当前位置: 仪器信息网 > 行业主题 > >

兰索拉唑

仪器信息网兰索拉唑专题为您整合兰索拉唑相关的最新文章,在兰索拉唑专题,您不仅可以免费浏览兰索拉唑的资讯, 同时您还可以浏览兰索拉唑的相关资料、解决方案,参与社区兰索拉唑话题讨论。

兰索拉唑相关的资讯

  • “独行星球”:维萨拉的太空探索史
    太空一直是人类魂牵梦萦的所在,众多太空主题电影大片的大获成功足以印证这一点。在维萨拉,我们对太空的兴趣远远超出了科幻小说的范畴。维萨拉传感器目前正在用于欧洲航天局 (European Space Agency) 于 2016 年启动的 ExoMars Mission。为了评估火星的环境并为未来的探索铺平道路,欧洲航天局通过该计划向火星发射了航天器。此外,“好奇号火星探测器”(Mars Curiosity Rover) 也已经在这颗红色星球上取得了许多突破性发现。维萨拉技术并不仅仅在前文描述的情形中进入过太空,我们为太空探索提供传感器的悠久历史可以追溯到 20 世纪 50 年代。为什么要去往火星?ExoMars 是火星探索计划的第 44 次尝试,第一次由苏联于 1960 年发起,但未能成功。自那时起,人类已在 23 次飞行计划中成功抵达了这颗红色星球,其中几次均采用了维萨拉技术。例如,我们的传感器是“好奇号火星探测器”任务的一部分,通过这次任务,人们于 2015 年首次发现了火星上存在液态水的证据。研究太空能给我们带来什么好处?火星等星球的研究价值体现在以下方面:太空探索可推动创新和国际间合作,能让我们更进一步了解地球以外是否有生命存在,还可以满足人类渴望探索并了解周边世界的天性。由于火星与地球的相似性可以帮助我们更好地了解我们在地球上面临的挑战(比如气候变化),因此研究火星尤其重要。这一点得到了芬兰气象学院(FMI,维萨拉的长期合作伙伴)雷达与空间技术研究部门负责人 Ari-Matti Harri 的强调。他说:“通过研究相对于地球较为简单,且在动态层面上与之类似的火星大气层,我们将有机会了解由于受到水系、植被和高湿度水平的影响而在地球上可能被忽略的一些东西。”火星探索任务已带来很多重要的发现。我们现在知道,随着时间的流逝,地球的气候发生了巨大变化,而在维萨拉技术的帮助下,人类在火星上发现了水,这为火星曾经存在生命,甚至现在可能仍然存在生命的可能性提供了重大支撑。人们还发现火星上的辐射水平不对人类造成严重的健康威胁,这为将来人探索火星提供了可能性。红色星球上的维萨拉维萨拉是如何精准帮助探索太空的?从 20 世纪 90 年代起,我们的气压和湿度传感器陆续用于火星及其他太空领域的探索任务中,帮助科学家深入研究大气层,以更好地了解外太空,以及火星等行星是否曾经或仍然存在生命。为什么在太空探索中使用维萨拉技术?我们的技术稳定,这一点很关键,因为在太空中会遇到极端的环境条件。维萨拉传感器能够承受高温和低温,并且高度耐受摇晃和振动。正是这种高稳定性,确保了这些传感器能够针对其他行星上发生的真实环境变化提供准确读数。 从人造卫星到土星在维萨拉,我们从 20 世纪 50 年代便开始参与空间探索任务,对于这一悠久历史,我们倍感自豪。1957 年,我们通过对无线电经纬仪的频率进行转换,来帮助追踪世界上第一颗人造卫星 Sputnik I,它的发射是太空探索历史上的一个关键时刻。从那时起,我们参与了许多极富吸引力的任务,提供了有助于理解我们所处的宇宙空间的技术。好奇号火星探测器维萨拉为 FMI 提供了 2011 年发射的“好奇号火星探测器”所用的压力和湿度传感器,这是两个组织于 1998 年首次合作以来第五次参与太空探索任务。2015 年,“好奇号火星探测器”在火星上发现了首个液态水证据,这是迄今为止在火星上最为重要的发现之一。这项任务还发现,火星曾经含有我们所知道的维持生命所需的化学元素,如硫、氮、氧、磷和碳。此外,它还提供了火星辐射水平的详细信息,对于未来的任何载人航天任务而言,这都是一项重要信息。该探测器仍活跃在这颗“红色星球”上,而原定仅进行两年的任务已无限期延长,因为 NASA(美国国家航空航天局)表示它有潜力继续提供 55 年的数据。另一台探测器计划于 2020 年发射。凤凰号火星探测器2007 年,FMI 为亚利桑那大学领导的“凤凰号火星探测器”(Phoenix Mars Lander) 任务提供了一种基于维萨拉传感器的压力测量仪器。该项目实现了火星极地地区的首次成功登陆,并为科学家提供了针对火星这一地区气候和地质的大量深入信息。凤凰号的发现包括火星极地地区存在冰雪和高氯酸盐,而高氯酸盐是地球上某些细菌生命体的食物。这些发现让我们对火星的气候和天气有了更详细的了解,也进一步证明了这颗行星在某个时间点可能存在过生命。卡西尼号土卫六探索任务火星并不是维萨拉技术造访的唯一行星。我们的压力传感器是 NASA 于 1997 年发射的卡西尼号 (Cassini) 任务的一部分,2005 年卡西尼号首次在太阳系外的卫星 — 土卫六上着陆,土卫六是土星最大的卫星。这是有史以来最雄心勃勃的太空发射任务之一,并于 2017 年结束。它带来了许多价值非凡的发现,包括土卫二(土星的另一颗卫星)上存在冰冻水、一颗绕土星运行的新卫星可能诞生,以及土卫六上存在类似地球的地质过程。卡西尼号任务是同类任务中的先驱,它带来的经验教训将对未来的外太阳系探索尝试产生巨大影响。 火星探测器,这张图片由 NASA 提供。太空生命科学研究自 1992 年以来,科罗拉多大学 BioServe 空间技术的科学家们一直在使用维萨拉的二氧化碳、湿度和温度传感器来控制航天飞机和国际空间站上的生命科学实验。借此,科研人员可以调节植物生长和动物生活的环境,并研究它们如何受微重力影响。这类研究的发现对于确定航天飞机上是否能够制作食物和生成维持生命的消耗品(如水和氧气)至关重要。如果载人火星飞行和远距离太空探索成为现实,这将是必要条件。随着时间的推移,维萨拉的传统传感器已被 GMM220 系列 CO2 模块和 HMP110 湿度和温度探头所取代。然而那些最初的传感器仍继续提供着合理的读数,这印证了它们在极端条件下的稳定性和耐受性。收获经验维萨拉传感器也曾被应用到一些未曾抵达目的地或任务目标的任务中。1996 年,有几个维萨拉传感器被应用到了俄罗斯 Mars96 任务中,但该任务未能成功发射。Mars 96 在当时的目标是评估火星表面、大气和内部结构的演化历史。该项目中使用的技术影响了许多后续任务,包括正在进行中的“火星快车号”(Mars Express),它是在地球以外的行星轨道上运行的存续时间第二长的持续运转航天器。三年后的 1999 年,NASA 的“火星极地着陆者号”(Mars Polar Lander) 采用了四个压力传感器和维萨拉热电偶。它成功到达火星,但未能成功着陆。为这一任务开发的一些仪器后来在“凤凰号火星探测器”任务中得到了使用。2003 年,一项名为 British Beagle 2 的任务搭载了维萨拉的压力传感器、热电偶和 Capic 电路。它到达了火星,但是通信失败。此后,该航天器的设计特点在许多其他可能实施的火星任务中被提出。未来会怎样?在维萨拉,我们为过去 50 年的太空探索支持工作而感到自豪。2018 年至 2020 年间,许多任务得到了规划,其中包括 ExoMars 的第二阶段,但科学在未来的前景会如何呢?希望这些项目将为以“红色星球”为目标的载人飞行任务铺平道路,这将开辟一系列新商机。无论太空探索的未来如何,维萨拉将继续发挥自己的专长,提供传感器技术,帮助解开人类所处的宇宙空间的奥秘。
  • 又一SPR新品牌:极瞳生命发布高通量分子互作仪S-CLASS
    2023年9月20日,极瞳生命科技(苏州)有限公司(以下简称:极瞳生命)正式发布重磅新品——高通量生物分子互相作用分析仪S-CLASS并举行新址搬迁仪式。极瞳生命创始人,极瞳生命CEO刘璟博士为新品揭幕。产品经理罗铭博士为我们隆重介绍了极瞳生命的旗舰级产品:高通量生物分子互相作用分析仪S-CLASS。新品发布在这个国产仪器设备风起云涌的时代,一个公司不仅需要好的产品,也离不开同行之间的精诚合作。极瞳生命科技(苏州)有限公司与苏州英赛斯智能科技有限公司正式签约战略合作,双方将围绕促进国产仪器设备和推动生物医药产业的共同理念和目标,建立长远、全面、稳定的战略合作伙伴关系,实现强强联合、优势互补。战略签约仪式极瞳生命总部占地面积近3000平米,位于苏州工业园区新扬产业园,拥有办公、研发、生产、应用实验室、培训中心等多功能分区,其中包括500平米满足临床转化要求的GMP洁净生产车间,已于近期完成装修并投入使用。新址一览嘉宾们分批参观了公司的生产基地及办公产所,并共同举杯庆祝。极瞳生命CEO刘璟博士讲述了公司成立与成长的心路历程。中国人民解放军空军军医大学航空医学工程研究中心主任俞梦孙教授借用钱学森的“需求牵引,有限目标,无限创新”激励国产设备的发展。鲁心创投赵清富先生表达了他对公司未来的信心和期许。上海中医药大学徐见容教授从国内用户的角度鼓励国产设备的崛起。园区党工委委员管委会主任倪乾期待极瞳生命能够把握契机,持续革新,助力园区生物医药产业的高质量发展。与此同时,众多嘉宾也发来了祝福视频。关于极瞳极瞳专注的第一条管线是基于SPR(表面等离子共振)技术路线的分子互作分析仪的产业化。分子互作分析仪是用于直接检测生物分子之间相互作用的高精密科学仪器,用于生物分子间结合特异性的分析、浓度定量、结合动力学和亲和力分析。SPR技术凭借其灵敏度高、动力学测量可靠等优点成为分子互作应用领域的金标准,被列入美国、日本以及中国药典,其应用贯穿药物发现、研发、生产的整个生命周期。秉承“见微知萌,极致之瞳(Deep view, Deeper vision)”的初心,构建高灵敏度分析和高灵敏度检测的核心竞争力,极瞳致力于成为生物医药产业的赋能者,让每一个生物实验室都用上极瞳的科学仪器。
  • 上岛制作所参加第13届橡胶技术展览会圆满结束
    第十三届中国中国国际橡胶技术展览会经过连续三天的展示,于11月15日在上海新国际博览中心成功落幕。本届展会吸引了国内外116家来自橡胶及轮胎行业内的领军企业参展,参展商品涉及橡胶机械及测试设备、橡胶成品和半成品、橡胶原材料、轮胎、各种橡胶产品、及原材料等。 作为高分子材料综合试验机老牌厂商,上岛制作所创立于1916年,长期以来,向橡胶、塑料等产业领域提供符合ISO 、JIS、ASTM为主的国际工业标准的试验机。其中在耐环境性、加工特性、动态特性、动态耐久性及试验片制作方面,采用了许多新技术,作为有特色的产品取得了很多的实绩。参展仪器VR-9110 气泡点分析仪VR-3110 硫化仪VR-1130 门尼粘度计
  • 沃特世与爱尔兰国家生物工艺研究培训所(NIBRT)携手
    沃特世与爱尔兰国家生物工艺研究培训所(NIBRT)携手促进新兴生物制药行业的培训和研究此举将提高大分子物质鉴别和认识的能力,有助于提供更有效的新型治疗选项都柏林 - 2012年3月27日爱尔兰国家生物工艺研究培训所(NIBRT)与沃特世公司(NYSE: WAT)今日宣布,他们已经在多层面建立了合作伙伴关系,其目的是支持先进的科学理念,承诺通过培训和科研手段,为征服全世界最顽固的疾病提供更有效的生物治疗创新技术。沃特世和NIBRT已经建立了完整的产品加工与表征设施(Complete Product and Processing Characterization Facility ,CPPCF),可进行以实验室技术为基础的实地培训,以及&ldquo 有的放矢&rdquo 的生物制药分析再培训,其中包括蛋白和多肽表征。CPPCF的目的是为本行业和政府技术人员和科学家提供综合的培训,帮助新兴产业开发先进的生物治疗表征法。此新设施还将为科学家提供现有和即将出台的美国和欧洲药品法规教育。而且,此项合作使NIBRT成为了沃特世糖生物学研究(glycobiology research)的创新中心。NIBRT的主要研究者,Pauline Rudd教授和她的研究团队,将利用沃特世质谱分析系统,迎接糖表征研究新的挑战。通过改善对糖化学与分子结构的认识,科学家们可以更好地理解潜在分子的安全性和有效性,从而直接获得全新的生物治疗选项。爱尔兰就业、企业和创新部研究与创新部长Sean Sherlock TD先生主持了两家新实验室的启用仪式,他说:&ldquo Pauline Rudd教授在多糖分析方面的丰富经验,与沃特世公司复杂生物样品分析技术相结合,形成了特有的能力组合,促使爱尔兰继续保持作为在生物制药的生产方面高品质标准的卓越中心的美誉。我十分高兴地宣布这次协作,因为它确实有助于进一步将沃特世公司作为生物制药业产品供应商的声誉,与爱尔兰作为先进生物技术制造国家的声誉紧密地结合在一起。&rdquo 从左至右,爱尔兰就业、企业和创新部研究与创新部长Sean Sherlock TD; NIBRT主要研究者Pauline Rudd教授;沃特世欧洲运营部副总裁Mike Harrington在沃特世创新中心宣布仪式上的合影。照片由Jason Clarke拍摄。NIBRT Ian Marison教授对这次合作表示欢迎,他表示,&ldquo 爱尔兰是复杂生物制药药物开发与生产的领先国家。这在很大程度上要归功于长期恪守质量承诺,遵守最高监管标准。&ldquo NIBRT由爱尔兰政府创立,旨在巩固与加强生物制药行业。NIBRT关注的重点之一就是通过研究改进产品的分析方法,帮助本行业继续恪守严格的质量标准。另一个关键任务,就是进行最现代和先进的分析方法的生物分析培训。&ldquo NIBRT通过与世界领先的分析设备开发者沃特世公司合作实现了这个目的。在沃特世的协助下,NIBRT将通过这次合作为制药行业提供先进的解决方案,包括蛋白表征,N-和O-糖分析。沃特世公司是全球生物制药分析技术的领导者,主要致力于生物制药行业的进步。该公司为生物制药商提供了全面的技术解决方案,从药物的发现到研发、再到商品化,它为生物制药厂商提供了所有必要的分析。沃特世欧洲运营部副总裁Mike Harrington先生表示:&ldquo 通过此次实验室及其它合作,他们将努力促进生物制药行业的发展,为政府落实各类规章。&rdquo 欧洲业界和政府生物制药领导者都为沃特世和NIBRT的合作欢欣鼓舞。沃特世公司与NIBRT此次合作,印证了它努力建立合作伙伴关系,扩大其在重要公共健康问题方面影响力的承诺,包括食品安全、药物安全和洁净水。左至右:Mike Harrington, 沃特世 Sean Sherlock TD, 爱尔兰研究与创新部长;以及NIBRT主要研究者Pauline Rudd教授。照片由Jason Clarke拍摄。关于NIBRT位于爱尔兰都柏林的爱尔兰国家生物工艺研究培训所是一个卓越中心,它为生物制药领域提供研究平台解决方案,也利用专门制订的课程和现代化的生物加工设施,对学生进行适宜的行业培训和学术教育,为制药行业提供了研究的支持平台,促进爱尔兰生物制药行业的壮大发展。更多信息访问www.nibrt.ie.关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。联系人:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 机器人分析仪来袭——记荷兰Skalar产品技术和应用交流会
    提到化学实验室,大家一般会想到一排排的通风橱和各种的分析仪器,研究人员忙碌地穿梭其中,称取样品、添加试剂、操作仪器等等。曾经在实验室工作过或正在实验室工作的人可能都会想象,有一天有个机器人能代替我们做这些繁琐的工作吧。自动化一直是分析仪器的发展方向之一。据称,全球实验室自动化市场预测从2014年的34.742亿美元,由2015年到2020年以6.7%的年复合成长率成长,到2020年达到51.057亿美元的规模。机器人分析系统  如今,机器人分析系统的这种想法已经实现了。11月25日,在荷兰Skalar产品技术交流会上的宣传视频和产品专家介绍了机器人平台。视频中,我们看到,机器人分析仪正在进行生化需氧量(BOD)的分析,样品盘上摆放着一排排的大小不一、多达198个的样品瓶,2个机器手臂不停地移动着,移取样品、开瓶盖、加入抑制剂和/或接种、加入稀释液、搅拌混匀、检测,盖瓶盖、清洗电极和搅拌器,重复动作分析下一个样品。之后研究人员将样品架放入培养箱20° C培养5天,培养完毕后样品支架直接放置于机器人分析仪上 机器人分析仪再次开始工作,开瓶盖、搅拌混匀、检测、关闭瓶盖,重复测量所有样品。而且,配套的计算机还可以自动计算检测结果。  一套动作下来令人眼花缭乱,其中研究人员所参与的只是将样品支架放置于机器人分析仪上、开启分析仪、将样品架放入培养箱或从培养箱中取出。大量的取样、添加试剂、检测、清洗等重复工作都是由机器人分析仪完成的,消除了繁琐的人工操作,提高了分析效率和结果的准确性。机器人平台还可以进行COD、PH、电导率、碱度、碳酸盐/重碳酸盐、浊度、色度、离子选择性电极、土壤颗粒分析等分析,也可组合分析或按照客户需求定制。Skalar公司总裁R. van der Wagt, M. Sc.、昌信科学仪器公司总经理罗伟立、昌信科学仪器公司广州区经理关键旭  据Skalar公司总裁R. van der Wagt, M. Sc.介绍,Skalar在上世纪80年代即开始研制机器人分析系统,他们经常和用户面对面坐下来交流,听用户想要做什么,Skalar再想能提供哪些产品技术。在2年前Skalar推出了最新型号的机器人分析仪,该项业务增长很快。  昌信科学仪器公司总经理罗伟立谈到,4年前在中国刚开始推广机器人分析仪时遇到了很多困难,如今,这种状况有所改善,因为中国目前的人工成本也在不断提高,实验室里其他仪器也购买的差不多了 而且由于中国政府对环境保护等的重视,一些实验室的样品量大幅增加,这时对于实验室自动化的需求也提到了日程上。对于用户担心的价格问题,罗先生也说到,根据用户不同需求,配置不同模块,价格也有很大的范围空间,用户完全可以负担。  罗先生补充说,机器人分析仪在欧美、日本、韩国等地区销售的很好,最近在中国也已经有很多用户在咨询这方面的事情了。确实,在此次交流会上,编辑就看到一些用户对这款产品感兴趣,特意来参加会议想了解详细情况。连续流动分析仪  荷兰Skalar公司成立于1965年,公司秉承的宗旨是帮助全球的实验室特别是环境领域实验室,让复杂实验变得更简单、更加自动化。公司在成立之初所研制的是小型、简单的自动化系统,如今公司研制的自动化产品更大型、涉及的范围也更宽。据R. van der Wagt, M. Sc.介绍,Skalar在60年代开始研制TOC产品,70年代开始了连续流动分析仪的研制,80-90年代研制了机器人分析仪,这三个事件是Skalar公司50年发展历程中的重大转折点,促进了公司的发展。  Skalar是一家员工所有的公司,据介绍这还是公司的员工向创始人提议,而创始人也觉得如果员工成为公司的股东,工作时更加尽力,对公司的长远发展有很大好处,而欣然接受了建议,一直延续到如今。  说起昌信公司与Skalar公司之间的合作,可以追溯到1994年,是昌信公司将Skalar的产品带入了中国,二者合作已经20多年了。Skalar产品业务占据昌信的90%之多,可见昌信在这方面所投入的人力物力。昌信科学仪器公司广州区经理关键旭举例到,例如对于Skalar的明星产品“连续流动分析仪”,经过昌信的努力,如今在中国市场上,Skalar已经占据了50%左右的市场份额 由于连续流动分析仪对仪器的配套服务要求较高,为了及时解决用户的后顾之忧,昌信配备了21名服务工程师,提高了服务速度和质量。  谈到Skalar的明星产品“连续流动分析仪”,R. van der Wagt, M. Sc.说到,Skalar的优势在于自动化程度比竞争对手高,目前同类产品中只有Skalar的产品能够实现全部无人值守 另外,Skalar产品研发力量强大,能够对市场需求的变化快速反应,对此R. van der Wagt, M. Sc.举例说,在公司总部的120名员工中,研发人员就有20多名。荷兰Skalar产品技术交流会现场  撰稿:刘丰秋
  • VWR收购波兰LABART公司
    宾西法尼亚州西切斯特于2010年9月2日电:VWR国际已经宣布收购 LABART SP.ZOO 公司——一家总部位于波兰格但斯克的科学实验设备经销商。LABART 成立于1996年,为工业、制药、科研和政府部门提供实验室设备和耗材。   根据 VWR 的季报显示:VWR 近几年的收购大部分在欧洲,其在欧洲市场占据主导地位。 LABART 简介: LABART 成立于1996年,是波兰最大的实验设备和耗材的独立供货商。LABART因其为工业、制药、科研、药物中间体等领域的企业提供科技产品和服务而知名。LABART核心业务是提供仪器装置,耗材以及为VWR欧洲业务做服务补充。  VWR 简介:  美国 VWR International是全球的实验室仪器设备、试剂、耗材供应商的领军者,向全球的科学工作者提供超过120万种各类实验仪器、实验设备、实验室家具、化学品、试剂、耗材和生物科技研发用品。  VWR 总部位于美国宾西法尼亚州西切斯特,在北美洲、欧洲设有运营中心和现代的物流中心,在全球21个国家和地区成立了分支机构。VWR International 全球营业额超过30亿美金,为石油化工、精细化工、制药、生命科学、食品科学、电子科技等产业以及研发中心、科学实验室和高等院校提供多样化的产品和服务。
