当前位置: 仪器信息网 > 行业主题 > >

离子传输过程

仪器信息网离子传输过程专题为您整合离子传输过程相关的最新文章,在离子传输过程专题,您不仅可以免费浏览离子传输过程的资讯, 同时您还可以浏览离子传输过程的相关资料、解决方案,参与社区离子传输过程话题讨论。

离子传输过程相关的资讯

  • 雷达组网全面监测沙尘传输过程
    上周,西北一带的天气来了点猛料,17号开始,内蒙古、宁夏、北京、河北等地遇到今春以来最强的沙尘污染,多地黄沙漫天,能见度小于1公里,严重影响居民生活。17日西北某地实拍图(图片来源:微信朋友圈)据历史数据显示,2000年至2016年,沙尘的日数呈现出自西向东、自北向南逐渐递减的规律,其中,新疆南疆盆地为沙尘发生频率最高地区,其次是内蒙古西北及甘肃河套以西地区。16年来沙尘发生的次数在逐渐递减,2011年、2014年、2015年、2016年沙尘暴天气过程均不超过2次,这是国家人为治理和环境气候因素的共同作用。小伙伴们纷纷表示欣慰,不过在欣慰的同时,小编带大家一起来分析下这次的沙尘过程。17日葵花卫星真彩图(图片来源:中科院遥感所)近年来,卫星遥感技术已渐渐应用到大气环境监测中。它的优势在于区域尺度,可快速提供整体污染分布与态势的直接观测。上图是高时间分辨率的葵花卫星监测到的此次沙尘传输的过程,就好比人眼在太空直接看到的景象。从卫星监测的动图我们能清晰看到此次沙尘的传输路径,从内蒙宁夏等地一路南下。那么其他地方都是在什么时候受到沙尘的影响,受沙尘影响程度又有多严重呢?在卫星图的指导下,小编调出了中科光电分布在全国各地的激光雷达。沙尘传输雷达监测网17-19日期间,共观测到3次沙团过境,其中,第二次的沙团强度最大,对地面的影响最重。三次沙团迁移中,呈现融合现象。沙团由北至南迁移,17日5时、高空3KM左右,武汉最先监测到沙团入境,18日晚间大量沉降,近地面PM10浓度迅速增高;17日13时、高空3KM左右,苏州上海等地监测到沙尘入境,18日上午沉降(沉降时间早于武汉,这可能是受当地气象条件的影响),强度中等;之后沙尘继续南下,17日20时浙江区域监测到高空3KM左右有沙尘团,19日上午到达地面,强度减弱。沙团由北至南的迁移过程中,逐渐沉降,强度逐渐减弱。雷达构成的监测网络,不仅可以监测到各地沙尘起始、沉降时间,结合时间相位差及经纬度信息还可以定量计算沙尘的传输速率,为沙尘预警预报提供支撑。感谢:衷心感谢遥感所提供的卫星图,感谢武汉、苏州、上海、宁波等监测站提供的雷达监测图。
  • Palas | 交通运输过程中如何进行空气质量监测?
    随着我国交通基础建设的不断发展进步,高铁、机场、地铁等公共交通工具使得现在人们的出行越来越便捷。但在人流量巨大的公共交通环境,往往会滋生一些不易发现的空气质量问题。为研究交通运输过程中的空气监测新技术,长安大学运输工程学院李旭教授在其研究项目中选择了Palas AQ Guard环境空气颗粒物连续自动监测系统作为空气质量监测仪器。想要打造优秀的交通场所环境,进行空气环境的监测是很有必要的,Palas帮助长安大学用技术手段来解决公众场所空气监测问题。符合科研要求的Palas 仪器长安大学直属国家教育部,是国家首批“211工程”重点建设大学、国家“985优势学科创新平台”建设高校、国家“双一流”建设高校。近年来,共承担了包括国家“973”“863”计划、国家重点研发计划、国家自然科学基金重大及重点项目、国家社会科学基金项目、西部交通建设科技项目、国土资源调查项目在内的科研项目10000余项。长安大学的交通运输工程学科是国家一级重点学科,负责此次研究项目的李旭教授主要负责交通基础设施绿色生态技术、生态修复、交通运输智能监测和生物安全等研究领域。在采用Palas的解决方案之前,由于其他空气颗粒物监测仪器的检测范围受限,无法达到此次科研项目的要求。李旭教授的科研团队通过网上的介绍信息了解到了Palas仪器,来自德国颗粒物监测专家palas的监测仪器其综合性能、技术服务等都达到了此次科研项目的监测需求。并且AQ Guard作为光学粒径谱仪粒径限值可以测到低至180nm,精准的测量范围助力交通运输方面的空气质量监测获得稳定的数据。创新精准空气监测技术AQ Guard是耐用的室外空气气溶胶光谱仪,以通过 EN 16450 认证的 Fidas 200 技术为基础,采用单个颗粒物散射光测量原理,可同时测量PM1, PM2.5, PM4和PM10,还可提供175nm-18μm颗粒物粒径分布和数浓度信息,给研究和监管部门更多参考。通过标准协议,如 ASCII 进行双向连接,或者通过 UDP 协议直接传输都容易实现。要实现自给自足运行,可以通过带有或不带太阳能支持功能的外部电池运行系统。为了更好地理解和解释细粉尘侵害及其来源,可以为设备配备气象站。按标准集成用于记录温度、湿度和压力的传感器。和所有用于细粉尘测量的Palas系统一样,AQ Guard可以长期稳定运行,通过标准单分散颗粒物实现现场校准。Palas现已推出新一代AQ Guard smart网格化监测仪,更准确更可靠,精准追踪热点。AQ Guard Smart 网格化监测仪选配数据云平台,即插即用,实时查看热点数据产品优势以经过认证的 FIDAS 200 系列为基础而开发的技术,可以保证细粉尘值的高准确度和可重现性;以公认的快捷方便的现场校准而闻名通过云 MYATMOSPHERE 实现短时间调试和即时记录测量值通过 Wi-Fi 热点、远程访问和外部触摸板,根据现场情况进行配置通过 GPRS/3G/4G/Ethernet/Wi-Fi 通信,可选:LoRaWAN可扩展气象站和气体传感器,可以更好地评估和评价颗粒物数据以高时间分辨率测量 Cn、PM1、PM2.5、PM4、PM10(可选:SO2、CO、NO2、O3)颗粒物测量范围从 0.175 - 20,000 nm 到 100 mg/m³ 质量浓度或 20000 个颗粒/cm³(单一颗粒物分析)应用领域工业: - 生产过程 - 散装物料处理(混合,卸料,储存,包装等) - 厂界监控施工现场:道路,铁路,拆除现场建筑物:学校,幼儿园,医院,酒店,办公室,公共服务建筑物建筑工地或其他污染区域附近的住宅建筑公共交通:机场,火车站,电车和地铁站,游轮,客舱,例如 在电车、火车上
  • 物理所发展原位透射电镜技术表征离子输运动力学过程
    离子输运是物理、化学和生命科学研究的一个基本过程,其性质对储能、催化和阻变存储等器件性能有重要的影响。在实验上高分辨表征离子输运过程和表界面电化学反应对揭示器件工作机理和开发新型器件具有重要的意义。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来致力于原位透射电镜-扫描探针联合技术的开发与纳米表征研究。利用原位透射电镜(in-situ TEM)方法可以将纳米器件置入电镜内对器件工作的动态过程进行原位高分辨观测表征,研究器件的工作机理。最近,他们通过优化扫描探针的机械和电子学设计方案,改善仪器的性能,提高了观测的稳定性和分辨率,在离子输运动力学及其相关的阻变存储器机理研究方面取得新进展。  阻变存储器(RRAM)因其具有低功耗、高集成度、低写入电压、可3D集成等诸多优点,有潜力成为下一代非易失性存储器。它主要是利用某些薄膜材料在电激励的作用下会出现不同电阻状态(高、低阻态)的转变现象来进行数据的存储。RRAM器件一般具有&ldquo 金属&mdash 介质&mdash 金属&rdquo 的三明治结构。这种三明治结构的绝缘介质层可以是二元或者多元的金属氧化物,或者是硫属化合物,以及有机化合物等。根据在绝缘体层传导的离子不同,又常将RRAM分成阳离子型存储器与阴离子型存储器。离子传输引起导电物质迁移从而形成导电通道,这是被广泛接受的模型,但是对于离子输运和导电通道形成的动力学过程目前仍然缺少直接的实验证据。  在过去的几年里,研究人员利用原位透射电镜方法研究了金属氧化物和硫化物中氧离子、金属离子的电迁移和电极界面氧化还原反应过程,以及这些过程导致的阻变效应【JACS 132, 4197 (2010) ACS Nano 4, 2515 (2010) APL 99, 113506 (2011) JAP 111, 114506 (2012), etc.】,这些工作是阻变存储器机理研究的有益探索。最近,他们开展了Ag/SiO2/p-Si体系的阻变机理研究,在透射电镜内原位观测Ag纳米颗粒的生长、迁移的动力过程及其伴随的电致阻变效应。针对一个独立的SiO2中包埋的Ag颗粒进行观察,在电场下银颗粒逐渐收缩,沿电场前方有小颗粒析出并逐渐长大,同时刚生长的颗粒前方又开始有新的小颗粒析出。该颗粒充当&ldquo 中继站&rdquo 的作用,其后方的颗粒物质传递过来,同时又输送给前方颗粒使其逐渐长大,沿着电场方向依次进行,递推前移。其物理过程是,银颗粒表面在电场下产生极化,沿电场方向的两侧表面分别呈现正和负极性,即一个金属颗粒表现为双极性,当极化强度足够大时,在正负电极处发生氧化还原反应,即正极一侧氧化生成银离子,电场驱动其迁移,负极一侧又将传输过来的银离子还原。银离子在电化学势作用下发生迁移,并和氧化还原反应同时进行,形成了边消耗边生长的逐步移动过程。从能带的角度给出了离子输运动力学过程的物理图像,还进行了有限元方法模拟计算,指出这些银颗粒作为双极性电极需要满足的临界尺寸,与实验结果一致。这项研究应用自行研制的原位透射电镜仪器表征了固体介质中金属离子输运及其伴随的电化学传质过程,对深入理解离子型阻变存储器机理具有重要意义。该工作是由博士生田学增、副研究员许智、研究员王文龙和白雪冬等完成的,相关结果发表在近期的Advanced Materials 26, 3649 (2014)上。  这项工作得到了国家自然科学基金委、科技部和中科院的资助。 图1. 实验测试示意图和Ag颗粒电迁移过程的原位TEM图像,Scale bar: 10 nm  图2. 包埋在SiO2中的Ag颗粒及其双极性极化示意图  图3. 纳米Ag颗粒电化学传质过程的高分辨成像   图4. Ag离子输运及其伴随的电化学传质过程的物理模型
  • 沙尘“侦察兵”:中科光电激光雷达网让沙尘传输有迹可循
