当前位置: 仪器信息网 > 行业主题 > >

拉曼散射

仪器信息网拉曼散射专题为您整合拉曼散射相关的最新文章,在拉曼散射专题,您不仅可以免费浏览拉曼散射的资讯, 同时您还可以浏览拉曼散射的相关资料、解决方案,参与社区拉曼散射话题讨论。

拉曼散射相关的资讯

  • 物理所建立新的拉曼散射理论
    超高灵敏度探测和超高空间分辨率成像是所有光学探测和成像工具的终极奋斗目标,将二者结合起来将成为揭示微观世界物理和化学现象及其本源机理的强大武器。拉曼光谱通过光与分子的非弹性散射光谱信息揭示分子内部的转动和振动形态,是识别分子化学结构的有效手段,也是研究分子结构变化的重要工具,已经广泛应用于自然科学的各个领域。在过去的几十年里,科学家们一直致力于探索和开发各种方法,提高拉曼光谱探测的信号灵敏度和成像的空间分辨率,以实现更小基团乃至单个分子的化学识别成像这一宏伟的目标。  2013年,中国科学技术大学的董振超和侯建国研究团队利用基于STM技术的针尖增强拉曼光谱(TERS),成功实现了分子尺度上亚纳米空间分辨率的单分子光学拉曼成像(Nature 498, 82-86, 2013),该研究成果入选2013年度&ldquo 中国科学十大进展&rdquo 。然而传统的拉曼增强原理(Rev. Mod. Phys. 57, 783-826, 1985)难以解释实验上观察到的亚纳米空间分辨率的物理根源,因而对该实验的物理解释成了困惑学术界的一个亟待解决的难题。最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室研究员李志远带领博士生张超和陈宝琴,基于分子在TERS系统的纳米间隙(nanogap)中的自相互作用,提出了一种对传统的拉曼增强原理进行修正的方法,成功解释了利用TERS得到亚纳米空间分辨率拉曼成像的物理机制。在此基础上,发展了一套普遍适用于微纳光学结构的新拉曼散射理论。  实验中所用的TERS系统结构如图1a所示,尖端半径为25 nm的银探针距离银衬底2 nm。研究小组经过严格电磁场计算发现局域场强半高全宽为11 nm,也就是说,纳米间隙的电磁场&ldquo 热点&rdquo (hot spot)的光斑尺寸为10 nm左右。从物理直觉上来说,这么大的光斑是不可能揭示分子内部的化学结构的(要求分辨率小于1 nm)。根据传统的拉曼增强理论,基于纳米间隙表面等离激元(SPP)共振增强导致的拉曼信号增强因子为G=GEGR&asymp (E/E0)4,其中GE和GR分别是分子拉曼激发过程和辐射过程的增强因子(图2a和2c)。也就是说,实验中观察到的拉曼信号增强因子接近于局域场振幅增强E/E0的四次方,对应的拉曼信号成像的空间分辨率在10 nm左右,无法解释实验中观察到的亚纳米空间分辨率的现象。传统理论和实验观测结果存在巨大的鸿沟,意味着某些不为人知的物理机制在后面起关键的作用。  在解决这个疑难问题中,研究小组注意到在光和分子的相互作用中,除了拉曼散射(非弹性散射),还普遍存在着瑞利散射(弹性散射)。但是自拉曼效应发现以来,在传统的拉曼散射理论,包括表面增强拉曼散射(SERS)和TERS理论中,瑞利散射均被认为对拉曼散射没有贡献,因而完全被忽略。在真空中或者其他普通环境的拉曼光谱测量中,这种想法是合理的。但是在如图1a所示的金属纳米间隙中,分子对入射光在拉曼激发过程产生的瑞利散射光,将与纳米间隙的SPP发生共振耦合,形成多重散射作用,使得电场的幅度明显提高,同时,空间局域化效应显著增强。另一方面,分子拉曼辐射过程所产生的拉曼信号,也将通过纳米间隙SPP与分子自身产生多重瑞利散射作用。考虑到分子在纳米尺度间隙中的这种多重瑞利散射的自相互作用,局域场与分子有很强的近场相互作用(图2b和2d),因而需要对局域场做进一步的修正。在这一崭新的物理理解的基础上,基于严格的理论推导,研究小组获得了考虑分子自相互作用下修正的拉曼增强因子GS=GEGRGE,SGR,S&asymp g4(E/E0)4,其中GE,S&asymp g2和GR,S&asymp g2分别是在分子激发过程和辐射过程增强因子的修正因子,它与分子的大小、位置、指向,以及针尖与衬底的间隙等有密切关系。根据该理论对上述TERS系统进行了数值模拟,发现其局域场强半高全宽为1.3 nm(图1b),对应拉曼信号成像空间分辨率到达1 nm,从而成功解释了TERS系统中亚纳米分辨率的物理机制。从物理上说,通过分子与纳米间隙的自相互作用(体现在g4因子上),探针和分子的相对位置与分子拉曼信号的空间关联程度显著提高,入射光在纳米间隙中形成的&ldquo 热点&rdquo 将变成&ldquo 超级热点&rdquo (super-hot spot),其光斑尺寸将从原始的10 nm量级缩小到1 nm量级。利用这样的光斑做拉曼光谱扫描成像,完全能够获得亚纳米的空间分辨率。  新的拉曼散射理论通过引进长期被学术界忽略的一个重要物理因素,即分子的瑞利散射,简单而有效地解释了单分子光学成像领域的一个非常重要,然而又令人十分困惑的实验观测结果。虽然在普通的环境中瑞利散射可以忽略,但是在当今以及历史上许许多多在微纳米尺度上开展的拉曼光谱探测实验,如SERS和TERS,该因素必须予以高度的重视。该理论及其在SERS和TERS上的应用,将有助于加深人们对纳米尺度上光与物质相互作用的理解,同时对于实现更高分辨率的拉曼成像技术以及更高灵敏度的拉曼光谱探测提供十分有益的思路。相关的理论工作发表在Journal of Physical Chemistry C 【Vol. 119, pp. 11858-11871 (2015)】上。  以上研究工作得到了国家自然科学基金委、科技部和中科院项目的支持。图1 未考虑和考虑分子自相互作用的纳米间隙中局域场强分布图图2 未考虑和考虑分子自相互作用的纳米间隙中分子的拉曼散射原理示意图
  • 639万!相干拉曼散射显微镜采购项目
    项目编号:0613-227122244765/02项目名称:ZYCGR22011903相干拉曼散射显微镜预算金额:639.0000000 万元(人民币)最高限价(如有):639.0000000 万元(人民币)采购需求:序号内容数量简要要求1相干拉曼散射显微镜1套可调红外皮秒脉冲激光器:波长范围 720-940 nm,光谱宽度0.3-0.4 nm,脉冲频率80 MHz,平均功率500 mW,典型脉宽2 ps。 合同履行期限:合同签订后4个月内交货本项目( 不接受 )联合体投标。
  • 拉曼光谱入门系列课程之一:光的散射
    拉曼光谱入门系列视频课程,由布鲁克德国拉曼专家严迪博士主讲,以轻松诙谐简单易懂的方式阐述拉曼光谱法的基础入门知识,在社交媒体,微信公号,微信视频号,哔哩哔哩,腾讯视频,爱奇艺视频,优酷视频,抖音等搜索“布鲁克光谱”关注我们,视频持续更新中。拉曼光谱入门系列之一:光的散射
  • 受激拉曼散射技术可无创诊断细胞癌变程度
    p style="TEXT-ALIGN: center"img title="sss_55f7c78f7a458.jpg" src="http://img1.17img.cn/17img/images/201509/insimg/0ea9e597-6c66-4b99-a961-aadbc4690184.jpg"//pp  美国哈佛大学的科学家在最新研究中利用受激a title="" href="http://www.instrument.com.cn/news/20150918/172905.shtml" target="_self"拉曼/a散射(SRS)显微镜技术,在无需荧光标记的情况下,观察到活体皮肤癌细胞分裂过程中DNA分子动力活动机理。新技术是一种不用着色的非标记技术,可在不干扰细胞正常进程的条件下了解细胞癌变程度。/pp  现有方法中的DNA检测技术需要对其进行荧光标记,病理诊断也要对活检组织染色,这些方法均有可能改变细胞的原生环境。受激拉曼散射能在活细胞研究中实时快速获得样本数据,并可观察到化学键的振动频率。通过观察细胞内碳氢键的振动区间,并对图像进行线性分解,可观察到细胞内DNA、蛋白质和脂类及其分布,以及细胞分裂过程。/pp  研究人员发表在《美国国家科学院院刊》上的报告称,他们利用受激拉曼散射技术观察了海拉细胞的细胞分裂全过程。在有丝分裂前期,他们构建出三维DNA、脂类、蛋白质分布 在有丝分裂间期,辨别出细胞核的染色质结构。延时受激拉曼散射技术还观察到细胞分裂中期到后期过渡期的变化。/pp  研究人员对使用苯二甲酸(TPA,可促进细胞分裂)的老鼠皮肤进行了活体研究。除了同样观察到上述细胞周期的每个阶段,他们还观察到癌细胞中染色体的迁移,发现细胞有丝分裂活动高达18个小时,24小时后下降。这是首次细胞有丝分裂率在活体内以量化方式记录。/pp  他们还检测了该技术在诊断人类肿瘤中的可行性。实验采用三位鳞状细胞癌患者的皮肤癌组织作为样本。他们发现,癌变细胞的有丝分裂在不断增加,从而增加细胞分裂和细胞增殖。这表明新方法可与传统染色病理诊断相提并论。此外,新技术还能让研究人员对肿瘤细胞有丝分裂动力学进行量化研究。研究人员表示,该技术可用来计算体内有丝分裂速度,有助于皮肤癌诊断。/pp  研究人员表示,该技术提供了自然环境下细胞和细胞核的高分辨率影像,对于无创皮肤癌诊断和癌细胞快速评估具有较好的应用前景。/p
  • 全国光散射学术会议之拉曼仪器厂商篇
    p  strong仪器信息网讯/strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/7a4abe56-b5ff-4af3-96fe-970020b6d4e4.jpg" title="现场2.jpg"//pp style="text-align: center "CNCLS19会议现场/pp  1928年印度物理学家拉曼(Raman)首次在实验中观察到拉曼散射光,因此荣获了1930年的诺贝尔物理学奖。虽然1928年到1945年之间,拉曼光谱在物质结构的研究中发挥了重要的作用,但由于信号弱等问题,在之后的十几年中几乎止步不前。直到上世纪60年代,激光技术的出现显著增强了拉曼信号,重新为拉曼技术的研究注入了新的活力。而且,在1974年,Fleischmann 等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼(SERS)信号,之后掀起了拉曼研究的新热潮。过去,拉曼光谱主要应用在材料科学领域,现在,拉曼光谱已广泛应用于化学、催化、刑侦、地质领域、艺术、生命科学、材料科学等各个领域,甚至一些QC领域。/pp  科学仪器对科研的重要性是不言而喻的,可以说科研发展在一定程度上就是仪器所推动的,在拉曼光谱领域也是如此。如今,拉曼光谱已经成为分子光谱领域最为活跃、发展最快的仪器类别之一。从参加此次第十九届全国光散射学术会议的仪器厂商的数量以及所带来的新产品新技术也可以看出这一发展状况。此次,共有26家拉曼相关厂商参加第十九届全国光散射学术会议,其中除了雷尼绍、HORIBA、赛默飞、WITec、布鲁克、Neaspec等国外拉曼光谱厂商之外,也有卓立汉光、奥谱天成、复享光学、如海光电、钢研纳克等国内拉曼光谱厂商参展 除了整机生产商,也有爱万提斯、鼎信优威、ONDAX、Iridian、RealLight、昊量光电、长春新产业、贝拓仪器等光学元件、激光器、光谱仪等核心零部件供应商 除了研究级的拉曼光谱仪器厂商外,便携拉曼光谱仪器厂商的数量也非常多,如瑞士万通、海洋光学、必达泰克、凯格纳斯、理学等 还有主推联用仪器厂商如NT-MDT,以及提供仪器设备升级定制化服务的华智腾等。/pp  为了了解、掌握最新仪器技术,第十九届全国光散射学术会议专门设置了厂商技术交流报告分会场,雷尼绍、HORIBA、赛默飞等仪器厂商介绍了其最新技术及其应用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/438552bb-ddb7-4a8b-b34f-1c6921235e94.jpg" title="王志芳 雷尼绍.jpg"//pp style="text-align: center "王志芳 雷尼绍(上海)贸易有限公司/pp style="text-align: center "报告题目:雷尼绍拉曼光谱技术进展及应用/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a2e73b1b-59b4-4dfd-ad40-71e54169e67d.jpg" title="鲁逸林 堀场.jpg"//pp style="text-align: center "鲁逸林 HORIBA科学仪器事业部/pp style="text-align: center "报告题目:拉曼光谱在二维材料研究中的新进展/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/1050ac51-17f5-44d2-aaa7-db34203e690f.jpg" title="马书荣 赛默飞.jpg"//pp style="text-align: center "  马书荣 赛默飞世尔科技(中国)有限公司/pp style="text-align: center "  报告题目:赛默飞世尔拉曼光谱仪在材料分析应用以及与流变联用新技术介绍/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/fd49a8d0-a252-4136-ae0b-405fe3bb80cb.jpg" title="胡海龙 德国威泰克.jpg"//pp style="text-align: center "  胡海龙 德国威泰克科学仪器与技术股份有限公司北京代表处(WITec)/pp style="text-align: center "  报告题目:当共聚焦拉曼成像遇到细胞与纳米材料-3D化学分析的全新展望/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/43e5c44a-e9a6-4b03-a831-fb6c74d9aafa.jpg" title="张琦 QUANTUM.jpg"//pp style="text-align: center "  张琦 QUANTUM量子科学仪器贸易(北京)有限公司/pp style="text-align: center "  报告题目:近场光学显微及光谱设备的发展及最新应/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/35a2c56d-30bc-4db1-a166-1a8963babda8.jpg" title="James Carriere Ondax.jpg"//pp style="text-align: center "  James Carriere, Ondax Inc/pp style="text-align: center "  报告题目:Measuring Structural Properties of Materials with Low Frequency/THz-Raman Spectroscopy/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/12382c2d-7a2c-445c-9ee6-968988c93d88.jpg" title="李艳 深圳市华智腾.jpg"//pp style="text-align: center "  李艳 深圳市华智腾光电科技有限公司/pp style="text-align: center "  报告题目:光电流成像技术在二维材料和光伏器件的应用/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6aab68b2-72c2-4808-ba9b-b2ebce6d8a48.jpg" title="谭力 北京鼎信优威.jpg"//pp style="text-align: center "  谭力 北京鼎信优威光子科技有限/pp style="text-align: center "  报告题目:瑞典COBOLT公司单纵模窄线宽DPSS激光器在RAMAN研究中的应用/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/4a3cee7a-18bf-4bb2-8bad-978c62f3cd66.jpg" title="邹翔 北京卓立汉光.jpg"//pp style="text-align: center "  邹翔 北京卓立汉光仪器有限公司/pp style="text-align: center "  报告题目:Highly Accurate in-situ Cancer Detection With label free optical spectroscopy/ppbr//p
