当前位置: 仪器信息网 > 行业主题 > >

锂离子电池隔膜

仪器信息网锂离子电池隔膜专题为您整合锂离子电池隔膜相关的最新文章,在锂离子电池隔膜专题,您不仅可以免费浏览锂离子电池隔膜的资讯, 同时您还可以浏览锂离子电池隔膜的相关资料、解决方案,参与社区锂离子电池隔膜话题讨论。

锂离子电池隔膜相关的论坛

  • 【原创大赛】OPTON的微观世界之 锂离子电池隔膜的显微世界

    [b]概 述[/b]在上期里,我们借助扫描电子显微镜对锂电池负极材料进行了细微结构的表征和组成元素的分析,让我们对于电子显微技术在电池负极材料中的应用有了相应的理解。本期小编继续带领大家了解扫描电子显微镜技术在电池隔膜研究中扮演的角色。在包括锂离子电池的二次电池中,隔膜是不可或缺的重要组分。其作用在于:一、隔膜本身不导电,将电池正极和负极分隔开来,防止电池出现内部短路;二、隔膜具有微观程度上的孔洞结构,利于电极液中离子的传递,保证了充电与放电过程中离子的有效迁移。[b]一、样品制备[/b]小编所选用的样品为聚丙烯(polypropylene,PP)型锂离子电池隔膜,为了了解锂离子电池隔膜的相关结构,小编决定从表面和截面两种状态下进行分析。对样品进行喷金处理后,直接固定在碳导电胶上从而进行平面样品的观测,截面样品的制备同样借助了 Gatan 的氩离子抛光仪(PS:具体制备方法,请查看上期内容,容小编偷个懒)。[b]二、锂离子电池隔膜表面的 SEM 分析[/b]利用ZEISS扫描电子显微镜观察锂离子电池隔膜的表面如图1,与隔膜宏观上光滑的表面不同,放大后可以发现,隔膜表面存在着大量的孔洞结构。将样品进一步放大可以发现,隔膜表面的孔洞孔径介于100至200纳米,且由表面延伸至隔膜内部。[align=center][img]http://img1.17img.cn/17img/images/201706/uepic/aa2d2090-48cf-487c-a28e-c8d9d2c9ee00.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/703c7b92-1727-46f4-ad5d-8c5ef8cb6e9e.jpg[/img][/align][align=center]图1. 锂离子电池隔膜表面的SEM图像[/align][align=center][/align][b]三、锂离子电池隔膜截面的 SEM 分析[/b]锂离子电池隔膜的多孔程度直接影响着电解液的扩散速率,对电池的性能有很大的影响,因此分析隔膜内部的孔洞结构具有重要意义。图2为隔膜的截面扫描图像。由图像可知,采用 Gatan氩离子抛光仪抛光处理过后的表面平整光滑,其相对于普通剪切处理得到的截面更易获得理想的图像。隔膜内部的孔洞相互贯通,并且由隔膜表面延伸至内部。由放大图像可知,隔膜的孔洞是由数十纳米的纤维形成的。[align=center][img]http://img1.17img.cn/17img/images/201706/uepic/1039c11d-ee5d-44a5-9f79-2bd3720c2da3.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/29d75f72-acd6-49f7-b98d-27c8ea7df56c.jpg[/img][/align][align=center]图2. 锂离子电池隔膜截面的SEM图像[/align][b]结 论[/b]通过扫描电镜对隔膜细微结构的分析,可知锂离子电池隔膜的内部存在着大量的无序孔洞结构,孔洞的尺寸在100至200纳米之间。二次电池发展至今,大量新型电池涌现,对于电池隔膜的需求也变得多样,对于功能性隔膜的报道不断发表。具有强大功能和普适性的扫描电子显微镜作为一种直观的、有效的表征手段,将在新型材料的探究中将扮演重要的角色。

  • 怎么测锂离子电池隔膜添加剂。

    想测锂离子电池隔膜,可能是PP(聚丙烯)或者PE(聚乙烯)材料基体,里面还含有PFDF(聚偏氟乙烯)、氧化硅等添加剂。需要测里面其它添加剂。只需要定性,不需要定量。里面含有高聚物,而且含氧化硅,请问有什么需要注意的?我们的仪器是岛津的QP-2010 Ultra,没有特殊进样装置。