    2021年以来沙尘天气频发,我国西北、华北地区遭遇了多次大范围沙尘天气过程,其中4月中旬的沙尘天气甚至跨越长江,影响到江南地区。沙尘天气的爆发致使传输路径上的多数城市AQI持续爆表,对人们的生活产生不利影响。如何实现对沙尘天气的提前感知和预警预报,每一次沙尘天气在国内的传输和扩散轨迹如何?作为区域沙尘天气立体观测“侦察兵”,中科光电激光雷达组网记录了每一次沙尘天气在全国的传输轨迹 。让我们跟随“侦察兵”的报告,对今年的主要沙尘天气进行回顾和盘点。1月10日-15日沙尘过程分析 西北区域(甘肃) 图1 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图1月10日-13日,河西地区多次出现短时沙尘传输过程。1月10日,沙尘气溶胶分布高度随传输过程逐渐扩大至2km,粒子形态偏不规则型,沙尘传输速度在45km/h左右。1月11日-13日,沙尘团为近地面传输,沙尘气溶胶多集聚1km内,河西西部地区主要为非球形粗粒子,河西东部地区球形细粒子占主导地位,沙尘团在阿克塞-玉门一带传输速度在20km/h左右,玉门-武威一带传输速度显著增大至49km/h左右。1月13日午后至14日,各地沙尘强度较高,沙尘团分布在2km高度内,粒子形态高度不规则,沙尘传输速度在45km/h左右。华东区域(江苏、浙江) 图2 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图1月12日0时起,江苏北部和南部、浙江中部和南部先后监测到2.0km高度有沙尘传输并逐渐下沉至地面,沙尘平均移动速度约为38km/h。江苏北部0.8km高度内以球形粒子为主,1.0km高度左右以非球形粗粒子为主;江苏南部、浙江中部、南部以非球形粗粒子为主。3月15日-19日沙尘过程分析 西北区域(甘肃) 图3 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图3月15日-18日,受蒙古强沙尘暴污染传输影响,甘肃省自西向东出现强沙尘天气,沙尘传输速率在玉门-武威一带达100km/h左右,武威-临夏一线传输速率明显减弱至20km/h左右,沙尘团主势力集聚1km内,各激光雷达500m内消光系数均突破阈值1km-1,多站点甚至高达4km-1,退偏振比接近阈值0.4,规则细粒子和不规则粒子占比较高,PM2.5和PM10均达到严重污染水平;期间仍有外源沙尘间歇性输送,致使各地沙尘污染反复。3月19日,各地出现短时雨雪天气,沙尘污染逐渐消散。4月12日-19日沙尘过程分析 西北区域(甘肃) 图4 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月12日和4月15日,甘肃全省监测到两次沙尘天气,沙尘主势力集中在1km内,气溶胶形态偏不规则粗粒子型,12日沙尘传输速率在12-15km/h左右,15日沙尘传输速率显著增强至100-120km/h。13日出现降水过程,污染快速消散;但16日扩散条件较差,导致浮尘天气持续。 华东区域(江苏、上海、浙江) 图5 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图4月16日4时起,江苏南部、上海中部、浙江中部和南部依次监测到污染气团并逐渐影响地面,沙尘平均移动速度约为42km/h。其中江苏南部、上海中部近地面先受到规则细粒子污染,随后转为不规则粗粒子污染。浙江中部及南部近地面以不规则的粗粒子为主,尤其浙江南部的粗粒子极不规则,退偏比达到0.4以上。4月25日-26日沙尘过程分析 西北区域(甘肃) 图6 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月25日-26日,受强冷空气活动影响,甘肃省自河西东部向南部地区相继监测到强沙尘输入,1km内规则细粒子含量骤增,同时粒子不规则度明显增大,沙尘传输速率为20km/h。26日各地细粒子污染逐渐降低,但粒子不规则程度依然较高。5月4日-8日沙尘过程分析 西北区域(甘肃) 图7 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图5月5-7日,甘肃省监测到两次间歇性短时沙尘过程,其中5日沙尘范围较大,沙尘传输速率达80km/h左右,沙尘团高度在传输过程中逐渐降低至1.5km,主要为非球形粗粒子。7日沙尘范围集中在中部地区,沙尘传输速率达50km/h左右,沙尘团多分布在500m高度内,球形粒子含量较高,午后各地沙尘污染逐渐消散。 华东区域(江苏、上海、浙江) 图8 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图5月5日0时起,江苏北部和南部、上海中部、浙江中部先后在1.5km高度监测到污染气团传输并于5时左右下沉至地面,沙尘平均移动速度约为171km/h。其中江苏北部和南部以球形粒子为主,上海中部、浙江中部以非球形粗粒子为主。7日3时起,江苏北部和南部、浙江中部在2.0-3.0km高度内监测到沙尘团,其中江苏北部球形粒子含量较高,但0.4km高度以下主要为非球形粗粒子。总 结激光雷达组网发挥其全面监控每次沙尘过程的空间分布、传输特征、气溶胶特性等的优势,实现对污染传输过程的精细立体监测,同时对污染传输情况进行提前预判,为研究区域污染物的累积与输送提供有力的技术手段,并对区域的大气污染联防联控提供有效支持。2021年以来,全国共经历6次大范围的强沙尘传输过程。甘肃省沙尘传输路径主要为北路和西北路,当出现沙尘暴天气时,影响范围较广,气溶胶粒子多集聚在500m高度内,主要为规则球形粒子(不规则粗粒子不利于远距离传输),传输速率与天气形势相关;当出现强沙尘天气时,气溶胶粒子多分布在1km高度内,沙源地周边城市主要为不规则粗粒子,其余城市球形粒子和不规则粗粒子占比相当,甚至球形粒子占主导;沙尘污染较强时,影响范围缩小,气溶胶粒子多分布在2km高度内,主要为不规则粗粒子。华东地区则均受到北部沙尘传输贡献,其中1月和4月沙尘平均移速相当,5月沙尘平均移速最快。沙尘传输高度基本在2km以内,且逐渐下沉,最终造成地面监测数据(主要是粗颗粒物数据)升高;污染气团多以不规则粗粒子为主,但在部分地区、部分时段以规则细粒子为主;沙尘影响时间均超过3天。
  • 大连化物所设计开发出具有K+高效传输能力的离子传导膜
    近日,中科院大连化学物理研究所储能技术研究部(DNL17)李先锋研究员团队与分子反应动力学国家重点实验室分子模拟与设计研究组(1106组)李国辉研究员团队合作,在离子传导膜材料的结构设计与研究方面取得新进展。团队通过对膜内离子传输通道的设计,实现了K+快速传输,并对膜结构和离子传输机理进行了详细地研究和探讨。   具有快速离子选择性传输能力的膜材料在工业分离、能源等应用领域具有广阔的应用前景。这些应用场景通常涉及从复杂混合物中分离特定离子,因此设计具有高效离子选择性传导的膜材料至关重要,但仍然存在挑战。在本工作中,团队通过金属离子与聚苯并咪唑的配位构建了具有可控离子传输通道的膜材料。研究表明,Zn2+与聚苯并咪唑PBI配位得到均匀的聚合物配位网络,形成连续的水通道,并暴露出更多的极性基团,促使K+的快速传输。团队通过分子动力学模拟计算K+在聚合物网络中的运输行为,揭示K+与聚合物链上的-N=相互作用,并靠近链段的含氧醚键,从而快速通过聚合物膜。 同时,配位膜的自由体积增大,形成亚纳米级分子通道。纳米通道的物理约束和膜的静电相互作用使K+在浓盐和浓碱溶液中的迁移不受溶液浓度的影响,迁移数高达0.9,与阳离子交换膜相当。采用K+高效传输离子传导膜组装碱性锌铁液流电池,可有效缓解电池运行过程由于锌沉积带来的离子强度失衡进而导致水迁移的问题。研究提供了一种通过金属离子配位调节聚合物链结构,进而调控聚合物膜离子传输特性的策略;同时加深了对金属配位聚合物膜离子传输机制的理解。   相关研究成果以“Metal-coordinated polybenzimidazole membranes with preferential K+ transport”为题,于近日发表在《自然—通讯》(Nature Communications)上。该工作的共同第一作者是我所DNL17博士研究生吴金娥、1106组副研究员廖晨伊。上述工作得到国家自然科学基金、中科院电化学储能技术工程实验室等项目的支持。
  • 质谱仪器研制专辑分享六——小型质谱双线形离子阱间离子传输
    p style="text-align: justify text-indent: 2em "近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术 四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术 双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术 小型飞行时间质谱和离子束诊断飞行时间质谱 复合离子源技术和激光后电离技术 以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。/pp style="text-align: justify "  仪器信息网授权对本专辑内容进行转载,以下为系列分享第六期,题为“小型质谱双线形离子阱间离子传输”的文章,作者王南,通讯作者为清华大学欧阳证教授。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 370px " src="https://img1.17img.cn/17img/images/202003/uepic/8dee5e9e-0284-44b1-8e37-cdc649799d77.jpg" title="欧阳.PNG" alt="欧阳.PNG" width="500" height="370" border="0" vspace="0"//pp style="text-align: justify "  欧阳证教授,博士生导师,在清华大学获得工学学士及硕士,普渡大学获得分析化学博士,曾任普渡大学生物工程系教授,现为清华大学精密仪器系教授及系主任,美国医学与生物工程学院(American Institute for Medical and Biological Engineering,AIMBE)会士,中国计量测试学会副理事长,International Journal of Mass Spectrometry主编,Encyclopedia of Analytical Chemistry副主编,Journal of The American Society for Mass Spectrometry编委。/pp style="text-align: justify "  主要研究质谱仪分析器基本原理,采样离子化方法,数据分析 研制气态离子化学科学研究仪器,离子阱质谱仪小型化,发展生物医学分析方法。/pp style="text-align: justify "  多级质谱串联在各个领域都有广泛应用。双线形离子阱的小型质谱可以实现类似传统三重四极杆质谱仪的串联质谱分析功能,而在此过程中,双阱间的离子传输为重要的仪器功能。在已发表的双线形离子阱工作中,对阱间离子传输,尤其是质量选择性传输鲜有系统的研究。本工作研究了离子阱q值、阱内气压、辅助性交流电(AC)的强度、辅助性AC的作用时长等因素对传输的目标离子强度的影响,优化了离子传输条件,如q1=q2=0.3.阱内气压为0.37Pa, AC强度为350mV,离子传输时长大于10ms等。该结果对小型质谱双线形离子阱的自主研发和提升阱间离子传输效率具有指导作用。/pp  以下为全文:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/b8464511-b357-4fa6-b9fa-3a6c367b85ff.jpg" title="3-1.png" alt="3-1.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/79e7e5ae-22b4-4810-b70a-1cf23035c419.jpg" title="3-2.jpg" alt="3-2.jpg"//pp style="text-align: center "img style="" src="https://img1.17img.cn/17img/images/202003/uepic/d3a7010a-927f-453f-b79a-d1382c72a33b.jpg" title="3-3-.jpg"/br//pp style="text-align: center "img style="" src="https://img1.17img.cn/17img/images/202003/uepic/92996959-86c2-4f1c-9951-776392e8f967.jpg" title="3-4.PNG"/img src="https://img1.17img.cn/17img/images/202003/uepic/20bbd34b-78cb-45da-bb70-470ad182856b.jpg" title="3-5.PNG"//pp style="text-align: right "span style="font-size: 18px "strong来源:《质谱学报》/strong/span/p