  • 手性印迹表面增强拉曼散射检测技术获进展
    a) SERS-CIP检测策略示意图;b)含SERS标记物的SERS-CIP玻璃毛细管照片,识别区域用红色圆圈表示;c)在SERS-CIP上实现手性氨基酸识别检测原理 课题组供图近日,中国科学院烟台海岸带研究所研究员陈令新团队在手性印迹表面增强拉曼散射(SERS)检测技术领域取得重要进展,研究成果“基于手性分子印迹的表面增强拉曼散射检测策略用于绝对对映体区分”发表在最新一期的《自然—通讯》。手性是自然界中普遍存在的现象。手性分子是与其镜像不能重合的分子,对映异构体间很多理化性质相同,但生理活性往往有很大的差别,因而,对单个对映体的选择性识别与检测在生命科学、环境监测和食品安全等领域至关重要。然而,单个对映体的识别存在很多挑战。首先,理想的手性区分策略需要外消旋体中的绝对对映体识别方法和高灵敏度的传感器件,并且保证对多种手性分子广泛适用,如何抑制对映体在手性区分传感器上的非特异性结合是关键。其次,对映体间具有相同的分子大小和官能团,仅结构呈现镜像对称,因此,不能根据一般传感器上的主-客体相互作用结果一概而论。此外,大多数手性识别策略高度依赖手性分子的细微结构特征,无法适用于复杂多样的手性化合物。海岸带是关乎人类社会发展的地球关键带。人类活动通过多种途径影响海岸带生态,使其被开发利用的同时,也造成了生态脆弱、灾害较多等问题,发展海洋生态固碳、保护生态环境是海岸带可持续发展的关键之一。氨基酸是海洋有机碳和有机氮的重要组成部分,氨基酸的手性转化是海洋微生物固碳的重要过程,了解手性氨基酸的结构和功能对于海洋固碳机制研究非常重要。然而,海岸带区域环境中的手性氨基酸含量很低、赋存介质复杂,因此亟需发展能够进行分离富集、降低和消除基质干扰的高灵敏手性分子检测技术。基于上述挑战,陈令新团队创新性发展了基于手性分子印迹的表面增强拉曼散射(SERS-CIP)检测策略,成功实现了对海水中精氨酸、组氨酸、天冬氨酸等8种氨基酸手性对映体的高选择性和高灵敏分析检测。手性分子印迹聚合物(CIP)具有在形状、大小和官能团三方面与目标氨基酸分子互补的空腔,能够高特异性结合目标手性分子,在手性氨基酸识别方面表现出了独特的优势。由于聚合物框架和手性分子的官能团之间的相互作用,不可避免的非特异性结合参与手性识别问题一直是挑战。研究发现,可以通过发展先进的CIP识别机制并通过抑制非特异性结合提高CIP对映体识别特异性。在利用SERS对CIP非特异性结合来源进行详细研究后,团队开发了一种检测识别机制来探索CIP的空间状态,并借此区分特异性结合和非特异性结合的氨基酸对映体分子。通过对映选择性测试、外消旋混合物分析以及在复杂实际样品中的手性识别表明,这种机制能够满足理想的手性识别策略的要求,并具有良好的实用性。该研究成果得到了国家自然科学基金和中科院国际博士后项目等项目的支持。文章的第一作者为助理研究员Maryam Arabi,文章通讯作者为研究员王运庆和陈令新。
  • 青涩的学术生涯从拉曼散射研究开始——南京大学物理学院吴兴龙教授
    1990年初秋,我离开政府机关踏上了去南京大学的研究生求学之路,心中的忐忑不言而喻。南京大学是一所国内著名学府,有众多我少儿时代就已耳熟能详的著名学者,当时的物理研究更是闻名遐迩,有魏荣爵先生和冯端先生分别领衔的声学和晶体物理学研究团队承载着中国物理学的半壁江山。欣喜之余,毅然选择了光学和晶体物理学的交叉学科拉曼散射作为我研究生阶段的研究方向,由此开始了我的学术生涯。记得进校的第一年,就选修了在拉曼散射方面有深厚造诣的张明生教授给全校研究生上的拉曼光散射课程,因为是一门全校公选课,选修的同学特别多,有物理、化学、生物、地质等满满一教室学生。记得张老师的第一堂课是介绍了拉曼散射的发展历史,从瑞利散射讲到拉曼是怎样发现苯分子的振动,提出拉曼散射原理,随后张老师用简正坐标推导了晶格动力学的振动方程,导出了晶格振动的频率。一些复杂数学方程的推算,使得原本对拉曼散射颇感兴趣的同学突觉拉曼散射课程的难度,到第二节课时,听课的同学就只剩6位了,其中包括化学系的陆云和生物系的一位同学。记得第二节课张老师讲授了振动的对称性分析,涉及了一些群论知识,这次讲课的结果直接把除我们三人之外的其他同学吓得从此没有了听课的兴趣,在随后的时间里,这门课程一直只有我们三人,但张老师仍是一如既往的认真教学。通过这门课程的学习使我积累了拉曼散射基本理论和实验的许多基础知识,也增加了研究拉曼散射的兴趣。后来我惊讶地发现,我们一直坚持下来的三位同学毕业后都留校任教,三人也一直坚持做拉曼散射研究,只是研究的材料稍有不同而已。进入拉曼实验室也是在张老师课程的最后实践训练课上,这也是我第一次真真切切见到了当初为数不多的由世界银行贷款统一购买的最先进的美国SPEX 1403拉曼谱仪,它是由长度达0.64米的双光栅单色仪构成,因为长距离的光栅分光,使得这台拉曼谱仪具有高的分辨率和高的灵敏度,特别是无需使用滤波器就可抑制瑞利线到几十个波数。由于当初的拉曼研究还是以晶体材料的声子特性为主,故而样品腔没有显微装置,主要以直角散射为几何配置获取拉曼信号,在做薄膜样品时,需要自制一个样品架,把样品倾斜起来,以增加透光面积,从而增加散射的光通量。此外这台设备也没有CCD检测装置,信号收集使用低温Ge光电探测器,信号收集速度较慢,一个50-1000波数的拉曼谱测量往往需要30分钟以上,因此为获取多几个样品的拉曼谱,需彻夜留在实验室工作,因实验室温度较低(恒温18oC),不经意的瞌睡,常引起感冒,但心无旁骛,工作劲头十足。T64000激光拉曼谱仪 阿飞罗夫参观实验室博士阶段在导师冯端先生和张明生教授指导下开展拉曼散射工作,研究质子交换的LiNbO3和LiTaO3及Nd掺杂LiTaO3晶体的声子特性,揭示体和表面掺杂后引起的拉曼模变化。对一个参加工作已有6年之多的“老”学生而言,学习的努力不言而喻,再加每周差不多有两天时间的拉曼谱仪可供使用,让我获得了大量的拉曼谱数据,为随后的分析奠定了基础,也由此帮助我在博士阶段完成了5篇学术论文,后留校任教。现在回想起来读博阶段的努力是何等重要!记得那个年代只有打印出来的纸质拉曼谱图,我常常把它们满满地排列在寝室的床上,仔细、反复地比较区别,随时地对比文献,找出思想,获得结论;也深深体会到和导师的讨论总能收益匪浅。有一次请冯端先生帮助修改一篇论文,冯先生看后说,英文修改比较容易,但是物理概念的清晰更是一篇论文的基石,这句话深深地影响着我的科研直到现在。也有一次在整理一些数据时发现,有一个振动模在多种几何配置下其强度始终很大,阅读了许多文献就是不得要领,那天正好在办公室见到张老师,刚一询问就见张老师脱口而出,是样品应力造成的,此语一出茅塞顿开,让我猛然把读过的文献中不能连贯的知识瞬间地链接起来,顿然明白是应力导致的光折变效应,引入了很强的内建电场,促使了这个振动模在一些不应出现的几何组态下出现和强度增强。当初的这个情形历历在目,现在我在带学生时非常强调和学生的讨论,发现好多学生读过很多文献就是不能把知识连贯,因此很难提出一些创新的想法,老师的一个简单暗示或许就是点睛之作。毕业后来到半导体物理与材料研究实验室,开展了纳米材料的拉曼散射研究,此间有很长一段时间常幻想能拥有一套可以自由支配使用的拉曼谱仪,也常幻想能中一次彩票,去买一台世界最好的拉曼谱仪。感谢祖国的蓬勃发展,此愿望得以在千禧之年实现,那年国家开展物质科学平台建设,我有幸获得200多万研究经费的支撑,在国内率先购买了法国Jobin Yvon公司T64000由三单色仪组成的带有微区的激光拉曼谱仪,同期购置此设备的国内仅三家,北京物理所刘玉龙老师的那一台安装到位最早,做出了许多重要的工作,深圳大学也购置了一台,据说由于人员配备不足,没有进入实质性的使用。我们实验室安装成功后也一度成为教育部定点的对外开放实验室,获教育部开放基金的支持。2002年南京大学举行百年庆典,前苏联科学院约飞技术物理研究所前所长诺贝尔奖获得者阿飞罗夫被邀参加我校庆典,还专程参观了我的拉曼实验室,由我代表实验室向他介绍了我们在拉曼散射上取得的成果,此后的一些研究思想部分也得益于和他们的不断讨论。T64000拉曼谱仪的架构至今已历时了20多年而鲜有改变,其最强大的功能是能实现前两个单色仪的相加和相减模式,由此使得其有很高的灵敏度和分辨率,特别是相减模式下可把瑞利散射线压得极低,在不用高性能滤波器的情况下,低波数可以测到5cm-1左右甚至更低,此为各种声学声子、磁振子、等离激元等更多元激发的研究提供了可能。值得庆幸的是,有了这台拉曼谱仪,我做了一批纳米颗粒表面声学声子研究的工作,也较早提出了表面声学声子-极化子(polariton)的概念,随后也在低波数段,揭示了由纳米片组成的核壳结构氧化锌纳米球具有高效、室温的太赫兹发射。T64000拉曼谱仪还有一个重要的功能,它可以使用第三单色仪检测材料的荧光发射,获得高质量的光致发光谱。在对拉曼散射的研究中,也激发我对半导体纳米材料发光现象研究的兴趣,并由此在实验室前任主任鲍希茂教授带领下获得了一项国家奖。现今随着研究组的扩大和学生的增多,研究内容也扩大至纳米材料的生长动力学、磁性和光电催化等多个方面,但是对拉曼散射和荧光谱学的研究仍是我最敏感也最为擅长的研究内容,我至今引用超过千次的一篇论文,就是先研究拉曼散射后揭示荧光现象的结果。现今拉曼谱仪和拉曼散射研究获得了蓬勃发展,已经渗透到几乎所有的研究领域,展示出极大的应用潜力,我由衷地为我当初的选择感到庆幸,正是这门学科的发展造就了我的现在。作者简介: 吴兴龙教授,1995年2月博士毕业于南京大学物理系凝聚态物理专业,现为南京大学物理学院教授、博士生导师。长期从事半导体微纳结构的设计、发光和拉曼散射特性的研究,近期开展微纳结构在光电催化效应方面的探索。在包括Nat Nanotechnol、Nat Commun、Joule、Phys Rev Lett、J Am Chem Soc、Nano Lett、Adv Mater、Angew Chem、ACS Nano等高水平杂志上发表论文300余篇,论文被同行在国际杂志上他引万余次,单篇他人引用超1000余次。2002年获国家杰出青年基金资助,2007年入选教育部长江学者特聘教授。主持和参与国家科技部 “973”项目、国家自然科学基金委、教育部、江苏省自然科学基金委等重点和面上项目多项。曾获国家自然科学四等奖、江苏省科技进步一、二等奖,2017年获教育部自然科学一等奖。
  • 无情岁月增中减 有味科研苦后甜——我的十年拉曼散射研究之路
    1998年初秋,我第一次离开故乡,踏上了来重庆的求学之路,心中的喜悦和忐忑夹杂在一起。喜悦是对即将到来的大学生活的向往,而忐忑则是对未来的迷茫,我会在这高等学府里遇见什么呢?我的人生之路又将如何呢?随后,四年本科和四年半的硕博连读(图1),求学生涯是那么的匆匆忙忙、转瞬即逝。九年间,我如饥似渴地学习,了解了很多新东西,掌握了很多新知识,但是,我要做什么?我能做什么?我内心仍然很迷惘。2007年,在导师黄尚廉先生的辅导下,我第一次撰写了国家自然科学基金(National Science Foundation of China, NSFC)申请书,并获得青年项目资助,随即开始从事面向显示的光栅光调制器的研究,这才算真正开始了自己的科研工作。2007年到 2009年,我的工作重心逐步过渡到基于光调制器的光谱检测领域,并于2009年再次获得NSFC面上项目资助。同年,我获得国家留学基金委资助,到加州大学伯克利分校访问。这是一所世界著名学府,有众多耳熟能详的著名学者,有世界顶尖的科学研究实验室,特别是当时的纳米加工实验平台让我见识了更多的纳米光学前沿研究工作。也正是这次访学,使我眼界大开,更加明晰了我的研究方向。图1 2006年冬,博士毕业答辩2010年回国以后,我注意到自己前期开展的光栅光调制器研究与在伯克利访学期间从事的碳纳米管相关研究之间有很大的差异。如何把二者有机结合起来?如何把新型的纳米材料研究与自己的光学工程学术背景相结合,做一些有创新性的工作?这些问题一直回荡在我脑海里。碳纳米管有极大的比表面积,可以吸附更多的金属纳米结构,将有可能产生强的局域电场,如果将它与拉曼光谱检测结合,有可能实现痕量分子的检测,这种检测在食品安全、水污染等领域有着重要的研究意义。为此,我把自己研究的注意力转移,集中到表面增强拉曼散射机理和基底的构筑方向上,开始了拉曼散射的研究。2013年,我获得了第三个自然科学基金项目资助,开始“基于金纳米粒子修饰碳纳米管阵列三维结构的光流控SERS(surface-enhanced Raman scattering,表面增强拉曼散射)微系统研究”,实现了痕量分子(液态)的检测。有一次去中科院重庆绿色智能研究院交流学习,有幸认识了在拉曼光谱领域有深厚功底的刘玉龙老师,他给了我很多拉曼散射研究方面的建议和意见(图2)。随后,我成为了《光散射学报》编委委员,参加了多次的光散射学会的学术会议,和光散射学会的前辈和同行有了更多的学术交流,对拉曼散射的理解也不断的加深,我的一些研究思路也得益于和他们的不断讨论。我的第一个博士生张晓蕾的课题为“碳纳米管/银复合结构的拉曼增强机理和实验研究”,我们采用磁控溅射和高温退火的方法将银纳米粒子修饰到碳纳米管管壁。其中,溅射银的厚度、退火温度、气体配比、退火时间等参数都需要多少次的实验和摸索,张晓蕾博士经常在实验室工作到深夜。攻读学位期间,她两次拿到博士研究生国家奖学金,获得王大珩光学奖高校学生奖等一系列奖励,并于2018顺利毕业(图3)。我经常会回忆起和她一起工作情景,讨论实验方案,开展实验过程,探索过程的艰苦,看见实验结果的喜悦,点点滴滴都是那么的难以忘怀。图2 2018年,刘玉龙老师来重庆大学指导工作图3 2018年夏,第一个博士生张晓蕾毕业答辩2018年,我的工作面临一个重要的选择:是继续深入研究纳米材料和构筑纳米结构为主?还是以SERS检测技术为主,并逐步在国民经济的重要领域开展应用探索?我选择了后者。这种方向的选择带来了很多新的问题,经费紧张,加工困难、博士生招生受挫等等。那些日子工作压力非常大,开车上下班的路上脑子都是增强拉曼散射新思路的构想。本来就消瘦的我,加上愁容满面,同事们经常怀疑我患病了。很幸运,我于2018年第四次获得NSFC项目资助,开展“全光纤表面增强拉曼散射气体检测关键技术研究”。气体的拉曼散射截面小,其拉曼信号非常微弱,SERS基底的构筑、拉曼信号收集效率等都需要进一步的优化和提高。在这个研究过程中,我们考虑在SERS定量检测方面做一些工作,我们以碳纳米管和石墨烯有典型特征拉曼峰为参照,构筑了自标定SERS基底,在增强拉曼信号的稳定性方面做了大量的工作。这里不得不提到我的一个硕士研究生尹增鹤,他刚刚入校的时候,和我讨论研究方案,分析实验结果总是显得很懵,我曾一度担心他不能按时毕业。没想到,他经过三年的努力,在自标定理论机理和实验方面做了大量深入的探索,极大提高了SERS基底的性能,他也获得了2019年重庆市优秀硕士学位论文奖;这也是我作为导师以来,培养的第一个获得省部级学位论文奖的学生。2019年,由于在光栅光调制器、微型光谱仪以及拉曼光谱检测技术领域的工作成绩,获得了重庆市杰出青年基金的资助,它既是奖励,也是鞭策。2020年以来,根据科研工作的需求,同时考虑到自己在学校主要讲授《物理光学》和《傅里叶光学》等课程,有不错的理论基础,我对波导增强拉曼和SERS耦合的产生了研究兴趣。我的研究工作进一步扩展到波导-SERS双增强拉曼传感领域,我的思路是把拉曼增强传感器和拉曼光谱采集系统一体化设计,并集成在一片光子芯片上;2021年,这个思路使我获得了第五个NSFC项目资助。波导-SERS双增强芯片的研究,有望在拉曼传感器性能、拉曼光谱仪体积、应用场合等多个方面取得新的突破;但其中有太多的科学问题和技术问题需要解决,真是路漫漫兮!过去的十多年里,我所在的“光微纳器件及系统”研究小组为解决现场光谱检测系统难以实现小型化、高一致性、高灵敏度等问题,以光微纳器件及系统中光调制技术及器件研究为基础,提出了将MEMS光调制器与单点探测器结合的近红外光谱检测的新方法,实现了近红外光谱仪的微型化,极大程度上减小了光谱仪的台间差,为近红外快检技术的大规模应用打下了良好的基础;随后将研究从吸收光谱进一步拓展到散射光谱,开展了表面增强拉曼散射技术研究,揭示了SERS增强检测中光子、表面等离子激元、分子间耦合相互作用和自标定机理,完成了表面增强拉曼器件和便携式拉曼光谱仪研制,在现场快检光谱学方面形成了一定的研究特色(图4);我们获得了2020年度重庆市技术发明二等奖。今年的十一月中旬,我参加了颁奖大会,高兴的同时,我更感到责任重大(图5)。图4 研制的各类型光谱仪,SERS器件图5 2021年初冬,参加重庆市科学技奖励大会过去的十年,我国的拉曼散射、增强拉曼散射、拉曼光谱仪、拉曼光谱应用等研究都获得了蓬勃发展;十年岁月,我把青春留在实验室、讲台上,也留在了每一个SERS和拉曼光谱检测的新构想里;十年时光,见证了我科研工作中的风风雨雨,也见证了我成长路上的喜怒哀乐。“无情岁月增中减,有味科研苦后甜”,人生路上的下一个十年,我将继续在拉曼散射研究路上奋力前行!作者简介: 张洁,重庆大学,教授。主要研究方向:增强拉曼散射,拉曼光谱系统。作为项目负责人,主持国家自然科学基金五项、国防特区科技创新项目一项、重庆市杰出青年基金一项等。获2020年度重庆市技术发明二等奖(排名第一)。