  • HORIBA 用户动态|中科院半导体所关于角分辨偏振拉曼光谱配置的研究
    撰文:刘雪璐等众所周知,实验上已经有多种手段可以实现角分辨偏振拉曼光谱(arpr)测试,但是不同配置往往会呈现出不同的结果。常用的arpr实验配置是固定入射激光和散射信号的偏振方向,旋转样品。但是,随着低维材料的兴起,样品尺寸往往只有微米量级,而旋转样品会导致样品点移动,很难实现对微米级样品的原位角分辨拉曼光谱测试。所以重新系统地研究各种arpr配置的优缺点并且找到对于微米级晶体材料优的实验方法显得十分必要。近,中国科学院半导体研究所谭平恒研究组系统全面地分析了三种测量arpr光谱的实验配置,给出了一般形式的拉曼张量在不同配置下拉曼强度的计算方法,并具体地以高定向热解石墨(hopg)的基平面和边界面为例,研究了这些arpr配置在二维材料拉曼光谱方面的应用。该工作使用了horiba公司labram hr evolution型全自动高分辨拉曼光谱仪,分析软件为labspec 6.0。全自动拉曼光谱仪快速的数据采集和强大的数据处理功能,为本工作的顺利完成提供了技术保障。今天在本文中,你将读到: 三种测量arpr光谱的实验配置及优缺点分析 高定向热解石墨的基平面和边界面arpr光谱测量及结果分析三种测量arpr光谱实验配置及优缺点分析图1. 三种测量arpr光谱的实验配置示意图:(a)αlvr和αlhr,(b)vlvr和vlhr以及(c)θlvr和θlhr。其中光路中偏振镜(polarizer)的使用是为了保证入射激光保持竖直偏振。单色仪入口的检偏镜(analyzer)用于选择沿竖直或水平偏振的拉曼信号。半波片用于改变入射激光或者散射光的偏振态。实验室坐标系(xyz)用黑色的箭头表示,而晶体坐标系(x’y’z’)用灰色的箭头表示。红色的双向箭头代表了照射到样品上的入射激光的偏振方向,蓝色的双向箭头代表了由竖直或水平检偏镜选择出的拉曼散射光的偏振方向。测量arpr光谱的实验配置如图1,三种配置的优缺点分别为:(a)αlvr和αlhr:改变入射激光的偏振方向,固定散射信号的偏振方向,而样品固定不动。这种偏振配置在测试过程中只需要通过旋转入射光路上半波片的快轴方向来改变入射激光的偏振方向。其优点在于便于操作,且保证了arpr光谱的原位测试。目前商业化的拉曼光谱仪,如labram hr evolution型拉曼光谱仪集成了自动化控制的半波片,这相比于手动旋转入射光路上半波片快轴方向的操作更为方便,测量结果更准确。(b)vlvr和vlhr:固定入射激光和散射信号的偏振方向,旋转样品。这种偏振配置被广泛应用于研究晶体材料拉曼光谱的各向异性,分别对应于常说的平行偏振(通常记为vv或yy)和交叉偏振(通常记为vh或yx)。其优点在于光路简单,而缺点为在旋转样品过程中不可避免地会导致样品点的移动,很难实现对微米级样品的原位角分辨拉曼光谱测试,使得测试技术难度增加。(c)θlvr和θlhr:在入射激光和散射信号的共同光路上设置半波片,通过旋转半波片的快轴-方向,同时改变入射激光及散射信号的偏振方向,而样品固定不动。这种偏振配置的优点同样是保证了arpr光谱的原位测试,但在低维材料的arpr光谱测量中尚未得到广泛的应用。上述三种arpr光谱的实验配置中,种配置(a)αlvr和αlhr可以借助自动化控制的半波片实现快速测量,是一种快速有效地测量arpr光谱的实验配置。第二种(b)vlvr和vlhr和第三种配置(c)θlvr和θlhr是等价的,这可以通过计算一般形式的拉曼张量在这两种配置下拉曼强度证实, 而后一种配置以其简便性和准确性等优势可以作为前一种的替代,从而可以更为高效地测量诸多微米级样品的arpr光谱。高定向热解石墨的基平面 & 边界面arpr光谱测量及结果分析二维层状晶体材料以其独特的物理、机械、化学和电学特性等迅速成为过去十余年国际科学研究的热点。近报道的一些垂直排列的二维层状晶体材料以及它们的异质结构,它们在边界面上能呈现出某些优于基平面的性质。这些各向异性材料的诸多性能随晶向而变,使其在纳米器件方面有着非常广阔的应用前景。hopg是石墨烯的母体材料,其由单层碳原子层即石墨烯依靠层间范德华力有序地堆垛而成,所以hopg可以作为二维层状晶体材料的代表。为了展示了不同arpr光谱的实验配置在二维层状晶体材料拉曼光谱测量以及各向异性研究方面的应用,研究人员对高定向热解石墨hopg的基平面(如图2)和边界面(如图3)分别进行了arpr光谱的测量。通过研究hopg基平面以及边界面上g模的拉曼强度对不同arpr光谱实验配置的依赖性,进一步证实了旋转样品的偏振测试技术(图1(b)vlvr和vlhr)和在入射激光及散射信号共同光路上放置半波片的偏振测试技术(图1(c)θlvr和θlhr)的等价性。后一种偏振测试技术可以作为前一种的替代,使得平面内各向异性材料的arpr光谱测量更为简便和准确。图2.(a)hopg基平面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr,hopg基平面的g模拉曼强度igb(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg基平面的g模拉曼强度igb(g)随变化的坐标图。(d)偏振配置θlvr和θlhr下,hopg基平面的g模拉曼强度igb(g)随θ变化的坐标图。图3.(a)hopg边界面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr下,hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg边界面的g模拉曼强度ige(g)随β变化的坐标图。(d) 偏振配置θlvr和θlhr下,hopg边界面的g模拉曼强度ige(g)随θ变化的坐标图。对于垂直排列的二维层状晶体材料,单层厚度仅有亚纳米的级别,无法用光学显微镜对它们的晶向进行准确判断,目前急需一种快速、无损的鉴别方法。中国科学院半导体研究所谭平恒研究组进一步发现,当入射激光偏振方向与hopg碳平面取向平行时,其g模强度达到大值。基于这一特征,研究人员利用arpr光谱对hopg的边界面进行了晶向指认。这种方法还将有望推广到其他垂直排列的层状材料晶向的无损快速鉴别。图4. (a)hopg的边界面的光学图像,hopg边界面碳平面的方向y’与实验室坐标系y轴的夹角为β0=0o,20o和40o。(b)偏振配置αlvr下,β0=0o,20o和40o时hopg 边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置αlhr下,β0=0o,20o和40o时hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。以上工作得到了国家重点研发计划和国家自然科学基金委的大力支持,并于近期以highlights文章发表于中国物理b《chinese physics b》上:liu xue-lu, zhang xin, lin miao-ling, tan ping-heng. different angle-resolved polarization configurations of raman spectroscopy: a case on the basal and edge plane of two-dimensional materials. chinese physics b, 2017, 26(6): 067802horiba科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 中科院海洋所研制出国际首套深海多通道拉曼光谱探测系统
    近日,国际学术期刊《Deep-Sea Research Part I: Oceanographic Research Papers》在线发表了题为“Development and deployment of lander-based multi-channel Raman spectroscopy for in-situ long-term experiments in extreme deep-sea environment”的文章,报道了中国科学院海洋研究所成功研制国际首套多通道深海拉曼光谱探测系统,实现了冷泉喷口流体、天然气水合物动力学过程、冷泉生物群落的长期原位观测与现场实验,在我国南海冷泉区域构建首套深海原位光谱实验室。   研究团队前期研发的探针式深海激光拉曼光谱探测系统已常态化应用到深海沉积物孔隙水、冷泉和热液喷口流体、化能合成生物群落内部流体、天然气水合物以及冷泉和热液喷口系统附近岩石矿物的原位探测与定量分析。但是,随着对深海热液和冷泉系统研究的深入,科学家逐渐认识到深海热液或冷泉系统是有机统一的整体,冷泉和热液活动在时间和空间上都具有强烈的不均匀性。已有的深海原位拉曼光谱仪的探测是短期瞬时且相对独立的,难以捕捉冷泉和热液系统等高动态和非均匀环境中不同目标之间的动态规律和潜在联系。   为此,研究团队研制了国际上首套深海多通道拉曼光谱探测系统(Multi-channel Raman insertion probes system, Multi-RiPs),研发光路切换技术,实现了主要光学器件(如激光器、光谱仪、光电传感器等)的分时复用(如图1所示),结合系列化拉曼光谱探针,实现了深海热液、冷泉系统中流体、固体、气体等不同相态目标物的长期原位监测。 图1 多通道拉曼光谱探测系统关键光学器件布局图和光路切换原理示意图   为了明确甲烷在深海冷泉喷口附近的转换通道以及冷泉区域的甲烷释放通量,研究团队使用深海多通道拉曼光谱探测系统搭载深海坐底长期观测系统(Long-term ocean observation platform, LOOP)于2020年、2021年、2022年前后3次布放于我国南海北部的台西南冷泉区域(如图2所示),实现了冷泉喷口流体中主要成分、天然气水合物与深海环境的耦合变化过程、冷泉生物群落内部甲烷氧化过程的长期原位探测与现场实验,成功建设国际首套深海原位光谱实验室,并常态化运行。 图2 Mulit-RiPs搭载LOOP连续三年(a:2020年;b:2021年;c:2022年)布放于我国台西南冷泉区域对深海原位实验进行探测与分析   论文第一作者为海洋所副研究员杜增丰,通讯作者为海洋所研究员张鑫。研究得到了国家自然科学基金、山东省自然科学基金、中国科学院战略性先导专项等项目联合资助。
  • 2019年爱丁堡稳态&瞬态光谱及拉曼光谱技术研讨会-兰州站
    2019年10月18日,天美(中国)科学仪器有限公司在兰州大学分析测试中心举行2019年爱丁堡稳态&瞬态光谱及拉曼光谱技术研讨会,参加会议的有来自兰州大学的教授、博士及研究生。  兰州大学分析测试中心组建于1982年,是为高校人才培养、科学研究、社会服务提供专业分析测试服务的专业机构。为了更好的培养研究生动手能力、提高科研水平,该中心拥有多台大型仪器设备,其中包括爱丁堡瞬态&稳态荧光光谱仪。     爱丁堡仪器应用专家Stuart Thomson 博士,针对激光显微拉曼光谱仪在材料科学上的应用热点作会议报告。   爱丁堡光谱产品销售经理Johny Bray BSc 就爱丁堡仪器最新型荧光光谱仪及激光显微拉曼光谱仪的功能及构造作会议报告。   天美公司分析市场部产品经理张轩,就爱丁堡稳态&瞬态荧光光谱仪功能及相关附件的应用作会议报告。   在会议期间,爱丁堡工程师针对不同的仪器应用作了详细报告,各位教授专家、博士、硕士也针对在使用过程中遇到的问题进行了相关讨论,分享了大家在荧光研究领域的相关经验。通过会议交流,能够更好的将我们公司与科研工作者更好的联系在一起,更好的服务每一位科研工作者。  天美公司为加强与科研工作者的沟通交流,了解他们的需求,解决相关的问题,每年都会在各地举行各自技术培训班,技术交流会,仪器热点应用交流等,欢迎每一位科研工作者的加入。  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 欧盟拟修改辣椒和茄子中恶醚唑的残留限量
    近日,法国收到一份申请,要求欧盟修改辣椒和茄子中恶醚唑的残留限量,将其在辣椒中的LOQ值改为0.5mg/kg,茄子中改为2mg/kg。
  • 拉曼终身成就奖得主张树霖:做基础研究须下苦功
    前不久,第25届国际拉曼光谱学大会在巴西福塔雷萨召开。在这次会议上,北京大学物理学院教授张树霖荣获了拉曼终身成就奖,这是给予长期为拉曼光谱学及其应用的深层发展作出创造性贡献的科学家的最高奖。“从1985年开始,张树霖教授在纳米结构的拉曼光谱学研究方面作出了根本性的贡献,出版了世界上第一本综合性的纳米结构拉曼光谱学专著Raman Spectroscopy and its Application in Nanostructures,得到了全球的认可。”国际著名拉曼光谱学专家德国的Wolfgang Kiefer教授如是说。  (相关新闻:北京大学张树霖教授荣获国际拉曼光谱大会(ICORS2016)拉曼光谱终身成就奖 )  “这个奖被中国人拿到了”  获得拉曼光谱终身成就奖,张树霖说自己也没想到。  拉曼光谱终身成就奖由国际拉曼光谱大会于2014年首次设立,采取首先由提名人推荐,然后由30位委员秘密投票,在会议闭幕式上当场宣布并颁奖。今年该奖项的三位候选人都实力强劲。其中一位巴西教授则是国际拉曼光谱大会的主席。“所以当时听到自己的名字,我也吃了一惊。当时脑中闪现的第一个想法就是,这个奖被中国人拿到了。”张树霖告诉《中国科学报》记者。  张树霖之所以有这个想法,是因为拉曼光谱学研究与中国人有着很深厚的渊源,也是为数不多的由中国人持续作出历史性重大贡献的自然科学研究领域。  拉曼光谱是一种散射光谱,是由印度科学家C.V.拉曼在1928年发现的,拉曼也由此获得了1930年的诺贝尔物理学奖。拉曼散射效应是光的散射现象中的一种特殊效应,光的频率在散射后会发生变化,频率的变化决定于散射物质的特性,因此,研究人员可以利用拉曼光谱来探测物质的结构和性质。这种探测方法的分辨率很高,很细微的差别都能探测出来。比如,目前拉曼光谱成像是唯一能够把一个生物体的单个活细胞成像的方法。  拉曼光谱学的发展和应用分三个阶段。在1944年以前,拉曼光谱仪利用的是汞灯光源,探测对象只能是化学物质。这一阶段的拉曼光谱学研究的总结性工作是中国人做的,这个人就是著名的物理学家吴大猷。二战以后,拉曼光谱学领域没有什么进展,进入沉默阶段,直到1960年激光器的诞生。激光器作为拉曼光谱的光源,使得固体的拉曼光谱研究得以进行,拉曼光谱学领域的研究热度又开始上升。“固体拉曼光谱学研究需要有理论基础,这个理论基础就是中国物理学家黄昆在1952年出版的《晶格动力学理论》中打下的。”张树霖说,“第三个阶段是超晶格出现以来,固体拉曼光谱研究进入到纳米结构领域。我这次得奖主要是由于在纳米结构拉曼光谱学方面的研究,这说明在现阶段中国人也是做得非常好的。”  “底子很差”的北大学生  如今在国际拉曼光谱学领域取得了丰硕成果的张树霖,却坦言自己求学时期并不是“学霸”,反而是“底子很差”。  张树霖1964年进入北京大学物理系学习。“我在进北大之前的学历只是中等师范一年级,由于时代原因,后两年都没学就去参加工作了。能考上北大也是有点‘投机取巧’。”张树霖笑着说,“我工作时给一个小报写过社论《论又红又专》,结果高考语文作文题目恰好就是这个。那时候搞大炼钢铁,我想化学肯定要考大炼钢铁的化学反应,结果也猜对了。再加上当时对工作过的人有照顾,所以我就等于搭了扶梯爬墙进了北大。”  进入大学后,张树霖本以为能专心学习。结果由于以前有工作经历,第一年学校便让他去管理当时陆平校长直接关注的话剧队,白天有时没办法上课,晚上更是无法自习。第二年,由于当时北大要建设昌平校区,张树霖干脆被安排脱产去当基建组组长,带着一名教员和一名脱产学生,从调研、提设计要求到与工程师打交道都需要参与,整整一年时间不能学习。  张树霖记得很清楚,当时返回学校上课时,系里的意见是让他留一级,但他不愿意。“我要跟着原来的班级,这就必须把拉下的课自己补回来。”张树霖说,这需要比别人付出更多的努力。当时的外语是俄语,班级同学大多是中学就学了六年,但他一个字母都不会,往往只能熄灯后拿着手电筒在被窝里背单词。代数和三角也基本没学,他就趁着暑假补课。后来,与他同路回家的同学还打趣说:“老张的代数和三角是在火车上学的。”就这样,到毕业时,张树霖一门补考的课都没有,顺利按时毕业。  大学毕业后,张树霖留校做一个国家重大项目的行政秘书。该项目的学术负责人黄昆知道张树霖想做研究,便把他当作自己的研究生一样进行指导,让张树霖看相关领域的英文书,一两个星期就听他汇报一次。可是不到一个学期,因为北大进行社会主义教育运动,后来又有“文革”,张作霖的学习和工作又被打乱了,一直到“文革”结束后,他才开始得以安心做研究,直到现在。  “基础科学研究,不能吃苦是不行的”  1978年,各项研究工作渐渐开始重新启动,张树霖开始了拉曼光谱学的研究,那时用的激光拉曼光谱仪都是他自己组建的。  “‘文革’前我们曾经买过一台利用汞灯做光源的棱镜拉曼光谱仪,可因为‘文革’,这台仪器在仓库一躺就是10年,到1978年拿出来用的时候,它已经过时了,当时需要的是激光拉曼光谱仪。那时国家又没钱,怎么办呢?还好原来我参加过氦氖激光器的研制,我们就自己拼成了一台激光拉曼光谱仪。”张树霖说。  1985年起,张树霖开始集中于低维纳米结构的拉曼光谱学研究,并取得了丰硕的成果。比如,低维材料超晶格的光谱特征谱一共有五种,其中有两种是最难得到的,很多年都没有成果,最后由张树霖团队研究出来。另外,研究人员根据纳米结构的性质,已经对纳米结构材料在理论上推出很多性质,但张树霖发现了其中8个与理论上的规律不一致的反常性质,并对其进行了解释。他的一系列研究使低维纳米材料的结构被了解得更加深入和正确。  2000年后,张树霖成为国际拉曼光谱学大会国际执委会终身委员和2002—2004年的主席。2004年,以他为首的“若干低维材料的拉曼光谱学研究”获得了国家自然科学奖二等奖。2008年和2012年,张树霖先后出版了第一本中文和英文专著《拉曼光谱学与低维纳米半导体》和Raman Spectroscopy and its Application in Nanostructures。  基础研究的工作是辛苦而枯燥的,但自己的成果能打上中国的标签,这给了张树霖极大的动力。  1985年夏,张树霖曾赴美国伊利诺大学访问,在美国工作了一年半的时间。要回国时,美国方面挽留张树霖,被他拒绝了。张树霖当时在美国一个月的工资有2000美元,在国内只有650元人民币。但是张树霖认为在美国做出的成果是美国的,不是中国的,于是他认为他必须要回来。他回国一年后,美国的教授还给他写信,问他要多少工资能回来,他还是立即拒绝了。  “没有国家,就没有个人。”张树霖说,“上世纪90年代,我去法国巴黎卢浮宫,说明书里还没有中文。2002年再去,已经有中文说明书了。我原来到意大利开国际会议,外国专家问我是不是日本人,几年后再去意大利,旅馆的工作人员看到我就用中文跟我说‘您好’。不是我张树霖变厉害了,是中国强大了。”  在美国访问时,张树霖每天早早就到办公室,工作到晚上很晚才离开,周末也是一样,就是想充分利用美国先进的仪器和材料多做些工作和多积累经验。他临回国前,一位合作的美国教授对他说:“树霖,从你身上,我知道了中国为什么发展那么快。”  这样的工作习惯,张树霖一直保持到现在。如今,已经80岁的张树霖仍然每天早上六点半左右起床,骑自行车去办公室上班,除了吃饭、午休和必要的体育活动时间都在工作,直到晚上十点半以后才睡觉,一年365天,天天如此,没有周末,没有假期。只有在出差时,才找机会到处走走看看。张树霖说,“从事基础研究,目标必须是世界第一,努力做创新性工作。”因此 “基础科学研究,不吃苦是不行的。”
  • 量旋科技携“双子座”量子计算机,走进兰州交通大学
