman'][font=宋体]特征[/font][/font][font=宋体]性[/font][font='Times New Roman'][font=宋体]的。[/font][/font][font=宋体]散射线强度:[/font][font='Times New Roman'][font=宋体]瑞利线的强度约为入射光的[/font]10[/font][sup][font='Times New Roman']-3[/font][/sup][font='Times New Roman'][font=宋体]量级[/font][/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']1][/font][/sup][font='Times New Roman'][font=宋体];较强的斯托克斯线则不到[/font]10[/font][sup][font='Times New Roman']-6[/font][/sup][font=宋体],[/font][font='Times New Roman'][font=宋体]反斯托克斯线起因于样品中较高能态的作用,[/font][/font][font=宋体]由[/font][font='Times New Roman'][font=宋体]玻尔兹曼分布[/font][/font][font=宋体]定[/font][font='Times New Roman'][font=宋体]律[/font][/font][font=宋体]可知[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]通常情况下,分子绝大多数处于振动能级基态,因而反斯托克斯线强度[/font][font='Times New Roman'][font=宋体]不到斯托克斯线的[/font]1%[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']1][/font][/sup][font=宋体]。因此,在一般的拉曼光谱图中只有斯托克斯线。[/font][font=宋体]拉曼谱线强度与入射光强度和样品浓度成正比,若入射光强度一定,则可从谱线强度定量测得样品浓度。[/font][font=宋体] [/font][b][font=宋体]第2.3节 [/font][b][font='Times New Roman'][font=宋体]拉曼[/font][/font][font=宋体]活性判断[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']2][/font][/sup][/b][/b][font=宋体]由拉曼光谱的原理可知,拉曼光谱与红外光谱有许多相似之处,因而两者的活性判断也具有相应的规律性。[/font][font=宋体]1. [/font][font=宋体]凡具有对称中心的分子,如[/font][font='Times New Roman']CS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]、[/font]CO[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]和[/font]XeF[/font][sub][font='Times New Roman']4[/font][/sub][font='Times New Roman'][font=宋体]等,其对称振动是拉曼活性、红外非活性的,而非对称振动是红外活性、拉曼非活性的,两者具有互斥性。[/font][/font][font=宋体]2. [/font][font='Times New Roman'][font=宋体]不具有对称中心的分子,如[/font]H[/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font='Times New Roman']O[font=宋体]、氯仿([/font][font=Times New Roman]CHCl[/font][/font][sub][font='Times New Roman']3[/font][/sub][font='Times New Roman'])[/font][font=宋体]其红外和拉曼活性是并存。[/font][font=宋体]3. [/font][font=宋体]有少数分子的振动,例如平面对称分子乙烯的卷曲振动,既没有偶极矩变化,也没有极化度的改变,所以其红外和拉曼都是非活性的。[/font][font=宋体] [/font][b][font=宋体]第3章 [/font][b][font=宋体]拉曼光谱谱图及仪器简介[/font][/b][/b][font=宋体] [/font][b][font=宋体]第3.1节 [/font][b][font=宋体]拉曼光谱特征[/font][/b][/b][font=宋体]拉曼光谱图横坐标是拉曼位移(波数),纵坐标是谱带的强度。[/font][font='Times New Roman'] [/font][table][tr][td][img=,388,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447591624_1449_3237657_3.png!w486x37.jpg[/img][/td][/tr][/table][table][tr][td][img=,388,164]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448085839_1676_3237657_3.png!w486x205.jpg[/img][/td][/tr][/table][font='Times New Roman'] [/font][font=宋体]上图是已略去反斯托克斯谱带得到的类似于红外光谱的拉曼光谱图。拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关。[/font][font=宋体]对于未略去反斯托克斯谱带的拉曼光谱而言,[/font][font=宋体]1. [/font][font=宋体]在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。[/font][font=宋体]2. [/font][font=宋体]一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于[/font][font='Times New Roman']Boltzmann[font=宋体]分布,处于振动基态上的粒子数远大于处于振动[/font][/font][font=宋体]激发态上的粒子数。[/font][font=宋体] [/font][b][font=宋体]第3.2节 [/font][b][font=宋体]拉曼光谱仪器[/font][/b][/b][table][tr][td][img=,312,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448181549_9629_3237657_3.png!w391x37.jpg[/img][/td][/tr][/table][table][tr][td][img=,248,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448274177_8966_3237657_3.png!w311x37.jpg[/img][/td][/tr][/table][table][tr][td][img=,248,189]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448413123_2604_3237657_3.png!w311x237.jpg[/img][/td][/tr][/table][table][tr][td][img=,312,117]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448518460_4443_3237657_3.jpg!w391x147.jpg[/img][/td][/tr][/table][font='Times New Roman'][font=宋体]拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。[/font][/font][font='Times New Roman'] [/font][b][font=宋体]第4章 [/font][b][font=宋体]拉曼光谱应用[/font][/b][/b][font=宋体]拉曼光谱既可进行定性分析,又可以进行定量分析。它可以提供聚合物材料结构方面的许多重要信息,如分子结构与组成、立体规整性、结晶与去向、分子相互作用,以及表面和界面的结构等。从拉曼峰的宽度可以表征高分子材料的立体化学纯度。[/font][font=宋体]1. [/font][font='Times New Roman'][font=宋体]拉曼光谱与红外光谱互补,目前被广泛用于有机化合物的结构分析。