  • 贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。  由于电磁增强作用,位于贵金属纳米结构表面的分子拉曼信号会得到数量级的增强,从而产生表面增强拉曼散射效应。表面增强拉曼散射技术具有分子“指纹”识别能力,在化学和生物分析等领域拥有广泛的应用前景。贵金属纳米结构表面具有大幅度增强局域电磁场的位置(一般位于10nm的间隙处)称为表面增强拉曼散射“热点”,是表面增强拉曼散射信号的主要来源。因此,在三维空间内增加“热点”的密集度将有效提高表面增强拉曼散射灵敏度。目前,构筑三维SERS基底的主要方式是将球形贵金属颗粒组装到非金属纳米结构阵列上。相关理论和实验研究表明,与球形贵金属纳米颗粒相比,带有棱角或尖端的贵金属纳米结构能够产生更强的局域电磁场,因而其组装体在间隙处更易产生“热点”。如果将这些纳米结构组装成三维SERS基底,有望得到高灵敏度SERS基底。  该研究团队以ZnO纳米锥阵列作为牺牲模板,使用含有贵金属离子和特定表面活性剂的电解液,采用电沉积方法构筑多种贵金属纳米结构单元组装的纳米管阵列,例如由银纳米片、金纳米棒、铂纳米刺和钯纳米锥等结构单元组装的纳米管阵列。这些纳米结构单元具有显著的棱角和/或尖端 由其组装的纳米管阵列具有大量间隙,在三维空间内产生高密度的“热点”。因此所构筑的纳米管阵列具有很高的表面增强拉曼散射灵敏度。例如,银纳米片组装的纳米管阵列能够灵敏地检测浓度低至10fM的罗丹明6G (R6G)。这种银纳米片组装的三维SERS基底对高毒性有机污染物多氯联苯也表现出高表面增强拉曼散射灵敏度,并能够检测两种多氯联苯的混合物,表明该三维SERS基底在检测环境中高毒性有机污染物方面具有应用前景。  相关工作得到科技部“973”计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。图1. 论文的相关图片被选作期刊封面  图2. (a)银纳米片组装的纳米管阵列的扫描电镜(SEM)照片 (b)折断的纳米管的SEM照片 (c)不同浓度R6G的SERS光谱 (d) 20μ M多氯联苯-77 (PCB-77)和10μ M多氯联苯-1 (PCB-1)的混合物溶液(曲线I) 以及30μ M的 PCB-1溶液(曲线II)的SERS光谱。
  • 美研制出增强拉曼散射传感器 灵敏度提高10亿倍
    据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。  拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理学家钱德拉塞卡拉拉曼发现。在拉曼散射中,一束单色光照射到一个物体后,其反射光会包含另外两种频率的光,这两种光的频率仅与该物体的分子组成相关,这就潜在地提供了一种有效识别物质的方法。但由于这种额外的光太微弱,科学家几十年来很难将拉曼散射付诸于实践。  上世纪70年代,科学家研制出表面增强拉曼散射(SERS)技术,可以通过将所鉴别物质放在粗糙的金属表面或金、银小粒子之上来增强拉曼信号。但科学家随后发现,这种增强的拉曼信号仅出现在传感器表面的几个随机点上,很难预测其具体位置,仍然非常微弱。  而普林斯顿大学电子工程系教授斯蒂芬周领导的团队摒弃了以往设计和制造拉曼传感器的方法,研发出一种全新的SERS结构:一块芯片上布满一行行由金属和半导体组成的小柱子。  新传感器获胜的“秘密武器”就是这些小柱子的排列方式:每个柱子上部和底部各有一个由金属制成的中空部分 柱壁上布满直径约为20纳米的金属粒子(等离子体纳米点),金属粒子之间有2纳米左右的空隙。金属粒子和空隙能显著增强拉曼信号 中空部分能捕捉光信号,让光多次而不是仅一次地通过等离子体纳米点,从而也能增强拉曼信号。迄今为止,该芯片的灵敏度比不经过拉曼增强而研制出的传感器高10亿倍,而且其灵敏度非常稳定,能可靠地应用于感应设备中。  除灵敏度大增之外,借助纳米压印技术和纳米粒子自组装技术,新芯片能实现高质量、规模化制造,研究人员已经在4英尺的晶片上制造出这些传感器。  美国海军研究实验室的科学家也在进行相关实验,希望军队也能使用该技术探测化学物质、生物试剂和炸药。
  • HEPS首批X射线拉曼散射谱仪分析晶体完成在线测试
    近日,中科院高能所自主研制的球面弯曲分析晶体取得突破性进展,助力高能同步辐射光源(HEPS)高能量分辨谱学线站建设。针对国内高压科学、能源材料等多学科的学科优势,为满足广大用户需求,HEPS高能量分辨谱学线站正在设计建造一台具有先进国际水平的X射线拉曼散射(XRS)谱仪—“乾坤”。其中,球面压弯分析晶体基于罗兰圆几何条件,将特定能量的X射线聚焦至探测器上,是XRS谱仪的核心光学部件。聚焦面形精度和高能量分辨是球面弯曲分析晶体的两项极为关键,又互相影响的技术指标,因而极具挑战性。“乾坤”谱仪采用6组模组化分析晶体阵列,由90余块半径1m的分析晶体构成,其晶体能量分辨的设计指标与电子-空穴态寿命展宽数量级相当,达到ΔE/E~10-5,球面弯曲面形精度满足1:1聚焦需求。在HEPS工程指挥部的部署下,HEPS高能量分辨谱学线站团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关。线站核心成员郭志英、多学科中心晶体实验室刁千顺,经过多年技术攻关和反复尝试,不断改进优化分析晶体制备工艺,最终探索出兼顾能量分辨与聚焦特性于一体的球面弯曲分析晶体制备方法。今年10月2日-5日,项目团队在北京同步辐射装置(BSRF)1W2B线站上,采用Si(111)双晶单色器Si(220)切槽单色器两次单色化、毛细管微聚焦的光学配置,利用自研三元谱仪样机,对谱仪单模组内15块分析晶体(图1),采用EPICS-Bluesky控制系统实现单色器联动扫描,开展了批量、高精度指标测试(装置见图2)。优化后入射能量带宽实现高分辨,达到半高全宽0.8eV@9.7keV,分析晶体自身能量分辨(图3)达到半高全宽~1eV@9.7keV,与理论预测值相当,聚焦特性得到充分验证(图3、图4),各项指标全部满足工程设计需求。HEPS高能量分辨谱学线站是我国首条专注于硬X射线非弹性散射谱学实验的线站,聚焦核能级超精细结构、声子态密度、芯能级电子跃迁和价电子激发的探测,主要提供核共振散射(NRS)、XRS、共振非弹性散射(RIXS)等谱学方法,服务于量子科学、能源科学、材料科学、凝聚态物理、化学、生物化学、地学、高压科学、环境科学等多学科前沿研究。其中,XRS是一种基于X射线非弹性散射原理的先进谱学实验技术,欧洲ESRF (72块分析晶体)、美国APS(19块分析晶体)、日本SPring-8(12块分析晶体)、法国SOLEIL(40块分析晶体)、英国Diamond光源等光源已建成或规划建设XRS旗舰线站。由于非弹性散射截面极小,比X射线吸收截面小4~5个量级,XRS实验技术需要高亮度光源以增加入射光子通量,同时也需要大立体角谱仪提高探测效率,而大立体角探测需要多块发现晶体实现。首批分析晶体的指标通过在线测试,将满足大批量分析晶体加工的工程需求,对HEPS“乾坤”谱仪、高能量分辨谱学线站的实施都具有里程碑意义。值得一提的是,该类型分析晶体的工艺也已经用于多种类型谱仪分析晶体的研制。接下来,该团队将高质量完成其余模组分析晶体的批量加工,同时,将致力攻关无应力高能量分辨分析晶体的研制。晶体研发工作还获得先进光源技术研发与测试平台PAPS的支持,BSRF-1W2B、3W1、4W1A、4W1B线站提供机时。图1. HEPS自研分析晶体图2. 分析晶体测试装置,其中,左图给出了散射光和分析晶体分析光路示意图图3 分析晶体测试结果,左上为4#晶体能量分辨率实验结果和拟合曲线,左下为三块晶体在探测器上的聚焦光斑,右侧为分析晶体能量分辨率批量测试结果图4 扫描单色器能量时探测器上的光斑变化情况图5 测试人员合影
  • 用户动态|高速精确实现在体诊断——新型双色受激拉曼散射成像技术
    供稿 | 李一鸣校对 | 贺若愚在外科手术中,对肿瘤边界进行快速病理成像被认为是精准切除的关键。受激拉曼散射(SRS)成像作为一种无须标记的新型显微术,避免了传统染色处理对组织的破坏,从而有望实现在体诊断。与单色SRS相比,双色SRS由于利用组织中两种成分的化学衬度叠加成像,从而可获得与H&E标准染色类似的诊断结果。然而,当前双色SRS较低的成像速度严重制约了其在实时组织学成像中的应用。基于以上背景,复旦大学应用表面物理国家重点实验室的季敏标教授等人对双色SRS显微镜光路进行了重新设计,开发出了一种速度显著提高的光路装置,并成功实现了多种组织的实时成像。图1. (a) 双色SRS显微镜的光路设计图;(b) 光谱聚焦装置中泵浦光(蓝色)和两束斯托克斯光(橙色)的时间分布示意图;(c) 调制后两束斯托克斯光脉冲(S1和S2)的相位差异。在课题组设计的光路图中,基于飞秒光谱聚焦的受激拉曼成像方法,通过延时线DL1改变泵浦与斯托克斯脉冲的时间间隔以实现两种拉曼频率(Ω1和Ω2)的选择,通过延时线DL2调节S1与S2的时间间隔以调节二者的调制相位差为π/2,由此使泵浦光的两通道受激拉曼损失(SRL)信号分别被锁相放大器的同相(X)和正交(Y)通道同时探测,从而实现双色同步成像。实验中自发拉曼光谱的采集采用了HORIBA iHR320光谱仪与液氮制冷Symphony CCD,拉曼数据分析采用了LabSpec软件。图2. 串行和并行双色SRS成像的运动伪影研究。(a)和(b)分别为仅采用S1,通过顺序调节DL1的延时进行两种拉曼频率(2848 cm-1和2926 cm-1)的串行成像策略(灰线)及对应成像图;(c)和(d)分别为本研究对两种拉曼频率(2848 cm-1和2926 cm-1)的并行成像策略(灰线)及对应成像图。对该成像装置,作者通过实验验证了两束斯托克斯光束间对于拉曼频移相差约35cm-1以上的双色成像时,不存在干涉问题,锁相放大器的X和Y通道信号的串扰也可以忽略,显示出成像的高分辨率。另外与之前的双色成像通常采用串行成像,即对两种组分进行顺序成像必定造成组织活动的伪像相比,该研究光路的并行特性赋予的同步特征杜绝了该类伪像,则显示出动态成像的高精确性。更进一步地,该研究光路中的双通道同步探测还大大节约了顺序成像时波长调谐所耗费的时间,即成像速度大幅提升。作者通过对小鼠脑冠状切片的双色成像实验表明该装置的成像时间较之前的串行成像装置减少了50%以上。图3. 活体生物的在体双色SRS显微图像。(a)和(b)分别为斑马鱼胚胎的心脏和大鼠耳朵的透过模式图像,其中红色和青色区域分别代表血红素和蛋白质;(c)为大鼠耳下60 μm深度处皮下脂肪细胞的反射模式图像,其中绿色和蓝色区域分别代表脂类和蛋白质;(d)为反射模式图像的信号串扰随成像深度增加的强度变化。在本研究中,作者成功采用透过和背向散射两种模式进行了不同活体生物的在体成像实验。包括对斑马鱼跳动的心脏和小鼠毛细血管中流动的血细胞的实时双色成像。特别对背向散射模式,通过添加背向散射光电探测器,使该光学装置可实现对组织的不同深度成像,且信号串扰在深度增加过程中始终小于4%,从而显示出其在外科手术过程中进行实时成像与诊断的大潜力。此项研究工作得到了国家重点研发计划“数字诊疗装备”专项、上海市青年科技启明星计划、上海市科技创新行动计划以及国家自然科学基金面上项目等的基金支持;相关成果近期以封面文章发表在美国光学学会的旗舰杂志《Optica》上:Ruoyu He, Yongkui Xu, Lili Zhang, Shenghong Ma, Xu Wang, Dan Ye, Minbiao Ji, “Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging”. Optica 2017, 4 (1), 44-47.HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • “热火”的表面增强拉曼——第十九届全国光散射学术会议之分会场
    p  strong仪器信息网讯/strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。据中山大学陈建教授介绍,本次会议共收到来自英国、德国、韩国、新加坡、港澳地区、国内90余家高校和科研院所的论文投稿300余篇,注册参会人数450余人,大会特邀报告6篇、分会邀请报告43篇、分会口头报告63篇、墙报160多篇。为了更好地交流,在大会报告环节之外,CNCLS19分为物理材料、表面增强拉曼、食品安全/生物医学/刑侦及其它等3个分会场进行邀请报告和口头报告,同时还专门设置了厂商技术交流报告分会场。/pp  1928年,印度物理学家拉曼(Raman)首次在实验中观察到拉曼散射光,并因此荣获了1930年的诺贝尔物理学奖。但是,信号弱这个与生俱来的缺点在很大程度上限制了拉曼光谱在各方面的应用。直到,1974年,Fleischmann等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼散射(SERS)信号。SERS是指当一些分子被吸附到某些粗糙的金属(如银、铜、金等) 表面上时,它们的拉曼散射强度会增加10 sup4/sup~10sup 6/sup 倍。由于表面增强效应可以使拉曼强度增大几个数量级,提供了极高的表面检测灵敏度,为人们刻画了很好的应用前景,在国际上很快就掀起了SERS研究的热潮。80年代初,中国就开始了SERS的相关研究工作。近几年越来越多的课题组踏入这个领域,几乎呈指数增长。/pp style="text-align: center "img title="SERS现场.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/360208f8-b880-4bfd-8223-3db9852aa5cf.jpg"//pp style="text-align: center "表面增强拉曼分会场现场/pp  CNCLS19表面增强拉曼分会场的“热火”也正是体现了这一发展状况。12月2日下午,仪器信息网编辑驻足表面增强拉曼分会场。当然,这个分会场除了SERS,还有针尖增强拉曼散射(TERS)的研究工作。TERS是扫描探针显微镜与拉曼探测系统相结合的一门技术,可实现纳米级的空间分辨。TERS概念首先是由J. Wessel等在1985年提出的。2000年,四个研究小组几乎同时报道了TERS实验结果。10多年来,TERS研究取得了很大进展。/pp  CNCLS19表面增强拉曼分会场共安排了15个邀请报告、21个口头报告,报告内容多围绕着表面增强基底的制备及其机理或应用研究。下面,将部分精彩报告进行摘录。/pp style="text-align: center "img title="杨良保.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/15834289-0800-47e4-beab-75a2e1434e1f.jpg"//pp style="text-align: center "中国科学院合肥智能机械研究所 杨良保研究员/pp style="text-align: center "报告题目:SERRS Strategy Sensitively and Selectively Detect the Biological Basis of Acupuncture/pp  杨良保研究员介绍了近年来关于SERS在针灸中研究工作的进展。