  • 【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    [color=#cc0000]摘要:本文针对锂离子电池材料导热系数测试方法,评论性概述了近些年的相关研究文献报道,研究分析了这些导热系数测试方法的特点,总结了电池材料导热系数测试技术所面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径。[/color][hr/][size=18px][color=#cc0000]1.问题的提出[/color][/size] 锂离子电池在各种应用中用于能量转换和存储,包括消费类电子产品、电动汽车、航空航天系统等。图1-1所示为典型的锂离子电池的结构,锂离子电池主要包括电极材料、电解质材料、隔膜材料、电池堆和热管理高导热相变复合材料。[align=center][img=锂离子电池结构示意图,500,375]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250623319094_6619_3384_3.jpg!w600x450.jpg[/img][/align][align=center][color=#cc0000]图1-1 锂离子电池结构示意图[/color][/align] 导热系数作为电池材料的重要热物理性能参数之一,严重影响着锂离子电池的各种特性。而锂离子电池在使用过程中会面临着电、热、力和质的不同边界条件,这就使得准确测试电池材料导热系数面临着以下几方面的严峻挑战: (1)锂离子电池材料往往涉及含能和储能材料,在不同边界条件下,如在充放电过程中会伴随着生热甚至热解过程,在电池热管理系统中还涉及到相变材料,这就要求要在这些电化学和热化学过程中同时对导热系数进行测量,这要比以往纯热物理变化过程中的导热系数测试技术更为复杂。 (2)导热系数测试方法众多,但针对锂离子电池材料的复杂特征和要求,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池材料和电池热管理尤为重要。 (3)由于锂离子电池材料导热系数测试所涉及的环境条件众多,会涉及众多不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽量少的测试方法和仪器设备尽可能多的满足各种各种锂离子电池材料的导热系数测试需求。 (4)由于锂离子电池材料还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器进行集成,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。 本文将针对上述存在的问题和挑战,首先对近些年锂离子电池材料导热系数测试技术进行评论性综述,然后在分析研究的基础上,提出比较适合锂离子电池和材料导热系数测量的实用方法。[size=18px][color=#cc0000]2.电池材料导热系数测试方法综述[/color][/size] 在锂离子电池材料级别方面,主要涉及的材料有电极、电解质、隔膜、电极隔膜堆和热管理高导热相变复合材料。 在材料级别方面,已经报道了电极[1]-[4]、电解质[5]、隔膜[6][7]、电极堆[2][8]的导热系数和接触热阻[9][10]测量结果。 如图2-1所示,阴极样品厚度方向上导热系数已使用保护型热流计法(ASTM E1530)进行了测量[1][12],阴极由等体积分数的聚合物电解质以及活性材料和乙炔黑的混合物制成。经测量,在25~150℃之间复合材料导热系数在0.2 ~ 0.5 W/mK范围内变化。由于阴极材料太薄,将多层阴极材料叠加后形成1~2mm厚的可测样品,样品直径为25.4mm,测试压力为10psi以减少多层叠加后带来的接触热阻。[align=center][img=保护型热流计法导系数测试示意图,500,419]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250624120593_5244_3384_3.jpg!w500x419.jpg[/img][/align][align=center]图2-1 保护型热流计法导热系数测试示意图[/align] 如图 2-2所示,展示了锂离子电池电极材料厚度方向导热系数测量装置结构[2]。[align=center][img=,600,428]https://ng1.17img.cn/bbsfiles/images/2020/05/202005252355511656_8624_3384_3.jpg!w600x428.jpg[/img][/align][align=center][color=#cc0000]图2-2 锂离子电池材料厚度方向导热系数测量装置示意图[/color][/align] 装置采用了稳态薄加热片法[13],单层材料面积为431mm2,厚度0.42mm,被测样品为多层叠加形式。还采用了闪光法测量多层锂离子电池薄层材料的热扩散系数,并通过叠层材料不同取样方向来测量得到不同方向的热扩散系数。 时域热反射(TDTR)技术已用于测量LiCoO2薄膜厚度方向导热系数[3],样品厚度约500nm,测量了锂化程度对导热系数的影响。循环过程中原位测量LiCoO2阴极的导热系数表明,去锂化时,导热系数从5.4W/mK可逆地降低至4.7W/mK。 如图2-3所示,采用闪光法确定由各种粒径的合成石墨制成的负电极(NE)材料的导热系数[4][14],样品尺寸为直径约15mm,厚度范围为1.1~9.5mm,实验在室温RT,150和200°C下进行。[align=center][img=激光闪法测量原理,500,467]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625143698_6549_3384_3.jpg!w500x467.jpg[/img][/align][align=center][color=#cc0000]图2-3 激光闪光法测量原理[/color][/align] 同样,聚合物电解质的导热系数采用图1-1所示保护型热流计法进行了测量[5],测量样品厚度方向上的温差,该温差用于计算总热阻,从中可提取出样品厚度方向上的导热系数。通过刮刀技术制备聚合物电解质薄膜样品,并将其夹在导热仪顶板和底板之间,然后测量温度差。据报道,在25~150℃范围内,导热系数在0.12~0.22W/mK之间变化。 如图2-4所示,隔膜材料面内方向导热系数已使用直流加热法进行了测量[6]。在100级无尘室中从26650锂离子电池中提取隔膜样品,在隔膜样品上沉积了两条相距很小的细钛线,其中一条线用作加热器,而这两条线都用于温度测量,两条线的温度作为时间函数的超快测量用于确定隔膜样品的热性能[15]。室温下的面内方向导热系数为0.5W/mK,在50℃下测量时,这些值没有明显变化。[align=center][img=,500,308]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625463285_8933_3384_3.jpg!w550x339.jpg[/img][/align][align=center][color=#cc0000]图2-4 隔膜材料比热容和面内方向导热系数测试示意图[/color][/align] 正负电极薄膜材料和隔膜材料厚度方向和面内方向导热系数已使用不同的稳态方法进行了测量[7],实验装置与先前使用的一维热流计法装置非常相似[1]。样品尺寸30mm×30mm,单层膜厚度在24~106um范围内,导热系数测量结果范围为0.19~31W/mK。 如图2-5所示,采用闪光法测量了多层阳极、隔膜和阴极构成的电极隔膜堆的厚度方向和面内方向热扩散系数[8],采用差示扫描量热仪测量了比热容,由此得到电极隔膜堆厚度方向和面内方向的导热系数。另外对从新电池中取出的电极隔膜堆在45℃下循环500次,考察了高温循环对导热系数的影响。[align=center][img=闪光法厚度方向和面内方向测试示意图,690,400]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626168406_2334_3384_3.jpg!w690x400.jpg[/img][/align][align=center][color=#cc0000]图2-5 (a)闪光法测试厚度方向和面内方向电极隔膜堆热扩散系数示意图;(b)测试过程中样品的取样形式和摆放形式[/color][/align] 除了上述关于导热系数测量的报道外,还报道了采用恒定热流法(ASTM D5470)在不同压力和温度下测量了电极隔膜堆的接触热阻[9][16]。如图2-6所示,测试过程中将被测电极隔膜堆叠层夹在两个铜块之间,并测量了叠层的总热阻。电池隔膜堆包括了涂覆有石墨的铜阳极、涂覆有钴酸锂的铝阴极、聚乙烯/聚丙烯隔膜和电解质,测试温度范围-20~50℃,压力0~250psi。通过测试得出的主要结论包括:与干电池组相比,湿电池组的接触热阻更低,并且电极隔膜堆叠热阻的温度依赖性较弱。但是,此处测得的热阻是总热阻,其中还包括材料自身热阻,而不仅仅是电池不同材料之间的接触热阻。已经测量了使用的电极和铜棒之间的接触热阻,这与电池的原位操作没有特别的关系。[align=center][img=,550,442]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626475813_5845_3384_3.jpg!w550x442.jpg[/img][/align][align=center][color=#cc0000]图2-6 恒定热流法(ASTM D5470)测量电池材料接触热阻示意图[/color][/align] 如图2-7所示,在另一项工作中,同样采用恒定热流法(ASTM D5470)测量了阴极和隔膜之间的界面热传导[10]。测量结果表明,锂离子电池的热特性很大程度上取决于穿过阴极-隔膜界面的传热,而不是通过电池本身的传热。这种界面热阻约占电池总热阻的88%。[align=center][img=,500,267]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627005929_1859_3384_3.jpg!w600x321.jpg[/img][/align][align=center][color=#cc0000]图2-7 恒定热流法测量电池材料接触热阻示意图:(a)被测样品为电极隔膜堆;(b)纯隔膜样品;(c)纯阴极样品[/color][/align] 如图2-8所示,采用瞬态平面热源法测量了石墨烯填料的混合相变材料[11][17],石蜡相变材料在添加石墨烯前后的导热系数分别为0.25W/mK和45W/mK。[align=center][img=,500,202]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627216467_2507_3384_3.jpg!w600x243.jpg[/img][/align][align=center][color=#cc0000]图2-8 瞬态平面热源法测试探头和测量原理图[/color][/align] 对于锂离子电池材料这类薄膜材料,其导热系数的测量还有一种非常有效的方法就是温度波法[18]。这种方法尽管已推出多年,但应用还是较少,但今后将是一种重要的有效方法。[size=18px][color=#cc0000]3.测试方法的特点[/color][/size] 从上述综述中可以看出,电池材料导热系数采用了以下几种测试方法: (1)稳态保护热流计法:ASTM E1530; (2)稳态护热板法:ASTM C177; (3)时域反射法; (4)闪光法:ASTM E1461; (5)稳态热流计法:ASTM C518; (6)恒定热流法:ASTM D5470; (7)瞬态平面热源法:ISO 22007-2。 (8)温度波法:ISO 22007-3。 