    量旋快讯NEWS2021年7月15日SpinQ7月15日,炎炎夏日中,深圳量旋科技有限公司(以下简称“量旋科技”)携最新一代桌面型核磁共振量子计算机“双子座”,走进兰州交通大学的课堂,为兰交大的师生们带来一场别开生面的量子计算主题报告。客户经理代表方坤做主题汇报据了解,活动现场,来自量旋科技的客户经理代表方坤,以“遇事不决,量子力学”为题,与兰交大的师生们进行了一场生动精彩的量子科技头脑风暴,并绘声地讲解和介绍了”双子座“桌面型量子计算机。双子座是一款真是的量子计算机,配备了易用的图形界面,内置量子模拟器模块及多种核心量子算法模块,同时还具有布洛赫球演示、用户自定义量子线路等多项功能,为量子计算教学提供了一套整体解决方案。“双子座”桌面型量子计算机热闹的汇报现场,吸引了来自兰州交通大学国家级计算机实验教学示范中心的老师们以及其他众多对量子世界感兴趣的师生们。师生们纷纷表示,量子计算作为推动新一轮科技发展的变革型力量,对学校培养创新性人才具有重要引领作用,同时,兰交大的同学们也纷纷呼吁,希望以“双子座”为核心的量子计算教学中心能尽快落地兰交大,以便大家真实的走进量子科技的场景中,切实感受量子计算的魅力。这次汇报在兰交大师生们连绵不断的掌声中落幕,这次难得的汇报分享,也给量旋科技带来了对未来的寄希,量旋科技将加快建设量子计算教育教学平台,发挥自身成熟产业模式与科研资源优势,不断推动和完善国内量子计算教育生态的体系建设,为进一步培养国内高校量子科技人才做贡献。
  • LabSolutions CS/DB 防范新型勒索病毒的应对措施
    岛津企业管理(中国)有限公司2017/05/15 近日一款名为 WannaCay 的勒索病毒肆虐全球,为了保证实验室的数据安全,请各位尊敬的用户针对每一台 LabSolutions CS/DB 的服务器和工作站电脑,尽快进行以下步骤的操作:一、安装微软公司的安全补丁 MS17-010(必选)下载页面(中文版):https://technet.microsoft.com/zh-cn/library/security/ms17-010.aspx下载页面(英文版):https://technet.microsoft.com/en-us/library/security/ms17-010.aspx请根据不同的操作系统(Windows 7 SP1、Windows Server 2008 R2、Windows Server 2012以及 Windows Server 2012R2)来选择相应的下载链接。 Windows XP 用户请安装最新的补丁,或者升级到更安全的操作系统,如 Windows 7 SP1 专业版 等。二、及时进行服务器及工作站的数据备份(必选) 三、注意事项(仅针对 LabSolutions CS 用户):A . 不要轻易尝试网上的解决方法(如关闭工作站电脑 445 端口之类),病毒的传输端口不仅限于某些特定的端口,且手工修改不当,可能会造成其他的问题。 B . 如果确实需要关闭相应的计算机端口,请按照以下步骤重新连接 LabSolutions 工作站:1、 在各台 ACQ 和客户端上以 Windows 管理员身份登录,点击开始—LabSolutions—数据库设置工具—设置数据库连接2、 确认当前 LabSolutions CS 服务器的 IP 地址后,点击左下角的测试按钮,完成后点击确定。3、 稍等片刻,弹出 LabSolutions 的认证界面,输入管理员的帐号及密码,再次点击确定。4、 重新登录 ACQ 或者客户端以后,会在日志浏览器中出现相应的更改日志。以上操作,请在相关的技术负责人员的指导下进行。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • "分离"科研所兰州建基地
    “我宣布:兰州分离科学研究所总部科研孵化基地项目奠基仪式开始!”6月28日,随着兰州省委常委、省委统战部部长刘立军一声令下,包括世界一流肿瘤基因芯片项目在内的多个兰州分离研究所与国际合作及自主创新项目在兰州国家高新技术产业开发区“安家落户”。  省市领导陆武成、牟少军、王冰、周丽宁、姚国庆,以及世界华人协会会长程万琦,兰大党委书记王寒松,中科院院士陈洪渊、李吉均、吴云东,德方代表瓦伦提尼、侯赛因、塞西莉亚等出席了当天的开工奠基礼。  刘立军代表甘肃省委、省政府对该所总部科研孵化基地项目的开工建设表示祝贺。他在致辞中说,兰州分离科学研究所以项目促进产业,以产业支持科研,形成了富有特色的产学研发展模式。该所与德国雷根斯堡肿瘤实验室的协作使我国的基因发展水平与世界实现了同步。  据介绍,兰州分离科学研究所总部科研孵化基地项目是集科研、中试和产业化于一体的高科技项目集群,是由原兰州大学校长胡之德教授以及多位省内知名专家联合甘肃省老教授协会、兰州大学化学化工学院组建的专门为科研单位、企业和个人提供生物技术研究、性能测试、中试开发、产业化的共享平台。  该项目总投资2.15亿元,占地10.86亩,总建筑面积5.8万平方米,计划在1-2年内构筑有机合成、手性分离、纯化、药物筛选、药物设计、实验动物等平台和国家级实验室。  该项目将依托“甘肃省生物化学行业技术中心”、“兰州生物化学工程技术中心”和中科药源、中科安泰和中科基因三个产业化实体,建成生物医药孵化大楼、研发与基因检测大楼、合成药物中试中心楼。其中,中科基因负责具体实施与德国合作的基因芯片项目,研发与基因检测大楼也将以德国雷根斯堡基因实验室标准(基因检测方向)建造,包括研究所科研、行政、基因诊断与VIP体检中心、4个标准实验室及1个净化室、微创诊疗及活动中心等。  此外,已拥有4项国家专利、建成年产120吨生产线的KT系列镍催化剂项目,以及获得了“国家火炬计划项目”和“国家重点新产品”等证书的高效液相、气相色谱柱及手性色谱柱项目,也将落户该孵化基地。  项目建成后,将为本地区生物化学企业的技术创新、中试及产业化开发、检测服务、科研设施、融资发展、人才培训等方面提供专业支持和服务平台。预计到“十二五”初期,可实现销售收入5亿元,实现利税1.4亿元,将成为辐射全省乃至全国的集产、学、研一体化的“生物化学科技中心”和“SNP肿瘤基因诊断检测中心”,为我省的医药化工行业注入活力。
  • 岛津制作所将在日创建检测业务新基地
    —借助临近羽田机场的优越地理位置,加速推进开放式创新“Shimadzu Tokyo Innovation Plaza”竣工效果图岛津制作所将于2020年12月在创造生命科学与环境领域新产业的开放式创新基地“King SkyFront”(川崎市川崎区殿町地区)※新建“Shimadzu Tokyo Innovation Plaza(暂称)”,作为分析应用技术开发及向顾客提供解决方案的基地。去年年底启动了平整地基的作业,本月内将动工。川崎市为促进开发而建设的“King SkyFront”是一个围绕全球发展前景看好的健康、医疗、福祉、环境领域,旨在通过世界最高水准的研究开发创造新产业的地区。已有将近70家企业和国立研究机构、大学等或进驻该地区、或表明了进驻意向。位于已成为24小时全天候运营的国际机场羽田机场多摩川对岸的“川崎殿町地区”,距该机场10分钟车程。我公司的基础研究工作由“基础技术研究所”(京都府精华町)承担,为开发保健领域产品而建设的新开发楼“保健R&D中心”计划今年2月于总公司三条工厂内建成。“Shimadzu Tokyo Innovation Plaza”将借助其优越的地理位置,与国内外顾客及临近的研究机构一道,致力于先进分析方法的开发及解决方案的提供,推进联合研究,并邀请国际学会举办学术会议和研讨会,打造新知识创造与交流的空间。“King”来源于“Kawasaki INnovation Gateway”的首字母与“殿町”这一地名※。“SkyFront”表示的是位于羽田机场近旁的地理位置以及该地区与世界相连的意思。新基地“Shimadzu Tokyo Innovation Plaza”的概要1)名称“Shimadzu Tokyo Innovation Plaza(暂称)”2)建设地点神奈川县川崎市川崎区殿町地区3)建筑物地上4层(租赁)4)楼层总面积9549平方米5)建设计划 2019年1月动工、2020年12月完工 (2021年4月开始办公)关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津的中国之路:多元化需求促多元化产品——访岛津制作所社长上田辉久
    p style="text-indent: 2em "span style="font-family: 宋体, SimSun "作为具有140多年历史的分析仪器企业,岛津自1980年在中国设立第一个办事处以来,发展非常迅速,目前已然成为中国分析测试实验室中最常见的品牌之一,并获得广大用户的充分认可。近年来,为满足中国市场出现的新需求,岛津不断加大资源投入,并针对中国市场发展情况,不断扩大中国市场业务。本次BCEIA展会,仪器信息网特别采访了岛津制作所社长上田辉久,就公司中国分析仪器市场发展机遇、岛津的未来发展战略等内容展开讨论。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "strong具体内容请点击视频观看!/strong/span/pscript src="https://p.bokecc.com/player?vid=0A1F3096675B58349C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptpspan style="font-family: 宋体, SimSun " /span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "据了解,自1956年起,岛津先后在中国上海、北京举办的商品博览会等展会上推出了各种产品, 1980年设立岛津中国。此后,岛津在中国建立了生产工厂或者研究开发中心,2011年在上海成立岛津研发中心,2015年在北京成立岛津中国质谱中心,充分满足中国地区的各种需求。至今,岛津在中国已有近60个据点。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "上田辉久介绍,目前从全球视角来看,中国市场在过去5年中增长显著。这主要得益于色质谱仪器的增长。而从细分领域来讲,以食品安全或环境分析相关产品为主的中国分析仪器市场实现显著增长。上田辉久表示,未来在保健领域,特别是人类健康诊断或治疗领域,将使用分析产品进行早期诊断,或是使用分析仪器采取预防措施,以尽可能避免患上疾病。而这些都将促进分析仪器的普及应用。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "谈到未来的发展,上田辉久表示,将针对中国市场的需求,通过进一步扩大应用于各领域的分析仪器的阵容,以更高的产品覆盖率覆盖这些市场领域。此外,岛津还将周密细致地观察各个领域,对于医药行业、化学行业、半导体行业、电机行业或者汽车行业等岛津覆盖范围非常广的领域,认清其发展趋势,并进行合理投资。/span/pp style="text-indent: 2em "br//p
  • 北京金索坤与您相约CHINA LAB 2016
    CHINA LAB 2016 广州国际分析测试及实验室设备展览会暨技术研讨会将于2016年3月31日-4月2日在广州保利世贸展览馆盛大开幕,该展会是由中国分析测试协会、中国出入境检验检疫协会、广东省分析测试协会等支持主办。展品范围有分析、测量仪器,通用分析仪器,行业专用分析仪器设备。北京金索坤技术开发有限公司作为分析仪器-原子荧光光谱仪的主流厂家受邀参加此次盛会。 北京金索坤将携SK-乐析原子荧光光谱仪(又名原子荧光光度计)、SK-博析-LC 液相色谱原子荧光联用仪(原子荧光形态分析仪)参会。北京金索坤期待您的莅临! 联系人:陈伟 13950106336展位号:2楼3号厅 1H13时 间:2016年3月31日-4月2日地 点:广州保利世贸展览馆
  • Labthink兰光橡塑展倍受赞誉 国际化战略进一步推进
    在刚刚闭幕的CHINAPLAS 2012 国际橡塑展上,Labthink兰光展示了一系列针对包装材料品质管控的检测仪器,旨在帮助包装行业上下游企业现场了解质量控制的技术和手段。在展会上,兰光展位备受参展客户的关注和赞赏。  现场展示的仪器涉及阻隔性能、力学与热封性能、成品密封性等检测项目,分别从来料检验、生产、运输、仓储、货架销售整个环节提供全面专业的检测方案。阻隔性测试和力学测试可以帮助客户快速获取塑料成品的基本性能参数,这对后期包装工艺的研发、仓储条件的设置和货架期的预估提供了有效数据参考,因而在本次展示中OX2/230氧气透过率测试系统、W3/060水蒸气透过率测试系统、XLW(PC)智能电子拉力试验机等仪器受到了参展客户的热切关注和积极咨询。同时响应大多数客户的要求,兰光工程师细致讲解了仪器的运作原理和测试方法,为使讲解更加生动直观,工程师在条件允许的情况下,现场演示了CHY-CA测厚仪和FDI-01薄膜落镖冲击试验仪的试验方法,智能化操作和先进的触屏技术获得了全场观众的一致赞叹。  本次参展,众多北美、欧洲、东亚、东南亚等地区的客户慕名而来,其中除了具有采购意向的客户和学习产品知识的兰光海外代理商外,更多的是想对兰光及其产品做深入了解的准代理商朋友们。国外客户的积极沟通从另一个角度反映了Labthink兰光经过11年国际市场的运作,已经树立起了良好的产品口碑与品牌形象,更意味着兰光国际化战略的推进已初见成效。随着境外公司筹备工作的逐步开展,兰光国际化舞台即将拉开新的序幕,届时将为国内外客户提供品质更加卓越的仪器与服务。
  • 中科院沈阳自动化所孙兰香LIBS团队:元素成分LIBS在线分析
    p style="line-height: 1.5em text-align: justify "span style="line-height: 1.5em " strong span style="line-height: 1.5em font-size: 20px "一、 中国科学院沈阳自动化研究所孙兰香团队风采/span/strong/span/pp style="line-height: 1.5em text-align: justify "  中国科学院沈阳自动化研究所LIBS团队由孙兰香研究员领衔,初创于2007年,目前有研究员1名,副研究员3名,助理研究员5名,在读博士研究生2名,硕士研究生5名,已毕业博士2名,硕士4名。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7ca3c0e3-bae9-492c-a528-4f2108fb8e9a.jpg" title="微信图片_20181229105023.jpg" alt="微信图片_20181229105023.jpg" width="300" height="343" border="0" vspace="0" style="width: 300px height: 343px "//pp style="line-height: 1.5em text-align: justify "  针对工业生产成分检测的需求,本团队致力于金属冶炼、选矿等行业的元素成分在线分析的研究,经过十多年的机理研究及研发产品迭代,攻克了冶金工业现场高温、多粉尘恶劣环境等多种问题,研发出多款适用于冶金、选矿、金属回收等多种领域的LIBS在线检测产品。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/92d4f39e-cb8b-45cd-a584-a73609326b2a.jpg" title="孙兰香团队.jpg" alt="孙兰香团队.jpg" width="600" height="276" border="0" vspace="0" style="width: 600px height: 276px "//pp style="text-align: center "中国科学院沈阳自动化研究所LIBS团队/pp style="line-height: 1.5em text-align: justify "  span style="font-size: 20px "strong二、 中国科学院沈阳自动化研究所孙兰香团队LIBS相关研究成果及研究最新进展/strong/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 20px "  span style="font-size: 20px color: rgb(255, 0, 0) "strong钢铁行业/strong/spanspan style="font-size: 20px color: rgb(31, 73, 125) "strong/strongstrong/strong/span/span/pp style="line-height: 1.5em text-align: justify "  从东北老工业基地的特点及需求出发,团队首先以钢铁行业为切入点,从2007年立项研究,到2010年初代样机通过工厂试验,2014年二代样机成功实现工厂示范应用,已经研制成可适用于钢铁冶炼在线成分分析仪,并国际上首次实现了40吨级钢包的钢水成分在线测量。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/4321aa08-1dc2-4838-b093-aa0c0876da30.jpg" title="1.png" alt="1.png"//pp style="line-height: 1.5em text-align: center "  图1 钢铁冶炼LIBS分析仪一代(左)、二代(右)/pp style="line-height: 1.5em text-align: justify "  span style="font-size: 20px color: rgb(255, 0, 0) "strong有色行业/strong/span/pp style="line-height: 1.5em text-align: justify "  为了拓展LIBS的应用领域,结合团队的研究方向,研发出可适用于有色行业冶炼生产的原型样机,并经过产品迭代,目前已经形成性能完备的适合铝合金、铜合金生产过程在线成分检测的LIBS在线成分分析仪(SIA-LIBSmelt),为国内首款液态铝合金及铜合金成分在线分析设备。并在辽宁忠旺、天津立中合金、大连亚明、贵阳铝镁设计院等多家企业中得到应用验证。/pp style="line-height: 1.5em text-align: justify "strong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/616a1dc9-f164-473f-a489-c66b61f2b16b.jpg" title="2.png" alt="2.png"//pp style="line-height: 1.5em text-align: center "  span style="font-size: 14px "图2 液态金属分析仪应用现场(A 辽宁忠旺、 B 天津立中合金、 C 大连亚明、 D贵阳铝镁设计院)/span/pp style="line-height: 1.5em text-align: justify "  span style="color: rgb(255, 0, 0) font-size: 20px "strong选矿行业/strong/span/pp style="line-height: 1.5em text-align: justify "  进一步向金属冶炼的上游领域拓展应用,团队又研发出基于LIBS技术适用于选矿过程的在线元素成分分析仪(SIA-LIBSlurry),仪器目前已经在云南磷化集团的选矿厂进行示范应用。该仪器通过更换外挂箱可同时满足液体、固体的分析需求,部分固体元素的检出限可达到1ppm。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7e115a1d-978f-49c1-912c-41449bc3125f.jpg" title="3_副本.png" alt="3_副本.png"//pp style="line-height: 1.5em text-align: center "  图3 矿浆LIBS在线成分分析仪及现场应用br//pp style="line-height: 1.5em text-align: justify " span style="color: rgb(255, 0, 0) font-size: 20px "strong 金属分选及识别/strong/span/pp style="line-height: 1.5em text-align: justify "  为了节能、环保及节约成本,废旧金属的回收再利用会在未来金属生产过程中占据越来越多的比重,团队针对行业的未来发展趋势,研发出全自动废旧金属分拣系统(SIA-LIBSorting),可以实现40件/秒的分拣速度,分拣准确率可以达到95%以上。