针对高灵敏度检测针刺物质难点、围绕关键的科学问题——如何提高检测的灵敏度和选择性,杨良保提出了将活性基底与有效的前处理方案相结合的策略。并且展望未来该团队将把SERS与针灸结合实现原位跟踪、实时检测,进而阐明部分作用机制。/pp style="text-align: center "img title="张正龙.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/e488f5cd-524b-4a28-8c81-f942013fe86d.jpg"//pp style="text-align: center "陕西师范大学 张正龙研究员/pp style="text-align: center "报告题目:针尖增强拉曼光谱学中的表面等离激元催化/pp  张正龙研究员报告中介绍了一种新的催化化学反应理论,即等离激元催化。根据该理论,表面等离激元在金属表面振荡衰减后,会释放出“热电子”,而这种“热电子”在催化反应中扮演重要角色。张正龙研究员利用TERS技术实现了分子催化化学反应,并实现了对原位催化反应动力学过程的原位观测。/pp style="text-align: center "img title="谢微.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/cebad7e5-4fa0-4713-97b8-92419e7af776.jpg"//pp style="text-align: center "南开大学 谢微研究员/pp style="text-align: center "报告题目:非均相催化反应的SERS原位检测研究/pp  非均相催化剂因已于分离,在化工、能源、环境等领域有很好的应用前景。由于SERS的高灵敏度、高特异性,以及很好的表面选择性,可以用于非均相催化反应进行原位分析,而其实现的关键在于催化活性等离激元双功能纳米结构的制备。谢微研究员的报告中介绍了其团队设计合成了几种双功能SERS基底纳米粒子,通过模型反应初步实现了金、银、铂等纳米粒子催化反应的SERS检测。/pp style="text-align: center "img title="赵艳.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/6895ff5a-4b5b-49ec-8d78-1c480e4544ca.jpg"//pp style="text-align: center "北京工业大学 赵艳副研究员/pp style="text-align: center "报告题目:周期性金/银球形纳米阵列制备及非偏振依赖SERS机理研究/pp  在周期性贵金属球形纳米粒子制备领域,目前缺乏一套能够可靠实现单纳米粒子尺寸小于100nm、粒子间距小于40nm的周期性贵金属球形纳米粒子阵列低成本、大面积制备技术。采用镀膜融塑法依托AAO纳米碗阵列,赵艳副研究员成功解决了该技术难题。并且其所制备的出的周期性银球形纳米粒子阵列不仅在全可见波段都具有良好的SERS活性,同时还展现出了非偏振依赖SERS特性。进而,赵艳副研究员进行相关工作解释了非偏振依赖SERS机理。/pp /p
  • 145万!中国科学院高能物理研究所拉曼散射谱仪基台组件采购项目
    项目编号:OITC-G220361819项目名称:中国科学院高能物理研究所拉曼散射谱仪基台组件采购项目预算金额:145.0000000 万元(人民币)最高限价(如有):145.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1拉曼散射谱仪基台组件1否145万元合同履行期限:合同签订后9个月内本项目( 不接受 )联合体投标。
  • 烟台海岸带所发表表面增强拉曼散射专题评述
    近期,国际权威化学评述期刊——美国化学会Chemical Reviews发表了中科院烟台海岸带研究所以陈令新研究员为核心的“环境微分析与监测”创新团队,关于表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)技术的评述文章——SERS Tags: Novel Optical Nanoprobes for Bioanalysis(Y.Q. Wang, B. Yan, L.X. Chen*, Chem. Rev., 2013, 113 (3), 1391–1428)。Chemical Reviews是国际化学一级学科顶级期刊,影响因子40.197(2011年)。  文章介绍了表面增强拉曼散射“标签”(SERS tags)这一纳米光学生物分析探针的最新进展。近年来,SERS分析探针和相关光谱分析技术在生物分析检测领域展现了巨大的应用潜力,并以其能够解决广泛的生物化学问题成为生物化学研究的重要工具。SERS分析探针是一类由贵金属材料、拉曼报告分子共同组成的新型纳米光学探针,具有灵敏度高、光谱指纹特性强和高通量标记的优点。文中总结了基于多种形貌的金、银纳米材料SERS探针的制备方法和光学特性,较为全面地阐述了其在分子检测、细菌和细胞成像、组织诊断以及活体动物成像等多层次的化学和生物学应用 同时进一步探讨了该技术面临的挑战及未来的前景,如提高单颗粒信号的重现性、发展多功能复合检测平台以及探针的生物相容性研究等。该文对从事SERS领域的研究人员具有一定的参考价值。  烟台海岸带所“环境微分析与监测”创新团队主要从事环境化学监测方面的研究与技术研发工作,致力于以典型污染物(无机离子、有机分子、病原体和生物体内活性物质等)为研究对象,利用生物/纳米材料和光、电、磁、声等分析探测技术,研发分析监测新原理、方法与仪器,特别注重发展基于紫外可见光谱、荧光光谱和拉曼光谱等相关光谱分析技术。在国家自然科学基金、中科院“百人计划”等项目资助下,在基于新型分子印迹材料“复杂基质样品前处理-色谱分离分析”、“纳米生物分析体系的构建”等方面开展研究,取得了一系列创新性研究成果。为解决复杂基质样品分析的技术难题,为发展选择性好、灵敏度高和简单快速的新型纳米光学传感体系提供了新思路。烟台海岸带所在Chemical Reviews发表表面增强拉曼散射专题评述
  • 柔性二维碳化钒基表面增强拉曼散射检测平台问世
    安徽理工大学力学与光电物理学院青年教师蓝雷雷与东南大学物理学院邱腾课题组合作,制备出两种类型的二维碳化钒(V4C3和V2C)MXenes材料,并证明这种材料可以作为性能优异的表面增强拉曼散射(SERS)平台,其中V4C3作为SERS活性材料首次报道。相关研究成果发表于《美国化学会-应用材料与界面》。柔性二维碳化钒MXene基滤膜的SERS增强效果示意图 安徽理工大学供图表面增强拉曼散射作为一种具有高灵敏度、分子指纹识别和快速无损测量的表面光谱分析技术,将检测灵敏度提升了百万倍以上,已广泛应用于生命科学、物理、化学、材料学、地质学、考古和艺术品鉴定等领域。“比如将SERS技术应用于患者呼出物、血清液、脱氧核糖核酸的检测,为早期患者的疾病诊断提供一种有力分析手段;应用于海洋微塑料、大气有毒有害气体、水体有机污染物和土壤重金属的微量检测,实现对环境中有害物质的监测;还可实现对危害公共安全的爆炸物质和疑似吸毒人员体液毛发中含毒品物质的快检。” 蓝雷雷向《中国科学报》介绍。近年来,一些MXenes材料表现出相当强的SERS活性,为SERS活性材料发展开辟了新前景。但其瓶颈在于灵敏度不足,无法满足实际应用需求。因此,将MXene材料的灵敏度推向更高水平仍然具有挑战性。此次研究中,蓝雷雷等提出了一种新的增强策略,通过结合二维裁剪和分子富集来设计高灵敏度的柔性MXene基SERS衬底,成功制备出两种类型的二维碳化钒MXenes材料。“我们研究发现,与块状MXene材料相比,二维裁剪赋予碳化钒MXenes费米能级附近更为丰富的态密度,促进了光致诱导电荷转移,增加了多达2个数量级的检测灵敏度。”蓝雷雷说。进一步,研究人员采用了一种分子富集方法,实现了2分钟内超快速分子富集、超高分子截留率和更低的检测限,从而获得了超灵敏的SERS检测。蓝雷雷说,“这项研究有助于设计和开发出高性能的新型MXene基SERS基底,可用于食品安全、疾病诊断、反恐搜爆、毒品稽查、环境监测和病毒检测等领域。”审稿人认为:作者将二维裁剪策略与分子富集效应相结合,这是一项有趣的研究工作,新型碳化钒基底的SERS增强效果显著,其中V4C3作为SERS基底在这之前未曾报道过。通过简单抽滤的分析物富集概念为实现超灵敏的SERS检测提供了一种有效的策略。相关论文信息:https://doi.org/10.1021/acsami.2c10800
  • HORIBA 用户动态 | 基于电子拉曼散射谱的金属性单壁碳纳米管手性结构测定
    撰者:张达奇拉曼光谱是探测单壁碳纳米管性质的重要手段。通过G模的峰型判定碳管的导电性(金属或半导体)和通过RBM模的拉曼频移计算碳管管径,是碳管拉曼光谱的两大主要应用。但是要通过分析拉曼光谱精确获得碳管的手性指数(n,m)仍然具有挑战,尤其是在仅有少波长激发的情况下。北京大学化学与分子工程学院李彦教授-杨娟副教授团队利用实验中观察到的金属管两个电子拉曼散射峰(ERS),发展了一种便捷、精确的金属管(n,m)指认方法。利用此方法,研究者可以只通过单一波长激发的拉曼光谱精确指认出金属管的(n,m),从而进一步建立起金属管光学、电学性质的手性结构依赖性。两个ERS峰的发现实验中作者首先对悬空的单根金属管进行了透射光谱测试以确定其电子跃迁能(Mii)的数值。在同一根碳管的拉曼光谱中可以分辨出分别位于M11+和M11-的两个ERS峰(图1a),这是对单根金属管两个ERS峰的报道。该峰源于金属管费米能级附件的电子对光生激子的非弹性散射作用,并在Mii处发生共振增强(图1b)。图1. (a)单根(13,7)碳管的拉曼光谱(红线:激发波长633 nm;绿线:激发波长532 nm)和透射光谱(黑线)。(b)碳管的声子拉曼散射(紫色箭头)和电子拉曼散射(蓝色与红色箭头)过程示意图。18种不同手性碳管Mii数值的获得基于以上发现,作者对不同(n,m)的碳管进行了测试。利用HORIBA Aramis拉曼光谱仪自动线mapping功能可以对悬挂于镂空沟槽上的碳管进行有效的定位和光谱测试。实验中一共得到了18种不同(n,m)的Mii数值,并拟合得到了定量关系式,为今后金属管指认提供了重要参考数据。此外,作者收集了11个(12,9)碳管的数据,发现管束、积碳等因素对碳管拉曼光谱有较为显著的影响。统计获得的ωRBM和M11波动差标示在图2b中。虽然M11受环境影响较大,但是M11的裂分值(即M11+- M11-)受环境影响的变化仅有±4meV。图2 (a)2n+m=33金属管的拉曼光谱,激发波长633 nm。蓝色虚线表示对ERS峰的拟合。(b)通过ERS指认的18个金属管(红色数据点)。基于ERS的拉曼光谱的优势相比于现有的瑞利散射光谱、偏振吸收光谱、可调激光拉曼等适用于单根碳管测试的谱学方法,基于ERS的拉曼光谱拥有以下三大优势:1仪器需求简单,测试便捷在该工作中,作者使用了HORIBA Aramis拉曼光谱仪,配备532nm、633nm、785nm三个常见的激发波长,通过仪器全自动切换,即可测试得到1.4-2.3 eV范围内的跃迁能数值。类似的显微拉曼光谱仪还有HORIBA XploRA, LabRAMHR Evolution型光谱仪,均可以满足相关研究者的需求,测试不再依赖于复杂的仪器搭建和调试。2测试精度高得益于HORIBA拉曼光谱仪的高分辨率和良好的噪声抑制水平,通过ERS测定Mii的误差仅为±1meV,远优于常见的瑞利散射光谱等电子光谱学手段~10 meV的误差。 3样品适用范围广针对硅基底上、表面活性剂包裹的、管束中的碳管作者在实验中均能测试得到ERS峰。图3 (a)单根(12,9)碳管(黑线)及含有(12,9)碳管的管束(绿线)的拉曼光谱,激发波长633 nm。(b)同一根金属管在悬空部分(黑线)和硅基底上部分(红线)的拉曼光谱,激发波长633 nm。此项研究工作得到了国家自然科学基金会和科技部的支持。相关工作发表在《Physical Review B》和《ACS Nano》上:Daqi Zhang, Juan Yang, EddwiHasdeo, Can Liu, Kaihui Liu, Riichiro Saito, Yan Li, Multiple electronic Raman scatterings in a single metallic carbon nanotube. Phys. Rev. B, 93, 245428 (2016).Daqi Zhang, Juan Yang, Meihui Li, Yan Li, (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano, 10, 10789–10797 (2016). HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊图谱成像新方法
    研究背景癌变细胞和正常细胞在形态、化学性质和力学性质等方面有明显差异,肿瘤组织细胞化学和力学性能的检测可为细胞及人体组织病变过程提供多维信息。现有组织细胞形态、力学性能、化学性能的检测方法中,共焦拉曼光谱显微技术可对样品微区化学性能进行非接触、无标记探测,共焦布里渊光谱显微技术可对样品微区力学性能进行非接触、无损探测,将共焦拉曼光谱与布里渊光谱检测技术结合,来同时、同位检测组织甚至亚细胞结构的微区三维形貌、化学性能和机械力学性能,有望为组织细胞多维病变信息的检测提供新手段。创新研究现有共焦拉曼/布里渊光谱显微成像技术由于缺少高精度实时定焦能力,致使扫描过程中聚焦在样品上的光斑大小随着样品的高低起伏而变化,从而制约了共焦光谱显微系统理论空间分辨力的实现;其次,由于拉曼和布里渊散射光谱强度较弱,成像积分时间较长,共焦光谱显微系统极易受系统漂移的影响而导致离焦,进而影响空间分辨力和成像质量等;此外,在对生物组织切片样品进行成像时,垂直入射产生的荧光信号会降低样品拉曼光谱的信噪比,从而影响拉曼光谱和布里渊光谱探测的准确性,降低检测精度。鉴于此,在国家自然基金重点项目“机械形态性能激光分光瞳差动共焦布里渊—拉曼光谱测量原理与传感系统(51535002)”等项目支持下,北京理工大学赵维谦教授团队发明了图1所示的高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊(Divided-aperture Laser Differential Confocal Raman-Brillouin,DLDCRB)图谱成像新方法(授权中国发明专利ZL 201410086366.5和欧洲发明专利EP 3118608 B1),该方法将分光瞳激光差动共焦显微技术与拉曼光谱和布里渊光谱探测技术相结合,通过差动共焦测量技术进行纳米精度的样品定焦,来提高系统空间分辨力和稳定性;通过分光瞳斜向激发与探测技术进行反射光和层间散射光等干扰光的抑制,来提高系统的光谱探测信噪比;通过拉曼光谱与布里渊光谱的同源激光激发与高分辨分离探测,来实现微区几何形貌、拉曼光谱和布里渊光谱的高稳定、高分辨原位图谱成像。图1. DLDCRB光谱显微成像原理基于该方法研制了图2所示的具有高空间分辨力和三维成像聚焦跟踪能力的DLDCRB光谱显微镜,其轴向定焦分辨力达1nm、光谱成像横向分辨力达400nm、拉曼光谱分辨力达0.7cm-1、布里渊光谱探测分辨力达0.5GHz等。图2. DLDCRB光谱显微镜利用研制的DLDCRB光谱显微镜,对条形样品进行了清晰成像,结果如图3所示,验证了所提方法的抗漂移能力;对PMMA/SiO2双层样品进行了检测,结果如图4所示,验证了所提方法抑制离焦层散射光干扰的能力。图3. 传统共焦光谱系统与DLDCRB光谱显微镜结果对比(a)经典共焦光谱系统成像(模糊) (b) DLDCRB光谱系统成像(清晰)图4. 系统抗离焦噪声干扰机制 (a) 斜向激发与收集光路 (b) 压缩了散射体轴向尺寸利用研制的DLDCRB光谱显微镜,对胃癌组织和癌旁正常组织进行了拉曼-布里渊光谱成图实验分析,证实了之前有关癌组织中蛋白质物质发生变化以及组织之粘弹性变化导致浸润性增加的假设。图5给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的化学成像结果,浓度由拉曼光谱特征峰的强度来表征。胃癌组织与癌旁正常组织化学成像结果相比:胶原蛋白浓度低且分布离散;胃癌细胞的DNA物质浓度高且分布范围大;胃癌组织细胞基质内的蛋白质浓度低;胃癌组织的脂质在基质内浓度高,而正常组织的脂质分布相对均匀。图5.胃癌组织与癌旁正常组织化学成像结果图6给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的力学性能成像结果,布里渊光谱的频移表征物质的储能模量(弹性性能),布里渊光谱的半高宽表征物质的损耗模量(粘性性能)。胃癌组织与癌旁正常组织力学成像结果相比,胃癌细胞和细胞间质的弹性低于正常细胞和细胞间质,癌细胞细胞核的弹性高于正常细胞;胃癌细胞和细胞间质的粘性低于正常细胞和细胞间质,癌细胞细胞核的粘性高于正常细胞。图6. 胃癌组织与癌旁正常组织的力学性能对比图本研究提出了具有高稳定、高分辨、抗散射的分光瞳激光差动共焦拉曼-布里渊图谱成像方法,研制成功了相应的仪器,实现了样品三维形貌、力学性能和化学组分的多维信息检测,并在肿瘤组织表征分析中进行了应用验证,本检测方法可为癌变过程和癌症治疗等领域的研究提供一种新的手段。