  • 日本用新型光源实现量子加密长距离传输
    日本冲电气(OKI)公司成功开发了一种在理论上不可能泄密的量子加密方式,并可以在城市间实现长距离通信。该公司利用光的&ldquo 量子纠缠&rdquo 特性在验证试验中实现了140公里无中继信息传输。这一研究成果将在2015年投入使用。日本和欧洲都在进行关于量子加密通信的研究,但通信距离短一直是这一课题的难点。新的研究成果使这一技术的实用性得到大幅度提高。 量子加密通信是在被称为光子的光粒子上载荷密码的加密方式,冲电气公司为此开发了能够产生光子的新型激光光源。这种新型光源不但比现有的量子加密通信光源成本更低,而且能够兼容现有光通信系统中的光器件,有较好的实用性。冲电气公司以2015年为目标,计划首先在金融机关和医院等保密性要求较高的专用线路上应用。然后逐步向公众通信网普及。 冲电气公司在实验系统中,有效利用了两个一组的光子特有的&ldquo 量子纠缠&rdquo 特性。在进行加密通信时,将处于纠缠状态的两粒光子分别送到相距140公里的收、发两端,收发两端各取一粒光子作为双方使用的通用密匙。发送端利用光子的物理特性,在&ldquo 看到&rdquo 光子的某一瞬间决定密匙的形式,接收端会使用这一密匙解密所收到的信息。在传输过程如果中遭到窃密,会残留&ldquo 光痕迹&rdquo ,系统能够立刻发现。 在现有的光通信系统中,由于激光光源强度较弱,无中继通信距离仅能达到100公里左右,新型光源技术使得长距离通信成为可能,冲电气公司将与其他企业和大学协作,研发新型光通信系统。 【量子加密通信方式】 光具有&ldquo 波&rdquo 和&ldquo 粒子&rdquo 的两重性,从粒子的角度看被称为光子。上述研究的主要方向是利用光子载荷密匙,发送者和接收者通过共有密匙实现量子加密通信。根据物理学定律,光子在被第三者&ldquo 看到&rdquo 的瞬间,其物理状态会发生变化并留下&ldquo 痕迹&rdquo ,因此在该加密系统理论上是不可能失密的。 上海和呈仪器制造有限公司Shanghai Hasuc Instrument Manufacture Co.,Ltd主营:电炉、电阻炉、马弗炉、恒温摇床、净化台、洁净工作台、高温炉、生物安全柜、恒温振荡器、箱式电阻炉、恒温培养摇床。http://www.hasuc.cnhttp://www.hasuc.cchttp://www.shlab17.comhttp://www.4008806667.comhttp://www.shhasuc.comhttp://www.dryexpo.comhttp://www.5911718.comhttp://www.dry17.comhttp://www.5921718.com办公地址:上海市奉贤区南桥镇翡翠国际广场1号楼1020工厂地址:上海浦卫公路6955号总机电话:021-51688813直线电话:021-67186861/57188687 /60457408 /60457409总机传真:021-51686613直线传真:021-57188687-806自动传真:021-51686613人工传真:021-57188687-806企业QQ:400-880-6667
  • BOD测量数据无线传输!动态过程,一目了然!
    生化需氧量(Biochemical Oxygen Demand,BOD),是指水体中的好氧微生物在一定温度条件下,一定时间内,将水中有机物分解成无机质,在此过程中所需要的溶解氧量。 BOD可反映水体被有机物污染的程度,水体中所含有机物越多,则需要消耗的溶解氧量也越多,BOD值也越大。 图1 健康水体中的有机物含量少,溶解氧多,可供鱼类等水生生物呼吸之用(源/Quikr Exam) 为了使样品具有可比性,我们常用一个时间段内的溶解氧量的消耗量来表征BOD值。例如,我们通常设定实验温度为20℃,用水样培养微生物,测定水中溶解氧的消耗情况。如果这一时间段是5天,就称为5日生化需氧量,记做BOD5,单位一般用mg/L来表示。数值越大,说明水中含有的有机物越多,污染也越严重。表1 受有机物污染程度不同的水体测量得到的BOD值 人们通常用稀释接种法来测量生化需氧量,计算公式如下: BOD=(D1-D2)/ P 其中,BOD是生化需氧量(mg/L);D1是稀释水样的初始溶解氧量(mg/L);D2是稀释水样经20℃恒温培养箱培养n天之后的溶解氧量(mg/L);P是稀释因子,表示为水样体积(mL)与稀释后水样体积(mL)的比值。 这种测量方法有不足之处。例如,只有“点”上的数据,无法获得变化“过程”中的BOD数据;另外,如果想继续测量水样BOD在其他时间点的数据,如BOD20,样品测量瓶需取出恒温培养箱,测试样品就会被干扰,导致后续的测量数据准确度下降。而且,样品BOD的平台期是在什么时间达到的也不清楚。 针对这一测量难题,意大利VELP公司推出了BOD EVO无线传输自动测定仪。 BOD EVO无线传输自动测定仪采用压强传感器对样品生化需氧量进行测量。经稀释接种或含菌的水样被置于密闭的培养瓶中,水样中溶解氧不断被消耗,使得密闭样品瓶内的压强降低,仪器内置的压强传感器可一直监测此压强变化,根据压差变化,计算水样的BOD值。 这种测量方法有其一系列独到优点。 模拟自然条件,结果更真实可靠传统方法,样品接种稀释后满瓶测量,不再为样品提供多余氧气,且静置放置数天,这样瓶内微生物代谢产物容易集结,易产生区域性溶解氧匮乏,生化反应受抑制可能性加大;BOD EVO培养瓶内样品上方所含21%氧气不断溶入水样中,搅拌子连续搅拌,可为微生物生长提供充分的溶解氧和有机物。测量结果更真实可靠。 操作简单,测量方便传统法操作繁琐、准备样品时间长,量程窄,一般BOD值大于100mg/L时需稀释,且需人工测量初始、终止溶解氧量,在培养过程中需要专人看管。BOD EVO操作简单,软件功能强大,可预先设置好采样时间间隔,自动连续测量溶解氧。无线数据盒能自动接收传感器发送的数据,并将其传输到计算机中。整个测量过程,无需专人看管。专业软件允许实验员对数据进行监控、记录和分析,可自动生成实验报告。 无线数据传输BOD EVO可连续显示记录生化需氧量数据传统方法监测到的是“点”上的数据,如BOD5。若想了解整个过程的动态数据,几乎无法实现。BOD EVO连续显示各时间点的耗氧量并存储BOD数据,从而直观了解样品耗氧动力学过程。 BOD EVO可深入研究样品有机物生化降解过程根据水样耗氧曲线,可深入研究水样有机物生化降解反应过程中的“滞后现象”等。不得不说,BOD EVO是生化需氧量测量领域的一款革命性产品。
  • 液质常见问题解析 | 如何清洗离子传输毛细管
    当您的仪器长期运行样品,可能会导致传输毛细管污染,典型现象是【调谐液各个离子灵敏度普遍下降,特别是低端离子】。安捷伦仪器目前有三种毛细管 ,请先辨别清楚您的毛细管是哪种,适用不同的清洗方法:如何清洗离子传输导电毛细管导电毛细管六孔导电毛细管(适用G6495/G6550仪器,9cm长)对于快速切换导电毛细管(包括上图两种),我们推荐下面步骤清洗:需要的工具:Alconox清洁粉末(随新仪器附带),100 mL量筒,天平,超声清洗仪,1mL移液枪头,18MΩ 高纯水等。清洗步骤:1. 称取一克Alconox清洁粉末置100 mL洁净的量筒中(建议使用聚丙烯量筒), 用高纯水充分溶解。如溶解困难,可超声使溶解。2. 如果使用聚丙烯量筒的话,可以直接将毛细管放入量筒中。如果使用玻璃量筒的话,请将毛细管两头用1 mL的移液枪枪头套住,并将枪头前端剪去如下图所示。这样可以保护毛细管在超声清洗的时候不会直接碰到玻璃量筒壁,防止毛细管破碎。3. 将毛细管竖直放入充满Alconox溶液的量筒中,确保液面没过毛细管。超声清洗5min。如果液面无法没过毛细管的话,请适量添加一些高纯水。4. 拔掉移液枪枪头,用高纯水冲洗毛细管。5. 用一个1mL的移液枪头紧紧套住毛细管的一端,然后用注射器抽吸高纯水,拔掉注射器针头,通过移液枪头处冲洗毛细管内壁。反复多次,以确保清洗剂充分冲洗干净。6. 用甲醇冲洗毛细管外表面,并用甲醇置换掉毛细管内孔的水。自然晾干。重新安装毛细管,开机。如何清洗离子传输经典透明毛细管经典玻璃透明毛细管这种毛细管可以用导电毛细管的步骤进行清洗。但推荐遵循下面的步骤进行清洗。需要的工具:棉签,用于毛细管清洁的金属丝(备件号G1946-80054),色谱级甲醇或异丙醇清洗步骤:1. 用异丙醇或甲醇/水溶液湿润清洗毛细管内壁。2. 截取约50厘米长的金属丝,把两端重叠在一起,小心穿过毛细管。直到只剩最后一小圈在外面。3. 用一小团脱脂棉穿过钢丝圈。注意,注意棉花团不要太大,必须保证其可以顺利穿过毛细管。否则金属丝可能被拉断而棉花团堵塞在毛细管内,很难去除。4. 用异丙醇或甲醇/水溶液润湿小棉花团,然后小心的慢慢拉金属丝,使棉花团穿过毛细管。5. 如果发现棉签很脏,可以重复1-2次,直到棉签完全干净为止。6. 重新安装毛细管,开机。使用异丙醇润滑毛细管外表面,会使毛细管更容易插入。后注:对于六孔导电毛细管 ,是有方向性的,标有黑色圆环一端是前端;其他毛细管在新毛细管安装时无方向性,但对于日常清洗毛细管时,建议拆下来时哪一端在前,安装时也要相同方向。收看安捷伦售后直播 学习工程师视角的“冷知识”
  • 西电科大国家重大仪器项目获批 突破等离子体传输瓶颈
