当前位置: 仪器信息网 > 行业主题 > >

冷冻面团

仪器信息网冷冻面团专题为您整合冷冻面团相关的最新文章,在冷冻面团专题,您不仅可以免费浏览冷冻面团的资讯, 同时您还可以浏览冷冻面团的相关资料、解决方案,参与社区冷冻面团话题讨论。

冷冻面团相关的资讯

  • 面团拉伸仪的应用操作
    面团拉伸仪的应用操作 无论是面包、披萨还是饼干,面团的质地和拉伸程度都是关键。在传统的制作过程中,拉伸面团通常需要耗费大量时间和体力,而且难以控制。然而,面团拉伸仪 的出现彻底改变了这个局面。传统方式下,拉伸面团需要反复折叠、揉搓和推拉,耗费大量时间和精力。而面团拉伸仪通过内置的电机和**的控制系统,可以在短时间内完成拉伸,大大节省制作时间。不仅如此,面团拉伸仪还能够保持面团的温度和湿度,确保面团不会过度发酵或变干,从而保证产品的口感和质量。面团的组织结构和质地对烘焙产品起着至关重要的作用。面团拉伸仪可以根据不同的产品需求进行调整,使得面团的拉伸程度和薄厚度完全符合要求。无论是想制作厚薄均匀的面包片,还是薄脆香酥的饼干,面团拉伸仪都能够满足不同的需求,并保证产品的质量和口感。除了拉伸面团外,它还可以用于调整面团的松紧度和平整度,使得面团更加均匀和易于操作。比如,面团拉伸仪可以使得面包的受力均匀分布,避免出现凹凸不平的现象;它还可以调整面团的延展性,使得面包在烘烤过程中膨胀更为均匀。这些功能的存在使得面团制作变得更加简便和高效。
  • 美国National揉混仪,电子揉混仪,面团揉混仪中国总代理授权
    电子揉混仪,面团揉混仪,揉混仪,和面机,美国National揉混仪,美国National电子式揉混仪南京铭奥仪器设备有限公司与美国National公司再次签订2年全国总代理协议。美国National公司成立于1939年,专业生产和供应食品科学与生产方面的分析设备。该品牌设备在全球各大大学和实验室已经广泛使用。同时,对于追求食物品质和外观的企业来说,检测酵母强度、谷物蛋白质和其他变量是至关重要的。对他们来说,高质量的分析仪器是必不可少的。而National Mfg则保证了对每批次食品的连续测试。美国National公司主要产品:电子揉混仪,酵母活性产气测定仪,和面机,发酵箱、烘箱、压片机等一些烘焙设备。美国National中国总代理:南京铭奥仪器设备有限公司南京铭奥仪器设备有限公司张先生:18913964277电话:025-87163873网站:www.mingaoyq.com
  • 施一公团队:每个人都是拼命三郎 抓住冷冻电镜技术革新机遇
    施一公和他的研究团队在实验室  核心提示丨“这张幻灯片是最简单的,也是最难得的。” 在昨天上午的施一公研究组剪接体的三维结构RNA剪接的分子结构基础重大成果发布会上,清华大学生命科学学院院长、生命科学与医学研究院院长施一公打开一张照片,如是说。  这个诞生了世界级顶尖成果的实验室,究竟有什么与众不同之处?剪接体的三维结构,是如何一步步清晰地呈现在世人面前?昨日,大河报记者实地探访施一公团队的实验室。  探访丨废寝忘食做实验,每个人都是拼命三郎  “你只要去实验室就会有人。”昨天中午12点,发布会刚结束,记者询问施一公团队的闫创业博士,实验室中午有没有人在时,他这样回答。  施一公团队的实验室,位于清华大学医学科学楼三楼。记者进入实验室时,已经是12点15分。虽然正值午饭时间,但是实验室内,仍有不少人在埋头工作。  实验室如同一个布满试管、药水瓶、白大褂的森林,让人看着眼晕。施一公说,这项成果最大的困难,是样品准备。“也就是说如何让蛋白质服服帖帖、性质稳定,成为适合结构解析的样品。”  在实验室的摇床上,养着酵母。这些酵母承担着做成冷冻样品的重任。前期样品的制备主要由杭婧和万蕊雪承担。由于经验相对缺乏、没有师兄师姐可以请教,她们只能依靠阅读大量的文献和反复进行实验来不断探索前行。到了课题的攻坚阶段,每天在实验室工作14-16小时。即便在这样的工作状态下,也没有人敢松懈。“我们都很有危机感,因为我们知道这个课题的重要性,也知道很多团队都在做,而科学上只有第一没有第二,如果我们自己不沉下心来努力,一旦别人首先发表,我们之前的工作意义就会大打折扣。”万蕊雪说。  冲刺丨最后两个月,施一公团队每天“玩命写论文”  带领他们往前冲、努力拼的正是施一公教授。时间跳转到2个月前,这项研究的最后冲刺阶段。施一公带领3个学生每天“玩命写论文”。那段时间,他们每天写论文到凌晨,有时候甚至写到早上5点。“回到家6点多,躺下睡到8点又起来接着写。”施一公说,“身体极其疲乏,但精神亢奋,睡不着。”就连在送孩子回河南老家的火车上,4个小时的车程,施一公就埋头写了4个小时。某天凌晨3点,还在办公桌前写论文的施一公忽然尾椎抽筋,一动不能动,这样的突发状况吓坏了3个学生。休息了一会缓过来后,施一公起身在办公楼里快走了好几圈,终于才渐渐恢复。  跟着施一公一起“玩命写论文”的3位学生,就是这2篇文章的共同第一作者——清华大学生命学院闫创业博士,医学院博士研究生杭婧、万蕊雪。3人中,年龄最大的闫创业今年30岁,而杭婧和万蕊雪则分别是26岁和25岁。  “我的作用,主要是带这个团队讨论问题。我是打酱油的。”施一公开玩笑说。实际上,他的刻苦,带领这个团队一直向前冲。早在研究生阶段后期,施一公的刻苦在实验室是出了名的。在纽约做博士后时期,施一公每天晚上做实验到半夜3点左右,回到住处躺下来睡觉时常常已是4点以后 第二天9点左右又会准时回到实验室。当时他住在纽约市曼哈顿区65街与第一大道路口附近,离著名的中央公园很近,那里时有文化娱乐活动,但在纽约工作整整两年,施一公从未迈进中央公园一步。  挑战丨竞争对手这么多,做不出成果怎么办?  其实,早在10多年前,施一公就曾想开展剪接体结构的研究。“回国后,实验室刚建立起来,想找一些可以很快出成果的课题让学生们做,帮助他们树立科研信心。”施一公坦言,2009年,他的课题组开始正式进入剪接体研究的核心领域。  国内外竞争对手这么多,如果这个课题做不出成果怎么办?杭婧曾有过担心和怀疑。“我们选择从小处着手,试图从解析剪接体复合物中的一些重要组成蛋白的结构开始,逐步接近目标。”杭婧说,2014年初,团队首次报道剪接体复合物中重要组成蛋白Lsm七聚体及其在RNA结合状态下的晶体结构,文章发表于《自然》,给了大家极大的信心。  “我们的成功主要有三点。一是有三个学生,技术炉火纯青。二是很有胆识,找到正确的物种来做,并在计算方式上大胆改进。三是在合适时间做。现在清华有合适的冷冻电镜。”施一公总结,而我,在关键时候做一个判断。收完样品后,我说,只要有15埃的分辨率就很好了,如果做到15埃的分辨率,就发个文章,告诉大家我们也做了几年。结果算出来竟然有3.6埃。我们在今年整个4月份里做计算,那一个月突破连连、都跟做梦似的!  机遇丨幸运之神,何以垂青施一公团队?  3.6埃的分辨率是啥概念?施一公回答:几乎看到原子。他特别提出,如果没有清华大学冷冻电镜平台,是不可能完成这项成果的。  冷冻电镜相当于一个照相机,当前面提到的冷冻样品被送到冷冻电镜时,会生成很多数据。这就相当于一个三维的东西,拿二维照相机拍很多张照片,重构出三维模型。而这个三维模型,就是剪接体的三维结构。  在生命科学领域,研究蛋白质结构有三种主要方法:X射线晶体衍射、核磁共振以及单颗粒冷冻电子显微镜(冷冻电镜)。施一公说,早在冷冻电镜技术还远未成熟的2007年,清华大学就在上述三种方法中选择了重点发展冷冻电镜技术。  “剪接体很多人想做。我1995年做博士后,一位曾经获得诺贝尔奖的科学家说,剪接体做不下去,太动态。它被称为大家都想做的‘终极课题’。”施一公说,大家都知道这些东西是核心的东西。但是剪接体不敢碰,因为手段不存在,就是没法做。很低分辨率,看得模模糊糊。“真正有胆儿做,还不行,还得时机成熟。2013年初,在世界科研科学领域,冷冻电镜技术取得突破。打个比方说,以前的照相机技术不行,照片非常模糊,有层霜。2013年,这层霜去掉了。这时候,我们的研究才突飞猛进。”  施一公说,如果没有冷冻电镜技术,就完全不可能得到剪接体近原子水平的分辨率。“如果没有冷冻电镜肯定做不到今天的结果,而当年确实没想到冷冻电镜会出现飞跃性的进展。但是你不能等到万事俱备的时候才开始,那时候黄花菜都凉了。”
  • 揭开“圣杯”面纱:核孔复合物胞质环的高分辨率冷冻电镜结构
    核孔复合物(nuclear pore complex, NPC)是真核细胞的核膜上负责物质双向运输的唯一通道,同时也是真核细胞中最庞大,最复杂的分子机器之一。核孔复合物在维持细胞核的微环境稳态,保护遗传物质,调控基因表达等方面起着至关重要的作用,其功能异常与包括癌症在内的多种疾病的发生联系在一起。NPC的高分辨率结构研究对理解真核细胞活动的基本过程,探究核质运输的结构机制以及探索相关疾病的致病机理都具有重要意义,也是开发相应治疗方法和药物的基础。NPC镶嵌于细胞核的双层核膜(nuclear envelope, NE)之上,在从细胞质到细胞核的方向上,主要由胞质丝(cytoplasmic filaments)、胞质环(cytoplasmic ring, CR),内环(inner ring, IR)、腔环(Luminal ring, LR)、核质环(nuclear ring, NR)和核篮(nuclear basket)组成(图1)。其中,CR、IR和NR构成NPC最稳定的支架部分,其直径可达约110 nm,高约70 nm。而附着于CR上的胞质丝、附着于NR上的核篮以及主要由IR中的FG重复(FG repeats)构成的扩散屏障(diffusion barrier)则是NPC选择性运输的主要执行者。此外,在垂直于NE的方向上,NPC还具有C8对称性。一个NPC含有约30种不同的核孔蛋白(nucleoporin),每种核孔蛋白的拷贝数一般为八的倍数,因此一个NPC含有的核孔蛋白数目非常大(500-1000个)。这也导致NPC具有非常大的分子量,在酿酒酵母中约为60 MDa,而在人中则可达约110 MDa。图1:NPC的结构示意图2022年6月10日,西湖大学施一公团队在Science上在线发表了题为 Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex 的最新研究成果,报道了目前分辨率最高的,NPC中CR亚基的结构。该研究以非洲爪蟾(Xenopus laevis)NPC为研究对象,单颗粒冷冻电镜分析为主要研究手段。团队共收集46143张电镜照片,从中人工筛选出33747张可用照片,并进一步挑选出800825个NPC颗粒用于数据处理。经过多轮迭代计算,该团队最终将NPC中CR亚基重构至3.7-4.7 分辨率。同时,该研究还利用重组表达技术和单颗粒冷冻电镜分析手段,将脊椎动物中特有的核孔蛋白Nup358的N端结构域解析至3.0 分辨率。以这些重构结果为基础,该团队最终搭建了迄今为止最完整的CR结构模型(图2)。图2:CR亚基的单颗粒冷冻电镜结构该模型中CR亚基的主体由两个Y复合物组成,此外还包含五个Nup358、两个Nup205和两个Nup93分子。在Y复合物中,新解析的Nup160的C端片段作为组织中心,在介导三条臂汇集上起着重要作用。而Nup358、Nup205和Nup93在辅助以及稳定CR骨架的组装过程中起着重要的作用。结合施一公团队之前解析的NR和IR高分辨结构,他们搭建了NPC支架部分的结构模型。该模型包含了来自632个核孔蛋白中的约445000个氨基酸残基,是目前为止最详细,且最精确的NPC支架结构模型(图3),为领域内理解脊椎动物NPC的组成、结构、组装以及功能提供了坚实的基础。图3. NPC支架的结构模型西湖大学生命科学学院博士后朱薛辰、黄高兴宇、曾超、占谢超和三年级博士生梁珂为该文共同第一作者,黄高兴宇和施一公教授为该文共同通讯作者。原文链接:https://doi.org/10.1126/science.abl8280
  • 冷冻电镜助力施一公发表诺奖级别研究成果
    p style="TEXT-ALIGN: center"img title="201508210836068535.png" src="http://img1.17img.cn/17img/images/201508/noimg/a35de701-612c-4691-87ab-8ffa6b744c6b.jpg"//pp  8月21日,清华大学生命科学学院施一公教授研究组在《科学》周刊(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。/pp  第一篇文章报道了通过单颗粒冷冻a href="http://www.instrument.com.cn/zc/1139.html" target="_self" title=""电子显微/a技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院闫创业博士、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。/pp style="TEXT-ALIGN: center"img title="201508210834276549.jpg" src="http://img1.17img.cn/17img/images/201508/noimg/76442051-b081-40d5-81cc-c4b20324e1c0.jpg"//pp  这一研究成果具有极为重大的意义。自1993年RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。/pp  清华大学将于近期召开新闻发布会,介绍这项重大的科研成果。/pp  另据《赛先生》对施一公的一篇专访介绍,“这项研究成果的意义很可能超过了我过去25年科研生涯中所有研究成果的总和!”施一公振奋地表示:“我此前以通讯作者身份在《科学》、《自然》和《细胞》上发表的文章总共接近50篇,但我觉得这次的意义特别重大!”/pp  6月24日,Nagai研究组的一篇论文于《自然》网站在线发表,其工作将剪接体所涉及的一个中心复合物tri-snRNP的分辨率提高到了5.9个埃米,一度引起轰动。而此前人类对基因剪接体的认识精度只有29个埃米。1埃米为10sup-10/sup米,即把1米分成十亿份,其之微小可以想见,因此Nagai的最新工作被称为近原子尺度的结构研究。/pp  而施一公团队此次得到的结果不仅将精度由5.9个埃米提高到了3.6个埃米,而且其解析对象是真正的剪接体,而不是Nagai团队所取得的参与剪接体组装过程的复合物,从而第一次在近原子分辨率上看到了剪接体的细节。/pp  对于施一公团队的最新成果,很多同行给出了非常高的评价:将受诺奖考虑。/pp  一直以来,研究蛋白质结构有三种主要方法:X射线晶体衍射、核磁共振以及单颗粒冷冻电子显微镜(冷冻电镜)。而施一公所采用的冷冻电镜技术在过去两年里取得了革命性的进展,一方面是它的照相机技术,一方面是其软件分析的图像处理技术,尤其是前者的进步大幅提高了冷冻电镜的解析能力。/pp  施一公说:“如果没有冷冻电镜技术,就完全不可能得到剪接体近原子水平的分辨率。”/pp  尤为幸运的是,早在冷冻电镜技术还远未成势的2007年,清华大学就在上述三种方法中选择了重点发展冷冻电镜技术,如今清华拥有世界最大的冷冻电镜系统。施一公把他和同事们当年卓有远见的选择归于“幸运”,他说“如果没有冷冻电镜肯定做不到今天的结果,而当年确实没想到冷冻电镜会出现飞跃性的进展。”/pp  “幸运”远不止是当年选对了技术。除了仪器的进步,在施一公看来,他们能领先竞争对手的主要原因是拥有极为成熟的样品处理方法。“也就是说如何让蛋白质服服帖帖、性质稳定,成为适合结构解析的样品”,他半开玩笑地说“这是我们的独门绝招,这个绝招即便写出来,别人不在我的实验室做上一两年也很难理解或吃透,因为这是师傅带徒弟一点点积累起来的。”/pp  除了靠谱的仪器、技术和学生,施一公说,“胆量”给了他们最大的惊喜。“本来我们的样品不是最理想的状态,学生有点不敢试,我说不妨上一下试试,最多就是不成功,只要有15埃的分辨率就很好了,结果算出来竟然有3.6埃。我们在今年整个4月份里做计算,那一个月突破连连、都跟做梦似的!”/pp/p
  • 冷冻电镜:正在并将为中国提供广阔的研究“舞台”
    仪器信息网讯 2014年7月28日-30日,&ldquo 2014冷冻电镜三维分子成像国际研讨会&rdquo 在中国科学院上海生科院生化与细胞所/国家蛋白质科学中心&bull 上海(筹)召开。  冷冻电镜三维分子成像国际研讨会源起于2008年由郭可信先生的学生组织发起的&ldquo 郭可信电子显微学和晶体学暑期学校&rdquo 。当时我国在电子显微学领域的研究实力非常强,但主要体现在材料物理方面,在生物领域的研究应用还基本处于空白状态。会议的组织者希望能通过举办这样的会议将国内生物电镜的应用带动起来。第一届主要以培训的形式为主,到2010年第二届会议时,组织者提出了在培训同时举行冷冻电镜三维分子成像国际研讨会,以促进冷冻电镜前沿研究的交流。  本次大会主席由海外华人学者加州大学旧金山分校副教授程亦凡、美国纽约州立大学石溪分校教授李慧林,联合中科院上海生化细胞所/国家蛋白质科学中心&bull 上海(筹)的丛尧、何勇宁研究员四位专家构成主席团。  会议参会人员近300人,远远超过了原计划的150人的预期。主办方邀请了来自世界各地的30余位杰出的电子显微学家作大会报告及培训指导,如美国贝勒医学院教授、美国科学院院士Wah Chiu (赵华),美国加州大学旧金山分校教授、美国科学院院士David Agard,美国加州理工学院教授、霍华德休斯研究员Grant Jensen,美国加州大学洛杉矶分校教授、纳米机器电子成像中心主任Z. Hong Zhou (周正洪)、中国科学院院士隋森芳等。  冷冻电镜技术发展迎来新纪元  2014年年初,冷冻电镜曾被《Nature Methods》杂志评选为&ldquo 2014年最受关注的技术&rdquo 。从此次会议的盛况来看,这一称号冷冻电镜可以说&ldquo 当之无愧&rdquo ,会议甚至吸引了此前一直利用X射线晶体学进行结构生物学研究的清华大学教授施一公前来参加。  冷冻电镜突然之间如此备受关注,和去年年底华人学者程亦凡发表的一项成果有着莫大的关系。2013年12月5日,程亦凡与同事David Julius两个实验室合作,以近原子分辨率(3.4 埃),确定了在疼痛和热知觉中起中心作用的一种蛋白质TRPV1的结构。这项成果可以说是冷冻电镜应用研究的一个分水岭,因为在此之前结构生物学研究主要依赖X射线晶体学,也可用核磁共振(NMR)来研究部分小分子的结构。人们认为冷冻电镜的分辨率不够高,如果研究分子量较大的病毒、核糖体等还可以,而研究小分子量的蛋白质则无法实现。  另外,由于TRPV1属于膜蛋白,膜蛋白是重要的药物作用靶点及细胞信号传导通道,所以自1997年它被发现以来,许多研究者都希望能够解析它的结构。但这类蛋白嵌在细胞膜中,很难得到蛋白结晶,因而很难利用X射线晶体学方法对其进行解析。而如今,冷冻电镜以接近X射线晶体学的分辨率成功解析了TRPV1膜蛋白质的结构,可以说是结构生物学研究的一个里程碑事件。程亦凡认为将来会有不少从事X射线晶体学研究的结构生物学家将冷冻电镜作为自己的重要研究工具。  李慧林表示:&ldquo 亦凡的工作可以说为冷冻电镜的应用打开了一个新的局面。膜蛋白是重要的药物靶点,因此会有越来越多的制药公司关注这一技术。而现在的制药公司会做很多X射线晶体学的研究工作,以后他们可以有新的选择了。&rdquo   我国冷冻电镜技术研究渐入佳境  冷冻电镜技术最先由欧美国家在上世纪70、80年代开发并应用,我国科学家在90年代开始冷冻电镜技术的研究,起步比较晚,但近年来伴随海外华人学者的大力帮助,以及近十年来一批优秀的科学家学成回国,我国在这一领域的研究开始蓬勃发展。  今年是该会议第四次举办,程亦凡参加了每一届会议,在他看来这四届会议可以说很好的见证了国内冷冻电镜的发展历程。他说:&ldquo 2008年、2010年两届会议我们所有的报告人都来自海外,而到了2012年就有不少国内的学者带来精彩的报告,今年无论是报告人还是参会人数又达到了一个新的高度。&rdquo   李慧林则表示:&ldquo 2008年国内当时只有一两个课题组从事冷冻电镜应用研究,而到今年粗略估计已有近20个课题组。清华大学、生物物理所、国家蛋白质科学中心、中科大、中山大学、厦门大学、兰州大学等都有老师在做这方面的研究。&rdquo   此外,为了推动我国生物学的快速发展,政府对于这一领域的研究也投入了大量的财力。Wah Chiu在参观了本次大会举办地国家蛋白质科学中心&bull 上海(筹)后感叹地说:&ldquo 我在美国从来没有看到像这样完备的蛋白质研究平台,这为中国和世界上的科学家的提供了非常好研究条件。&rdquo   政府科研投入的增加也在一定程度上推动了我国冷冻电镜的技术研究。程亦凡说:&ldquo 2008年时国内还只有清华大学订购了一台300kV的Titan Krios冷冻电镜,到2010年生物物理所和清华大学各有一台,2012年国家蛋白质科学中心&bull 上海开始筹建,订购了3台冷冻电镜,包括一台Titan Krios,今年我们看到这些仪器都已到位,另外浙江大学也开始筹建冷冻电镜实验室,计划采购两台冷冻电镜。&rdquo   经过各方面的努力,当前我国的冷冻电镜研究已经取得了一定的成绩,与国际先进水平的差距逐渐缩小。就在今年,生物物理所李国红与朱平研究员合作在《Science》杂志上发表了冷冻电镜30纳米染色质高级结构解析 清华大学施一公院士与剑桥生物医学院Sjors H. W. Scheres教授合作在《Nature》杂志上发表了利用冷冻电镜技术解析人类&gamma -分泌酶(&gamma -secretase)的三维结构。  另外,据介绍生物物理所研究员孙飞已经在开始做冷冻电镜技术开发方面的工作。程亦凡说:&ldquo 我觉得他们的工作非常有意义,我们不能只是用别人的技术来做我们的研究,而是不仅要会用这一技术,还要尽力去发展完善这一技术,这样才能有更好的成就。&rdquo   冷冻电镜发展前景广阔 人才需求缺口大  随着冷冻电镜技术的发展,对于人才的需求也越来越大。我国在冷冻电镜人才培养方面,经过几年时间的积累,也有一些优秀的青年人才成长起来,这其中郭可信电子显微学和晶体学暑期学校发挥了重要作用。丛尧说:&ldquo 我们希望通过暑期学校能培训一批高技术冷冻电镜人才,为冷冻电镜技术在我国的后续发展打下坚实基础。&rdquo   程亦凡介绍说:&ldquo 我们现在培养的学生在海外很受欢迎。像隋森芳院士培养的学生很轻松就能拿到几个国际顶级科研机构的博士后offer。&rdquo   但是现在对于冷冻电镜人才的需求非常大,我们培养的学生数量还远远不够。程亦凡说:&ldquo 虽然目前冷冻电镜的研究很活跃,但是这一技术还非常不完善,所以有许多的工作要做,需要很多人力。同时,对于一个电镜实验室,往往需要从实验员、到中级管理人员、高级管理人员等各个层次的人才。另外,随着冷冻电镜技术的发展,如果从事X射线晶体学研究的课题组要进入这一领域,最快捷的方法就是招聘从电镜实验室毕业的学生。&rdquo   &ldquo 不过在中国,好在我们有一个优势,就是我们的材料电镜非常强,培养的人才已趋于饱和。材料电镜领域的学生他们虽然不懂生物学,但是有着非常强的电镜技术背景,如果他们当中有人愿意转向生物学应用方向,一定会有非常好的发展前景。可以说今后5-10年电镜实验室培养的学生都不愁找工作。我们希望能够吸纳更多的优秀人才从事冷冻电镜的研究,推动这一技术的快速发展。&rdquo 程亦凡说道。(撰稿:秦丽娟)2014冷冻电镜三维分子成像国际研讨会与会人员合影  附录:  第七届郭可信电子显微学和晶体学暑期学校举办  http://www.instrument.com.cn/news/20140728/137553.shtml  国家蛋白质科学中心&bull 上海(筹)  http://www.sibcb-ncpss.org/(原标题:2014冷冻电镜三维分子成像国际研讨会召开)
  • 冷冻共聚焦光电联用实现三维定位