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/113be7e6-bd3c-47e9-9a72-96fd190344ab.jpg" title="4.jpg" alt="4.jpg"//pp style="line-height: 1.5em text-align: center "  span style="color: rgb(0, 0, 0) "图4 LIBS废旧金属智能分选装备/span/pp style="line-height: 1.5em text-align: justify "  span style="color: rgb(255, 0, 0) font-size: 20px "strong便携式LIBS分析仪/strong/span/pp style="line-height: 1.5em text-align: justify "  针对物体辨别等通用领域,团队研发出便携式LIBS分析仪(SIA-LIBSport),可以适用于金属及其牌号的识别、岩石种类鉴别等多种应用领域。LIBSport包括手持测量探头和手提箱,手持部分重量小于1.5千克,方便人手长时间抓握。LIBSport内嵌多种金属牌号库,可定性判别钢、铜、铝、钨、钛、钴、铅等大类物质,可定量分析不锈钢、低合金钢、铝合金、铜合金等常见金属,并且可以根据客户需求添加。/pp style="line-height: 1.5em text-align: justify "  LIBSport分析仪相比单纯手持式LIBS系统具有更高的激光功率,可以适用于更广泛的分析样品。LIBSport对于碳钢中的碳也有较好的分析能力,不需要氩气便可实现0.1%以上碳含量的半定量分析,能判别大部分碳钢的牌号。LIBSport加载Win 10系统,提供部分科研级服务,方便用户拓展应用。/pp style="line-height: 1.5em text-align: justify "br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/68c94e2a-618c-41c0-a912-f5623ce8ae9d.jpg" style="width: 300px height: 222px " title="5.jpg" width="300" height="222" border="0" vspace="0" alt="5.jpg"/img src="https://img1.17img.cn/17img/images/201812/uepic/d3e7fc40-d446-4d8a-9f12-0a7722a1f2ce.jpg" title="6.png" width="176" height="200" border="0" vspace="0" alt="6.png" style="width: 176px height: 200px "//pp style="line-height: 1.5em text-align: center "  图5 便携式LIBS分析仪br//pp style="line-height: 1.5em text-align: justify "  span style="font-size: 20px color: rgb(0, 0, 0) "strong三、 中国科学院沈阳自动化研究所孙兰香团队代表性论文/strong/span/pp style="line-height: 1.5em text-align: left "  1. Wei WANG, Lanxiang SUN, Peng ZHANG, Liming ZHENG, Lifeng QI, Wei DONG, A method of laser focusing control in micro-laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21 (2019) 034004/pp style="line-height: 1.5em text-align: left "  2. Peng Zhang, Lanxiang Sun*, Haibin Yu, Peng Zeng, Lifeng Qi, and Yong Xin, An Image Auxiliary Method for Quantitative Analysis of Laser-Induced Breakdown Spectroscopy, Analytical Chemistry, 2018, 90(7): 4686-4694./pp style="line-height: 1.5em text-align: left "  3. Lanxiang Sun*, Haibin Yu, Zhibo Cong, Hui Lu, Bin Cao, Peng Zeng, Wei Dong, Yang Li. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochimica Acta Part B: Atomic Spectroscopy. 2018,142:29-36/pp style="line-height: 1.5em text-align: left "  4. 孙兰香, 汪为, 田雪咏, 张鹏, 齐立峰, 郑黎明, 激光诱导击穿光谱微区分析的研究应用进展, 分析化学, 2018, 46(10):1518-1527./pp style="line-height: 1.5em text-align: left "  5. 周中寒 田雪咏 孙兰香 张鹏 郭志卫 齐立峰. Fiber-LIBS技术结合SVM鉴定铝合金牌号, 激光与光电子学进展, 2018,55(6):1-7./pp style="line-height: 1.5em text-align: left "  6. 辛勇, 李洋, 李伟, 刘学, 李菁菁, 杨志家, 于海斌, 孙兰香. 基于LIBS技术在线监测熔融铝水中的元素成分, 光子学报, 2018, 47(8):1-8. (EI)/pp style="line-height: 1.5em text-align: left "  7. P. Zhang, L. X. Sun*, H. B. Yu, P. Zeng, L. F. Qi, and Y. Xin. An intensity correction method combined with plasma position information for Laser-Induced Breakdown Spectroscopy, Journal of Analytical Atomic Spectrometry, 2017, 32(12): 2371 - 2377/pp style="line-height: 1.5em text-align: left "  8. 孔海洋,孙兰香*,胡静涛,张鹏. 激光诱导击穿光谱定量化标定谱线自动选择方法, 光谱学与光谱分析, 2016, 36(5): 1451-1457/pp style="line-height: 1.5em text-align: left "  9. 辛勇, 孙兰香*, 杨志家, 李洋, 丛智博, 齐立峰, 张鹏, 曾鹏. 基于一种远程双脉冲激光诱导击穿光谱系统原位分析钢样成分, 光谱学与光谱分析, 2016, 36(7): 2255-2259/pp style="line-height: 1.5em text-align: left "  10. Yong Xin, Lan-Xiang Sun*, Zhi-Jia Yang, Peng Zeng, Zhi-Bo Cong, Li-Feng Qi. In Situ Analysis of Magnesium Alloy using a Standoff and Double-Pulse Laser-Induced Breakdown Spectroscopy System, Frontiers of Physics, 2016, 11(5): 115207/pp style="line-height: 1.5em text-align: left "  11. Lanxiang Sun*, Haibin Yu, Zhibo Cong, Yong Xin, Yang Li, Lifeng Qi. In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a Cassegrain telescope, Spectrochimica Acta Part B: Atomic Spectroscopy. 2015,112:40-48/pp style="line-height: 1.5em text-align: left "  12. Bo Zhang, Lanxiang Sun*, Haibin Yu, et.al. A method for improving wavelet threshold denoising in Laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy. 2015, 107: 32-44/pp style="line-height: 1.5em text-align: left "  13. QI Lifeng, SUN Lanxiang*, XIN Yong, CONG Zhibo, LI Yang, YU Haibin. Application of Stand-off Double-Pulse Laser-Induced Breakdown Spectroscopy on Elemental Analysis of Magnesium Alloy, PLASMA SCIENCE & TECHNOLOGY, 2015 , 17(8): 676-681/pp style="line-height: 1.5em text-align: left "  14. KONG Haiyang, SUN Lanxiang*, HU Jingtao, XIN Yong, CONG Zhibo. A comparative study of two data reduction methods for steel classification based on LIBS, PLASMA SCIENCE & TECHNOLOGY, 2015, 17(11): 964-970/pp style="line-height: 1.5em text-align: left "  15. 孙兰香*,辛勇,丛智博,李洋,齐立峰. 通过二次回归正交设计对激光诱导击穿光谱实验参数优化建模, 光学学报, 2014, 34(5): 53003/pp style="line-height: 1.5em text-align: left "  16. 丛智博,孙兰香*,辛勇,李洋,齐立峰,杨志家. 基于激光诱导击穿光谱的合金钢组分偏最小二乘定量分析,光谱学与光谱分析,2014, 33(2): 1-6/pp style="line-height: 1.5em text-align: left "  17. Haiyang Kong, Lanxiang Sun*, Jingtao Hu, Yong Xin, Zhibo Cong. Quantitative Analysis of Steels Using PLS with Three Data Reduction Methods Based on LIBS. Advanced Materials Research, 2014, 997: 578-582./pp style="line-height: 1.5em text-align: left "  18. Bo Zhang, Lanxiang Sun*, Haibin Yu, Yong Xin and Zhibo Cong. Wavelet denoising method for Laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 2013,28, 1884-1893./pp style="line-height: 1.5em text-align: left "  19. Bo Zhang, Haibin Yu, Lanxiang Sun*, Yong Xin, and Zhibo Cong. A Method for Resolving Overlapped Peaks in Laser-Induced Breakdown Spectroscopy (LIBS), Applied Spectroscopy, 2013, 67(9): 1087-1097./pp style="line-height: 1.5em text-align: left "  20. Lanxiang Sun*, Zhibo Cong, Yong Xin, et al. Reducing Quantitative Fluctuation of Laser-Induced Breakdown Spectroscopy by Kalman Filtering, Applied Mechanics and Materials, 2013, 333-335: 243-247/pp style="line-height: 1.5em text-align: left "  21. 孙兰香, 于海斌等. 基于激光诱导击穿光谱的钢液成分在线监视, 中国激光, 2011, 38(9):0915002/pp style="line-height: 1.5em text-align: left "  22. 孙兰香, 于海斌等. 利用LIBS技术在线半定量分析液态钢成分, 仪器仪表学报, 2011, 32(11): 2602-2608/pp style="line-height: 1.5em text-align: left "  23. 孙兰香, 于海斌等. 激光诱导击穿光谱技术结合神经网络定量分析钢中的Mn和Si, 光学学报, 2010, 30(9): 2757-2765/pp style="line-height: 1.5em text-align: left "  24. 孙兰香, 于海斌等. 采用激光诱导击穿光谱技术测定合金钢中锰和硅的含量, 光谱学与光谱分析, 2010, 30(12): 3186-3190/pp style="line-height: 1.5em text-align: left "  25. Sun lanxiang, YU haibin. Automatic Estimation of Varying Continuum Background Emission in Laser-Induced Breakdown Spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, 2009,64(3):278-287/pp style="line-height: 1.5em text-align: left "  26. Sun lanxiang, YU haibin. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta,2009,79(2):388-395/pp style="line-height: 1.5em text-align: left "  27. 孙兰香, 于海斌等. 利用激光诱导击穿光谱对铝合金成分进行多元素同时定量分析, 光谱学与光谱分析, 2009, 29(12): 3375-3378/pp style="line-height: 1.5em text-align: left "  28. 孙兰香, 于海斌等. 激光诱导击穿光谱在物质成分定量分析方面的实验研究进展, 仪器仪表学报, 2008, 29(10): 2235-2240/ppbr//p
  • 欧盟修订对兽药三氯苯哒唑Triclabendazole的残留限量要求
    2012年3月15日,欧盟发布COMMISSION IMPLEMENTING REGULATION (EU) No 222/2012,修订对抗寄生虫剂/抗体内寄生物药剂三氯苯哒唑Triclabendazole的残留限量要求,新增对该兽药在乳【所有反刍动物】Milk[All ruminants]中的临时残留限量要求10μg/kg,该临时残留限量将于2014年1月1日到期。该法规自公布3天后生效。   欧盟兽药残留限量要求可登录下述网址查询:  http://www.tbt-sps.gov.cn/foodsafe/xlbz/Pages/veterinary.aspx
  • 从做研究到办企业——访莱伯泰科控股公司(Labtech)总裁胡克博士
    从做研究到办企业――访莱伯泰科控股公司(Labtech)总裁胡克博士 前言:LabTech是仪器行业的后起之秀,成立不到几年就已经有数千万的销售额,日前又与北京空港工业区签定了土地转让协议,准备扩大研发和生产规模。公司迅速的发展势头和控股公司总裁兼北京公司董事长胡克博士的传奇经历都让人迫切期望一探究竟。日前,本网编辑应LabTech公司邀请采访了胡克博士。 Instrument: 从地质工作者,留美博士,热电TJA公司首席研究员,TJA中国区总经理,到创办企业成为LabTech控股公司的总裁,您的经历极富传奇色彩,能介绍一下吗?胡克博士:我78年考取武汉地质学院(现中国地质大学)岩石矿物分析专业,毕业后在湖南地矿局做了三年的地质队员,接着在广西大学化学系担任助教一年多,随后被美国Iowa State University化学系录取,师从ICP质谱发明人R.S. Houk博士。获博士学位后加入热电TJA公司任ICP质谱高级研究员,从进去时的七级研究员做到当时最高的九级首席研究员。之后转入市场部,最终成为TJA中国区总经理。2003年,我与原热电总裁Lewis先生共同创办了LabTech控股公司。LabTech的口号是‘Your Lab,Our Tech’,旨在利用中国的人才、技术和成本优势生产世界级的产品。 Instrument: 您是怎样从研究人员成功地转型成为一位经营管理者呢?胡克博士:我是从研究逐步转向市场的,开始是做产品经理,用技术为市场做支持,然后做国际市场经理,销售市场方面的工作就更多了。市场工作遇到很多新问题,不断追求新境界也比较符合我的性格。到领导团队做企业的时候,需要学习的东西就更多了,诸如资本运营,公司运作,团队管理等等。对企业来说,研发也要和市场相结合,我常对公司研发人员说:“我们要做到完美,可完美的目标就是满足市场需求。” Instrument: 水循环冷却器是LabTech主打产品之一,也最先进入国际市场,可否介绍一下销售状况和开拓新市场举措?LabTech不少自产产品技术含量似乎不是很高,您以前也从事ICP质谱的研发工作,有没有考虑过开发一些高科技产品如ICP质谱等,以增强企业的竞争力呢?胡克博士:目前我们的水循环冷却器年销售量为1500台左右,在仪器行业同类产品中占据较大市场。而与国际知名品牌相比,我们在产品种类方面还有很大差距,一些大公司仅冷却器的年销售额就能达到5000万美金。我们希望逐步缩小差距,并拓展到有机化学、生物化学和半导体工业等领域。策略是开发范围更广的产品,比如超低温和高温的循环冷却产品等。 对新企业来说,生存,发展,快速成长是发展的三步曲。产品开发周期也需短期、中期和长期相结合,以市场需求为导向,以企业生存和发展为基点。LabTech的产品线分成样品前处理、分析仪器和实验室设备。你们刚才参观的研发部正在开发各种产品,高科技含量的项目开发周期比较长,国家十五攻关项目就属于此类。而像水循环冷却器这类的产品,随着用户要求的多样化,对技术指标和操作智能化的期望值也越来越高,这就要求我们不断改进,周期是很快的。任何产品要做好都需要创新型技术。我曾在ICP质谱方面拿过一些专利,ICP质谱科技含量很高,但市场不大,世界年销售量大约2亿美元左右,还比不上冷却器的销售量。那些国际大公司已经做得很好了,我们这样的新兴企业加入竞争,优势很小。 Instrument: LabTech除了自己生产产品外,在中国也代理一些其它品牌如Milestone的产品。