利用拉曼光谱法可以鉴定某些红外光谱法无法鉴别的窗能团[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]例如,非极性[/font][/font][font=宋体]碳碳双[/font][font='Times New Roman'][font=宋体]键可产生强的拉曼谱带[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]且其强度随分子结构而[/font][/font][font=宋体]异[/font][font='Times New Roman'][font=宋体],利用这一特性,可用拉曼光谱法测定顺反异构体和双键上[/font][/font][font=宋体]取代基的位置。[/font][font=宋体]2. [/font][font='Times New Roman'][font=宋体]拉曼光谱特别适合高聚物碳链骨架或环的测定,并能很好地区分各种异构体,如单体异构、位置异构、儿何异构和顺反异构等,还可用于聚合物的立体规整性研究,以及结晶度和取向度的研究。[/font][/font][font=宋体]3. [/font][font='Times New Roman'][font=宋体]水的拉曼散射很弱,因此很多水溶性物质,包括一些生物大分予及生物体内的其他组分都可以用拉曼光谱来研究。拉曼光谐已用于测定氨基酸、[/font][/font][font=宋体]糖[/font][font='Times New Roman'][font=宋体]、[/font][/font][font=宋体]胰岛[/font][font='Times New Roman'][font=宋体]素、激素、核[/font][/font][font=宋体]酸[/font][font='Times New Roman'][font=宋体]、[/font]DNA[font=宋体]等生化物质。[/font][/font][font=宋体]4. [/font][font='Times New Roman'][font=宋体]当实验条件一定时,拉曼光谱的强度与样品的浓度成级性关系,拉曼光谱常用的定[/font][/font][font=宋体][font=宋体]量方法为内标法,检出限在[/font] [font=宋体]μ[/font][/font][font='Times New Roman']g[/font][font=宋体][/font][font='Times New Roman']cm[/font][sup][font=宋体][font=Times New Roman]-3[/font][/font][/sup][font=宋体] [font=宋体]数[/font][/font][font='Times New Roman'][font=宋体]量级,可用于有机物和无机例离子的定量分析。[/font][/font][font='Times New Roman'] [/font][b][font=宋体]第4.1节 [/font][b][font=宋体]拉曼光谱仪具体应用举例[/font][/b][font=宋体]4.1.1[/font][font=宋体]化工领域[/font][/b][font=宋体]孔安栋[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']3][/font][/sup][font=宋体]等人利用改良过的拉曼光谱气体技术[/font][font=宋体](近共心腔设计),可实时测定钻井液中溶解气体的成分和含量,即利用气测录井的手段,来判断油气层储量、位置等信息。而[/font][font='Times New Roman']Bauer[font=宋体]等人[/font][/font][font=宋体]则同样[/font][font='Times New Roman'][font=宋体]利用拉曼光谱[/font][/font][font=宋体]的手段,成功分析出[/font][font='Times New Roman'][font=宋体]了苯乙烯单体在乳液聚合反应中浓度变化[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]情况[/font][/font][font=宋体]。拉曼光谱在化工生产领域可以实时的监测分析混合物成分,在与其他计算技术手段联用,可获得生产所需要的更多信息。[/font][b][font=宋体]4.1.2[/font][font=宋体]生物领域[/font][/b][font=宋体]马建锋[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']5][/font][/sup][font=宋体]等人通过纤维素拉曼光谱,成功分析出植物细胞壁内天然纤维素拉伸状态和微区分布等生物学信息,对纤维素酶水解过程中产物的浓度进行了有效的实时监测,同时成功利用拉曼光谱技术说明了了丝光化过程中纤维素内化学键的改变及分子间相互作用。韩晓霞等人将蛋白质印迹技术和和表面增强拉曼光谱技术结合起来,设计出一种基于表面增强拉曼光谱法的蛋白质组鉴定方法[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']6][/font][/sup][font=宋体]。事实上,由于水具有拉曼光谱弱、谱图简单的特点,因此拉曼光谱技术就可以在接近自然活性状态的情况下研究生物大分子的结构及其变化,因而拉曼光谱在生物领域具有广阔的前景。[/font][b][font=宋体]4.1.3[/font][font=宋体]材料领域[/font][/b][font=宋体]吕刚[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']7][/font][/sup][font=宋体][font=宋体]等人通过拉曼光谱与电化学工作站测试手段联用的方法,成功分析出所制备的电致变色材料[/font][font=宋体]——氧化钨复合共生薄膜的结构和它的电致变色性能。王昕[/font][/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']8][/font][/sup][font=宋体][font=宋体]等人通过拉曼光谱分析手段证明[/font][font=Times New Roman]p-[/font][font=宋体]型多孔硅是更类似于纳米晶结构特征的材料。除此之外,拉曼光谱在其他薄膜材料、金刚石材料的结构和定性分析中都发挥着巨大作用。[/font][/font][b][font=宋体]4.1.4[/font][font=宋体]环境领域[/font][/b][font=宋体]在环境领域,已经有很多利用拉曼光谱技术分析水环境污染信息的文献报道。如徐阳[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']8][/font][/sup][font=宋体][font=宋体]通过基于[/font][font=Times New Roman]Au@[/font][/font][font='Times New Roman']MIL-101(Cr[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman']/PATP[/font][font=宋体][font=宋体]金属有机框架复合材料基底的表面增强拉曼光谱来测定水中的戊二醛;通过基于[/font][font=Times New Roman]M[/font][/font][font='Times New Roman']IL-101-MA@A[/font][font=宋体][font=Times New Roman]g[/font][font=宋体]的表面增强拉曼光谱测定鱼肉中的违禁鱼药。宋洪艳[/font][/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']9][/font][/sup][font=宋体][font=宋体]等人通过表面增强拉曼光谱和密度泛函理论[/font][font=Times New Roman](DFT)[/font][font=宋体]联用的方法,研究了海洋中的污染物多氯联苯的吸附特性和定性定量分析方法。除此之外,拉曼光谱还可用于污染物氰化物、硝酸盐、亚硝酸盐及其他一些有机污染物的鉴定和分析。[/font][/font][font='Times New Roman'] [/font][b][font=宋体]第5章 [/font][b][font=宋体]总结[/font][/b][/b][font=宋体]从拉曼光谱产生到现在,已经衍生出了许多不同特点不同应用领域的拉曼光谱技术,如共焦显微拉曼光谱技术、傅里叶变换拉曼光谱技术、表面增强拉曼光谱技术、激光共振拉曼光谱技术、光声拉曼技术、高温高压原位拉曼技术等等,与此同时,越来越多文献报道的对物质的定性定量分析的技术是利用拉曼光谱和其他分析技术联用来实现的。