    冷冻共聚焦显微镜及其在冷冻电子断层扫描中的价值 Cryo ET(电子断层扫描)是一种专用的透射电子显微镜技术,可以重建观察区域的三维体积。借助先进的冷冻EM(电子显微镜),图像分辨率可以提升到令人难以置信的亚纳米等级。因此,可以在细胞内的原生环境中研究蛋白质以及其他生物分子,从而揭示尚未探明的分子机制。由于细胞和组织必须薄到能够透过电子,样品必须进行切片以获取足够薄的样品体积(薄层)。为对样品中的靶区进行精确的三维定位,冷冻共聚焦显微镜是必不可少的工具。 以下部分,我们将描述冷冻电子断层扫描工作流程的主要步骤,以及如何通过冷冻共聚焦显微镜定位靶区并进行切片,以提高整个工作流程的可靠性。 在EM网格上培养细胞 通常,在涂有多孔碳膜(例如 QuantifoilR)或二氧化硅(SiO2)膜的金质或钛金网格上植入急性分离或培养的细胞(图1,Mahamid等人,2019)在后续步骤中,钛金属和二氧化硅似乎更加坚硬而且稳定,无需额外添加碳层(Toro-Nahuelpan 2019) 网格通过Poly-L-Lysin或纤连蛋白(Fibronectin)实现生物激活,胰蛋白酶解离细胞在前一晚植入,以便在后续步骤中附着在碳层表面(Mahamid等人,2019)。 图1:采用12纳米厚多孔二氧化硅膜(R 1.2/20,即孔径1.2微米,间距20微米)的3毫米EM金质(Au)网格的反射图像拼接图。HeLa细胞已经植入并玻璃化。实心箭头:定位用的中心标记;空心箭头:聚焦离子束进入的切片槽;虚线箭头:空的网格方格。一个网格方格的边长:90微米。 添加微型图案 为进入细胞样品以成功实现FIB切片并在冷冻TEM中开展后续分析,必须确保相关细胞位于网格方格的中心位置或其附近。但细胞喜欢在网格条上生长或者集簇生长,因此不适合进行FIB切片和电子透射分析。为了克服这一挑战,微型图案技术允许用户控制细胞在碳膜(图2)上的位置和分布,提高相关工作流程的可靠性。 网格表面涂有聚乙二醇(PEG),可防止生物材料附着。利用紫外激光移除该涂层,即可对细胞的黏附进行针对性控制,保证FIB切片以及TEM的可操作性(Toro-Nahuelpan 2019)。此外,可以创建特定图案,从而影响整个细胞结构并且有助于使用冷冻电子显微镜研究生物力学现象。 图2:有/无微型图案的细胞分布情况左图:分布不均的细胞(小鼠A9成纤维细胞,使用Alexa Fluor 488 Phalloidin标记,以显示纤维状肌动蛋白)。右图:网格方格中心定位精确的细胞,可进行FIB(成纤维细胞黏附在纤维蛋白原微型图案表面;图片由Alvéole与德国汉堡CSSB中心教授Kay Grünewald博士共同提供。) 投入冷冻 为在固定用于电子显微镜检查的同时确保样品接近原生状态,细胞必须极速冷冻,以免产生破坏性的冰晶。这个过程称为玻璃化,因为冰片变成无结晶的玻璃状(玻璃体) 为让样品细胞达到这种效果,网格必须快速投浸到适当的冷冻剂(通常为乙烷,或者乙烷和丙烷)中。1981年,Jacques Dubochet发表了首个手动吸液和投入冷冻方法,该方法仍获广泛使用以获取出色的结果(Dubochet, J.以及McDowall, A. W.,1981)。 在投入冷冻之前,必须去除多余的液体。标准技术是使用滤纸实现受控吸液(图3,Dubochet, J等人,1982;Bellare等人,1988;Frederik, P. M.等人,1989)。 图3:在投入冷冻前,通过吸液处理对多余液体进行受控移除。使用镊子固定网格,并通过单独步骤将吸液纸移向网格。吸液传感器可以自动并反复执行该过程。 市面上有多种不同的吸液设备,例如用于自动吸液和投入冷冻的Leica EM GP2。根据不同样品类型的多种需求,可以使用多种涉及吸液步骤的样品制备方案(另见此处)。 冷冻状况下的存储、装载和转移 玻璃化之后,样品必须在整个工作流程期间处于冷冻状况下。因此,必须对从存储到转移至不同成像系统的所有步骤进行冷冻处理,以免样品析晶和/或污染这尤其困难,因为这种低温冷冻样品会像磁铁一样吸引附近的湿气和灰尘。研究人员和制造商付出巨大的努力来开发并提供解决方案,以便在工作流程的不同步骤中保证样品安全。 样品通常以四个为一组存储在网格盒内,而网格盒又保存在大型液氮(LN2)罐中的Falcon多孔试管中。还可以使用更为复杂的冰球系统。 转移并装载到样品架时,通常使用液态氮(LN2)。不幸的是,LN2往往会在一段时间后,因为空气中的水分而产生结晶冰污染。在转移时,这些冰晶可能会附着到网格上,干扰随后的切片和成像过程。此外,LN2内部的能见度很低,因为它在不断移动,而且始终会有条纹。 因此,最好在LN2上部的气相部分装载并转移样品以保持冷冻条件,同时为装载步骤(图4)提供出色的可见性。 徕卡显微系统在提供GN2(气态氮)装载和转移设备方面拥有30多年的悠久历史。新的冷冻显微镜套件就在这些经验的基础上开发而成,同时融合众多客户的反馈意见打造出先进的转移舱和夹具系统。 图4:在冷冻显微镜套件转移舱的GN2(气态氮)环境中装载网格。转移舱的可见度在冷冻条件下不受干扰。 检查样品质量和靶分布 在冷冻工作流程中,一般而言,EM操作时间尤其宝贵,因此对样品进行早期质量检查至关重要。许多因素会关系到样品能否转移到下一个工作流程步骤,包括碳箔的结构完整性、玻璃化的质量(包括冰层的厚度及其分布)、目标细胞的存在、分布和可及性,以及目标结构的存在和定位。 所有这些参数均可通过基于相机的冷冻光学显微镜(例如THUNDER Imager EM Cryo-CLEM)或使用STELLARIS冷冻共聚焦显微镜上的相机模式来检查(图5)。 透射模式显示网格、箔膜和细胞质量,反射图像显示网格表面,尤其是呈现玻璃化质量和冰层厚度,而荧光图像可以提供有关不同靶蛋白的表达水平及其分布情况的信息。 图5:不同模式呈现出网格的完整性以及靶分布。A——网格表面的反射图像可以显示碳膜或二氧化硅层的缺陷以及冰层的厚度。B——绿色荧光(线粒体)。C——液滴分布以实现高精度关联D——通过Hoechst标记的细胞核E——所有模式的叠加图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 在LAS X Coral Cryo软件工作流程中,用户可以在引导下,通过不同图像模式对整个网格自动创建清晰的合焦概览图像。 标记标志点、薄片点以及液滴中心 为了关联冷冻LM(光学显微镜)的3D图像以及后续的冷冻FIB-SEM/TEM图像,首先需要获取网格的概览图像以便大致对齐两种模式的图像(图6)。这里,反射图像非常重要,因为它们类似于SEM图像,但也可以使用透射图像。中心标记以及其他标志点(例如碳层中的缺陷)有助于快速定位并对齐概览图。 图6:以不同模式获取整个网格的合焦概览图像,用于识别网格缺陷、对齐标记和靶分布。中心标记用实心箭头表示,二氧化硅层中的主要缺陷用空心箭头突出显示。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 其次,需要超分辨率的共聚焦3D图像。这些图像堆栈用于在潜在薄片位置的范围内执行高精度关联。完成概览图对齐后,可以找到3D共聚焦堆栈的正确位置以便后续进行高精度关联这样做的前提是必须提供图像相对于概览图以及相对于彼此的位置。这就是Coral Cryo软件工作流程之后的处理步骤(图7)。 图7:相机概览图像与共聚焦Z-堆栈相机和共聚焦图像的组合含有XY坐标位置,因此可以匹配。所有图像都包含在Coral Cryo软件工作流程期间创建的相关项目文件夹中。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 必须组合相机概览图像和超分辨率3D图像以检索靶区位置并在FIB-SEM上定义切片位置。这个步骤非常重要,因为在标准FIB-SEM中,无法看到荧光以及相应的靶区点位。 EM(电子显微镜)制造商近期研发出一种集成了FIB-SEM功能的荧光显微镜,可以作为在切片过程中通过检查荧光来提高工作流程的可靠性和准确性的一种绝佳选择。不过,这些系统并不具备必要的分辨率以及采集模式的灵活性,无法像单独的共聚焦系统那样实现精确的3D定位。 如何关联并检索薄片位置 作为常用的最低标准,研究人员使用LM图像的屏幕截图在EM上检索靶区的XY坐标。不幸的是,并排比较图像不仅费力耗时而且很容易出错,因此并不可靠。身为工作流程提供商,徕卡显微系统致力于通过THUNDER Imager EM Cryo-CLEM来改善这种情况。研究人员可以在图像上定位标志点和靶区标记,然后以开放EM格式的完整坐标集导出。首先,这个流程适用于2D图像,因此合乎逻辑的下一步骤就是提高分辨率并将坐标系扩展到3D坐标。 对于高精度关联和3D定位,目前广泛采用的是基于液滴的方法(Alegretti等人,2020;Klumpe等人,2021年;Bieber, A.,Capitanio, C等人,2021)液滴通常在玻璃化之前添加到细胞中,可在LM和EM中观察到,用于通过XYZ坐标对齐图像堆栈,作为图像数据相关性的基础,从而正确定位FIB切片窗口(图8)。 典型液滴的尺寸为1微米,完全呈球形,这使其中心坐标能够进行亚衍射拟合。通过SEM中的背散射电子,可以更清晰地观察到含有金属的微滴,从而将它们与大小相似的冰晶区分开来。优先选择液滴,使其荧光发射不同于实际靶的荧光发射,以便能够更好地分辨。 图8:3D共聚焦图像(左)和俯视SEM图像(右)的最大投影。荧光液滴(1微米)在两种模式中均可以观察到,因此可以用于对齐数据。SEM图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung和Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 要使用来自冷冻LM和FIB-SEM的3D数据,在冷冻LM的引导下,进行薄片制备,可以使用一款开源软件(3D关联工具箱,简称3DCT,Jan Arnold等人,2016)。 将冷冻LM图像载入到在FIB-SEM上运行的该软件中。二维LM概览图和SEM图像之间的三点关联用于初步定位。之后,使用离子束获取相关视场,并手动点击LM堆栈和FIB图像中的相同液滴图10显示了一张LM图像和一张FIB图像,其中的靶区点位以及液滴可以在定位软件中重现其排列组合。 图9:在LM和FIB图像中关联标记。左图:点击观察结构周围的液滴,并在3D图像中执行质心定义(白圈中的绿点)计算得到的位置随后投影到FIB图像(右图)上根据液滴标记,计算目标结构的位置并标记到FIB图像中(红圈中的红点)。离子束图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 该软件通过对X、Y、Z信号进行高斯拟合,精准确定液滴的中心。近期的改进增加了半自动液滴检测功能以及其他功能,从而更加方便地执行冷冻FIB工作流程。(SerialFIB, Klumpes等人,2021)。 在网格条上选择围绕最终目标结构的几处液滴,作为切片处理的坐标系。基本计算方法是考虑缩放、旋转以及平移之后的线性仿射变换最后,在LM图像中选择目标结构并叠加到FIB图像上。 根据目标结构的位置,就可以定位切片窗口(图10)。 图10:定位切片窗口左:离子束细胞图像,含有标记液滴和目标结构根据目标结构的计算位置,在所用FIB-SEM的切片软件中,交互定位上下切片窗口的位置(细薄条纹上方和下方的红色方块)。图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 Coral Cryo工作流程具有哪些优势? Coral Cryo软件工作流程旨在为基于液滴的靶区定位工作流程提供支持。它可以提供创建合焦相机概览图像所需的成像作业(图6和图7)。所有必要的自动对焦功能均可以正确调整并分配,并且可以标记潜在薄片位置,同时能够在定义的位置执行超分辨率共聚焦Z-堆栈。 在定位管理器(图11)中,可以确定所有必要的坐标标记,并且以开放格式(*.xml)提供。此类图像会自动保存,其数据格式可以导入任何FIB-SEM软件。 图11:Coral Cryo软件模块标记点、薄片和液滴标记均可以在软件工作流程中定义。反射图像中细胞的顶部和底部坐标值可以作为在FIB SEM中正确计算靶区3D位置的额外参考。本文前述部分图像中的相同细胞经过突出显示,用于标记定义。 对齐标记用于使用相机概览图像对标记点进行初步的粗略对齐。薄片标记具有双重用途:作为进行超分辨率共聚焦3D扫描的位置标记,或者在图像采集后,作为靶结构的精确3D标记。亚像素插值确保该阶段可以在3D图像内进行高精度定位。最后,插值方法还用于标记液滴坐标,以便在FIB-SEM上进行后续液滴关联。 冷冻FIB切片 进行必要的关联并设置切片窗口,薄片位置通常会粗略切薄至大约1微米,随后进行最终的抛光步骤以达到电子透明(图12)。 图12:目标薄片的离子束图像以及SEM俯视图图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:10微米。 采用两步方法的原因在于冰污染和/或切片材料可能会沉积在薄片上。为避免在最终薄片上发生冰污染,建议采用快速抛光工艺(Schaffer M.等人,2017)。还可以采用开源的商业软件,以自动方式进行切片。 冷冻透射电子显微镜 进行冷冻FIB切片之后,含有薄片的网格转移至冷冻TEM,通过对网格(连同薄片)逐渐倾斜,采集一系列断层扫描图像。图像经过计算处理以重建所记录体积的3D断层扫描图像。通过对样品的多个图像取平均值,可以降低固有噪点,从而对蛋白质或蛋白质复合物等颗粒获得更高分辨率的结构。这种处理方式称为亚断层图像平均(Wan和Briggs,2016;Zhang 2019)。从概念上说,这相当于通过单颗粒成像(SPA),在原位实现对大分子的亚纳米分辨率。 总 结 本文旨在表明冷冻共聚焦显微镜是冷冻工作流程中的一个重要组成部分,用于评估EM网格上玻璃化样品的质量和靶分布。在冷冻条件下记录的高分辨率共聚焦数据使科学家能够在3D荧光下识别目标结构。此外,3D体积可作为相关方法的参考,以便在FIB-SEM中检索靶结构进行切片,然后在冷冻TEM中进行电子断层扫描,以获得靶区的亚纳米分辨率图像。 Coral Cryo工作流程搭配新的共聚焦平台STELLARIS,再加上Coral Cryo软件,可以帮助新手用户创建网格概览图像、超分辨率3D图像以及精确的坐标标记,为后续的FIB切片和冷冻电子断层扫描奠定坚实基础。 参考文献:(上下滑动查看更多) 1.Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turoňová B, Karius K, Börmel M, Zhang X, Müller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M.: In-cell architecture of the nuclear pore and snapshots of its turnover. Nature. 2020 Oct 586(7831):796-800. doi: 10.1038/s41586-020-2670-5. Epub 2020 Sep 2. PMID: 32879490. 2.Arnold, J., Mahamid, J., Lucic, V., de Marco, A., Fernandez, J., Laugks, T., Mayer, T., Hyman, A. A., Baumeister, W., Plitzko, J. M., Biophysical Journal, Vol. 110, Feb. 2016, pp 860-869. 3.Bellare, J. R., Davis, H. T., Scriven, L. E. & Talmon, Y.: Controlled environment vitrification system: an improved sample preparation technique. J. Electron Microsc. Tech. 10, 87–111 (1988). 4.Bieber, A., Capitanio, C., Wilfling, F., Plitzko, J., Erdmann, P.S.: Sample Preparation by 3D-Correlative Focused Ion Beam Milling for High-Resolution Cryo--Electron Tomography. J. Vis.Exp. (176), e62886, doi:10.3791/62886 (2021). 5.Dubochet, J. & McDowall, A. W.: Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3–RP4 (1981) 6.Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J. ‐C.: Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237 (1982) 7.Frederik, P. M., Stuart, M. C. A. & Verkleij, A. J.: Intermediary structures during membrane fusion as observed by cryo-electron microscopy. Biochim. Biophys. Acta 979, 275–278 (1989). 8.Klumpe, S., Fung, Herman K. H., Goetz, Sara K., Zagoriy, I., Hampoelz, B., Zhang, X., Erdmann, Philipp S., Baumbach, J., Müller, C. W., Beck, M., Plitzko, J. M., Mahamid, J. A.: Modular Platform for Streamlining Automated Cryo-FIB Workflows. bioRxiv 2021.05.19.444745 doi: https://doi. org/10.1101/2021.05.19.444745 9.Mahamid J, Tegunov D, Maiser A, et al.: Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America. 2019 Aug 116(34):16866-16871. DOI: 10.1073/ pnas.1903642116. PMID: 31375636 PMCID: PMC6708344. 10.Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM.: Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J Struct Biol. 2017 197(2):73-82 doi: 10.1016/j.jsb.2016.07.010 11.Toro-Nahuelpan, M., Zagoriy, I., Senger, F. et al.: Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat Methods 17, 50–54 (2020). https://doi.org/10.1038/s41592-019-0630-5 12.Wan, W., Briggs, J. A. G.: Cryo-Electron Tomography and Subtomogram Averaging. Methods Enzymol. 2016 579:329-67. Doi: 10.1016/ bs.mie.2016.04.014. 13.Zhang, P.: Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol. 2019 Oct 58:249-258. Doi: 10.1016/j.sbi.2019.05.021. 相关产品 UC Enuity 超薄切片机 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • Science:冷冻电镜助力结构生物学发展
    图中展示的就是构成酵母线粒体大核糖体亚单位(yeast mitochondrial large ribosomal subunit)的各个组成蛋白质。Amunts等人根据利用低温冷冻电镜技术获得的酵母线粒体大核糖体亚单位及完整核糖体的结构图谱,一个个地合成出了上述这些组分蛋白。这个经过不断完善的结果与根据X线晶体成像技术获得的原子模型非常吻合。  先进的低温冷冻电镜(cryo&ndash electron microscopy)技术让我们获得了大量高分辨率的蛋白质结构图。  结构生物学(structural biology)研究的主要目的就是获得用于构成活体细胞的各种各样大分子(macro-molecules)生物组件的高分辨率图像信息。该研究主要依赖的技术手段就是X线晶体照相术(x-ray crystallography)以及核磁共振光谱分析检测技术(nuclear magnetic resonance spectroscopy, NMR spectroscopy)。不过这两种技术都有各自的局限性,比如X线晶体照相术只能够对生长得极为有序的三维结晶进行观察,而核磁共振光谱分析检测技术则要求被检测样品的纯度非常高,不能够有重叠峰出现。有很多生物大分子相互结合、组装之后形成的都是非常大的,或者非常不稳定、比较罕见的结构,都不太适合用上述这两种技术进行分析和检测。单粒子电子显微镜技术(Single-particle electron microscopy, EM)则能够观察少量非结晶样品,获得高分辨率的结构图谱。  使用单粒子电子显微镜技术可以获得任意排列方向的分子复合体( molecular complexes)的结构图像。该技术会从每一幅图像中选出单个的复合体(粒子),然后借助计算机来判断它们的排列方向。最后将各个不同视角的图像组合在一起,得到该分子的三维立体图像。不过由于高能电子束会对生物大分子起到破坏作用,打断分子内的共价键(covalent bonds),并且诱发一系列级联式的有害化学反应,所以这种放射性损伤效应给单粒子电子显微镜技术带来了极大的局限性,在实验时用来记录影像的电子束的能量受到了非常大的约束。  20世纪80年代,Dubochet等人报道了一种单粒子电子显微镜技术革新成果,将该技术引向了高分辨率成像之路。他们在低温条件(cryogenic conditions)下将待检样品放在一层薄薄的、透明的冰上用单粒子电子显微镜进行成像观察。这种方法就是所谓的&ldquo 低温冷冻电镜技术(cryo&ndash electron microscopy, cryo-EM)&rdquo ,他能够对含水的粒子(hydrated particles)进行直接成像。低温除了具有这些优势之外,还能够减少电子束对样品产生的放射性损害。不过电子束的照射量还是不能够太大,只有这样才能够清晰地反映出分子结构的细节,获得高质量的、低信噪比(signal-to-noise ratio, SNR)的三维结构图像。由于将每个分子的多张图像信息组合在一起能够更进一步地降低图像的信噪比,所以,对数万、乃至数百万个蛋白质复合体进行分析就会产生数十万张图像。  不过依靠低温冷冻电镜图像来判断生物大分子的结构给计算机处理分析工作带来了一大挑战。在借助多图像组合平均手段来改善信噪比时,必须知道每一颗粒子的方向,但是由于信噪比太低,我们对这些粒子方向的判断又明显感觉准确性不够,这就形成了一个矛盾。要解决这个问题,最成功的方法就是&ldquo 重复(iterative)&rdquo ,质量高的图像能够给出更准确的方向信息,而这些方向信息又可以帮助我们获得更高质量的图像。  直到最近这一段时间,绝大部分单粒子低温冷冻电镜图片的分辨率都非常低,连10埃都达不到,所以很多人都将这种技术嘲笑为 &ldquo 一团浆糊学(blob-ology)&rdquo 。蛋白质二级结构中的&alpha 螺旋(&alpha helices)结构只有在分辨率达到9~10埃,甚至更高分辨率的情况下才能够看清 而另外一种二级结构,&beta 折叠(&beta strands)结构则只有在分辨率达到4.8埃以上时才能够看清。达到3.5埃的分辨率,就可以为蛋白质或核酸等生物大分子构建原子模型(atomic models),将各种目前已知的核酸结构或氨基酸结构填入其中了。如果要了解蛋白质复合体形成时发生的各种化学变化,就必须获得原子级别分辨率的细节信息。低分辨率的结构信息也不是一无是处,当在与高分辨率结晶图像相互配合、印证,用来判断组成复合体的各种不同组分时更加有意义。因此,即便分辨率较低,低温冷冻电镜技术也还是帮助科学家们解决了很多生物学难题,比如解析出了与其他辅因子共同结合的核糖体的结构问题,以及构象只能够维持片刻时间的核糖体瞬时结构等问题。  在过去的三十年,低温冷冻电镜设备取得了长足的进展,在样品制备、成像、计算机处理等实验技术方面有了一定的提升,这些使低温冷冻电镜成像技术的分辨率有了极大的提高。高度连贯的场发射电子枪(Highly coherent feld-emission electron guns)也使保留焦点以外的图像的高分辨率信息成为可能,这对于单粒子低温冷冻电镜非常有帮助。这种技术创新帮助科研人员获得了20面体病毒粒子(icosahedral virus particles)的图像,而且清楚地看到了其中的&alpha 螺旋结构。由于这种病毒是高度对称的,所以比较容易生成高质量的、最佳分辨率的低温冷冻电镜图像。  随着研究人员不断地开发出更稳定的载物台、更好的显微镜抽真空技术,以及自动化的数据采集系统,这一切的技术进步都让我们能够获得更多、质量更好的电镜图像,因此才能够得到高质量的、能够对其中的氨基酸侧链进行解析的二十面体病毒粒子三维结构图像,以及分辨率达到5埃的核糖体结构图像。不过在对更小一点的非对称粒子的解析工作中还是很难解析到&alpha 螺旋结构。  最近在低温冷冻电镜设备领域取得的最大进展就是引入了直接检测设备(direct detector device, DDD)照相机。这种DDD设备能够直接在传感器上记录图像,从而绕过了传统的、需要闪烁设备和光纤的电荷耦合装置(charge-coupled device, CCD)探测器,以及其他一些在用摄影胶片(photographic film)记录图像时必须要经过的繁杂的处理过程。因此,图像的信噪比也得到了极大的提升。在分辨率方面的提升也与之前的一些革新手段相当。在使用了DDD设备之后,还有可能在电镜图像中直接构建原子模型,甚至能够在最具挑战性的检测工作中进行&alpha 螺旋和&beta 折叠的解析工作。  DDD设备的引入还在另外一个方面对低温冷冻电镜的图像起到了改善作用,凭借的就是该设备极快的读出速度(readout rate),该读出速度能够发现被冰包裹的被观测粒子在电子束中的运动情况。使用DDD设备不仅能够发现这种问题,还能够解决这种问题,因为现在的电镜就好像是一台摄像机,可以拍摄一段录影,记录整个过程,而不再像以前那样,只是一台照相机,只能够拍摄出一张张固定的图像。  有了高质量的图像,又有可以借助计算机对因为电子束而移位的粒子进行矫正的工具,我们就可以获得大量高质量的低温冷冻电镜图像,比如本文开头展示的那张分辨率高达3.2埃的线粒体核糖体亚单位图像,以及下图那张分辨率达到3.3埃的20S蛋白酶体图像和哺乳动物感受器通道TRPV1的图像。 TRPV1的图像尤其值得一提,因为TRPV1蛋白是一种膜蛋白,只有四级对称性(four-fold symmetry),比核糖体要小一个数量级。所以之前大家一直都认为很难用低温冷冻电镜对该蛋白进行结构解析的研究工作。有了 DDD成像技术、更好的计算机辅助和生物化学技术之后,Liao等人终于在某些区域获得了分辨率高达3.4埃的图像,从而有机会开展原子建模工作,在整个结构生物学(structural biology)发展历史上写下了重重的一笔。  单粒子低温冷冻电镜结构解析图。左图展示的是随机排列的蛋白质粒子在电镜下的图像,这些图像经过计算机处理之后可以用来计算大分子复合物的三维立体结构图像。由于有了DDD技术,左边的这些图像信息就可以构建出右图中展示的原子模型。图中展示的就是20S蛋白酶体的结构图。  乍一看上去,这些成果都好像是特例。比如核糖体里由于含有大量的RNA,所以是一幅高度紧缩的图像,非常紧密,不太容易受到辐射的损失。而20S蛋白酶体拥有14级对称性,所以也非常适于进行低温冷冻电镜成像操作。即便是TRPV1通道蛋白也都拥有一定的内部对称性。但是最近刚刚成功获得的一幅电镜图像就完全不具备上述这些&ldquo 先天优势&rdquo ,这就是分辨率达到4.5埃的人&gamma 分泌酶复合物(&gamma -secretase)的结构图。人&gamma 分泌酶复合物是一种更小的膜蛋白复合体,完全没有对称性。该成果说明,只要待测样品能够准备得恰当,尽可能减少其在结构上的异质性,我们就完全有可能利用低温冷冻电镜技术获得各种蛋白质的三维立体结构图。  这些科研新进展恰好出现在低温冷冻电镜技术的低谷期。最近刚刚获得的HIV-1病毒糖蛋白三聚体结构模型就引起了极大的争议,因为多位电镜专家都坚持认为,这个结构模型不仅在结构上不准确,就连用来进行分析的原始图像也都没有真实地反映该三聚体的真实信息。这场争论也让我们意识到,我们目前的确没有太多的手段对低温冷冻电镜图像的质量进行验证,虽然有一些手段,但是都没有得到广泛的推广和应用,另外也缺乏一套规范,图像的信号非常差,所以也很难判断最终得出的结构图是否就是被测样品的结构。这是一个非常值得关注的问题,不仅仅是因为这次的HIV-1病毒糖蛋白三聚体结构模型具有重大的科研价值,比如在HIV疫苗的开发工作中会起到非常重要的指导作用等。  在结构解析方面还有大量的工作需要我们去完善:方便使用的显微镜相板(phase plates)有助于更好地聚焦,获得高对比度的图像,就好像相衬光学显微镜(phasecontrast light microscopy)那样,这能够让对图像进行信息采集的工作更加简便,而且质量更高。另外在探测器方面也可以进一步提高图像的质量。即便是最先进的探测器也达不到符合理论要求的表现。各种用来进行图像分析的计算机软件,比如用来矫正电子束相关移位的软件,或者对各种粒子进行分类、解读的软件也将会变得越来越强大。新型的样品承载系统会进一步减少电子束对样品的位移作用。更加可靠的、更加强大的验证工具可以让我们更有信心,保证不会纳入质量不高的原始图片素材。虽然现在还不知道低温冷冻电镜技术未来会走向何方,但是有一点是可以肯定的,那就是低温冷冻电镜图像绝对不再是一团浆糊了。  原文检索:  Martin T. J. Smith, John L. Rubinstein. Beyond blob-ology. Science 8 August 2014 DOI: 10.1126/science.1256358
  • 冷冻电镜,两篇Science!