  • 基于拉曼散射的新型分布式光纤温度传感技术与工程安全监测应用获2012年度国家科技发明二等奖
    1月18日,国家科学技术奖励大会在北京召开,由总局推荐的“基于拉曼散射的新型分布式光纤温度传感技术与工程安全监测应用”科技成果获得2012年度国家科技发明二等奖。  由质检总局推荐,中国计量学院张在宣教授牵头完成的“基于拉曼散射的新型分布式光纤温度传感技术与工程安全监测应用”项目围绕工程火情监测及预警、智能电网等检测所面临的分布测温准确性、测量快速性、定位报警可靠性三个关键问题,主要发明了:新型分布光纤拉曼散射温度传感系统及解调、定标技术 新的温度传感脉冲编码解码等信号处理技术 双波长自校正和集成拉曼放大技术 分布光纤拉曼测温应用新技术。项目成果广泛支持公安消防所、煤科院等50余家单位的科研、生产和工程 成功用于上海长江隧桥等20多个省、市、自治区的600多个重大工程的安全监测。直接经济效益和社会经济效益十分显著。
  • 前景可瞻 拉曼光谱在生物医药领域的应用“极具诱惑”——第二十二届全国光散射学术会议报告集锦
    仪器信息网讯 2023年9月23日,由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办的第二十二届全国光散射学术会议在河南开封开幕。此次会议邀请了国内外光散射,以及相关光谱原理和技术领域的诸多知名专家学者,共同探讨光散射领域的最新研究成果和发展趋势,吸引了近500人注册参会。继大会报告之后,组委会设置了物理材料仪器、SERS/TERS、分析医药等三个会场分别进行邀请报告和口头报告,相关的新技术、新仪器、新应用层出不穷。值得一提的是,本次会议中多位专家分享了拉曼光谱技术在生物医药领域的最新研究进展,包括血糖检测等生化分析,药物浓度的检测及药物分子间相互作用的研究,疾病检测及诊断,细胞拉曼光谱分析与成像等,诸多研究方向致力于解决实际问题,给与会代表很多启发和期待。分析医药其他会场部分报告摘录如下:(1)生化分析上海交通大学医学院附属瑞金医院 王卫庆主任《基于拉曼光谱的无创血糖检测的临床验证》鉴于糖尿病的世界流行性及迅猛增长趋势,无创血糖检测是发展的必然趋势,但目前还没有成熟的无创血糖检测产品问世,在人类临床使用中仍然面临着巨大的实际性挑战。王卫庆主任在报告中分享到,他们基于偏移空间拉曼技术,研发了多通道微空间偏移拉曼散射(mμSORS)无创血糖检测原理。该技术基于静脉血血糖值,建立基于mμSORS光谱进行无创血糖分析的理论、算法和技术方法。临床试验结果证实,在糖尿病患者的血糖波动范围内,mμSORS可以达到或接近静脉血浆葡萄糖值,同时也显示了该技术应用于临床环境中无创血糖监测的潜力。上海师范大学 杨海峰教授《SERS芯片及其生化分析应用》SERS在生化分析中的应用一直是大家关注的热点话题。据杨海峰教授介绍,其课题组基于纳米合成构建了多种 SERS 探针,并在血清中肿瘤标志物唾液酸、肾炎标志物肌酐、癌症标志物多巴胺、尿液中尿路早期细菌感染分子标志物、唾液中葡萄糖和幽门螺杆菌分子标志物等分析中得到很好的应用。不仅如此,杨海峰教授也还展望了下一个氧气时代拉曼光谱极具潜力的应用前景。(2)药物研究/检测海军军医大学 陆峰教授《拉曼光谱方法研究药物分子间相互作用》药物分子之间特定的相互作用既是全面了解细胞过程和潜在疾病治疗的基础,也是生物传感器检测目标分子的基础。陆峰教授重点介绍了表面增强拉曼光谱法(SERS)及其与生物膜干涉法(BLI)、分子动力学模拟(MD)方法的协同创新,并初步应用于药物-核酸适配体、核酸适配体-重水、生物毒素药物-核酸适配体、siRNA-药物相互作用等研究对象。这几种方法在研究分子间相互作用方面各有所长,有望成为阐明其分子机制的得力工具。哈尔滨医科大学 李洋教授《血清中的药物浓度检测:基于 SERS 的无标记检测技术》表面增强拉曼光谱作为一种快速灵敏的技术手段已经被用于紫杉醇、环磷酰胺以及阿霉素等药物的检测,但复杂的样品制作过程和只能针对单一药物进行检测的增强基底,极大地限制了 SERS 在血药浓度检测领域的应用。李洋教授课题组的工作提出了一种基于溴离子和钙离子修饰的银纳米颗粒的检测平台,实现了对阿糖胞苷、盐酸阿霉素、柔红霉素、羧苄青霉素、异烟肼和盐酸小檗碱六种药物在血清中的定量识别,达到了皮摩尔级别的检测限。该工作为未来低成本、快速检测血药浓度与联合测定药物浓度提供了新的方向,对个体合理用药和联合用药等具有一定指导意义。(3)疾病诊断华中农业大学 韩鹤友教授《面向狂犬病毒的纳米诊疗技术研究进展》狂犬病是人类历史上有记载的、最古老的传染病,是由狂犬病毒导致的人畜共患急性传染病。狂犬病病毒具有强大的侵害性,发病后病人十分痛苦,致死率几乎100%。 韩鹤友教授在报告中分享了面向狂犬病毒的纳米诊疗技术研究进展,包括: 狂犬病毒的纳米检测技术,狂犬病毒的纳米治疗技术,狂犬病毒的纳米微针疫苗等。南京医科大学 曹玥副教授《纳米等离子体LSPR效应的生物应用》在生命分析领域,应急检测一直是至关重要的问题,如人体内毒物的快速检测和疾病的快速诊断。但许多传统分析方法都具有耗时长、对操作人员技术要求高等局限性。曹玥副教授课题组采用纳米等离子体共振散射光谱技术开发了一系列对生命分析领域应急检测的新方法,包括柔性静电纺丝SERS传感器对致病蛋白、呼吸道疾病等的检测,为生命分析领域的精准鉴定提供了新思路和新手段。同时,也说明了纳米等离子体共振散射光谱技术在生命分析领域的应用前景广阔,值得研究人员的关注和探索。(4)细胞/组织分析与成像武汉大学 胡继明教授《细胞拉曼光谱分析与成像》细胞是生命活动的基本单元,对细胞进行全面认识、深入了解及持续探索一直是生物医学研究领域的重要话题。具备高空间分辨、实时、非侵入等优势的激光拉曼光谱用于细胞分析与成像得到了优异的发展,已实现从单一组分到复杂体系中多组分检测;从单一细胞器无标记成像到多细胞器(分子)多色成像等。胡继明教授结合其课题组和其他课题组的工作介绍了采用自发拉曼光谱、共振拉曼光谱、表面增强拉曼光谱、非线性拉曼光谱等在细胞分析中所开展的工作。上海交通大学 叶坚教授《活体表面增强深穿透拉曼光谱》活体深层病变的无创定位是临床应用长期追求的目标之一,其关键在于对组织中单个病灶的检测和深度估计。目前,光学方法已广泛应用于生物医学领域中的传感、成像、诊断和术中导航。然而,由于生物组织对光子的高吸收和高散射特性,光学检测或成像的组织穿透深度通常非常有限,极大限制了其对体内深部病灶的生物医学检测。叶坚教授分享了其课题组在活体表面增强深穿透拉曼光谱方面开展的一系列工作。他们合成了具有单颗粒检测灵敏度的近红外表面增强拉曼纳米探针,并自行开发了一套深穿透拉曼光谱系统。通过使用深穿透拉曼光谱系统,成功证明了通过高达14厘米厚的离体肌肉组织可检测到拉曼纳米探针的信号,以及在MPE条件下对未剃毛小鼠体内的拉曼探针标记的“病灶”进行活体成像,展示了深穿透拉曼光谱技术未来在临床中癌症诊断和无创成像的巨大潜力。华中师范大学 高婷娟教授《偶氮增强拉曼散射与超灵敏细胞拉曼光谱成像》拉曼散射光谱提供了化学键的振动能级跃迁信息,被广泛用于生物传感和细胞成像。其化学信息丰富、信号稳定,非常适合活细胞的多色动态成像。但是,它的灵敏度较低,很难实现低功率激发的活细胞高分辨快速动态成像。高婷娟教授分享了其课题组基于偶氮增强的活细胞高分辨快速动态拉曼成像(DAERI)开展的一系列工作。据介绍,DAERI 突破了细胞经典拉曼探针位于静默区的限制,采用低功率激光和线扫描方式,实现了对活细胞多个细胞器的高分辨快速动态全谱自发拉曼成像。中国科学院微生物研究所 傅钰研究员《拉曼光谱结合人工智能技术无损鉴定表征微生物》典型的单细胞拉曼组 200-1800cm-1指纹区域非常复杂,有许多重叠的谱带组成,将拉曼光谱转化为有意义的微生数物据是一项重大的挑战。而人工智能强大的模式识别、数据挖掘和监督下自主学习能力使得其十分契合处理分析拉曼组海量复杂数据的需求。基于此,傅钰研究员课题组开展了一系列的工作,他们建立了14种代表性微生物的拉曼组数据库,设计了卷积神经网络机器学习算法,开展模型验证和样品预测。同时,通过逐一遮蔽光谱的理念建立了新型的微生物拉曼光谱特征峰提取算法(ORSFE),实现对人工智能如何分析微生物拉曼光谱的可视化呈现,打破了人工智能鉴定过程的黑箱。进一步的研究发现,拉曼组不仅仅可以快速鉴定微生物的种类,还可以对微生物的耐药性等生理特性直接进行表征。不仅如此,傅钰研究员还提出了利用拉曼组来关联映射细胞的转录组和代谢组的概念,以期利用拉曼光谱的无损性来实时追踪活细胞体内的基因转录和代谢产物变化,并通过实验初步验证了该概念的可行性。
  • 用于表面增强拉曼散射检测的半包裹金纳米粒子
    研究人员一直在努力开发高度可靠和灵敏的表面增强拉曼散射(SERS)基底,用于检测复杂系统中的化合物。在这项工作中,我们提出了一种用不完全包裹的普鲁士蓝(PB)构建Au核的策略,用于高可靠性和高灵敏度的SERS衬底。包裹的铅层可以提供内标(IS)来校准SERS信号浮动,而金岩心的暴露表面提供增强效应。信号自校准和增强之间的平衡(因此SERS可靠性和灵敏度之间的折衷)通过Au核上PB层的近似半包裹配置(即SW-Au@PB)来获得。提出的SW-Au@PB纳米粒子(NPs)表现出与原始Au NPs相似的增强因子,并有助于使用R6G作为探针分子的校准SERS信号的超低RSD (8.55%)。SW-Au@PB NPs同时实现的可靠性和灵敏度还可以检测草本植物中的有害农药残留,如百草枯和福美双,平均检测准确率高达92%。总的来说,这项工作主要为不完全包裹的纳米粒子提供了一种可控的合成策略,最重要的是,探索了在具有不同溶解度的危险物质的精确和灵敏的拉曼检测中的概念验证实际应用的潜力。a)IW-金@PB纳米颗粒的制造。b)IW-金@PB纳米粒子系统信号自校准能力的原理。c)模拟原始金纳米颗粒、IW-金@PB纳米颗粒和基于核壳的FW-金@PB纳米颗粒的局部电场分布。d)IW-金@PB纳米颗粒的拉曼光谱。e)具有不同铅包裹度的IW-金@PB纳米颗粒的典型TEM图像,包括LW-金@PB、SW-金@PB和NFW–金@PB纳米颗粒。f)原始金纳米颗粒、PB纳米颗粒和具有不同PB层包裹程度的IW-金@PB纳米颗粒的紫外/可见吸收光谱。g)关于IW-金@PB纳米颗粒红移的吸收光谱的放大图。R6G的典型SERS光谱,其中原始Au NPs、LW-Au@PB NPs、SW-Au@PB NPs和NFW–Au @ PB NPs作为SERS基底。b)当在硅片上蒸发SW-Au@PB NPs/R6G时,R6G特征峰(612cm-1)和IS峰(2155cm-1)的SERS强度以及它们在随机选择的15个点上的强度比。c)当在硅晶片上蒸发Au NPs/R6G时,R6G特征峰(612cm-1)的SERS强度穿过随机选择的15个点。d)硅晶片上SW-Au@PB NPs分布的典型SEM图像。e-f)硅晶片上蒸发的SW-Au@PB NPs/R6G (e)的校准SERS信号和Au NPs/R6G (f)的SERS信号的映射结果。g)疏水纸上SW-Au@PB NPs分布的典型SEM图像。h-I)SW-Au @ PB NPs/R6G(h)的校准SERS信号和Au NPs/R6G (i)的SERS信号在疏水纸上蒸发的映射结果。a-b)在硅片(a)和疏水纸(b)上具有不同R6G浓度的SW-Au@PB NPs/R6G的典型SERS光谱。c)R6G特征峰的校准SERS强度与R6G浓度的对数之间的对应关系。d)基于SW-Au@PB NPs和疏水纸,跨10个批次的R6G特征峰的相对SERS强度,在每个批次中随机选择5个点。e)长期储存SW-Au@PB NPs和疏水纸后R6G的典型SERS光谱。f)长期稳定性试验中R6G特征峰的相应相对SERS强度。a)基于SW-Au @ PB NPs/疏水纸系统的不同浓度百草枯的典型SERS光谱。b)百草枯特征峰的相对SERS强度与百草枯浓度对数的对应关系。c)基于SW-Au @ PB NPs/疏水纸系统的不同浓度的福美双的典型SERS光谱。d)福美双特征峰的相对SERS强度与福美双浓度的对数的对应关系。三种草本植物中百草枯(e)和福美双(f)的典型SERS光谱。相关成果以“Semi-wrapped gold nanoparticles for surface-enhanced Raman scattering detection”,发表在国际学术期刊“Biosensors and Bioelectronics”上。
  • 拉曼光谱在生物医学领域将“大展拳脚”——第十九届全国光散射学术会议之分会场
    p  strong仪器信息网讯/strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。据中山大学陈建教授介绍,本次会议共收到来自英国、德国、韩国、新加坡、港澳地区、国内90余家高校和科研院所的论文投稿300余篇,注册参会人数450余人,大会特邀报告6篇、分会邀请报告43篇、分会口头报告63篇、墙报160多篇。/pp  为了更好地交流,在大会报告环节之外,CNCLS19分为物理材料、表面增强拉曼、食品安全/生物医学/刑侦及其它等3个分会场进行邀请报告和口头报告,同时还专门设置了厂商技术交流报告分会场。就像李灿院士在闭幕式上的致词时提到的,除了基础理论研究之外,光散射各项“落地”的研究工作也渐渐丰富起来,此次会议上所展示的将光散射技术用于食品安全、生物医药、刑侦等领域的研究工作所占比例非常之大。之前编辑已经简单介绍了“表面增强拉曼”这一“热火”的分会场,现在让我们再来看看“食品安全/生物医学/刑侦及其它”分会场有哪些特色。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/fc6a45fd-173c-467c-8339-d8ba61017a84.jpg" title="现场.jpg"//pp style="text-align: center "“食品安全/生物医学/刑侦及其它”分会场/pp  “食品安全/生物医学/刑侦及其它”分会场共安排了15个邀请报告、21个口头报告;从分会场的报告内容和数量来看,目前生物医学已经成为拉曼光谱的热点研究领域,相关技术研究获得了日新月异的发展。/pp  在医学上,通过探测有疾病所引起的组织、体液或细胞的分子组成变化,拉曼光谱可以在分子和细胞水平上诊断疾病。相对于其他方法,拉曼光谱应用于医学诊断具有非破坏性、非侵入性、不用试剂和高度自动化等优点,因此,拉曼光谱技术在生物医学和临床诊断上的应用研究是目前的一个重要方向,拉曼光谱或将成为未来生物医学的主要检测手段。/pp  下面,部分精彩报告如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/c26c1d0c-4709-4603-9392-c2998ca654ea.jpg" title="黄岩谊.jpg"//pp style="text-align: center "北京大学 黄岩谊研究员/pp style="text-align: center "报告题目:利用受激拉曼散射显微成像和测序技术实现复杂异质生物体系的精确定量分析/pp  对于一个复杂的、充满异质性的生物体系,如何实现单个细胞水平上的精确定量分析,即是技术挑战,也是回答许多科学问题的关键。