拉曼光谱快速和无损伤分析在对微量成分或珍贵物质的定性定量分析中有着非常重要的作用。可以想象,随着技术的进一步发展,拉曼光谱的应用领域将会越来越多,改良手段会越来越丰富,科研前景也会越来越广阔。[/font][font='Times New Roman'][/font][b][font=黑体]参考文献[/font][/b][font=宋体][1][/font][font=宋体][font=宋体]赵鹏[/font][font=Times New Roman].[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]拉曼光谱的原理[/font][font=Times New Roman][[/font][/font][font='Times New Roman']J]. [/font][font=宋体][font=宋体]时代教育,[/font][font=Times New Roman]2011[/font][font=宋体],[/font][font=Times New Roman]9[/font][font=宋体]:[/font][font=Times New Roman]198.[/font][/font][font=宋体][2][/font][font=宋体][font=宋体]董慧茹[/font][font=Times New Roman].[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]仪器分析[/font][font=Times New Roman][[/font][/font][font='Times New Roman']M]. [/font][font=宋体][font=宋体]北京:北京工业出版社,[/font][font=Times New Roman]2016[/font][font=宋体]:[/font][font=Times New Roman]233-238.[/font][/font][font=宋体][3][/font][font=宋体][font=宋体]孔安栋[/font][font=Times New Roman], [/font][font=宋体]杨德旺[/font][font=Times New Roman], [/font][font=宋体]郭金家等[/font][font=Times New Roman]. [/font][font=宋体]腔增强气体拉曼光谱仪在气测录井中的应用[/font][font=Times New Roman][J]. [/font][font=宋体]光学精密工程[/font][font=Times New Roman], 2022, [/font][font=宋体]第[/font][font=Times New Roman]30[/font][font=宋体]卷[/font][font=Times New Roman](10):1151-1159.[/font][/font][font=宋体][4][/font][font='Times New Roman']Bauer C, Amram B, Agnely M. On-line monitoring of a latex emulsion polymerization by fiber-optic FT-raman spectroscopy[J]. Applied pectroscopy, 2000, 54(4): 528-535. [/font][font=宋体][5][/font][font=宋体][font=宋体]马建锋[/font][font=Times New Roman], [/font][font=宋体]杨淑敏[/font][font=Times New Roman], [/font][font=宋体]田根林等[/font][font=Times New Roman]. [/font][font=宋体]拉曼光谱在天然纤维素结构研究中的应用进展[/font][font=Times New Roman][J]. [/font][font=宋体]光谱学与光谱分析[/font][font=Times New Roman], 2016, [/font][font=宋体]第[/font][font=Times New Roman]36[/font][font=宋体]卷[/font][font=Times New Roman](6):1734-1739.[/font][/font][font=宋体][6][/font][font=宋体][font=宋体]韩晓霞[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]阮伟东[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]王延飞[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]吕志成[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]王春旭[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]王旭[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]赵冰[/font][font=Times New Roman]. [/font][font=宋体]基于表面增强拉曼光谱的蛋白质组分析方法[/font][font=Times New Roman][C]//.[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]第十四届全国光散射学术会议论文摘要集[/font][font=Times New Roman].[/font][/font][font='Times New Roman'] [/font][font=宋体][font=Times New Roman][[/font][font=宋体]出版者不详[/font][font=Times New Roman]],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=Times New Roman]2007:[/font][/font][font='Times New Roman'] [/font][font=宋体][font=Times New Roman]93.[/font][/font][font=宋体][7][/font][font=宋体][font=宋体]王昕[/font][font=Times New Roman],[/font][font=宋体]何国山[/font][font=Times New Roman],[/font][font=宋体]张树霖[/font][font=Times New Roman],[/font][font=宋体]刁鹏[/font][font=Times New Roman],[/font][font=宋体]李经建[/font][font=Times New Roman],[/font][font=宋体]蔡生民[/font][font=Times New Roman].p~[/font][font=宋体]-型多孔硅的拉曼光谱与结构特征[/font][font=Times New Roman][J].[/font][font=宋体]半导体学报[/font][font=Times New Roman],1994(04):248-254.[/font][/font][font=宋体][8][/font][font=宋体][font=宋体]徐阳[/font][font=Times New Roman]. [/font][font=宋体]金属有机框架材料复合基底在表面增强拉曼光谱方法中的研究与应用[/font][font=Times New Roman][D].[/font][font=宋体]广西民族大学[/font][font=Times New Roman],2021.DOI:10.27035/d.cnki.ggxmc.2021.000190.[/font][/font][font=宋体][9][/font][font=宋体][font=宋体]宋洪艳[/font][font=Times New Roman], [/font][font=宋体]赵航[/font][font=Times New Roman], [/font][font=宋体]严霞等[/font][font=Times New Roman]. [/font][font=宋体]基于表面增强拉曼光谱技术的海洋污染物多氯联苯吸附特性分析[/font][font=Times New Roman][J]. [/font][font=宋体]光谱学与光谱分析[/font][font=Times New Roman], 2022, [/font][font=宋体]第[/font][font=Times New Roman]42[/font][font=宋体]卷[/font][font=Times New Roman](3):704-712.[/font][/font]