    Science:施一公团队首次揭示人源IgM-B淋巴细胞受体组装的分子机制北京时间2022年8月19日,西湖大学施一公团队在《科学》(Science)上发表了题为《人源IgM B细胞受体的冷冻电镜结构》(Cryo-EM structure of the human IgM B cell receptor)的研究论文。该论文首次报道了人源IgM同种型B细胞受体(IgM-BCR)的高分辨率三维结构,揭示了膜结合的IgM(mIgM)与Igα和Igβ异源二聚体复合物组装的分子机制,从而回答了B细胞受体如何组装这一重要科学问题,同时也为基于B细胞受体的免疫疗法提供了关键的结构基础。B细胞也叫B淋巴细胞, 是适应性免疫系统的重要组成部分。它在抗原刺激下可分化为浆细胞和记忆B细胞:浆细胞可合成和分泌抗体,是人体的免疫屏障之一;记忆B细胞则可以“记录”下感染信息,并在体内长期存在,以备不时之需。B细胞需要抗原与B细胞受体(BCR)的结合,才能进行增殖和分化,产生浆细胞和记忆细胞。这就好比,如果B细胞要组织一场免疫战斗,入侵的抗原是敌人,B细胞受体(BCR)则是探知敌人虚实的先锋。B细胞的“生命周期”概略示意图早在1990年,德国马普所的Michael Reth实验室就鉴定发表了BCR的组分,在之后的三十多年中,人们对BCR胞外区如何识别各种抗原并激活B细胞信号通路进行了深入的研究。BCR由膜结合的免疫球蛋白(mIg)和Igα/Igβ异二聚体组成。其中mIg负责与抗原结合,Igα/Igβ参与信号传递。抗原结合以后,BCR在细胞膜表面寡聚化,Igα和Igβ被Lyn激酶磷酸化,之后激活下游信号通路。BCR被认为是治疗B细胞恶性肿瘤的重要治疗靶点。例如,Polatuzumab vedotin是一种抗体偶联药物,该药物可以结合BCR中的Igβ组分,释放偶联的毒素分子,对B淋巴瘤细胞进行精准杀伤。尽管BCR十分重要,但科学家一直未能看清其结构。一旦获知BCR的结构信息,对于理解B细胞活化以及针对该复合物进行抗体药物的开发,将具有很高的潜在价值。BCR根据mIg类型的不同,可以分为五种类型,即IgM、IgD、IgG、IgA和IgE。此次施一公团队的研究对象,正是其中的IgM型。实验过程中,他们首先将IgM-BCR的四个组分的cDNA进行密码子优化并克隆到表达载体上,接着通过共表达内质网潴留蛋白pERp1促进IgM二硫键的形成,帮助其正确折叠。之后,在蛋白纯化时加入抗体偶联药物Polatuzumab的Fab片段,最后通过冷冻电镜解析了第一个人源IgM同种型B细胞受体复合物3.3 埃(1埃等于0.1纳米)的高分辨率结构(图1)。图1 IgM-BCR复合物的整体结构图该IgM-BCR复合物结构包含一个mIgM和一个Igα/Igβ,它们以 1:1 的化学计量比非共价结合。在Igβ的上方,观察到了Polatuzumab的Fab片段的电子密度,证实了Polatuzumab结合在Igβ氨基末端的柔性区域。在IgM-BCR的胞外区域,重链的胞外域与 Igα/Igβ的胞外域紧密堆叠。在近膜区域,两条重链中的一条通过连接肽(linker)穿过由 Igα/Igβ包围的中空结构。在跨膜区域,mIgM和Igα/Igβ的跨膜螺旋(TM)形成一个四螺旋束,通过跨膜螺旋之间的氢键来稳定构象(图2)。图2 IgM-BCR复合物组装的细节图这样的结构特征暗示了mIgM和Igα/Igβ在细胞内通过共折叠的方式形成复合物。施一公团队通过体外pull-down和体内免疫共沉淀(co-IP)实验, 验证了IgM-BCR的组分通过共折叠的方式在细胞内形成复合物的猜想,同时揭示了TM和linker在复合物组装中的重要作用。除此之外,该结构揭示了胞外域上的 14 个糖基化位点,并发现三个潜在的表面抗体结合位点,可能有助于用于疾病干预的治疗性抗体或微型蛋白质的理性设计(图3)。和已经批准的抗体偶联药物Polatuzumab vedotin一样,这些特异性结合IgM-BCR的抗体或微型蛋白质,具有治疗B细胞淋巴瘤的潜力。图3 IgM-BCR糖基化位点分布图Science的审稿人对该项研究给予了高度评价:“这是B细胞生物学的一大突破,也是一项非常了不起的成就。”西湖大学生命科学学院施一公教授及其团队博士后宿强为本文的共同通讯作者。西湖大学生命科学学院博士后宿强、清华大学生命科学学院博士生陈梦莹以及西湖大学访问学生、郑州大学博士生史嫣为本文的共同第一作者。西湖大学生命科学学院助理研究员张晓峰、博士后黄高兴宇、博士生黄邦栋,郑州大学刘章锁教授、刘东伟教授,参与了本研究的部分工作。电镜数据采集于西湖大学冷冻电镜平台,计算工作得到西湖大学高性能计算平台的支持。本研究获得了科技部、国家自然科学基金委、西湖教育基金会、西湖大学、西湖实验室的相关经费支持。Science:哈工大黄志伟课题组发文揭示人B细胞受体复合物组装的分子机制8月18日,哈尔滨工业大学生命学院/生命科学中心黄志伟课题组在《科学》(Science)上发表题为《两种亚型的人类B细胞受体的冷冻电镜结构》(Cryo-EM structures of two human B cell receptor isotypes)的研究文章,揭示了BCR复合物亚基的组装、识别机制,以及发现不同亚型BCR尽管在膜内具有保守的组装模式,然而在胞外却具有不同的组装模式。人类适应性免疫细胞(T细胞和B细胞)在病原感染、癌症发生以及自体免疫疾病中起着关键作用。T、B细胞分别通过T细胞受体(TCR)和B细胞受体(BCR)识别抗原信号,把信号跨膜传递至胞内,激活T、B细胞的免疫反应。T、B细胞受体属于一类由多个蛋白组成的最复杂的细胞受体,对T、B细胞的发育、分化、功能起着至关重要的作用。TCR和BCR复合物信号转导,免疫激活的结构基础与分子机制问题一直是免疫学领域的重要基础科学问题。人IgG-和IgM-BCR复合物结构人类B细胞受体有5种亚型,在该研究中,该课题组解析了人IgG和IgM两种亚型的BCR复合物结构,BCR复合物结构包含了一个膜结合形式的免疫球蛋白(mIg)同源二聚体,用于识别抗原,以及一个膜结合形式的Igα/β(CD79α/CD79β)异二聚体,用于信号传递(化学计量比为1:1)。其中,mIg二聚体包含了Fab和Fc结构域、连接肽(CPs)和跨膜(TM)螺旋,Igα/β结构由两个胞外Ig样结构域、CPs和TM螺旋组成。IgG和IgM-BCR复合物的组装分别由胞外的IgG-Cγ3和IgM-Cμ4与Igα/β的Ig样结构域,以及连接肽、跨膜螺旋承担。课题组通过两个亚型的结构比较发现,mIgG和mIgM的跨膜螺旋区通过保守的疏水和极性作用与Igα/β 结合。相比之下,在胞外区域,IgG-Cγ3和IgM-Cμ4分别通过“首尾相连”(head-to-tail)以及“肩并肩”(side-by-side)的模式与Igα/β的Ig样结构域结合,其中,Igα的CD loop 旋转了90度,分别与Cγ3和Cμ4结构域结合。结构上观察的不同亚型组装模式是否和活性有关值得进一步研究。人IgG-和IgM-BCR复合物结构比较分泌型sIgM通常形成五聚体,但在膜结合的静息态BCR上只观察到IgM的单体状态。结构分析显示Igα的Ig样结构域和膜结合的IgM-Cμ4完全重合,从而解释了膜结合的静息态IgM-BCR为什么处于单体状态。BCR的激活通常伴随着BCR多聚体的形成,静息状态下,由于Igα/β的Ig样结构域与Cμ4或Cγ3结合,在空间上阻断了mIg寡聚化,而当抗原结合后可能会对Fab结构域施加机械力,以触发mIg_Fc的结构变化,从而释放被Igα/β占据的Cγ3或Cμ4的寡聚体界面,导致BCR分子形成寡聚体启动下游信号转导,其潜在机制还有待进一步研究。电子密度分析分别在IgG和IgM-BCR上清晰地鉴定出6个和14个糖基化位点。分泌型sIgM和膜结合型mIgM-BCR复合物结构比较上述数据不仅解析了长久以来关于BCR结构与组装机制之谜,且对认识BCR启动免疫反应的分子机制,以及开发靶向BCR的免疫疗法用于治疗相关疾病提供了关键结构基础。同期《科学》(Science)“观点(Perspective)”栏目发表了评论文章《揭开B细胞受体结构面纱——分子结构为理解和控制B细胞受体活性提供了路径》(Unveiling the B cell receptor structure - Molecular structures provide a road map for understanding and controlling B cell receptor activation),对该研究成果进行了介绍。近年来,在人免疫细胞受体的结构与分子机制研究方面,黄志伟课题组首先通过解决TCR、BCR复合物的动态复杂性等技术问题,解析人TCR复合物的三维结构,揭示TCR复合物的亚基组装、识别机制(Nature, 2019)。课题组通过进一步解析高分辨率的TCR复合物结构,发现TCR跨膜区域存在“胆固醇结合通道”(Molecular Cell, 2022),胆固醇分子结合于该通道抑制TCR激活,通过去除胆固醇分子引起TCR组成型激活,揭示了TCR激活的结构基础,从而提出TCR的“胆固醇——门栓”控制理论,为理性设计靶向TCR调控T细胞活性的免疫疗法提供理论依据。哈尔滨工业大学生命学院/生命科学中心黄志伟教授为本论文的通讯作者。生命学院2021级博士研究生马新宇、朱玉威副研究员、董德博士、陈彦博士为该论文的并列第一作者。生命学院2021级博士研究生王书博、张帆研究员、郭长友博士等参与该研究的部分工作。本项目受到国家自然科学基金委、腾讯科学基金、哈工大青年科学家工作室等基金的资助。
  • 热点聚焦|仪器论坛“冷冻电镜”版面上线,版主专家招募开启
    p  strong仪器信息网讯/strong 冷冻电镜,是用于电镜的超低温冷冻制样及传输技术(Cryo-EM),可实现直接观察液体、半液体及对电子束敏感的样品,如生物、高分子材料等。2017年诺贝尔化学奖授予了三位杰出的生物物理学家Jacques Dubochet、Joachim Frank和Richard Henderson,以表彰他们在Cryo-EM发展过程中的推动性贡献。此次获奖也将人们对Cryo-EM这项技术的关注推向新的高度。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/66bc40e7-3748-4e22-973e-016b023580af.jpg" title="002.jpg" alt="002.jpg"//pp  由于针对生物样品,Cryo-EM技术克服了传统电镜技术真空环境、电子辐射损伤等问题,使得该技术在结构生物学领域得到广泛应用与发展。随之,一批高质量研究成果相继发表前提下,国内科研机构对Cryo-EM技术、设备的引进配置也不短涌现:6月份,武汉病毒所2789万元采购1套日本电子冷冻透射电镜 10月份,哈尔滨工业大学6633万元采购2套赛默飞冷冻电子显微镜系统 11月份,清华大学和上海交通大学先后发布招标公告,分别拟8352万元与7665万元采购两套冷冻电镜系统。值得一提的是,11月19日,南方科技大学冷冻电镜中心揭牌,中心将安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。/pp  在此背景下,聚焦仪器行业关注热点,仪器信息网仪器论坛特别开设“冷冻电镜(Cryo-EM)”版面,并于即日正式上线。旨在促进Cryo-EM学术交流和成果传播,为相关专家学者、一线用户等提供交流讨论在线平台。span style="color: rgb(255, 0, 0) "欢迎冷冻电镜专家学者前来分享互动!/spanspan style="text-decoration: underline color: rgb(0, 176, 240) "【/spana href="https://bbs.instrument.com.cn/forum_711.htm" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "版面链接/span/aspan style="text-decoration: underline color: rgb(0, 176, 240) "】/span/pp  同时,为更好促进Cryo-EM技术交流、针对网友不同提问深入探讨,“冷冻电镜(Cryo-EM)”span style="color: rgb(255, 0, 0) text-decoration: none "版面的版主专家招募活动正式开启,欢迎自荐或推荐合适人选!/span/pp  span style="color: rgb(255, 0, 0) "【申请条件】/span/pp  1. 熟悉冷冻电镜的操作或样品制备等,具有一定的专业技术水平 /pp  2. 乐于分享经验并解答版友求助问题。/pp  span style="color: rgb(255, 0, 0) "【版主专家职责】/span/pp  1. 活跃论坛,规范版面秩序 /pp  2. 发起话题,组织活动,引导讨论 /pp  3. 积极解答版友的求助帖 /pp  4. 发现推荐新版主、专家。/pp  span style="color: rgb(255, 0, 0) "【版主专家福利】/span/pp  1. 仪器信息网科学仪器发展年会ACCSI(科学仪器行业年度盛会)针对版主、专家定向邀请,免费参会 /pp  2. 仪器论坛协助版主、专家发展论坛个人品牌,塑造个人形象,提升版主、专家在科学仪器行业声望 /pp  3. 仪器论坛每季度会进行优秀版主、专家评选,不仅有现金奖励,更会提供专属证书,为版主、专家证明荣誉 /pp  4. 仪器信息每年举办的小蜜蜂奖励金评选(科学仪器行业内,对实验员名利双收的奖励),会着力关注用户在论坛中的表现,仪器论坛优先举荐合格的版主、专家。/pp  span style="color: rgb(255, 0, 0) "【申请方法】/span/pp  方法一:加微信xyz4077(小叶子)/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/174fd508-0f9f-461d-b0d9-0be6e7cfdb1d.jpg" title="000.jpg" alt="000.jpg"//pp  方法二:填写表单——a href="http://lengdong.mikecrm.com/RSZCB8x" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "仪器信息网论坛冷冻电镜版面版主专家招募链接/span/a/p
  • 我国科研人员在冷冻电镜解析神经突触超微结构方面取得重大突破
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/e2f81b1e-e30b-4ff6-8cc6-54a29e2ec276.jpg" title="20180211094445855.jpg"//pp  记者10日从中国科学技术大学获悉,该校科研人员在利用冷冻电镜解析神经突触超微结构方面取得突破,解密了神经突触“黑匣子”。/pp  国际学术期刊美国神经科学学会会刊《神经科学期刊》(《Journal of Neuroscience》)近日以封面形式报道了该项研究成果。/pp  突触是大脑行为、意识、学习与记忆等功能的最基本结构与功能单元,同时也是多种脑疾病发生的起源。精确解析突触的分子组织架构及其在神经活动过程中的变化,被认为是解密大脑奥妙的最直接有效的方法,也是神经科学中最基础的研究工作之一。/pp  早期,生化与分子生物学、电生理学等研究发现了突触中的各种大量分子和细胞器组份,并揭示了突触的各种功能特性和可塑性规则。然而,由于研究手段的局限,突触中的这些不同组件是如何组织成复杂的机器来执行不同的功能,还远远没有充分观察和解析。/pp  中国科学技术大学合肥微尺度物质科学国家研究中心与生命科学学院毕国强、刘北明与周正洪教授合作,利用最新发展的冷冻电子断层三维重构技术(cryoET),结合自主研发的冷冻光电关联显微成像技术,实现了对中枢神经系统中两类最主要突触的定量化分析。通过将大鼠的海马神经元培养在冷冻电镜的特型载网上,课题组获得了一系列完整突触在近生理状态下的三维结构。/pp  结合定量分析手段,首次报道了抑制性突触的均匀薄片状突触后致密区结构,并发现两类突触中均存在椭球状突触囊泡,结束了关于两类突触在突触囊泡和突触后致密区形态精细结构上的由来已久的争论。/pp  随后,课题组进一步获得了突触在分子水平的精细组织架构,实现了在突触原位直接观察单个神经递质受体蛋白复合物及其与支架蛋白的相互作用。/pp  这是当前国际上首次利用冷冻电镜技术对完整突触进行系统性定量分析。该工作一方面推动了对突触超微结构与功能这一“黑匣子”的解密,另一方面为突破冷冻电镜技术在复杂细胞体系中原位解析生物大分子复合物的组织结构这一技术难题奠定了基础。/p
  • 日本电子发布新型冷冻电镜JEM-3300:速度、操作、通量全面升级
    仪器信息网讯 1月22日,日本电子株式会社(JEOL Ltd.) 总裁兼首席运营官Izumi Oi宣布将于2021年1月推出一款新型冷场发射低温电子显微镜(cryo-EM)——CRYO ARM™ 300 II (JEM-3300)。此款新型冷冻电镜基于“快速、易于操作、获得高对比度和高分辨率图像”的理念而开发。产品开发背景近年来,利用冷冻电镜进行单颗粒分析(SPA)分辨率的显著提高使单颗粒分析成为蛋白质结构分析的重要方法。为了应对这一市场需求,日本电子在2017年推出了CRYO ARM™ 300,配备了提高分辨率的冷场发射枪(Cold FEG),及用于装载多个样本的低温台,为单颗粒分析持续提供一流的分辨率。然而,以往冷冻电镜单颗粒分析过程中,样本筛选和图像数据的采集是相互独立的操作流程,因此需要多台电子显微镜来实现。这一问题给冷冻电镜用户带来巨大的运营成本。因而,用户需要一款能够在一台设备上即可实现从样本筛选到图像数据采集的整个工作流程的冷冻电镜。此外,为了让各类用户都能使用冷冻电镜,让新手和专业用户都能顺利操作显微镜,还需要提高冷冻电镜的易用性。此背景下,为满足以上需求,日本电子开发出一种新型冷冻电镜——CRYO ARM™ 300 II。与之前的CRYO ARM™ 300相比,此款冷冻电镜可进行高质量数据的快速采集、操作简便,并在通量方面有大幅提升。主要特点1. 通过最佳电子束控制实现高速成像为支持从样本筛选到图像数据采集的整个工作流程,提高图像数据采集的吞吐量至关重要。在CRYO ARM™ 300 II中,样品台的精确移动与优异的电子束移动性能相结合,用于高速数据采集。该系统具有出色的电子束控制性能,即使在电子束发生偏移的情况下,也能最大限度地减少引起彗差的电子束倾斜每天拍摄的显微照片数量此外,独特的“Koehler mode”照射模式允许均匀电子束照射到样品的特定位置,从而能够从更小的区域获得更多的图像信息。这些新技术使得CRYO ARM™ 300 II的吞吐量是CRYO ARM™ 300的两倍甚至更高。Koehler mode”照射模式没有干涉条纹,消除了电子束对不用于成像区域的损害,并允许您从更小的区域获得更多的图像2. 提高了高质量图像采集的硬件稳定性在执行单颗粒分析时,尽管获取大量图像可以提高吞吐量,但这还不够。需要从少量的图像中重建高分辨率的数据,这是通过高图像质量来实现的。为此,CRYO ARM™ 300 II配备了一种新型冷场发射枪(cold FEG)。该FEG此前已被配置到2020年发布的高端原子分辨率分析电子显微镜GRAND ARM™ 2中。与GRAND ARM™ 2类似,这种新型冷场发射枪产生高度稳定的探针电流。CRYO ARM™ 300 II还配备了新的柱内 Omega 能量过滤器,具有出色的稳定性。这种新的冷场发射枪和新的Omega能量滤波器使用户能够获得超高的信噪比图像。3. 系统升级后可操作性更高CRYO ARM™ 300 II包括各种系统改进。显微镜配备了新的JADAS (JEOL低温电子显微镜自动数据采集系统)软件(升级至第4版),用于执行单颗粒分析。此JADAS 4软件针对新手用户开发,为数据采集提供了更好的可操作性。新的Omega滤波器采用了自动自我调整系统,以减少日常维护。该冷冻电镜的样品台具有良好的位置再现性。即使用户在显微镜柱和样品存储之间来回传输样品,仍然可以使用整个样品网格(全局图)的初始低倍图像。在数据采集的短暂停止期间,也可以停止图像数据采集并快速筛选样本网格。自动标本交换系统的特点是可存储多达12个样品。样品网格可以在数周或更长的时间内保持清洁,且样品不会受冰污染。JADAS 4系统界面流程无污染的样品储存和移除,栅格可保持清洁数周或更长时间主要参数Electron gunCold field emission gun (New Cold FEG)Standard accelerating voltage300 kV, 200 kVEnergy filterIn-column Omega energy filter (New Omega Filter)Maximum specimen tilt angle±70°Specimen storageUp to 12 specimens can be held.AccessoryHole-free phase plateOptionsJEOL Automated Data Acquisition System for Cryo-EM (JADAS) and others相关电镜图赏析GroELGroEL structure at 1.98 Å resolution achieved by only 504 micrographs, a dramatic improvement from 3.1 Å resolution from 1,883 micrographs in a previous study. (as of Oct. 26, 2020 at EMDB)Data courtesy of Dr. Junso Fujita at Osaka UniversityHemoglobinCryo-electron micrograph (left), 3D density map (center) and fitted atomic model (right) of human hemoglobin obtained by high speed data collection, 850 movies per hour.Specimen courtesy of Dr. Miki Kinoshita at Osaka UniversityPhotosystems I2.5 Å resolution maps of the photosystem I trimer from Acaryochloris marina viewed from the stromal side perpendicular to the membrane plane (left) and from the side of the membrane plane (right).Data courtesy of Dr. Koji Yonekura at RIKEN, Spring-8 Center.CatalaseElectron diffraction pattern of a thin catalase crystal acquired with Omega filter showing clear diffraction spots visible to ~2.1 Å along the diagonal axis.Data courtesy of Dr. Koji Yonekura at RIKEN, Spring-8 Center.ExosomeCryo-electron tomogram of isolated exosomes with a hole-free phase plate. The tomogram was obtained from micrographs of -60° to +60° tilt range at 2° steps.Specimen courtesy of Dr. Naoomi Tominaga at National Cancer Center Research Institute and The University of Tokyo.