有没有考虑过将代理产品在国内组装以降价,更有竞争力呢?胡克博士:我们在中国代理不少国际品牌,与包括Milestone在内的不少厂家有良好的合作关系。如果对方有这种国内组装的需求,我们会考虑合作,而本身目前不会考虑在国内生产同类产品,而是致力于自己的产品和配套产品的开发,例如:我们开发了电热消解仪与Milestone的微波消解仪配套使用,以加强竞争力。原则就是与所代理厂家合作共同发展。 Instrument: 能否介绍一下你们与地质科学研究院合作进行的国家科技十五攻关项目的进展情况?胡克博士:在地质科学研究院牵头的国家科技十五攻关项目中,我们很荣幸地投中了其中的一部分项目。现在这部分工作已经基本上完成,随时可以通过验收。在这个项目中,我们不仅严格掌控速度和质量,还特别注重研发管理模式和项目进程监控。专家组成员和项目管理方均对我们的速度和质量表示满意,同时希望能推广我们的项目管理监控经验。这个项目中几乎所有的核心技术都是我们自主研发和设计的, 我们申请了四个专利。研发的目的是将成果变成商业产品。此项目中的 GPC产品已经成功产业化,并已售出多套。 Instrument: LabTech从创办至今的短短几年间成长迅速,你们的成长之路尤其是走国际化道路的经验,对中国的其它仪器公司有许多借鉴意义, 能否谈谈LabTech对国际市场是如何布局和您在这方面的体会?胡克博士:我真正开始LabTech管理是在2003年非典后的7月份,至今正好三年时间。从市场布局上,LabTech设在美国Boston地区的公司总部兼管北美和南美市场;欧洲公司负责欧洲、非洲和中东市场;香港公司负责中国以外的亚太市场。LabTech从创办时就定位于做世界级产品和走国际化道路。应该说中国的仪器公司走向世界是必然趋势,科技部和商业部最近也在组织专家讨论这个问题。但产品要走向世界,不是一、两天就能实现的,需要走出去、高起点、多投入,投入主要在两方面:一是产品开发和质量控制的优化;二是世界范围的市场销售渠道的扩张。 LabTech在这些方面都很舍得投入,我们目前有4个海归、20多位博士、硕士,三分之一的人搞研发和产品设计。要进入国际市场需要用符合国际市场的材料和部件,有些部件需要全球采购。我们通过了ISO9001认证,主要产品拿到了CE证书。市场推广方面,我们今年先后参加了中东仪器展、美国Pittcon、慕尼黑仪器展和欧洲仪器展。LabTech进入国际市场,主要靠优良的产品质量,相对适宜的价格,以及大规模的国际市场推广。 Instrument: 您对国内外仪器生产流程和市场运作都有相当的了解,可否比较一下并对国内仪器厂商提出相应的建议?当前,很多国际仪器大公司在中国都加大了投入。您认为中国本土企业面临哪些挑战和机遇?胡克博士:这几年国内的仪器制造业发展很快,但不可否认,与国际知名仪器厂商相比还存在很多不足。生产方面:设计比较粗糙,质量不够稳定,不同批次之间的规范性得不到保障,综合质量管理方面的问题较多;售后服务方面:很多厂家还是缺乏服务意识,不能做到把用户的问题看作自己的问题。还有一个问题,中国人喜欢办小公司。如果将这些小型或中小型公司资源整合,实力就会大大增加,3-5年后中国的产品会在世界上唱上主角。 目前,许多世界级的大公司将生产线转移到中国,利用中国的人才资源和成本资源,加上产品质量的控制和全球化的销售渠道,取得了更大的竞争优势。这对于中国企业和像我们这样以中国为主要平台的仪器企业来说,是挑战也是机遇。我们在资金投入、传统技术和市场布局上都差得很远。然而由于大家都在中国生产,势必带动整个仪器行业的产品制造技术的提高。最重要的是,仪器的发展趋势是信息化、电子化和自动化,这些最新的东西我们未必就不如别人。 Instrument:能否简单地介绍一下LabTech今后几年的发展目标和规划?胡克博士:发展手段主要是前面已经谈到的三点:一是加大研发投入,提高创新能力;二是提高产品质量;三是继续加快国际化步伐。我们的目标就是要将LabTech做成一个国际化公司。最近我们与北京空港工业区签定了土地转让协议,这表明我们对在中国的发展前景是充满信心的。空港工业区扎根的都是国际大企业,如索尼、JVC、菲利普等。我们是很小的公司,但成长得很快、很健康。空港工业区很看重这点,也希望我们在这儿长得更大更强。 采访结束,胡克博士又向我们介绍,下午全公司还要召开质量控制会。质控会议一到两周举行一次,会上无论职务高低,都需畅言公司目前存在的问题和弊端。“好的地方我们已经听了很多了,更有价值的是指出不好的地方”胡克博士说。这也许是LabTech创立不久,发展如此迅猛的原因之一。LabTech相关信息请登陆本网链接http://labtech.instrument.com.cn 或公司网址http://www.labtechgroup.com/。采访编辑:廖庆玲
  • 荷兰原子分子所与赛默飞、Delmic共同推出皮秒时间分辨SEM
    p  strong仪器信息网讯/strong 6月18日,荷兰国家原子分子研究所 (AMOLF)发文称,该实验室与荷兰delmic公司、Thermo Fisher公司的仪器合作项目获得重大突破,研制的两款全新的超快显微镜可以在纳米尺度下拍摄光学图像,时间分辨率可低至1 ps。且其中一款电镜已经推向市场,首台于4月份出售。/pp  span style="color: rgb(255, 0, 0) "strong产学研结合获重大成果——一款已推向市场并售出/strong/span/pp  AMOLF实验室、荷兰delmic公司、Thermo Fisher公司,这三个合作伙伴于2016年成立了一个联合团队,旨在将扫描电子显微镜(SEM)和光收集和分析系统集成到一个新的显微镜中,电子束是脉冲的,并且以时间分辨的方式采集产生的光(阴极发光)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/9f4af84f-9aa2-4419-97d9-1f0e193e3eec.jpg" title="01.jpg"//pp  2018年5月22日,在三个合作伙伴项目会议期间,展示了两款全新超快SEM。 Thermo Fisher和Delmic已将其中的一款SEM推向市场,且第一台产品于2018年4月售出。据悉,全strong新的超快扫描电镜产品将在悉尼国际显微镜会议上展出(2018年9月9日至14日)。/strong/pp  span style="color: rgb(255, 0, 0) "strong第一款SEM——超快速beam-blanker/strong/span/pp  第一款超快速SEM由Thermo Fisher Quanta 650 FEG SEM、Delmic SPARC光采集和分析系统组成,在SEM电子柱上集成了超快静电束消除器,配置专用电子器件和软件,span style="font-size: 16px "使用专用电子器件和软件,系统可以输送短于30 ps(5 keV)的电子脉冲,同时利用单光子计数/相关光谱学来收集阴极发光的时间依赖性。/span/pp  该产品可提供阴极发光寿命和g(2)光子关联,这些数据则可以为研究半导体纳米结构和量子光学等提供关键信息。/pp  strongspan style="color: rgb(255, 0, 0) "第二款SEM——脉冲激光驱动的阴极/span/strong/pp  在第二款显微镜新品中,SEM电子阴极被250飞秒的紫外激光脉冲激发,产生超短电子脉冲。这使得能够在皮秒时间尺度上对光学现象进行空间成像。 此外,这款显微镜可支持超高速脉冲探针光谱,其中激光脉冲分为两部分:一部分激发样品,另一部分激发光电阴极,产生探测样品的电子脉冲。超高速脉冲探针阴极发光光谱与极高的空间分辨率结合,使其成为一种独特的仪器。/pp  span style="color: rgb(255, 0, 0) "strong该合作项目已经发表两篇论文:/strong/span/pp  a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.erbium.nl/wp-content/uploads/2018/05/Nanoscale-relative-emission-efficiency-mapping-using-CL-g2-imaging-Nano-Lett.pdf"span style="color: rgb(0, 176, 240) "Nanoscale relative emission efficiency mapping using CL g(2) imaging/span/a/pp  S. Meuret, T. Coenen, S. Woo, Y.-H. Ra, Z. Mi and A. Polman, Nano Lett. 18, 2288 (2018)/pp  a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.erbium.nl/wp-content/uploads/2018/05/Nanoscale-relative-emission-efficiency-mapping-using-CL-g2-imaging-Nano-Lett.pdf"span style="color: rgb(0, 176, 240) "Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells/span/a/pp  S. Meuret, T. Coenen, M. Lä tzel, S. Christiansen, S. Conesa Boj, and A. Polman, Phys. Rev. B 96, 035308 (2017)/pp  strong第三篇文献关于以上创新超快显微的技术特点介绍已提交,即将发表:/strong/pp  span style="color: rgb(0, 176, 240) "Complementary cathodoluminescence lifetime imaging configurations in scanning electron microscopy/span/ppspan style="color: rgb(0, 176, 240) " /spanS. Meuret, T. Coenen, M. Solà -Garcia, E. Kieft, H. Zeijlemaker, M.Latzel, S. Christiansen, S.Y. Woo, Y-H Ra, Z. Mi, A. Polman./pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/9d4d99b5-5d56-4bf8-a881-00f114cadd4a.jpg" title="0.jpg"//pp  span style="color: rgb(0, 176, 240) "联合团队成员合影,从左至右一次是:Erik Kieft (Thermo Fisher), Ernst Jan Vesseur (Thermo Fisher), Nico Clemens (Thermo Fisher), Sophie Meuret (AMOLF), Toon Coenen (Delmic/AMOLF), Albert Polman (AMOLF), Sander den Hoedt (Delmic), Andries Effting (Delmic) and Magda Sola Garcia (AMOLF)./span/p
  • 做“有态度、不模仿”的科学仪器“逐梦人”——访北京兰友科技有限公司创始人马放均
    从最初的技术研发人员、产品部长,到分析仪器头部企业市场总监、上市公司实验室事业部总经理,再到自主创业,带领初创团队一步步成长为国高新技术企业、北京市瞪羚企业、北京市专精特新企业;在科学仪器行业“摸爬滚打”20多年,至今仍然坚持在科学仪器创新之路上砥砺前行;在他的履历中,有很多亮眼的关键词:“国内首创”、“北京市科学技术奖”、“优秀共产党员”……他就是北京兰友科技有限公司创始人马放均,一个从“理工男”起步,经历了多角色转变,最终成功转型的科学仪器“逐梦人”。日前,仪器信息网特别邀请北京兰友科技有限公司创始人马放均,讲述其科学仪器从业20多年的故事,同时分享并探讨国产科学仪器的“破局”之路。北京兰友科技有限公司创始人 马放均马放均于1999年毕业后留京,入职北京市仪器仪表工业局(现京仪集团),从事光学仪器研制设计工作;2001年4月入职北京普析通用仪器有限公司,从研发部技术工程师逐步成长为产品部部长,负责多项国家级和北京市级科研项目;2010年12月入职聚光科技(杭州)股份有限公司,牵头组建实验室科学仪器事业部,担任总裁助理兼实验室事业部总经理;2017年2月创立北京兰友科技有限公司,主要通过全自动设备构建智能实验室,聚焦土壤环境监测领域,解放人力,提升效能。从“理工男”到“创始人”,他用努力诠释每一个角色自1999年毕业到2017年创立北京兰友科技有限公司并掌舵至今,这20多年间,马放均历经多个角色的转换和进阶,认真对待每一份工作,把握每一个成长机会,在所从事的科学仪器领域中砥砺深耕,扎实迈出前进的每一步。曾经供职过的每一个企业,每一个角色都给予了他成长的力量。北京市光学仪器厂作为老牌分析仪器制造厂商,拥有非常完整的质量控制体系,培养了他严谨认真的工作态度;在普析通用工作的10年,他切身体会到了中国仪器的快速发展,期间他主导或参与了多款仪器的研发设计,打造出多款“金牛产品”,专业技能不断提升;加入聚光科技后,他成为聚光科技实验室事业部的创建者、开拓者,制战略、搭体系、建流程、筹业务、定绩效、招人员,完成了业务团队从0到1的组建过程,个人角色也成功转换到市场营销端。扎实的专业技术能力,精准的市场敏感度,真诚务实的营销服务理念,都源于他这20多年来在每一个平台上积累的宝贵财富。在过往的经历中,马放均取得了许多让他自豪的成绩。他说:“中国首款横向加热原子吸收的核心部件原子化器改进设计工作,这款产品在市场上畅销了20年,现在仍然是在售的金牛型产品,市场份额遥遥领先!除此之外,国家科技部十五攻关项目中,我设计的便携式光谱仪先后获得首届设计红星奖、2005年BCEIA金奖;我个人也因这个产品获得北京市科学技术进步三等奖、平谷区科学技术进步一等奖、平谷十大杰出青年等多个重量级荣誉称号;我推动的科技部《十三五重大科技攻关专项ICP-MS研发及应用示范》项目历时7-8年,该产品目前已成长为国内市场占有率头部地位的国产ICP-MS……”对于这些成果,马放均说,他不仅感谢曾经供职的单位给予他的发展机会,更感谢众多领路人一路栽培。他曾师从著名光学专家骆东淼教授,向原子光谱专家侯春芳、何华昆学习,曾亲自去澳洲拜会Gery先生;向农业仪器专家蒋世强等知名专家虚心请教,受到了仪器泰斗朱良漪先生亲自指导等,令其获益匪浅。 马放均与老师们的合影有人说选择大于努力,但对马放均而言,他不仅把握住了每一次选择的机会,更是付出了超乎常人的努力。做产品经理时他基本跑遍了全国绝大部分的省(市、区)环保厅及环境检测机构,深入一线进行实地调研,充分全面了解用户的需求和痛点;做市场营销和管理工作时,他阅读了上百本关于市场、营销业务定位、团队建设以及企业管理类的书籍;从事企业并购工作时,他一年考察了200多家并购对象……这些脚印积累的过程,都是他自身成长的见证。在选择中寻找方向,在挑战中历练自我,对这20多年的奋力打拼,马放均感慨万千。学机械出身的他,自学几何光学、环境工程……在非专业领域成功实现从外行到内行、专家的转变。多学科的交叉以及多角色的转变,练就了他技术研发、管理和决策思维,这其中,他认为最难的是从研发到业务的转变。“这是两种思维模式:一个是对物,一个是对人;前者更需要客观,后者则更需要主观。这其中,作为管理者最难的就是想象力的构建,构建之后要把理想普及给团队的每一个人,再去执行。”决定自主创业,他要做中国人原始创新的好产品!心怀梦想,归零再出发。在不断实现自我价值的高速奔跑途中,马放均时常保持着慢下来,不断询问、审视自己的内心的习惯:“是按照已经规划清楚的道路走下去,还是把履历归零,重新开始,再次超越自己?” 他开玩笑道:“读万卷书不如行万里路,行万里路不如名师指路,名师指路不如把自己逼上绝路。”最终,他选择自主创业,去做与众不同的,由中国人自己定义、筹划、组织技术要素并实现商业化的,以及在这个行业里能长期留下来的产品!源创新——定义并创建仪器新品类。当然,梦想要建立在实践的基础上,马放均作为梦想挑战者,创业之初经过了多方调研。通过大量实地探访和文献查阅,他了解到实验室70%的时间、60%的成本以及80%以上的误差都源于样品前处理,其中,固体样品的前处理最繁琐,而土壤又是国家监测需求最大的固体样品品类之一,马放均实地走访多个环境监测单位和第三方检测机构后发现,土壤样品制备这个环节居然还在用手工方法,制样室尘土飞扬,噪声嘈杂,制样标准难执行,交叉污染隐患大,没有专门为土壤样品设计的全自动制样设备,制样人员每天做重复性的劳动苦不堪言等等,这些都是现行的手工制样方法存在的问题。能否通过自动化的方法替代人工,提高制样的效率和质量,把人从重复性的劳动中解放出来,去从事更有创造性的工作?这是一个难题,但更是机会!因此他锁定目标,决定选择土壤自动化制备领域进行深耕。经过3年多的研发和应用实践,兰友科技全自动土壤样品制备系统于2019年正式商业化发布,引起业界极大的关注,在中国科学仪器领域开创了一个全新的品类。据马放均介绍:“这套全自动制样系统,不仅模拟人手实现了土壤样品制备全流程中的十多个步骤的自动化集成,更是建立了可追溯的质量控制体系,解决了传统人工制样方法只能靠摄像头记录的质控问题;与传统设备相比,10天做的事,现在可以两个多小时做完;10个人干的事,现在一个人可以干完;原来80%以上的误差,现在降低了11%;原来只能靠人手工记录数据,摄像头辅助质控,现在可以一键导出全部原始数据,实现全流程可追溯。”据悉,该系统已商业化应用装备到全国20多个省市的环境监测、地矿、土肥等机构,成功入选“北京市/浙江省首台(套)认定装备名单”;此外,兰友科技还负责牵头,联合多家应用单位共同起草制定了《全自动土壤样品制备设备技术规范及评价方法》团体标准,这是国内首个全自动土壤制样相关的标准。马放均表示,“兰友科技的使命就是解放实验室工作者,让客户工作得更有尊严,更有创造力。该系统可以保证不同的人在不同的时间段使用设备时,制得的样品都是一模一样的,初步实现了标准化,可谓是全自动土壤制样技术发展的里程碑。”坚持差异化战略,聚焦客户“痛点”,做出感动人心的产品。在全自动土壤样品制备方面,兰友科技已陆续推出多款特色功能的产品,满足不同用户和不同应用场景的需求。比如针对土壤三普的粗磨需求,兰友科技的FASP-CG型自动粗磨专用制备仪能在10分钟内完成一个3公斤土壤干样的自动粗磨、筛分、称重、装样和清洁,制备出来的样品形似板蓝根颗粒,制样效率比人工提高数倍,且不会研磨过细,保留了10目样品应有的颗粒度,确保阳离子交换、速效养分等指标检测结果的真实性;针对第三方检测用户,兰友科技推出占地面积更小巧,价格更有竞争优势的FASP-01型全自动制样系统,可有效提升第三方检测机构的制样能力,帮助企业规避因制样违规被检查或者惩罚的风险,并且帮助企业提升竞争优势,以更具技术含量的制样能力,避免检测服务的低价恶性竞争。此外,兰友科技还推出原创性倾斜式蜂窝结构智能化土壤样品保存库,为用户单位提供了全新的解决方案,空间利用率更高,每个样品独立存储,展示性更佳,可配置机械臂对样品瓶进行自动存取,通过样品瓶的芯片,实现基于智能物联技术的智能化快速存取管理系统……兰友科技的每一款产品都是在对用户的实际痛点和需求进行准确感知的基础上开发出来的,让用户参与到产品的设计和研发改进工作中来,所以每款产品都极具特色,承载着用户的殷切期望,一经推出就受到用户的广泛好评。“我认为需要用极致的思维模式去解决一个个技术问题和应用问题,形成行业极致的力量。”有态度、不模仿,专注于做差异化创新,做别人做不了的事,兰友科技自创始以来一直坚持这样的初心,不急不躁地打磨产品。马放均表示,兰友科技下一步还将打造千万级的土壤制样流水线,预估一天完成样品制备量1000个以上,不断向底泥沉积物,中药、粮食、饲料、水泥制备领域拓展,同时发展制备检测一体化产品。坚持走“专精特新”路线,国产仪器才能“出奇制胜”这几年内外部大环境的风云变化,使得国产仪器迎来了春天,但是面对“低价恶性竞争”、“模仿抄袭”等等对国产科学仪器固有的偏见,唯有走“专精特新”的发展路线,才能突出重围。马放均带领的兰友科技研发和市场营销团队,从立项调研选择研发方向和技术路线开始,就始终坚持着这一原则,他对兰友科技的“专精特新”进行了详细的解读:“专业化:作为复杂样品分析过程中至关重要的步骤,样品前处理技术的进步对分析化学的发展具有重要意义。