当前位置: 仪器信息网 > 行业主题 > >

锂离子电池三元材料

仪器信息网锂离子电池三元材料专题为您整合锂离子电池三元材料相关的最新文章,在锂离子电池三元材料专题,您不仅可以免费浏览锂离子电池三元材料的资讯, 同时您还可以浏览锂离子电池三元材料的相关资料、解决方案,参与社区锂离子电池三元材料话题讨论。

锂离子电池三元材料相关的资讯

  • 大容量9系三元锂离子电池热失控测试
    前言9系超高镍三元锂离子电池是指正极材料元素比值为Ni:Co:Mn=9:0.5:0.5的三元锂离子电池,作为短期内已经将锂电池正极材料的潜力发挥到最大的方案,9系锂电池的理论能量密度甚至超过了300Wh/kg。由于9系锂电池具有超高的能量密度,受到了致力于提高新能源汽车续航里程的主机厂的密切关注。但高能量密度伴随着潜在的高危险性,因此获得9系电池的热失控特征参数尤为重要,但是9系锂电池的热失控过程非常剧烈,有较大概率会损伤仪器,因此9系锂电池的绝热热失控实验数据十分缺乏,电池热管理设计也缺少实验数据的支撑。本文利用杭州仰仪科技有限公司BAC-420A大型电池绝热量热仪进行了130Ah的9系NCM超高镍锂离子电池的绝热热失控测试,获得该电池热失控过程的相关热力学特征参数等信息。相关结果有助于帮助研究人员明确9系电池的热失控危害性,优化电池安全设计。实验部分1.样品准备实验样品:130Ah 9系NCM锂离子电池*1,260mm*100mm*25mm,100%SOC。2.实验条件实验仪器:杭州仰仪科技BAC-420A大型电池绝热量热仪;工作模式:HWS模式、温差基线模式;标准铝块:6061铝合金材质。图1 BAC-420A大型电池绝热量热仪3.实验过程3.1 温差基线校正:利用与电池大小形状一致的标准铝块进行温差基线模式实验,对热电偶及仪器进行校正;3.2 标准铝块HWS实验:利用标准铝块进行HWS模式实验,验证温差基线校正的效果及实验过程中仪器的绝热性能;3.3 电池HWS实验:为了防止9系电池热失控损坏炉腔,因此在电池外部增加了如图2所示的金属网防护罩,以HWS模式进行绝热热失控实验;图2 9系电池实验安装示意图及实物照片3.4 标准铝块HWS实验:电池HWS实验结束后,用标准铝块重新进行HWS验证实验,用于验证热失控后仪器功能是否正常及传感器漂移程度。实验结果图3 电池绝热热失控(a)温度-压力曲线及(b)温升速率-温度曲线如图3(a)所示,电池在82.68℃下的自放热温升速率达到了0.02℃/min的Tonset检测阈值;在131.67℃达到泄压温度Tv,泄压阀打开;随后在169.49℃达到热失控起始温度TTR (60℃/min),电池发生热失控,数秒内温度快速升高至约1090℃,最大温升速率(dT/dt)max超过40000℃/min。并且通过图4所示的抗爆箱内外部的监控画面,可以发现电池的热失控过程十分剧烈,在极短的时间内喷射出强烈的射流火及大量浓烟,同时瞬间产生的高温高压气流对实验室墙面产生了一定的冲击作用。图4 (a)防爆箱内部视频及(b)防爆箱外部视频图5 电池残骸照片通过观察电池残骸可以发现,泄压阀位置完全崩裂,同时电池残骸基本仅剩外部铝壳,内部电池材料几乎全部从泄压口喷出,热失控后电池的质量损失率达到了85.97%,也侧面表明了9系电芯的热失控剧烈程度。图6 电池热失控前(a)后(b)铝块HWS模式实验曲线在电池实验前,通过标准铝块的HWS实验验证了仪器良好的绝热性能,如图6(a),每个温度台阶铝块的温升速率均小于±0.002℃/min;电池测试后,为了确认仪器能否在承受9系锂电池的剧烈爆炸后仍然能正常使用,重新进行一次标准铝块的HWS实验。通过图6(b)可以发现,实验过程中仪器运行良好,并且每一个台阶的温升速率均低于±0.002℃/min,绝热性能依然优异,说明仪器功能完好,同时传感器未出现明显漂移。结论大容量9系超高镍NCM锂电池绝热热失控的剧烈程度高,实验室应具备足够的泄压泄爆面积(建议50平米以上),同时实验室墙面应进行加固。仰仪科技BAC-420A大型电池绝热量热仪具有优异的耐压和抗爆性,能够承受大容量超高比能电芯的热失控爆炸冲击。
  • 动力锂离子电池系列一:正极材料解决方案
    近几年全球各国对“清洁排放”的追求,使新能源汽车获得了高速的发展,由此带动了锂离子电池的飞速发展。2019年诺贝尔化学奖更是颁给从事锂离子电池研究的三位科学家——美国科学家约翰古迪纳夫、英裔美国科学家斯坦利惠廷厄姆与日本科学家吉野彰。 当前的动力锂离子电池包含多种关键性材料,无论是圆柱形、方形还是软包电池,其结构组成均与下图类似。其中正极材料无论是成本还是分析项目,都占有最高的比重。 根据材料的不同,可将锂离子电池分为钴酸锂、锰酸锂、磷酸铁锂、镍钴锰(三元)型等,目前商品化的动力锂电池主要以磷酸铁锂和三元为主。 本系列将从动力锂电池的正极、负极、隔离膜、电解液的检测以及电池电芯的失效分析等五个维度全面解析岛津的完整解决方案与特色的应用。 正极材料的完整解决方案 岛津具备多种表征及测试设备,可帮助正极材料企业及电池企业应对各种生产、质量控制及研发的测试需求。 特色应用1、 聚集体、异物的检测正极材料,无论是磷酸铁锂还是NCM、NCA等三元材料,在材料企业的生产过程中或者电池企业的使用过程中,不可避免地存在着聚集体或者外来的异物。这些异物的存在,对后续电池的性能、安全可能造成潜在的巨大危害。异物的检测有多种手段,但无论是电子显微镜还是X-Ray等其他的方式,都有着成本过高不能较好地适应环境多变的生产现场的缺点。 岛津在2019年推出的新产品——动态颗粒图像分析系统iSpect DIA-10,其使用和维护的成本低,仪器灵敏度高且操作简单便捷,同时又具备皮实耐用等特点,尤其适合产线上用于测试三元正极材料的聚集体、异物等分析。 2、 元素含量的检测及其分布的表征电子探针显微分析仪EPMA作为有效的分析工具,广泛应用于锂离子电池各种材料的研发、制造工序的质量管理、不良解析等方面。岛津的电子探针显微分析仪EPMA-8050G具备卓越的空间分辨率、高灵敏度及高分辨率等特点,特别是针对超轻质量数元素(可低至4Be)具有优秀的检出能力。这些突出的特点,收获了众多正极材料制造商的认可。以下的案例是使用EPMA-8050G表征正极截面活性物质、粘合剂、导电助剂及电解质的分布。 正极截面整体的元素面分析(Al:集流体;Mn+O:活性物质;F+P:电解质支撑盐;C+F:粘合剂;C:导电助剂)正极截面放大后活性物质的元素面分析 3、 颗粒物抗压能力与性能关系的评价当前的正极材料,无论是磷酸铁锂还是NCM/NCA等三元材料,主流的方法都是高温固相合成法,为了达到更佳的性能,一般来说正极材料都是具有多孔的结构。但孔隙率也是需要控制的,否则会造成材料结构过于疏松从而在充放电循环当中容易坍塌。 岛津独特的微小压缩试验机(MCT)可针对单个颗粒进行抗压和回弹能力学性能的测试。另外该仪器可选配电阻测量组件及温度控制系统,因此除获得粒子的力学性能之外,还可以同时获得颗粒的电阻-压缩率关系、温度-压缩率关系等丰富的信息。结合BET、SEM、激光粒度仪等手段,可使获得的正极材料颗粒物兼具更佳的性能和稳定性。
  • AI助力新能源分析: 锂离子电池材料显微智能分析方案
    随着我国新能源汽车产业的规模越来越大,对动力锂电池的需求,也逐步增加。电动汽车的主要能量源是动力电池,其发展和应用在很大程度上受动力电池性能影响。锂离子电池发展至今,凭借其高电压、高能量密度、良好的循环性能和绿色环保等优势成为在新能源应用中广泛的化学储能器件之一。图1:锂离子电池的组成示意图 锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。随着对锂离子电池的研究不断深入,电池工业界正在迅速向更高能量密度和更低成本的电池技术努力,以达成零碳排放的目标。 但是目前在锂电池使用或储存过程中仍会出现一定概率的失效,一类是锂离子电池的材料自身缺陷引起的失效,例如正负极的结构衰退,电解液分解,隔膜的老化等;另一类是锂离子电池使用及存储环境引起的失效,例如环境温度过高,充放电过快,过度充放等,都严重降低了锂电池的使用性能、一致性、可靠性和安全性。图2:锂离子电池失效模式 虽然产品的诞生伴随着失效,但只要充分了解失效原因,掌握分析失效的方法和利器,就能从根本上找到并解决失效问题。对于锂电池来说,其失效归根结底是材料的失效。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎;硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化;隔膜孔隙阻塞等。电池性能和电池材料性质有着息息相关的关系,准确把握材料的特性,是解决电池问题并提升电池性能的重要途径之一。 软件特点简介 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”LIBMAS—锂离子电池材料显微智能分析系统”(以下简称LIBMAS),将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 针对传统软件自动化程度不足,操作复杂的弊端,汇鸿智能科技可为客户量身定制专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、二次颗粒分布均匀性、开裂球识别、截面孔隙统计、隔膜材料孔隙分析等锂电池材料分析。 应用案例0101开裂球、截面孔隙识别 通常在制备三元正极材料时,采用共沉淀法使亚微米一次粒子致密堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图1:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图1。 在锂电池中,锂离子在正极晶格中反复脱嵌,随着电流密度和颗粒尺寸的增加,仅仅几个循环就出现晶间裂纹。而产生的裂纹对电池性能、SOC、以及锂离子传输路径都会有一定影响。图2:二次球截面孔隙识别 正极颗粒内部通常为二次球颗粒形成的多晶结构,导致正极晶格在循环中容易发生各向异性体积变化,而产生孔隙。我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图2。使用LIBMAS对截面孔隙进行识别,以轮廓中心点为圆心画出同心圆,以各同心圆圆环内的孔隙率计算同心圆孔隙率RSD,见图3。 图3:二次球截面孔隙率统计及RSD计算 0202团聚颗粒识别 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的粒径在几个到十几个微米之间的二次颗粒。图4:一次颗粒团聚形成的二次球颗粒识别 通常团聚体颗粒内部较为密实,一次粒子之间连接处存在晶界。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图4、图5。图5:软件自动区分团聚颗粒及团聚颗粒截面 相对于单独的纳米粒子,这种形貌的团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。 然而在团聚体反复的充放电过程中,团聚体内部也反复经受一次颗粒体积变化产生的应力冲击,容易在一次颗粒之间的晶界处发生破碎。破碎后的颗粒不仅增大了活性物质的比表面积,进而加剧了活性物质和电解液之间的副反应。而且破碎后的一次粒子之间失去了有效的电接触,也进一步增加了电极材料的阻抗,不利于循环性能的保持。 03单晶颗粒识别图6:单晶颗粒的识别 团聚体的破碎受多种因素影响。减小体积变化程度可以减小应力应变对团聚体的损伤;另外,从前驱体和烧结工艺入手以尽可能增强烧成的团聚体颗粒内部密实度,增强一次粒子之间的结合力,从而提高团聚体颗粒抗破碎的能力。 另外,相比易产生颗粒粉碎的多晶正极材料,许多研究已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图6、7。 图7:单晶颗粒尺寸统计及分布图 04大小二次球识别 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图8、9。图9:大小二次球颗粒分布均匀性统计05隔膜孔隙率统计 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实,隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图10:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图10、11。 图11:隔膜孔隙率统计结果及孔隙面积分布图 针对锂电行业的特殊需求,汇鸿智能科技开发了一整套智能化锂离子电池材料分析系统。汇鸿智能科技公司是一家国际前沿微观AI图像分析生态平台开发公司,以“AI 即专家”为使命, 驱动AI技术,加速实验室智能化升级,构建实验室全场景智慧,为工业分析和质量控制赋能。