  • Science封面:AI与冷冻电镜揭示「原子级」NPC结构,生命科学突破
    近日,《Science》杂志以封面专题的形式发表了 5 篇论文,共同展现了通过 AI 技术来揭示人类和非洲爪蟾的核孔复合体(NPC)结构。开始正文之前,我们先来看一张图片,在下图中,很明显可以看出,图的右半部分所代表的信息更加丰富,结构也更清晰。而左半部分 2016 年的图,则结构较为单一,代表的信息比较少:其实上面展示的是核孔复合体(NPC)图像。核孔复合体,由约 1000 个蛋白质亚基组成,担负着真核生物细胞核与细胞质之间繁忙的运输大分子的任务,也是其连接胞质和细胞核的唯一双向通道。除了协调运输外,NPC 还组织必要的转录、mRNA 成熟、剪接体和核糖体组装等重要生命活动。NPC 强大的作用,已然成为疾病突变和宿主 - 病原体相互作用的关键点。得益于低分辨率下全核孔结构以及高分辨率下核孔组成结构技术的发展,细胞核孔受到越来越多的关注。然而,利用这些信息正确组装 30 多种不同蛋白质副本,并构建高分辨率的三维结构,一直是一项艰巨的挑战。近日,《Science》杂志以封面专题形式发表了 5 篇论文,其中 3 篇论文共同揭开了人类核孔复合体的近原子分辨率冷冻电镜结构,另外两项研究通过非洲爪蟾呈现了脊椎动物核孔复合体的单颗粒冷冻电镜图像。这篇封面文章将多项研究成果拼接在一起,形成的人类 NPC 图像接近原子级。论文地址:https://www.science.org/doi/pdf/10.1126/science.add2210这一研究成果建立在多项研究之上,包括数十年的生物化学重建、X 射线晶体学、质谱学、诱变和细胞生物学等。使用大幅度改进的冷冻电子断层扫描重建人类 NPC,并用人工智能技术精确建模组件。还有其他研究提高了单粒子冷冻电镜的分辨率,使脊椎动物 NPC 的二级结构元素和残基水平细节的可视化成为可能。分子组合丰富了我们对脊椎动物和人类 NPC 构建的理解——从旧的核支架到将各个部分连接在一起的连接蛋白,以及从核膜锚定到中央运输通道上方的细胞质丝。这里报告的研究成果,代表了实验结构生物学与人工智能的合作共赢,是人类探索生物微观世界的又一次胜利。另外,也证明了正在进行的分辨率革命,在我们寻求了解大分子组件的构造和设计原理方面,具有不可替代地作用。下图为 2022 年人类核孔复合体的横截面视图,新解析的成分包括对称核心(橙色)和细胞质细丝(黄色):五篇研究论文论文 1:《Architecture of the cytoplasmic face of the nuclear pore》论文地址:https://www.science.org/doi/10.1126/science.abm9129核孔复合体(NPC)是核质转运的唯一双向通道。尽管最近在阐明 NPC 对称核心结构方面取得了一些进展,但对于 mRNA 输出和核孔蛋白相关疾病的热点来说,不对称分布的细胞质表面仍然难以捉摸。加州理工学院等机构的研究者报告了通过结合生化重建、晶体结构测定、冷冻电子断层扫描重建和生理验证而获得的人类细胞质面的复合结构。虽然物种特异性基序在中央转运通道上方锚定了一个进化上保守、约 540 千道尔顿(kilodalton)异六聚体细胞质细丝核孔蛋白复合体,但 NUP358 五聚体束的附着取决于外套核孔蛋白复合体的双环排列。他们揭示的复合结构及其预测能力为阐明 mRNA 输出和核孔蛋白疾病的分子基提供了丰富的基础。人类 NPC 的细胞质面论文 2:《Architecture of the linker-scaffold in the nuclear pore》论文地址:https://www.science.org/doi/10.1126/science.abm9798尽管人们已经可以确定 NPC 对称核心中结构化支架核孔蛋白的排列,但它们通过多价非结构化接头核孔蛋白的内聚性仍然难以捉摸。通过结合生化重建、高分辨率结构测定、冷冻电子断层扫描重建和生理验证,加州理工学院的研究者阐明了进化上保守的接头支架结构,产生了人类 NPC 的约 64 兆道尔顿(megadalton)对称的近原子复合结构核。虽然接头通常起刚性作用,但 NPC 的接头支架为其中央转运通道的可逆收缩和扩张以及横向通道的出现提供了必要的可塑性和稳健性。他们的结果大大推进了 NPC 对称核心的结构表征,为未来的功能研究打下了基础。人类 NPC 对称核心的接头支架结构。论文 3:《AI-based structure prediction empowers integrative structural analysis of human nuclear pores》论文地址:https://www.science.org/doi/10.1126/science.abm9506虽然核孔复合体(NPC)介导核质转运,它们错综复杂的 120 兆道尔顿架构仍未完全得到了解。马克斯 普朗克生物物理研究所等机构的研究者报告了具有显式膜和多构象状态的人类 NPC 支架的 70 兆道尔顿模型。他们将基于 AI 的结构预测与原位和细胞冷冻电子断层扫描、综合建模相结合。结果表明,接头核孔蛋白在亚复合体内和亚复合体之间组织支架,以建立高阶结构。微秒长的分子动力学模拟表明,支架不需要稳定内外核膜融合,而是扩大中心孔。他们举例阐释了如何将基于 AI 的建模与原位结构生物学相结合,以了解跨空间组织级别的亚细胞结构。人类 NPC 支架架构的 70 兆道尔顿模型。论文 4:《Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex》论文地址:https://www.science.org/doi/10.1126/science.abl8280西湖大学和清华大学以 3.7-4.7 埃(angstrom)的分辨率对非洲爪蟾 NPC 的细胞质环亚基进行单粒子冷冻电子显微镜重建。其中,Nup358 的氨基末端域的结构被解析为 3.0 埃,这有助于识别每个细胞质环亚基中的五个 Nup358 分子。研究者最终的细胞质环亚基模型包括五个 Nup358、两个 Nup205 和两个 Nup93 分子,以及两个先前表征的 Y 复合体。Nup160 的羧基末端片段充当每个 Y 复合体顶点的组织中心。结构分析揭示了 Nup93、Nup205 和 Nup358 如何促进和加强主要由两层 Y 复合体形成的细胞质环支架的组装。非洲爪蟾 NPC 双层细胞质环的 Cryo-EM 结构。论文 5:《Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold》论文地址:https://www.science.org/doi/10.1126/science.abm9326哈佛医学院等机构的研究者使用单粒子冷冻电子显微镜和 AlphaFold 预测,从非洲爪蟾卵母细胞中确定了近乎完整的 NPC 细胞质环结构。具体地,他们使用 AlphaFold 预测核孔蛋白的结构,并使用突出的二级结构密度作为指导来适应中等分辨率的地图。此外,某些分子相互作用通过使用 AlphaFold 的复杂预测进一步得到建立或确认。研究者确定了五份 Nup358 的结合模式,它是最大的 NPC 亚基,具有用于转运的 Phe-Gly 重复序列。他们预测 Nup358 包含一个卷曲螺旋结构域,可以提供活性以帮助它在一定条件下作为 NPC 形成的成核中心。非洲爪蟾 NPC 细胞质环的 Cryo-EM 结构。
  • 冷冻电镜+AI|新药研发公司Gandeeva获2.5亿元A轮融资
    仪器信息网讯 2022 年 1 月 31 日,利用冷冻电镜(cryo-EM)和机器学习的力量加速开发新型治疗药物的精准生物技术公司Gandeeva Therapeutics宣布已在A轮融资中筹集了4000万美元,投资由Lux Capital和Leaps by Bayer领投,Obvious Ventures、Amgen Ventures、Amplitude Ventures和Air Street Capital参与。(注:在国内,新型药物研发公司水木未来(北京)科技有限公司在2020年完成数千万元天使轮融资;双良集团旗下创新药研发服务机构无锡佰翱得生物科学有限公司则在2020年完成超1亿元A轮融资,2021年再获2亿元B轮融资,将用于加码冷冻电镜平台和加速“千靶万苗”计划)这笔资金将用于推进Gandeeva公司的人工智能驱动冷冻电镜平台,旨在加速新型精准药物的发现、设计和开发。该专有平台结合了生物化学、结构生物学、成像和机器学习等高度创新的技术,以在原子水平上表征蛋白质-药物相互作用,所有这些都旨在为靶向蛋白质功能提供新的见解。“几十年来,我们已经知道,理解蛋白质折叠和在细胞的自然环境中发挥作用的语言是破译生物学的基础,几乎每一种疾病都涉及到蛋白质功能的改变。”Gandeeva Therapeutics创始人兼首席执行官Sriram Subramaniam博士谈到,“Gandeeva将这些技术整合在其开创性的平台中,通过超越冷冻电镜技术和人工智能驱动的结构生物学方法的最新发展,努力解开这些谜团。我很高兴能够领导一个由生物学家、化学家、显微镜学家和工程师组成的跨学科和多样化的团队来实现这一共同的使命。”Lux Capital合伙人Adam Goulburn表示:“cryo-EM 和 AI的结合正在大规模地解锁和普及原子分辨率,Gandeeva的平台和团队正好处在这两种技术的界面上。通过数字化和自动化冷冻电镜成像,Gandeeva引领结构生物学主导药物发现的变革。”Leaps by Bayer负责人 Jürgen Eckhardt 表示: “我们对Gandeeva的平台感到兴奋,它有潜力将预测和实验结合起来,通过可视化蛋白质-药物相互作用,在原子水平的分析,并以前所未有的速度优化药物设计。Gandeeva公司专注于将其强大的技术应用于显著改善药物开发,这与我们用数据改变健康、实现精准医疗等领域突破的雄心是一致的。”正如Gandeeva 首席执行官Subramaniam博士最近在《自然方法》(Nature Methods)杂志上发表的一篇评论文章中指出的那样,Gandeeva正领导着一场精确成像革命,其将冷冻和机器学习独特地结合在一起,可以说是结构生物学的新字母表中的 “阴和阳”。Subramaniam博士团队的Nature Methods文章Subramaniam博士的团队以前所未有的速度制作出了Omicron刺突蛋白的第一张原子级的快照,并将其发表在《科学》(Science)杂志上,这是Gandeeva平台背后力量的有力佐证。Subramaniam博士团队的Science文章Omicron 刺突蛋白的冷冻电镜结构关于 Gandeeva Therapeutics, Inc.Gandeeva™ 是一家精密生物技术公司,利用冷冻电镜(cryo-EM)和机器学习的能力来推进药物的发现和大规模开发。Sriram Subramaniam是Gandeeva公司的创始人兼首席执行官,他因在推动冷冻电镜分辨率革命和3D电子显微镜成像创新方面的贡献而享誉国际。Gandeeva致力于通过药物发现的革命和降低晚期临床失败的风险来实现对公共卫生的变革性社会影响。Gandeeva的总部位于加拿大温哥华。
  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 冷冻电镜揭示RNA质量控制背后的机制
    前言细胞中的RNA质量控制,如RNA的降解及RNA总量稳定的调控,被细胞内的多种蛋白质机器精确调控,比如被称为细胞监视器的RNA外切体(exosome),RNA外切体激活子NEXT复合物(Nuclear exosome targeting complex),从而维持机体的正常生理功能。NEXT在剪切体上游行使功能,招募RNA外切体对新转录出来的RNA进行降解。很长一段时间里,结构生物学手段利用晶体学手段尝试解析NEXT的结构,以期了解NEXT调控RNA质量稳定的作用机制,但由于复杂的结构组成和高度动态的特征结构解析一直未果。近日,冷冻电镜让NEXT复合物的结构得以呈现,RNA质量稳定背后的详细机制得以窥见。在生物学中,清理机体产生的“废物”与制造物质同等重要。生物体产生的不再需要的细胞、蛋白质或其他分子的聚集,如不及时处理,会导致机体产生一些问题。不过,生物已经进化了出多种方法来完成清理多余物质的清理。一个典型的例子是RNA外切体。RNA分子在细胞中扮演许多角色。其中一些被翻译成蛋白质,一些则与细胞的蛋白质一起形成蛋白质-RNA机器。RNA外切体是一种细胞机器,可以降解有缺陷、有害或不再需要的RNA分子。如果不依靠外切体进行修剪,我们的细胞就会变成功能失调的囤积者,进而无法正常行驶功能。“RNA的监测和降解途径存在于所有形式的生命中,”斯隆凯特林研究所结构生物学项目主席Christopher Lima解释说。“从细菌到人类,所有生物都有监测RNA的状态并靶向降解RNA的机制。Lima博士说,在很长一段时间里,这些降解通路被认为像家务一样,是重复且枯燥的。但事实证明,这些降解通路受到高度调控,并控制着从胚胎发育到细胞周期的许多过程。更重要的是,通路一旦发生失调,从癌症到神经系统退化的许多类型疾病便会产生。在2022年6月9日发表在Cell上的一篇新论文中,Lima博士和实验室的博士后研究员Puno提出了有助于解释RNA外切体如何定位需要降解的RNA的研究结果。在冷冻电镜的帮助下,科学家们解析了一种RNA降解机制的关键部分,名为细胞核外切体靶向复合物( Nuclear Exosome Targeting ,NEXT)的蛋白质组装体的结构。“我们知道NEXT将RNA靶向递送到RNA外切体,但在生物化学和结构上,我们不知道它是什么样子,也不知道它是如何工作的。”—Puno 结构生物学家现在,通过冷冻电镜,科学家们首次获得了获得了NEXT与RNA结合的第一张清晰图片。这些图片及相关的生化和生物实验揭示了RNA分子被传递到RNA外切体并进行降解的过程。逐渐了解结构几年前,Puno博士开始使用当时的金标准X射线晶体学方法研究NEXT的结构。在这种方法中,蛋白质首先首先进行晶体生长,它们以相同的方式排列并形成晶体。然后,X射线穿过晶体并击中探测器,所形成的图案被用来确定蛋白质的结构。虽然Puno博士能够结晶NEXT蛋白,但由此产生的X射线衍射图像不足以看到结构的细节。“不过,随后出现了冷冻电镜革命,”他说。“冷冻电镜帮助我们可视化这种蛋白质的样子以及它如何结合其RNA底物。动态蛋白质的可视化冷冻电镜的工作原理是捕获冷冻但非结晶的蛋白质样品的许多不同图像,然后使用计算方法将它们校准成最终的清晰图像。“这几乎就像捕捉一堆飞行中的鸟的照片,”Lima博士说:“鸟在飞行过程中又多种动作,导致鸟的翅膀看起来很模糊。但是,如果我们能在所有这些不同的图片中找到翅膀的部分,那么我们就可以通过对齐这些图片来重建鸟的翅膀的样子,并确定它们是如何工作的。”从冷冻电镜图片中,科学家们能够看到NEXT蛋白形成了一个非常灵活的二聚体:这意味着NEXT蛋白的两个单体在一起形成一个功能单元。Puno博士说:“这真的非常非常令人费解”,并指出这些类型的蛋白质以前没有可视化过二聚体的形成。“这几乎就像捕捉一堆飞行中的鸟的照片”—Lima 结构生物学家“从我们进行的生化实验中,我们知道二聚化对降解很重要,”他继续说道。“但对我们来说,尚不清楚二聚体在引导RNA到RNA外切体的过程中起了什么作用。为了解开这个谜团,研究小组希望在降解的不同步骤中捕获相互作用的NEXT复合物,然后用冷冻电镜将这些构象可视化。RNA的降解与疾病RNA降解的重要性不言而喻:有缺陷或失控的降解会引起许多疾病。最著名的例子是便是囊性纤维化,在这种情况下,一些负责编码离子通道或者转运体蛋白的信使RNA被RNA降解通路降,这使得肺粘膜中的一些关键蛋白质无法正常表达,从而造成粘液的堆积并导致呼吸严重受损。“这是RNA质量控制失调的一个典型例子,”Lima博士说。RNA降解途径的缺陷也在几种类型的癌症中发挥作用。事实上,MSK的基因检测平台MSK-IMPACT检测的与RNA外切体途径相关的两个突变基因,其中一个突变在NEXT蛋白上。“不仅信使RNA需要适当的质量控制,”Lima博士解释说。“现实情况是,如果你的RNA质量控制通路出现了问题,你的核糖体将不起作用,你的转移RNA将不起作用,你的剪接体也将不起作用的话,引起一系列连锁反应,会有很多种疾病找上门来”RNA所起的作用之广解释了为什么有缺陷的RNA降解途径会产生严重的致病作用。要理解这些效应,不仅需要对RNA外切体本身有更深入、更广泛的了解,还需要对NEXT等“上游”蛋白质有更深入、更广泛的了解,这些蛋白质有助于监测RNA并确定RNA何时存在缺陷或不再需要。“我们希望能在体外进行RNA降解反应,将样品放入冷冻电镜中,并捕捉到它们在工作时所有可能动态构象。”Lima博士说。“作为结构生物学家,我们希望能够看到动态的过程,重现其工作过程。相关文献摘要RNA质量控制依赖于辅助因子和链接物来识别和准备底物,以便由核糖核酸酶(如3′到5′核糖核酸外显子)进行降解。我们解析了人源细胞核外切体靶向蛋白(nuclear exosome targeting ,NEXT)结合RNA的复合物的冷冻电镜结构,为底物识别以及RNA移交给RNA外切体之前作用机制提供了见解。结构揭示了ZCCHC8作为一个支架蛋白,形成同源二聚体,和MTR4螺旋酶相互作用并介导将柔性较大的RBM7结合到解旋酶的核心位置。三个亚基协同作用以结合RNA:RBM7和ZCCHC8检查3′端上游的序列,促进MTR4捕获RNA。ZCCHC8覆盖了MTR4的表面,这对RNA的结合和释放以及MPP6依赖性的招募和对接到RNA外切体核心很重要。这些相互作用,通过协调RNA的捕获、移位和从螺旋酶中释放到外切体中,完成RNA的降解和调控。总结 RNA的质量控制是细胞生命的重要组成部分。 RNA外切体会降解有缺陷、有害或不再需要的RNA。 科学家们已经使用冷冻电镜来确定降解机制关键部分的结构,称为NEXT。 NEXT蛋白的突变可导致包括癌症在内的疾病。相关文献Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex
  • 《科学》封面:冷冻电镜助力解析蛋白酶体工作机制
    p  蛋白酶体是细胞中发现和降解不需要或者受损蛋白的分子机器。这些需要被降解的蛋白会被标上特殊的标签,然后蛋白酶体上一个由6个亚基组成的“机械手”依靠ATP提供的能量,将需要降解的蛋白“抓”到蛋白酶体的降解室中。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/8fab9fd2-0c33-4660-89ee-41c68e895067.jpg" title="冷冻电镜.png" alt="冷冻电镜.png"//pp style="text-indent: 2em "美国斯克里普斯研究所(The Scripps Research Institute)的研究人员使用冷冻电镜技术,解析了这一“机械手”与需要降解的蛋白相结合时的结构。这项研究揭示了这一“机械手”的6个亚基如何利用ATP水解的能量,改变自身构象,将需要降解的蛋白装入蛋白酶体的过程。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6c510877-c48f-4cb9-a059-6e0d883903da.jpg" title="冷冻电镜 FEI Titan Kiros 300kV .jpg" alt="冷冻电镜 FEI Titan Kiros 300kV .jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "FEI Titan Kiros 300kV 冷冻电镜(示例图)/span/p
  • 冷冻电镜再发威 清华颜宁研究组在《自然》发文
    p  9月1日,清华大学医学院颜宁教授研究组在《自然》(Nature)期刊发表题为《电压门控钙离子Cav1.1通道3.6埃分辨率结构》(Structure of the voltage-gated calcium channel Cav1.1 at 3.6 angstrom resolution)的研究长文(Research Article),报道了首个真核电压门控钙离子通道的近原子分辨率三维结构,为理解众多具有重要生理和病理功能的电压门控钙离子和钠离子通道的工作机理奠定了基础。/pp  电压门控离子通道是一大类位于细胞膜上、通过感受电信号控制离子跨膜进出细胞的蛋白质。上世纪四五十年代,英国科学家霍奇金和赫胥黎发现了动作电位 之后发现电压门控钠离子通道(Nav通道)引发动作电位,而电压门控钾离子通道(Kv通道)则能使细胞去极化,恢复至静息电位。五十年代,科学家发现在没有钠离子的情况下,依赖钙离子也能产生动作电位,这是由电压门控钙离子通道(Cav通道)介导的生理过程。钙离子本身是细胞内信号传递的第二信使,通过Cav通道,将细胞膜两侧的电信号变化转变为细胞内部的化学信号,引起一系列反应,包括肌肉收缩、腺体分泌、基因转录、细胞凋亡、神经递质的传递等。80年代,首个Cav通道的基因被克隆,序列分析显示,它与Nav通道的序列高度相似。/pp  电压门控离子通道的功能异常或紊乱与一系列疾病相关,比如Nav1.7直接与痛觉相关,其异常激活或失活会导致异常疼痛或者无法感知痛觉。目前已知,Nav1.7突变会导致红斑性肢痛症 Nav1.4或Cav1.1突变会导致低钾性周期瘫痪 Nav1.1或Cav2.1突变导致变异型家族偏瘫型偏头痛 Nav、Cav以及Kv功能异常则可能导致心率紊乱、癫痫等。电压门控离子通道目前是仅次于G蛋白偶联受体(GPCR)的第二大药物靶点。外科手术用到的麻醉剂通过抑制Nav通道起作用 Cav通道则是降压药物的靶点。因此,对于电压门控离子通道的研究,尤其是结构生物学上的研究具有重要的生理学和药理学意义。/pp  与Kv通道近20年的结构生物学进展相比,Nav和Cav通道的结构姗姗来迟,主要是因为与由同源四聚体构成的Kv通道不同,真核生物Nav和Cav通道由一条具有1500-2000个氨基酸的肽链折叠成四个类似但不尽相同的结构域,每个结构域具有六次跨膜螺旋,相邻结构域之间由长度各异的序列连接。这一特点使得蛋白的重组表达和结晶难度相比Kv通道都大大增加。因此,一直以来仅有纳米分辨率的真核生物Nav和Cav通道冷冻电镜影像报道,无法揭示任何结构细节信息。近几年,随着冷冻电镜技术的革新,利用该技术获得近原子分辨率结构已经成为现实。颜宁研究组利用清华大学的冷冻电镜平台,首次揭示了真核生物Cav通道的结构。/pp  Cav1.1是哺乳动物中10个电压门控钙离子通道中的第一个被鉴定的,主要分布在在骨骼肌,它的主要功能是在肌肉细胞接受运动神经元信号产生动作电位时感受膜电势的变化,进而激活与其直接作用的下游肌质网膜上的高通量钙离子通道RyR1,促使钙离子快速大量释放到细胞质中,从而引起肌肉的收缩,该过程称为兴奋-收缩偶联(excitation-contraction coupling,EC coupling),Cav1.1和RyR1是引发这个过程最为关键的两个膜蛋白。 2015年1月,颜宁研究组在《自然》报道了RyR1的3.8埃冷冻电镜结构 同年12月,她们在《科学》上报道了Cav1.1的4.2埃电镜结构。但是由于分别率所限,尽管该结构首次揭示了Cav1.1复合物中各个辅助亚基(包括& #945 2& #963 亚基、& #946 亚基和& #947 亚基)与离子通道亚基(& #945 1亚基)的相互作用区域,以及离子通道亚基内部同源结构域的排布,但是大部分区域无法精确到氨基酸侧链,因而不能对蛋白的状态进行深入的分析。在冷冻电镜结构中,4埃的分辨率往往是一个分水岭。要想清晰地分辨出蛋白质氨基酸的侧链,往往需要高于4埃的分辨率(数字越小分辨率越高),而其难度也相应增加。/pp  在刚刚发表的《自然》论文中,颜宁研究组通过多次尝试,成功优化了蛋白的制样方法,从而获得了高质量的冷冻电镜成像。他们从近万张冷冻电镜照片中挑出超过一百万的蛋白单颗粒,利用单颗粒三维重构的方法最终获得了整体3.6埃的近原子分辨率结构,其中中心区域分辨率超过3.5埃(图1)。/pp style="text-align: center "img style="width: 600px height: 556px " title="" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201609/noimg/61aee1e1-15c0-4a76-95a8-9892c0d15426.jpg" width="600" height="556"//pp style="text-align: center "图1:Cav1.1冷冻电镜数据。/pp  新报道的3.6埃电镜结构相比之前4.2埃尽管在数字上看似进步不大,却有着质的飞越。在该结构中,大部分氨基酸的侧链能够被清晰分辨,从而可以据此搭建出准确和完整的结构模型。新的结构揭示了大量新信息,更新了我们对电压门控钙离子通道的认识,比较具有代表性的特征包括:1)该结构展示了一个处于封闭构象的钙离子通道,而四个电压感受器(VSD)都处于去极化状态,因而判断该结构展示的是一个“去活化”的状态 2)辅助性亚基& #945 2& #963 的结构被基本完整构建,其与离子通道亚基& #945 1的相互作用也完全呈现 3)辅助性亚基& #945 2& #963 是一次跨膜的蛋白还是膜锚定蛋白在之前一直存有争议,通过新的结构并结合质谱分析,可以判断出& #945 2& #963 亚基为膜锚定蛋白 4)该结构解析了更为清晰的离子选择性过滤器,在离子选择性过滤器中甚至还可以看到两团相连的密度,很有可能是结合的钙离子 5)通过三维分类,可以得到两个构象不同的结构。对比两个结构可以发现胞内侧的& #946 亚基发生很大的构象变化,该构象变化可能是引起肌肉兴奋-收缩偶联的结构基础。/pp style="text-align: center "img style="width: 600px height: 368px " title="" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201609/noimg/cf1fecba-fd03-4b9a-ae4a-90462ed72e4d.jpg" width="600" height="368"//pp style="text-align: center "图2:Cav1.1整体三维结构示意图。/pp  至此,颜宁教授研究组已经成功解析了肌肉兴奋-收缩偶联通路上的两个关键膜蛋白Cav1.1以及RyR1的结构,从而为理解这一基本生理过程的分子机理打下重要的结构基础。更重要的是,高分辨的Cav1.1结构不仅揭示了Cav通道的结构,也为理解目前仍未有高分辨率结构的真核Nav通道的结构与机理提供了重要的模板,可以利用现有Cav1.1的结构尝试解释此前半个多世纪积累起来的有关Cav和Nav通道的大量生物实验和临床数据,并且为利用结构进行新型药物设计、筛选和优化提供了重要基础。/pp  生命学院CLS项目五年级博士生吴建平、结构生物学高精尖中心卓越学者闫浈以及生命学院CLS项目二年级博士生李张强为本文共同第一作者 生命学院二年级博士生钱兴洋在轮转期间参与该课题实验 医学院周强副教授为数据处理提供了建议和帮助。北京生命科学研究所董梦秋研究员和卢珊参与质谱鉴定的合作。电镜数据采集于清华大学冷冻电镜平台,计算工作得到清华大学高性能计算平台、国家蛋白质设施实验技术中心(北京)、联想高性能计算、以及荣之联董事长王东辉先生的支持。颜宁教授为本文通讯作者,她是清华-北大生命科学联合中心研究员、膜生物学国家重点实验室成员、拜耳讲席教授,本工作获得科技部重大科学研究计划专项和基金委创新群体支持。/ppbr//pp style="text-align: center "a href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self" title=""img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//a/p