从上述所涉及的多个测试方法可以看出,与传统材料导热系数测试不同,锂离子电池材料导热系数测试呈现出以下显著特点: (1)薄膜化:锂离子电池材料基本都呈现出薄膜化的形态,所涉及的则是典型的薄膜导热系数测试技术; (2)各向异性:薄膜化的锂离子电池材料呈现出比较明显的各向异性特征,导热系数在厚度方向和面内方向上表现出明显差别,锂离子电池材料导热系数测试实际上是一个各向异性薄膜材料导热系数测试问题; (3)测试变量多:锂离子电池材料导热系数测试的另一个显著特征是测试条件变量较多,除需在传统的不同温度下进行测试之外,还需要包括其他测试条件,如不同的加载压力、SOC荷电、气氛、振动、湿度等条件,甚至还需在通电状态下。[size=18px][color=#cc0000]4.电池材料导热系数测试方法分析[/color][/size] 根据上述锂离子电池材料导热系数测试的特点,对上述各种测试方法进行分析,以寻找出那些测试方法更能适合锂离子电池材料的测试。 纵观上述测试方法,我们将它们分为稳态法和瞬态法进行分析。[color=#cc0000]4.1. 稳态法[/color] 稳态法主要包括:保护热流计法、护热板法、热流计法和恒定热流法。 稳态法的显著特点就是依据经典的傅里叶稳态传热定律,在被测电池材料薄膜样品的测试方向上形成稳定的一维热流,通过测量不同条件下的温度和热流密度来测定相应的导热系数和接触热阻。 稳态法做为一种传统方法,是在较厚的块体材料热性能基础上发展起来的测试方法,对于较大尺寸和较厚块体样品的导热系数测试非常准确和成熟,如保护热流计法、护热板法、热流计法。为了进行电池薄膜材料测试,需要对薄膜材料进行多层叠加后制成样品才能满足稳态法测量准确性要求,这种多层叠加势必会带来接触热阻的严重影响。鉴于传统稳态法对薄膜材料导热系数测试的局限性,开发的恒定热流法则部分解决了测试问题,通过独特的表面温度测试技术,可以进行百微米厚度量级的薄膜导热系数测量,非常适合测试多层膜构成的电池堆以及高导热相变复合材料。 尽管做了相应的改进,但这种在稳态法上做的任何努力都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,测试能力下限毕竟还是非常有限,受到了稳态法自身的制约,特别是受到表面温度和厚度测量准确性的制约,使得这种扩展空间十分有限且效果很难保证。总之,对于锂离子电池材料,暂时比较适合的稳态法是ASTM D5470恒定热流法,可以进行导热系数和热阻测量,样品尺寸适中并比较适合加载各种边界条件。[color=#cc0000]4.2. 瞬态法[/color] 瞬态法主要包括时域反射法、闪光法和瞬态平面热源法。 与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不再属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。 总之,瞬态法作为非接触是测量方法非常适用于致密性薄膜材料,适合测量非常薄的样品,但对于锂离子电池材料这类较低密度的薄膜材料则会遇到许多测试难题,多孔性的薄膜材料样品需要进行表面处理才能进行导热系数测量,但表面处理往往会带来渗透而改变薄膜样品的热性能。另外,瞬态法的另一个明显不足是很难在被测样品上加载各种相应的边界条件进行导热系数测量,如压力和通电等。但瞬态法中的温度波法则是一个例外,这将在下节中进行介绍。[size=18px][color=#cc0000]5.未来设想:新方法的提出[/color][/size] 从上述对电池材料导热系数测试方法的分析中可以看出,现有方法都不能很好的解决本文开始提到的锂离子电池材料导热系数测试所面临的问题,需要研究和开发新型测试方法才能应对相应的技术挑战。 通过我们的研究,我们认为将上述稳态法和瞬态法相结合的方法将会是一种有效的技术途径,具体的结合形式就是改进型的瞬态温度波法。 ISO 22007-3规定的温度波测试方法[18],主要用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。ISO 22007-3中给出了温度波法测量装置示意图,如图5-1所示。[align=center][img=温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627416770_5455_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图5-1 温度波法热扩散系数测量装置示意图[/color][/align] 从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。 总之,采用改进后的温度波法,将具备以下几方面的显著特点: (1)在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,可以在测量过程中对样品加载一定的压力和其他测试条件。同时,温度波法还具备了非接触瞬态法的优点,将温度和热流测量转换为高精度的频率和相位测量,减少了误差,可以实现高灵敏的测量。 (2)尽管ISO 22007-3规定的温度波测试方法是用于测量薄膜材料厚度方向的热扩散系数,但这种方法也可以用于薄膜面内方向上的热扩散系数测量,转换后的测试方法就是经典的Angstrom周期热波法[19]。 (3)从图5-1所示的温度波测量原理可以看出,只要将交流加热形式控制为直流形式,温度波法就变成了传统的热流计法,就可以用于板材样品测量,也就是说可以进行各种规格尺寸袋装和片状锂离子电池热扩散系数和导热系数的测量。 (4)更重要的特点是,改进的温度波法结构小巧,可以与其他热性能测试方法进行集成,这方面的内容将在后续报告中进行介绍。 综上所述,我们选择并开展改进型的温度波法研究,基本可以解决本文前面所提出的锂离子电池材料测试中所面临的几方面难题,同时还兼顾了测试仪器的微型化、集成化和低成本,这将是我们今后热分析仪器发展的一个方向。[size=18px][color=#cc0000]6.参考文献[/color][/size][1] Song, L., and Evans, J. W., 1999, “Measurements of the Thermal Conductivity of Lithium Polymer Battery Composite Cathodes,” J. Electrochem. Soc., 146(3), pp. 869–871.[2] Maleki, H., Al Hallaj, S., Selman, J. R., Dinwiddie, R. B., and Wang, H., 1999, “Thermal Properties of Lithium-Ion Battery and Components,” J. Electrochem. Soc., 146(3), pp. 947–954.[3] Cho, J., Losego, M. D., Zhang, H. G., Kim, H., Zuo, J., Petrov, I., Cahill, D. G., and Braun, P. V., 2014, “Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide,” Nat. Commun., 5, p. 4035.[4] Maleki, H., Selman, J. R., Dinwiddie, R. B., and Wang, H., 2001, “High Thermal Conductivity Negative Electrode Material for Lithium-Ion Batteries,” J. Power Sources, 94(1), pp. 26–35.[5] Song, L., Chen, Y., and Evans, J. W., 1997, “Measurements of the Thermal Conductivity of Poly(Ethylene Oxide)-Lithium Salt Electrolytes,” J. Electrochem. Soc., 144(11), pp. 3797–3800.[6] Vishwakarma, V., and Jain, A., 2014, “Measurement of In-Plane Thermal Conductivity and Heat Capacity of Separator in Li-Ion Cells Using a Transient DC Heating Method,” J. Power Sources, 272, pp. 378–385.[7] Yang, Y., Huang, X., Cao, Z., and Chen, G., 2016, “Thermally Conductive Separator With Hierarchical Nano/Microstructures for Improving Thermal Management of Batteries,” Nano Energy, 22, pp. 301–309.[8] Maleki, H., Wang, H., Porter, W., and Hallmark, J., 2014, “Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life,” J. Power Sources, 263, pp. 223–230.[9] Ponnappan, R., and Ravigururajan, T. S., 2004, “Contact Thermal Resistance of Li-Ion Cell Electrode Stack,” J. Power Sources, 129(1), pp. 7–13.[10] Vishwakarma, V., Waghela, C., Wei, Z., Prasher, R., Nagpure, S. C., Li, J., Liu, F., Daniel, C., and Jain, A., 2015, “Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport,” J. Power Sources, 300, pp. 123–131.[11] Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., and Balandin, A. A., 2014, “Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries,” J. Power Sources, 248, pp. 37–43.[12] ASTM E1530 Standard Test Method for Evaluating the Resistance to Thermal Transmission by the Guarded Heat Flow Meter Technique[13] ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[14] ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method[15] ASTM C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus[16] ASTM D5470 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials[17] ISO 22007-2 Plastics — Determination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat ource (hot disc) method[18] ISO 22007-3, Plastics – Determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method.[19] A. J. Angstrom, Ann. Physik Leipzig 114, 513 (1861).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 锂离子电池