  • 【热点应用】WDXRF分析锂离子电池正极材料
    在上一篇《EDXRF分析离子电池正极材料》文章中,我们简单介绍了正极材料中元素定量分析的几种不同分析手段,并指出XRF技术对比ICP等元素技术的优势所在。那么作为XRF技术的另一大分支:波长色散型X射线荧光光谱WDXRF,应用于锂离子电池正极材料元素定量分析又与EDXRF有何不同呢?我们今天就通过马尔文帕纳科Zetium型WDXRF分析正极材料的元素定量结果来进行对比实验。在上一篇文章中我们着重介绍了EDXRF用于锂离子电池正极材料元素分析的应用,其中展示了EDXRF用于锂离子电池正极材料元素分析中的工作曲线、准确度比对、重复性以及与ICP相对比的稳定性以及准确度。波长色散 (WDXRF)与能量色散(EDXRF)作为XRF分析技术的两大分支,由于两者探测系统区别,使其在仪器设计方面有比较大的差异,进而决定了其在应用场景和分析上有各自的适用性。相对于EDXRF ,WDXRF光谱仪配有一整套由准直器和分光晶体组成的分光系统,因此其检出限更低,稳定性和测量范围都更具有优势。它不但可以分析正极材料,还可以用于包括锂电材料中的添加剂、上游矿产、以及相关的有色金属冶炼等领域的分析,可为涉及锂电材料上下游的生产型企业提供更大的投资回报。作为世界领先的X射线分析技术供应商,马尔文帕纳科的多代WDXRF光谱仪在业界享有盛誉。其于2015年推出的最新一代XRF光谱仪Zetium搭配了SumXcore(即多核X射线分析技术)、SDD探测器以及更加智能化的SuperQ软件,实现了更低的检出限(见表格),更快的分析速度以及更优异的稳定性。元素检出限(μg/g)测定下线(μg/g)Co1.44.2Cu1.23.6Mn4.513.5Ni1.23.6P6.018.0S10.030.0Ti5.015.0Zn1.64.8Zr0.92.9锂电正极材料元素检出限(Zetium光谱仪)WDXRF在锂电行业正极材料中的应用除了极低的检出下限之外,Zeitum 还具有更宽的分析范围,分析元素范围可从Be到Am。Zetium 光谱仪的元素检测范围除此之外,在实际使用过程当中,仪器的稳定性也备受关注。本实验进行了一系列的应用案例验证,展示了WDXRF在分析主量和添加元素的稳定性。01应用实例一 磷酸铁锂(LFP)粉末实验分析为了评估LFP材料应用,本实验采用熔融制样方式,主要针对Fe2O3(35-65%)、P2O5(35-55%)两种主量元素进行定量分析实验方案设计。获得的工作曲线线性相关系数均在0.999以上,后续的实验验证数据也表现出了优异的稳定性。Zetium实验获得的工作曲线先行相关系数均在0.999以上本实验同时使用了EDXRF与WDXRF对LFP粉末中Fe和P元素进行测试以及制样重复性试验,两者均表现出优异的结果稳定性,RMS均小于0.15%。与EDXRF稳定性对比实验02应用实例二NCM三元材料实验分析为了验证WDXRF应用于锂电材料添加剂的分析性能,本实验同时对NCM三元材料Ni(20-60%)、Co(10-30%)、Mn(10-45%)三种主量元素以及W(0-0.07%)、Zr(0-0.07%)两种微量元素进行实验方案设计,并且通过熔融片和压片两种不同的制样方式验证了三种主量元素的测量重复性以及重新制样的重复性。Zetium 光谱仪测量三种主量元素和两种微量元素的工作曲线下图为测量重复性和制样重复性的数据,在制样重复性方面:熔融片数据RMS在0.12-0.15左右,压片数据RMS在0.34-0.42左右,实验表明熔融制样可以获得更优异的制样稳定性。在测量重复性方面:无论是熔融片还是压片数据的RMS均小于0.01,说明了Zetium光谱仪卓越的仪器稳定性。测量重复性和制样重复性实验(左侧为玻璃熔珠,右侧为压片)✓ 结论综上所述,马尔文帕纳科波长色散型X射线荧光光谱仪Zetium 和能量色散荧光光谱仪相比,具有更低的检出下限,更广的适应性。针对正极材料不同的配方,尤其是对微量元素的定量有更好的稳定性。结合上篇“ED-XRF用于锂离子正极材料元素分析”中EDXRF与ICP分析方法的结果稳定性对比,可以证明采用WDXRF技术的 Zetium光谱仪相比ICP分析技术,同样具有更快的分析速度和更优异的稳定性。关于Zetium X射线荧光光谱仪Zetium是极为成功的PW2400,MagiX, Axios等系列WDXRF光谱仪产品的集大成者,通过继承成熟技术并进行不断改进,创新的SumXcore(即多核X射线分析技术),提供优异的灵活性、高性能和多功能性。光谱分析将测量时间缩短至50%,较传统WDXRF更快获取目标精度以及元素的最低检出限。
  • 【热点应用】ED-XRF分析锂离子电池正极材料
    锂离子电池正极材料的容量和能量密度对电池的性能起着关键作用。而在正极材料的三元层状结构中,元素配比对材料的性能具有至关重要的影响,因此对正极材料中各种元素的准确定量是电池研发生产关键技术之一。 使用何种分析手段去定量正极材料中的元素?要考虑诸多因素,除了检测速度、准确度、仪器稳定性等常见评价指标外,实验室安全和环保成本,样品前处理是否简单?检验设备的易用性以及最小化人为误差也是研发和生产质量控制中的不可忽视的问题。 目前,常用的锂电池正极材料元素定量手段包括ICP-OES、ICP-MS、AAS以及XRF。 因正极材料样品均质化的要求,ICP以及AAS需要液体进样,所以样品需要加入硝酸进行酸煮或微波消解成为液体。而这种前处理方法一方面存在消解不完全的情况,另一方面,废酸的处理也增加了实验室安全以及环保成本。此外,ICP方法只能分析痕量元素,所以样品需要较大的稀释倍数才能进样,这样也就带来了较大的稀释误差。 这些检测问题该如何解决呢?我们来看看X射线荧光光谱法(XRF)检测锂离子电池正极材料的几点优势: 相对而言,XRF与ICP相比可以直接进样,不需要复杂的前处理步骤,检测速度快。且样品制备简单:对于固体即可使用松散粉末直接进行测试,也可简单压片或进行玻璃熔珠测试;对于液体样品,更可以使用液体杯直接原样测试。 另一方面,XRF内部无复杂管路,光路简单,不会产生污染以及堵塞风险,检测浓度可以从ppm级至100%,对于正极材料而言,无论样品中的主量元素还是微量元素都能够进行准确定量,满足生产控制检测需求。 EDXRF在锂电行业正极材料中的应用 正如上文所述,在实际生产过程中,正极材料因为掺杂或者碳包覆,其他检测方法受制于常规酸很难消解样品,无法实现准确且稳定地测量。因此,X射线荧光光谱技术(XRF)越来越多地被锂电行业所接受并逐步应用。 近些年,快速发展的能量色散X射线荧光光谱(EDXRF)技术作为XRF技术的前沿分支,以其体积紧凑、使用方便等优势得到了许多行业检测用户的认可。但在锂电行业还未得到广泛应用,究其主要原因,是由于普通能谱仪的检测性能在缺乏标准品的情况下,无法满足某些元素准确定量的检测需求。 马尔文帕纳科作为X射线分析仪器的主要供应商,具有超过70年的行业经验。在XRF产品的设计以及制造方面有丰富的经验和独特的技术。其推出的高性能台式能谱仪 Epsilon4,装配了动态高通量X射线管、大面积高分辨SSD探测器和超高计数电路及全功能算法软件。其光路采用紧凑设计,可以获取最高的信号灵敏度和更快的响应速度,充分满足正极材料主量以及微量元素的测试需求。 应用实例一:前驱体溶液实验分析主要针对Ni(0-120g/L)、Co(0-120g/L)、Mn(0-120g/L)三种主量元素,Epsilon4 台式能谱仪拟合曲线相关系数均在0.9999以上。其工作曲线如下:与ICP稳定性对比实验,Epsilon4 台式能谱仪对前驱体容量进行多次测量,稳定性以及精密度均优于ICP。应用实例二:NCM三元材料实验分析该实验是通过Epsilon4台式能谱仪针对NCM三元材料Ni(15-70%)、Co(5-30%)、Mn(5-30%)三种主量元素,采用压片和玻璃熔珠两种不同的制样方法进行重复性测试,Epsilon4 台式能谱仪拟合曲线相关系数均在0.9999以上。实验中,分别对三元材料的主量元素平行测试了10次,可以看到不论玻璃熔珠还是压片的数据,其重复性RMS均小于0.01。综上所述,马尔文帕纳科Epsilon4 台式能谱仪分析速度快、准确度高。与ICP对比具有更优异的精密度以及稳定性。针对正极材料不同的配方还配有具体的定制方案,是锂电行业正极材料元素分析检测值得信赖的工具。 马尔文帕纳科波长色散X射线荧光光谱仪因其强大的分析能力,除了满足常规元素日常分析工作外,同样可应用于锂例子电池正极材料中的元素定量分析,且针对LiFePO4、NCM主量以及添加元素检测均有具体的应用解决方案,我们将在下一篇推文“WD-XRF用于锂离子电池正极材料分析”中具体介绍,敬请期待。
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 欧波同锂离子电池显微智能分析解决方案
    锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。 欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。 一、锂离子电池材料显微智能分析系统(LIBMAS) 锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。 图一:汇鸿锂离子电池显微智能分析系统 针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。 1)识别: 通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。 图二:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。 正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。 图三:二次球截面孔隙识别2)团聚体颗粒识别: 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在短时间内快速获得标准化的统计结果,如图四。 图四:一次颗粒团聚形成的二次球颗粒识别 电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。 图五:软件自动区分团聚颗粒及团聚颗粒截面 3)单晶颗粒识别: 相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。 图六:单晶颗粒的识别 4)大小二次球识别: 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图七。图七:大小二次球颗粒分布均匀性识别和统计 5)隔膜孔隙率统计: 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。 图八:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。 二、锂离子电池异物分析系统(LIBIAS) 目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe 图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象 针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。 图四:颗粒类型占比饼状图(左),三元统计相图(右) 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757.[2] https://doi.org/10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] https://www.science.org/doi/abs/10.1126/science.abc3167.[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46( 14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168. 作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 负极材料粒度分布对锂离子电池性能的影响