  • 冷冻真空干燥技术的主要应用
    (1)生物制品的冷冻真空干燥我们做过生物制品冷冻真空干燥的品种有皮肤、角膜、海参、螺旋藻等;从文献中看到其他人做过的冻干产品有心瓣膜、活菌、活毒、骨骼、各种疫苗、血液制品等。生物制品的冻干要求保持产品的活性,活菌、活毒等微生物真空干燥后的存活率要求80%以上,以便于应用。因此,对冻干机工艺要求严格,预冻温度、速度、时间的控制很不容易,保护剂配方、剂量、加入时间和加入方法非常关键,不同的人可能采用不同的配方,达到的效果可能相同。一般各种保护剂的配方都是互相保密的。(2)药材和药品的冷冻真空干燥我们做过的品种有人参、山药、纳豆激酶、北冬虫夏草、林硅油、鹿茸等;从文献中看到其他人做过的品种有各种粉针制剂、中草药制剂、抗生素、布洛芬、脂质体和其他纳米颗粒等。药材和药品需要长期保存,真机需要速溶,放置氧化,避免污染杂菌,保持药效的长久稳定。这些要求都需要通过冷冻真空干燥技术来实现。药材和药品的冷冻真空干燥工艺要求也很严格,寻找合适的冻干保护剂、添加剂、赋形剂都很困难,生化干燥阶段的温度控制、加热速率控制都很关键,严格防止塌陷。(3)食品的冷冻真空干燥我们做的食品有菠菜、苹果、香蕉、库尔勒香梨等;从文献上查到其他人做过的品种有咖啡、茶叶、大蒜、鱼肉、调料等。食品种类繁多,形状、性质相差较大,冻干工艺需要在实验中确定。冻干食品时间较长、耗能较多、价格较高,应该合理选择冻干参数,优化冻干过程,降低冻干昂成本,根据市场需要,选择性价比较高的食品做冷冻真空干燥。(4)冷冻真空干燥在其它领域的应用冷冻真空干燥除了在生物制品、药品、食品和纳米材料制备方面的应用之外,还可以干燥超市的木质文物、古画等,冻干发出来的这些产品能恢复物品的原样;还可以干燥动植物标本,使标本长期保存,栩栩如生;医疗事业做实验用的、具有毒害物质的动物尸体采用冻干干燥法的处理,可以实现环保等。
  • 北京市科委、清华大学、赛默飞三方共建“冷冻电镜与药物发现创新中心”
    p  近日,北京市科学技术委员会与清华大学、美国赛默飞世尔科技公司在生命科学领域达成战略合作共识,三方将共建“冷冻电镜与药物发现创新中心”(Global Innovation Institute of Cryo-EM for Drug Discovery, CDD)。该中心将建设成为一个开放式服务平台,重点研究运用冷冻电镜、高性能计算、虚拟现实、人工智能等技术,构建全球领先的蛋白质结构检测、分析和合作研究创新平台,为创新药物研发提供研究支撑。/pp  此次三方建立合作,正值美国商务部代表团随美国总统特朗普访华之际,具有非同寻常的意义。共建三方将依托各方优势资源,为北京乃至全国生命科学创新发展提供源源不断的动力,助力北京全国科技创新中心建设,提升北京生命科学领域技术创新水平和全球国际影响力。/pp  strong合作方简介/strong/pp  清华大学是中国最早开展生命科学教育与研究的高校,先后建设了国家蛋白质科学基础设施、结构生物学高精尖中心等一批高水平生物学研究平台,在结构生物学研究方面处于世界领先水平。2005年在市科委的支持下,清华大学与赛默飞世尔公司共建“清华大学-赛默飞世尔科技联合分析实验室”。/pp  赛默飞世尔科技公司:科学服务领域的全球领导者,是全球最大的生命科学实验仪器制造商和科研服务提供商,进入中国发展已有30多年。公司在结构生物学与蛋白质分析领域的仪器设备研发与生产处于全球领先地位。/pp  10月4日,瑞典皇家学院宣布将2017年诺贝尔化学奖授予了对冷冻电镜技术有着突出贡献的三位科学家——瑞士洛桑大学生物物理学荣誉教授Jacques Dubochet、哥伦比亚大学教授Joachim Frank以及英国MRC分子生物学实验室项目主任Richard Henderson。/p
  • “单颗粒冷冻电镜之父” Joachim Frank
    祝冷冻电镜之父Joachim Frank82岁生日快乐!约阿希姆弗兰克,德裔生物物理学家,美国国家科学院院士,现任美国哥伦比亚大学教授,研究领域包括生物化学、分子生物物理学等。1975年到2008年间,弗兰克教授完善了电子显微镜图像处理的单颗粒算法,发明了SPIDER软件,该软件至今为全世界上百家实验室广泛使用。弗兰克教授应用冷冻电镜和单颗粒技术,在解析原核和真核细胞核糖体结构和功能领域做出了非凡的贡献。2017年10月,弗兰克教授与雅克杜波谢、理查德亨德森共同获得诺贝尔化学奖,以表彰他们在“冷冻电镜用于生物分子结构的高分辨率解析领域”做出的巨大贡献。本期水木视界对约阿希姆弗兰克教授的诺奖感言自传进行翻译,期望更多冷冻电镜领域的同僚们能够了解这位冷冻电镜之父的传奇过往。原文:"Joachim Frank Biographical"Copyright The Nobel Foundation 2017“Normally, my dog wakes me up in the morning. But today, it was the Nobel Prize!”—Joachim Frank以下内容为弗兰克教授诺奖感言:我于1940年9月12日出生在德国的魏德瑙镇。自1972年以来,魏德瑙镇一直是锡根市的一部分。锡根市拥有约10万左右的居民,位于北莱茵威斯特法伦州的南端。它周围的山区被称为锡格兰,在过去的几个世纪,锡格兰的铁矿开采、加工和冶炼行业都欣欣向荣。作为传统技术,铁矿的开采可以一直追溯到两千年前的凯尔特人。不过,在采矿和加工业转移到发达的鲁尔区后,留给锡格兰的任务就只剩钢铁的冶炼了:锅炉、铁管、铁轨、铁桶和许多其他由铁和钢制成的部件。魏德瑙镇的地标是“富士山”,一个巨大的铁矿渣堆,与日本的名山形状一致。此外,锡根也是奥兰治拿骚家族的所在地,他们是荷兰皇室的血脉。作为画家彼得保罗鲁本斯的出生地,锡根市为此而自豪。然而,画家彼得在锡根出生的原因则是一场闹剧:他的父亲与有身孕的母亲从科隆出发,在乘坐马车途径锡根时被逮捕。三个城市,锡根、科隆和安特卫普都声称彼得是他们的儿子,城市之间的争执是锡根上城区喷泉的永恒主题:在雕塑上,三位母亲一同抱着婴儿彼得保罗,并为之争吵。彼得保罗鲁本斯(Sir Peter Paul Rubens)1577年6月28日-1640年5月30日比利时画家,巴洛克画派早期的代表人物我的父亲威廉弗兰克是锡根法院的一名法官。他于1896年出生在魏德瑙。不过,他并没有完成全部的法律学业:他被征召并参加了一战中的凡尔登战役,并由于受伤而失去了大半个左手。他的母亲,也就是我的奶奶,出身于当地的一个富裕家族:施莱芬鲍姆家族,他们经营着繁荣的钢铁企业。我的爷爷是一名高中教师,来自锡根郊区的一个乡村家庭。我的母亲夏洛特来自杰出的曼斯科普夫家族,该家族在锡根的渊源可以追溯到15世纪。在18世纪,曼斯科普夫家族的一个分支在法兰克福定居,并通过国际葡萄酒贸易获得了无尽的财富和声誉。而在19世纪初,他们则与歌德的家族关系密切。左侧:1940年,与我的母亲夏洛特、父亲威廉、他的妹妹伊丽莎白、我的祖母阿玛莉-施莱芬鲍姆、哥哥赫尔穆特和妹妹英格伯格在一起。我的妹妹雷娜特将在四年后出生。右侧:我父母在魏德瑙的家,恩格斯巴赫大街3号,1905年的建筑图纸显示了原来的两层楼的阳台。我的母亲毕业于Stift Keppel高中,这是一所创办于13世纪的女子高中。婚后,她留在家里照顾她的四个孩子:我、我四岁的妹妹雷娜特和两个哥哥姐姐,英格伯格和赫尔穆特。我们的家宅大而庄严,是我的祖父母在1905年用红色双层玻璃砖建造的,极为坚固。它坐落于一块大小适中的土地上,与街道接壤的地方有一道锻铁栅栏。家宅的一楼和二楼有阳台,可以俯瞰后院。外侧的步道上铺满了装饰性碎石,并种着几颗黄杨树。[战争年代]锡根市,北莱茵威斯特法伦州,德国我出生于二战期间,而战争影响了我的整个童年。由于锡根市发达的钢铁制造业,它是盟军空袭的首要目标。在战争结束时,锡根市80%的建筑物都被夷为了平地。大约是我四岁的时候,一些邻居的房屋被陆续地炸毁了。在1944年2月的一次凌晨空袭中,我父母的房子也被炸毁。由于屋顶和上层被毁,其余的部分也因漏水而无法居住,我们不得不搬到北部20公里左右的希尔兴巴赫镇,在那里,我父亲的同事为我们提供了一套公寓。这套公寓位于威廉斯堡,它是一座18世纪依水而建的城堡,也是当时的法院大楼。在我的记忆中,我当时坐在城堡地下室的防空洞里,周围萦绕着婴儿的哭闹,飞机、空袭和无线电广播声,这些声音充斥着我青少年时期的噩梦。战争结束后的那段时间尤为艰难。母亲常常会乘坐去往乡下的火车,用我们家中剩余的铁制品换取黄油、火腿、面包、面粉和鸡蛋。“天然的黄油”来之不易,母亲会把它们搅拌进人造黄油中,但并不会稀释太多,这样我们就能尽可能长地记住黄油真正的味道。我们也有一个很大的花园,种植了苹果树、梨树和樱桃树。有一段时间,我们为了制作糖浆而种植了一些甜菜,并种植了烟草来满足父亲的吸烟习惯。我们还会在后院养鸡,甚至一度在阳台下面养了一头小猪。这些花园中的时光,使我得以近距离欣赏大自然。附近烧毁和倒塌的房屋瓦砾对我有一种错综复杂的吸引力,令我既恐惧又着迷。恐惧是对混乱和破坏的自然反应,特别是对一个孩子来说,这意味着危险无处不在。着迷的部分源自和其他同龄男孩一起在荒凉的土地上玩耍的经历,到处都堆满了砖头、罐子、扭曲的电线和塑料碎片。我们经常能发现老鼠窝,里面有一些尚处目盲的粉红色鼠崽。[启蒙教育]锡根市,北莱茵威斯特法伦州,德国我的小学就在家的街道对面,在那里我度过了四年的启蒙时光。八岁时,在还没有任何科学概念的时候,我在阳台下面的阴凉处开始了第一次实验,是天生的好奇心驱使我这样做的:我搭了一个架子,收集了一些利口酒的酒瓶,并用它们去装满我能得到的每一种液体:食用油、水、汽油,以及我长大一点之后得到的盐酸。凭着直觉,我把这些液体混合起来,把金属置入其中,并记录结果。我看着碳化钙在水中溶解,并着迷于激烈的反应和逸出气体的气味;我看着锌在盐酸中溶解并冒出气泡;我在一个与管子相连的金属容器中加热煤,因为我听说会有可燃的气体冒出来。迈耶百科词典,这是我在被毁的老房子里发现的一套20卷百科全书,每卷约1000页。这套百科全书登陆了海量的学术文章、技术图纸、彩色照片和世界各地的地图。在我识字之后,它们陪伴我度过了整个童年和青少年时期。我花了几年的时间把它们都读完了。这套出版于1905年的百科全书信心满满地宣称:人类已经把世上所有的东西都研究得不能再透彻,不过,1905年恰好也是爱因斯坦发表光电效应论文的一年,那篇论文证明了能量的量化,也就是量子力学的前身。对于那套百科全书来说,这还是挺讽刺的。如今,这套书的内容并没有太多的参考价值了,却对我来说有相当的纪念价值:它们被我视作纪念那套祖宅的传家宝。高中的科学课。在我身后右侧的两个身位处,他们是霍斯特施密特博金和乌尔里希梅博尔德。在未来,他们将成为物理学家。照片由@弗里德海姆施克提供。从五年级开始,我转学到了莫里茨文理中学,这是以奥兰治拿骚家族一位著名公爵命名的学校,而我是小学班20名学生中仅有的4名升学者之一(在德国的体系中,文理中学将初中和高中合并到一起)。在那里,我对科学课,特别是物理课产生了强烈的兴趣。同时,我扩大了实验范围,并在阁楼开辟了第二个试验场地。在那里我会尝试修补一些小玩意,例如用废弃或邮购的零件组装收音机:哥哥曾向我演示过如何组装一个水晶收音机,而我很快就痴迷于这些精巧的小物件,不可自拔。之后,我制作了几个花哨的微型收音机,并装在肥皂盒里。我的大部分零花钱都用在了阀门、晶体管、电阻器和电容器的购买上,而阁楼上则充满了松香焊接时产生的"蒸汽"味。幸运的是,我在学校里结识了一个志同道合的朋友,他就住在街对面。这时我应该补充一下,我的三个兄弟姐妹都在同一所文理中学上学。在获得高中毕业证后,我的哥哥去攻读并完成了工程博士学位,成为了一名职业安全领域的公务员。我的两个姐姐都在高中二年级时转去了职业学校,进行理疗师的就职培训。在结婚并将几个孩子拉扯大之后,长姐完成了她中断的高中学业,并进入大学,获得了生物化学的博士学位。而二姐从理疗师转型成了一位艺术家,她制作了许多漂亮的被子,直至1998年她因癌症早逝。[进入大学]弗赖堡市,巴登符腾堡州,德国我始终觉得,在大学里我注定会选择物理专业。而我的父亲常常质疑这个选择,理由是这个专业并不能糊口。1960年,在完成高中学业后,我去了弗赖堡大学(University in Freiburg),并从省会城市搬到了僻静的小镇,镇上有一些大型哥特式教堂和许多迷人的中世纪建筑,这令我恍如隔世。我学习了微积分和线性代数,并学会如何去撰写严格的数学证明。此外,我也学习了数学物理学科的特殊函数和统计力学的课程。我视在亚琛攻读工程博士的哥哥为榜样,加入了著名的弗莱堡大学Suevia兄弟会,结识了一些朋友。但后来,受60年代政治动荡的影响和启发,我逐渐意识到了那些扎根于德国学生组织中的民族主义和右翼思想,并退出了兄弟会。当时的弗莱堡大学校长,臭名昭著的马丁海德格尔(Martin Heidegger)公开地支持元首。我曾经看到年迈但瘦小的海德格尔在大学门口发表公开演讲,这一举动在外界看来极为罕见。不过,他被一群学生簇拥着,我几乎看不到他。由于在学士毕业考试中表现突出,我得到了德国学术研究基金会的提名:这是一项特殊的奖学金,并在日后极大地拓宽了我的视野,使我能了解其他学科和人文领域。通过组织科学前沿会议,基金会促进了跨学科的讨论。在1964年的一次会议上,我第一次了解到 "中央教条"原则和DNA结构。也是在这里,我和神经生理学家沃尔夫辛格(Wolf Singer)初识,并开启了直至如今的长远友谊。我和辛格,以及志同道合的学生们一起成立了讨论小组,专注于当时的热门话题—“控制论”。[硕士与博士]慕尼黑市,巴伐利亚州,德国为了得到硕士学位,我前去慕尼黑大学物理系做毕业论文相关的工作。论文项目与液态金上的电子后向散射有关,这个深奥的课题与当时新兴的高能电子束技术息息相关。我的导师恩斯特金德(Ernst Kinder)曾在早期使用电子显微镜做了一些工作:他发现蝴蝶翅膀的彩色图案源自于微小鳞片处于亚显微排列时产生的光干扰。现在,他的办公室里仍然保留着一台古老的电子显微镜。这段经历让我对涉及电子显微镜的项目颇有好感。最终,我选择了沃尔特霍普(Walter Hoppe)作为我的博士导师,他是马克思普朗克蛋白质皮革研究所的X射线晶体学家,后转为电子显微镜专家,该研究所后来迁至马丁斯里德(Martinsried),更名为马克思普朗克生物化学研究所(Max Planck Institutes)。霍普的研究内容是利用电子显微镜对生物分子进行三维成像的方法。我的论文则侧重于利用统计光学等领域的方法探索电子显微照片的特性。我在Optik杂志上发表的第一篇论文,研究了样品漂移对显微照片的光学衍射图案产生的影响,并以傅里叶理论解释了观察到的条纹。当霍普承认这是一项完全独立的工作,拒绝在作者栏签署他的名字时,我无比自豪。我的首次计算机编程使用了ALGOL编程语言,每次编译和运行新写的程序之前,我都要花费20分钟左右步行到大学。后来我学会了用FORTRAN语言进行编程,所使用的设备是IBM1130,它建造于我们研究所的一个小地下室里,我有时会在那里工作到深夜。研究所的生活方式十分独特,具有明显的巴伐利亚色彩,只需要步行短短的几分钟,就能从研究所步行到举办啤酒节的大草坪。在蘑菇生长的季节,人们会在清晨组织采摘蘑菇的活动。三至四名学生会组成户外小组,与一位对蘑菇了如指掌的专家一同出发,带回许多真菌和鸡油菇。我们会用锥形瓶和烧瓶将它们煮熟,撒上盐,与巴伐利亚面包一同食用。我们也曾在图书馆中用一桶啤酒和大块的肉饼来庆祝论文的刊登。当时的慕尼黑和现在一样,是一个文化活动丰富的城市,到处都是娱乐场所:每天去听一场古典音乐会算得上是日常了。我的一个古典音乐爱好者朋友也从弗莱堡搬到了慕尼黑,并邀请我去看了许多出色的演出。耳濡目染下,只靠几个开场音符,我就能辨认出许多古典交响曲。此外,慕尼黑歌剧院的票价平易近人,却总能提供宏大的体验。在那段时间里,我主要有两批朋友,一批是扬格罗内博格等人,格罗内博格是一位具有乌托邦思想的大学辍学生,住在慕尼黑郊外的小屋里。另一批是沃尔夫辛格等人,我通过学术研究基金会认识了他们,靠着沃尔夫辛格的介绍,我认识了我的第一任妻子凯茜恩格伯格。我们于1969年结婚,但这段婚姻只维持了不到10年。1968年,一次在希尔谢洛镇的会议让我有机会认识了几个未来在这个领域举足轻重的人。这次研讨会是由瓦尔特霍普和剑桥MRC分子生物学实验室的马克斯佩鲁茨(Max Perutz)共同组织的,佩鲁茨因在蛋白质X射线晶体学方面的开创性工作而闻名。在那里,我遇见了哈罗德埃里克森、理查德亨德森、肯霍姆斯、休赫胥黎和奈杰尔昂温等人。在下午,与会者们可以自由地滑雪,而上午和晚上都保留给讲座和讨论,其形式类似于戈登会议。与我的论文相关的两篇德文论文后来发表在了会议记录中,载于Bunsengesellschaft für Physikalische Chemie特刊。[博士后阶段]加利福尼亚州,美国1970年初夏,在慕尼黑工业大学的论文答辩结束后,我获得了哈克尼斯奖学金(Harkness Fellowship),这使我可以前往美国两年,并自行决定进入哪些实验室。我选择了加州理工大学的喷气推进实验室(JPL)、加州大学伯克利的唐纳(Donner)实验室、和康奈尔大学。来自欧洲的我,却搬去了帕萨迪纳这样好莱坞一样的地方,那里有繁华的高速公路、紧靠棕榈树的小房子以及穿着网球鞋的小老太太,这种文化冲击难以言喻。事后看来,这三个实验室都给了我未来方向的重要推动力。当时的JPL拥有世界上最好的图像处理设备,并开发了一个模块化的图像处理系统VICAR,我可以将自己的程序挂在上面。这个软件包后来成为我开发SPIDER系统的模型。在唐纳实验室,我和鲍勃格莱泽的小组在一起,他专注于用电磁波进行结构研究的两个典型问题:样品的辐射损伤和对水合环境的需求。他和他的学生肯泰勒(Ken Taylor)已经在试验冷冻水化样品的制备,但当时雅克杜博歇(Jacques Dubochet)决定性的玻璃态冷冻技术还没有被发明出来。在康奈尔大学的本杰明西格尔小组里,我认识了肯唐宁(Ken Downing)和威廉戈德法布(William Goldfarb)。后来我邀请威廉加入了我在奥尔巴尼的团队。这时我需要提一句,1972年我在康奈尔大学时,我的儿子霍西亚扬弗兰克(Hosea Jan Frank)出生了。从美国回来后,我在1972年的冬天短暂地回到了马克思普朗克研究所,研究电子显微镜的部分相干性理论。这项工作使我与世界级的电子光学专家彼得霍克斯(Peter Hawkes)有了接触。1973年,我加入了剑桥大学卡文迪许(Cavendish)实验室的弗农埃利斯科斯莱特(Vernon Ellis Cosslett)小组,担任高级研究助理。与我往来的人中有欧文萨克斯顿(Owen Saxton)和彼得霍克斯(Peter Hawkes)。在卡文迪许的几年里,我进一步研究了部分相干理论,并找到了一种方法:通过计算同一区间的两个连续图像的互相关性来获得电子显微照片的信噪比。这时,单颗粒平均和重建的设想在我的脑海中占据了一席之地:将电子剂量分散到网格上随机排列分子的多个"副本"中。1975年,我发表了一篇概念性的论文,提出了利用溶液中重复出现的分子来检索分子结构的想法。之后,我和欧文一起研究了生物分子的明场图像,并确定了它们在特定的条件下能够以足够的精度排列,从而使图像达到了一定的平均分辨率,这项研究的结果在1977年共同发表。自此我开始相信,单颗粒的方法即使在弱原生对比度的条件下(即蛋白质与水)也能发挥作用。[Wadsworth研究中心]奥尔巴尼市,纽约州,美国1975年,我收到了纽约州Wadsworth研究中心的唐帕森斯(Don Parsons)发来的工作邀请。在那里,我最初的任务是细胞切片的断层重建,但我继续将研究重心放在了单颗粒方法的应用上。这两个领域的交叉使我意识到,我需要一个程序框架来确保后续程序设计的灵活性。因此,我开始对SPIDER进行开发,这是一个模块化的图像处理系统。随着单颗粒技术的发展,SPIDER成为向社会传播单颗粒技术的工具。它最初采取了买断制,只收取一次性费用,后来,它补充了创意共享许可,能够被免费地使用。之后,过了很多年的时间,单颗粒概念才得以被证明有效,我们收到了生物分子的实际图像:由加州大学洛杉矶分校的大卫艾森伯格(David Eisenberg)提供的谷氨酰胺合成酶,戈廷根大学的彼得辛斯海姆(Peter Zingsheim)提供的乙酰胆碱受体,以及罗氏的米罗斯拉夫布布里克(Miloslav Boublik)提供的核糖体。我的朋友马丁凯塞尔也利用休假的时间帮助我进行了一些研究。在每个案例中,二维平均数的可重复性证明了这种方法是合理的。然而,电子显微镜业内仍有不少人持怀疑态度。转折点出现1980年,我和荷兰学生马林范海尔(Marin van Heel)共同开发了一种解决异质性问题的方法。为了寻找具有挑战性的合适分子来尝试这项技术,我开始与法国图尔的让拉米(Jean Lamy)以及他的学生尼古拉斯博伊赛(Nicolas Boisset)合作,对各种节肢动物的血蓝蛋白进行成像。多年来我一直与尼古拉斯保持联系,直到他于2008年不幸去世。他的记录方式一丝不苟,并为单颗粒重建的原理制作了精美的幻灯片。奥尔巴尼镇是纽约州的首府,却淹没在了纽约市的光辉下。该镇被美丽的乡村所包围,仅靠步行便能进入阿迪朗达克山脉。搬到奥尔巴尼不仅让我得到了第一个独立职位,还释放了我在科学之外的领域进行创造性表达的冲动。我加入了一个艺术家集体,名为WORKSPACE,由杰西加雷特(Jacy Garrett)创立。当时,行为艺术正在全美范围内被重新定义,艺术家组织也如雨后春笋般出现。激浪派(FLUXUS)运动将大众的注意力引向了一些边缘的、偶然的东西。我并没有艺术相关的文凭,却凭借创造性的贡献成功地被WORKSPACE接纳了,这让我感觉不错。我参加了他们的邮件通信,并在几年内为一本名为PROP的小型文学杂志提供编辑工作。70年代末,我的第一次婚姻结束了。离婚协议使我们拥有对儿子的共同监护权,这让我在城里呆了相当长的一段时间,并见证我的儿子霍西安成长为一个多才多艺的艺术家,他之后将名字中的扬(Jan)改名为了泽(Ze)。1982年,我在奥尔巴尼遇到了我现在的妻子卡罗尔萨吉诺(Carol Saginaw)。卡罗尔最初在纽约州心理健康办公室工作,并在多年以来担任纽约州几个非营利组织的执行董事,从事心理健康工作,后来,她又从事了早期护理和教育工作。卡罗尔来自密歇根州的一个犹太家庭,她的许多家庭成员都在我祖国建造的毒气室中丧生了。