    请问哪位高人,锂离子电池电压下降过快的根本原因是什么,该怎样具体解决?

  • 锂离子电池SEI膜的交流阻抗图怎么看

    一般锂离子电池SEI膜在交流阻抗图上体现在第一个半圆,小弟不是很懂,忘大侠赐教是怎样判断第一个半圆是SEI膜,第二个半圆是电荷传递电阻。非常感谢!

  • 电池隔膜的质量控制方法

    随着信息、材料和能源技术的进步,锂离子电池以其高比能量、长循环寿命、无记忆效应、安全可靠以及能快速充放电等优点而成为新型电源技术研究的热点。电池隔膜作为锂离子电池的重要组成部分,在电池中起着防止正、负极短路,同时在充放电过程中提供离子运输通道的作用。其性能的优劣决定了电池的界面结构内阻,进而影响电池的容量、循环性能、充放电电流密度等关键特性。Labthink兰光接下来结合透气性测试仪、智能电子拉力试验机、测厚仪及热缩试验仪对电池隔膜的透气性能、耐穿刺性能、拉伸强度、厚度及热收缩性能检测进行简要的介绍。一、电池隔膜透气性能电池隔膜是指在锂离子电池正极与负极中间的聚合物隔膜,其主要作用有:隔离正、负极并使电池内的电子不能自由穿过;让电解质液中的离子在正负极间自由通过。隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。通常内阻的大小通过其透气率来表征,或者称之为Gurley数,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间。对于相同的电池隔膜,这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。Labthink兰光的BTY-B1P透气性测试仪,采用计算机控制,三测试腔设计,压力差可调,人机交互友好,测试效率高,可满足各种客户对于电池隔膜透气性测试的要求。二、电池隔膜耐穿刺性能及拉伸强度锂电池在使用过程中电池内部会逐渐形成枝状晶体,有可能刺破隔膜,造成内部微短路。在制造过程中由于电极表面涂覆不够平整、电极边缘有毛刺等情况,以及装配过程中工艺水平有限等因素,都要求电池隔膜具有相当的穿刺强度。另外,电池隔膜的拉伸强度也是影响其应用的一个重要因素,如果隔膜在使用过程中破裂,就会发生短路,降低成品率。Labthink兰光的XLW(PC)智能电子拉力试验机,该机具备拉伸强度与变形率、剥离强度,热合强度,撕裂等7项测试功能,并且这些功能均采用菜单式界面,选择相应检测功能,即可执行标准规定的检测。配合专用的测试夹具,还可以对电池隔膜进行刺破性能测试,是目前行业中最为专业的仪器。三、电池隔膜厚度电池隔膜的厚度是否均匀是检测其各项性能的基础。厚度不均匀,会影响到透气率、拉伸强度等性能,对厚度实施高精度控制也是确保质量与控制成本的重要手段。Labthink兰光的CHY-CA测厚仪,采用目前世界测量领域最先进的技术成果,确保测量结果的高精确性,多次测量结果的高度一致性;并且操作调试极其方便,几近于自动化操作,最大限度地减少了人为因素对测量结果带来的影响。该仪器具有手动、自动两种测量模式,对于手动模式测量,可打印输出测量结果;对于自动模式测量,可按照预先设置好的次数自动测试,并对测量结果进行统计、分析、打印输出;接触面积、测量压力、移动速度等严格遵循相关标准的规定。四、电池隔膜热收缩性在电池生产过程中由于电解液对水分非常敏感,大多数厂家会在注液前进行85℃左右的烘烤,要求在这个温度下电池隔膜的尺寸也应该稳定,否则会造成电池在烘烤时,隔膜收缩过大,极片外露造成短路。Labthink兰光的RSY-R2热缩试验仪,采用微电脑控制,PID温度控制,液体加热介质,温度控制精确,受热均匀,用于电池隔膜、热缩管、背板等材料在多种温度下进行热收缩性能及尺寸稳定性的精准测试。当然确保了电池隔膜的透气性能、耐穿刺性能、热收缩性能等指标合格后,还需要对其他的一些指标如浸润度、化学稳定性、孔径及分布、闭孔温度、破膜温度、孔隙率等进行控制,以确保其使用适应性。 以上资料由济南Ulab优班检测提供更多资料www.ulab.cn

  • 锂离子电池

    请问哪位高人,锂离子电池电压下降过快的根本原因是什么,该怎样具体解决?