    负极材料作为锂离子电池的核心材料,对锂离子电池的能量密度、充放电性能、循环性能、生产工艺等起着至关重要的作用。负极材料的主要技术指标包括粒度、比表面积、振实密度、真密度、灰分、pH值等。其中,粒度分布作为负极材料的重要技术指标,它还影响比表面积和振实密度,从而影响锂离子电池的生产工艺和综合性能。一、粒度分布对锂离子电池性能的影响负极材料的粒度分布主要从以下几个方面影响锂离子电池的生产工艺和性能:1、粒度分布影响体积能量密度负极材料的颗粒大小应当具有合适的粒度分布,体系中的小颗粒能够填充在大颗粒的空隙中,有助于增加极片的压实密度,从而提高电池的体积能量密度。2、粒度分布影响充放电性能负极材料的颗粒越小,锂离子嵌入时所需要克服的范德华力也就越小,嵌入越容易进行,而且颗粒越小,锂离子嵌入和脱出的通道越短,越有利于快速达到充分嵌锂状态,从而具有更好的充放电性能。3、粒度分布影响循环性能实验表明,颗粒越小的石墨负极有较大的初次容量,但不可逆容量也较大;随着粒径增大,初次充放电容量降低,不可逆容量减少。同时,石墨颗粒越小,与电解液接触的比表面积越大,初次充放电过程中形成的SEI膜所消耗的电荷就越多,不可逆容量损失也就越大。因此,合理的粒度分布不仅能够提升锂离子电池的初次容量和初次效率,而且能够提升锂离子电池的循环性能。4、粒度分布影响生产工艺负极材料的粒度分布会直接影响电池的制浆和涂布工艺。在相同的体积填充份数情况下,材料的粒径越大,粒度分布越宽,浆料的黏度就越小,这有利于提高固含量,减小涂布难度。颗粒的粒径以及分布宽度对浆料黏度的影响二、负极材料对粒度的要求在负极材料相关的标准中,对材料颗粒的粒度分布提出明确的要求,具体如下:三、欧美克高性能激光粒度分析仪如何满足锂离子电池材料粒度检测要求负极材料的研发、生产及来料检验普遍采用激光粒度分析仪进行粒度检测,选择高性能的激光粒度仪是获得准确粒度分布信息的重要保证。对于一款高性能的激光粒度分析仪,往往采用合理的光学结构、高性能的光电元器件以及科学的反演模型,从而体现出良好的重复性、重现性、真实性、分辨率等测试性能。珠海欧美克仪器有限公司从1993年开始从事激光粒度分析仪的研发、生产和应用,积累了丰富的激光粒度分析仪研发、生产和应用经验。从1999年开始,欧美克激光粒度分析仪系列产品在锂离子电池研发、生产领域逐步获得行业认可。下面,从几个小案例管中窥豹,看看欧美克如何匠心智造每一款产品,又是如何站在行业应用的角度为用户提供粒度解决方案的。1、大角散射光的球面接收技术(DAS)的应用确保散射光能信息的准确获取对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光能信息都准确地聚焦获取。以欧美克LS-609型激光粒度分析仪为例,在散射光能探测器的设计时,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式放置在与其散射角相对应的傅立叶透镜焦点位置,保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。大角散射光的球面接收技术(DAS)2、优良的测试性能准确反映出测试样品的细微差别(1)Topsizer对粉体材料的大、小颗粒具有高超的分辨能力欧美克Topsizer激光粒度分析仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。下图是应用欧美克Topsizer激光粒度仪对D50为0.1μm左右的超细隔膜材料氧化铝的粒度测试粒度分布图。(2)LS-609激光粒度仪具有优良的重现性下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。 此外,不同使用环境还可以选配不同的进样器,分析软件还具有用户分级、权限管理、数据完整性及可追溯功能,欧美克激光粒度分析仪真正做到了性能可靠、操作简单、维护量少,是值得信赖的高性能激光粒度分析仪。参考文献【1】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用【2】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用【3】苏玉长,刘建永,禹萍,邹启凡,中南大学材料与工程学院,粒度对石墨材料电化学性能的影响【4】旺材料锂电,锂离子电池负极材料标准最全解读【5】中国粉体网,粒度对负极材料有什么影响?
  • 约稿|锂离子电池显微智能分析解决方案全解析
    为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿,并整理相关学术文章和讲座视频,以期对材料表征技术进行全面的介绍和综述。相关内容将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。征稿活动进行中,欢迎来稿,征稿活动详情点击:【材料表征与检测技术盘点】专题:https://www.instrument.com.cn/zt/CLBZ以下为欧波同集团供稿,以飨读者:欧波同锂离子电池显微智能分析解决方案锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。1、 锂离子电池材料显微智能分析系统(LIBMAS)锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,最终导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。图一:汇鸿锂离子电池显微智能分析系统针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。1) 开裂球识别:通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图二:软件智能区分开裂球和普通球通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。图三:二次球截面孔隙识别2)团聚体颗粒识别:正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在最短的时间内快速获得标准化的统计结果,如图四。图四:一次颗粒团聚形成的二次球颗粒识别电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。图五:软件自动区分团聚颗粒及团聚颗粒截面3)单晶颗粒识别:相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。图六:单晶颗粒的识别4)大小二次球识别:除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图八。图八:大小二次球颗粒分布均匀性识别和统计5)隔膜孔隙率统计:锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图九:隔膜孔隙识别及孔隙率统计汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。二、锂离子电池异物分析系统(LIBIAS)目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。图四:颗粒类型占比饼状图(左),三元统计相图(右)汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. DOI: 10.7498/aps.67.20180757.[2] Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method.DOI:10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode.DOI:10.1126/science.abc3167[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46(14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168.作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 材料科研∣ XPS助力锂离子电池研究,中科院化学所郭玉国团队连发Angew、AEM两篇顶刊!
    随着锂离子电池(LIBs)需求的迅速增长,废旧LIBs的数量随着规模的增加而增加,使用后的锂离子电池有价值的金属元素回收成为重要课题,但由于其中化合物的复杂性,导致回收多种具有相似物理化学特性的过渡金属具有很大的挑战。 3月19日和3月20日,中科院化学所郭玉国教授团队分别在Angew和AEM接连发表两篇文章,分别就三元正极材料和磷酸铁锂(LFP)材料的回收和再利用进行了充分的讨论和研究。第一次在LIBs回收过程中使用低共熔溶剂(DES)来实现镍、钴、锰的选择性分离,并验证了具体的回收机理。同时提出了一种绿色回收方法,通过具有功能化预锂化隔膜(FPS)的原位电化学过程直接再生老化的LFP电极。 中科院化学所郭玉国教授和孟庆海助理研究员等人基于过渡金属化合物在低共熔溶剂(DESs)中的不同行为,通过使用精心设计的基于配位环境调节的串联浸出和分离体系,从不同成分的废旧LiNixCoyMn1-x-yO2(NCM)正极中选择性和高效的回收了镍、钴、锰。 基于文章的方法中不同的固液比(HBD组分每质量的溶质质量、RS/L=mspent cathode:mHBD)和不同的温度,在RS/L=20的120℃的优化条件下,NCM811中的镍、钴和锰回收产物的纯度分别为99.1%、95.5%和94.5%。同时,对整个过程中的浸出动力学和工作过程机理进行了深入的分析,通过巧妙地引入DMSO和水作为稀释剂,揭示了配位化学的复杂过程。此外,进一步证实了不同的过渡金属与设计良好的配体的结合是实现优异选择性的关键,微调金属离子的协调环境在电池回收行业的可持续发展中具有广阔的前景。相关论文以“Selective Extraction of Transition Metals from Spent LiNixCoyMn1-x-yO2 Cathode via Regulation of Coordination Environment”为题发表在Angew. Chem. Int. Ed.。 图1 基于用氯化胆碱(ChCl):草酸二水合物(OxA)DES回收镍 中科院化学所万立骏院士,郭玉国教授和孟庆海助理研究员等人,首先通过综合分析验证了老化LFP(D-LFP)电极电化学再生的可行性。在此基础上,提出了一种基于新的功能化预锂化隔膜(FPS)的原位再生策略,以实现D-LFP电极在新电池中的直接再利用。成功制备了分解电位降低的Li2C2O4/CMK-3复合材料,并将该复合材料作为制备FPS的牺牲剂。使用FPS取代了商业化隔膜,废旧的LFP电极用新鲜的石墨负极重新组装成一个新的电池,经过一个循环的活化后,实现再生电池在循环292次后的容量保留率高达90.7%,而未使用FPS的全电池仅为18.7%,表现出相当大的容量恢复和良好的长循环稳定性, 其具体的机理为:Li2C2O4在FPS上的不可逆电化学分解提供了额外的Li+来弥补初始循环中缺乏锂的LFP。从这个意义上说,废旧LFP电极可以通过原位电化学缓解过程直接再生。与目前的废旧LIBs回收方法,特别是低成本的LFP正极回收方法相比,本文基于FPS的策略将废旧LFP电极的再生与新电池的组装相结合,节省了将活性材料分离和再制造正极电极的步骤。这种新颖、简单、成本效益高的策略为直接再生废旧的LFP电池开辟了一条新的途径,并拓宽了整个LIBs回收的视野。相关论文以“In Situ Electrochemical Regeneration of Degraded LiFePO4 Electrode with Functionalized Prelithiation Separator”为题发表在Adv. Energy Mater.。图2 D-LFP电极的形貌、组成和结构图3 再生电池性能测试 刻研究采用了岛津的XPS进行相关元素的化学态分析。 AXIS SUPRA+岛津全自动、多技术成像型X射线光电子能谱仪 ★ 高自动化技术★ 高能量分辨、高灵敏度、高空间分辨★ 智能化软件系统★ 丰富的附件和联用技术 本文内容非商业广告,仅供专业人士参考。
  • 梅特勒托利多 | 锂离子电池热分析总结,快来收藏!