尽管我们之间不同的背景带来了很多麻烦,但我们还是在1983年完婚,并幸福地生活到现在。在很大程度上,是卡罗尔的支持和对我的信任使我取得了胜利,并走到了我职业生涯的今天。同时,我也开始尝试用英语写小说,当威廉肯尼迪,以及后来的史蒂文米尔豪斯和尤金加伯对我的手稿给予非常积极的反馈时,我感到受宠若惊。对我来说,用第二语言去创造性地表达自己的想法是令人兴奋的,因为我当时并不确定未来是否会回到德国生活。在纽约州立大学的尤金加伯(Eugene Garber)教授的小说写作课程结束后,他班上的学员,包括我在内,决定继续以作家小组的形式聚会。这个小组内的一些建设性批评,以及我后来加入的其他小组,都磨练了我的写作,帮助我认识到“自己的声音”。自此,写作成为了我生活的一部分。现在回过头来看,我早期对单颗粒冷冻电镜的贡献主要是由三个因素促成的:我工作的地方安静祥和,也没有任何教学要求,此外,美国国立卫生研究院的稳定支持也必不可少。这种支持一直持续到了今天。我很幸运地在1982年邀请到迈克尔雷德马赫加入了我的团队,他是一名德国学生,也曾师从于沃尔特霍普,在任意几何形状的三维重建方面颇有建树。在我的实验室里,迈克尔一手设计了随机圆锥形重建程序,在1986年完成了第一个完全不对称分子的三维重建,即大肠杆菌核糖体的大型亚单位。采用雅克杜波谢的新型快速冷冻和玻璃化技术,我们很快就能重建水合、原生状态的生物分子。从那时起,也就是20世纪80年代末,我们一直努力研究的技术逐渐走向了成功,尽管我们并不能确定单颗粒冷冻电镜技术是否能够在分辨率方面和产生原子结构的倾向性方面与X射线晶体学竞争。1985年,在第一届戈登3DEM会议上,以前和现在的实验室成员在奥尔巴尼重聚。从左到右:马林范海尔,让皮埃尔布雷图迪尔,阿德里安娜弗尔肖尔,布鲁斯麦克伊文,约阿希姆弗兰克,泰瑞瓦根克内西,迈克尔拉德马赫,马丁凯塞尔在1985年,我们的女儿玛丽尔贝丝出生,并成为了我们生活的中心。在她两岁的时候,我收到了在英国剑桥的分子生物学实验室(MRC-LMB)休假的邀请,邀请者是理查德亨德森。我们在小谢尔福德村(Little Shelford)的国王小屋租了一个迷人的小房子,小屋后有一个花圃,女儿玛丽尔会在那里与其他孩子玩耍。我们在康河上划船,并在剑桥周围美丽的公园里散步。在实验室里,我的大部分互动对象都是赵华(Wah Chiu),他是我第一次访问罗伯特格雷瑟(Bob Glaeser)的实验室时遇到的学生,也和我在同一个时间段加入了分子生物学实验室。利用赵华收集到的响尾蛇毒素二维晶体数据,并在他的帮助下,我成功开发了斑块平均法,这是一种结构重建的方法,利用了晶体小区间的"局部"平均数:基本上是应用于晶体碎片的单颗粒方法。在奥尔巴尼,我们重建的第一批分子是血蓝蛋白,这是我们与法国的让拉米研究小组合作的延续。与范德比尔特大学的悉尼弗莱舍(Sydney Fleischer)的另一项合作,使我第一次有机会研究鱼尼丁(Ryanodine)受体的结构。不过,关于核糖体结构的工作仍然最让我着迷。早在1990年,我就深信自己的实验室能够对核糖体的结构和功能作出重大贡献,我开始招募有核糖体背景的生物化学家。阿金德拉阿格瓦尔(Rajendra Agrawal),他在贝拿勒斯印度大学的缅甸实验室接受过培训,是第一个将"核糖体专家级"的知识带入实验室的人。其他人后来也陆续地加入进来,其中包括在柏林Knud Nierhaus实验室受训的克里斯蒂安斯佩恩(Christian Spahn)。三维电子显微镜戈登会议(3DEM)是促进冷冻电镜社区讨论和传播样品制备、仪器和数据处理新技术的重要会议。该会议成立于1985年,最初每两年召开一次,后来改为现在的年度会议。我在1987年当选为会议的副主席,随后在1989年与David DeRosier一起当选为主席,这标志着单颗粒技术得到了整个学界的认可。1994年,马克思普朗克医学研究所的肯霍姆斯和拉斯姆施罗德为我提供了再次在德国工作的机会。通过我的研究生朱军(音译)和博士后帕维尔潘切克的努力,在X射线结构出来之前,我们得到了大肠杆菌核糖体的第一个高清密度图。也是在海德堡,我写出了一本关于三维电子显微镜的书,该书于1996年出版,并在和2006年第二次出版。1998年,我被任命为霍华德休斯医学研究所(HHMI)的研究员,并在之后任职了19年,直到最近我才退休。在这些年里,我的实验室继续开发冷冻电镜,并与几个合作者实现非常具有挑战性的生物项目,这都离不开霍华德休斯医学研究所的资助。也是在那个时候,Wadsworth中心与纽约市的八个机构一起组成了一个结构研究的联盟,称为纽约结构生物学中心,该中心支持核磁共振、X射线晶体学和冷冻电镜。这让我能够与哥伦比亚大学和纽约的其他领先机构建立密切的联系。2005年3DEM戈登会议上的奥尔巴尼团聚照片。从左到右:比尔巴克斯特,马丁凯塞尔, 尼古拉斯博伊塞,约阿希姆弗兰克,克里斯蒂安斯帕恩,坦维尔谢赫,帕维尔佩内泽克,阿金德拉阿格拉瓦尔,刘铮(音译),何塞玛利亚卡拉索2000年,在我60岁生日的时候,我在伦斯勒维尔镇(Rensselaerville)组织了一次会议,以延续安德斯利尔哈斯(Anders Liljas)在瑞典发起的一系列关于翻译功能的结构基础相关会议。会议的地点坐落在一个美丽的公园里,离奥尔巴尼有一个小时的车程。在这次会议期间,我和曼斯艾伦伯格(Mns Ehrenberg)花了不少时间,就核糖体结构和功能的合作制定了具体计划。这开启了一个令人振奋的研究旅程,并一直持续到现在,我们研究了启动、解码、mRNAtRNA转位、终止和循环过程的结构基础,为关于翻译机制的丰富知识库做了很多的贡献。2017年夏天,我的家人在我们位于伯克希尔的阿尔福德的房子里。上方,从左到右:霍西阿(泽)和他的儿子约拿,汤姆墨菲(玛丽尔的丈夫),约阿希姆弗兰克下方,从左到右:泽的妻子乔迪布兰特和他们的女儿罗丝,玛丽尔,我的妻子卡罗尔萨吉诺。这时,我的孩子们都长大成年了,有着自己的生活。我的儿子泽弗兰克在布朗大学主修神经科学,并出于弹吉他的爱好成立了一个乐队。他在音乐和艺术方面的特殊才能在少年时期就得到了体现。后来他搬到了纽约,开始做网页设计。通过一个偶然的途径,他登上了TED演讲的舞台,随后在一夜之间成为了一个互联网人物。最近,他任职于Buzzfeed,职位是媒体总监。他现在与妻子和两个孩子住在洛杉矶。我的女儿玛丽尔弗兰克在巴纳德学院主修语言学。她会说多种语言,在日本教过英语,还曾为一个拉丁裔非营利组织工作,现在是代码学院的程序员和课程开发人员。她已经结婚了,并定居在纽约布鲁克林。[哥伦比亚大学]纽约州,纽约市,美国2008年,我加入了哥伦比亚大学,成为生物化学、分子生物物理学系和生物科学部门的职员。在30多年的奥尔巴尼牧区生活后,重返纽约是相当令人兴奋的,这为我提供了许多合作机会。我带来了HHMI的FEI Polara显微镜,连同后期购买的FEI F20显微镜一起,在哥伦比亚大学建立了冷冻电镜实验室。之后,我立刻被单分子FRET合作领域所吸引,这是由斯坦福大学Puglisi实验室的鲁本冈萨雷斯建立的领域。在哥伦比亚大学的头四年里,我们的冷冻电镜项目进展缓慢,因为它仍然受到记录介质的限制。当直接电子检测相机被商业化后,发生了翻天覆地的变化,冷冻电镜领域被彻底改变了,也为我的实验室开辟了许多新的合作途径,特别是在通道结构方面。最近,哥伦比亚大学建立了一个冷冻电镜设施,由于捐助者的慷慨,以及和三个校区院长的合作,哥伦比亚大学现在正朝着成为世界领先的冷冻电镜中心之一前进。看着新技术在整个工业化领域广泛传播,我十分振奋,单颗粒冷冻电镜现在能够填补分子结构研究的巨大空白:膜结合的通道和受体,以及许多高柔性的大分子结构都可以被解析。冷冻电镜技术有望在未来几年大大增加人类医学的成就。[末尾致谢]诺贝尔颁奖典礼,斯德哥尔摩市,瑞典在过去五年中,一些实验室陆续解析了许多近原子结构,这引起了全世界对冷冻电镜领域之前数十年工作的关注,这些工作不仅仅归功于受到表彰的诺贝尔奖获得者和他们的小组,更是整个冷冻电镜领域的成就。因为从长远来看,自1990年冷冻电镜技术开始得到认可,许多团体在各个方面都做出了重大贡献:样品制备、数据收集自动化、计算、验证和原子模型的建立。这些贡献不胜枚举。在走到这一步的整个过程中,我受到了不少眷顾。我想对我的家人们表示感谢,特别是我的妻子卡罗尔,感谢她/他们在漫长时间里的稳定支持。我的妹妹英格伯格接受过生物化学方面的培训,她是我家庭中唯一能够理解我工作内容的人。在我的朋友中,我需要特别指出马丁凯瑟(Martin Kessel)对我早期工作的鼓励和支持,以及何塞玛丽亚卡拉索(Jose-Maria Carazo)对我一路走来的许多启发。最后,得到诺贝尔奖的认可令我激动,且受宠若惊。用阿尔弗雷德诺贝尔遗嘱中的话来说,诺贝尔奖的得主将是那些造福全人类的终身成就者,只有少数人能够达到这个目标。那些先行者,欧内斯特卢瑟福、莱纳斯鲍林、玛丽居里...他们的成就是难以逾越的。于我而言,一夜之间,我的人生被完整地定义了,或者说,许多与我未曾谋面的人能够了解我的经历,听我用自己的言语讲述我的故事,我感激这个机会。引用资料1. Frank, J. (1975). “Averaging of low exposure electron micrographs of non-periodic objects.” Ultramicroscopy 1, 159–162.2. Frank, J., Shimkin, B., and Dowse, H. (1981). “SPIDER — A modular software system for image processing.” Ultramicroscopy 6, 343–358.3. Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies (New York, Oxford U. Press).4. Frank, J. (2015). “Generalized single-particle cryo-EM – a historical perspective.”再次祝愿Joachim Frank教授生日快乐!
  • Cell综述:冷冻电镜时代的新药研发
    基于结构的药物发现(Structure-based drug discovery, SBDD)是设计和优化创新药的必要方法。本篇综述将深入探讨冷冻电镜(cryo-EM)在SBDD领域中的快速崛起及它的主要作用,以及阐释它如何为高价值药理学靶点提供丰富的全新结构信息。冷冻电镜技术相比X射线晶体学的主要优势在于,它可以跳过繁琐的结晶步骤,从而直接对玻璃化的生物大分子进行成像;冷冻电镜也可以提供更多维度的信息,包括异质性和动态性。此外,本综述还将讨论冷冻电镜近期和未来的发展,并探讨该技术将在SBDD的管线中产生何种广泛的影响。冷冻电镜时代的SBDDSBDD是一种基于靶点的原子级结构基础信息,针对该靶点进行理性药物设计的研发方法。20世纪80年代,随着Captopril卡托普利和多佐胺Dorzolamide等酶靶向药物获批上市,SBDD方法初露锋芒。这一批由FDA批准的药物结合了晶体结构模型与计算机辅助分子建模这两大新兴技术,并成功解决了传统湿实验室的高通量筛选方法(HTS)所面临的昂贵、耗时及低回报率等问题。此后,随着计算技术的不断革新,大量药物靶点的晶体结构得以解析,SBDD方法进入了飞速发展阶段。从1999年到2013年,在113个获批的first-in-class药物中,有78个是基于SBDD方法发现的。尽管SBDD的发展足够迅速,但学界及制药行业内对它的期望显然更高。SBDD方法往往能另辟蹊径,对过往认为不可成药的靶点进行验证,并进一步开发新药。如K-Ras(G12C)靶点,它利用晶体学结构确定了一个以前未知的结合口袋,以避免与皮摩尔亲和力的GDP/GTP竞争。由于靶点验证是发现和开发工作中的主要难题之一,first-in-class药物分子可以为靶点的有效性和疾病应用提供新的见解,例如bromodomain溴结构域抑制剂(+)-JQ-1和I-BET762,这些化合物被成功用于表征和验证溴结构域在各种疾病中的重要性,并催生了大量的临床候选药物。即使是FDA批准的已知药物靶点,临床上也常常需要进一步的SBDD,比如有些药物需要进行更好的选择性的优化设计。厄菲替尼(erdafitinib)在经过针对性的设计改造后,表现出了相对于原先药物对成纤维生长因子受体更高的选择。此外,有一些药物可能需要优化效力或疗效,或提供特定受体亚型的选择性,如改善鞘氨醇-1-磷酸(S1P)抑制剂西波尼莫德(siponimod)对S1P1而非对S1P3的选择性,是提高其在疗效和安全性上优于非选择性S1P抑制剂的关键。该药物靶向S1P1,而非S1P3,此外,许多抗病毒、抗菌和抗癌药物正面临着抗药性问题,SBDD方法能够基于产生耐药性的靶点结构,对药物进行持续改进。SBDD工作的瓶颈在于获取高分辨率的生物靶点结构信息。虽然一些小而有序的生物分子满足X射线晶体学的研究范畴,但大部分已知靶点中的蛋白质,例如跨膜受体或动态复合物,都难以结晶,导致这些靶点蛋白无法利用晶体手段进行高分辨率结构解析。此外,X射线晶体学往往会对靶点蛋白进行改造,如进行截短体设计、引入热稳定性突变或插入一段外源的结构域,从而影响后续的SBDD结构信息分析。还需要考虑的一个关键因素是,大量的靶点蛋白性质上达不到结晶的条件要求。不过,上述的这些难点正被冷冻电镜技术逐一攻克。冷冻电镜技术的分辨率已足够高,其产生的大量数据也可用于计算辅助药物设计(CADD)方法,这也是本综述的核心议题。与X射线晶体学不同的是,冷冻电镜无需对目标靶点进行结晶:纯化过的靶点生物大分子会被瞬间冻结在一层薄薄的非结晶玻璃体冰中,再经由透射电镜成像以记录下几十万到几百万个冷冻电镜颗粒数据,用于重构三维静电势图并对大分子进行精确建模。因此,这种技术很适合于蛋白质复合物、热稳定性较低和动态运动较高的蛋白质以及脂质胶束中的跨膜蛋白质的结构测定。随着分辨率的不断提高,冷冻电镜已经成为药物设计的强大工具。冷冻电镜与药物发现在2014年之前,冷冻电镜几乎无法解析出优于4.0Å分辨率的结构,这直接导致它无法对SBDD工作提供有效的数据支持。然而,在过去的几年里,冷冻电镜方法的爆炸性突破产出了大量高分辨率的结构数据,这在以前是无法实现的。这一质的飞跃要归功于许多技术革新,如用于记录图像的直接电子探测器、改进的计算方法和处理大型数据集的硬件集群,这些技术的飞跃在其他文献内有详细回顾。此外,作为一种直接可视化的技术,冷冻电镜能够快速判断样品的聚集性和稳定性等问题,从而通过遗传和生物化学手段,用互作因子稳定蛋白、或通过优化去垢剂从细胞膜环境中提取膜蛋白等方法来快速改善样品质量。综合以上,在PDB中的分辨率为4.0Å或更高的冷冻电镜结构的数量已经从2014年之前的合计16个增长到仅2020年一年提交1753个新结构的规模(图1, A)。在新上传的结构中,分辨率高于4.0和3.5 Å的比例分别从2015年的36%和12%增加到2020年的75%和50%。更振奋人心的是,截止2020年,分辨率高于3.0Å和2.5Å的冷冻电镜结构比例,分别达到了18%和3%,实现了冷冻电镜结构解析前所未来的突破(图1, B)。为了系统评估冷冻电镜对SBDD领域的影响,我们(作者)调查了2018年美国200种最常用处方药的靶点相关结构数据。72%的靶点在PDB数据库中含有结构信息。细分而言,这些结构信息是通过X射线晶体学技术(42%)、冷冻电镜技术(15%)或两者结合(15%)而确定的(图1, C)。通过冷冻电镜技术解析的靶点涵盖了许多跨膜蛋白,如离子通道(GABAA、CaV、NaV和KATP)、激活态的G蛋白偶联受体(GPCRs)和转运体蛋白(5-羟色胺转运体、NaCl转运体)。图1.冷冻电镜分辨率的提高及其对蛋白质药物结构表征的贡献。(A) PDB中上传的低于特定分辨率的冷冻电镜结构的绝对数量;(B) PDB中上传的低于特定分辨率的冷冻电镜结构的百分比的。(C)2018年200个热门处方药的靶点图,按靶点的结构特征分类;(D)44个热门GPCRs处方药的靶点图,按结构特征分类;(E)2018年200个销量最高的药物的靶点图(作为新药的代表),按靶点的结构特征分类。2020年的数据是由Njardarson实验室公示的2018年200种最受欢迎的处方药和200种销量最高的药物的蛋白质靶点(如果适用),然后在PDB中确定相关结构,进行人工筛选。在200多种最常见的处方药中,GPCRs占据了44种,这些药物包括靶向GPCRs的激动剂、拮抗剂和反向激动剂(图1, D;注意,拮抗剂和反激动剂在药理学上不同,但在这里我们(作者)把它们统一归为拮抗剂)。这些GPCRs中的32个(73%)已经进行了某种形式的结构解析,包括与拮抗剂(44%)或激动剂(7%)结合的晶体结构,与激动剂(9%)结合的冷冻电镜结构,或由X射线晶体学和冷冻电镜手段共同进行的结构解析(20%)。值得注意的是,GPCR的高度动态结构使其难以获得高质量的晶体,因此大多数的GPCR晶体结构都是与拮抗剂结合后才得以进行结构解析的。综上所述,冷冻电镜技术在针对市场上已经存在多年的处方药中中具有深刻影响。为了更加深入了解冷冻电镜技术在未来药物发现中的作用,我们(作者)还调查了2018年取得最高利润的200种药物,以代表那些市面上新进发现的药物(图1, E),我们简称新药。这批新药和之前提到的那些最常用的药物之间存在明显的差异。相当一部分新药已经用晶体学进行了表征,反映了结构数据在当今药物研发工作中的重要性:即便不是由结构驱动的,也很少有不追求结构的情况,因为结构信息可以为先导化合物的优化和进一步发现提供关键数据。此外,考虑到漫长的药物开发时间,冷冻电镜这一最近几年才崛起的新技术在这份名单中的占比虽小,但贡献仍相当可观。这些药物和靶点包括生物制药、离子通道和GPCRs,以及其他不适合结晶的高活性大分子。冷冻电镜对SBDD的贡献解析新型结构虽然有许多FDA批准的药物靶点结构可被X射线晶体学解析,冷冻电镜正在为越来越多的难结晶、甚至不可结晶的靶点打开大门,如分子量更大、更动态的蛋白质和蛋白质复合物。冷冻电镜也显著降低了对细胞内复合体的研究难度,如病原体的核糖体、染色质修饰复合体和转录机器。例如冷冻电镜技术近期解析了一种与线粒体体RNA聚合酶复合体相关的first-in-class 抑制剂的结构。值得注意的是,在膜蛋白领域,冷冻电镜的贡献无可比拟。不管是传统的药物,还是新型处方药,很多药物靶向针对GPCRs、离子通道和转运体蛋白。然而,利用X射线晶体学手段来解析膜蛋白的结构非常困难。尽管脂质立方结晶在GPCR领域取得了一些进展,但在结晶过程中,GPCR蛋白通常需要进行热稳定突变,或融合其他蛋白进行改造,以促进晶体的形成。并且,为了获取某种改造后的稳定的构象,还需要对克隆构建、实验方法及条件进行大量繁琐复杂的筛选。相比之下,冷冻电镜结构可以直接用来解析经过去污剂或纳米盘处理后的在生化上性质稳定的膜蛋白,并获得处于或者接近生理状态的蛋白的结构。冷冻电镜的在解析庞杂的膜蛋白的结构中能力势不可挡,并且已有大量的高分辨率结构被成功解析。长久以来膜蛋白一直都是获批药物的热门靶点,它们的结构也只是近期才被冷冻电镜揭示(图2)。图2. G蛋白偶联受体、转运体(上排)和离子通道(下排),每个受体有相应的FDA批准的配体分子(蓝框)。利用冷冻电镜解析膜蛋白结构的突出进展,部分原因受益于新试剂的设计和使用。这些试剂可以在体外纯化过程中维持跨膜蛋白的结构,在冷冻制样过程中保护蛋白,并为高分辨率的结构解析提供均质样品。去垢剂如正十二烷基β-D-麦芽糖苷(DDM)和月桂基麦芽糖新戊二醇(LMNG),可以有效地从细胞膜上溶解跨膜蛋白,并维持蛋白质的生理状态构象。去垢剂的使用也会产生一些问题,如去垢剂形成的空胶束和与包裹蛋白质的去垢剂同时存在存在会引起样品的不均一,对后期的数据处理处理产生影响;也可能会导致冷冻样品制备时的气液界面收到破坏,产生一些不好的结果。脂质纳米盘是去垢剂的一种替代品,原则上可以为结构和生物物理研究提供接近胜利状态的脂质双分子层。脂质纳米盘在膜蛋白药物靶点上的应用已经非常关键和广泛。举例而言,将纳米盘与冷冻电镜技术相结合,成功阐明了TRPV1和TRPV5离子通道(在TRPV1的情况下,脂质对抑制剂的结合至关重要)、GABAA配体门控离子通道、人类P-糖蛋白以及GPCR-β-arrestin复合物的高分辨率结构和机制。关于纳米盘的进一步介绍可查阅。冷冻电镜还可以用来解析嵌入脂质体中的蛋白质的结构,允许在更接近生理状态的的电化学梯度中对离子通道以及孔蛋白进行可视化研究。在过去的几年中,冷冻电镜也在生物制药领域产生了巨大影响。在较新的药物中,生物制药的占比正越来越高。如果仅将目光聚焦于药物靶点识别这一领域,生物制药的结晶技术确实称得上有所改善。然而,冷冻电镜已经为一些关键的生药物研发提供了基于全长蛋白的结构信细节息胰岛素受体一种二聚化的酪氨酸激酶受体蛋白,在调节人体的葡萄糖平衡方面起着关键作用。胰岛素受体信号通路的失调会引起一些疾病,如II型糖尿病,全球约有9.3%(4.63亿人)受到影响两个独立的研究小组利用冷冻电镜在胰岛素受体结构解析方面取得了突破进展;第一个小组以4.3Å和7.2Å的分辨率分别解析了与一个或两个胰岛素分子结合的胰岛素受体胞外结构域结构,第二个小组以3.1Å的分辨率获得了与四个胰岛素分子结合的胰岛素受体胞外结构域结构(图3, A)。这些结构解释了胰岛素受体结合胰岛素的不同结合位点,以及激活这一关键药物靶点所进行的构象变化。类似的例子比比皆是:从HER2-trastuzamab-pertuzumab复合物到SARS-CoV-2和中和抗体的结构解析,冷冻电镜为生物治疗的新老靶点提供了新的视点,为进一步发现和开发仿制药和first-in-class药物铺平了道路。另一个值得注意的例子是B淋巴细胞抗原CD20,它是治疗白血病和自身免疫性疾病的一个重要的治疗靶点,尽管其功能作用仍不清楚。尽管CD20的分子量较小,只要35kDa左右,但分别与单克隆抗体利妥昔单抗(rituximab)、奥法图单抗(ofatumumab)和奥比努单抗(obinutuzumab)的Fab结合形成复合物后,都解析获得分辨率较高的CD20复合物结构(图3, B)。负染结果显示,利妥昔单抗与CD20结合后,可诱导形成高度有序的高级结构,这一发现对激活先天免疫的补体系统提供了全新见解。由于复合物中的高度动态和跨膜结构域的存在,利用结晶手段结构解析几乎不可能实现,冷冻电镜技术的应用实现了这一可能。图3.冷冻电镜(cryo-EM)在小分子和生物制药发现方面的效用。(A)与胰岛素结合的胰岛素受体(PDB ID 6PXV)和(B)CD20与利妥昔单抗复合物(PDB ID 6VJA)冷冻电镜密度图。(C)使用GemSpot(PDB ID 6CVM)将小分子PETG精确地建模到β-半乳糖苷酶的冷冻电镜图像中。(D)基于片段的PKM2的发现,冷冻电镜密度允许正确识别和放置发现片段(PDB ID:6TTF)尽管冷冻电镜在膜蛋白结构测定领域已经迈出了一大步,但短板仍然存在。其中一个短板是解析小于50-70kDa的没有明显的胞内或胞外结构域的单体膜蛋白,由于几乎没有胞外结构域特征,因此难以对去垢剂胶束或脂质纳米盘进行降噪处理,以这种方式收集到的数据难以产出高分辨率结构,比如解析没有上下游偶联蛋白的处于非活性状态的的GPCR结构。然而,大量的蛋白质属于这一类型,解析这一类型的的膜蛋白因此也成为了一个重要的研究领域。目前,有一些解决方案正处于研究阶段,且已经取得了一定程度的成功,如前文所述的CD20。随着利用增加融合蛋白、抗体片段、纳米抗体、纳米抗体衍生物或其他支架蛋白以增加靶点蛋白的分子量等方法的应用,预计冷冻电镜在膜蛋白结构测定方面会有更多进展。计算赋能冷冻电镜冷冻电镜单颗粒技术利用数百万个颗粒的可视化投影来重建静电势图,这通常涉及数十万亿字节的原始数据。因此,该方法从计算方法的快速发展中获益匪浅,这些计算方法同时满足了对更高的分辨率的需求并加深了对粒子动力学的理解。然而,与X射线晶体学相比,冷冻电镜在获取配体-靶点复合物的高可信度模型时仍然面临着一些难题。其中一个难题是冷冻电镜难以解析得到高于2.5Å的蛋白结构,而这通常是建模人员能够精确放置配体并解析出结合位点处水分子的最低分辨率。此外,冷冻电镜的结构建模流程与晶体学完全不同:在晶体学中,模型和密度图之间有一套严格而完善的统计测量方法,该方法能够提供和模型精度相关的关键信息。而在冷冻电镜方法中,基于密度图的建模是一个完全独立的过程,仅适用收集的电镜投影来进行密度图重构,然后基于密度图进行结构建模和实空间下的微调。该过程的独立性使得模型的精度被降低了。这一问题在最近已得到改善。此外,两种方法之间还存在一些物理上的差异,如晶体学依赖电子密度图,而冷冻电镜依赖静电势图。这些差异加在一起,使得晶体学的模型验证工具无法应用于冷冻电镜模型。因此,我们可能需要为精确性开发一些新的指标。一种解决方案是使用强大的计算技术和精确的分子力场对大分子及其配体在冷冻电镜结构中的相互作用进行模拟。比如PHENIX软件包结合实空间和傅里叶空间微调和OPLS3e力场的分子动力学模型,从而生成生物分子和小分子的几何统计精修模型。OPLS3e微调工具已经被整合进到我们(作者)的自研软件GemSpot,它将各种计算方法整合为一个工作流程,从而提高冷冻电镜密度图中配体位置的准确性(图3C)。