  • 【资料】锂离子电池电解液

    锂离子电池电解液。PPT 我也不知道放在哪里,就放到这里给大家共享了。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=179575]锂离子电池电解液.pdf[/url]

  • 【讨论】锂离子电池寿命长么

    请教一个生活中的小问题,电动车最新的有锂离子电池的,它的寿命比传统的要长么?除了轻便以外,锂离子电池还有其他优点么?谢谢![em44]

  • 【分享】美国和加拿大对中国产锂离子电池实施召回

    2011年4月19日,美国消费品安全委员会、加拿大卫生部与Datseplots Inc.联合宣布对中国深圳旻君电子有限公司(Shenzhen Minjun Electronic Co. Ltd.)产使用于Magicshine自行车灯的锂离子电池实施自愿性召回。此次被召回的商品为Magicshine Series I和Series II锂离子电池,该电池可随下列产品型号的自行车灯套装出售:Magicshine 900 Lumen(MJ-808)、1400 Lumen(MJ-816)和Tail light(MJ818),也可单独出售。Series I锂离子电池配有尼龙套,Series II锂离子电池配有铝制套。产品型号标在外包装上,“Magicshine”标在Series II锂离子电池的铝制套上。该锂离子电池自2009年6月~2010年11月在美国和加拿大的GeoManGear's网站上销售,单价为40~130美元/块。此次被召回的商品数量约为18100块(其中美国约16600块,加拿大约1500块)。召回原因为,该锂离子电池一过热,有引发火灾的危险。截至目前,Datseplots Inc.在美国已收到3起该电池过热的报告,其中包括1起造成轻微财产损失的火灾事故,尚无人身伤害事故。Datseplots Inc.和加拿大卫生部在加拿大境内尚未收到任何事故报告。为此,美国消费品安全委员会、加拿大卫生部建议消费者立即停止使用被召回的锂离子电池,GeoManGear公司已主动通知了消费者免费更换其他电池,尚未获得通知的消费者可登陆网站www.MagicsshineBatteryRecall.com免费更换电池。更多详情参见:http://www.cpsc.gov/cpscpub/prerel/prhtml11/11734.html

  • 【分享】锂离子电池的负极材料分类介绍

    [font=&]锂离子电池的负极材料主要有碳素材料和非碳材料两大类,已实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球(MCMB)、石油焦、碳纤维、热解树脂碳等,此外,人们也在积极研究开发非碳负极材料。[/font][font=&]1、碳素负极材料[/font][font=&]碳材料根据其结构特性可分成两类:易石墨化碳及难石墨化碳,也就是通常所说的软碳和硬碳材料。通常硬碳的晶粒较小,晶粒取向不规则,密度较小,表面多孔,晶面间距(d002)较大,一般在0.35~0.40nm,而软碳则为0.35nm左右。[/font][font=&]软碳主要有碳纤维、碳微球、石油焦等。软碳主要有碳纤维、碳微球、石油焦等。其中,普通石油焦的比容量较低,约为160 mAhg-1,循环性能较差,对石油焦(国产)等通过改性处理,可使比容量提高到250 mAhg-1,并且具有较好的循环性能。硬碳中主要有树脂碳,有机聚合物(PVA、PVC、PVDF、PAN等)热解碳以及碳黑(如乙炔黑)等。[/font][font=&]与非石墨化碳材料相比,石墨导电性好,结晶度较高,具有良好的层状结构,更适合Li离子的脱/嵌,形成LiC6锂-石墨层间插入化合物Li-GIC。[/font][font=&]石墨材料主要包括人造石墨和天然石墨两大类。人造石墨是将易石墨化碳(软碳)经高温石墨化处理制得。作为锂离子电池负极材料的人造石墨类材料主要有石墨化中间相碳微球、石墨纤维及其他各种石墨化碳等。[/font][font=&]2、非碳负极材料[/font][font=&]含锂过渡金属氮化物是在氮化锂Li3N高离子导体材料(电导率为102cm-1)的研究基础上发展起来的,可分为反CaF2型和Li3N型两种,代表性的材料分别为Li3-xCoxN和Li7MnN4。Li3-xCoxN属于Li3N型结构锂过渡金属氮化物(其通式为Li3-xMxN,M为Co、Ni、Cu等),该材料比容量高,可达到900 mAhg-1,没有不可逆容量,充放电平均电压为0.6V左右,同时也能够与不能提供锂源的正极材料匹配组成电池。[/font][font=&]Li7MnN4属于反CaF2型结构锂过渡金属氮化物(其通式为Li2n-1MNn,M代表过渡金属),比容量较低,约为200 mAhg-1,但循环性能良好,充放电电压平坦,没有不可逆容量,特别是这种材料作为锂离子电池负极时,还可以采用不能提供锂源的正极材料与其匹配组成电池。[/font][font=&]TiS2、MoS2等硫化物也可作锂离子电池的负极材料,可与LiCoO2、LiNiO2、LiMn2O4等4V级正极材料匹配组成电池。这类电池电压较低,如以TiS2为负极,LiCoO2为正极组成电池,电压为2V左右,其循环性能较好,可达到500次。[/font]

  • 锂离子电池集流体

    请教,锂离子电池中使用铜箔作为负极的集流体,铝箔作为正极的集流体,能反着使用吗?如果负极使用铝箔作为集流体,正极使用铜箔作为集流体,会怎样?

  • 【求助】锂离子电池的阻抗测试

    对锂离子电池的阻抗测试,文献中提到在开路电压下,那么是否需要对其施加开路电压大小的偏压呢?使用2273测试,软件中施加偏压中,有一个选项是vs. open voltage,是不是只要钩上就应该是开路电压状态下呢?刚刚上路,希望大家多多指教!谢谢了!