针对样品的不同特点开发出专用的前处理设备,这个需求极其迫切。拿土壤样品制备来说,土壤样品在制备过程中要求‘逐级研磨,不可一次性研磨过细’,‘与土壤样品直接接触的部件不得含有待测金属元素’、‘研磨和干燥温度不超过35±5℃’等等,从材质的选择、粒径的控制到研磨的温度,都是现在市面上常见的通用型研磨仪/球磨机无法满足的;这就需要我们针对土壤样品这些特殊需求来专业定制自动化设备,这是用户提出的明确需求,是我们研发的明确方向,只有满足这些要求,我们才能称得上是专业化的设备。经过多年的努力,兰友科技的专业经得起市场的验证。”“精细化:说到土壤样品制备,很多客户一开始比较直观地认为就是个‘磨土’的设备,但我们在仔细研读了所有与土壤样品制备相关的规范要求和专业书籍后,发现看似简单的磨土,实际上大有玄机。比如为什么样品粗磨不能用木槌使劲敲打,只能慢慢撵压?为什么土壤样品不能一次性用球磨机磨细?为什么土壤样品干燥和研磨要有严格的温度控制?这些细节问题必须要搞清楚之后,才能想办法在设备上逐一实现,这就是精细化研发。有时候用户可能都没有关注这些细节,但是作为仪器制造商,有义务帮助用户更好地符合规范要求,规避违规操作的风险。”“特色化:对于科学仪器制造企业来说,宇宙的尽头是服务,兰友科技在特色化服务这部分下足了功夫,‘客户第一’是我们的价值观,我们兰友人也一直是这么践行的。FASP设备体积大,质量大,为了确保设备运输安全,避免因转运给设备带来伤害,我们售后运输全部采用专车转运,从杭州到新疆乌鲁木齐,仅用了48小时; 我们设计了一套易拆卸可回收的环保包装箱,两名安装人员在30分钟内就能完成主机和辅机的快速包装,到达目的地后,仅使用扳手即可快速完成拆卸,拆卸下来的木板和配件运送回公司,用于下一个发货项目。客户既无需等待外包公司人员上门拆卸安装,也无处理包装木板垃圾的烦恼,还减少了不必要的木板材料浪费。此外,在噪声、除尘等细节方面,我们也均有相应的解决方案,希望能全面提升用户的使用体验,这些都是特色化服务最好的体现。”“新颖化:‘创新’是兰友科技的发展过程中的关键词。全自动土壤样品制备系统就属于正向开发型新产品,在科学仪器目录里创建了一个全新的品类,属于颠覆性创新,在此之前国内外从未出现过同类设备。其入围‘022年北京市专精特新产品’、荣获BCEIA金奖及检验检测学会的专家鉴定证书、通过北京市/浙江省首台套装备认定等等都是兰友科技创新的最好证明。”创业至今,发布全国首个自动制样标准、北京市专精特新企业,获得了BCEIA金奖、工信部中国优秀产品设计奖、“朱良漪创新成果奖”等社会荣誉。检测自动化、智能化是趋势,更是未来随着应用需求的提升,样品前处理的技术和市场发展也愈发引起大家的关注。马放均预计在未来的3~5年里,样品的制备前处理会被高度重视,至少会有10-20亿的市场规模。特别是当前,随着土壤三普工作的全面开展,土壤样品前处理的市场需求非常明显且强劲。不过,由于多种原因,目前大多检测实验室土壤样品制备仍以手工为主,样品制备的自动化还需要更多时间去培育并证明其市场价值。不仅是样品制备,一直以来,科学仪器自动化、智能化也是当前行业发展的热点和重点。“一定要通过数据让仪器变聪明,通过数据驯化我们涉及到的全自动化仪器或者人工智能化仪器,让它们具备一定的自我学习能力,这就是智能化的过程,也是未来的创新。”不过,马放均认为我国科学仪器的自动化还处于萌芽状态,现阶段需要注重于基础学科、基本理论、基本方法、基本手段,实现标准化后再去做信息化、智能化,这需要长时间的努力才能去实现。基于马放均在国产科学仪器行业多年的经历,采访过程中,我们也探讨了国产仪器当前的机遇与挑战。马放均说:“经历了从无到有、由少到多的阶段,国产仪器现在进入了从模仿到创新的时期。我认为国产仪器现在最大的机遇是正向创新,需要更多的企业家重视正向创新工作者,并为其提供支撑,解决他们的困难。”随后,马放均还以兰友科技的“全自动土壤样品制备系统”为例谈了国产仪器在创新方向选择方面的心得,他说:“国产仪器在创新方向选择上首先要着眼于客户真正的痛点,才能摆脱桎梏、出奇制胜;其次要坚持做正向创新,不做重复性的东西。要用变革性的技术,革命性的产品来革新整个行业的作业状态。”采访最后,马放均呼吁:“我希望国产仪器能杜绝大量的模仿、抄袭以及过度的商业化,特别是过度商业化可能会使仪器创业者失去工匠精神,偏离于分析工作者本身的实用价值,也会伤害到科学仪器行业的本身。”后记:在采访过程中,马放均还给我们分享了他职业生涯中发生的一些“有趣又难忘”、“充满累与笑”的奋斗故事,虽然已是二十年前的事,但仍非常值得当今职场人士学习和借鉴。详情请见:采访番外篇:马放均职业生涯中难忘的“那些事儿”
  • 大科学工程“拉索”首个探测器阵列建成
    新年伊始,大科学工程高海拔宇宙线观测站“拉索”(LHAASO)传来喜讯。5日,记者从中国科学院高能物理研究所获悉,拉索水切伦科夫探测器阵列(WCDA)三号水池注水达到正常工作水位,这标志着WCDA探测器全部建成,全阵列投入科学运行。这是拉索四种类型的探测器阵列中最早完成的一个阵列。WCDA是拉索探测器阵列的重要组成部分之一,探测器总面积为78000平方米,由三个水池组成,内有3120个探测器单元,6240个光敏探头。WCDA水池采用了国内首创的“薄壁混凝土现浇边墙+软基土工膜防渗系统+大跨度轻钢屋面结构”设计,在没有国标可参考的情况下,满足了探测器对避光、防冻、防锈蚀和水位保持等的超高指标要求。“根据国际前沿发展动态,项目组在WCDA建设过程中进行了方案优化,在二号和三号水池中采用了我国自主研发的、具有国际上最大灵敏面积的新一代20寸光电倍增管,降低了探测器阈能,大幅增强了探测器在50-500 GeV能段的伽马射线探测能力。”拉索项目首席科学家、中科院高能物理所研究员曹臻说。曹臻表示,WCDA的有效探测面积是国际上最大同类型实验HAWC的4倍,能够对银河系内外的伽马暴、快速射电暴、引力波电磁对应体等具备瞬变特性的高能辐射信号进行探测,具备5-10年的国际领先优势,预期将获得一系列非常重要的观测与研究成果。拉索是国家重大科技基础设施项目,位于四川省稻城县海子山,由电磁粒子探测器阵列、缪子探测器阵列、水切伦科夫探测器阵列、广角切伦科夫望远镜阵列组成。
  • 方法跟着问题走 用侦探的思维做科研 ——访北京大学医学部精准医疗多组学研究中心主任黄超兰
    p style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "有这么一位有个性的科学家,本科毕业她在高中母校当教师,过着稳定又安逸的生活。4年之后的一天,她突然“开窍”,毅然放弃了高薪安稳的工作,重新投入科研的海洋。“港大化学初相见,一遇质谱误终身”,自此找到了一生的“情人”,专攻质谱技术,爱得难舍难分。她早早意识到质谱在生物大分子研究中的潜力,从香港到圣迭戈,从质谱机理到蛋白质组学,她师从蛋白质组学界的泰斗John Yates,从此便在由质谱技术搭建的世界里,游刃有余地进行着科研和方法开发。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202008/uepic/53c0ed6d-b03f-4ae2-a402-353dc416522c.jpg" title="IMG_7388.JPG" alt="IMG_7388.JPG" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="text-align: center text-indent: 2em "黄超兰在实验室/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "她就是黄超兰,生性具有强烈的好奇心和求知欲,她喜欢挑战、爱飙车、染艳紫和亮绿的头发、酷爱推理小说;也爱钻研科研,她沉迷质谱技术本身,也擅长利用质谱技术开发新方法解决生物医学研究的难题。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2013年,放弃国外的优越条件,她以一颗热忱的赤子之心学成归来,投身于国家蛋白质科学中心的建设与发展。如今她更是担任北京大学医学部精准医疗多组学研究中心主任,希望将质谱技术真正应用到临床上,服务精准医疗。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "仪器信息网近日采访了黄超兰教授,与她进行了深入的交谈,探寻她开挂般人生与科研背后的故事。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong因为热爱,可以不断从0到1/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2013年回国前,黄超兰在美国斯克利普斯研究所(Scripps Research Institute)任长聘资深科学家,在一次回国参加学术论坛的机会中,了解到国家将投资建设蛋白质科学中心。“会上有人咨询我建设中心需要采购的质谱仪器,希望我帮忙审核采购内容,当时我便按照中心想要做的事情,列了一个该买的仪器清单,也许因为我是客观的专家,局外人,我的建议被采纳了。”黄超兰说道,“回到美国后我收到邀请,科学院希望我能回国帮助建设蛋白质中心。我在美国时就从零开始建了Scripps的proteomics center (CPP),也参与Yeast Resources Center(YRC)多年,非常有建设多学科交叉合作中心的经验,我不否认自己是最合适的人选。”经过一番思考黄超兰做出了选择,她决定带着自己刚出生的孩子一起投身到祖国的科学事业中。黄超兰回忆道:“当时从毛坯房开始,设计布局电路,气路,空调,装修等,由中心非常有经验的”老李老师“执行,我手把手地建立了国家蛋白质科学中心(上海)的质谱系统,就和养育我的孩子一样倾注了不少心血。”2014年入驻,2015年4月就完成了国家发改委的验收。在黄超兰的主持下,质谱系统是当时国内最好的,也是国际领先的技术平台,吸引了众多的国内外学者前来合作。在15-17两年间中心质谱系统发表了26篇高水平的文章,其中两篇是和施一公教授合作的影响重大的剪接体结构的Science文章,大大地提高了我国生命科学基础研究的水平。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "中心进入常规平稳的运行后,黄超兰便马不停蹄地朝着下一个“零关卡”进发。“一直以来我的合作者大都是基础科研的科学家,一次机缘巧合,我接触到一个乙肝疾病相关的课题,也使我坚定了质谱技术应该向临床靠近的想法。strong这两个不同领域之间存在很大的‘鸿沟’,需要有像我这样的‘交叉人’去搭建桥梁/strong,于是,2017年我来到北京,又一次从零开始,建设精准医疗多组学研究中心。”黄超兰笑说自己和Elon Musk的性格很像,都是不达目的不罢休。“即使中途有很多障碍和阻力,能解决的解决,不能解决的就想别的办法,这条路走不通了,我会选择另一条路,哪怕是从零开始自己修一条路,反正无论如何都要朝着最初的目标走。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "说到精准医疗多组学研究中心的发展目标,黄超兰指着墙上的一张“Med Map”对笔者说到:“ 我在摸索一种结合临床和基础科研的新模式或者新路径,希望借助乙肝的研究进一步演示如何能有效地找到真正的生物标志物。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202008/uepic/7dd053b8-fcfd-423b-aadf-3a10af1ef458.jpg" title="medmap.jpg" alt="medmap.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "span style="text-align: center text-indent: 2em "北京大学医学部精准医疗多组学研究中心张贴的“Med Map”/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "黄超兰进一步举例说到,传统的疾病研究,是科学家在实验室用细胞或动物做机制,探究生物学本身的奥秘,虽发表了无数成果,但这对于临床医生治疗病人,还有很远的路要走,所以bench to bed之间有很宽广的距离。strong“因此,精准医学多组学研究中心的任务就是在实践另一套思路,即一开始就直接从研究对像,也就是人的样品入手。所以我们需要有最specific的临床问题,尽可能地构建相应准确纯粹的疾病队列等,我们从人体样品中找到标志物后,再回到动物、细胞上去验证,应该会更加有效和准确。”/strong黄超兰补充到。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "精准医疗多组学研究中心正式成立于2018年, 这期间黄超兰也一直在为实现这一目标而努力,她带领团队与不同领域的学者开展交叉研究,探索着质谱技术的无限潜力。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong10年磨一剑 探求科研真相/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "近日,黄超兰团队与中国科学院上海生化与细胞所许琛琦、美国加州大学圣地亚哥分校惠恩夫三方联手在国际学术期刊《细胞》上发表了重磅研究成果。该研究通过黄超兰团队开发的基于质谱的绝对定量蛋白质组新方法,揭示了T细胞受体-共受体(TCR-CD3)复合物络氨酸在不同抗原刺激下的动态磷酸化修饰全貌,发现了一条亚基CD3ε的单磷酸化新功能,增加了人们对CD3亚基功能多样性的理解。该研究成果在血液瘤和实体瘤治疗中展现出良好应用前景,也为CAR-T细胞疗法的发展提供了新的思路和指导。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "说到此次合作的契机,黄超兰娓娓道来,“ T细胞是免疫系统里的‘猎人’,它依靠T细胞受体(TCR)识别肿瘤抗原,杀伤肿瘤细胞。而TCR下面有很多条亚基,不同的抗原进来,人体就会‘招募’不同的蛋白实现不同的抵抗功能,那么招募谁关键就在于这几条亚基的络氨酸的磷酸化状况。当时许老师用讲故事的方式吸引了我,希望知道不同的抗原刺激下的TCR究竟是如何被磷酸化,谁多谁少谁快谁慢,这需要进行绝对定量检测。当时我首先被这个有趣的科研问题吸引了,于是便有了这次合作。”/pp style="text-align: justify text-indent: 2em line-height: 1.75em "TCR中有20个磷酸化位点,分为12种不同类型,等于有2sup12/sup种可能,要实现对全部磷酸化位点的同时定量分析,绝非易事。因此,为了直观比较不同TCR刺激下的磷酸化模式,精确绘制出TCR所有酪氨酸磷酸化的动态过程,黄超兰团队开发了一种新颖的绝对定量方法(Targeted-IP-Multiplex-Light-Absolute-Quantitative Mass Spectrometry,TIMLAQ-MS)。“该方法区别于目前报道的蛋白组绝对定量手段,不需要加入同位素重标的合成肽段,而是巧妙地利用串联质量标签(TMT),设计将6个标准样品和4个分析样品混合起来作为内标。标准样品为不同浓度梯度的合成非重标磷酸化/非磷酸化CD3肽和从未经抗原刺激的T细胞中通过IgG抗体免疫沉淀下来的背景蛋白的混合物。用数据依赖采集结合平行反应监测的方式获得抗原刺激下,TCR-CD3免疫沉淀复合物中不同酪氨酸位点的磷酸化/非磷酸化在不同时间点的定量结果。”span style="color: rgb(0, 0, 0) "TIMLAQ成功绕过了以前的定量方法中通常使用的同位素重标记肽,既节约了成本,又有效降低了方法的复杂性和数据采集误差,进一步提高了定量准确性,最终可完全实现在一次测量中对不同时间点全部ITAM磷酸化修饰的绝对定量,描绘TCR-CD3复合物的酪氨酸动态磷酸化修饰全貌。(点击了解发表成果的详细信息:/spana href="https://www.instrument.com.cn/news/20200730/555291.shtml" target="_blank"span style="color: rgb(0, 112, 192) "蛋白质组学Cell重磅新成果:黄超兰团队利用新型绝对定量质谱法揭示CD3ε的多重信号转导功能/span/aspan style="text-indent: 2em ")/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "而这一重磅成果的研究过程也如“过山车”般经历了很多,“这个研究进行了近10年,当时我们开发的方法在经过验证后能够很细致地看到一个新颖的单磷酸化的结果,于是许老师便继续深挖它的生物学功能,一次机缘巧合他意识到该结果和其课题组一个CAR-T的研究似乎有关联性,于是便联合了加州大学圣地亚哥分校惠恩夫老师团队,开始进一步研究单磷酸化在CAR-T中的意义。课题一步步深入,从许老师的一个博士生到第二个直博7年的博士生,从上海到北京再到美国,虽然这个源于偶然的成果偏离了我们最初想了解的问题,但科研就是这样,你永远预测不到未来的成果,所以科学家需要耐得住寂寞,不能浮躁,当新的‘线索’出现时,就牢牢把握住,并想尽办法查出‘真相’。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202008/uepic/f76d7af7-a877-4e7c-9187-4363261d2ee4.jpg" title="IMG_7405.JPG" alt="IMG_7405.JPG" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "span style="text-align: center text-indent: 2em "合影(中为黄超兰教授)/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "谈到合作,黄超兰也表达了她的想法,成功的跨界合作需要志同道合的伙伴,更需要互相信任,大家都心无杂念地朝着一个目标使劲。这次的合作就是我们三方鼎力共同努力的结果,缺一不可。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "采访的最后,笔者询问黄超兰针对质谱方法开发研究的体会,她说到,“我不是那种先弄个方法出来,然后找别人去用的人,而是‘以问题来驱动方法开发’。质谱领域还有很多方法需要被开发,我就像一个接诊‘疑难杂症’的医生,做自己的课题就当在自我诊断;而合作课题,就像是其他科学家来找我‘看病’,我也能依据他的‘病症’来转变自己的思维。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "黄超兰再做了这样一个隐喻:“假如某天有人为了能被展示(等同于能被发表)来找我说要做一辆方形轮子的车,即使会得奖我也不会花时间去造一个新奇形状的轮子。因为我知道,最终大家也许都会意识到,车的基本功能是动,而不是‘被展示’。正如我的创意和方法开发,一定会和解决我认为有价值和意义的问题所挂钩。而这个‘问题’,可以是一个和实际应用相关的,也可以是生物学某个基础的科学问题。”/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "br//span/pp style="text-align: right text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "采访撰稿编辑:万鑫/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "br//span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "点击了解更多:/spana href="https://www.instrument.com.cn/news/20161013/203518.shtml" target="_blank"span style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) "爱飙车的美女科学家:像玩车一样玩质谱!/span/a/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="font-family: 楷体, 楷体_GB2312, SimKai "/span/p