黄岩谊研究员利用实验室搭建的可以同微流控芯结合使用的受激拉曼散射显微(SRS)成像系统,对单个细胞进行脂滴生成过程中的SRS成像和定量描述,并对每个细胞进行芯片上的裂解和全转录组扩增及测序,研究了单个细胞水平上脂滴生成过程的调控以及细胞间异质性发生的机理。并利用SRS成像和测序技术对肿瘤组织切片进行分析,达到对形态和遗传信息的关联测量,可以建立表型和基因型的关联性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d1eb515d-7dd3-495d-82a9-d8ec9143613d.jpg" title="沈爱国.jpg"//pp style="text-align: center "武汉大学 沈爱国副教授/pp style="text-align: center "报告题目:“点击”SERS光谱与生物医学分析/pp  沈爱国副教授研究组在研究中发现,三键编码的单个纳米粒子可通过物理学、化学或生物学方法发生类似于“点击化学”(通过小单元的拼接来快速可靠地完成形形色色分子的化学合成)中的可控拼接,从而实现窄带单峰的三键SERS信号的动态输出。这一全新的信号输出模式形象的被称为“点击”SERS光谱。沈爱国副教授报告中介绍了“点击”SERS光谱方法的建立、应用特点以及在生物医学分析中的应用情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/f9c2fbe0-a795-4f58-81a5-20e24d237be9.jpg" title="刘定斌.jpg"//pp style="text-align: center "南开大学 刘定斌研究员/pp style="text-align: center "报告题目:拉曼热点构建及其在生物医学中的应用/pp  刘定斌研究员团队发展了一种靶标介导纳米颗粒组装形成二聚体的方法,通过构建电磁增强热点检测活细胞中miRNAs。不对称功能化的金纳米颗粒探针通过靶标诱导产生均一的二聚体,实现复杂体系中分析物依赖的拉曼信号增强。相比传统的拉曼报告分子,选择细胞沉默区非重叠的染料作为拉曼报告分子可以有效消除细胞内源性物质的背景干扰。此方法能够延伸到细胞水平特异性病理相关生物标志物的检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/38d5860d-0afd-4bd3-8663-79d310f20763.jpg" title="杨海峰.jpg"//pp style="text-align: center "上海师范大学 杨海峰教授/pp style="text-align: center "报告题目:磁/金纳米优化SERS检测生物标志物/pp  杨海峰教授团队以植酸钠为稳定剂和桥连剂,以共沉淀法制备Fe3O4磁网结构,并原位合成Au/Ag纳米粒子,制备磁网SERS基底。该基底通过外磁场诱导聚集可产生更多的“hot spot”,提高拉曼检测灵敏度。杨海峰教授将该技术用于唾液毒品标志物、肺泡灌洗液中H7N9病毒、胰腺癌生物标志物CA19-9等的快速检测,有望实现早期诊断。/ppbr//p
  • 第二十届全国光散射学术会议-第二届表面增强拉曼光谱国际会议会议进展通知
    p style="text-align: center "  第二十届全国光散射学术会议-第二届表面增强拉曼光谱国际会议/pp style="text-align: center "  会议进展通知/pp  第二十届全国光散射学术会议(CNCLS20)--第二届表面增强拉曼光谱国际会议(SERS-2019)分别将于 2019年11月2日-11月6日,11月6日-11月9日 在风景宜人的苏州举行,会议地址为苏州同里湖大饭店。/pp  会议网站目前已经开通,http://clsers.suda.edu.cn/,欢迎大家积极注册参会,与同行交流讨论,踊跃投稿,展示自己的研究成果,第二十届全国光散射会议论文投稿的截止日期为6月30日,第二届表面增强拉曼光谱国际会议的截稿时间为9月20日,论文模版可在网站上下载。/pp  同时,也欢迎各仪器商积极参展,展示公司最新研发产品和技术,目前已经有十多家公司参加,并且在不断增加之中。/pp  更为信息请浏览以下网站:http://clsers.suda.edu.cn//ppimg title="22.png" style="max-height: 100% max-width: 100% " alt="22.png" src="https://img1.17img.cn/17img/images/201905/uepic/083c9d2b-fc28-4891-9881-57c31716d68f.jpg"//p
  • 表面增强拉曼散射(SERS)在食品安全中的应用: 外源蛋白质检测
    讲座主题:表面增强拉曼散射(SERS)在食品安全中的应用: 外源蛋白质检测时间:9月24日(周一)上午9:00-10:30诚邀您参加!内容简介:1. 表面增强拉曼光谱技术介绍2. 如何采用增强拉曼探测外源蛋白? &mdash &mdash 表面增强拉曼散射(SERS)技术在食品安全领域的最新典型应用介绍3. 如何快速获取真实可靠的数据? &mdash &mdash 赛默飞世尔拉曼光谱仪结合表面增强拉曼光谱检测技术介绍 主讲人简介:何李黎博士:美国麻省大学食品科学系副教授,美国密苏里大学食品科学系博士,明尼苏达大学食品科学与营养学系博士后。系食品安全领域资深专家,多年致力于食品安全方面的研究,在国际著名期刊发表过数篇文章,专业领域内颇具影响力。张衍亮博士:赛默飞世尔科技公司分子光谱部产品经理,拥有多年光谱使用经验,多年来致力于分子光谱检测方面的应用方法开发研究,掌握丰富的分析实战经验。报名截止时间:2012年9月20日有兴趣参加者请点击这里报名 了解会议详情,可以联系赛默飞世尔科技分子光谱市场部张女士 010-84193588-3649, 13701015430 Email: annie.zhang@thermofisher.com
  • Nat. Commun. 复旦大学季敏标教授合作研究:设计出光敏特性的拉曼探针,实现可控开关的受激拉曼散射成像 | 前沿用户报道
    供稿:敖建鹏成果简介2021年5月,复旦大学季敏标课题组与南方科技大学吴长锋课题组合作,在国际期刊 Nature Communications 发表了题为 Switchable stimulated Raman scattering microscopy with photochromic vibrational probes 的论文,通过在二芳基乙烯母体分子中引入炔基,设计出一类具有光敏特性的拉曼探针,实现了可控开关的受激拉曼散射成像。背景介绍在生命科学研究中,直接可视化细胞内大量不同的分子种类对于理解复杂的系统和过程愈渐重要。而对于荧光显微技术而言,由于荧光分子本质上的宽光谱特性,限制了其可分辨标记对象的能力,常称为“多色复用壁垒”。与荧光分子电子跃迁相对,拉曼散射表征的是振动跃迁,谱线宽度较窄,具有优越的化学特异性,目前基于炔基、氰基等拉曼信源开发出的拉曼探针已经实现了超多色复用成像,但成像分辨率依旧受到光学衍射极限的限制。在此研究背景下, 复旦大学季敏标课题组与南方科技大学吴长锋课题组合作通过赋予拉曼信号光敏活性,实现可逆光开关的拉曼振动光学成像,探索具有光敏活性的拉曼探针及其显微技术的应用可行性,为开发具备超多色复用的远场超分辨显微技术突破了关键一环。图文导读受激拉曼散射(SRS)以快速、免标记和本征三维化学组分分析的优点在显微成像领域备受青睐。为了提高成像灵敏度与特异性,基于炔基、氰基的拉曼探针被开发并用于SRS,打破了荧光显微成像中难以逾越的“多色复用壁垒”,展现了这些生物正交拉曼探针对比荧光标记分子所具备的窄峰宽、无漂白、信源尺寸小而对目标分子干扰小等优势。基于化学键振动的拉曼信号具有很好的光稳定性,早期开发的拉曼探针几乎都是“always-on”类型,意味着信号不受外界调控,失去了随机发光、光开关性等性质,直接通过外界光刺激改变拉曼信号几乎是不可能的。为了解决这一难题,课题组将炔基通过化学合成的手段连接到光异构母体分子(二芳基乙烯)上,通过光异构分子对外界光刺激的响应来调控拉曼信号,从而实现对光敏感的拉曼光谱响应。1. 通过化学合成将拉曼探针(炔基,拉曼信号强且峰位处于生物静默区,有利于后续推进至生物体系)引入二芳基乙烯母体分子中;2. 通过自发拉曼及受激拉曼散射技术对紫外与可见光照射下的分子的炔基伸缩振动模式峰位表征;左:自发拉曼;右:受激拉曼3. 将分子匀涂成膜,通过光在薄膜上自由书写/擦除文字信息并以受激拉曼散射显微读出信息;通过紫外光在薄膜上手写的“复旦”字样,并通过SRS对其成像4. 将分子进一步修饰以靶向线粒体,在细胞层面展示光开关性质的受激拉曼散射成像。光控可逆点亮/擦除喂食过光活性分子的HeLa细胞,并通过SRS对其成像受激拉曼散射作为相干模式下的拉曼散射,虽然极大的提高了拉曼信号,使得快速化学成像成为可能,但由于两束光的共振激励(ωp-ωs=Ω)局限在某一个拉曼峰位,相比于自发拉曼而言损失了全光谱信息,因此在对未知物质检测时自发拉曼光谱的测定依旧不可或缺。HORIBA LabRAM HR Evolution的1064nm激发模式很大程度上解决了常用可见光光源激发自身对光敏分子的影响,对我们的实验可靠性论证起到了极大的帮助。HORIBA LabRAM HR Evolution如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望“山重水复疑无路,柳暗花明又一村。”实验过程中课题组抛开固有实验套路,另辟蹊径,最终实现了可控开关的受激拉曼散射成像,不仅为开发具有光开关性质的振动光谱探针提供了新思路,同时为光开关受激拉曼散射显微成像技术的提供可行性基础,拓展了SRS的应用范围,将有望推动超多色复用拉曼显微跨入超分辨时代。文献信息Switchable stimulated Raman scattering microscopy with photochromic vibrational probes文章署名作者:Jianpeng Ao, Xiaofeng Fang, Xianchong Miao, Jiwei Ling, Hyunchul Kang, Sungnam Park, Changfeng Wu & Minbiao Ji文章链接:https://doi.org/10.1038/s41467-021-23407-2扫码查看文献季敏标教授课题组简介季敏标教授课题组主要从事非线性光谱学和显微成像技术研发,并将它们用于生物医学光子学应用研究和新型材料的光电性质基础研究。在生物医学光子学领域主要发展用于肿瘤组织的快速无标记病理检测方法和脂质代谢等生物医学问题;在材料学领域主要研究新型二维材料的超快载流子和声子动力学问题等。
  • 越来越“精细”的表面增强拉曼研究——第二十届全国光散射学术会议SERS分会场报告摘录
    p  strong仪器信息网讯/strong 2019年11月2-6日,由中国物理学会光散射专业委员会主办,苏州大学、厦门大学承办的第二十届全国光散射学术会议(CNCLS20)在苏州同里湖大饭店召开,吸引了近600人参会,参会人数创历届之最。br//pp  本届大会组委会特别邀请了国内外知名专家学者就近两年光散射及相关光谱原理和技术等领域的前沿热点问题进行交流,并增加了仪器研发和应用的相关报告,全力展示中国在光散射领域所取得的最新进展及成果,增进光散射及相关领域科技工作者的交流与合作,促进我国光散射和光谱事业的发展。/pp  除6场大会报告外,大会组委会特别设置了物理材料仪器、表面增强拉曼(SERS)、分析医药其他三个分会场分别进行邀请报告和口头报告。其中,SERS分会场特别安排了14场邀请报告,21个口头报告,63份墙报。特别值得一提的是,延续历届“火热”的氛围,本次SERS分会场出席人数再次爆棚。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/d1952173-7f5c-44b9-ab16-dbb5b58df74b.jpg" title="会场.JPG" alt="会场.JPG"//pp style="text-align: center "strongSERS分会场现场/strong/pp  从1974年,有关拉曼增强的第一篇文章发表到现在已经有45年了。45年间,SERS取得了长足的进展,虽然前半段时间发展的相对缓慢,但是得益于纳米科技的发展,后半段的发展非常迅速。就我国而言,近几年越来越多的课题组踏入这个领域,从历届会议SERS分会场的“火爆”场面也足见我国SERS依然保持强劲的发展势头。/pp  本次会议各位老师的报告,涉及了各类型SERS基底的制备及应用研究。特别需要指出的是,很多老师的研究已经越来越“精细”,他们的研究工作不再局限于“是什么”,更多的在研究“为什么”。老师们不仅以应用为目的构建了特异性的拉曼探针,而且在制备的过程中还对分子进行精准的结构调控,甚至有老师开玩笑说是在“玩弄”分子。不仅如此,很多老师的研究工作还深入剖析了SERS的相关机理。/pp strong 部分老师的精彩报告摘录如下:/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/7d0237ec-2c2f-4120-b6d1-ee1805d9b765.jpg" title="杨海峰.JPG" alt="杨海峰.JPG"//pp style="text-align: center "strong报告人:上海师范大学 杨海峰教授/strong/pp style="text-align: center "strong报告题目:基于表面特异性反应的拉曼探针构建/strong/pp  发展生物标志物、病毒和食品添加物的快速传感分析方法是实现 POCT(Point-of-Care Test)和食品安全相关现场检测的迫切技术需求。而在稳定的表面增强拉曼基底上修饰特异性反应层,可构建针对性的拉曼探针,有利于提高方法选择性。杨海峰教授课题组对金或银纳米粒子表面进行基于表面反应体系的功能化,制备了多种高选择性的拉曼探针,并开展了一系列的应用研究,如检测蔬菜农残福美双、唾液毒品标志物、肺癌标志物、人血液多巴胺、H7N9病毒等,表现出良好的传感应用前景。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/8ba18f13-7c66-44bb-be2c-163cbc742b7d.jpg" title="田景华.JPG" alt="田景华.JPG"//pp style="text-align: center "strong报告人:苏州大学 田景华教授/strong/pp style="text-align: center "strong报告题目:拉曼光谱技术在氧化还原反应过程和机理上的研究初探/strong/pp  报告中,田景华教授介绍了其最新的研究成果:结合在线电化学光谱技术(EC-Raman),探明了BaCO3/rGO材料ORR的催化活性中心为Ba离子,并推测出在其表面发生2电子和4电子反应的反应历程 使用粗糙Au电极为工作电极,结合电化学表面增强拉曼光谱技术,系统研究了pH从1到13范围内的ORR反应过程和可能的反应途径。田景华教授指出:具有高灵敏度的原位表面增强光谱技术,在电催化反应机理研究及电催化剂材料设计方面具有指导性意义并能发挥重要的作用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/247f78a9-9442-44e9-b667-5404e5c24275.jpg" title="宋薇.JPG" alt="宋薇.JPG"//pp style="text-align: center "strong报告人:吉林大学 宋薇教授/strong/pp style="text-align: center "strong报告题目:纳米酶表面增强拉曼基底的研究/strong/pp  利用SERS技术以纳米复合酶作为新型催化剂,可以在原位-动态环境条件下研究催化表界面和反应中间体,对催化剂表面的分子转化催化过程进行指纹谱学监测,间接获得对生物分子、重金属离子等SERS高灵敏检测。