  • Brookfield锂离子电池电解液粘度测量解决方案

    当今社会,锂离子电池已经成为我们生活中必不可缺的部分,平均每个人拥有好几块锂电池,不论是手机,还是笔记本电脑还是数码相机的舞台,也都少不了锂离子电池的身影。1991年锂离子电池问世并商业化生产,锂离子电池以容量大,电压高,循环性能好等优越性能在众电池中脱颖而出,成为最理想最有前途的电池。国内锂离子电池行业市场,锂离子电池主要集中在广东、山东、江苏、浙江、天津等地,广东占总量的60%以上。广东省也主要集中在深圳、东莞、中山等地。 我国为数众多的锂离子电池生产企业中,内资企业约40%,外资和中外合作企业占50%以上。在新能源政策支持下,预计 2015 年锂电池将得到空前的发展,随着其技术的成熟,其在各行各业的运用也将越来越普及,特别是储能产业的应用也将步入人们的视野。锂离子电池-制胜法宝在于材料,测量电解液,有机电解液的选择和优化是开发锂电池的关键技术。涂布,监控粘度以确保涂布均匀性,保证克密度。若粘度太低,则整批浆料都是废料,或者浆料已经发生沉淀,需要分散处理。为确保得到准确可靠的粘度数据,以便更加真实地反应锂离子电解液的特性,为您介绍Brookfield锂离子电池电解液粘度测量的解决方案。推荐方案:Brookfield LVDV-3T+ULA》》测量电解液粘度,可以采用博勒飞Brookfield LVDV-3T+ULA Brookfield DV3T粘度计优势: l测量粘度和屈服应力的一体化工具 l连续感应和显示的高级流变仪 l7英寸全彩色触屏显示 l加强型安全控制:自定义用户使用权限、日期和时间标记文件、流变仪密码锁定功能、流变仪便携式登录设置 l分析屈服应力、流变曲线(混合、泵送、喷涂)流平和恢复等 l可单机编程:输入数据,指定温度,开始运行程序,在流变仪内置显示屏上浏览结果 l RheocalcT软件实现用电脑对整个流变测试过程的控制l2600种转速,流变仪可用于很宽范围的流变分析 l单机模式操作时也可以使用内建的数学模型进行数据处理和分析http://www.sinoinstrument.com/UploadFiles/Image/s2013051010260351485%20(2)_%E5%89%AF%E6%9C%AC.jpg 锂离子电池是新一代的电池桂冠,锂离子电池应用在各行各业,锂离子电池主要的应用方向有便携式电子产品的充电电池、电动工具及电动汽车等。作为有机电解液的选择和优化是开发锂电池的关键技术,电解液的粘度测量,是会影响锂离子电池品质的重要因素。Brookfield提供优质的锂离子电池电解液粘度测量的解决方案。

  • 锂离子电池电解液

    请问大家,用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析锂离子电池电解液时,其精密度,方法重现性,检出限会有要求吗?为什么?

  • 【求助】锂离子电池制作

    制作锂离子电池时,用N-N二甲基乙酰胺溶解的PVDF怎么保存啊。老师说说要防水,但我觉得放在干燥箱中N-N二甲基乙酰胺又会挥发呀。哪位大虾知道这溶液一般放在那比较好。谢谢啦(配置后可能要用半年左右)

  • 【原创大赛】温度对锂离子电池性能的影响

    【原创大赛】温度对锂离子电池性能的影响

    温度对锂离子电池性能的影响一 实验设备及方法1.1 实验设备表1-1 实验仪器和设备http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669046_3137340_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910172496_01_3137340_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910181286_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910181791_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082910182313_01_3137340_3.png 高低温交变湿热试验箱(湿热试验箱):高低温交变湿热试验箱可以设定一定的温度和湿度进行研究样品的性能,也可以研究按设定好的程序进行不同温度和湿度的改变下样品的性能,还可以设定温度变化范围,用以检测一定温度范围内样品的性能。它还能够按照设定定时开关机,并且高低温交变湿热试验箱还有记忆数据的功能,记忆时间能够长达6个月以上,另外还具有保持、跳段、待机以及两组时间信号同时输出的功能。 电池测试系统:电池测试系统是研究电池的重要仪器,它可以用以测试电池的电流、容量、电压、内阻、充放电效率、温度以及循环寿命等性能。它可以同时测试多组电池,这使它的测试效率大大提高。 真空干燥箱:真空干燥箱广泛用于医药、食品、轻工、化工、农业科研、环境保护等实验领域作粉末干燥,烘焙以及各类玻璃容器的消毒和灭菌之用。真空干燥箱具有干燥物品速度快、污染小、不对被干燥物品的内在质量造成破坏的优点。真空干燥箱专为干燥热敏性、易分解、易氧化物质而设计,能够向内部充入惰性气体,特别是一些成分复杂的物品也能进行快速干燥。1.2 实验操作方法样品:钴酸锂锂离子电池(φ6.8mm,容量约120~150mAh,电压3.0~4.2V)参数设定:充电电流-----0.15A 充电截止电压-----4.2V放电电流-----0.15A 放电截止电压-----3.0V 先将样品电池接入电池测试系统,然后使其放在在设定温度状态下的真空干燥或箱高低温交变湿热试验箱中,最后按照一定程序进行充放电循环。首先对电池以0.15A进行恒流充电,当电压达到4.2V时,保持电压恒定进行恒压充电,充电电流会随着时间不断变小,当充电电流为0.01A我们认为充电过程完成;然后将电池搁置一分钟,接着以0.15A的恒定电流放电,这时电池电压会不断减小,当电压小于3V时我们认为放电过程完成。下图1.5为充放循环曲线.http://ng1.17img.cn/bbsfiles/images/2017/10/2016082910194943_01_3137340_3.png二 结果与讨论2.1 不同温度下电池的容量和内阻 将电池放入真空干燥或箱高低温交变湿热试验箱中进行充放电循环,循环次数为5次,计算其平均容量(图2.1)和内阻(图2.2)。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291020_607203_2984502_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608291020_607204_2984502_3.png 由图2.1可以看出,在温度低于25℃时,电池容量随温度的升高逐渐增大,在高于25℃时,电池容量随温度的升高逐渐减小,但电池在低于25℃时容量的变化更快。由图2.2可以看出,在-20℃到60℃温度范围内,电池的内阻随温度的升高而逐渐降低。产生这个现象的原因是由于在高低温条件下,一方面是电池的电极材料及结构发生了部分不可逆的变化,一方面是电解液中的锂离子浓度及传导性发生了的变化。在低于25℃时,锂离子的迁移速率随温度的降低迅速下降,从而使电池的内阻迅速增加,再加上电极材料及结构部分不可逆的变化,并且电解液中的锂离子浓度下降,导致电池低温时的容量迅速下降。在高于25℃时,锂离子的迁移速率随温度的升高迅速上升,从而使电池的内阻下降,但由于电极材料及结构发生了部分不可逆的变化,并且由于温度的升高使电池负极和电解液的反应加速生成SEI膜,进一步消耗了电池中的锂离子,综合影响下,电池的容量下降,但没有低温时下降的那么快。2.2 不同温度下电池的循环 在室温下,将电池接入电池测试系统,按上述步骤设定循环次数为200次,进行充放电循环,得到如下图2.3电池的容量衰减。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291021_607205_2984502_3.png 当电池循环到200次时,其放电容量为124mAh,约为初始容量138mAh的89.86%。 将电池接入电池测试系统,然后放入真空干燥箱,设定温度为60℃,待干燥箱温度稳定后,按上述步骤设定循环次数为200次,进行充放电循环,得到如下图2.4电池的容量衰减。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291022_607206_2984502_3.png 当电池循环到第75次时,其放电容量为101mAh,约为初始容量126mAh的80%,达到了其寿命。 将电池接入电池测试系统,然后放入高低温交变湿热试验箱,设定温度为-20℃,待高低温交变湿热试验箱温度稳定后,按上述步骤设定循环次数为200次,进行充放电循环,得到如图2.5电池的容量衰减。 当电池循环到第55次时,其放电容量为57mAh,约为初始容量71.1mAh的80%,达到了其寿命。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291023_607207_2984502_3.png 由图2.6可知,电池的内阻随循环次数的增加持续增加。 综上所述,温度对锂离子电池寿命的影响很大。在室温下电池循环200次后,容量依然可以达到初始容量的89.86%,而电池在高温下循环75次后,容量便降到了初始容量的80%;在低温时容量的下降速度更快,循环55次后容量便降到了初始容量的80%。 上述结果表明,温度对锂离子电池性能的影响很大。高低温下电池循环性能的影响因素主要有电极材料及结构和Lihttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif的传输性发生了部分不可逆的变化、电池内阻随循环次数的增加持续增大。另外电解液低温时导电性能的迅速下降,引起电池内阻的迅速增加,导致电池在低温时的输出性能变差,高温下电池正极和电解液的反应加速生成更多的SEI膜,使电池中的锂离子含量下降,导致电池循环性能变差。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291023_607209_2984502_3.png由图可以看出电池在不同温度下的充放电效率都很高,基本上都接近于1。[/colo