    锂离子电池是一种主要依靠锂离子在正、负极之间移动来工作的可充放电的二次电池。正极材料一直是锂离子电池核心关键材料,它的选择直接决定了电池性能的高低,目前,钴酸锂、锰酸锂、磷酸铁锂、镍钴锰/铝三元材料等锂化物都是常见的正极材料。负极材料主要用于电池能量的储存和释放,也是电池重要的组成部分。目前,负极材料主要分为商业化应用的碳材料和正处于研发状态的硅基材料、合金材料、锡金材料等非碳负极材料。锂电池正负极材料之间相互协同,共同影响着锂离子电池的性能,并最终应用于新能源汽车、储能装置、电子产品等领域。在反复的充放电过程中,锂电池正负极材料的结构与热稳定性都在发生变化,热稳定性直接决定着锂电池的安全使用温度和寿命,因此,对锂电池的热稳定研究就显得尤为重要。热分析技术(DSC、TGA/DSC等)可提供锂电池正负极材料的热分解温度、组分分析、放热焓值等信息,为锂电材料的研发和测试提供指导性建议。锂离子电池正/负极材料的热失控容易引发电池的失效。DSC可对正/负极材料以及按特定比例缩小的全电池置于特定的DSC高压坩埚中进行测试。图1 正极材料热安全性测试图1为充电态NCM811正极材料混合一定比例电解液进行的三次重复测试,该三元正极材料出现两个放热峰,第一个放热峰出现在220℃附近,推测为电解液分解引发的三元材料的分解。两步分解放热共计超过2500J/g,放热情况十分严重,一旦热失控,可能会造成电池的爆炸。可见,DSC可快速准确地研究电池材料热失控温度、放热焓值和放热速率,也可进行不同工艺电池热失控行为的研究。锂离子电池负极在充电后处于富锂状态,且会随着电池温度的升高变得不稳定。DSC可用来检测不同充电状态负极材料的热稳定性。图2 负极材料热安全性测试图2是充电态NCM523负极材料混合特定比例电解液后在25uL高压坩埚中进行测试的结果,样品制备过程在手套箱中完成。测试结果显示,锂离子电池负极材料在约110℃处出现较小的放热峰,这是由于少量电解液组分的分解造成的;之后在266℃与307℃出现连续地放热峰,这主要归结于大量电解液分解引发的大量放热,超过1600J/g的热焓值也意味着放热的严重程度。此外,DSC还可用于不同充电状态或不同工艺负极材料的热稳定性研究。动力学方法可以帮助我们了解速率、反应历程以及各种因素对化学反应的影响,并可预测体系在特定实验条件下的行为。影响锂离子电池的热失控的因素有很多种,我们可以通过动力学方法对锂离子电池的热失控行为进行研究和预测。图3 热安全反应动力学分析图3所示为按照特定比例混合NCM523正极材料、负极材料和电解液的测试曲线,样品被密封后使用DSC进行不同升温速率的测试。由于锂离子电池的成分较为复杂,导致分解过程分多步进行,因此,我们使用基于等转化率法的非模型动力学,得到随反应进度而变化的活化能曲线,右侧等转化率预测结果显示了体系达到特殊反应进度所需要的时间和温度。正极材料是锂电池中的关键材料,正极材料的热稳定性会随着锂离子电池的充放电过程和次数发生改变。图4 满电态三元材料的同步热分析图4为使用同步热分析TGA/DSC3+对满电态三元正极材料的测试结果,充电后的三元材料在约200℃就发生了结构坍塌,之后伴随着分解反应,在DSC曲线上该过程显示为先放热后吸热。继续加热后又出现结构坍塌和三元材料的继续分解。TGA/DSC3+出色的灵敏度和分辨率可在测试时可对连续地吸放热过程进行监测,且表现出平坦的基线。此外,同步热分析还可用于研究不同充电状态下正极材料的热稳定性,以及对连续充放电若干次后的锂电池进行测试。锂电池负极材料大都由碳材料组成,此外,还有少量粘结剂和导电剂。因此,在锂电池负极材料碳含量的测定中,一般可采用二次升温法,第一次在惰性气氛中除去有机物,第二次在氧化性气氛中测定碳含量;或者可在空气气氛中采用一次升温法测定有机物和碳的含量。图5 负极材料组分分析图5为锂电池负极材料在空气气氛中的测试结果,碳材料的燃烧过程和有机物的分解可轻易分离,结果显示,该负极材料中碳含量超过97%。想了解更多锂电行业的信息或内容?欢迎您在留言区留言!
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • 线上直播 | 锂离子电池关键材料的全生命周期评价
    随着化石能源的日益枯竭,以及“碳达峰”和“碳中和”的紧迫要求,发展先进的清洁能源和可替代能源势在必行。动力电池尤其是锂离子电池被全球广泛认为是“双碳行动”发展的重中之重。阿美特克集团多个产品在锂离子电池关键材料的开发、工艺、测试、分析、诊断及梯次回收利用中被广泛使用,随着多年来技术的开发与改进,新设备、新技术、新方案、新应用不断涌现,推动了锂离子电池的快速发展。如何实现锂离子电池更高安全性?更高能量密度?更长寿命?更高功率?阿美特克技术大咖将会在本次直播中为您划重点!直播主题:《锂离子电池关键材料的全生命周期评价》直播时间:3月29日-31日欢迎扫描以下二维码,报名参加直播日期直播主题2022/3/2914:00-16:00正负极材料及电解质分析(上)APT和SIMS在锂离子电池研究中的应用GATAN &EDAX助力锂离子电池电子显微分析2022/3/3014:00-16:00正负极材料及电解质分析(下)ICP等离子体光谱仪在锂离子电池材料分析中的应用锂离子电池浆料及电解液中的粘度与流变分析技术应用2022/3/3110:00-11:00锂离子电池性能评价锂离子电池测试的挑战及策略2022/3/3114:00-16:00锂离子电池隔膜检测锂离子电池隔膜物理强度测试与锂电池强制内短路测试锂离子电池的软包装阻隔性能检测解决方案表面检测系统在锂离子电池隔膜领域的应用关于阿美特克阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 干货 | 锂离子动力电池及其关键材料的发展趋势
    p  进一步提高电池的能量密度是动力电池发展的主题和趋势, 而关键材料是其基础. 本文从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径 负极材料将继续朝低成本、高比能量、高安全性的方向发展, 硅基负极材料将全面替代其他负极材料成为行业共识. 此外, 本文还对锂离子动力电池正极、负极材料等的选择及匹配技术、动力电池安全性、电池制造工艺等的关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题./ppstrong  1 引言/strong/pp  发展新能源汽车被广泛认为是有效应对能源与环境挑战的重要战略举措. 此外, 对我国而言, 发展新能源汽车是我国从“汽车大国”迈向“汽车强国”的必由之路 [1] . 近年来, 新能源汽车产销量呈现井喷式增长, 全球保有量已超过130万辆, 已进入到规模产业化的阶段. 我国也在2015年超过美国成为全球最大的新能源汽车产销国. 以动力电池作为部分或全部动力的电动汽车, 因具有高效节能和非现场排放的显著优势,是当前新能源汽车发展的主攻方向. 为了满足电动汽车跑得更远、跑得更快、更加安全便捷的需求, 进一步提高比能量和比功率、延长使用寿命和缩短充电时间、提升安全性和可靠性以及降低成本是动力电池技术发展的主题和趋势./pp  近日,由中国汽车工程学会公布的《节能与新能源汽车技术路线图》为我国的动力电池技术绘制了发展蓝图. 该路线图提出,到2020年,纯电动汽车动力电池单体比能量达到350Wh/kg,2025年达到400Wh/kg,2030年则要达到500W h/kg 近中期在优化现有体系锂离子动力电池技术满足新能源汽车规模化发展需求的同时, 以开发新型锂离子动力电池为重点, 提升其安全性、一致性和寿命等关键技术, 同步开展新体系动力电池的前瞻性研发 中远期在持续优化提升新型锂离子动力电池的同时, 重点研发新体系动力电池, 显著提升能量密度、大幅降低成本、实现新体系动力电池实用化和规模化应用./pp  由此可见, 在未来相当长的时间内, 锂离子电池仍将是动力电池的主流产品. 锂离子电池具有比能量高、循环寿命长、环境友好、可以兼具良好的能量密度和功率密度等优点, 是目前综合性能最好的动力电池, 已被广泛应用于各类电动汽车中 [2~7] ./pp  本文简要介绍了锂离子动力电池的产业技术发展概况, 并从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 本文还对锂离子动力电池正、负极材料的选择及匹配技术、动力电池安全性、电池制造工艺等关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题./ppstrong  2 锂离子动力电池产业技术发展概况/strong/pp  从产业发展情况来看, 目前世界知名的电动汽车动力电池制造商包括日本松下、车辆能源供应公司(AESC)、韩国LG化学和三星SDI等都在积极推进高比能量动力锂离子电池的研发工作. 综合来看, 日本锂电池产业的技术路线是从锰酸锂(LMO)到镍钴锰酸锂三元(NCM)材料. 例如, 松下的动力电池技术路线早期采取锰酸锂, 目前则发展镍钴锰酸锂三元、镍钴铝酸锂(NCA)作为正极材料, 其动力电池主要搭载在特斯拉等车型上. 韩国企业以锰酸锂材料为基础, 如LG化学早期采用锰酸锂作为正极材料, 应用于雪佛兰Volt车型, 近年来三星SDI和LG化学已经全面转向镍钴锰酸锂三元材料(表1) [8] ./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/2d0662ae-8c3d-4524-aa6c-4ba35fb5d971.jpg" title="1.jpg"//pp  目前国内主流动力锂电池厂商, 如比亚迪等仍以磷酸铁锂为主, 磷酸铁锂电池在得到了大规模普及应用的同时, 其能量密度从2007年的90W h/kg提高到目前的140W h/kg. 