  • 【分享】银粒子对拉曼光谱的研究

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95981]Ag2CO3溶胶中PABA表面增强拉曼光谱及增强机制的探讨[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95982]对巯基苯甲酸的表面增强拉曼光谱[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95983]二维组装纳米银粒子上对巯基苯胺的表面增强拉曼光谱研究[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95984]生物活性分子的拉曼光谱电化学研究[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95985]银胶体系中快速测定CR的表面增强拉曼光谱研究[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95986]银纳米粒子有序自组装体中偶联分子的表面增强拉曼光谱研究[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95987]银纳米粒子阵列的自组装及其表面增强拉曼光谱应用[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95988]有序银纳米线阵列的表面增强拉曼光谱研究[/url]

  • 拉曼光谱快速鉴别品牌药与仿制药的研究

    拉曼光谱快速鉴别品牌药与仿制药的研究

    1 引言近些年来,拉曼光谱以其快速、简便、无损、灵敏及无需样本前处理的优势而备受人们的亲赖,尤其是结合化学计量学方法已广泛应用于食品分析、考古及药品快检领域等。本文采用随机森林(Random forests, RF),通过对卡托普利片1个品牌药厂家与6个仿制药厂家,进行判别分析研究,以区分这7个厂家的药品光谱差异情况。结果发现,通过不断优化RF的两个关键参数可使品牌药与仿制药厂家完全区分开来。为拉曼光谱分析技术高效的用于药品快检领域提供了有力支撑。2 实验及方法2.1 实验仪器便携式拉曼光谱仪i-Raman(B&WTek USA),采用BRM-785光源,TE致冷CCD检测器,采样激发波长:785nm;光速直径:2 nm;光谱分辨率:3.5 cm-1;光谱范围:200 ~ 2700 cm-1。2.2 样品来源7个厂家常见市售降压药同一规格25 mg不同批次的卡托普利片共49个,拉曼光谱如图1所示。编号为1:1~10(仿制药), 2:11~20(仿制药), 3:21~24(品牌药), 4:25~28(仿制药), 5:29~36(仿制药), 6:37~41(仿制药), 7:42~49(仿制药)各来自同一厂家,所用药品均由上海市药检所提供(厂家及批次信息略)。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092417221189_01_3004760_3.jpg图1 7个厂家生产的卡托普利片的拉曼光谱3 结果本文选择包含了丰富的指纹区及基因信息的常用波段200~1800 cm-1作为后续的分析用, 经过一系列光宇预处理方法后,发现主成分分析(PCA)不能很好的将这几个厂家生产的同一种药品分开,即不能区分品牌药和仿制药厂家,结果如图2所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015092417295854_01_3004760_3.jpg图2 7个厂家药品拉曼光谱前2个主成分投影判别图而经过优化参数后的随机森林方法,可以很好的将将品牌药和仿制药分开,且各厂家的药品之间内聚度较好,达到了区分的目的。结果如图3 所示:http://ng1.17img.cn/bbsfiles/images/2015/09/201509241732_567700_3004760_3.jpg图3 随机森林参数优化后用于7个厂家的分类情况4 结论PCA 和 RF都可以通过提取样本中某些特征变量来进行判别分析,但对本文而言,利用无监督的PCA对品牌药和仿制药的分类结果不太让人信服,不能真实反映不同厂家药品之间的差异性,从而无法将品牌药与仿制药分开。而无监督的RF可以获得良好的分类结果,尤其是在优化参数后,利用有监督的类别标签信息,可以很好的将将品牌药和仿制药分开,且各厂家的药品之间内聚度较好,也间接反映出各厂家的生产工艺的差异性,这样的分类结果更让人满意。随着RF在理论和方法上都越来越成熟时,RF将会凭其强大的优势推动拉曼光谱在药品快检领域的普及,为拉曼光谱快速、准确、高效的用于药品的初步筛选奠定良好基础。

  • 拉曼光谱仪在化学研究的应用

    拉曼光谱仪在有机化学方面主要是用作机构鉴定和分子相互作用的手段,它与红外光谱互为补充,可鉴别特殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据,利用偏振特性,拉曼光谱也可以作为分子异构体判断的依据。在无机化合物中金属离子和配位体间的共价键常具有拉曼活性,由此可提供有关配位化合物的组成、结构和稳定性等信息。 另外,许多拉曼光谱仪无机化合物具有多种晶型结构,它们具有不同的拉曼活性,因此能鉴定和鉴别红外光谱无法完成的无机化合物的晶型结构。在催化化学中,能够提供催化剂本身以及表面上物种的结构信息,也可以对催化剂制备过程进行实时的研究。拉曼光谱仪是研究电极、溶液界面的结构和性能的重要方法,能够在分子水平上深入研究电化学界面结构、吸附和反应等基础问题并应用于电催化、腐蚀和电镀等领域。

  • 拉曼光谱分析癌变胃黏膜组织中蛋白质改变的研究

    近期,第三军医大学西南医院全军消化病研究所陈瑶等研究了拉曼光谱分析癌变胃黏膜组织中蛋白质改变,研究发现,拉曼光谱是研究癌变胃黏膜组织中蛋白质分子的生化改变的新型有效手段,有助于胃癌的基础机制及临床诊疗研究。该文章发表于2014年29期《重庆医药》上。该文章旨在研究正常和癌变胃黏膜组织中蛋白质的拉曼特征峰的差异及其意义。 研究者们提取12例正常和癌变胃黏膜组织的蛋白质相关特征峰进行对比分析,结合统计学方法,观察癌变胃黏膜组织中蛋白质构型构象、氨基酸组成等改变。 结果显示,和正常胃黏膜组织比较,癌变胃黏膜组织中蛋白质相关拉曼特征峰758cm-1、879cm-1、938cm-1、1271cm-1、1660cm-1等发生了不同程度的移位,蛋白质的氨基酸组成及空间构象等出现了改变;结合蛋白质特征峰的相对峰强进行Fisher判别分析,建立判别函数获得了91.7%准确判别率。