    从西安电子科技大学获悉,西电科大申报的国家自然科学基金委员会国家重大科研仪器研制项目(部门推荐类)“临近空间高速目标等离子体电磁科学实验研究装置”日前获得批准,实现了西电国家重大科研仪器项目零的突破,对解决“黑障”难题、实现临近空间高速飞行器全程测控与可靠探测、拓展等离子体电磁物理学前沿研究、促进临近空间开发、提升空间探索能力具有重要理论意义。  该项目是2016年基金委批准的4个项目之一,也是信息学部今年唯一被批准的项目,获直接资助经费6712.34万元,项目负责人是西安电子科技大学空间科学与技术学院院长包为民院士。该项目联合了浙江大学、哈尔滨工业大学、中国人民解放军空军工程大学、中国科学院合肥物质科学研究院、北京遥测技术研究所等单位共同申报,在通过基金委组织的两轮会议评审脱颖而出后又顺利通过9月份专家现场考察,最终获得立项。据了解,重大科研仪器研制项目(部门推荐类)自2011年立项以来,全国共有40余个项目获批,其中信息学部项目共批准了7项。  据介绍,该项目将开拓等离子体物理学、空气动力学、电磁学、控制与信息传输理论多学科交叉研究能力,以期揭示高速目标等离子体与电磁波相互作用新机理,发展电磁调控等离子体特性新途径,突破高速目标等离子体信息传输及目标探测的理论瓶颈。  国家重大科研仪器研制项目面向科学前沿和国家需求,以科学目标为导向,加强顶层设计、明确重点发展方向,鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,为科学研究提供更新颖的手段和工具,以全面提升我国的原始创新能力。资助目标为通过关键核心技术突破或集成创新,用于发现新现象、揭示新规律、验证新原理、获取新数据的科研仪器设备的研制。
  • 质谱仪器研制专辑分享二——用于低质荷比离子传输的射频四极杆导向装置的研制
    p style="text-indent: 2em text-align: justify line-height: 1.5em "近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术 四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术 双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术 小型飞行时间质谱和离子束诊断飞行时间质谱 复合离子源技术和激光后电离技术 以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。/pp style="text-align: justify line-height: 1.5em "  仪器信息网授权对本专辑内容进行转载,以下为系列分享第二期,题为“strong用于低质荷比离子传输的射频四极杆导向装置的研制”/strong的文章,作者贺飞耀,通讯作者为四川大学段忆翔教授。/pp style="text-align: justify line-height: 1.5em "  段忆翔教授,博士生导师,现任四川大学分析仪器研究中心主任,是四川大学分析仪器研究中心的创始人。科技部重大科学仪器设备开发专项项目负责人。自2010年8月回国至今,开发研制了系列激光诱导击穿光谱仪,基于等离子体的便携式光谱仪,质子转移反应质谱仪,离子迁移谱仪等多种分析测试仪器,已申请专利共计80余项,发表SCI论文200余篇。作为项目负责人承担多个国家、省部各种项目。/pp style="text-align: justify line-height: 1.5em "  其课题组主要的研究方向有: 新型质谱离子源与质谱技术、激光光谱分析技术、新型生物传感器及光纤传感技术、创新型分析仪器的研发等。/pp style="text-align: justify line-height: 1.5em "  离子传输系统是质谱仪的重要组成部分,主要作用是将离子高效率地传输到质量分析器。文章介绍课题组研制了一种用于质子转移反应飞行时间质谱(PTR-TOF-MS)系统的射频四极杆离子导向装置,四极杆长80mm,杆半径2.6mm,内切圆半径2.25mm,该装置可针对性地实现低质荷比挥发性有机化合物(VOC)离子的聚焦传输。利用SIMION8.1离子光学模拟平台对装置的运行环境进行仿真,然后在自行搭建的测试平台上对装置的工作条件,如气压、频率和电压幅值进行测试。结果表明,仿真和测试结果具有较好的一致性,装置的工作气压范围较宽,在0.2-0.3Pa时的传输效率最高;当频率为3-4MHz,电压幅值(Vp-p)为500V左右时,对丙酮、甲苯等低质荷比VOCs( m/z 100)的传输效率接近76%,且离子束直径≤0.7mm。该装置结构简单、成本低、传输效率高,具有潜在的实用价值,有望应用于PTR-TOF MS系统。/pp style="text-align: justify line-height: 1.5em text-indent: 2em "以下为全文:/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202003/uepic/55294ba3-ee3b-4a51-81b4-b3374bbcc574.jpg" title="2-1.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202003/uepic/356e51c7-46c5-4f46-8b8a-736f2d0b82f9.jpg" title="2-2.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202003/uepic/e67497d5-d30a-4397-bd61-d9d94f224799.jpg" title="2-3.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202003/uepic/9ab83c14-288b-4340-af4f-8777b1bfc213.jpg" title="2-4.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202003/uepic/81272aa9-5927-41fa-859d-e931819754da.jpg" title="2-5.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202003/uepic/2bb18278-c628-4143-a84c-4b8d6e5caf15.jpg" title="2-6.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202003/uepic/78d1ba65-cb14-452c-90a7-bcf34602c317.jpg" title="2-7.png"//pp style="text-align: right "span style="font-size: 18px "strong来源:《质谱学报》/strong/spanbr//p
  • 汪福意团队:表界面分析的原位液相二次离子质谱技术新进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。  近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。  汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。  汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。  研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。  液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • 上海应物所在纳米粒子活细胞成像、胞吞和胞内运输方面取得进展
    p  近日,中国科学院上海应用物理研究所物理生物学研究室与加州大学圣地亚哥分校合作,发展了一种基于金纳米粒子的荧光-纳米等离子体双模态成像fPlas探针,并对其在胞内运输中的聚集过程及聚集态对其传输动力学的影响开展研究。相关结果发表于《自然-通讯》(Nature Communications, 2017, 5, 15646)。/pp  胞吞及囊泡运输是细胞信号传导和能量交流的重要生理过程。其中,纳米粒子的胞吞和胞内运输过程研究是设计新型纳米药物载体和纳米诊疗方法的基础。物理生物学研究室的博士研究生刘蒙蒙和副研究员李茜等在研究员樊春海和加州大学教授Lal的指导下,通过发展fPlas探针实现了在单细胞水平半定量研究纳米粒子聚集状态的方法,可以清晰区分活细胞中呈单分散、小聚集体和大聚集体的金纳米粒子,并与暗场显微镜下的绿色、黄色以及亮黄色颗粒信号分别对应。他们进一步通过纳米等离子体成像与荧光成像的联用,实现了活细胞内纳米粒子聚集状态与定位信息同时获取。对金纳米粒子在细胞内通过微管进行运输,并且对在运输过程中发生逐步聚集的过程进行了实时成像,发现其聚集状态对相关囊泡的运动状态有重要影响。这一研究结果揭示了纳米粒子在细胞内的运输与其聚集状态直接相关,为设计新型纳米药物提供了新的思路和靶点。/pp  centerimg width="500" height="279" alt="" src="http://www.cas.cn/syky/201706/W020170614416182049650.jpg"//centerp/pp style="text-align: center " 上海应物所在金纳米粒子活细胞成像和胞内运输方面取得进展/p/p
  • 面向动态表界面分析的原位液相二次离子质谱新技术研究获进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • 迷你《星际迷航》:中科大实现单光子高维量子态瞬间传输
    p style="text-indent: 2em "《星际迷航》式的“瞬间传输”虽然只停留在科幻作品中,但量子信息学家们对于“瞬间传输”一个粒子的量子态已经有了经验。/pp style="text-indent: 2em "这种被称作“量子隐形传态”(quantum teleportation)的技术,本质上是不改变一个粒子(如一个光子)位置的情况下,把其上的特定信息在遥远的另一个粒子上重建起来,中间无需具体的传送物质,就像是魔术里面的“大变活人”。/pp style="text-indent: 2em "只不过,过去科学家们只做到了二维量子态的隐形传态,近日,中国科学技术大学郭光灿院士团队李传锋、柳必恒研究组报告了最新进展:利用6光子系统,他们对单光子的三维量子态实时了高效的隐形传送。/pp style="text-indent: 2em "郭光灿团队认为,高维量子隐形传态相比起二维系统具有信道容量更高、安全性更高等优点。相关技术可用于其他高维量子信息研究,为构建高效的高维量子网络打下坚实基础。/pp style="text-indent: 2em "量子隐形传态/pp style="text-indent: 2em "量子隐形传态需要基于一种量子世界里的奇妙现象实现,那就是“量子纠缠”。/pp style="text-indent: 2em "处于纠缠态的两个微观粒子不论相距多远都存在一种关联,其中一个粒子状态发生改变(比如人们对其进行观测),另一个的状态会瞬时发生相应改变,仿佛“心灵感应”。比方说,如果一个光子的偏振态是“向上”的,那么另一个光子的偏振态必然是“向下”的。/pp style="text-indent: 2em "制备出这样一对纠缠起来的光子,科学家们就可以进一步开展“大变光子”的演示。/pp style="text-indent: 2em "我们假设小红想把手上1号光子的量子态传给小明。