新的计算工具也推动冷冻电镜在基于片段的药物发现(Fragment-based drug discovery)中发挥作用,其中高溶解度的小片段化合物被浸泡在由多个不同结构的化合物组成的生物分子靶点中。解析复合体的结构可以解释配体与结合口袋之间关键位点的相互作用,然后可以将其组合成一个先导化合物。然而,这种方法要求配体密度质量高、分辨率高,才能正确区分配体的姿态和原子类型,目前对于冷冻电镜来说还是一个难题。最近,Saur等人在高度棘手的β-半乳糖苷酶和颇具治疗意义和挑战性的激酶PKM2的场景中成功地将冷冻电镜用于FBDD。尽管他们为了将配体置放于密度图中,而不得不将干法和湿法实验结合,但他们成功地建立了一个与β-半乳糖苷酶结合的大约150kDa的精准片段模型。更令人印象深刻的是,他们能够从四种化合物的鸡尾酒中确定哪些片段与PKM2结合(图3, D)。因此,不断发展的计算方法为冷冻电镜密度图的构建提供了一个强大的平台,可以在高分辨率下对大分子复合物进行建模。冷冻电镜的快速发展可及性与通量的提升冷冻电镜是极为精密且昂贵的仪器,需要大量的费用和人力成本来搭建、维护与操作。这一特性在很大程度上限制了冷冻电镜的发展,并将冷冻电镜的机时资源集中在了那些受政府资金扶持的大型机构上。因此,在科研界中,冷冻电镜资源的获取门槛极高。然而,这一门槛正在被逐渐降低:许多国家级设施都启动了冷冻电镜人才培养计划,以降低冷冻电镜运维的人力成本。一些大型制药公司也开始进行内部投资,设立最先进的冷冻电镜设施。此外,冷冻电镜设施的可复制性远超晶体学极其昂贵的同步加速器和线性加速器,使得该技术更有发展前景。随着100kV电子束技术的发展,未来可能会出现性价比极高的冷冻电镜,增加其在药物发现领域中的应用场景。鉴于2018年FDA批准的药物中有49%来源于中小型公司,降低冷冻电镜的成本将使冷冻电镜技术得到更广泛的应用。最近对SARS-CoV-2相关蛋白的结构表征证明了冷冻电镜的无限潜力。在病毒爆发后的几个月内,科学家们利用冷冻电镜,以极快的速度解析了新冠病毒刺突蛋白的几种构象,以及它与人源血管紧张素转换酶或许多中和人源抗体片段的复合物的结构。最近获得FDA批准的用于治疗COVID-19的再利用药物瑞德西韦(Remdesivir)与SARS-CoV-2 RNA聚合酶结合的结构也已被冷冻电镜解析。鉴于X射线晶体学一直是病毒RNA聚合酶结构测定的传统方法,对新冠病毒的冷冻电镜结构解析是一个颠覆性的创新,凸显了冷冻电镜的高时效性特点在快速反应研究中的应用。此外,冷冻电镜的分辨率仍在大幅提高,最近的一份报告指出,作为冷冻电镜的代表性复合物结构,去铁蛋白apoferritin的分辨率达到了1.25Å,该分辨率足以对单个原子进行精准定位,在某些情况下甚至可以解析氢原子和质子化态。毋庸置疑,在样品制备良好的情况下,冷冻电镜的不断改进将持续打破结构解析的分辨率记录。冷冻电镜在药物发现和开发方面的应用将进一步受益于该技术的全面自动化。在载网准备方面,一些自动化工具正在出现,以解决不可重复性和样品浪费的难题。这些技术的改进不仅会提高自动化的程度和可及性,还可能解决冷冻电镜载网制备中的其他难题,如减少颗粒在空气及水中的暴露程度。此外,机器学习方法和深度神经网络也是提高颗粒筛选速度和准确性的关键。这些自动化方法甚至有望在未来成为冷冻电镜的核心技术,从而推动冷冻电镜在药物发现领域的发展。主流硬件和软件的改进也有望提高冷冻电镜在SBDD领域的可及性。例如,更高效的检测设备能显著提高冷冻电镜的产能。在一个标准的数据收集过程中,老式的检测器相机可以每次收集1个影像,每小时产生50个影像,而较新的检测器可以每次收集9-16个影像,每小时可以产生超过200个影像,进而转化为每24小时收集的数百万颗粒投影数据。此外,虽然今天许多最高分辨率的结构是用300kV冷冻电镜获得的,但这些机器非常庞大,且前期和维护成本昂贵。在许多情况下,对于单颗粒分析中使用的薄样品,200kV的显微镜可能就足够了,甚至100kV的显微镜也可以用来获得分辨率高达3.4 Å的结构。分子动力学的新窗口结合硬件和数据处理方面的改进,冷冻电镜的潜力将进一步被释放。当X射线晶体学受限于结晶条件而无法解析时,冷冻电镜的低样品需求大幅降低了数据收集的门槛,使我们得以看到样品的构象连续体或一系列不同的能量最低状态,为大分子动力学提供了新的窗口。图4.单一的冷冻电镜数据集,投影的三维分类显示了两种不同的构象,代表了两种不同的G蛋白偶联受体-G蛋白相互作用的状态,代表了两种热力学上可比较的构象。在典型状态下(左边,PDB ID 6OS9),受体以典型的方式与G蛋白结合,其中核苷酸结合口袋为GTP结合做准备。在非经典状态下(右图,PDB ID 6OSA),G蛋白异源三聚体与经典状态相比旋转了45°,代表了沿G蛋白偶联途径的中间配体结合受体状态。缩写:α-N=G蛋白的N端α螺旋;cryo-EM=冷冻电镜;TM=跨膜螺旋。一些计算工具,例如二维和三维分类以及子区域的重点细化,能够利用数据集内颗粒的异质性来模拟大分子活性成分的运动。在我们(作者)小组最近的一个例子中,对神经紧张素1受体的冷冻电镜单颗粒分析结果揭示了先前识别的G蛋白、激动剂结合状态和G蛋白偶联通路上的一个新的中间状态(图4)。最近,我们(作者)还将AI深度学习网络应用于冷冻电镜数据集,揭示了26S蛋白酶体的构象动态,使解析出的结构细节达到了前所未有的原子级水平。随着分辨率和分类工具的不断改进,我们将获得更精细的构象变化。有了以上这些技术,再加上分子动力学模拟和机器学习方法等计算技术,我们将得以对配体结合的复杂过程进行更精确的建模,从而揭示全新的、可成药的中间状态。结语尽管冷冻电镜已经在SBDD领域取得了飞跃性的进展,但它的潜力远不止于此。在三维分析重构及深度学习算法等领域,若能将计算工具与更大、更高质量的数据集结合并进行训练,我们将能够描述蛋白质甚至其配体的更小幅度、更高分辨率的动态运动。我们还期望冷冻电镜在时间维度上的结构解析方法将使人们对大分子复合物的结合和解离过程有更深了解,为靶向药物的研发提供更多思路和机会。目前晶体学和大多数冷冻电镜结构所提供的只是能量最小值的瞬间结构,但对于开发新的药物作用模式而言,对机制和中间状态的理解至关重要,所以我们若能获取构象的动态信息,则对理性药物设计具有突破性意义。在综合了冷冻电镜的软硬件及方法的快速发展之后,我们可以得出结论:冷冻电镜有望为药物发现和人类健康做出巨大贡献。词表:1. 激动剂一种通过增加受体活性以产生生物反应的物质。2. 拮抗剂(也称中性拮抗剂)一种能阻断激动剂或反向激动剂的物质,在不存在激动剂或反向激动剂的情况下便没有活性3. 生物制药在生物活体中制造的药物,可能含有重组蛋白、糖类、基因疗法或核酸。4. 电子密度图电子密度与晶体中每一个晶胞位置的关系图,以二维或三维表示,由解析X射线衍射图案得出。5. 静电势图(即库仑势图)即样品中电荷分布的二维或三维表示。在电子显微镜中,静电势图由电子被与样品相互作用时产生的库仑力散射而产生。6. 基于片段的药物发现FBDD一种药物筛选方法,以评估小分子量的化学片段与期望靶点相结合的能力的方式,确认后续的药物化学实验方向。7. 反向激动剂一种通过减少受体的基础活性以产生生物反应的物质。8. 脂质立方相结晶基于脂立方相的蛋白结晶技术,采用脂立方相模拟生物膜环境,膜蛋白可以在脂质双分子层中相互接触,在合适的条件下形成晶体。9. 脂质纳米盘一个纽扣电池形状的盘状脂质双层,由两个环绕的两亲性螺旋蛋白(膜支架蛋白)稳定并使其可溶于水。10. 冷冻电镜负染一种将重金属盐染色剂嵌入并固定在生物标本上,并在室温下进行电子显微镜成像的技术方法。尽管只能在低分辨率(~2纳米)下观察标本的形状,但这种技术对于简单和快速评估样品质量是很有价值的。11. 时间分辨的冷冻电镜方法在动态构象转变的特定时间间隔内对生物样本进行速冻,并使用冷冻电镜技术进行可视化的方法。
  • Eppendorf 5418R和5424R冷冻离心机面世
    近日,Eppendorf 推出5418和5424小型台式离心机的冷冻款--5418R和5424R。其中,5418R的最大相对离心力 为16,873 x g,控温范围为0 ° C 至 40 ° C。独有QuickLock&trade 快速锁定转子盖只需旋转1/2圈即可安全锁定转子,确保离心安全。5424R 的最大离心力可达21,130 x g,控温范围为-10 ° C 至 +40 ° C,适配4款不同转子,实现不同离心管的安静离心,满足日常实验室离心的不同应用。同时,在此次第四季度的促销活动中也将推出5418系列、5424系列和5430系列离心机的促销套装,便于您以优惠价格采购新型产品。更多产品信息:请登录 www.eppendorf.cn
  • 规划300kV冷冻电镜20台!水木未来全球冷冻电镜与AI药物创新中心投用
    7月4日,清华大学-北京大学生命科学联合中心青山湖平台挂牌暨2022年暑期学校启动及水木未来冷冻电镜项目投用仪式在青山湖科技城举行。清华大学校长助理、清华大学-北京大学生命科学联合中心主任王宏伟,西湖大学校长助理王廷亮,北京大学生命科学学院副院长、教授高宁,清华大学生命科学学院副院长欧光朔,杭州城西科创大走廊党工委委员、管委会副主任施黄凯,临安区领导杨泽伟、陈立群、蔡萌、裘凯,以及临安区有关部门、清华大学、北京大学、浙江大学等高校师生参加活动。活动现场青山湖科技城是浙江建设科技强省和创新型省份的重大工程,也是杭州城西科创大走廊的重要一极。自成立之初起,青山湖科技城就高度重视科技创新,集聚了36家科研院所,拥有众多共享仪器设备和研发平台;近年来,更是聚焦高端装备制造、未来微电子、新材料等领域,打造成为城西科创大走廊“硬科技”创新策源地。水木未来冷冻电镜项目投用仪式在杭州市临安区政府推动下,水木未来“全球冷冻电镜与人工智能药物创新中心”设立于青山湖科技城,旨在建立全球最大的冷冻电镜平台和生物大分子高精度结构数据库,面向全球科研机构和创新药企提供服务和创新疗法共同开发;与清华大学和国内外顶级科研机构合作,提升基础科研水平,整合基础研究、技术开发和成果转化,打造全球化结构与AI药物创新发现基地。水木未来源自清华,是一家基于冷冻电镜和AI的精准创新药和疗法研发企业,拥有亚太区第一个商业化冷冻电镜服务平台,在小分子、抗体药、RNA药物、蛋白降解、基因治疗等领域,助力全球创新药企药物研发。经过一年的紧张筹备,水木未来“全球冷冻电镜与人工智能药物创新中心”在青山湖科技城投用。参观水木未来冷冻电镜实验室目前,6台300kV高配电镜已就位,结合自主研发的AI驱动的新一代电镜结构解析和建模软件平台、GraFuture™ 石墨烯载网冷冻制样技术,水木未来青山湖基地在推动冷冻电镜效率、分辨率和产业化方面,又向前迈出一大步。据青山湖科技城管委会相关负责人介绍,该项目的投用,将有力提升科技城乃至临安、城西科创大走廊的生物医药创新研发水平,并加快生物医疗领域产业集聚,助力城西科创大走廊打造生命健康产业创新策源地,以“结构+计算”助力加速全球创新药物发现。会议期间,与会人员参观了水木未来冷冻电镜项目实验室、青山湖科技城规划展览馆,并举行了政校深化合作座谈。笔者注:据了解,此次在青山湖科技城投用的水木未来冷冻电镜研发平台,规划了20台高规格300KV冷冻电镜,不久的未来还将引入用于原位高分辨解析的新型高端电镜。水木未来“全球冷冻电镜与人工智能药物创新中心”一期正在装机6台300KV新型高端冷冻电镜、2台200KV冷冻电镜,旨在建立全球最大的冷冻电镜平台和生物大分子高精度结构数据库,推动新一代AI精准化药物和疗法的源头创新。据悉,电镜平台综合实验室由上海音宁电子科技有限公司设计施工一体化建设。有关负责人透露,全球已有多家顶尖实验室表达合作意愿。
  • 河南省食品科学技术学会发布《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》团体标准征求意见稿
    由河南省食品科学技术学会标准化专业委员会组织起草的团体标准《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》团体标准已完成征求意见稿,现公开征求意见。请各有关单位及专家将修改意见或建议填写至《团标征求意见总汇表》内,并于2024年4月7日前回复提交。附件:1.1《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》团体标准(征求意见稿)1.2《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》编制说明(征求意见稿)1.3《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》标准征求意见汇总表地址:河南省郑州市金水区农业路60-2号邮编:450002联系人:赵蒙姣联系电话:0371-60339765Email:hnsspxh@126.com1.1《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》团体标准(征求意见稿).pdf1.2《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》编制说明(征求意见稿).pdf1.3《冷冻肉解冻失水率的测定 恒温循环水浴解冻法》标准征求意见汇总表.docx
  • 南方科技大学冷冻电镜实验室将揭牌 拟安装10台冷冻电镜
    p  在深圳市的大力支持下,南方科技大学冷冻电镜实验室即将在南科大校园内落成,并投入使用。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/1.gif" height="282" width="500"//centerp/pp  2017年10月4日三位科学家因为开发并发展了冷冻电镜技术而获得诺贝尔化学奖。南科大在学校发展的战略布局上充分展现了前瞻性,早在2017年6月 10日,冷冻电镜项目就已正式立项,并邀请我国目前最优秀的青年结构生物学家之一杨茂君教授主持。“栽下一棵梧桐树,凤凰就来了”,南科大冷冻电镜实验室主任王培毅教授这样形容实验室对海内外人才强大的吸附力。自项目启动以来,实验室已吸引了来自海内外诸多青年才俊和重量级专家学者的加入。其中包括行业内唯一的中科院院士、我国最早使用冷冻电镜开展生物大分子研究工作的隋森芳院士。今年7月,2017年诺贝尔化学奖的三位得主之一、美国哥伦比亚大学 Joachim Frank教授将应我校陈十一校长邀请到访南科大,探讨开展进一步合作。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C2%201.gif" height="282" width="500"//centerp/pp  南方科技大学冷冻电镜实验室拟于今年年底正式挂牌成立,届时将同时举办国际研讨会,几乎所有在冷冻电镜方面的国际著名科学家都将出席,包括另一位2017年诺贝尔化学奖得主、剑桥大学MRC-LMB的Richard Henderson教授。/pp  冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。图像是我们理解一切事物的关键所在,将那些人眼不可见的物体成功地可视化,通常是科研产生突破的基础。 长久以来,人们认为电子显微镜只能用于非活性生物样品的成像,因为电子显微镜的高强度电子束会严重损伤生物样品,是冷冻电子显微技术改变了这一切。现在,研究人员可以将具有活性的生物大分子快速冷冻到液氮温度(-196度),并在此温度下保持和转移,使样品最大限度保持原来形态。并将那些以前无法看见的生物变化的动态过程实现可视化——这对我们从原子尺度了解生命过程,以及研发药物带来决定性的影响。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C3%201.gif" height="282" width="500"//centerp/pp  南方科技大学冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。目前,两台300千伏冷冻电镜已完成安装,进入电镜性能综合调试阶段,预计将于8月开始试运行。一台120千伏电镜将于7月上旬投入使用。据悉,有关冷冻电镜的配置,我校前期作了大量调研工作,包括与实验室科学顾问委员会成员Richard Henderson教授进行了深入探讨,以保证每台冷冻电镜除了拥有一般共性之外,在配置上同时各具不同特性,以适应与支持南科大冷冻电镜实验室在接下来即将开展的一系列世界前沿性基础及应用研究。此外,实验室将积极开展多学科交叉研究,力争在冷冻电镜的软、硬件技术,设备和应用方面取得新的突破,克服冷冻电镜目前操作复杂、控制程序繁琐及应用成本较高的缺陷,实现冷冻电镜的常规应用。并与学校已经建成的X射线晶体学平台、生物质谱蛋白质组学分析平台形成互补,开展国际上最前沿的蛋白质科学研究,为结构生物学、细胞生物学、神经科学,化学、材料科学等领域搭建交叉学科平台。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C4%201.gif" height="282" width="500"//centerp/pp  地处粤港澳大湾区核心的深圳是一座新兴科技产业云集的城市,也被人们誉为中国最具有硅谷气质的城市。今年5月26日在深圳举行的“未来论坛X深圳峰会” 上,我校校长陈十一曾指出:和硅谷相比,深圳欠缺的还是基础研究能力,也包括应用基础研究,产业和研究的对接。南方科技大学建设的世界一流冷冻电镜实验室,旨在通过利用这一国际最先进的科学技术之一,大力发展基础科学研究,聚焦重大疾病诊断、新药开发、精准医疗、功能材料研发和基础学科建设等领域,促进深圳新材料、医疗卫生、健康产业和高等教育的发展。同时积极服务于国家战略需求,造福14亿中国人。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C5%201.gif" height="282" width="500"//centerp/pp  在新一轮科技革命和产业变革中,中国将创新作为引领发展的第一动力,把科技创新摆在国家发展全局的核心地位,大力实施创新驱动发展战略。在国家重大需求的牵引和顶层设计的指导下,利用冷冻电镜的技术优势,在核心技术和关键领域实现重大突破,对产业升级、经济转型发展产生巨大推力,正是南方科技大学冷冻电镜实验室建立的初衷和目标。/pp style="text-align: right "  文字:任亦/pp style="text-align: right "  视频制作:李艺松/pp style="text-align: right "  摄像:蔡秉伦 黄立斌/p
  • 南科大冷冻电镜中心正式揭牌,将成为中国规模最大的冷冻电镜设施中心
    p style="text-indent: 2em text-align: justify "2018年11月19日,南方科技大学冷冻电镜中心揭牌仪式在南科大生物楼举行。2017年诺贝尔化学奖获得者、冷冻电镜技术开创者之一Richard Hendersen,深圳市发改委副主任蔡羽,南方科技大学校长陈十一,中国科学院院士隋森芳等出席仪式。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/b83644de-356d-4e5f-9341-72a1a5e4725a.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em text-align: center "揭牌仪式现场/pp style="text-indent: 2em text-align: justify "南科大冷冻电镜中心是深圳市政府出资、我校牵头建设的重大基础科学设施平台,旨在支撑深圳市、粤港澳大湾区及中国南方在生物医药、精准医学、新能源新材料方面的科学研究及产业升级。南科大冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。经过一年多的前期准备工作,目前项目一期的2台300kv冷冻电子显微镜已经完成安装调试,投入使用。冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/7a1b61e0-a88d-4542-9e00-fb3cdc96a122.jpg" title="2.jpg" alt="2.jpg"//pp style="text-indent: 2em text-align: center "陈十一致辞/pp style="text-indent: 2em text-align: justify "陈十一在仪式上致辞,他代表南科大对与会嘉宾的到来表示欢迎,对深圳市委市政府对南方科技大学冷冻电镜中心的支持表示感谢,同时也对冷冻电镜中心负责人王培毅和工作人员前期的辛勤工作表示肯定。他表示,未来几年,冷冻电镜中心将致力于把基础知识和药物开发结合起来,在深圳的工业发展中扮演重要角色。南科大将以此为契机,秉承和发扬“敢闯敢试、求真务实、改革创新、追求卓越”的创校精神,为深圳市社会和经济的发展继续贡献力量。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/17b55b90-20aa-4b77-85b2-0fddf9d79466.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em text-align: center "Richard Henderson致辞/pp style="text-indent: 2em text-align: justify "Richard Henderson在致辞中对南科大冷冻电镜中心的落成表示祝贺,并表示为这个优秀的冷冻电镜中心的建立感到由衷高兴。他指出,南科大冷冻电镜中心落成之后,将会成为全球最大的三个冷冻电镜中心之一,另外两个分别在美国和英国。目前,世界上大概有100个类似的研究机构,南科大冷冻电镜中心落成之后,其研究能力将会达到全球的前5%,对相关科研领域的研究产生更大的影响。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/524b4e7f-e049-43a5-8cb4-e08283ee6ed4.jpg" title="4.jpg" alt="4.jpg"//pp style="text-indent: 2em text-align: center "蔡羽致辞/pp style="text-indent: 2em text-align: justify "蔡羽表示,南科大冷冻电镜中心是生命科学、新材料、新能源领域基础性、关键性的重大科研设施,填补了深圳市、广东省、中国南方地区在该领域的空白,为我市及地区相关领域内的科学研究及产业升级转型提供了支撑平台,希望冷冻电镜中心为深圳市、粤港澳大湾区的产业升级及进一步经济社会全面发展提供新的动力源泉。/pp style="text-indent: 2em text-align: justify "随后,冷冻电镜中心负责人王培毅、Richard Henderson、蔡羽、隋森芳共同为南方科技大学冷冻电镜中心揭牌。/pp style="text-indent: 2em text-align: justify "Thermofisher Scientific亚太区材料与科学事业部总经理Marc Peeters、Thermofisher Scientific公司代表Jonathan Jing、中国航天科工深圳航天工业技术研究院董事长崔玉平、中国国际金融集团董事总经理陈十游也在仪式上致辞。/pp style="text-indent: 2em text-align: justify "南方科技大学第二附属医院、深圳市第三人民医院院长刘磊,加州大学洛杉矶分校教授周正洪,加州大学旧金山分校教授程亦凡,牛津大学教授章佩君等参加了揭牌仪式。/pp style="text-indent: 2em text-align: left "冷冻电镜发展国际研讨会也于同日在南科大图书馆111报告厅举行。/p
  • 祝建:关于原位冷冻电镜技术的一点想法