然而, 由于磷酸铁锂电池能量密度提升空间有限, 随着对动力电池能量密度要求的大幅提升, 国内动力电池厂商技术路线向镍钴锰三元、镍钴铝或其混合材料的转换趋势明显(表2)./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/fd4ccbd7-67aa-49c0-bf98-30020d1d0ed3.jpg" title="2.jpg"//ppstrong  3 锂离子动力电池关键材料的发展趋势/strong/pp  锂离子电池采用高电位可逆存储和释放锂离子的含锂化合物作正极, 低电位可逆嵌入和脱出锂离子的材料作负极, 可传导锂离子的电子绝缘层作为隔膜,锂盐溶于有机溶剂作为电解液, 如图1所示. 正极材料、负极材料、隔膜和电解液构成锂离子电池的4种关键材料./pp  3.1 正极材料/pp  锰酸锂(LMO)的优势是原料成本低、合成工艺简单、热稳定性好、倍率性能和低温性能优越, 但由于存在Jahn-Teller效应及钝化层的形成、Mn的溶解和电解液在高电位下分解等问题, 其高温循环与储存性能差. 通过优化导电剂含量、纯化电解液、控制材料比表面 [11] 以及表面修饰 [12] 改善LMO材料的高温及储存性能是目前研究中较为常见且有效的改性方法./pp  磷酸铁锂(LFP)正极材料有着良好的热稳定性和循环性能, 这得益于结构中的磷酸基聚阴离子对整个材料的框架具有稳定的作用. 同时磷酸铁锂原料成本低、对环境相对友好, 因而使得LFP成为目前电动汽车动力电池中的主流材料 [12~16] . 但由于锂离子在橄榄石结构中的迁移是通过一维通道进行的, LFP材料存在着导电性较差、锂离子扩散系数低等缺点./pp  从材料制备角度来说, LFP的合成反应涉及复杂的多相反应,因此很难保证反应的一致性, 这是由其化学反应热力学上的根本性原因所决定的 [16] . 磷酸铁锂的改进主要集中在表面包覆、离子掺杂和材料纳米化三个方面.合成工艺的优化和生产过程自动化是提高LFP批次稳定性的基本解决方法. 不过, 由于磷酸铁锂材料电压平台较低(约3.4V), 使得磷酸铁锂电池的能量密度偏低,这一缺点限制了其在长续航小型乘用车领域的应用./pp  img src="http://img1.17img.cn/17img/images/201803/insimg/4796d208-e8dd-4b71-a5fc-296ecba8d6c1.jpg" title="3.jpg"//pp  镍钴锰三元(NCM)或多元材料优势在于成本适中、比容量较高, 材料中镍钴锰比例可在一定范围内调整, 并具有不同性能. 目前国外量产应用的动力锂电正极材料也主要集中在镍钴锰酸锂三元或多元材料, 但仍然存在一些亟需解决的问题, 包括电子导电率低、大倍率稳定性差、高电压循环定性差、阳离子混排(尤其是富镍三元)、高低温性能差、安全性能差等 [17] . 另外, 由于三元正极材料安全性能较差, 采用合适的安全机制如陶瓷隔膜材料也已成为行业共识 [18] ./pp  考虑到安全性等问题, 通过改进工艺(如减少电极壳的重量等)来提高电池能量密度的空间有限. 为了进一步提高动力锂离子电池的能量密度, 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径(图2) [19,20]/pp  3.1.1 高电压正极材料/pp  开发可以输出更高电压的正极材料是提高材料能量密度的重要途径之一. 此外, 高电压的另一显著优势是在电池组装成组时, 只需要使用比较少的单体电池串联就能达到额定的输出电压, 可以简化电池组的控制单元. 目前主流的高电压正极材料是尖晶石过渡金属掺杂的LiM x Mn 2?x O 4 (M=Co、Cr、Ni、Fe、Cu/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/3b01137b-1330-47a0-a313-51c9d4f2f033.jpg" title="4.jpg"//pp style="text-align: center "  图 2 比较各种类型的高电压、高容量正极材料的体积能量密度、功率、循环性、成本和热稳定性的雷达图 [20] (网络版彩图)等)/pp  最典型的材料是LiNi 0.5 Mn 1.5 O 4 , 虽然其比容量仅有146mAh/g, 但由于工作电压可达到4.7V, 能量密度可达到686W h/kg [20,21] . 本课题组 [22] 以板栗壳状的MnO 2为锰源, 通过浸渍方法合成了由纳米级的多面体聚集而成微米球状的尖晶石镍锰酸锂(LNMO)材料. 该结构对电解液的浸入和锂离子的嵌入和脱出十分有利,且可以适应材料在充放电过程中的体积变化, 减小材料颗粒之间的张力. 该研究还发现, 含有微量Mn 3+的LNMO电化学性能更优, 充放电循环80圈后放电比容量还能保持在107mAh/g, 容量保持率接近100%.LiNi 0.5 Mn 1.5 O 4 的比容量衰减制约了它的商业化进程,其原因多与活性材料以及集流体与电解液之间的相互作用相关, 由于电解液在高电位下的不稳定性, 如传统碳酸酯类电解液会在4.5V电压以上氧化分解, 使得锂离子电池在高电压充放电下发生气胀, 循环性能变差./pp  因此, 高电压正极材料需要解决电解液匹配问题.解决上述问题的方法包括以下3个方面. (1) 材料表面包覆 [23~25] 和掺杂 [26~28] . 例如, Kim等 [28] 近期通过表面4价Ti取代得到LiNi 0.5 Mn 1.2 Ti 0.3 O 4 材料, 透射电子显微镜显示材料表面形成了坚固的钝化层, 因此减少了界面副反应, 30℃下全电池实验结果表明在4.85V截止电压, 200个循环后, 容量保持率提高了约75%. 然而, 单独的表面涂层/掺杂似乎不能提供长期的循环稳定性(如≥500个循环), 在应用中必须考虑与其他策略相结合. (2) 使用电解液添加剂或其他新型电解质组合 [29~31] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/e33aa180-4c60-4e9a-af6d-315f29391fd1.jpg" title="5.jpg"//pp style="text-align: center "  图 3 具有良好电化学稳定性的用于高电压LiNi 0.5 Mn 1.5 O 4 材料的LiFSA/DMC电解液体系. /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) LiFSA/DMC混合电解液中的组分结构示意图 (b) 两种不同配比情况下, 溶剂分子典型平衡轨迹的DFT-MD模拟 (c) 铝电极在LiFSA/DMC混合电解液中的高电压稳定性 (d) 全电池在40° C, C/5倍率下的循环性能 [31] (网络版彩图)/span/pp  如图3所示, Yamada课题组 [31] 利用简单的LiFSA/DMC(1:1.1, 摩尔比)电解液体系实现了LiNi 0.5 Mn 1.5 O 4 /石墨全电池在40℃温度下循环100次后容量保持90%, 尽管高度浓缩的系统的离子电导率降低了一个数量级(30℃时为约1.1 mS/cm), 但依然保持了与使用商业碳酸酯电解液体系相当的倍率性能. (3) 使用具有离子选择透过性的隔膜 [32~35] . 已经证明使用电化学活性的Li 4+x Ti 5 O 12 膜 [32] 以及锂化Nafion膜与商业PP膜的复合隔膜 [33] 能够极大地改善LiNi 0.5 Mn 1.5 O 4 的循环寿命./pp  此外, 一些由LiNi 0.5 Mn 1.5 O 4 衍生的新型尖晶石结构高电压材料如LiTiMnO 4 [36] 、LiCoMnO 4 [37,38] 等, 以及橄榄石结构磷酸盐/氟磷酸盐也被广泛研究, 如LiCoPO 4 [39] 、LiNiPO 4 [40] 、LiVPO 4 F [41] 等 [42] ./pp  3.1.2 高容量正极材料/pp  由于锂离子电池负极材料的比容量远高于正极材料, 因此正极材料对全电池的能量密度影响更大.通过简单的计算可知, 在现有的水平上, 如果将正极材料的比容量翻倍, 就能够使全电池的能量密度提高57%. 而负极材料的比容量即使增加到现有的10倍, 全电池的能量密度也只能提高47% [43] ./pp  镍钴锰三元材料中, Ni为主要活性元素, 一般来说,活性金属成分含量越高, 材料容量就越大.低镍多元材料如NCM111、NCM523等能量密度较低, 该类材料体系所能达到的动力电池能量密度为120~180Wh/kg, 无法满足更高的能量密度要求. 高容量正极材料的一个发展方向就是发展高镍三元或多元体系./pp  高镍多元体系中, 镍含量在80%以上的多元材料(NCA或NCM811)能量密度优势明显, 用这些材料制作的电池匹配适宜的高容量负极和电解液后能量密度可达到300Wh/kg以上 [44] . 但是高镍多元材料较差的循环稳定性、热稳定性和储存性能极大地限制了其应用. 一般认为当镍的含量过高时, 会引起Ni 2+ 占据Li + 位置, 造成阳离子混排, 阻碍了Li + 的嵌入与脱出, 从而导致容量降低 [20,45,46] .另外, 材料表面与空气和电解液易发生副反应、高温条件下材料的结构稳定性差和表面催化活性较大也被认为是导致容量衰减的重要原因 [20,45,47] ./pp  解决上述问题的方法有如下3种./pp  (1) 对材料进行有效的表面包覆或体相掺杂 [48~50] . 例如, 最近Chae等 [50] 利用湿化学法在NCM811表面包覆了一层N,N-二甲基吡咯磺酸盐,有效地阻隔了材料与电解液界面, 抑制了电解液在高镍三元材料表面的催化分解, 1C倍率下前50圈的平均库仑效率达99.8%, 容量保持率高达97.1%./pp  (2) 开发具有浓度梯度的高镍三元体系 [51~55] . Sun课题组 [53~55] 采用共沉淀方法制备了具有双斜率浓度梯度三元材料,如图4所示, 这种材料的内部具有更高含量的镍, 有利于高容量的获得和保持, 外层有更高含量的锰, 有利于循环稳定性和热稳定性的提升. 