  • 《关于拉曼散射,拉曼光谱研究中经常遇到的问题》|简智仪器

    [b][color=#ff0000]什么是拉曼散射?[/color][/b]- 一个非弹性的光散射现象,由CV拉曼博士于1928年发现。[img=,483,351]http://6463144.s21i-6.faiusr.com/3/ABUIABADGAAgltD_yQUogLDKpgUw4wM43wI.gif[/img][color=#333333]拉曼散射的古典概念:当光束与材料相互作用时,它的一部分被透射,部分被反射,部分被散射。超过99%的散射辐射具有与入射光束相同的频率:米氏和瑞利散射。散射辐射的一小部分频率与入射光束的频率不同:拉曼和布里渊散射,非弹性散射的形式。事件和非弹性散射辐射之间的频率差异由所研究材料的分子的性质决定。[/color]

  • 【资料】相关拉曼光谱技术  表面增强拉曼光谱技术

    [size=5]相关拉曼光谱技术  [b]表面增强拉曼光谱技术[/b] [/size][size=5]  自1974年Fleischmann等人发现吸附在粗糙化的Ag电极表现的吡啶分子具有巨大的拉曼散射现象,加之活性载体表面选择吸附分子对荧光发射的抑制,使激光拉曼光谱分析的信噪比大大提高,这种表面增强效应被称为表面增强拉曼散射(SERS)。SERS技术是一种新的表面测试技术,可以在分子水平上研究材料分子的结构信息。 [/size]

  • 拉曼光谱

    拉曼光谱在应用于分子结构研究时遇到的常见问题有哪些?

  • 【资料】拉曼光谱的优越性

    [size=4]优越性  [b](三)拉曼光谱技术的优越性[/b] [/size][size=4]  提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 [/size][size=4]  1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 [/size][size=4]  2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 [/size][size=4]  3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 [/size][size=4]  4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 [/size][size=4]  5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。[/size]

  • 细菌叶绿素拉曼光谱

    我想做光合细菌的拉曼光谱。看了文献,发现关于光合细菌中细菌叶绿素的拉曼光谱研究很少,都是年限很久以前的。。想问一下,细菌叶绿素不容易做拉曼光谱呢?有什么特征的拉曼光谱吗

  • 【资料】相关拉曼技术---高温拉曼光谱技术

    [size=5][b]高温拉曼光谱技术[/b] [/size][size=5]  高温激光拉曼技术被用于冶金、玻璃、地质化学、晶体生长等领域,用它来研究固体的高温相变过程,熔体的键合结构等。然而这些测试需在高温下进行,必须对常规拉曼仪进行技术改造。 [/size]

  • 【讨论】好书:当代拉曼光谱技术

    Modern Raman Spectroscopy – A Practical Approach本书介绍了拉曼光谱的基本理论,拉曼光谱系统的仪器组成,样品的制备方法,信号采集方式,常用的拉曼光谱数据处理方法,一些主要的拉曼光谱技术及其最新进展,作者还介绍了拉曼光谱在化学、地质、美术,考古学,生命科学、制药、法医鉴定、材料科学等方面的应用。是初学拉曼人士的一本不可多得入门书,也可作为研究人员的很好的参考书。

  • 【资料】什么是拉曼光谱???

    [size=4]拉曼光谱 [/size][size=4]  Raman spectra [/size][size=4]  [/size][url=http://baike.baidu.com/view/146377.htm][size=4]拉曼散射[/size][/url][size=4]的光谱。1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关, 大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子,同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子,同时分子从高能态跃迁到低能态(反斯托克斯线 )。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子[/size][url=http://baike.baidu.com/view/139957.htm][size=4]红外光谱[/size][/url][size=4]不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。 [/size]

  • 【资料】拉曼光谱的含义

    [size=4][b](一)含义[/b] [/size][size=4]  光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为[/size][url=http://baike.baidu.com/view/135263.htm][size=4]拉曼效应[/size][/url][size=4] [/size][size=4]  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征[/size]

  • 山东食药检院采购重大专项研究成果“薄层色谱-拉曼光谱联用仪”

    山东省食品药品检验研究院拟采购一台薄层色谱-拉曼光谱联用仪。该联用仪为该项目联合研发、世界首创、专用于食品药品检验机构市场监管急需的现场分析类仪器设备,为达到研究目的,特申请单一来源采购,拟采购供应商为上海仪电分析仪器有限公司,任务合同书初步报价为30万元。  另:“便携式薄层色谱━拉曼光谱联用仪及其药品快检支撑系统”列入2012年度国家重大科学仪器设备开发专项,该项目由中国人民解放军第二军医大学牵头承担,陆峰博士为项目牵头单位负责人。上海科哲生化科技有限公司承担薄层色谱仪器开发与产业化的主体工作,上海仪电分析仪器公司也承担产业化任务,项目周期为4年。  详细内容如下:山东省食品药品检验研究院分析仪器设备单一来源采购公示  一、采购项目名称:山东省食品药品检验研究院分析仪器设备单一来源采购  二、采购项目编号:SDYD2015-615  三、公示内容:  山东省食品药品检验研究院拟采购一台薄层色谱-拉曼光谱联用仪用于项目早起应用研究。该联用仪为该项目联合研发、世界首创、专用于食品药品检验机构市场监管急需的现场分析类仪器设备,为达到研究目的,特申请单一来源采购,拟采购供应商为上海仪电分析仪器有限公司,任务合同书初步报价为30万元;现将本政府采购项目予以公示,公示期从2015年11月9日起至2015年11月13日止。  四、联系方式  1.采购人:山东省食品药品检验研究院 地址:济南市高新区新泺大街2749号(山东省食品药品检验研究院) 联系人:刘毅(山东省食品药品检验研究院) 联系方式:0531-81216535(山东省食品药品检验研究院)  2.代理机构:山东英大招投标有限公司 地址:山东省(自治区、直辖市)济南市(州)历下区县(区、市)马鞍山路街道(路、乡、镇)2-1号(村)山东大厦8406 联系人:李健 联系方式:0531-85198189、0531-85198109。