    仪器信息网讯 2015年5月29日-6月2日,&ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。  上海同济大学生命科学学院祝建教授作了题为&ldquo 关于原位冷冻电镜技术的一点想法&rdquo 的报告。祝建教授  祝建介绍说:&ldquo 冷冻电镜技术可以分为单颗粒冷冻电镜技术和原位冷冻电镜技术。其中单颗粒冷冻电镜技术目前国际上做了许多工作,近来也比较火。近年来,我国为了开展这方面工作,购置了许多相关的高端仪器设备。该技术需要将细胞内的活性蛋白分子提纯后在体外分析,但是在体外做的不错的结构最终还需要到体内去验证,如在体内蛋白质是否也是按照相应的结构来执行功能。所以这方面的工作还需要进一步深入。&rdquo   祝建表示,原位冷冻电镜的最终目的是研究大分子的结构、功能和机制统一的问题,从而解释生命现象。原位冷冻电镜技术包括冷冻固定、超薄切片,再加上电镜分析、数据采集、三维重构等。冷冻固定可以分为快速冷冻和高压冷冻。高压冷冻技术就是为了使组织的冷冻成为可能而问世,可以冷冻200&mu m厚的样品。而快速冷冻技术只能冷冻30&mu m厚的单细胞层。从冷冻速度来看,快速冷冻的速度稍快一些。  祝建说:&ldquo 目前,国内购买了多台高压冷冻仪。其实并不是所有的样品都适合高压冷冻,大组织块、一定厚度的样品用高压冷冻最好,其他的单细胞样品用快速冷冻一样能达到很好的效果,而且快速冷冻技术更简便。&rdquo   &ldquo 冷冻固定之后,如果在冷冻电镜下分析需要与冷冻超薄切片技术相结合。如果在常温电镜下分析,则还需要冷冻置换、包埋、切片等步骤,现在买高压冷冻仪的单位基本都是要和冷冻置换结合起来。冷冻置换是冷冻固定之后非常必要的低温脱水技术,脱水过程中脱水剂中所含有的固定成分还将在合适的低温温度下对样品进行二次固定。如果要减少样品收缩,则需要快速冷冻固定,慢慢脱水。&rdquo 祝建说道。  另外,祝建还谈道:&ldquo 原位分析的另外一种途径是标记,通过标记实现定位、定性、定量分析。因为我们无法看到一些结构细节和大分子,所以用抗体来标记连接我们能看到的荧光分子或金颗粒来实现间接原位分析。&rdquo   最后,祝建总结说,在实际应用中,要根据样品的特点,从快速冷冻、高压冷冻、冷冻置换、超薄切片、冷冻超薄切片、离子束切片等制样技术中选择合适的组合方法来制样。还有我们要考虑将原位冷冻电镜与单颗粒冷冻电镜结合起来获取有效的分析结果。撰稿:秦丽娟
  • 冷冻电镜:2015年最受关注的新技术
    细胞里面的生命活动井然有序,每一个部分都有其特定的结构,承担不同的功能。生物大分子则是一切生命活动的最终执行者,它们主要是核酸和蛋白。核酸携带了生命体的遗传信息,而蛋白是生命活动的主要执行者。自现代分子生物学诞生以来的半个世纪里,解析和分析生物大分子的结构、进而阐释其功能机制一直都是现代生命科学的核心问题之一。  事实上,一切自然科学都涉及物质结构及结构间的相互作用为核心的研究方向,天文学研究宇宙、星体等的结构及其相互作用,粒子物理研究物质世界的基本粒子的结构和相互作用,甚至包括应用性很强的材料科学都是以研究新型材料的结构和性质等为核心。结构生物学研究的直接目的是弄清楚生命大分子结构,从而更好地理解生命,理解这个自然界中“逆热力学第二定律”而诞生的奇迹 最终目标是公众通常关心的实用价值。  像数学物理公式不会直接造出飞机、导弹、计算机一样,蛋白质结构这样的基础研究不会直接转化为人们生产生活的必须物品。比较具体的应用,如药物设计、疫苗开发、医疗诊断和蛋白质分子性能改造(如科学实验或工业生产中酶活性稳定性优化)等是蛋白质结构研究比较容易被大众所理解的一个方向,但却只是其研究价值的一个侧面而已。  蛋白质结构如同生命科学里的数学公式和物理定律,甚至在以后会充当生命科学里面的“化学元素周期表”,除了帮助发现或设计新药等,它更重要的价值是作为最基础最上游的研究之一,通过影响一切与其密切相关的下游科学和技术,从而改变我们的世界。  结构生物学最早诞生于上个世纪中叶,它是一门通过研究生物大分子的结构与运动来阐明生命现象的学科,在其发展史上有两个里程碑式的事件,一个是 DNA双螺旋结构的发现,另一个肌红蛋白(Myglobin)晶体结构的解析,这两个事件都是上个世纪最重要的革命性科学进展,均在剑桥MRC分子生物学实验室完成,并且都于1962年获得了诺贝尔奖(一个生理学或医学奖,一个化学奖)。同时它们都是最早使用X射线的方法来解析生物大分子结构,而这个方法在过去半个世纪里,一直占据结构生物学的统治地位。  在当今结构生物学研究中普遍使用的冷冻电镜,是上个世纪七八十年代开始出现、近两年飞速发展的革命性技术,它可以快速、简易、高效、高分辨率解析高度复杂的超大生物分子结构(主要是蛋白质和核酸),在很大程度上取代并且大大超越了传统的X射线晶体学方法。  革命性的冷冻电镜技术  冷冻电镜并不是这两年才建立的。在蛋白质X射线晶体学诞生大约10多年以后的1968年, 作为里程碑式的电镜三维重构方法,同样在剑桥MRC 分子生物学实验室诞生,Aron Klug教授因此获得了1982年的诺贝尔化学奖。另一些突破性的技术在上世纪70年代和80年代中叶诞生,主要是冷冻成像和蛋白快速冷冻技术。这里面的代表科学家有Ken Taylor, Robert Glaeser和Jacques Dubochet等。  快速冷冻可以使蛋白质和所在的水溶液环境迅速从溶液态转变为玻璃态,玻璃态能使蛋白质结构保持其天然结构状态,如果以缓慢温和的方式冷冻,这个过程会形成晶体冰,生物分子的结构将被晶格力彻底损坏。低剂量冷冻成像能够保存样品的高分辨率结构信息,确保了从电镜图形中解析蛋白质结构的可能性。与此同时Joachim Frank等则在电镜图像处理算法方面奠定和发展了这项技术的理论基础。由此冷冻电镜的雏形基本建立,总的思路为:  1)样品冷冻(保持蛋白溶液态结构)   2)冷冻成像(获取二维投影图像)   3)三维重构(从二维图像通过计算得到三维密度图)。  该方法为生物大分子结构研究提供了一个和X射线晶体学完全不一样的、全新的思路。但是由于技术方法的瓶颈,在此后30多年的时间里只能做一些相对低分辨率的结构解析工作,在分辨率上一直不能和X射线晶体学比较,甚至一度被嘲笑为”blob-ology“(英文讽刺语,“一坨轮廓的技术”)。冷冻电镜三维重构得到的电子云密度图和原子模型(局部)。张凯供图  但对于冷冻电镜来说,技术难点远非单纯冷冻。冷冻成像和图像处理算法一直都是瓶颈。从冷冻电镜技术诞生以来的近30年时间里,其一直都有进展,只是相对比较缓慢。  最重要的革命性事件大约发生在两三年前:一个是直接电子探测器的发明,另一个是高分辨率图像处理算法的改进。MRC分子生物学实验室的两位科学家Richard Henderson和Sjors Scheres在这次革命中起了关键作用(作者注:现代科技革命往往是诸多研究机构若干团队共同参与,此处仅列举关键代表,并且仅从技术角度讨论,不涉及生物学应用)。  Richard Henderson是探测器方面的先驱,而Sjors Scheres则因他设计的Relion程序而名声大噪,他们由此当选为《自然》杂志2014年“十大科学进展年度人物”。两位科学家一个从硬件,一个从软件将冷冻电镜技术推向了巅峰,将冷冻电镜技术的分辨率推向了新高度。(作者注: Henderson教授的贡献远非探测器一个方面,包括冷冻电镜理论基础、算法、软件,重要生物大分子应用,如曾首次解析视紫红质跨膜螺旋等等方面 早在20多年前,他就通过一系列理论分析,预言了冷冻电镜研究的尺度、分辨率极限、技术瓶颈等等,并且断言:冷冻电镜将超越其它一切技术方法,成为蛋白质结构研究的主导工具,如今这些预言全部应验。)  和此前使用的CCD相比,新发展的直接电子探测器不仅在电镜图形质量上有了质的飞跃,同时在速度上大幅提高,还可以以电影的形式快速记录电镜图像。这些特性同时也伴随着电镜图像处理方面的重大变革,电镜技术此前在分辨率上的一个主要瓶颈是电子束击打生物样品造成的图像漂移和辐射损伤。有了快速电影记录,我们就可以追踪图像漂移轨迹而对图像做运动矫正和辐射损伤矫正,大大提高数据质量。  尽管如此,电镜图像处理一直都是一项极具挑战性的任务,主要的问题是冷冻电镜的图像噪音极高、信号极低,而我们的目标是从中提取近原子分辨率的结构信息,这就像在一个机器轰鸣的工厂里监测一只蚂蚁爬行的声音。冷冻电镜科学家就是要完成这项艰巨的任务,并且真的做到了。有了硬件和软件方面的双重提高,冷冻电镜的分辨率目前已得到了极大的提高,可以和晶体学相媲美 并且在其它方面已经大大超越了晶体学。  主要体现在下面几个方面:  第一,不需要结晶,研究对象范围大大扩展,研究速度大大提高。对于小分子,比方说无机盐矿物质等自发就能长出晶体,小而且稳定的蛋白质目前来说结晶并不困难,但是这类意义重大的蛋白几乎都已经解析完了,在科学上没有任何重大意义 当今时代,小蛋白已经完全不能满足科学家们强烈的探索欲望,结构生物学研究的对象越来越大,体系越来越复杂,结晶几乎成为不可能的事情,即使能结晶,也不一定衍射,有衍射也不一定能得到原子分辨率结构。  很多年前,许多蛋白质晶体科学家为了完成一项艰巨的任务,一个课题少则5到10年,多则20年,核糖体从上世纪80年代初首次长出晶体到 2000年左右最终拿到原子分辨率结构整整经历了20年 线粒体呼吸链复合物I从上世纪90年代初研究,第一次报道完整晶体结构大约是20年以后。  而冷冻电镜方法跳过超大分子复合物结晶难的这层技术屏障,以直接解析复合物的溶液状态的结构为目标。  现在利用这项技术,在MRC-LMB一周时间就可以解析一个新的核糖体结构 英国皇家学会主席、MRC-LMB结构中心主任 Venki Ramakrishnan 教授,因为核糖体的晶体结构研究而获得2009年诺贝尔化学奖。他的实验室在2014年发表了最后一篇晶体结构文章,此后的文章全部以冷冻电镜为主。哥伦比亚大学有一个非常执着的博士后,研究兰尼碱受体(Ryanodine Receptor)晶体结构长达十年之久,最后放弃了晶体,转向了冷冻电镜技术,同时与清华大学教授颜宁和LMB的Scheres研究组合作,几个月就解决了这个难题,并且达到近原子分辨率。  第二,样品需求量小,样品制备快,可重复性高。重要生物样品都是非常珍贵的,总体来说是以微克或者最多以毫克来计量,即使得到这点样品,也要花费生物学家几周、几个月甚至更长的时间(大多数时候都需要摸索各种条件使样品处于相对稳定的状态,以便做进一步结构研究)。  蛋白质晶体一般要求高浓度大体积,没有量变就没有质变。而同样量的蛋白可以稀释以后制备若干冷冻电镜样品,每个样品有成百上千的区域,每个区域有几百个小孔,每一个小孔甚至可以收集多张照片。解析一般蛋白的原子结构需要几万个颗粒,而对于高对称性的样品几千个颗粒就足够。  第三,可以研究天然的、动态的结构。X射线晶体学研究生物大分子结构的一个主要弱点是无法拿到天然的动态的结构,这是因为研究人员无论如何也无法绕开结晶这个过程。冷冻电镜就是要做这件事情:直接解析天然的、溶液态的、动态的(dynamic),甚至原位(in situ)的结构,从而理解生命分子如何在空间和时间两个尺度上以活的动态的方式发挥功能。  晶体学只能尝试不同的条件获得生物大分子某个或者某些固定的状态,而且容易出现晶体堆积引起的不真实相互作用方式。形象地说,冷冻电镜可以制作完整的高清电影,晶体学只能从电影里截屏。  第四,技术革命还将开启巨大的潜在医疗价值。冷冻电镜技术方法在时间和精度方面的大幅度提高有时会导致不可预测的重大科学和应用价值。比如,活体病毒结构分析如果可以在分钟级别完成,这将有可能转化为潜在的医疗检测手段:从病人体内抽取血样或感染组织细胞,几分钟以后,非常清晰明了地展现病人在细胞内部结构层面的异常状况,甚至给出局部的原子结构图,从而给出精准的治疗方案。这个想法现在可能听起来有点像笑话,或许再过若干年人们就不这样认为了。  当然冷冻电镜的革命性不仅仅体现在上述四方面,在此就不一一列举。有关冷冻电镜更加详细的介绍,可参见笔者等2010年的中文综述(《生物物理学报》,2010年7月,第26卷,第7期: 533-559)。文章中对未来几年的发展趋势所做的展望,如直接电子探测器的普及、非对称性蛋白复合物近原子分辨率结构解析、冷冻电镜相关计算性能的大规模提升等等,目前绝大多数都在过去的两三年内得以实现并飞速发展。  华人学者在冷冻电镜领域的贡献  在冷冻电镜的这场技术革命中,华人科学家功不可没,在某些方面甚至独领风骚,做出了诸多重大成果。  加州大学旧金山分校(UCSF)的华人科学家程亦凡教授在2013年底,首次利用冷冻电镜技术解析近原子分辨率膜蛋白结构,这项成果在业界引起了巨大轰动。原因在于当所有电镜结构生物学家还在讨论膜蛋白到底能不能利用冷冻电镜技术看到二级结构,也是通常我们认为的中等分辨率水平的时候,程亦凡教授研究组直接解析了TRPV1 这个膜蛋白3.3埃近原子分辨率的结构(Nature,504:107–112)。  笔者曾在该文章发表的半年前在一次国际会议上和冷冻电镜领域顶级学者深入讨论过如何获得清晰的膜蛋白α -螺旋结构,对方给出了悲观的结论:“恐怕不太可能,至少最近两年不可能”。  事实上,此前蛋白质晶体学家已经有所耳闻“冷冻电镜可能在未来几年会超越并且取代晶体学”,但是谁也没想到会是以这样快速和震撼的方式登场,这在某种程度上引发了不少蛋白质晶体学家的“职业恐慌感”。这项成果的两个共同第一作者廖茂福、曹尔虎也都是非常杰出的青年华人科学家。  加州大学洛杉矶分校的周正洪教授早在2008年到2010年左右,在这场电镜技术革命来临之前,在各项技术条件尚未成熟的情况下解析了一系列近原子分辨率病毒结构。当时采用的是传统胶片来成像,任务非常艰巨,连他还在上学的儿子也都帮忙一起洗胶片。张兴博士在这一系列稍早的重要成果中充当了先锋。早在2008年,第一个近原子分辨率的冷冻结构,也即3.8埃轮状病毒就是张兴博士作为第一作者完成的(PNAS, 105(6): 1867-1872)。从1968年Aaron Klug创立电镜三维重构理论,到2008年人们首次看到通过冷冻电镜获得近原子分辨率结构,整整用了40年。  在国内,清华大学的隋森芳院士是我国冷冻电镜领域的先驱,不仅德高望重,还培养了一大批优秀的青年科学家,包括清华大学的王宏伟教授以及 MRC-LMB的白晓晨和畅磊福博士等等。王宏伟早年在隋老师实验室做研究生的时候,在我国研究设备和条件全面落后于国外的情况下依旧做出了许多非常出色的工作。  MRC-LMB的多位青年华人研究人员对冷冻电镜发展都做出了重要贡献。白晓晨博士在MRC-LMB首次使用直接电子探测设备Falcon I 和Sjors Scheres博士的新程序Relion,获得了第一个不对称样品核糖体的近原子分辨率冷冻电镜结构,打响了冷冻电镜革命的第一枪,随后解析了一系列核糖体和蛋白复合物结构。畅磊福博士在LMB首次获得非核糖体不对称蛋白样品APC复合物的近原子分辨率结构,阐明了蛋白质泛素化的重要机理。笔者主要在LMB的Andrew Carter博士实验室从事动力蛋白结构和功能研究,并成功解析动力蛋白激活因子Dynactin结构,提出了目前为止动力蛋白最详尽可靠的运动和激活机制(Science, 347(6229):1441-1446. 封面文章),同时独立发展冷冻电镜技术方法。  1953年4月25日,MRC沃森和克里克在《自然》杂志发表DNA双螺旋结构,61年后的同一天,我国科学家、中科院生物物理研究所的朱平和李国红研究员在《科学》杂志以长文形式发表了30nm染色质冷冻电镜结构(DNA双螺旋之双螺旋)(Science , 344(6182): 376-380)。这项工作是冷冻电镜在核心生命科学问题中的成功应用,冷冻电镜部分的工作主要是笔者在生物物理所的同学宋峰博士完成的。  生物物理所的程凌鹏博士(当前单位为清华大学)获得国内本土第一个原子分辨率的冷冻电镜结构,构建了蚕多角体病毒(CPV)的完整三维原子模型(PNAS,108(4):1373-1378)。笔者也参与了部分工作, 被其高质量、干净的电子密度图震撼。近期程凌鹏与刘红荣博士合作,在国际上首次发表了CPV完整基因组和RNA聚合酶“原位三维结构” (Science, 2015, 349(6254):1347-50), 引起了很大轰动,这项成果是我国本土冷冻电镜技术和生物学应用的双重突破,被多名同行科学家称赞为”里程牌式发现“。  我国著名科学家施一公最近发表了一系列重大蛋白复合物的冷冻电镜结构,包括γ -secretase、spliceosome等,被誉为过去几十年我国科学家对基础生物学领域的最大贡献。  另外,在欧美和中国本土还有一大批华人学者在冷冻电镜或密切相关领域(cryoET等)做出诸多突破性成果,例如匹兹堡大学的张佩君教授(艾滋病毒结构研究),德克萨斯大学的刘俊教授(细菌运动,噬菌体结构等研究)等,由于时间和篇幅问题,无法一一介绍。  冷冻电镜的未来展望  冷冻电镜技术目前仍然在快速发展中,未来冷冻电镜能做什么取决于这项技术能发展到什么程度。现代科学技术革命的一个最大特点是发展速度极其迅速,谁也不知道明天会发生什么,当然也不能十分准确的预知一个领域的发展方向。即便如此,笔者还是对这个领域有一些预测或期待(仅技术角度,不涉及具体生物学研究)。  1)超大规模、超快速度数据采集和处理。和晶体学相比,冷冻电镜的效率在某些方面已经异常惊人。比如笔者近期与牛津大学王祥喜博士合作,在几个小时以内就可以拿到完整甲肝病毒原子结构,而此前王祥喜博士花费近一年时间结晶才最终拿到原子结构。但是科学技术发展是永无止境的̷̷  但目前来说,结构生物学的巨大转型必须建立在速度和效率的双重前提下。这需要硬件、软件以及其它交叉学科等多方面的共同发展。  除了生物学研究应用,笔者一直致力于冷冻电镜技术的发展,最近在提高电镜数据处理结果可靠性和分辨率前提下,上千倍地提高了其中几个环节,过去几百到上千CPU小时的事情,现在几分钟到几十分钟就完成了。但是这只是部分环节,在其它方面依旧非常耗时,整个技术的各个环节如何全面高效高速地完成还需要更多的优秀人才参与。对硬件的发展方面笔者并不是很熟悉,预计在未来会出现超高速度的电子显微镜,大幅度提高电镜原始数据的数量和质量。  2)大尺度、高分辨率、高动态的生物大分子结构解析。理论上,冷冻电镜可像高清数码摄像机拍电影一样对生物大分子成像和重现其动态结构,研究深层机理。就目前而言,这一方面在技术上远未成熟。大尺度、高分辨率、高动态这几点拆解开来,每一个都不算太难,但是同时满足这几项需求几乎成为不可能的事情。但是这是未来结构生物学的方向,我们不仅仅要看简单的几张静态照片,我们还想看高清电影。  关于这一点,笔者需要强调一下结构生物学和动力学模拟的区别。结构生物学的动态结构目的是以实验手段完整复原自然状态的动态结构,理解其中机理,是从实验数据出发“重现大自然原貌”的过程,是完完全全可靠的实验结果。而动力学模拟是从已有的理论或经验性的物理学规律出发预测一个生物大分子的动态特性,存在巨大的不确定性,其结果可靠性较差。期待在未来的某个时刻,两者会像上个世纪的理论物理和实验物理一样完美地结合,相互促进。  大尺度复杂生物系统的高分辨率、动态机理研究涉及诸多学科,不是冷冻电镜一项技术就可以完成的,需要多学科科学家共同参与完成。  3)高分辨单分子及原位结构研究。目前的结构生物学,无论晶体学、冷冻电镜还是核磁共振主要还是在研究“群体”结构。冷冻电镜相对晶体学在这一方面已经有了大幅度提高,可以通过分类的方法研究群体结构中的每一类结构。但实际上每个分子在时间和空间上除了共性,也必然有特性,如果一种方法强大到可以测得单个分子的高分辨率结构,这必然导致巨大革命,使得人们发现许许多多在群体结构研究层次上无法发现也无法理解的大量规律。  注意这里强调的是单分子“高分辨率”结构,而不仅仅是单分子结构。单分子结构我们目前可以使用比如冷冻断层成像(cryoET)的手段获得,但是分辨率非常低,在如此低分辨率情况下,别说个体差异,很多群体结构差异都值得严重质疑。或许冷冻电镜技术若干年以后会实现这个目标,或许永远都不可能,或许这个目标被另外一个全新的技术彻底取代,冷冻电镜从此退出历史舞台。  冷冻电镜:一个高度交叉的学科  冷冻电镜领域一直是多学科高度交叉和相互促进才诞生的一个奇迹。数学、物理、化学、材料、计算机、软件、机械及自动化、精密仪器仪表等等缺一不可,当然最终的核心是生命科学(作者注:此处仅从结构生物学角度分析,并非泛指一般意义上生命科学是一切学科的核心)。生命科学提出问题,其它所有学科相互结合产生更好的解决方案。通过这些解决方案,发现更多神秘的生命现象,从而提出新的问题,诞生新的技术。  举个例子,冷冻电镜图像信噪比极低,没有科学家的雄心勃勃,没有大批信号分析、图像处理甚至数学家的参与是不可能完成这样艰巨的任务。同时冷冻电镜领域的一些发现或需求,也为其它领域的科学家提供灵感来源和新的研究思路。MRC-LMB作为现代分子生物学的发源地和近两年来飞速发展的冷冻电镜技术核心研究机构,其一大特点就是多学科“零距离交叉”。从半个世纪前的DNA双螺旋模型、肌红蛋白晶体结构等到近两年冷冻电镜技术革命,一直将这一理念体现得淋漓尽致。技术的发展和重大科学问题的解决几乎都是同时进行的,当然科学问题或应用价值始终是核心和最终驱动力,脱离科学和应用需求的技术发展是没有意义的。  另外一个比较具体的例子是笔者此前思考过的一个问题。在电镜领域出现直接电子探测设备之后,MRC-LMB的两台高端电镜,每天产生5到10T 的数据量,近期正在调试第三台,也许不久的将来,超大数据、超快速度电镜就会投入生产,这些将会导致全世界各个研究机构普遍出现一个严重的技术问题,就是如何高效、无损、快速地进行数据压缩存储和数据处理,当然这里的无损是相对特定生物样品和特定目标分辨率而言。这或许会引起一些信号处理和图像压缩方面的研究人员的兴趣。  随着冷冻电镜对生物大分子复合物高分辨率结构研究趋于成熟,更加复杂的动态机理研究是必然趋势,这是冷冻电镜技术发展的一个潜在可能性。但是复杂生物体系的深入研究需要解决一系列数学理论、物理、计算难题,有的可能甚至超出了这些学科目前的研究范畴。近些年比较现实可行的是通过冷冻电镜手段,对特定蛋白复合物非随机情况下的高分辨连续动态构象进行分析。笔者认为,专业数学家的参与会大大加速冷冻电镜技术在这些方面的发展。  生命体高度复杂,充满很多未知的和未被阐述清楚的规律,这里面有成千上万的生物大分子复合物,每一个复合物又与其它若干分子或复合物相互作用、相互影响,深入再深入地理解生命本质一直都会是冷冻电镜的重要方向。冷冻电镜是强大的基础研究手段,它通过解析高度复杂的生物大分子结构,帮助人们更好地理解生命规律,从而影响生命科学相关的一切下游学科和技术,当然也包括更好的发现和设计药物、医疗诊断等具体应用。我们期待在不久的将来,冷冻电镜技术会对科学研究和社会发展等方方面面都产生巨大影响。
  • 生物电镜冷冻制样:做了才知道有多难
    p strong 仪器信息网讯/strong 2015年5月29日-6月2日,“2015全国生物医学农林a href="http://www.instrument.com.cn/zc/1139.html"电镜/a技术研讨会暨生物电镜前沿技术培训班”在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。/pp  台湾中央研究院植物暨微生物学研究所简万能博士作了题为“Ultrastructure of plant cells using high pressure freezing and freeze substitution”的报告。/pp style="text-align: center"img alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201565105212.jpg" style="width: 500px height: 333px"//pp style="text-align: center"strong简万能博士/strong/pp  据介绍,由于早年看到所有的教科书都说想要获得更好的电镜观察结果,就要用冷冻制样技术,简万能便开始了这方面的研究,然而不做不知道,一做才知道有多难。冷冻制样对于动物来说比较简单,而对于植物来说由于细胞壁的影响却非常难。20年来,在研究当中,他碰到的失败的次数永远比成功多。“但是当你成功后,你会发现你的眼界比以前做化学固定大得多。”简万能这样说道。/pp  “电镜是生物学研究非常有用的工具。由于生物细胞的含水量可以达到80%-90%,所以制样能否成功主要是解决水的问题。传统的透射电镜制样技术,对样品损伤最大的步骤是脱水,往往使得细胞结构发生很大的变化。而利用冷冻制样最大的优点就是可以保持细胞原来的结构,并保持一些可溶性的物质。如果要做溶在细胞质里的元素分析,一定要采用冷冻制样技术。”/pp  由于水在冷冻的过程中会形成冰晶影响观察,所以在如何避免形成冰晶是冷冻制样的一个关键点。简万能表示:“在制样中一定要注意一些关键的温度节点。如-137℃是水的重结晶点,如果能迅速降低到这一温度,样品中的水就会形成玻璃态的冰。如果超过-70℃,玻璃态的冰就会形成二次冰晶。”/pp  在报告中,简万能介绍了目前常用的冷冻方法,如投入式冷冻、冷金属块撞击式冷冻、丙烷喷射冷冻、高压冷冻等。并指出高压冷冻的优点是可以做活的生物样品,可以做超过200& #956 m厚的样品。/pp  此外,简万能还介绍了在冷冻固定之后,如何更好的实现冷冻置换。他表示,如果要做超薄切片,高压冷冻和冷冻置换是最好的选择,可以获得非常好的样品形态,会有更多的信息被保留。/pp  在研讨会之后,简万能博士亲自指导参加培训的学员,进行了投入冷冻、高压冷冻、冷冻置换等实验操作。/pp style="text-align: right "撰稿:秦丽娟/pp style="text-align: left " 第一届电镜网络会议:a href="http://www.instrument.com.cn/webinar/icem2015/" _src="http://www.instrument.com.cn/webinar/icem2015/"http://www.instrument.com.cn/webinar/icem2015//a/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制