通过Al掺杂, 具有浓度梯度的LiNi 0.61 Co 0.12 Mn 0.27 O 2 在经过3000次循环后,其容量保持率从65%大幅度提高到84%./pp  (3) 开发与高容量正极材料相适应的电解液添加剂或新型电解液体系 [56~58] ./pp  目前高镍多元材料量产技术主要掌握在日韩少数企业手中, 如日本的住友、户田, 韩国的三星SDI、LG、GS等. 根据不同的应用领域, 材料的镍含量在78~90 mol%, 克容量集中在190~210mA h/g. 各公司正尝试将其应用于电动汽车领域, 其中尤以特斯拉采用的镍钴铝(NCA)受到广泛瞩目. 需要指出的是, NCA和NCM811两种材料在容量、生产工艺等方面具有很多相似性, 松下18650电池正极采用NCA正极, 电池能量密度约为250Wh/kg, 但NCA材料因存在铝元素分布不均、粒度难以长大等问题, 主要应用于圆柱电池领域, 圆柱型电池在在电池管理系统方面需要的技术与成本较高./pp  除 此 之 外 , 基 于 Li 2 MnO 3 的 高 比 容 量 (200~300mAh/g) 富 锂 正 极 材 料 zLi 2 MnO 3 · (1?z)LiMO 2(0/pp  3.2 负极材料/pp  锂离子电池负极材料分为碳材料和非碳材料两大类. 其中碳材料又分为石墨和无定形碳, 如天然石墨、人造石墨、中间相碳微球、软炭(如焦炭)和一些硬炭等 其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等 [61] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/6e6b8975-e32c-4aee-9021-c6d0edef3ad9.jpg" title="6.jpg"//pp style="text-align: center "  图 4 Al掺杂的具有双斜率浓度梯度三元材料LiNi 0.61 Co 0.12 Mn 0.27 O 2 [54,55] ./pp span style="font-family: 楷体, 楷体_GB2312, SimKai "(a) TEM EDS元素分析成像 (b) TEM 线性元素扫描分析 (c) Al掺杂和无掺杂的三元材料循环性能对比 (网络版彩图)/span/pp  负极材料将继续朝低成本、高比能量、高安全性的方向发展, 石墨类材料(包括人造石墨、天然石墨及中间相碳微球)仍然是当前锂离子动力电池的主流选择 近到中期, 硅基等新型大容量负极材料将逐步成熟, 以钛酸锂为代表的高功率密度、高安全性负极材料在混合动力电动车等领域的应用也将更加广泛. 中远期, 硅基负极材料将全面替代其他负极材料已成为行业共识./pp  硅基负极材料被认为是可大幅度提升锂电池能量密度的最佳选择之一, 其理论比容量可以达到4000mAh/g以上 [62,63] , 与高容量正极材料匹配后, 单体电池理论比能量可以达到843Wh/kg, 但硅负极材料在充放电过程中存在巨大的体积膨胀收缩效应, 会导致电极粉化降低首次库仑效率并引起容量衰减 [64~67] ./pp  研究者尝试了多种方法解决该问题./pp  (1) 制备纳米结构的材料, 纳米材料在体积变化上相对较小, 且具有更小的离子扩散路径和较高的嵌/脱锂性能, 包括纳米硅颗粒 [68~70] 、纳米线/管 [71~74] 、纳米薄膜/片 [75~77] 等./pp  (2) 在硅材料中引入其他金属或非金属形成复合材料, 引入的组分可以缓冲硅的体积变化, 常见的复合材料包括硅碳复合材料 [78~82] 、硅-金属复合材料等 [83~85] . Cui课题组 [81] 通过先后在硅纳米颗粒表面包覆二氧化硅和碳层, 再将二氧化硅层刻蚀之后得到蛋黄蛋壳结构的硅碳复合材料, 如图5所示, 并利用原位透射电镜研究了碳壳与硅核之间的空隙对材料稳定性及电化学性能的影响. 由于蛋黄蛋壳的结构在硅和碳层之间预留了充足的空间, 使硅在嵌锂膨胀的时候不破坏外层的碳层, 从而稳定材料的结构并得到稳定的SEI膜. 在此基础上, 通过对碳包覆之后的纳米颗粒进行二次造粒,在大颗粒的表面再包覆碳膜, 最后刻蚀制备出类石榴的结构 [82] , 复合材料尺寸的增大减小了材料的比表面积, 提高了材料的稳定性, 材料的1000周循环容量保持率由74%提高到97%, 如图5所示./pp  (3) 选用具有不同柔性、界面性质的黏结剂, 提高黏结作用 [86~88] 最近,Choi等 [88] 通过形成酯键使传统黏结剂聚丙烯酸PAA与多聚轮烷环组分PR交联结合得到具有特殊结构的双组分PR-PAA黏结剂, 如图6所示, 很大程度上提高了硅负极在充放电过程中的稳定性./pp  (4) 采用体积变化相对缓和的非晶态硅材料, 如多孔硅材料等 [89,90] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/c68c0215-a21a-4fa0-9f73-1a0fca0d02f5.jpg" title="7.jpg"//pp style="text-align: center "  图 5 具有蛋黄蛋壳的结构的硅碳复合锂离子电池负极材料 [81,82] ./ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " (a) 蛋黄蛋壳的结构合成示意图及TEM图 (b) 类石榴的结构合成示意图 (c) 硅纳米粒子、 蛋黄蛋壳结构硅碳复合材料、类石榴结构硅碳复合材料的循环性能对比 (网络版彩图)/span/pp  应用方面, 日立Maxell宣布已成功将硅基负极材料应用于高能量密度的小型电池 日本GS汤浅公司则已推出硅基负极材料锂电池, 并成功应用在三菱汽车上 特斯拉则宣称通过在人造石墨中加入10%的硅基材料, 已在其最新车型Model 3上采用硅碳复合材料作为动力电池负极材料./pp  3.3 电解液/pp  高安全性、高环境适应性是锂离子动力电池对电解液的基本要求. 随着电极材料的不断改善和更新, 对与之匹配的电解液的要求也越来越高. 由于开发新型电解液体系难度极大, 碳酸酯类有机溶剂配伍六氟磷酸锂盐的常规电解液体系在未来相当长一段时间内依然是动力电池的主流选择./pp  在此情形下, 针对不同用途的动力电池和不同特性的电极材料, 优化溶剂配比、开发功能电解液添加剂就显得尤为重要.例如, 通过调整溶剂配比含量和添加特殊锂盐可以改善动力电池的高低温性能 加入防过充添加剂、阻燃添加剂可以使电池在过充电、短路、高温、针刺和热冲击等滥用条件下的安全性能得以大大提高 通过提纯溶剂、加入正极成膜添加剂可以在一定程度上满足高电压材料的充放电需求 通过加入SEI膜成膜添加剂调控SEI膜的组成与结构, 可以实现延长电池寿命 [91] . 近年来, 随着Kim等 [92] 第一次成功地将丁二腈(SN)作为电解液添加剂来提高石墨/LiCoO 2 电池的热稳定性, 以丁二腈(SN)和己二腈(ADN) [93] 等为代表的二腈类添加剂因其与正极表面金属原子极强的络合力并能很好地抑制电解液氧化分解和过渡金属溶出的优点, 已经成为学术界和工业界普遍认可的一类高电压添加剂. 而以1,3-丙烷磺酸内酯(PS [94] 和1,3-丙烯磺酸内酯(PES) [95] 等为代表的另一类高电压添加剂,即正极成膜添加剂, 则是通过在正极表面优先发生氧化反应并在正极表面形成一层致密的钝化膜, 从而达到阻止电解液和正极活性物质接触、抑制电解液在高电压下氧化分解的效果./pp  目前, 高低温功能电解液的开发相对成熟, 动力电池的环境适应性问题基本解决, 进一步提高电池的能量密度和安全性是电解液研发的首要问题. 中远期, 锂离子动力电池电解液材料的发展趋势将主要集中在新型溶剂与新型锂盐、离子液体、添加剂等方面, 凝胶电解质与固态电解质也是未来发展的方向. 而以固态电解质为关键特征之一的全固态电池在安全性、寿命、能量密度及系统集成技术等都具有潜在的优异特性, 也是未来动力电池和储能电池领域发展的重要方向 [96] ./pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/58812389-5862-4e1d-a7b7-b4dc7b4fc4d9.jpg" title="8.jpg"//pp style="text-align: center "  图 6 SiMP负极PR-PAA黏结剂的应力释放机理 [88] . /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) 减小提起物体用力的滑轮机理 (b) PR-PAA黏结剂用于缓解因硅颗粒充放电过程中体积变化而产生应力的示意图 (c) 充放电过程中PAA-SiMP电极破碎和生成SEI膜的示意图 (网络版彩图)/span/pp  3.4 隔膜/pp  目前, 商品化锂离子动力电池中使用的隔膜材料主要是微孔的聚烯烃类薄膜, 如聚乙烯(polyethylene,PE)、聚丙烯(polypropylene, PP)的单层或多层复合膜.聚烯烃类隔膜材料由于其制造工艺成熟、化学稳定性高、可加工性强等优点在一段时间内仍然是商品化隔膜材料的主流, 尤其是PE的热闭孔温度对抑制电池中某些副反应的发生及阻止热失控具有重要意义.发展基于聚烯烃(尤其是聚乙烯)隔膜的高性能改性隔膜材料(如无机陶瓷改性隔膜、聚合物改性隔膜等),进一步提高隔膜的安全特性和电化学特性仍将是隔膜材料研发的重点 [18] ./pp  最近, 本课题组 [97] 通过使用耐高温的聚酰亚胺做黏结剂将纳米Al 2 O 3 涂覆在商业PE隔膜单层表面将隔膜的热稳定性提高到了160℃. 