  • 便携式拉曼光谱的应用

    国内现有的拉曼光谱仪大多都是研究级的体积相对比较大,而且价格昂贵.不知是否有便携式的,具我了解在国外拉曼光谱已经应用在许多行业,象垃圾分类:把不同的塑料产品通过便携式拉曼简单方便的分开,药品的检验:不破坏包装外壳,即可检测药片的化学结构,还有在海关安检方面,可对不同的白色粉末快速鉴别.希望和大家多多交流

  • 纺织纤维拉曼光谱定性分析法

    摘要:针对当前纤维定性鉴别方法存在的不足,采用拉曼光谱分析法定性鉴别。通过对纺织纤维原始拉曼谱图的特性分析,经过光谱预处理得到信噪比更高的标准拉曼谱图,建立了拉曼谱图特征表数据库,实现了纺织纤维的定性鉴别。实验结果表明:拉曼光谱定性分析法可快速定性鉴别纺织纤维,尤其适合于合成纤维及其混纺织物,对环境温湿度无特殊要求,样品无需烘干处理及制样,具有简便、快速和环保的优点,含荧光的染料或部分黑色染料以及纤维熔点是影响拉曼光谱法定性分析的主要因素。 关键词:拉曼光谱;特征表;纺织纤维;合成纤维;定性分析 目前纺织纤维定性检测方法有显微镜观察法、燃烧法、化学溶解法、熔点试验法、红外光谱分析法等。这些方法都有一定的局限性和缺点。显微镜观察法和燃烧法对定性鉴别织物有一定的局限性,只能鉴别天然纤维或合成纤维大类。化学溶解法虽然能够鉴别合成纤维具体品种及与天然纤维的混纺产品,但使用的有机溶剂如苯酚、二甲基甲酰胺等,不仅对检测人员身体健康有影响,存在易燃易爆的危险,而且还严重污染环境。红外吸收光谱法虽然能较准确地定性鉴别纺织纤维,但是红外光谱分析仪对测试环境温湿度要求相当高,样品需进行干燥预处理,样品制作很麻烦,检测周期较长,不能满足快速检测的要求。 在拉曼光谱分析纺织纤维结构方面,近年的研究集中于以下几个方面:复合材料的界面和基体结构的测定;再生蚕丝制备过程中,分子链规整度和取向度变化的测定;丝素经酶处理后,高分子结构的变化研究以及羊绒和羊毛分子结构研究。而在纤维成分分析方面有如下研究:鉴别天然绿色棉和染色棉;研究聚丙烯、羊毛、聚酯和一些天然纤维的鉴别方法;对染色纤维中染料的分析以及比较红外光谱与拉曼光谱对染色纤维区分的效果。可见,国内外学者虽然对拉曼光谱应用于纤维分析作了大量研究,但是还没有学者提出拉曼光谱定性检测纺织纤维的系统方法。本文旨在通过分析纺织纤维拉曼光谱的特性及影响拉曼光谱分析纤维的因素,提出一套拉曼光谱定性分析纺织纤维的系统方法。