  • 金索坤与您相约2018广州国际分析测试展览会
    CHINA LAB 2018 广州国际分析测试及实验室设备展览会暨技术研讨会将于2018年3月28日-3月30日在广州保利世贸展览馆盛大开幕。该展会服务于实验室技术和建设的完整价值链,通过展览会及论坛等形式为实验室领域专业人士提供宣传、贸易、交流、学习的互动平台。作为市面上唯一一家只专注原子荧光光度计的研发和生产的高新技术企业,北京金索坤应邀参展。届时,金索坤将携新品SK-乐析-LC液相色谱原子荧光联用仪参与盛会。欢迎各位朋友来到金索坤的展位6D62,共同交流探讨原子荧光技术。 2017年展会金索坤展位前的精彩瞬间在“十三五”期间我国首次将食品安全战略提到国家级战略,进而在“两会”期间,各地代表也是纷纷发言,为我国的食品安全问题献计献策。金索坤公司作为市面上唯一一家只专注原子荧光光谱仪的研发以及生产的高新技术企业是时刻关注着我国食品安全问题,在此次的展会上,金索坤公司展出的展品SK-乐析-LC液相色谱原子荧光联用仪(原子荧光形态分析仪)正是应对食品、药品、化妆品等检测任务量大,对仪器稳定性要求高而设计开发的仪器。这款仪器在单独作为原子荧光光度计使用时沿袭了金索坤产品所特有的检测速度快,技术指标好,安装省事维护省心等优点。而SK-乐析-LC作为形态分析仪时,更是有着它得天独厚的优势。SK-乐析-LC进行形态分析时的特点l 特有的连续流动进样技术(专利),可与液相色谱进行无缝对接,实现对柱后流出液实时检测,连续采集数据,提高测试效率。l 特有的多功能反应模块(专利)与全新联用接口技术结合,可与各型高效液相色谱连接,减小路径死体积,有效降低了噪声,减少峰展宽。l 特有的集扩式传输室(专利)配合高度集成的多功能反应模块精简了仪器结构,缩短了传输路径,有效降低了记忆效应,测汞更佳。l 多功能数据接口,模拟信号/数字信号数据输出,可连接多种色谱工作站。l 进样自动触发,工作站自动采集数据,谱图记录完整,确保出峰时间一致。金索坤形态对接单元特色l 可与金索坤任意一款原子荧光光谱仪和任何一款高效液相泵进行无缝对接,组合成原子荧光形态分析仪。l 采用石英毛细管与PEEK管融合连接技术,消除死体积,减少峰展宽;可抗紫外,耐腐蚀,耐老化。l 具有消解功率及时间可调功能(专利),增强了消解能力。l 采用无光泄露冷却式技术,避免了紫外光对人体产生伤害,同时消除了因热量产生气阻带来的峰型展宽现象。随着人们对食品安全关注程度的不断提高,液相色谱原子荧光联用仪在食品检测方面发挥的作用也越来越大。金索坤公司作为我国原子荧光技术的发源地和原子荧光行业的领跑者诚邀各位分析界的朋友前来金索坤展位交流原子荧光技术。展位号:6D62时 间:2018.3.28-2017.3.30地 点:广州保利世贸展览馆 金索坤SK-乐析-LC液相色谱原子荧光联用仪
  • 北京易科泰热烈祝贺中国农科院资划所文章在Molecular Plant发表
    近日,中国农业科学院农业资源与区划研究所和美国普渡大学植物生物学中心植物病理学系的共同研究“水杨酸信号传导与生物合成在植物中的起源与进化”在Molecular Plant上发表,北京易科泰实验室作为本文叶绿素荧光研究可行性实验支持者,分享这一喜悦,并在此表示诚挚祝贺!文章信息:Jia X., Wang L., Zhao H., Zhang Y., Chen Z., Xu L., and Yi K. (2023). The origin and evolution of salicylic acid signaling and biosynthesis in plants. Mol. Plant. doi: https://doi.org/10.1016/j.molp.2022.12.002.本研究对植物中的SA(水杨酸)信号传导和生物合成路径提供了重要见解:SA广泛存在于包括绿藻、链球藻在内的绿色植物中;其核心受体蛋白NPR(致病相关蛋白的非表达)起源于陆地植物MRCA(最近共同祖先),并于种子植物开始分化,以建立复杂的胁迫响应机制;NPR的蛋白伙伴TGA(SA信号传导的关键转录因子)则起源于链球菌MRCA,早于NPR;而NPR-TGA为核心的SA信号传导模式出现于陆地植物,晚于SA的出现。此外,SA的两个合成路径:ICS-based生物合成路径最早出现于MRCA陆地植物;β-oxidation-dependent生物合成路径起源于绿色植物MRCA。见下图(图1.)。结合上述结论,以及本研究实验结果---在高光胁迫下,植物中的SA水平显著增高,认为:SA广泛存在于绿色植物谱系中,其合成路径、NPR种类分化和NPR-TGA机制的演化,对植物对错综复杂的陆地逆境适应机制、特别是从深水极暗的光线适应浅水较明亮光线和陆地强光非常关键。因此选取地钱(苔藓植物门)、莱茵衣藻(绿藻门)、水稻(单子叶植物纲)、拟南芥(双子叶植物纲),应用封闭式叶绿素荧光成像(Closed FluorCam FC 800-C)研究它们在高光胁迫下叶绿素荧光响应,以及SA对高光胁迫响应的缓解,从而为该假设提供了证据。如下图(图2)所示。
  • 维萨拉支持索邦大学开展农药相关环境研究
    自2016年以来,巴黎索邦大学生态与环境科学研究所(IEES)一直使用维萨拉连续监测系统实时记录数据,控制昆虫繁殖实验箱和实验的温度与湿度。该研究所致力于为遭受破坏的环境恢复、生物资源和生态系统服务的生态可持续管理以及适应全球变化开发制定创新战略和工具。温度和湿度:影响昆虫生理习性的参数昆虫是变温生物,这意味着它们的生理习性和发育取决于外部温度,不能自然调节自身热量。湿度对昆虫的影响很大,必须要接近其自然环境水平才能避免应激。许多学术研究实验室正在研究了解气候变化对于生物体的影响,特别是对环境变化敏感的生物体的影响。温湿度监测能力是这项研究的关键。巴黎的生态与环境科学研究所设立了一项旨在研究温度变化对昆虫生理习性和发育影响的研究项目。该项研究对于确保杀虫剂的有效使用以及避免昆虫产生抗药性至关重要。在物种的最优生存温度附近创建了不同温度梯度的实验环境,但需要确保试验箱内的温度保持恒定(无论昆虫在哪里)。在整个实验过程中,湿度也必须保持在70%。这些实验要求使用能够在相对较长时间内(数周,包括周末)连续记录温度和湿度数据的设备进行高精度测量。除监测温度和湿度外,如果参数出现任何异常或变化,还需要能够通知研究人员。在这一背景下,巴黎索邦大学生态与环境科学研究所决定升级监测设备,并选择维萨拉viewLinc连续监测系统满足相关需求。该系统包括软件、数据记录仪和网络连接设备,安装简便;并且随系统提供存储容量和使用电池供电的数据记录仪。生态生理研究实验室的传感器精度我们选择该设备的一个主要原因是传感器的质量和准确性。每个传感器都有独立的校准证书,并且维萨拉还会帮助用户在现场设置和配置系统。传感器和记录器可以轻松互换和移动,方便在试验箱或安装所在的实验室内对这两个参数进行测量。这意味着我们十五个传感器和记录器的布置非常灵活,并且可以在一个或多个繁殖试验箱或一个或多个实验室之间分布安装。 —— 巴黎索邦大学生态与环境科学研究所讲师David Siaussat传感器所采用的技术能够在高湿度环境(如繁殖试验箱)正常运行。使用一台计算机充当viewLinc的服务器,允许用户通过Internet访问和分析数据。数据记录仪通过以太网连接将信息发送至viewLinc。数据记录仪的大容量内存可以保障数据在网络发生中断时不会丢失。网络恢复后,viewLinc会自动重新连接到数据记录仪,无需用户干预。viewLinc:易于使用且可自定义易于使用的软件对于确保所有员工能够有效使用该系统至关重要。维萨拉通过培训用户以及提供售后服务解决相关问题。这样不仅简化了安装过程,并且让配置数据记录仪、设立条件阈值以及设置发送给实验室内外指定工作人员的多级报警和预警提醒更加轻松。该软件还可导出用于进一步分析的报告。受控实验获得保障借助维萨拉的设备,我们能够获得15个繁殖试验箱的完整、详细测量结果。由于实验期间未出现任何异常,昆虫在不同温度下的所有生理习性和发育研究数据都能够与实验温度和湿度记录进行比较和验证。最后,预警系统让我们能够在试验箱所在区域发生可能影响设备运行的断电或空调故障时迅速采取应对措施。 —— 巴黎索邦大学生态与环境科学研究所讲师David Siaussat❖ viewLinc 连续监测系统维萨拉连续监测系统提供:• viewLinc 软件,用于对温度、湿度和其他参数进行实时监测和报警• 通过屏幕上警报、电子邮件、短信、警报塔灯(关联现有警报服务)和语音通话来发送警报• 历史数据和警报记录自动保存到 viewLinc 的可靠服务器并通过电子邮件发送• 轻松连接数据记录仪 —— 有线、PoE、Wi-Fi 或 VaiNet 长距离无线技术• 可从一个扩展到数千个传感设备• 丰富可靠的记录与控制系统互不干扰,简化了验证• OPC UA 和 API 提供将 viewLinc 与其他系统集成的选项• 提供可选的现场校准服务,确保得到准确的温度和湿度记录
  • 兰化所青岛研发基地奠基 总投资3.8亿元
    26日上午,中科院兰州化学物理研究所青岛研发基地在崂山区奠基。山东省青岛市委常委、副市长张惠,市政协副主席邵峰晶,中国工程院院士、中科院兰州化物所学术委员会主任薛群基,中科院兰州化物所所长刘维民出席奠基仪式。  这个基地由中科院兰州化物所、青岛市和崂山区三方共建。占地113亩,总投资3.8亿元。主要建设实验大楼、中试车间、生产车间、协作与学术交流中心、综合办公大楼等设施。目标是打造集科研、办公、成果转化等全过程功能为一体的完整科研园区。  建成后,基地将以国家战略和市场需求为导向,以兰州化物所特色优势学科为基础,结合青岛市以及山东省产业结构调整升级的实际需要,重点开展先进润滑材料、表面工程材料技术、天然植物有效成分分离与高值化利用、精细化工与过程工艺、环境材料与污染物治理、太阳能高效利用等关键技术的研究和相关产品开发。力争用3至5年的时间,初步建成我国在新材料与资源化学领域具有重要影响力的东部高新技术创新研发基地。届时,预计年销售收入可达两亿元,并为周边居民提供大量就业岗位。
  • 单细胞拉曼分选仪(RACS):探索微观世界的利器
    马波*,籍月彤,刘阳,徐健*  摘要:  单个细胞是地球上生命活动的基本单元,单细胞精度的科学研究能够揭示生命科学的本质问题,已经成为国际研究热点。拉曼激活细胞分选(Raman-activated Cell Sorting,RACS)能够利用“单细胞拉曼图谱”这一细胞内在、免外源标记的“生化指纹”进行功能分选,突破“细胞功能异质性原理”、“大多微生物尚难培养”等共性科学问题与重大技术屏障。本文介绍了拉曼光谱在单细胞功能识别方面的研究进展,详述了基于拉曼光谱的单细胞分选技术和核心器件研制的产业化过程。同时,介绍了近期推出的第一代商品化的RACS仪器,并且讨论了这些国产仪器装备为医药、海洋、土壤/环境、工业生物技术领域提供的原创解决方案。这些拥有自主知识产权的国产高端仪器装备将广泛服务于工业过程在线实时监控、细胞工厂筛选、工业/土壤/海洋种质资源挖掘、临床精准用药及新能源开发等。  关键词:拉曼组,单细胞表型组,拉曼激活细胞分选,国产仪器装备,单细胞分选技术与核心器件  单个细胞是地球上生命活动的基本单元,因此单个细胞精度的生命系统研究能够揭示“细胞功能异质性机制”这一生命科学的本质问题1。传统的、基于细胞群体水平性状测量的信息并不能真实反映细胞内部的生物过程及机制2,3,这是因为,在细胞种群中,即使是基因组信息完全一致的不同单个细胞之间,其表型也具有极为显著的差异,而这些差异往往具有重要的生物学意义4,5。因此,单个细胞的研究能够带来生物技术在能源、环境、健康、农业、海洋等广泛应用领域的突破。2018年,利用单细胞测序技术完成的胚胎发育初期单细胞命运追踪被Science杂志评为2018年最重要的十大科学进展之首。近两年来,世界顶级学术期刊《科学》《自然》分别有43篇和38篇文章聚焦于单细胞分析。  (一)拉曼组技术是单细胞功能识别的创新工具和有力武器。  自上个世纪以来,研究人员主要通过荧光标记与流式细胞术的结合实现单细胞功能分选,即荧光激活细胞分选(Fluorescence-activated Cell Sorting,FACS)6。然而,FACS一般需要针对特定的生物标识物对细胞外加荧光标记,因此在单细胞分选方面存在如下瓶颈:(1)细胞适用性有限。不论在干细胞发育的机理研究、肿瘤细胞的诊断,还是微生物群落中功能组分的识别中,关键的细胞表型经常仅有粗放认识或完全未知(即“未知”的细胞表型),也没有其生物标记。因此,FACS通常难以分选那些生物标识物通常未知或难以外加活体荧光标记的细胞体系(如微生物群落等)。(2)难以开展“原位”研究。进入细胞的荧光标记经常会改变细胞的原位状态,有时甚至影响细胞活性,因此该方法通常仅限于能够进行外加荧光标记的细胞,而且难以进行真正意义上的“原位”研究。(3)难以获取全方位的代谢表型。FACS在单位时间只能获得与区分很有限的细胞信息数据,如形态、折光率、反射率或荧光强度等有限指标,难以表征单细胞全方位的“代谢表型组”,因此通常不易获得尚难培养微生物与其生态功能之间的原位联系。  拉曼光谱是一种非标记的散射光谱,每个单细胞拉曼光谱由分别对应于一类化学键的超过1500个拉曼谱峰组成,反映了特定细胞内化学物质的成分及含量的多维信息。因此,特定时空状态下一个细胞群体的单细胞拉曼光谱的集合称为“拉曼组”7。由于细胞内化合物的组成对于细胞生理状态和微环境的变化等因素敏感,因此单细胞拉曼图谱或拉曼组不仅潜在能区分不同物种的细胞,还可以静态或动态地表征该细胞的生理状态及所处微环境8。  业界研究表明,利用拉曼组可实现较为广泛的细胞类型及功能的表征8。例如,Forrester和Deng等分别利用拉曼光谱成功地对多株芽孢杆菌属细菌的生化特性进行了鉴定,发现根据拉曼光谱信息可实现菌株水平的鉴定,并分析了各菌株之间可能的遗传进化关系9,10。在细胞功能识别方面,Samek和Singh等分别通过检测拉曼图谱分析了不同微藻的油脂产量,并建立了通过分析特定峰位比值来估测脂类不饱和度的方法11,12。Heraud等通过检测细胞拉曼图谱,对微藻细胞所处的营养状态(缺氮与否)进行判别和预测13。在临床方面,2011年Dochow等通过微流控芯片结合拉曼光镊技术,成功对人体白细胞、红细胞、急性髓性白血病细胞以及两种乳腺癌细胞进行了鉴别14。利用癌细胞的生化表型与正常细胞的区别,Barman15, Surmacki16和Haka17分别独立地证实了单细胞拉曼可用于乳腺癌早期诊断。此外,中国科学院青岛生物能源与过程研究所单细胞中心等也证明,单细胞拉曼光谱可以区分或定量表征细菌细胞的种系发生18、药物应激反应与耐药性19,20、分解代谢(综合细胞代谢活性21、分解特定底物的活性22)、合成代谢(甘油三酯含量及油脂饱和度23,24、淀粉含量25)、不同物种之间的代谢互作26等。  (二)基于拉曼光谱的单细胞分选技术和核心器件是单细胞组学研究获得突破性进展的关键。  拉曼激活细胞分选(Raman-activated Cell Sorting,RACS)能够利用“单细胞拉曼图谱”这一细胞内在、免外源标记的“生化指纹”进行功能分选,建立单细胞功能表征和单细胞组学分析之间的桥梁,突破“细胞功能异质性原理”、“大多微生物尚难培养”等共性科学问题与重大技术瓶颈27,28。随着微流控技术的进步,一系列基于拉曼光谱的单细胞分选技术和核心器件先后面世,其中包括在静止或者相对静止系统中进行的拉曼光镊分选21,29,30、单细胞拉曼弹射分选(RACE)18,31和拉曼激活光镊重力驱动微液滴分选技术(RAGE)32,以及在液相流动态细胞中进行的拉曼激活微流分选(RAMS)33、拉曼激活单细胞微液滴流式分选(RADS)34、介电迟滞拉曼激活单细胞微液滴流式分选(pDEP-RADS)。  RACE适用于静置或贴壁细胞的单细胞分选。该技术在风干的芯片上对细胞逐一测量拉曼信号后,用脉冲激光弹射出具有目标拉曼信号的细胞18。通过改进弹射基片材料,RACE可以在背向直接采集拉曼信号,降低了操作的繁琐性并大幅提升了全流程的速度和通量35 同时,“All-In-One”RACE芯片的面世,让测量、弹射、细胞裂解与核酸扩增都在同一与空气隔绝的封闭体系内进行,从而降低了环境DNA对目标单细胞核酸扩增的污染35。近期油相震荡乳化单细胞MDA方法的开发,使RACE分离的纯培养E. coli(每个MDA体系含5个细胞)基因组覆盖度由通常的20%提高到50%以上31。  RACE在干片上、利用高强度脉冲激光弹射细胞,不仅细胞活性无法保持,而且激光对细胞的损伤造成分选后单细胞鸟枪测序覆盖率极低(通常低于10%)35。最新发表的RAGE通过耦合拉曼光镊和液滴单细胞包裹,克服了单一光镊力难以实现目标细胞脱离焦平面导出的问题,并通过耦合液滴微流控技术,完成了目标单细胞的精准分选和快速导出32。同时,拉曼检测于水相中进行,能最大限度地保持细胞生理活性,并能够精确匹配每个细胞与之相对应的拉曼光谱表型,实现“所测即所得”32。此外,分选后的单细胞已经包裹在油包水微液滴中,因此可直接耦合后续单细胞培养和组学分析。RAGE大幅提高了一个E. coli细胞的全基因组测序覆盖率,可达99.5%以上32。  RACE和RAGE均主要针对相对静止状态的细胞进行分选,因此通量均在数个细胞/每分钟这一较低水平,难以继续大幅提高27。因此,为了提高拉曼分选的通量(同时保持细胞活性),科研人员在液相中对流动态细胞进行拉曼测量与分选。例如,RAMS芯片集成了基于介电的单细胞捕获释放单元,能够克服单细胞拉曼信号较弱这一先天性缺点,可实现高速“裸奔”状态下单细胞的捕获,从而完成高质量拉曼信号的获取33。  在此基础上,通过液相拉曼测量后的细胞实时微液滴包裹及分选,RADS34的分选通量与系统性均比RAMS有了明显的提高。由于采用介电液滴分选技术,RADS系统是目前已报道工作中全谱分选通量最高的RACS系统,通量达数百个细胞每分钟。除了流式拉曼分选通量的提高之外,RADS的特色是,液滴包裹不仅可以保护细胞免受分选过程中的损伤(针对雨生红球藻中虾青素含量的分选准确率达到95%以上,分选后细胞存活率达93%),还能够与分选后细胞的培养、DNA、RNA、蛋白等的提取与分析等无缝衔接34。单细胞中心最新还研发了pDEP-RADS技术,它在高速液流中基于介电迟滞来精确捕获细胞和采集单细胞拉曼信号,在保持通量的前提下大幅提高了拉曼检测的灵敏度,从而实现了非共振拉曼峰(信号比共振拉曼峰弱1~3个数量级)的高通量流式分选。  (三)基于拉曼组原理以及微流控技术研发的单细胞拉曼分选仪器将助力单细胞分析的革命。  青岛星赛生物科技有限公司依托于中国科学院青岛生物能源与过程研究所单细胞中心的原创技术与知识产权,自主研发了一系列基于拉曼组原理的原创单细胞拉曼分选仪器装备。  单细胞拉曼分选-测序耦合系统(Raman-Activated single-Cell Sorting RACS-Seq)克服了单个细胞拉曼分离可靠性低、核酸扩增容易污染、全基因组测序覆盖度不均等关键技术难点,具备样品预处理、显微拉曼成像、RAGE/RADS拉曼分选、单细胞微液滴细胞裂解和核酸扩增、拉曼组分析软件等功能,实现了单细胞功能检测、分选、测序与培养之完整流程的仪器化。RACS-Seq带有配套的RAGE、RADS、pDEP-RADS等芯片和相应试剂盒(环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等),能够满足不同实验目的所需的单细胞识别、分选和测序文库构建,并且适用于任何大于0.5 μm的细菌、古菌和真菌细胞(也适用于微藻、植物、动物及人体细胞)。  临床单细胞拉曼药敏快检仪(Clinical Antimicrobial Susceptibility Test Ramanometry CAST-R)是临床样品之病原鉴定、药敏性表型测量及耐药基因解析的一体化装备。它基于重水饲喂单细胞拉曼光谱技术,不需分离培养而直接鉴定病原种类,并测量基于代谢活性抑制的药敏性表型(及其在细胞之间的异质性),全流程可在3小时内完成,将目前检测时长缩短至1/10 20。进而通过单细胞微液滴光镊拉曼分选与核酸扩增技术,完成低偏好性、高覆盖度、与耐药表型关联的单细胞基因组测序。最新论文证明,该系统能从临床菌群中直接、精准地获取一个细菌细胞的药敏表型及其完整基因组(以往未有先例) 32。CAST-R在单个细菌细胞精度同时追踪“药敏表型-完整基因组”的独特能力,预期将为临床感染诊断和用药、耐药性传播监控、微生态监控等提供新一代解决方案。  