本课题组 [98] 还在前期开发的SiO 2 陶瓷隔膜的基础上, 在其表面和孔径间原位聚合包覆上一层耐高温的聚多巴胺保护层, 如图7所示, 使隔膜在230℃高温下处理30min, 不但不收缩并且保持良好的机械性能, 可以有效保障电池安全. l’Abee课题组 [99] 以耐热性的聚醚酰亚胺树脂为基材, 将其用NMP加热溶解后重新浇铸成膜, 得到的聚醚酰亚胺隔膜, 其热稳定性可达到220℃.随着锂离子电池在电动汽车等领域的应用, 建立隔膜构造、隔膜孔径尺度与分布的有效调控方法, 以及引入电化学活性基团等使聚烯烃隔膜多功能化, 将是隔膜发展的重要方向. 针对耐热聚合物隔膜等的研发及产业化工作也将得到大力推进./pp  综上所述,锂离子动力电池关键材料的发展趋势将如图8所示, 正极材料向高电压、高容量的趋势发展 负极则以发展硅碳复合材料为主, 通过发展新型黏结剂和SEI膜调控技术使得硅碳复合负极材料真正走向实际应用 电解液近期内将以发展高电压电解液和高环境适应性电解液材料为主, 中远期则将以固态电解质材料为发展目标 多种材料复合且结构可控的隔膜材料将是锂离子动力电池隔膜的重点发展方向./ppstrong  4 锂离子动力电池的关键技术和基础科学问题/strong/pp  4.1 锂离子动力电池的关键技术/pp  锂离子动力电池是一个复杂的系统, 单一部件、材料或组分的优化未必对电池整体性能的改善有突出效果 [100] . 发展面向电动汽车的高比能量、低成本、长寿命、安全性高的动力电池, 需对锂离子动力电池体系的关键技术予以重点关注, 解决在最终应用过程中影响性能的制约因素./pp  4.1.1 正极、负极材料等的选择及匹配技术/pp  锂离子动力电池的寿命、安全性和成本等基本性能很大程度上取决于其电极材料体系的选择和匹配. 因此如何选择高比能量、长寿命、高安全、低成本的材料体系是当前锂离子动力电池的重要技术./pp  4.1.2 动力电池安全性/pp  安全性是决定动力电池能否装车应用的先决条件/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/a49c15af-1975-4d11-bfe5-e1f5440c1331.jpg" title="9.jpg"//pp style="text-align: center "  .图 7 包覆上耐高温聚多巴胺保护层的SiO 2 陶瓷隔膜 [98] . /ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "(a) 隔膜结构及合成示意图 (b) 隔膜形貌表征 (c) 隔膜热收缩性能对比(网络版彩图)/span/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/35ce98d1-12c4-439a-b44f-0aa5561115de.jpg" title="10.jpg"//pp style="text-align: center "  图 8 锂离子动力电池关键材料技术现状及发展趋势总结(网络版彩图)/pp  随着锂离子电池能量密度的逐步提升, 电池安全性问题无疑将更加突出. 导致锂离子电池安全性事故发生的根本原因是热失控, 放热副反应释放大量的热及有机小分子气体, 引起电池内部温度和压力的急剧上升 而温度的急剧上升反过来又会呈指数性加速副反应,产生更大量的热, 使电池进入无法控制的热失控状态,导致电池终发生爆炸或燃烧 [101,102] . 高比能的NCM和NCA三元正极、锰基固熔体正极均较LFP材料的热稳定性差, 使人们在发展高能量密度动力电池的同时不得不更加关注安全问题 [103] . 解决电池安全性问题至少需要从两方面着手: (1) 防止短路和过充, 以降低电池热失控的引发几率 (2) 发展高灵敏性的热控制技术,阻止电池热失控的发生 [104] ./pp  4.1.3 电池制造工艺/pp  随着动力电池应用的不断加深, 单体电池向着大型化、易于成组的方向发展. 在这一过程中, 单体电池的制造技术尤为重要. 提高产品一致性, 从而使电池成组后的安全性、寿命更高, 使其制造成本更低将是未来锂离子电池制造工艺的发展方向. (1) 开发生产设备高效自动化技术, 研发高速连续合浆、涂布、辊切制片、卷绕/叠片等技术, 可以降低生产成本 (2)开展自动测量及闭环控制技术研发, 提高电池生产过程测量技术水平, 实现全过程实时动态质量检测, 实现工序内以及全线质量闭环控制, 保证产品一致性、可靠性 (3) 建立自动化物流技术开发, 实现工序间物料自动转运, 减少人工干预 (4) 开展智能化生产控制技术研发, 综合运用信息控制、通讯、多媒体等技术,开发有效的生产过程自动化控制及制造执行系统, 最大程度地提高生产效率, 降低人工成本./pp  4.2 锂离子动力电池的基础科学问题/pp  4.2.1 研究电极反应过程、反应动力学、界面调控等基础科学问题/pp  目前, 元素掺杂、包覆等方法被广泛应用于材料改性, 但究其原因往往“知其然不知其所以然”, 如LFP可以通过异价锂位掺杂显著提高电子导电性, 但其究竟是晶格掺杂还是通过表面渗透还存在争议. 另外,一般认为LFP较低的电子导电性和离子扩散特性是导致倍率特性不佳的主要原因, 但研究表明, 锂离子在电极/电解液界面的传输也是影响LFP倍率特性的重要因素. 通过改善界面的离子传输特性, 可以获得更好的倍率特性. 因此深入研究电极上的表面电化学反应的机理, 尤其是关于SEI膜的形成、性质以及电极与电解液的相互作用等, 可以明确材料的结构演化机制和性能改善策略, 为材料及电池性能的改善提供理论指导 [6] ./pp  4.2.2 发展电极表界面的原位表征方法/pp  锂离子电池电极材料的性能主要取决于其组成及结构. 通过原位表征技术系统研究材料的组成-结构-性能间构效关系对深入了解电极材料的反应机理,优化材料组成与结构以提高其性能及指导高性能新材料开发与应用均有十分重要意义 [105,106] . 例如, 原位Raman光谱可以通过晶格(如金属-氧配位结构)振动实时检测材料的结构变化, 为找寻材料结构劣化原因提供帮助 [107~109] . 同步辐射技术不仅可通过研究电极材料中原子周围化学环境, 获取电极材料中组成元素的氧化态、局域结构、近邻配位原子等信息, 还可原位获得电池充放电过程电极材料的结构演化、过渡金属离子氧化态以及局域结构变化等信息, 精确揭示电池反应机理 [110,111] 固体核磁共振谱(NMR)则可提供固态材料的局域结构信息, 得到离子扩散相关的动力学信息 [112,113] ./ppstrong  5 结论/strong/pp  锂离子动力电池是目前最具实用价值的动力电池, 近几年在产业化方面发展迅速, 有力地支撑了电动汽车产业的发展. 然而, 锂离子动力电池仍然存在许多有待解决的应用问题, 特别是续航能力、安全性、环境适应性和成本, 需要在动力电池基础材料、电池制造和系统技术全产业链上同时进行研究. 可以预期相关技术将在近年内取得长足进步并实现规模应用.随着电动汽车的快速发展, 锂离子动力电池将迎来爆发增长的黄金期./pp style="text-align: right "  strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  作者:刘波(厦门大学) 张鹏 赵金保/span/strong/pp  /ppbr//p
  • 岛津受邀参加 “2019锂离子电池安全国际研讨会(华东)”
    2019年首季度,中国新能源汽车市场纯电动汽车产量达成22.6万辆,锂离子电池总装机量达12.57GWh,分别比去年同期增长一倍多,再创历史新高。根据媒体统计,自2019年4月以来,国内电动汽车已经发生了十几起燃烧事故。这也说明在不断追逐高比容量的同时,对于电池的安全性的关注度也越来越高。在此背景下,由清华大学-张家港氢能与先进锂电技术联合创新中心、江苏省先进锂电材料产业技术创新战略联盟主办的“2019锂离子电池安全国际研讨会(华东)”于7.15~7.17日,在江苏张家港顺利召开。岛津企业管理(中国)有限公司作为受邀协办单位,全程参与了此次会议,并带来了“岛津相关锂电解决方案”主题报告。清华大学核研院党委书记唐亚平致开幕词此次研讨会围绕高比能量密度动力电池安全性议题,从可靠连接、高压防护、碰撞、过充、短路和热失控、全方位有效的保护电池安全七个维度出发,交流和学习国内外技术经验,展示动力电池安全性领域技术前进方向与科研新成果。会议安排了近31个主题报告,有来自电池厂、科研单位、整车厂、仪器公司的近300人参加了此次会议。会议现场 岛津公司的郝正明博士,带来了“岛津应对锂电行业的解决方案”的主题报告。为与会代表介绍了岛津百年历史、从锂电材料质检品控到电池评价的仪器解决方案、并列举了隔膜拉伸、正负极粒子微压试验评价、EDX用于三元正极主元素分析、以及即将上市的动态粒子图像分析仪的应用案例,受到了与会代表的一致好评。岛津公司郝正明博士发表主题报告岛津公司主题报告现场作为有着100多年历史的仪器行业领先供应商,提供光谱、色谱、质谱、表面分析、热分析、粒度分析、试验机、工业CT等全线产品。针对锂离子电池的材料制备、电池评价等,提供行业相关的整体解决方案,敬请关注了解。
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 材料晶格研究加速新型锂离子电池电解质发展