  • 【原创大赛】数数当前市场上的研究级拉曼光谱仪

    【原创大赛】数数当前市场上的研究级拉曼光谱仪

    拉曼光谱技术具有准确性高,信息量大,谱图容易辨认,差异性区分明显,拉曼位移与入射频率无关,分析速度快,可进行微量、微区、原位的非破坏性检验,维护费用低,和红外光谱互补等特点,在许多领域都有其独特的应用。  目前市场上的拉曼光谱仪可分为研究级拉曼光谱仪和便携式拉曼光谱仪两个大类。本文将先和广大版友探讨研究级拉曼光谱仪主要供应商的产品组成和特点。  当前主要的研究级拉曼光谱仪供应商有:雷尼绍,HORIBA Jobin Yvon,赛默飞,PerkinElmer,布鲁克,国内的生产商主要有天津港东和北京卓立汉光,另外天瑞仪器和天津拓普也有相关产品。  雷尼绍拉曼光谱产品主要为inVia系列,inVia系列拉曼光谱仪于2003年推出,该系列产品配置灵活,用户可根据自己的需求选择不同的功能模块,及相应的自动化程度,其最高配置型号为inVia Reflex。雷尼绍的产品主要针对高端的研究级拉曼光谱产品,虽然一直没有新的型号推出,但在仪器的成像功能和联用技术研究方面,一直在不断的改进。从逐点绘图成像到StreamLine Plus超高速成像技术,以及最新的三维(3D)拉曼成像技术。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271503_407617_2086240_3.jpg  在联用技术方面,雷尼绍研发高效光学效率的接口使inVia显微拉曼可与Bruker、NT-MDT以及Nanonics Imaging公司的扫描探针显微镜直接耦合。inVia还支持新的针尖增强拉曼散射技术(TERS)以及近场光学显微技术(NSOM/SNOM)。  HORIBA Jobin Yvon目前主要的拉曼光谱产品主要由两个系列型号:LabRAM和XploRA。  LabRAM系列主要有LabRAM Aramis全自动激光拉曼光谱仪和LabRAM HR Evolution新长焦长拉曼光谱仪。  LabRAM Aramis全自动激光拉曼光谱仪于2005年在上海大学召开的全国光散射会议上首次于国内展出,该仪器设计将方便用户操作放在首位,所有的功能只需要点击软件即可实现。系统由膨胀系数几乎为零的合金型材制作框架,仪器核心部件都刚性地固定于一个整体性机箱内和机箱上。  LabRAM HR Evolution新长焦长拉曼光谱仪,是目前市场上焦长最长的单级共焦拉曼光谱仪,焦长达到800mm。该仪器更多的关注仪器的高性能和多功能性。可根据用户需求同时配置三个探测器,CCD、iCCD、EMCCD、InGaAs、PMT等用于扩展光谱范围及特殊应用。可与AFM、TERS、光致发光(PL)、样品加热冷却及其他联用。采用HORIBA Scientific的新版光谱分析软件包-LabSpec 6。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271504_407618_2086240_3.jpgLabRAM HR Evolution新长焦长拉曼光谱仪  XploRA系列主要包括两款产品:XploRA精巧型全自动显微共焦拉曼光谱仪和XploRA INV智能型倒置显微拉曼光谱仪。  XploRA具有灵活的可移动性特点,其优势在于是目前市场上最精巧的有显微共焦功能的拉曼光谱仪。另外全自动也是该款仪器突出宣传的一个特点,仪器拥有3个内置激光器和4块光栅,,激发波长与光栅可以完全自动切换,可自由选择多种光谱分辨率。另外,在这款仪器当中HORIBA Jobin Yvon首次使用中文软件操作界面。  XploRA INV在继承了XploRA高自动化和结构紧凑的基础上,增加了倒置显微镜的分析功能。在仪器设计当中采用了开放性结构,确保可以自由添加和使用倒置显微镜的所有附件或其它附加装置。还可以选择性集成一些特有的模块和技术,如DuoScan扫描技术和3D共焦快速荧光成像模块。据介绍,该仪器还可以与AFM联用及进行TERS(针尖增强拉曼光谱)分析。  赛黙飞世尔科技分子光谱部(原尼高力仪器公司)主要有以下几种类型型号:Almega激光拉曼光谱仪、DXR智能拉曼光谱仪。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271505_407619_2086240_3.jpgAlmega XR激光显微拉曼光谱仪  2001年赛黙飞世尔科技推出全自动Almega XR激光显微拉曼光谱仪,具有大容量样品仓和显微镜,自动化程度高,采样方式灵活;共聚焦设计拉曼显微镜可获得不同深度样品的真实信息,可提供目前数量最多超过20000张的无机与有机拉曼谱库。  2008年中旬,在 ALMEGA 系列基础上又推出了新型DXR 智能激光拉曼光谱仪,实现了仪器的高度智能自动化。光谱仪设计采用模块化单元组合,同时采用智能精确锁定技术,确保光路高稳定与检测结果高精确度与重复性。软件智能识别激光器、光栅与瑞利滤光片序列号与种类,并自动识别它们之间兼容性。  珀金埃尔默的主要型号是RamanStation 400 系列拉曼光谱仪,其主要宣传点是全球唯一的运用中阶梯光栅及二维面阵CCD检测器组合成的二维色散型拉曼光谱仪,和传统的获取高分辨率图谱所惯用的多块一维排列的闪耀光栅分别测量出特定谱带,再对测量所得的多个不同谱带进行光谱拼接的方法不同,该仪器可在一秒钟内获取覆盖整个波段的高分辨率的拉曼光谱图。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271505_407620_2086240_3.jpg  布鲁克拉曼光谱仪主要有MultiRAM 独立式傅立叶拉曼光谱仪和RamII附件式拉曼光谱仪两个型号。  布鲁克推出了世界上第一台商品化的傅立叶拉曼光谱仪,MultiRAM 独立式傅立叶拉曼光谱仪中采用了布鲁克专利的RockSolidTM干涉仪,MultiRAM可以安装2个激光器和检测器,并且可选配自动偏振附件、光纤探针等附件,系统可以配置室温InGaAs检测器和高性能液氮冷却的Ge检测器。  RamII是世界上第一台全数字化的附件式傅立叶变换拉曼光谱仪,可同Brukr公司的Vertex系列高级研究级红外光谱联用。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271506_407621_2086240_3.jpgMultiRAM 独立式傅立叶拉曼光谱仪  卓立汉光的主要拉曼光谱型号是:UVRaman100紫外共振拉曼光谱系统。该仪器由中国科学院大连化学物理研究所中国科学院李灿院士及其研究小组自行研制,是我国第一台紫外共振拉曼三联光谱仪。2008年和北京卓立汉光仪器有限公司合作进行产业化。该仪器采用了紫外激光激发可以很好的避免拉曼光谱分析中荧光本底的干扰问题;紫外激光激发拉曼信号效率更高;共振拉曼可以提供很高的共振增强因子,从而大幅度提升检测极限;由于采用的是三联单色仪滤除瑞利散射,而非陷波滤波器,设备可以测试地低到到几个波数的拉曼光谱。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271507_407622_2086240_3.jpg  天津港东的拉曼光谱产品主要有两个型号:LRS-2/3激光拉曼光谱仪和LRS-5微区激光拉曼光谱仪。  LRS-2/3激光拉曼光谱仪采用半导体激光器作为光源,配有旨在减小杂散光的陷波滤波器,用高灵敏度、低噪声单光子计数器做接受系统。  LRS-5微区激光拉曼光谱仪在LRS-2/3的基础上配置了Olympus公司生产的显微镜作为激光会聚和拉曼光收集系统,可以进行微区分析。接收系统釆用的是Andor公司生产的面阵CCD