  • 【讨论】2009年锂离子电池实现飞跃

    【讨论】2009年锂离子电池实现飞跃

    09年锂离子电池实现飞跃(一):全球主要厂商纷纷采用 富士重工业在2007年秋季举行的东京车展上展出的5座EV概念车“G4e CONCEPT”。配备锂离子充电电池,持续行驶距离的目标为200km。 [img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902230916_134698_1604910_3.jpg[/img]图1:日产汽车将于2010年上市HEV。(a)HEV用变速箱,(b)锂离子充电电池模块。   2009年车载锂离子充电电池市场将正式形成。这是因为日本及海外汽车厂商纷纷开始在乘用车上采用锂离子充电电池。在日本国内厂商中,丰田汽车、富士重工业、三菱汽车已经决定采用,而在欧美,戴姆勒也表示采用。另外,日产汽车、德国奥迪、美国通用汽车也准备在2010年采用。   决定混合动力车(HEV)及电动汽车(EV)的性能最为最重要的充电电池将发生巨变。原因是丰田汽车、日产汽车等日本顶级厂商将在2009年以后相继推出配备锂离子充电电池的车型。   对象涉及HEV、EV、插电式混合动力车(PHEV)等多个领域。丰田表示,将从2009年开始在子公司——松下EV能源小批量生产用于PHEV的锂离子充电电池,2010年开始正式量产。   2000年在“Tino Hybrid”款式上率先配备锂离子充电电池的日产也将于2010年量产配备锂离子充电电池的HEV和EV。HEV预定为后轮驱动车,目前已经公开了变速箱以及横置配备在行李舱内的锂离子充电电池(图1)。该电池将由日产与NEC、NEC东金合资成立的Automotive Energy Supply(AESC)提供。   除丰田、日产以外,其他主要厂商也将陆续采用锂离子充电电池(图2)。富士重工业预定2009年量产以“Plugin Stella Concept”为原型的EV,该车将与日产一样,采用AESC制造的电池。另外,三菱汽车也将采购与GS Yuasa Corporation(GS汤浅)等合资的Lithium Energy Japan(LEJ)制造的电池,于2009年开始量产EV“i MiEV”。   本田计划2009年追加HEV新车型,并于2010年在“飞度”中追加HEV款式,只是目前尚未表明在普通HEV上采用锂离子充电电池。但是,该公司于2008年11月在日本国内开始租售的燃料电池混合动力车“FCX Clarity”配备了锂离子充电电池,替换了此前一直使用的电容器。   在海外厂商中,大众集团旗下的德国奥迪预定于2010年上市HEV,其中的锂离子充电池将由三洋电机从2009年开始量产。而美国通用汽车决定于2010年上市的HEV中,锂离子充电电池也将由日立车辆能源(Hitachi Vehicle Energy)从2009年底开始量产。(未完待续,记者:林 达彦)

  • 锂离子电池用3电极电解池设计求助

    各位虫友: 在此请教各位,有谁在做3电极电解池,应用于锂离子电池材料方面的,要求:1、3个电极;2、好的密封性能;3、不锈钢主体结合铁氟龙内衬制作出来的......... 有哪位大侠知道谁在做这块制作,或者设计的厂家,麻烦告诉下联系方式!非常感谢!