宋薇教授构筑了一系列兼具类酶催化活性和 SERS活性的纳米酶SERS基底,利用SERS及其他技术研究了类酶催化过程中分子的反应动力学过程,提出了SERS研究纳米酶的动力学模型,探讨了其类酶催化机理,并将其应用于多种有机分子及生物分子的超灵敏检测中。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/8ae405df-d59f-4657-9375-1077f4cfb492.jpg" title="刘洪林.JPG" alt="刘洪林.JPG"//pp style="text-align: center "strong报告人:合肥工业大学 刘洪林教授/strong/pp style="text-align: center "strong报告题目:液相界面拉曼分析中的分子吸附问题初探/strong/pp  贵金属表面与待测分子间的亲和性会影响待测分子在纳米间隙中的定位,很大程度上影响SERS的增强效果。刘洪林教授对液相界面拉曼分析中的分子吸附问题进行了深入的研究,报告中,其详细介绍了三维液相界面的定量化SERS测量、金属表面分子亲和性问题,并指出液相界面纳米阵列具有优异的可调谐、自愈合特性,液相界面分析克服(或弱化)了分子亲和性限制。据悉,刘洪林教授课题组利用PML-SERS技术,已成功实现多种植物和动物油脂中一种或两种多环芳烃的同时检测分析,具有良好的稳定性。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/c5d7e2de-d1ef-4266-b1dc-1df553eba608.jpg" title="方吉祥.JPG" alt="方吉祥.JPG"//pp style="text-align: center "strong报告人:西安交通大学 方吉祥教授/strong/pp style="text-align: center "strong报告题目:富集型SERS检测方案及分子传感/strong/pp  当前, 如何提高对低SERS活性分子的检测灵敏度是SERS技术的关键问题之一,而如何高效的把待测分子在空间上局域化到等离激元热点区域仍然是提高SERS检测灵敏度至关重要的问题。西安交通大学方吉祥教授提出了两种分子富集型的SERS检测方案,一种是基于轻质漂浮微球和超滑移衬底策略的分子富集方法,另一种是基于毛细作用的分子富集方法。据悉,通过两种方法,待测分子都能高度的局域化到空间上很小的区域,从而显著的提高其SERS检测灵敏度。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/74d0ee5c-8573-4f9a-8abe-f3ba813bbdab.jpg" title="徐章润.JPG" alt="徐章润.JPG"//pp style="text-align: center "strong报告人:东北大学 徐章润教授/strong/pp style="text-align: center "strong报告题目:基于微流控液滴的表面增强拉曼光谱检测方法/strong/pp  构建高灵敏度、高重现性和集成化的SERS分析方法是当前的研究热点之一,而微流控液滴作为稳定的微反应器,具有尺寸均一、混合速度快、传质和传热效率高等特点,在材料合成、生物和化学分析等方面具有广泛的应用前景。结合微流控液滴和SERS技术,构筑SERS基底以及基于液滴的定量分析方法,对探索肿瘤生理活动、临床药物开发、催化机理等具有十分重要的科学意义。徐章润教授在报告中分享了三方面的研究工作:微流控液滴作为微检测池用于SERS的检测 微流控液滴作为微反应器用于SERS检测 微流控液滴制备的凝胶微粒用于SERS检测。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/4b8679df-f092-4ee4-925f-d05aa4d8c586.jpg" title="杨士宽.JPG" alt="杨士宽.JPG"//pp style="text-align: center "strong报告人:浙江大学 杨士宽研究员/strong/pp style="text-align: center "strong报告题目:电化学3D打印SERS 器件/strong/pp  杨士宽研究员从常规SERS器件讲起,介绍了电沉积浸润性可调银膜、SERS揭示分子转动调控机制,电沉积网粒体SERS微器件等多方面的内容。特别值得一提的是,杨士宽研究员介绍了一种新的具有体“热点”的体增强拉曼散射(VERS)基底,并比较了SERS和VERS在检测病毒方面的区别,研究结果显示VERS检测病毒弱依赖其取向,大大提高了病毒信号的重现性 此外,杨士宽研究员还介绍了SERS器件的电化学3D打印策略,详细介绍了电化学3D打印的鱼雷机器人及其在生物医学领域潜在的应用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/8fd5b43c-8275-4f31-a575-b4a7000aa793.jpg" title="刘国坤.JPG" alt="刘国坤.JPG"//pp style="text-align: center "strong报告人:厦门大学 刘国坤副教授/strong/pp style="text-align: center "strong报告题目:SERS 快检研究中的科学和技术问题初探/strong/pp  近年来,借助于拉曼光谱仪的小型化和微型化,SERS技术已经从实验室技术逐渐发展成为一种现场快检技术。刘国坤副教授的报告从SERS快检研究思路、痕量定性分析、定量分析的可靠性、化学计量学的作用等四个方面剖析了SERS领域尚待解决的一些基本科学问题。其间,针对分子与热点间有效相互作用进行了详细的介绍。刘国坤副教授指出SERS的实际应用研究拓展,不仅仅是SERS基础研究的外延,同时也反推并促进 SERS机理的深入分析和理解。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/7dfb67f5-b3f1-455f-9519-25b9d0e2fe27.jpg" title="杨良保.JPG" alt="杨良保.JPG"//pp style="text-align: center "strong报告人:中科院合肥物质科学研究院 杨良保研究员/strong/pp style="text-align: center "strong报告题目:高灵敏毒品SERS检测方法研究/strong/pp  杨良保研究员的报告从增强芯片的关键科学问题和技术研究思路讲起,介绍了其课题组基于SERS技术而进行的便携式毒品快速检测体系研究。据悉,经过多年的研究和积累,其课题组已经成功开发了涉毒案件现场样品前处理模块,研制了基于贵金属纳米材料的SERS增强芯片,建立了常见毒品毒物SERS光谱数据库,并进行了智能识别与光谱仪系统的集成,实现对了人体唾液、尿液和毛发毒品的快速检测与鉴定,为各类涉毒案件的快速处置提供 SERS 解决方案、技术与设备支撑。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/8ed49163-2e19-422c-a177-fc905996a820.jpg" title="赵志刚.JPG" alt="赵志刚.JPG"//pp style="text-align: center "strong报告人:中科院苏州纳米所 赵志刚研究员/strong/pp style="text-align: center "strong报告题目:氧化钨基SERS材料的结构调控/strong/pp  探索新型、高性能的非金属基底一直是SERS技术中最重要的研究方向之一,尤其近年来半导体化合物被证实具有SERS活性,其丰富的种类与化学组成引起人们极大的兴趣。通常认为金属材料中以电磁增强为主,而半导体化合物表面化学增强则起决定作用。正因为机制不同,半导体材料用作SERS基底的设计应遵循完全不同于现有的贵金属材料的研究理念。赵志刚研究员通过半导体氧化物中的氧缺陷、表面修饰、填隙离子插入等组成结构调制方式实现了其SERS性能的大幅提升。/pp  截至11月4日,第二十届全国光散射学术会议的日程已过三分之二,SERS分会场的报告也已经进行了大半。除了以上老师的报告之外,中山大学李攻科教授等也带来了精彩的分享,由于篇幅的原因,在此就不再详细介绍。/ppstrongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  作为拉曼光谱领域“炙手可热”的研究课题,SERS的研究群体不断扩大,发表的论文数量持续增长,近年来的研究方向和角度也呈多样化发展,这是学术界可喜的事情。但是,大家还必须认识到,目前SERS的机理研究及实际应用还存在不少问题,学术界的高产出如何更好提升和推动应用领域的实战是值得大家共同思考的话题!/span/strong/ppbr//p
  • 光散射的盛宴——第十九届全国光散射学术会议圆满落幕
    p  strong仪器信息网讯/strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。/pp  2017年12月4日,CNCLS19进入了最后一天;4日下午,CNCLS19首先进行的大会报告环节。/pp style="text-align: center "img title="Dongho Kim.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/4ac013ad-5ded-4dab-a86a-da3a9761176f.jpg"//pp style="text-align: center "Prof. Dongho Kim,Yonsei University, Korea/pp style="text-align: center "报告题目:Characterization of Exciton Dynamics in Functional π-Electronic Systems/pp style="text-align: center "img title="王雪华2.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/912d8741-9938-42a7-bbb0-2df0d5183064.jpg"//pp style="text-align: center "王雪华教授,中山大学/pp style="text-align: center "报告题目:量子光学极限下表面等离激元与物质强相互作用的调控/pp style="text-align: center "img title="Wei Huang.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/9b7110af-0249-4c26-8f86-df61eb6d0b59.jpg"//pp style="text-align: center "Prof. Wei Huang,University of Oxford, UK/pp style="text-align: center "报告题目:Application of Raman Micro-spectroscopy to Single Cell Biology/pp  三个精彩的大会报告之后,CNCLS19也进入了闭幕时刻。/pp style="text-align: center "img title="闭幕式.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/450dee16-4ac1-4629-99ca-0cfb93148266.jpg"//pp style="text-align: center "CNCLS19闭幕式/pp style="text-align: center "img title="青年优秀论文奖.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/68f02530-e7cd-4c02-9f07-0ab010d5ae5b.jpg"//pp style="text-align: center "青年优秀论文奖/pp style="text-align: center "img title="优秀墙报奖.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/80e0417e-10b9-4e48-85b6-af92172ec189.jpg"//pp style="text-align: center "img title="优秀墙报奖2.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/0495b876-5fc4-4870-a372-cecf5e5e409e.jpg"//pp style="text-align: center "优秀墙报奖/pp  本次会议是一届成功的会议!李灿院士在致闭幕词的时候如此总结到。首先是因为此次会议展现出了我国光散射研究所呈现的一派繁荣景象。过去有段时间我国拉曼光谱研究90%左右的工作都集中于某种增强领域,而从此次会议的各种报告、论文可以看出,这一现象已经得到了很大改善,各方面的研究工作都有了展现,说明我国光散射领域走上了健康发展的道路之上。其次,除了基础研究之外,光散射各项“落地”的研究工作也渐渐丰富起来,此次会议上,将光散射技术用于生物医药、食品安全、环境等领域的研究工作所占比例非常之大。再者,在此次会议上出现了一些我国自主研发的拉曼光谱仪器以及关键部件,这方面的研究工作是我国拉曼光谱技术长期发展的基石。而李灿院士还高兴地说到,我国光散射研究非常之“敏感”,其研究工作紧跟科学技术大发展前沿,如二维、光电、新能源等材料的拉曼表征。而本次大会是一届开放的、国际化的学术会议,国外学者的报告数量多、质量也较高。/pp  对于CNCLS19的主办方陈建教授及其同事和学生们的工作,李灿院士也给与高度评价,从会前的专家讲座、以及开幕式的惊艳,乃至到会议LOGO等细节,无不体现了主办方的“用心”。/pp style="text-align: center "img title="Wolfgang Kiefer.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/299db003-bfd8-4d85-a135-09f936270039.jpg"//pp style="text-align: center "国际著名拉曼光谱学专家德国的Wolfgang Kiefer教授致辞  /pp style="text-align: center "img title="李灿2.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/6da27ff9-c35c-4c5c-8b30-f1793f92c036.jpg"//pp style="text-align: center "李灿院士致辞/pp style="text-align: center "img title="张树霖.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/b245bf86-f83c-4805-b0d2-b03e8d22d6e8.jpg"//pp style="text-align: center "张树霖教授致辞/pp style="text-align: center "img title="陈建.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/224b5154-7584-4417-85fc-cd16132f2326.jpg"//pp style="text-align: center "中山大学陈建教授致辞/pp style="text-align: center "img title="组委会.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/dac57960-5098-4b55-8a5a-d13663048b94.jpg"//pp style="text-align: center "组委会部分成员/pp  陈建教授致辞对参会代表表示感谢,对会务组的辛勤付出表示感谢!