那么,科学家就制备出一对纠缠起来的2号光子和3号光子,通过光纤传输、或是通过卫星分别发给小红和小明。接着,小红对1号光子和2号光子进行一种特定的操作,称为“贝尔态测量”(BSM)。根据量子的一些基本特性,1号光子和2号光子经过测量之后,他们的量子态会改变,与2号光子处于纠缠态的3号光子也会发生相应变化。在得到某一个测量结果时,小明手上的3号光子恰好会变到1号光子最初的状态,隐形传态就此完成。/pp style="text-indent: 2em "1993年,IBM的查尔斯· 本内特(Charles H. Bennett)和其他5位科学家一起提出了这个奇妙的构想,后来在1997年由奥地利因斯布鲁克大学的蔡林格(Anton Zeilinger)团队首次实现了单光子自旋态的传输。/pp style="text-indent: 2em "2017年,“墨子号”量子通信实验卫星宣布实现了卫星和地面站之前遥远的星地量子隐形传态。/pp style="text-indent: 2em "从二维到多维/pp style="text-indent: 2em "不过,此前实验通常传输的是光子的偏振态这个量。偏振态是一个二维态,可以在二维空间中由两个本征矢量描述。/pp style="text-indent: 2em "但郭光灿团队认为,光子自然存在其他一些多维态,例如轨道角动量、时间模式、频率模式和空间模式等,多维系统在量子世界里更为普遍。因此,要完全远程重建单光子的量子态,需要进行多维态的隐形传送。/pp style="text-indent: 2em "论文指出,传送高维量子态主要存在两大挑战。一是要产生高质量的高维纠缠态,这是量子隐形传态的基础。/pp style="text-indent: 2em "为此,李传锋、柳必恒等人从2016年开始就采用光子的路径自由度编码,解决路径比特相干性问题,制备出高保真度的三维纠缠态。他们也解决路径维度扩展问题,实现了32维量子纠缠态,此外,他们实现了高维量子纠缠态在11公里光纤中的有效传输。/pp style="text-indent: 2em "二就是要对光子实施高维贝尔态测量。理论研究表明,在线性光学体系中,必须采用辅助粒子才能实现高维量子隐形传态。/pp style="text-indent: 2em "在量子隐形传态原本的模型里只有三个光子,郭光灿团队发现,利用? log2(d )? -1个辅助纠缠光子对,就可高效实现d维量子隐形传态。也就是说,传输3维量子态,需要1对辅助纠缠光子。/pp style="text-indent: 2em "在这里,小红想要把1号光子的三个空间模式量子态传给小明,除了双方各自得到纠缠起来的2号光子和3号光子以外,小红还要在辅助纠缠光子对4号和5号的帮助下进行高维贝尔态测量,把测量结果通过传统信道(比如打电话)告知小明。最后,小明要根据小红的测量结果对手上的3号光子执行适当的操作,就能把它转变为1号光子的初始状态。/pp style="text-indent: 2em "实验结果表明,量子隐形传态保真度达59.6%,以7个标准差超过了经典极限值1/3,证实了三维量子隐形传态过程的量子特性。/ppbr//p
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™
    纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。 随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等能源在人类的智慧中应运而生。从资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。 现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。 产品介绍 CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,ZUI大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。图1 赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™ 工作流程 利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图2 惰性气体保护下将样品转移至赛默飞扫描电子显微镜 此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图3 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析 产品优势 CleanConnect的使用给电子显微镜用户带来了全新的体验,产品具有如下优势:1 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。2 CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。3 CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。4 模块化的设计,符合人体工程学,可实现更便捷的样品转移。5 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。 产品应用 部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。 下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图4 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右) 图5 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右) 如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。图6是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图7TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。 图6 利用Cryo-PFIB进行TEM样品制备过程 图7 利用TEM进行明场像(中)及原子尺度的观察(右) CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。 虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!8月23日 下午2:00-3:00观看直播,扫码预约
  • 科研团队提出一种质谱仪离子高效传输的静电场离子漏斗聚焦新技术
    近日,中科院合肥研究院健康所医用光谱质谱研究团队提出了一种静电场离子漏斗聚焦新技术,可在静电场下实现对离子的高效聚焦引导,进而提升质谱类仪器的灵敏度。相关结果作为封面文章发表在国际分析领域TOP期刊Analytical Chemistry上。   质子转移反应质谱(PTR-MS)技术在环境监测、医学研究、公共安全和食品科学等领域都有着极其重要的应用价值。医用光谱质谱研究团队坚持PTR-MS技术研究和仪器研制工作不松懈,通过十余年时间实现了PTR-MS仪器产品化。前期研制的PTR-MS仪器在具有高灵敏的同时,还有大功率和大体积的不足。针对大气挥发性有机物(VOCs)车载监测需求,如何在减小体积和功率的情况下保证较高的灵敏度是车载小型化PTR-MS发展的难题。国外研究者为了提高灵敏度,一般在PTR-MS中采用射频场离子漏斗来聚焦离子,但射频场需要射频电源,这会增加功率和体积,不适用于车载小型化PTR-MS。   为解决上述问题,团队提出了一种静电场离子漏斗聚焦新技术,将传统的圆环状电极改进为球面加网电极,并通过孔径逐渐缩小的漏斗状组合设计,实现静电场下离子的高效聚焦引导。实验表明,相比于传统的反应管结构,新型结构对于考察的8种VOCs灵敏度提升了3.8-7.3倍,且不破坏PTR-MS中的软电离效果。团队已围绕该技术申请了专利,并将其应用于大气VOCs车载走航监测的小型化PTR-MS中,相关仪器已成为政府部门和行业龙头企业开展业务化监测的重要工具。静电场离子漏斗聚焦技术是一种通用的离子聚焦引导,还可以拓展应用于其他质谱仪器中,可为我国高端质谱仪器自立自强提供关键支撑。   本文的第一作者是张强领博士后,通讯作者为中科院青促会会员沈成银研究员。本研究得到了国家自然科学基金、中国科学院青年创新促进会、安徽省重点研发计划、合肥研究院院长基金等项目的支持。静电场离子漏斗聚焦效果
  • 等离子清洗机的清洗过程指导
    等离子清洗机的清洗过程指导等离子清洗机 的清洗过程一般包括以下步骤:1. 准备工作:先将待清洗物放入等离子清洗室,并确保清洗室内没有杂物和污垢。2. 封闭清洗室:关闭清洗室的门和密封装置,确保清洗室密封。3. 抽气和抽真空:打开真空泵,将清洗室内的气体抽走,形成一定的真空度。真空度的选择根据清洗物的要求和等离子清洗机的规格来确定。4. 气体进入和等离子放电:在清洗室内引入清洗气体(如氧气、氮气等)并调整流量和压力。然后启动等离子发生器,产生等离子放电,形成气体等离子体。5. 清洗时间和功率:根据清洗物的材料和污染程度,设定适当的清洗时间和功率。清洗时间通常为几分钟到几十分钟,功率通常为几十瓦到几千瓦。6. 清洗结束和处理:清洗时间结束后,关闭等离子发生器和抽真空泵。待等离子体消失后,打开清洗室门,将清洗物取出。7. 清洗室清理和维护:清理清洗室内壁、电极和密封件,并检查设备的各种部件是否正常。需要注意的是,在进行等离子清洗时,应根据具体情况选择合适的清洗参数,如气体种类、流量、压力、功率等,在操作过程中要遵循设备使用说明书和安全操作规范,确保操作安全和清洗效果。
  • 蠕动泵在精密传输中的作用
    随着工业现代化的发展,生产线上对于液体输送的要求也越来越高。而如果在传输液体的过程中,采用的方法不当,会带来很多不便和风险,比如信号干扰,流体漏泄,甚至是系统崩溃等。  而蠕动泵则是一种非常实用的输送设备,它通过压缩软管的方式实现液体的输送。相比于一些传统泵的输送方式,并没有机械件接触,所以在液体输送中,不会让液体受到损害,也不会产生杂音和振动,能够更好的保障输送的稳定性和精度。  基于这些特点,蠕动泵在现代工业应用中被广泛地使用。实现了对于输送流量的实时监测和调整。那么在使用蠕动泵的过程中,究竟可以有什么优势呢?  一、减少成本,保证质量  相比于其他一些传输设备,蠕动泵的安装成本和维修成本都非常的低廉。在安装的过程中,它不需要太多的辅助设备,也不需要耗费太多的时间。而在维修的时候,只需要更换软管即可,非常的方便。累积下来,也可以减少企业的成本开支。  除了在成本方面的改善,蠕动泵还可以更好的保证液体的输送质量。它采用软管压缩的方式进行输送,不会对输送的物体造成任何的破坏,保证液体的完整性。而且还能够实现对于流量输出的精密控制,不会产生浪费。  二、提升效率,提高产能  在一些有喷涂要求的行业中,对于喷涂的均匀度和精度有着非常高的要求。而在使用传统的输送方式时,很容易会出现液体的不均匀流量和压力损失,导致喷涂效果不尽如人意。而蠕动泵可以通过提供稳定的流量和压力来实现更为均匀的液体输送,并且可以实现对于出料量的实时监测和调整,进一步提高了生产效率。  三、应用范围广泛  蠕动泵具有很强的适应性,可以输送各种类型的介质和流体。不管是粘稠液体、固体悬浮液体等,都可以非常理想地完成输送工作。同时,蠕动泵的安全性也非常出色,不会产生火花和电磁干扰等严重的安全问题,非常适合在化工、制药、食品加工等需要高度安全性的场合中使用。  总之,蠕动泵作为一种创新型的液体输送设备,具有诸多的优势。它可以在成本、质量和效率等不同方面为企业带来极大的改善和提升,大大提升了生产效益。相信在工业生产中,它的应用前景将越来越广泛。