  • 【分享】铅酸电池,镍铬电池和锂离子电池有什么区别

    电池的分类有不同的方法其分类方法大体上可分为三大类 第一类:按电解液种类划分包括:碱性电池,电解质主要以氢氧化钾水溶液为主的电池,如:碱性锌锰电池(俗称碱锰电池或碱性电池)、镉镍电池、氢镍电池等;酸性电池,主要以硫酸水溶液为介质,如铅酸蓄电池;中性电池,以盐溶液为介质,如锌锰干电池(有的消费者也称之为酸性电池)、海水激活电池等;有机电解液电池,主要以有机溶液为介质的电池,如锂电池、锂离子电池待。 第二类:按工作性质和贮存方式划分包括:一次电池,又称原电池,即不能再充电的电池,如锌锰干电池、锂原电池等;二次电池,即可充电电池,如氢镍电池、锂离子电池、镉镍电池等;蓄电池习惯上指铅酸蓄电池,也是二次电池;燃料电池,即活性材料在电池工作时才连续不断地 从外部加入电池,如氢氧燃料电池等;贮备电池,即电池贮存时不直接接触电解液,直到电池使用时,才加入电解液,如镁-氯化银电池又称海水激活电池等。 第三类:按电池所用正、负有为材料划分包括:锌系列电池,如锌锰电池、锌银电池等;镍系列电池,如镉镍电池、氢镍电池等;铅系列电池,如铅酸电池等;锂系列电池、锂镁电池;二氧化锰系列电池,如锌锰电池、碱锰电池等;空气(氧气)系列电池,如锌空电池等 充电电池定义 充电电池又称:蓄电池、二次电池,是可以反复充电使用的电池。常见的有:铅酸电池(用于汽车时,俗称“电瓶”)、镉镍电池、氢镍电池、锂离子电池。 电池的额定容量 电池的额定容量指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量。单位有Ah, mAh (1Ah=1000mAh) 电池的清洁 为了避免电量流失的问题发生,您要保持电池两端的接触点和电池盖子的内部干净。如果表面很脏的话要使用柔软、清洁的干布轻轻地拂拭,绝不能使用清洁性或是化学性等具有溶解性的清洁剂,例如稀释剂或是含有酒精成分的溶剂清洁您的数码摄像机、电池或是充电器。 电池的充电 对于充电时间,则取决于所用充电器和电池,以及使用电压是否稳定等因素。通常情况下给第一次使用的电池(或好几个月没有用过的电池)充电,锂电池的一定要超过6小时,镍氢电池则一定要超过14小时,否则日后电池寿命会较短。而且电池还有残余电量时,尽量不要重复充电,以确保电池寿命。 电池的使用 使用过程中要避免出现过放电情况。过放电就是一次消耗电能超过限度。否则即使再充电,其容量也不能完全恢复,对于电池是一种损伤。由于过放电会导致电池充电效率变坏,容量降低,为此摄录机均设有电池报警功能。所以在出现此类情况时应及时更换电池,尽量不要让电池耗尽而使摄录机自动关机。 电池的保存 如果您打算长时间不使用数码摄像机时,必须要将电池从数码摄像机中或是充电器内取出,并将其完全放电,然后存放在干燥、阴凉的环境,而且尽量避免将电池与一般的金属物品存放在一起。为了避免电池发生短路问题,在电池不用时,应以保护盖将其保存

  • 【原创】锂离子电池正极材料磷酸铁锂发展分析

    电动汽车行业发展可为风起云涌,而车用动力电池作为其中的重要组成部分,已经引起学术界、投资界和产业界的高度关注。目前,已经在各种车辆上实现应用的电池种类主要有铅酸电池、镍氢电池与锂离子电池3种,由于铅酸电池污染大、克容量小,其成本优势不足以抵消其劣势,故在车辆动力方面至今仅在小型电动自行车等领域得以应用;镍氢电池现为混合动力汽车领域应用的主要产品,其制造工艺成熟,购置和使用成本较低,故而在短期内仍将是混合动力汽车的首选,但其自放电率高、比能量较小,记忆效应和充电发热等方面的问题直接影响到该电池的使用,这些缺点的存在使镍氢电池可能只是作为过度产品存在;锂离子电池是90年代发展起来的高容量可充电电池,能够比镍氢电池存储更多的能量,比能量大、循环寿命长、自放电率小、无记忆效应,能够满足对体积、寿命、功率等要求较高的乘用车方面的需求,已成为今后纯电动汽车应用的理想产品。锂离子电池的正极材料种类较多,主要品种有钴酸锂、锰酸锂、镍锰钴三元材料及磷酸铁锂等,其中钴酸锂是现有正极材料中工业化程度最高、技术最成熟、产量最大的品种,主要用于手机、数码产品等小型电池领域,但由于原材料钴和镍金属的价格高昂,污染较重,且电池在大型化后,会有过热着火或爆炸的危险。故相对而言,正极材料为锰酸钾、三元材料和磷酸铁锂的锂离子电池安全性能更好,成本更为低廉,所以目前产业的投入主要集中于这几种材料之上。其中,磷酸铁锂由于具有另外两种材料所不具备的循环寿命和材料成本方面的潜在优势,而被业界普遍看好,代表着动力电池正极材料的未来发展方向。国际上主要的磷酸铁锂电池材料生产厂商有加拿大Phostech、美国Valencn、美国A123、台湾地区的台塑长圆能源科技、立凯等,其中,前3家企业掌握着较为成熟的量产技术。2008年全球磷酸铁锂出货量为1500吨左右,其中美国A123公司供应750吨,几乎占了一半的份额,国内厂商供应量只有几百吨,2009年全球磷酸铁锂出货量约为1600吨,2010年全球磷酸铁锂出货量为1370吨左右。据悉,目前国内磷酸铁锂正极材料厂商超过60家,实现批量生产的企业接近20家,呈现“诸侯混战”的局面。从公开资料统计来看,全国磷酸铁锂总产能约6400吨/年,但实际产量远低于产能(不足产能的1/10)。总体来说,我国磷酸铁锂的产业化发展与国际基本同步,目前国内部分产品的成本比国外同类产品要低,在性能、单位产能方面的差异并非遥不可及,但也该冷静的看到,国内目前尚未诞生真正的领军企业,行业缺乏原始创新技术,低端跟风模仿风气较盛,整体来看,磷酸铁锂材料行业处于产业化临界点之下。未来随着磷酸铁锂生产技术的不断完善,其市场前景依然为产业界所看好,除电动汽车、自行车、代步车和电动工具市场外,磷酸铁锂电池在风电、太阳能发电储能装置,矿灯电源和植入性医疗器械领域也有着广泛的应用前景。通过静态测算可以得出结论,磷酸铁锂电池在未来5-7年内,若根据10%-20%的产品渗透率计算,国内仅仅在电动汽车、电动工具、电动自行车和电动代步车这4个领域就拥有大约150亿元的市场规模,其中磷酸铁锂材料本身占到电池成本的30%左右,对应约45亿元的市场规模,年需求量可望达到3万吨。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制