  • 【求助】拉曼光谱

    我想请问下做拉曼光谱研究以后一般从事哪个方面的工作比较好呢?希望各位大虾给点意见[img]http://simg.instrument.com.cn/bbs/images/brow/em09511.gif[/img]

  • 【资料】拉曼光谱的发展前景

    [size=4][b](八)发展前景[/b]   拉曼光谱在最近这些年发展是比较快的,应该来说是受益于两方面吧。一方面是激光技术的发展,我最近参加了在英国伦敦召开的第21届国际拉曼光谱大会,感受到现在基于超快激光的非线性拉曼光谱技术已经越来越成熟了。这种高精尖和需要昂贵设备的技术,原来仅有很少几个单位可以搞。特别是激光部分都是靠自己搭建,每天还得调,很不稳定,现在这个状况已经不存在了,而且仪器的价格相对也比较低。现在国际上推出的从事非线性光谱研究的超快(飞秒或皮秒)激光器,技术上已经达到比较成熟地步,可以成套购买,也较稳定。非线性拉曼光谱技术已经在生命科学领域研究中发挥它的独特和重要作用。例如,美国哈佛大学的谢晓亮教授在开拓并运用相干反斯托克斯拉曼光谱显微学(CARS Microscopy)研究活细胞内部三维结构方面取得一系列重要成果。我觉得高质量的超快激光器还推动了另一个极具前途的表面光谱技术,就是合频(SFG)技术的发展,它作为具有独特的界面选择性的非线性光谱方法,已经在界面和表面科学、材料乃至生命领域研究中发挥着越来越重要的作用。   第二个重要方面就是纳米科技的迅猛发展,它使得基于纳米结构的[/size][url=http://baike.baidu.com/view/1228720.htm][size=4]表面增强拉曼光谱[/size][/url][size=4](SERS)和针尖增强拉曼光谱(TERS)在超高灵敏度检测方面取得了长足的进步,推动拉曼光谱成为迄今很少的、可达到单分子检测水平的技术。现在不论是拉曼光谱刊物,还是拉曼光谱会议,SERS都是一个最受关注的内容。在近几届的国际拉曼光谱会议上,SERS分会都是最大的分会。近几年,有关SERS的论文数量也呈显著的上升趋势。SERS和TERS不仅仅在表面科学研究领域,而且在生命科学领域将具有很大的发展潜力,由此可以为研究各类重要的生命科学体系和解决基本问题作出贡献。拉曼光谱相对于红外光谱,其优势之一体现在用拉曼研究水溶液中比较方便,而生命科学的许多研究往往需要的水溶液环境。共振拉曼、表面增强拉曼和非线性拉曼光谱以及它们的联用将成为生命科学前沿领域具有重要价值的研究方法,因为21世纪是生命科学的世纪,我以为也是纳米技术和激光技术的世纪。[/size]

  • 拉曼光谱分析

    [color=#444444]一般拉曼光谱4000-6000波数是研究什么物质的?在高岭土中测试到4500cm-1处有很尖锐的双峰?求高人指点![/color]

  • 【讨论】氧空位与拉曼光谱

    现在正在制备一种无机催化剂,希望通过拉曼光谱研究材料中氧空位浓度的变化以及M-O键的变化,如果谁有这方面的经验,希望能够交流一下。谢谢。

  • 拉曼光谱小常识

    拉曼是一种光散射过程 Raman Effect = Light Scattering激光能量 - 振动谱能量 = 拉曼散射光能量 (振动谱能量对应分子结构)激光能量 - 拉曼散射光能量 = 振动谱能量 (所得拉曼谱即为分子的指纹) 拉曼光谱系统常用激光波长拉曼光谱系统组成部分拉曼光谱的优点和特点• Fingerprint for Qualitative identification 指纹性振动谱• No sample preparation 不用样品制备• Fast and non destructive 快速,无损• Highly selective technique 高选择度北 为何使用微区拉曼 高空间分辨率; 所须样品量少拉曼散射光谱应用拉曼光谱是直接联系于分子结构的振动谱,可对物质进行指纹性认证。物质结构的任何微小变化会非常敏感反映在拉曼光谱中,因而可用来研究物质的物理化学等各方面性质随结构的变化。广泛的应用领域: * 高分子聚合物 * 纳米材料 * 电化学 * 半导体 * 薄膜 * 矿物学 * 生物 * 医学药品 * 碳化物 * 在线过程监测 * 质量控制* 刑侦:- 玻璃材料 - 氧化物 - 油漆和颜料 - 氢氧化物 - 高分子 - 硫化物 - 爆炸 - 碳酸盐 - 纤维 - 硫酸盐 - 化学残留物 - 磷酸盐 - 颗粒性包裹体 - 麻醉剂和可控制物质 等等……红外 和 拉曼红 外拉 曼• 分子振动谱• 吸收,直接过程,发展较早• 平衡位置附近偶极矩变化不为零• 与拉曼光谱互补• 实验仪器是以干涉仪为色散元件• 测试在中远红外进行,不受荧光干扰,• 低波数(远红外)困难,• 微区测试较难,光斑尺寸约10微米,空间分辨率差• 红外探测器须噪声高,液氮冷却,且灵敏度较低• 多数须制备样品• 水对红外光的吸收?• 分子振动谱• 散射,间接过程,自激光后才发展• 平衡位置附近极化率变化不为零• 与红外光谱互补• 实验仪器是以光栅为色散元件• 测试在可见波段进行,有时受样品荧光干扰,可采用近红外激发• 低波数没有问题,• 共焦显微微区测试,光斑尺寸可小到1微米,空间分辨率好• CCD探测器噪声低,热电冷却,灵敏度高,• 无须制备样品,且可远距离测试• 没有水对红外光吸收的干扰

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制