  • 浅谈现有锂离子电池检测标准
    p  由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。/pp  strong1 电池安全性能检测标准简介/strong/pp  目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。/pp  应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3)/pp  和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。/pp  目前,国内外常用的锂离子电池标准列表归纳于表1。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title="003.jpg.png" alt="003.jpg.png"//pp  strong2 现有标准的侧重点分析/strong/pp  现行的主要标准可概括为以下几类:/pp  strong2.1 主要针对运输过程中的外部环境和机械振动/strong/pp  如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。/pp  strong2.2 主要针对设计和制造过程/strong/pp  如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。/pp  strong2.3 主要针对锂离子电池电性能和安全性/strong/pp  如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。/pp  strong3 现有标准的不足/strong/pp  过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。/pp  根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。/pp  迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。/pp  在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。/pp  strong4 结束语/strongbr//pp  安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。/pp  随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。/pp  span style="color: rgb(127, 127, 127) "i文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局)/i/span/p
  • 大连化物所:开发出首例温和条件下超快氢负离子导体
    氢负离子(H-)具有强还原性及高氧化还原电势等特点,是颇具潜力的氢载体和能量载体。氢负离子导体是在一定条件下具有优异氢负离子传导能力的材料,在氢负离子电池、燃料电池、电化学转化池、膜反应器、氢传感器等能源及电化学转化器件中具有广阔的应用前景,有望在未来实现一系列的技术革新。目前仅有少数国外团队专注此研究。该研究面临材料体系少、操作温度高、温和条件下离子电导率低等问题,是洁净能源领域的前沿课题。近日,中国科学院大连化学物理研究所研究员陈萍、副研究员曹湖军团队提出了全新材料设计研发策略,即通过机械化学方法在稀土氢化物——氢化镧(LaHx)晶格中引入大量的缺陷和晶界,开发了首例温和条件下超快氢负离子导体。4月5日,相关研究成果发表在《自然》(Nature)上。审稿人评价该工作展示了一种非常有趣且新颖的研究方法。在20世纪的变色玻璃研究中,研究发现氢化镧具有快速的氢迁移能力,但其电子电导很高。近几年,科研人员在氢化镧晶格中引入氧使其形成氧氢化物以抑制其电子传导,但氧的引入显著阻碍了氢负离子的传导。本工作创新地采用机械球磨制备方法,通过撞击和剪切力,造成氢化镧晶格的畸变,破坏了晶格的周期性,形成了大量的纳米微晶和晶格缺陷。这些晶格缺陷可以显著抑制电子传导,其电子电导率相比结晶态的氢化镧下降5个数量级以上。尤为重要的是,材料结晶度的改变对氢负离子传导的干扰并不显著,可在“震”住电子转移的同时,仍旧“维持”氢负离子通过协同迁移机制快速传输,最终获得了优异的氢负离子传导特性。此前报道的氢负离子导体只能在300℃左右实现超快传导,而本工作实现了在温和条件下(-40至80℃温度范围内)的超快离子传导。在-40℃时,该氢负离子导体的电导率高达10-2 S/cm,活化能仅为0.12 eV。此外,团队还首次实现了室温全固态氢负离子电池的放电,证实了这种全新的二次电池的可行性。“许多已知的氢化物材料都是离子-电子混合导体,”陈萍介绍道,“我们建立的这种材料结构调变的方法具有一定的普适性,有望为氢负离子导体的研发打开局面。”本工作的理论计算和中子衍射实验分别与厦门大学副教授吴安安和中国工程物理研究院核物理与化学研究所副研究员夏元华合作完成。陈萍团队聚焦金属氢化物的研究,从最初的储氢材料研究到后来的化学固氮,再到如今的氢负离子导体,通过拓展完善金属氢化物的特性和功能范围,让这一独特材料在多个领域不断地展现出新的潜力。大连化物所开发出首例温和条件下超快氢负离子导体氢负离子电导率性能对比图氢负离子导体潜在的应用场景
  • 纳米生物传感器:蔬果有无农残 试纸一测便知
    纳米生物传感器,听起来是一个非常陌生的名词,但验孕棒等试纸产品,你肯定不会陌生,它们就是此类传感器的“化身”。  中科院宁波材料技术与工程研究所研究员黄又举精耕于纳米材料领域,构建出纳米生物传感器新材料,旨在推动更多的检测产品进入寻常百姓家。  可以设想,将来如果你对蔬果农残担忧,用这种试纸测一测,有无农残,指标多少,便一目了然 甚至一些人体健康指标也可以利用生物传感器,转化为看得见、摸得着的直观呈现。  人物名片  姓名:黄又举  职务:中科院宁波材料技术与工程研究所研究员  荣誉:2015年第六批宁波市“3315计划”创新人才  课题研究收获“意外之喜”  黄又举大学学的是高分子材料科学与工程专业,后进入中国科技大学攻读博士学位。他坚信,材料若能结合生物领域,将拥有非常广阔的发展前景。博士毕业后,他远赴新加坡南洋理工大学从事博士后研究,主要研究方向是化学与生物医学工程领域。  “我在攻读博士后之前从未涉及过纳米粒子方面的研究,后来因为研究需要相关的材料,才学习合成纳米粒子材料,没想到展现了这方面的天赋。”4年在新加坡深造研究让他收获了“意外之喜”。  2013年10月,黄又举通过“春蕾人才”计划,进入中科院宁波材料技术与工程研究所工作。去年12月,由于他出色的科研表现,被破格提升为项目研究员。  在攻关纳米生物传感器核心材料等关键问题上,黄又举潜心研究了五六年。  纳米金材料是他的研究重点。纳米金材料是纳米传感器的核心材料,被广泛应用于试纸条、试纸盒中,其大小、形状以及自组装行为直接影响到可视化的性能。  传统纳米金合成主要是通过调控反应动力学和热力学,进而调控形貌和大小,但众多实验参数常常会影响纳米金的大量高质量制备。黄又举则突破了传统的方法,提出了纳米金的两种新生长模式———智能化合成与非连续性生长模式。  他研发出超过20种单分散的不同形貌的金纳米粒子,包括球形、方形、棒状、片状、星形、线形以及一些复杂的多级纳米结构。与现有的其他产品相比,这种合成方法确保纳米粒子在大规模制备条件下,仍能保持粒子的高度均匀性。  “市场上纳米金粒子产品存在纯度不足、形貌种类有限等缺陷。”黄又举说,“我们团队研发出来的产品纯度和品质都非常高,且在相同的单位价格之下,能够生产出更大体量的产品。”  生物传感器应用非常广阔  “此类传感器的应用空间非常广阔,主要集中在一些可视化的试剂盒、试纸条上。”他介绍说,“目前市面上较为常见的就是验孕试纸,以后的应用方向还可以针对男性、小孩等受众,同时在食品安全领域也可大做文章。”  如在食品安全领域,普遍的家庭要检测蔬果是否含有毒素,不可能购置大型的仪器,只能通过一些简单的工具去鉴别,因此可以通过裸眼观察到颜色变化的试剂、试纸成为较为理想的工具、方法。  “在目前推崇‘精准医疗’的大环境下,需要更多的生物传感器去检测各类人体指标以达到预防的目的。”黄又举对研究领域的前景充满了信心。  据了解,他和团队合成的纳米金样品已经受到国内外多家高校、院所和公司的青睐与好评,样品已经免费试用于美国斯坦福大学、新加坡南洋理工大学、新加坡国立大学、韩国成均馆大学和各类生物公司等30余家机构。  同时,他与众多企业合作展开一些专利布局。浙江星博生物科技有限公司就与其合作,研发了可商业化的男性生殖健康体外检测产品。  今年,黄又举还与宁波美成生物科技有限公司合作在中科院材料所筹建了“食品安全快速检测材料与技术联合实验室”,引入了20余个快检便携式仪器,主要进行食品检测技术方面的研究和应用,争取向提供第三方检测服务方面发展。  黄又举表示,目前他们正在研究定量检测的问题,主要面向一种能随目标物浓度变化产生颜色变化的试纸条和试剂盒。“例如,你拿一张检测毒素的试纸去检测某个东西,试纸可以直接通过不同的颜色来显示毒素含量,就像pH试纸随着酸碱性浓度的不同显示不同的颜色”他说。  他表示,在互联网高速发展时代,可以将可视化生物传感器与移动医疗结合,通过相关生物传感器芯片、手机APP以及医疗大数据处理平台的构建,实现可视化生物传感器的商业化。
  • 相关指导意见发布:食品生产过程追溯体系将实现智能化