/pp style="text-align: center "img title="姚建林.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/0166d45a-862f-4634-9e3d-6a88794f81b9.jpg"//pp style="text-align: center "苏州大学姚建林教授介绍下届大会的具体情况/pp style="text-align: center "img title="姚建林与陈建.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/310f18d1-d22f-48f6-8ff8-34ba0fb1fcf6.jpg"//pp style="text-align: center "姚建林教授与陈建教授交接/pp style="text-align: center "img title="姚建林与任斌.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/754d9454-7f86-40a2-97f7-b8db796e1aa0.jpg"//pp style="text-align: center "姚建林教授与厦门大学任斌教授/pp  第二十届全国光散射学术会议(CNCLS20)将于2019年由苏州大学和厦门大学联合举办。/pp style="text-align: center "img title="谭平恒2.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/d087f057-5321-4db1-8993-4d943164a9b4.jpg"//pp style="text-align: center "中国科学院半导体研究所谭平恒教授做会议总结/pp  至此,第十九届全国光散射学术会议(CNCLS19)成功结束。2019年让我们相约苏州再聚!/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  CNCLS19为期三天,注册参会人数450余人;共收到来自英国、德国、韩国、新加坡、港澳地区、国内90余家高校和科研院所的论文投稿300余篇,大会特邀报告6篇、分会邀请报告43篇、分会口头报告63篇、墙报160多篇;为了更好地交流,在大会报告环节之外,CNCLS19分为物理材料、表面增强拉曼、食品安全/生物医学/刑侦及其它等3个分会场进行邀请报告和口头报告,同时还专门设置了厂商技术交流报告分会场。/span/pp /p
  • 光散射学术盛宴圆满落幕 2021长春再相聚——第二十届全国光散射学术会议闭幕
    仪器信息网讯 2019年11月3-5日,由中国物理学会光散射专业委员会主办,苏州大学、厦门大学承办的第二十届全国光散射学术会议(CNCLS20)在苏州同里湖大饭店召开,参会人数超600人,会议规模创历届之最。  大会最后一天下午,吉林大学刘冰冰教授、新加坡南洋理工大学于霆教授、厦门大学任斌教授分别带来了精彩的大会报告。大会报告环节由中山大学陈建教授、吉林大学赵冰教授分别主持。报告人:吉林大学 刘冰冰教授报告题目:高压下限域碳材料的新结构和新性质  吉林大学刘冰冰教授围绕新型碳纳米材料、半导体纳米材料等蕴含超硬、发光、超导性质的典型纳米体系在超高压下结构相变和物理性质的变化规律等方面开展了深入系统的研究工作,报告中其详细介绍了高压下限域碳材料的新结构和新性质。报告人:新加坡南洋理工大学 于霆教授报告题目:Light-matter Interaction in 2D Materials:from Graphene to Transition Metal Dichalcogenides  新加坡南洋理工大学于霆教授长期致力于碳纳米材料、纳米金属氧化物及其复合物等方面的研究工作,特别是在石墨烯和其他二维材料的研究方面取得了突出的成绩。本次报告中,于霆教授介绍了其利用拉曼和荧光手段进行的一系列二维材料体系相关的研究工作。报告人:厦门大学 任斌教授报告题目:表面等离激元增强拉曼光谱:现状和机遇  厦门大学任斌教授的报告从SERS增强的物理本源讲起,系统介绍了表面等离激元增强拉曼光谱的现状和机遇。其报告内容涵盖了:SERS技术中LSPR对SERS谱峰相对强度的影响 SERS的直接检测与间接检测方法 PERS技术研究电化学的表面和界面过程 高灵敏的电化学原位暗场光谱技术及电化学针尖增强拉曼光谱(EC-TERS)等。  一场完美的学术盛宴,一定有一个美好的结束。三个精彩的大会报告之后,CNCLS20也进入了颁奖和闭幕式时刻,该环节由厦门大学任斌教授主持。中科院半导体所谭平恒研究员宣布青年优秀论文奖获奖名单(共5位,该奖项由HORIBA赞助)青年优秀论文奖获奖者与颁奖嘉宾合影苏州大学姚建林教授宣布优秀墙报奖获奖名单(共17位,该奖项由爱丁堡仪器赞助)优秀墙报奖获获奖者与颁奖嘉宾合影  光散射专业委员会有一个优良的传统,老一辈的专家对年轻学者非常支持。在闭幕式的环节中,德国维尔茨堡大学Wolfgang Kiefer教授、北京大学张树霖教授、苏州大学顾仁敖教授等资深专家分别致辞。各位专家在致辞中回顾了中国光散射学术会议的发展历程,并分享了其中让人难忘的点点滴滴。在肯定中国光散射领域所取得成绩的同时,大家也对年轻一代提出了殷切的期望。德国维尔茨堡大学Wolfgang Kiefer教授致辞北京大学张树霖教授致辞苏州大学顾仁敖教授致辞  北京大学张树霖教授说,虽然近代中国的自然科学是落后的,但是拉曼光谱学在国际上却是领先的。其强调,拉曼光谱是自然科学,做科学就要弄清楚科学的基础,研究的方法也一定要科学,一定要实事求;苏州大学顾仁敖教授回顾了其16届参会经历和感受,他说,光散射会议有很多优良传统,大家开会都很认真,讨论也很积极,到会率也很高,这个传统一定要保持。另外,顾仁敖教授对本次会议给出了很高的评价,他说光散射会议的规模逐年扩大,这也代表了我国光散射行业兴旺发展的趋势。中山大学陈建教授进行会议总结  据介绍,本次600余名参会代表的地区涵盖了6个国家,18个省,4个直辖市,3个自治区,1个特别行政区。大会共收到论文摘要280余篇,开展了6场大会报告、44场分会邀请报告、58场分会口头报告、9场仪器展商报告,展出了181份墙报,并评出了5位青年优秀论文奖,17位优秀墙报奖。  陈建教授说,这是一次学术氛围非常浓厚的大会,也是一次团结的大会,最终必然是一次非常成功的大会。本次会议无论在学术水准、办会水平,还是参会规模方面都创造了历届之最。总结中,陈建教授还对会务组的辛勤付出表示了特别的感谢!会议主席:苏州大学姚建林教授、厦门大学任斌教授,共同宣布CNCLS20闭幕。  3天的时间,大家脚步匆匆穿梭于各会场中间,收获了很多,也成长了很多。相聚是美好的,但也是短暂的,不过每一个美好的结束,也都意味着另一个美好的开始。闭幕式结束之后,会议也宣布:第三届生物医学拉曼光谱学术会议将由华中农业大学承办(2020年11月6-8日,武汉),第二十一届全国光散射学术会议将由吉林大学和北京理工大学联合承办(2021年8月中下旬,长春)。第三届生物医学拉曼光谱学术会议承办方华中农业大学韩鹤友教授给出了去武汉参会的“6大理由”受吉林大学刘冰冰教授委托,北京理工大学张韫宏教授代表第二十一届全国光散射学术会议承办方进行长春及吉林大学的相关介绍志愿者合影
  • 贝拓仪器光散射学术会议圆满落幕
    贝拓仪器光散射学术会议圆满落幕2017年12月4日在广州召开第十九届全国光散射学术会议圆满落幕,会议由中山大学承办、吉林大学协办。广州贝拓仪器设备有限公司赞助此次光散射光散射学术会议,为进一步促进化学、物理、材料等领域的交流合作,光散射和光谱事业的蓬勃发展贡献了绵薄之力。光散射学术会议是我国光散射领域的一大盛会,主要集中展示我国近年来取得的成绩,同时展望光散射和光谱事业的未来。为响应此次盛会,贝拓仪器在此次光散射会议上展出了牛津液氮低温恒温器optistat dn,oto光纤光谱仪se系列,oto光纤光谱仪pkg套装等相关仪器,同时制作了最新材料综合样本产品宣传画册。此次次会议展出的还有witec高分辨拉曼光谱仪,anasys纳米红外光谱及成像系统近场光学等仪器宣传资料,德国kruss的接触角测量仪。牛津液氮低温恒温器optistat dn是理想的77k温区低温恒温器,具有较大的样品空间,并且适合于难以用传导方式冷却的样品,紧凑的结构也不需要占用太多实验室空间;oto光纤光谱仪se系列具有优异的温湿度、震动、与撞击稳定性,高灵敏度、超高分辨率、低杂散光 (杂散光比例可达0.01%)13种以上传感器,20种以上光栅供选择,全球最宽波段(180~1100 nm)等众多优点。oto光纤光谱仪pkg套装提供完整、平价、宽广波段范围350~1020 nm之光谱量测解决方案,可充分满足吸收、穿透、萤光、色彩、浓度等量测需求,适合镀膜、镜片、水质、环境、血液分析及生化检测之应用,是教学发展、实验室分析、光学研究的最佳选择。此次展会现场对拉曼仪器,低温恒温的联用等都很感兴趣,贝拓仪器此次展出的仪器以及witec拉曼光谱仪厂家在此次盛会上做了报告,吸引众多该领域的专家学者前来咨询。贝拓仪器参加第十九届光散射会议取得了较好的成果,为未来的贝拓整体发展再添一瓦。 贝拓仪器经理与客户交流 贝拓仪器展会现场
  • 多肽药物/生物制剂表征会场预告:含双抗/多肽偶联物,拉曼光谱/光散射技术应用等内容
    为促进我国生物医药产业持续快速发展,仪器信息网将于2023年3月29日-2023年3月31日举办第四届“生物制药研发及质量控制” 网络大会,内容覆盖抗体/蛋白药物、细胞与基因治疗、多肽药物、核酸药物/mRNA疫苗,涉及生物药开发、质量控制、制剂的分析表征以及自动化等创新技术在生物制药领域的应用。多肽药物是现代医药研究的前沿方向,具有重要的社会价值和经济价值。然而,由于多肽属于蛋白质结构的组成部分,作为药物,其质量控制则更需要注意。本次生物制药大会特别设置多肽药物会场,4位嘉宾将从多肽药物发现、多肽二硫键的结构确证、多肽偶联物研究进展及拉曼光谱技术相关应用等角度进行讲解。点击图片免费报名报告嘉宾详情如下:多肽药物会场王珠银 董事长 深圳肽盛生物科技有限公司报告:突破多肽创新药发现的瓶颈:多肽创新药发现平台报名占位王珠银教授博士学士和硕士毕业于兰州大学化学系,博士毕业于美国Rutgers大学,博士后在纽约哥伦比亚大学做研究,现为兰州大学功能有机分子国家重点实验室教授。王教授主要研究方向为合成生物学,多肽和蛋白质生物医药,高通量药物筛选等。过去多年发表论文50余篇,申请美国和中国专利50多项,其中已获得11项美国发明专利授权,7项中国专利授权,1项欧盟专利授权,1项澳大利亚专利授权。王教授成功研发了多肽信息压缩技术,并基于此技术构建了大型多肽全库,加速多肽新药研发。梁远军 总经理 北京普诺旺康医药科技有限公司报告:化学合成多肽二硫键的结构确证报名占位梁远军,博士,毕业于军事医学科学院,在军事医学科学院从事活性多肽研究工作近20年,负责多项国家新药创制重大专项、新药创制多肽关键技术、863等课题,申请40多项新化合物专利。2017年任北京药物化学专业委员会委员,2018年聘为中国生化制药工业协会专家委员、多肽分会专家理事,2022年评为大兴“新国门”领军人才。2016年创立北京普诺旺康医药科技有限公司,专业从事多肽药物研发,公司逐步成长为国家高新技术企业,获得北京市“专精特新”企业、中关村“金种子”企业、瞪羚企业等称号。王颖 副研究员 中国药科大学报告:多肽偶联物的研究现状及展望报名占位中国药科大学副研究员,海洋药学硕士生导师。中国药科大学微生物与生化药学专业,获博士学位。长期从事多肽新药的一线研发工作,获得新药临床批件2件。致力于探讨非编码RNA及其来源的新型微肽在疾病发生发展中的功能机制,发现人体内源性微肽并对其进行优化提高成药性,开发成FIC多肽药物,为这些疾病的诊断和治疗提供了新思路。曾在Signal Transduct Target Ther(IF:38.104)、J Am Chem Soc(IF:15.419)、Acta Pharm Sin B(14.903)、Cell Death Dis(IF:6.304)、Oncogene(IF:7.519)和Mol Ther Nucleic Acids(IF:7.032)等杂志发表多篇论文,第一作者累计影响因子为105分,参与文章影响因子120分以上;申请发明专利两项;获中国产学研合作创新成果奖二等奖、第六届江苏医药科技进步奖二等奖;获得两件药物临床试验批件(批件号2013L01914,2018L02321)。王睿 产品经理 瑞士万通中国有限公司报告:拉曼光谱技术在药物质量控制中的应用报名占位瑞士万通中国有限公司拉曼产品线产品经理,硕士研究生学历。从事分子光谱技术的产品开发,仪器销售和应用推广工作十余年。在农业,食品,化工,高分子等行业有丰富的产品应用开发和实测经验。从2014年入职瑞士万通中国有限公司,负责近红外光谱和拉曼光谱产品的推广工作至今。生物制药分析表征会场生物药物结构上的细微差别可以显著影响其安全性和有效性,对此类药物的准确表征就需要精密的分析表征手段。本次生物制药大会特别设置生物制剂表征会场,邀请到杭州奕安济世、上海晟国医药、北京市科学技术研究院分析测试研究所的多位专家从不同角度对生物制剂的表征内容进行阐述。高原 高级工程师 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)报告:生物制剂检测中的关键表征技术 报名占位现任中国颗粒学会测试专业委员会副秘书长,北京粉体技术协会副秘书长。主要研究粉体材料的物理性能表征方法及应用。主持及参与了与纳微米粉体表征技术相关的省部级项目4项。目前是国际标准化组织(ISO)的粒度分析工作组和孔径分析工作组成员人。同时作为全国颗粒表征与分检及筛网标准化技术委员会及微泡技术委员会委员,主持、参与制修订并颁布实施粉体物理性能相关国家标准9项,团体标准1项,合作研制国际实物标准1项、主持研制国家二级标准物质3项。获得中国分析测试协会(CAIA)奖一等奖,中国颗粒学会科技进步奖二等奖等奖项。杨泗兴 总监 上海晟国医药发展有限公司报告:双抗制剂表征 报名占位杨泗兴 博士,上海晟国医药CDMO业务制剂开发和生产负责人。杨博士毕业于上海交通大学,在生物制药领域从事制剂技术研究及CMC工艺、质量等相关工作超过15年,成功申报过20个以上生物药IND及BLA,覆盖重组蛋白、单抗/双抗/ADC、融合蛋白、酶、疫苗等。在生物药缓控释微球/微针等制剂技术、抗体高浓度注射液、双抗制剂、冻干制剂等领域具有丰富的经验。胡裕迪 制剂工艺开发/高级主管研究员 杭州奕安济世生物药业有限公司报告:商业化生产和BLA申报中的生物药制剂工艺表征和验证的研究 报名占位 硕士毕业于中国医药工业研究总院的药剂专业;本科毕业于中国药科大学药物化学专业。拥有超过5年的生物制剂开发经验,以制剂或CMC负责人参与“高浓度抗体、双抗、ADC冻干、siRNA、后期工艺表征”等研发项目超过15个,获得“制备一种抗Claudine18.2抗体制剂的方法”等5篇专利。目前专注于抗体药物的理化表征,成药性,制剂处方和工艺开发,制剂工艺表征,工艺转移等多个领域研究。宁辉 产品总监 丹东百特仪器有限公司报告:光散射技术在生物制剂中的应用报名占位 宁辉博士,全国专业标准化技术委员会委员,《分析仪器》第十一届编委会委员,现任丹东百特仪器有限公司产品总监兼任研发中心副主任。 2004年至2007年从事胶体物理领域研究,并于2007年取得荷兰屯特大学物理学博士学位。2007年至2008年在德国于利希研究中心从事博士后研究,关注胶体的热扩散行为及其表征手段。 宁辉工作和研究经历过程中,在Langmuir, J. Chem. Phys.等等期刊发表超过10篇学术论文。 宁辉于2008年入职于国外某知名粒度仪生产商,担任产品经理,并于2019年离开工作11年的外企,于2020年加入中国著名的粒度表征设备制造商,辽宁省A级高新技术企业,丹东百特仪器公司。在丹东百特仪器有限公司的工作过程中,宁辉先后参与了多项与光散射相关的设备的研发和产品推广工作。点击报名:https://www.instrument.com.cn/webinar/meetings/biopharma2023/扫码进入会议交流群
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制