单细胞拉曼表型监测系统(Raman-Activated Phenotyping System RAPS)是基于拉曼复合表型对细胞工厂进行单细胞水平高通量、低成本、非入侵式的快速表型监测装备。现有发酵过程的监控方案存在三大问题:1)时间精度,目前只能通过离线方式对各表型分别进行测定,由于样品处理和测量时间带来的滞后性,使得微生物发酵过程的控制比一般的工业生产难度更大 2)表型精度,由于缺乏综合表型表征手段,只能通过胞外产物尽量刻画细胞状态 3)测量精度,现有表型的测量均基于群体水平大量细胞的平均性状,在高压、高浓、高密度、且营养物质不均一的发酵过程中,细胞之间的差异被累积并级联放大,而群体水平的平均性状掩盖了这种差异的发生/发展和变化规律,无法反映细胞的真实状态。RAPS克服了现有方法的滞后性、可检测表型有限,以及无法反映细胞异质性等局限,为细胞工厂研究提供了一个高效、全景式的表型鉴定和过程监测方案。  模块式单细胞微液滴分离系统(EasySort)是一款拥有自主知识产权的小型台式仪器。它小巧灵活,操作简便,能够自由地与各种型号的显微镜搭配组装,轻松将明场/荧光/拉曼显微镜升级为“所见即所分”、保持原位状态与活性的细菌单细胞精准功能分选装置。在显微镜的视野下,具特定表型的直径大于0.5 μm的单细胞均能够被迅速包裹成单液滴,并通过独有的重力驱动专利技术迅速移动到孔板或者EP管中,对接下游实验。因其兼具超高的性价比、便携的外形、灵活的适配度、简易的用户界面以及优秀的细胞活性保持等众多优势,EasySort将广泛应用于各类单细胞的分离、分选、培养及测序实验。  高通量流式拉曼分选仪(High-throughput RACS:FlowRACS)搭载了具自主知识产权的pDEP-RADS技术,通过在高速液流中基于介电迟滞来精确捕获和采集单细胞拉曼信号,克服了单细胞拉曼分选的通量限制,以及微液滴对于拉曼表型鉴定的影响,巧妙地集成了单细胞拉曼信号采集与单细胞微液滴发生。同时它利用全光谱实时判别算法,实现了活体单细胞超高通量拉曼分选的高度自动化。  (四)原创国产单细胞拉曼分选装备将服务于医药、土壤/环境、海洋和工业生物技术等广阔领域。  上述介绍的这些拥有自主知识产权的原创仪器装备已经支撑着临床精准用药、生物资源挖掘、环境微生态机制、细胞工厂筛选、工业过程监控等广阔领域。  在医药领域,细菌耐药性蔓延是临床感染面临的严重危机。当前基于培养原理的病原鉴定和药敏仪器检测一般需要花费2-3天。而CAST-R不再需要培养,而是基于重水标记单细胞拉曼光谱,在3小时之内即可完成针对代谢活性抑制的药敏性实测,而且将具有耐药表型的目标耐药菌单细胞分离出来,直接耦合细菌单细胞基因组测序,实现了在单个细菌/真菌细胞的精度,挖掘耐药基因及突变、追踪病原传播和考察耐药微进化机制。利用CAST-R针对临床尿液样品的初步分析显示,基于单细胞拉曼的菌株鉴定准确率达到93%,药敏测试与培养法的一致性达到90%。同时,从临床尿液样本中直接识别和分选出耐受特定抗生素的临床E. coli,并进行了精确到一个细菌细胞的全基因组测序,覆盖度可达99.5%32,保证了基因组上所有耐药基因突变均得以全面、精确地揭示。  在海洋和土壤/环境领域,“99%的微生物难培养”、“异质性普遍存在”、“原位功能难以测量”等因素均对环境功能基因研究、种质资源挖掘、生态环境监测等提出了严峻的挑战。借助RACE技术,研究人员以中国黄海近海真光层的新鲜海水为模式,用13C-NaHCO3饲喂其微生物组,然后通过测量海水拉曼组中各个单细胞拉曼图谱上13C峰的动态特征,分辨出在海水中活跃固定与代谢无机碳的单细胞群。同时,分选这些原位固碳单细胞群(30个细胞混合)并测定其DNA序列,可重构出基因组草图35。后续研究表明,利用搭载RAGE-Seq芯片的RACS-Seq系统,可以分选获取海水中单个原位固定CO2的目标细菌细胞,并且对1个细胞的基因组即可获得超过95%的基因组覆盖度。对于土壤样品,则可以基于重水孵育、针对代谢活性进行菌群中功能细胞的识别、分选和测序,单个细胞的基因组覆盖度可达90%。  在工业生物技术领域,新兴的合成生物学需要对细胞工厂进行人工设计并构建具新功能的生物系统,从而建立药物、材料或能源替代品等的生物制造途径36。其中细胞表型的测试筛选工作是合成生物技术发展的“限速步骤”之一。代谢物是细胞中基因表达的最终产物,因此对细胞代谢物组或代谢状态的检测是细胞功能检测最直接有效的手段之一。利用RACS-Seq,可以快速、非侵入性、不须标记地以单个活体细胞中淀粉含量这一特定表型对莱茵衣藻和小球藻进行快速表型鉴定,为富含淀粉的种质资源选育提供了一种崭新手段25。在莱茵衣藻和微拟球藻中,利用RACS-Seq可针对单个细胞中淀粉、蛋白质、甘油三酯含量和脂质不饱和度等表型对目标细胞进行快速筛选24。利用RACS-Seq,还能够针对CO2利用速率这一特定表型对海水中难培养微生物进行分选和测序,从而完成功能基因及种质资源挖掘35。  此外,在酶活筛选方面,将未知功能的酶基因库转化入酵母底盘中,利用FlowRACS基于拉曼光谱、不需酵母培养和纯化而直接识别和定量其单细胞精度的目标代谢物,进而高通量流式拉曼分选目标单细胞,并利用下游测序快速识别其中表达的目标化合物合成酶。因此,FlowRACS大大节约了时间、耗材和人力的成本,可将酶的筛选效率提高100到1000倍。  总之,拉曼组和单细胞拉曼分选基于细胞本征性的生化指纹图谱来识别与分选特定“代谢表型组”的目标细胞,具有不需预知生物标识物、不需标记、非侵入性、可全景式识别细胞代谢表型等核心优势8。因此,包括RACS-Seq,CAST-R,RAPS,EasySort以及FlowRACS等在内的单细胞分析仪器系列(青岛星赛生物科技有限公司),将在精准医疗、大健康、生物资源挖掘、生态监测、生物安全、工业生物技术等领域得以广泛应用,同时为单细胞研究提供全新的科学思路、技术路线和仪器装备。  参考文献:  1 Schubert, C. Single-cell analysis: The deepest differences. Nature 480, 133-137, doi:10.1038/480133a (2011).  2 Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167-173, doi:10.1038/nature09326 (2010).  3 Spiller, D. G., Wood, C. D., Rand, D. A. & White, M. R. Measurement of single-cell dynamics. Nature 465, 736-745, doi:10.1038/nature09232 (2010).  4 Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183-1186, doi:10.1126/science.1070919 (2002).  5 Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714-717, doi:10.1126/science.1203163 (2011).  6 Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev Sci Instrum 43, 404-409, doi:10.1063/1.1685647 (1972).  7 Xu, J. et al. Emerging trends for microbiome analysis: from single-cell functional imaging to microbiome big data. Engineering 3, 66-70 (2017).  8 He, Y., Wang, X., Ma, B. & Xu, J. Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 37, 107388, doi:10.1016/j.biotechadv.2019.04.010 (2019).  9 Forrester, J. B., Valentine, N. B., Su, Y. F. & Johnson, T. J. Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: discrimination to the strain level. Anal Chim Acta 651, 24-30, doi:10.1016/j.aca.2009.08.005 (2009).  10 Deng, A. H., Sun, Z. P., Zhang, G. Q., Wu, J. & Wen, T. Y. Rapid discrimination of newly isolatedBacillaleswith industrial applications using Raman spectroscopy. Laser Phys Lett 9, 636-642, doi:10.7452/lapl.201210052 (2012).  11 Samek, O. et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors (Basel) 10, 8635-8651, doi:10.3390/s100908635 (2010).  12 Wu, H. et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108, 3809-3814, doi:10.1073/pnas.1009043108 (2011).  13 Heraud, P., Beardall, J., McNaughton, D. & Wood, B. R. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275, 24-30, doi:10.1111/j.1574-6968.2007.00861.x (2007).  14 Dochow, S. et al. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11, 1484-1490, doi:10.1039/c0lc00612b (2011).  15 Barman, I. et al. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy. Cancer Res 73, 3206-3215, doi:10.1158/0008-5472.can-12-2313 (2013).  16 Surmacki, J., Musial, J., Kordek, R. & Abramczyk, H. Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol Cancer 12, 48, doi:10.1186/1476-4598-12-48 (2013).  17 Haka, A. S. et al. In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy. Cancer Res 66, 3317-3322, doi:10.1158/0008-5472.can-05-2815 (2006).  18 Wang, Y. et al. Raman activated cell ejection for isolation of single cells. Anal Chem 85, 10697-10701, doi:10.1021/ac403107p (2013).  19 Teng, L. et al. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome. Sci Rep 6, 34359, doi:10.1038/srep34359 (2016).  20 Tao, Y. et al. Metabolic-activity based assessment of antimicrobial effects by D2O-labeled Single-Cell Raman Microspectroscopy. Anal Chem 89, 4108-4115, doi:10.1021/acs.analchem.6b05051 (2017).  21 Berry, D. et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 112, E194-203, doi:10.1073/pnas.1420406112 (2015).  22 Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotech 41, 34-42, doi:10.1016/j.copbio.2016.04.018 (2016).  23 Wang, T. et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 7, 58-70, doi:10.1186/1754-6834-7-58 (2014).  24 He, Y. et al. Label-free, simultaneous quantification of starch, protein and triacylglycerol in single microalgal cells. Biotechnol Biofuels 10, 275-292, doi:10.1186/s13068-017-0967-x (2017).  25 Ji, Y. et al. Raman spectroscopy provides a rapid, non‐invasive method for quantitation of starch in live, unicellular microalgae. Biotechnol J 9, 1512-1518, doi:10.1002/biot.201400165 (2014).  26 Wang, Y. et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem 88, 9443-9450, doi:10.1021/acs.analchem.6b01602 (2016).  27 Zhang, Q. et al. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 140, 6163-6174, doi:10.1039/c5an01074h (2015).  28 Song, Y., Yin, H. & Huang, W. E. Raman activated cell sorting. Curr Opin Chem Biol 33, 1-8, doi:10.1016/j.cbpa.2016.04.002 (2016).  29 Chan, J. W. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. J Biophotonics 6, 36-48, doi:10.1002/jbio.201200143 (2013).  30 Dochow, S. et al. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal Bioanal Chem 405, 2743-2746, doi:10.1007/s00216-013-6726-3 (2013).  31 Su, X. et al. Rational Optimization of Raman-activated Cell Ejection and Sequencing for Bacteria. Anal Chem 92, 8081-8089, doi:10.1021/acs.analchem.9b05345 (2020).  32 Xu, T. et al. Phenome-Genome Profiling of Single Bacterial Cell by Raman-Activated Gravity-Driven Encapsulation and Sequencing. Small, e2001172, doi:10.1002/smll.202001172 (2020).  33 Zhang, P. et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 87, 2282-2289, doi:10.1021/ac503974e (2015).  34 Wang, X. et al. Raman-activated droplet sorting (RADS) for label-free high-throughput screening of microalgal single-cells. Anal Chem 89, 12569-12577, doi:10.1021/acs.analchem.7b03884 (2017).  35 Jing, X. et al. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ Microbiol 20, 2241-2255, doi:10.1111/1462-2920.14268 (2018).  36 Check, E. Synthetic biology: designs on life. Nature 438, 417-418, doi:10.1038/438417a (2005).  作者简介:  徐健 中国科学院青岛生物能源与过程所研究员、单细胞中心主任 山东省能源生物遗传资源重点实验室主任。2003年华盛顿大学计算机科学硕士和生物化学博士,2003-2004年华盛顿大学基因组科学和系统生物学中心博士后。2004-08年于华盛顿大学基因组研究院任基因组拼装和分析团队负责人。2008年入选中科院“百人计划”并全职加入中科院青岛生物能源与过程所。研究方向为单细胞分析仪器和大数据,及其在微生物组、合成生物学和生物安全等领域的应用。论文发表于Science, Cell Host Microbe, Sci Adv., Nature Commu.等130余篇,被引用10000余次(H-index 43)。获青年拔尖、创新领军人才、国家杰青基金、中国青年科技奖等支持。  马波 中国科学院青岛生物能源与过程所研究员、单细胞中心副主任 微流控系统团队负责人。 2008 年获中科院大连化物所分析化学专业博士学位。2008.6-2012.7先后在美国加州大学洛杉矶分校Crump 分子成像研究所和莱斯大学等研究机构从事博士后研究。2012年8月加入中科院青岛生物能源与过程研究所。目前研究方向聚焦在基于微流控的单细胞分析技术、仪器及应用研究。论文发表于Sci Adv., Nature Commu. Small, Anal Chem., Lab on a Chip等30余篇,申请单细胞技术相关发明专利二十余项,已授权8项。单细胞中心合影  中国科学院青岛生物能源与过程研究所单细胞中心(徐健、马波、籍月彤、刘阳 所在单位)简介:中国科学院青岛生物能源与过程研究所是由中国科学院、山东省人民政府、青岛市人民政府于2006年7月启动筹建,2009年11月30日通过共建三方验收并纳入中国科学院“知识创新工程”管理序列的国立科研机构。单细胞中心的核心使命是以基因组工程、工具酶开发、先进成像、微流控器件、大数据等为主要方法学支撑,围绕细胞工厂构建、微生物组快检及机制等领域的关键科学和技术瓶颈,开发单细胞分析、分选、测序与培养技术,研制与产业化单细胞分析仪器系列,从国产装备的角度支撑单细胞大数据网络和微生物组天网等原创大数据系统,服务于工业生物技术、大健康、海洋资源挖掘、环境保护与修复、生物安全等应用领域。  青岛星赛生物科技有限公司(籍月彤所在单位):青岛星赛生物科技是一家专注于单细胞分析科研设备及临床诊断仪器研发与产业化的创新型高新科技企业。竭诚为科学研究人员、工业生物技术人员、以及临床工作者提供高效、可靠、一体化全方位的单细胞水平解决方案,着力打造国产高端生命科学仪器品牌。产品应用于工业过程监控、工业及海洋种质资源挖掘、临床精准用药、微生物组研究、生物安全及新能源开发等领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制