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "近日,上海市市场监督管理总局发布了《上海市市场监督管理局关于推进食品生产过程智能化追溯体系建设的指导意见》。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "该意见指出,strong食品生产企业通过信息化手段建立食品安全智能化追溯体系/strong,形成覆盖生产全过程的追溯信息数据链,客观、有效、真实地记录和保存食品质量安全信息,strong实现食品质量安全顺向可追踪、逆向可溯源、风险可管控,发生质量安全问题时产品可召回、原因可查清、责任可追究/strong,切实落实食品安全主体责任,保障食品安全。追溯内容包括产品信息、生产信息、人员信息、召回销毁等信息。具体内容如下:/span/pp style="text-align: center "strongspan style="font-family: 宋体, SimSun "上海市市场监督管理局关于推进/span/strong/pp style="text-align: center "strongspan style="font-family: 宋体, SimSun "食品生产过程智能化追溯体系建设的指导意见/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "各区市场监督管理局:/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 为进一步加强食品(含食品添加剂)生产企业食品安全追溯体系建设,贯彻落实《中共中央 国务院关于深化改革加强食品安全工作的意见》的要求,根据本市食品安全追溯体系建设的整体部署,前期在金山区试点开展了试点推进工作,成效明显。现就在全市食品生产企业推进生产过程智能化追溯体系建设,提出如下指导意见:/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 一、工作目标/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 食品生产企业通过信息化手段建立食品安全智能化追溯体系,形成覆盖生产全过程的追溯信息数据链,客观、有效、真实地记录和保存食品质量安全信息,实现食品质量安全顺向可追踪、逆向可溯源、风险可管控,发生质量安全问题时产品可召回、原因可查清、责任可追究,切实落实食品安全主体责任,保障食品安全。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 二、基本原则/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (一)企业为主体。食品生产企业承担建立生产过程智能化追溯体系的主体责任,属地监管部门负责督促指导。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (二)记录为基础。以法律法规和相关食品安全标准规定的原料进货查验、生产过程控制、产品出厂检验、产品销售记录等制度为追溯的数据基础,记录数据真实、准确、完整。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (三)切合企业实际。突出可操作性,不要求形式的一致,食品生产企业可以自建系统,也可以采用第三方技术机构的服务,但应确保追溯体系中采集的数据信息和本市食品安全追溯信息平台实现实时对接。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 三、适用范围/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 本指导意见不适用特殊食品生产企业和食品生产加工小作坊。特殊食品生产企业的生产过程追溯体系建设按照相关规定开展,有条件的食品生产加工小作坊可参照本意见建设生产过程追溯体系。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 四、追溯内容/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 企业根据自身生产工艺和产品特点等,确定需要录入追溯系统的具体信息内容。对相关追溯内容调整时,应记录调整的相关情况。生产过程追溯系统至少应有以下数据信息:/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (一)产品信息。追溯系统中的产品信息主要包括产品基本信息、贮存信息和运输销售信息。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 1.产品基本信息。包括产品名称、执行标准及标准内容、配料、生产工艺、生产日期或者生产批号、保质期、标签标识等。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 2.贮存信息。包括产品的仓库所在地、入库、出库时间、交接人员姓名等保障食品安全贮存要求的信息。需冷藏、冷冻或其他特殊条件贮存的,还应当记录贮存的相关信息。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 3.销售信息。如实记录食品数量、销售日期以及购货者名称、地址、联系方式等内容。食品的运输过程需冷藏、冷冻或其他特殊条件运输的,还应当记录运输过程的相关信息。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (二)生产信息。追溯系统中信息记录应覆盖生产全过程,重点是原辅材料进货查验、生产过程控制、检验三个关键环节。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 1.原辅材料进货查验信息。包括原料、食品添加剂、食品相关产品进货查验记录信息,如实记录原辅材料名称、规格、数量、生产日期或者生产批号、保质期、进货日期以及供货者名称、地址、联系方式等内容。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 2.生产过程控制信息。包括原辅材料入库、贮存、出库、生产使用的相关信息;配投料信息(数量、配比、生产班次、工艺参数、配投料人员等);根据需要记录相关操作人员和设备设施的信息,确保风险原因可查清,责任可落实。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 3.检验信息。包括检验批号、检验日期、检验方法、检验结果及检验人员等内容等。开展过程检验的还应包括生产过程检验的相关信息。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (三)人员信息。包括与食品生产过程相关人员的培训、资质、上岗、编组、在班、健康等情况信息,并与相应的生产过程履职信息关联。质量安全管理、原辅材料采购、技术工艺、生产操作、检验、贮存等不同岗位、不同环节,切实将职责落实到具体岗位的具体人员,记录履职情况。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (四)召回销毁等信息。对存在问题而召回的产品,企业应当记录发生召回的食品名称、生产日期或生产批号、规格、数量、来源、发生召回原因、召回情况等信息,对问题产品销毁的还应当记录对召回食品进行无害化处理、销毁的时间、地点、人员、处理方式等信息,监管部门实施现场监督的,应当记录相关监管人员基本信息。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 五、智能化过程追溯体系建设基本要求/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (一)建立制度。企业建立食品安全过程追溯系统应当建立信息管理制度,明确数据采集、传输、汇总、保存、使用等过程的职责、权限和要求。理清原料来源、生产环节及衔接、物料流向、信息采集要求及记录规则等,建立顺向可追踪、逆向可溯源的生产过程追溯制度,明确追溯目标、措施和责任人员,并定期实施内部审核,以评价追溯体系的有效性。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (二)系统建设。企业可根据生产过程要求和科技发展水平,科学设定信息的采集点、采集数据和采集频率等技术要求。企业应当参照《食品和食用农产品信息追溯第1部分:编码规则》(DB31/T1110.1—2018)、《食品和农产品信息追溯第2部分:数据元》(DB31/T1110.2—2018)、《食品和食用农产品信息追溯第3部分:数据接口》(DB31/T1110.3—2018)、《食品和食用农产品信息追溯第4部分:标识物》(DB31/T1110.4—2018)明确本企业所采用的追溯信息的编码原则、标识方法、标识载体与数据接口等规则,确保追溯对象标识的唯一性和各环节间标识的有效关联,形成闭环,做到原辅材料使用清晰、生产过程管控清晰、时间节点清晰、设备设施运行清晰、岗位履职情况清晰。上一环节和下一环节操作信息要及时核对,汇总的各环节信息及时传输到企业的信息追溯系统。鼓励有条件的企业通过无线传感器、无线通信技术、GIS/GPS等核心物联网技术将温湿度仪器、大气监测仪器、空气监测仪器、电子秤等设备与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理,实现对产品贮存与运输等环境信息实时监测与预警。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (三)数据应准确、真实。企业在建立过程追溯体系中采集的信息,应当从技术上和制度上保证不能随意修改,要有备份系统。明确保管人员职责,防止发生信息损毁、灭失等问题,确需后期录入的应当保留原始信息记录。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (四)保证运行有效。企业应建立过程追溯体系检查、演练和审核机制,及时检查并定期审核追溯体系的运行情况,包括是否满足相关法律法规和文件规定要求、追溯有效性和及时性、运行成本测量、标识混乱或信息丢失等产生不良信息的历史记录、对纠正措施进行分析的数据记录和监测结果等。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " 六、工作要求/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (一)加强组织领导。各区市场监管部门要高度重视,将推进食品生产过程智能化追溯体系建设列入工作重点,督促辖区内企业成立相应组织负责追溯体系建设工作。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (二)明确重点、分步实施。各区市场监管局可结合监管实际制定实施规划,按企业规模、风险等级或产品类别分步推进食品生产过程智能化追溯体系建设。2021年底基本完成纳入本市追溯产品目录的产品和高风险产品生产企业智能化追溯体系建设。在取得成熟经验基础上,不断完善,逐步向所有食品生产企业推广。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (三)强化指导培训。各区市场监管局要加强对企业的指导和培训,将追溯体系建设工作的目标、要求和关键点列入培训计划,定期开展关于追溯记录、追溯程序、追溯操作规程等方面的培训。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " (四)严格监督检查。各区市场监管局要加强对企业落实生产过程追溯体系建设情况的检查,验证产品追溯链条,对既未建立智能化过程追溯体系也未建立纸质过程追溯、或虽建立过程追溯但信息不全、缺失、不真实的企业,要严格按照法律法规的规定进行调查处理。/span/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "上海市市场监督管理局/span/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "2019年11年18日/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai " /span/ppbr//p
  • 钢研纳克申请用于三重四极杆ICPMS的聚焦传输透镜装置专利
    2024年1月9日,钢研纳克检测技术股份有限公司公开了“一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置”的发明专利,公开号为CN117373899A。发明人为:沈学静 王雷 李凯 任立志 方哲 王超刚 王立平 王海舟。  发明内容  本发明的目的是提供一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,能够在三重四极质谱仪结构基础上增设三个透镜,通过灵活施加三个透镜的电压使其有助于离子沿离子光轴集中和聚焦,有效提高离子传输效率,从而提高质谱仪的灵敏度。  为实现上述目的,本发明提供了如下方案:  一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,所述电感耦合等离子体质谱仪为三重四极质谱仪,所述聚焦传输透镜装置设置在所述三重四极质谱仪的第一级四极杆与第二级多极杆之间或第二级多极杆与第三级四极杆之间   所述聚焦传输透镜装置包括:依次设置的透镜一、透镜二、透镜三,所述透镜一、透镜二、透镜三之间互不接触且相对距离可调节,所述透镜一、透镜二、透镜三的中心均开设有通孔,且所述透镜一、透镜二、透镜三的通孔的中心处于同一水平轴 通过直流电压施加装置分别对所述透镜一、透镜二和透镜三施加零电压、正电压或负电压。  专利内容为:本发明涉及电感耦合等离子体质谱仪技术领域,公开了一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,应用于三重四极质谱仪,设置在所述三重四极质谱仪的第一级四极杆与第二级多极杆之间或第二级多极杆与第三级四极杆之间 所述聚焦传输透镜装置包括:依次设置的透镜一、透镜二、透镜三,透镜一、透镜二、透镜三之间互不接触且相对距离可调节,所述透镜一、透镜二、透镜三的中心均开设有通孔,且通孔的中心处于同一水平轴 通过直流电压施加装置分别对透镜一、透镜二和透镜三施加零电压、正电压或负电压。本发明提供的聚焦传输透镜装置,能够实现对电压的灵活施加,实现离子的有效传输与聚焦,从而提高质谱仪的灵敏度。
  • LCMS调谐过程及常见注意事项
    调谐过程在执行自动调谐后,会对仪器进行灵敏度调整,分辨率调整和质量校准。具体步骤如下图所示,自动调谐在大约40分钟内完成。 自动调谐开始后,首先会对质谱检测器电压进行调整,所有的分析模式均采用相同的电压;在灵敏度调整过程中,会优化针对各质荷比的透镜电压,以及针对各分析模式的Qarray、多级杆和入口透镜的电压;分辨率调整,主要是将色谱峰形的半峰宽调整到合适的宽度;接下来的质量校准,会根据调谐液标准样品中的离子校准质荷比;最后会对调谐结果显示的色谱峰形和质谱图进行测量。在正负离子都进行完整个过程后,调谐就会自动结束。 调谐常见注意事项 什么时候需要做调谐?01我们的建议是:每次完全开机时;连续工作六个月后;维护保养后;仪器灵敏度下降或不出峰时;对质谱进行维修后。 调谐没有通过怎么办?02自动调谐进行过程中,如果仪器存在故障,调谐会自动停止,操作软件上也会显示调谐失败,无法通过自动调谐。调谐失败有多种原因,常见的原因主要有:1、 装有标准物质的调谐液瓶漏气或调谐液太少。在自动调谐开始后,调谐液瓶中会通入气体,在气压的作用下将调谐液输送到离子源,若瓶子漏气,或瓶中调谐液量不够(一般建议装入40~80 ml),调谐液无法正常进入仪器,调谐就会失败。 2、样品导管(阻尼管)堵塞。 调谐液通过样品导管传输到离子源,红色一端接到调谐液瓶上,如果导管堵塞,调谐液传输不畅,调谐也不会通过。在调谐完毕后,建议用甲醇对导管进行冲洗,以免发生堵塞。3、 仪器污染。调谐液经过离子源离子化后,通过DL管,Qarray、多级杆和入口透镜,再经过Q1、碰撞池、Q3,到达检测器。在这个过程中的某个或者多个单元污染都会导致标准物质无法正常进入检测器,最终导致调谐失败。由于流动相,样品前处理的干净程度等因素的影响,随着使用时间的增加,仪器污染是无法避免的,建议每年至少对仪器做一次维护保养。 其他注意事项03① 在自动调谐进行前,我们需要检查DL插塞是否已密封DL,以及PG(皮拉尼真空规,用于指示接口单元的压力)读数,一般在130 Pa左右。如果PG值低于40 Pa,且没有DL插塞,则DL很可能发生阻塞,此时请更换DL管。② 自动调谐结束后,需要保存调谐文件。先选择【文件】菜单中的【调谐文件另存为】,然后保存调谐文件,再选择是否将该调谐文件设置为默认调谐文件。如果选择【是】,会将保存的调谐文件设置为默认调谐文件,下次打开【调谐】窗口时将自动新的默认调谐文件。如果选择【否】,保存的调谐文件将不会设置为默认调谐文件,而在打开【调谐】窗口时将显示现有默认调谐文件。如果想调用其它的调谐文件,需要选择【文件】菜单中的【打开调谐文件】,然后找到相应的调谐文件,选中打开,接下来选择【文件】菜单中的【保存调谐文件】,在弹出的窗口中选择【是】,将其设为默认调谐文件即可。 ③ 保存好的调谐文件中会显示最新的检测器电压,在-1.6~-3.0 kV范围属于正常。检测器性能根据使用情况速率降低,检测器电压根据使用情况速率增加,有可能需要两年更换一次检测器。通常,若自动调谐结果达到近-2.7 kV时,需进行更换。更换后,必须进行自动调谐。 欢迎关注,让更细致的服务从这里起航
  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 复享光学-R1在手性超表面非对称光学传输效率测量中的应用
    【概述】光学手性超构表面是由亚波长尺度单元所组成的平面或准平面光子器件。非对称传输是手性超表面的一大光学特性,该特性可应用于集成光路中的光学二极管,与电二极管类似,光学二极管要求器件具有单向性。目前,单层手性超材料中,非对称传输率在理论上被限制在 25% 以内,并伴随很高的吸收损耗,这成为该材料作为光学二极管的应用阻碍。而通过多层三维结构去实现非对称传输,虽然能将传输率突破 25%,但是其加工工艺更加复杂、困难,尤其是亚微米尺度以下的多层结构精准对准目前还很难实现。图1,单层手性超表面2022年,南开大学泰达应用物理学院齐继伟副教授在 Optical Express 上发表了一篇题为《Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces》的文章。作者制作了一种单层手性超表面,创新地以圆偏振光斜入射反射的形式提升了非对称传输率,获得了与三维结构相当的非对称传输率。 【样品 & 测试】作者采用电子束光刻技术与金属镀膜技术在石英基底上制备了横向周期 1000nm,纵向周期 650nm 的单层 U型分裂环,该分裂环厚度 100nm,环形宽度 200nm,环形半径 350nm。为观测不同角度倾斜入射的反射情况,作者使用了复享光学的角分辨光谱仪R1,借助设备的自动旋转模块,灵活调整入射角与接收角,实现多角度反射光谱测量。同时,得益于角分辨光谱仪中的通用光学元件插口,作者使用线性偏振片与四分之一波片形成左旋与右旋圆偏振光,轻松获得合适的实验条件。图2,测试示意图作者通过模拟和测量左旋圆偏振光与右旋圆偏振光倾斜入射时超表面的反射光谱,并对比了正向入射与反向入射在 30°~45° 之间的测量结果,如图3 所示。研究发现,在 1120nm 处,右旋圆偏光正向入射与左旋圆偏振光反向入射的反射光谱均呈现出较宽的反射峰;在 1650nm 和 1075nm 处,右旋圆偏光反向入射与左旋圆偏振光正向入射的反射光谱分别显示出相对较窄反射峰。这一结果与 COSMOL 的模拟结果一致。通过理论分析结合实测光谱,作者发现 1120nm 处的反射峰源于四极局域表面等离子体共振模式,而 1650nm 和 1075nm 处的反射峰则源于表面晶格模式。这些发现为深入理解手性超表面的光学特性提供了重要线索。图3,U型分裂环超表面30°~45°反射光谱:(a,b)COSMOL模拟结果;(c,d)角分辨光谱仪测量结果进一步研究中,作者分别对比左旋圆偏振光与右旋圆偏振光正反向反射效率差异,如图4 所示。值得注意的是,反射效率差异在 1000~1600nm 波段最高可达 40%,突破了二维非对称传输理论效率 25% 的限制。图4,圆偏振光非对称反射效率测量结果【总结】作者制备了一种基于单层手性超表面,旨在实现巨大的非对称反射,并将圆偏振光斜入射反射作为关键步骤。复享光学的角分辨光谱仪R1 具备高度适应性,能够轻松适应不同的实验条件,包括变化角度、偏振、相位延迟等参数。这一设备对研究以调控光束特性为主要功能的超表面至关重要。图5,文章对复享光学 R1 的标注【参考文献】 ✽ Fu, Xianhui, et al.Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces. Optics Express (2022).
  • 华东理工自主研制界面光电分析装置 可用于超灵敏光电生物传感器构建
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/18580eb5-c78e-4baa-a5ae-f6bc8e181e94.jpg" title="149034298047758_meitu_5.jpg"//pp 对界面上电荷传输信息的精准获取,是深入认识生命活动与光电能量转化过程的基础,可应用在超灵敏光电生物传感器的构建和敏化太阳能电池光电转化效率的提高等方面。/pp  刚刚获得2016年度上海市自然科学一等奖的“功能化界面电荷传输过程中的电分析化学基础研究及其应用”项目,所研究的正是这一领域。/pp  针对界面光电分析化学基础研究中存在的关键问题与挑战,华东理工大学龙亿涛、花建丽、应佚伦、马巍、武文俊等老师,经过10年的努力,取得了多项成果:在研制界面光电分析装置上,通过设计与制备结构可控的光电分子,聚焦功能化动态界面电荷传输过程,发展了高时空分辨的“电化学—纳米光谱”单纳米粒子动态界面传感新方法,应用于纳米粒子界面电荷传输的动态、原位、实时、高通量分析 提出纳米孔道电化学限域效应,建立纳米孔道单分子界面分析技术,实现了对多尺度界面单分子动态结构研究,为功能化复杂界面电荷传输新机制的研究提供了新方法。/pp  据介绍,该获奖团队目前正在以筹建中的“国际合作联合实验室”和“界面光电分析化学基础研究”创新研究群体项目为依托,通过构建新型功能化动态界面,对单分子水平和单颗粒水平上的电荷传输机制进行探索。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制