    p  研究人员表示,分析和设计新离子导体的新方法为可充电电池提供了关键部件。新方法的应用可能会加速高能锂电池以及其他能量存储和传输装置(如燃料电池)的发展。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/3477e76a-b550-4f8f-87c2-f756b0769936.jpg" title="201803300842364192.png"//pp  该图揭示了意向电池电解质材料Li 3 PO 4的晶格结构。 研究人员发现,声波能够穿过固体材料,通过声音振动可以揭示离子带电荷的原子或分子如何通过晶格移动 ,以及它们如何在电池中实际的工作原理。在该图中,氧原子显示为红色,紫色金字塔形状为磷酸盐(PO4)分子。 橙色和绿色的球体是锂的离子。/pp  新方法依赖于对振动通过锂离子导体晶格方式的理解。新方法与抑制离子迁移的方式相关联。这提供了一种方法来发现具有增强离子迁移性的新材料,允许快速充电和放电。同时,该方法还可以降低材料与电池电极的反应性,材料与电池电极的反应会缩短电池的使用寿命。更好的离子迁移率和低反应性这两个特性——往往是相互排斥的。/pp  这个新概念是由W.M领导的一个团队开发的。该团队包括Keck能源教授Yang Shao-Horn,研究生Sokseiha Muy,最近毕业的年仅17岁的博士John Bachman,研究科学家Livia Giordano以及麻省理工学院,橡树岭国家实验室以及东京和慕尼黑的其他9所院校人员。他们的研究结果在 Energy and Environmental Science杂志上报道。/pp  Shao-Horn说,新的设计原则已经有五年的时间了。最初的想法始于她和她的团队用来了解和控制催化水分解,并将其应用于离子传导 - 这一过程不仅是可充电电池的核心,而且也是其他应用的技术关键,如在燃料电池和海水淡化系统中的应用。当带有负电荷的电子从电池的一极流向另一极(从而为装置提供电力)时,正离子以另一种方式流过电解质或夹在这些极之间,以完成流动。/pp  典型地,电解质以液体形式存在时,溶解在有机液体中的锂盐是当今锂离子电池中常见的电解质。但该物质易燃,有时会导致这些电池着火。通过新方法寻找一个可靠的材料来取代锂盐将消除这个问题。/pp  Shao-Horn说,存在多种有前景的固体离子导体,在与锂离子电池的正极和负极接触相比都具有不稳定性的特点。因此,寻找既具有高离子电导率又具有稳定性的新的固体离子导体是至关重要的。但是,通过对许多不同的结构族和成分进行分类,找到最有前途的结构无疑是一项大海捞针的工作。这就是新的设计原则的用武之地。/pp  我们的想法是寻找离子电导率与液体相当的材料,但必须具有固体的长期稳定性。Shao-Horn说研究人员被问到“基本原则是什么”,“在一般的结构层次上,是什么设计原则来控制所需属性的”。研究人员回应理论分析和实验测量相结合的方法现在已经有了一些结果。/pp  该论文的第一作者Muy说:“我们意识到有很多材料可以被发现,但是没有理解或者共同的原则让我们能够合理化发现过程。我们想出了一个可以封装我们的理解并预测哪些材料将处于最佳状态的想法。”/pp  Shao-Horn 说,关键是要观察这些固体材料的晶格性质。这决定了诸如热波和声子之类的振动是如何通过材料的。这种观察结构的新方法最终证明能够准确地预测材料的实际性能。一旦你知道了某物质的振动频率,你就可以用它来预测新的化学性质或解释实验结果。/pp  研究人员观察到使用该模型确定的晶格特性与锂离子导体材料的导电性之间具有良好的相关性。她说,“我们做了一些实验来实验性地支持这个想法”,并发现结果非常吻合。/pp  他们特别发现,锂的振动频率本身可以通过调整晶格结构、使用化学取代或掺杂剂来微妙地改变原子的结构排列来进行微调。/pp  研究人员表示这个新概念现在可以提供一个强大的工具,用于开发新的性能更好的材料,从而可以大幅度提高可存储在给定尺寸或重量的电池中的功率量,并提高安全性。他们已经用这个新方法筛选出了一些新的材料。而且这些技术还可以适用于分析其他电化学过程的材料,如固体氧化物燃料电池,基于膜的脱盐系统或产生氧气的反应。/pp  该团队包括麻省理工学院的张浩勋, Douglas Abernathy,Dipanshu Bansal和Oak Ridge的Olivier Delaire 东京工业大学的Santoshi Hori和Ryoji Kanno 以及宝马集团位于慕尼黑的研究电池技术公司的Filippo Maglia,Saskia Lupart和Peter Lamp。这项工作得到了宝马,国家科学基金会和美国能源部的支持。/pp  文章来自azonano网站,原文题目为Design principles could point to better electrolytes for next-generation lithium batteries/ppbr//p
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 【内含PDF】国仪量子扫描电镜在锂离子电池中的应用
    锂离子电池锂离子电池(LIB)是21世纪以来最为热门的储能器件之一,具有能量密度高、单体输出电压高、循环性能优越、可快速充放电和使用寿命长等优点,被广泛应用于消费电子产品、电动汽车和新能源电站的储能电源系统等[1]。LIB主要是由正极材料、负极材料、隔膜、电解液和外壳组成。其中,正极材料作为锂离子的主要来源,负极材料是提供比容量的重要因素,隔膜提供锂离子传输的微孔通道。其结构示意图如图1所示,充电时,锂离子(Li+)从正极脱出在电解液中穿过隔膜到达负极并嵌入到负极晶格中,此时正极处于贫锂态,负极处于富锂态;而放电时,Li+再从富锂态的负极脱出再次在电解液中穿过隔膜到达贫锂态的正极并插入正极晶格中,此时正极处于富锂态,负极处于贫锂态[2]。图1 锂离子电池结构示意图基于国仪量子自主研制的扫描电子显微镜,在锂离子电池领域中可以对正极材料、负极材料、隔膜等进行快速、可靠的材料检测,避免因原料质量低、引入杂质、加工工艺不当引起的电池失效。助力锂电材料的深入研究,进而从各个方面改善锂离子电池性能。国仪量子电子显微镜产品全景图扫描电镜在锂电正极材料中的应用正极材料是锂离子电池中的“锂源”,通常既要提供充放电时在正负极之间往返的锂离子,又要提供锂离子电池首圈充放电形成的固体电解质相界面(简称SEI)膜时于负极所消耗掉的锂离子。电池功率受到正极材料的结构、掺杂改性、表面包覆及制备工艺等多种因素的影响[1]。开发具有安全、经济、高性能、大容量等优点的正极材料将有效地促进LIB的广泛应用[3]。如图2和图3所示,扫描电子显微镜不仅可以对正极材料的浆料和极片进行粒径分析和整体形貌的拍摄,而且为特定的正极材料体系深入研究和探索提供了有力条件。使用扫描电子显微镜可以对调浆后的正极材料以及经涂布、辊压后极片表面的正极活性物质分布、导电添加剂均匀性程度和分散性进行检测。另外借助扫描电子显微镜可对正极材料及其前驱体的单颗粒形貌、颗粒分布情况进行表征。据扫描电子显微镜呈现的结果可以针对性帮助正极材料进行设计和改进,大幅度提高材料的结构稳定性及LIB的性能。图2-1 正极浆料/10kV/ETD图2-2 正极极片/3kV/Inlens图3-1 三元正极前驱体/3kV/Inlens图3-2 磷酸铁/3kV/BSE图3-3 锰酸锂/5kV/ETD图3-4 磷酸铁锂/15kV/ETD扫描电镜在锂电负极材料中的应用负极的锂离子插入能力是决定锂离子电池性能的主要因素。为了追随先进正极材料的发展,需要开发大容量的负极材料来提高整个锂离子电池的性能。自1991年对石墨商业化生产以来,石墨一直作为主要的负极材料。石墨具有成本低、无毒性、重复循环和结构稳定等优点[4]。由图4和5可知,扫描电镜可以对调浆后的材料以及涂覆后的极片进行表面形貌分析,同时对石墨负极进行尺寸、形状图像分析,以帮助解释不同石墨负极引起的LIB性能差异。利用扫描电子显微镜可以清晰观察到石墨表面的片层结构形貌。图4-1 负极浆料/3kV/Inlens图4-2 负极极片/10kV/ETD图4-3 负极极片/3kV/Inlens图5-1 石墨负极/5kV/ETD图5-2 球形石墨表面/3kV/ETD扫描电镜在锂电隔膜中的应用作为锂电池的关键材料,隔膜在其中扮演着隔绝电子的作用,既可以阻止正负极直接接触,又可以允许电解液中锂离子自由通过。隔膜对于保障电池的安全运行有至关重要的作用[5]。当前,市场上商业化的锂电隔膜主要是以聚乙烯(PE)和聚丙烯(PP)为主的微孔聚烯烃隔膜,这类高分子材料凭借着较低的成本、良好的力学性能、优异的化学稳定性和电化学稳定性等优点被广泛应用于锂电隔膜中。国仪量子扫描电子显微镜可以在低压下直接观察到隔膜表面的精细结构,并且根据拍摄的形貌图像照片可以对隔膜进行孔径和孔隙率分析(图6)。图6-1 隔膜/5kV/ETD图6-2 干法拉伸隔膜/0.5kV/Inlens锂电材料分析测试前沿解决方案国仪量子以先进的量子精密测量技术为核心,聚焦科学仪器主航道,推出了一系列“人无我有”“人有我优”的高端科学仪器,针对锂离子电池行业推出了系统化的原材料检测分析与产品质量检测方案。基于国仪量子自主研制的扫描电镜、比表面及孔径分析仪、电子顺磁共振波谱仪等高端科学仪器,可分别对锂离子电池的负极材料、正极材料、隔膜等原材料进行检测,避免因原料质量低、引入杂质和加工工艺不当而引起的电池失效。欢迎扫描下方二维码下载PDF!参考资料[1]陈港欣,孙现众,张熊 等. 高功率锂离子电池研究进展[J].工程科学学报,2022,44(04):612-624.[2]郭炳焜, 徐徽, 王先友, 等. 锂离子电池[M]. 长沙: 中南大学出版社, 2005: 48-65.[3]李仲明,李斌,冯东,曾天标.锂离子电池正极材料研究进展[J].复合材料学报,2022,39(2): 513-527.[4]彭盼盼,来雪琦,韩啸,伊廷锋.锂离子电池负极材料的研究进展[J].有色金属工程,2021,11(11): 80-91[5]王振华,彭代冲,孙克宁.锂离子电池隔膜材料研究进展[J].化工学报,2018,69(1): 282-294
  • 利用 FTIR 快速、轻松地对锂离子电池 中所用的溶剂进行材料鉴定
    利用 FTIR 快速、轻松地对锂离子电池 中所用的溶剂进行材料鉴定使用 Agilent Cary 630 FTIR 光谱仪鉴定常用的 LIB 电解液溶剂摘要由于便携式电子设备的广泛使用和电动汽车 (EVs) 的普及,对锂离子电池 (LIBs) 的 需求越来越大。此外,对与风能、太阳能和潮汐能等间歇式能源所产生的清洁电力 相关的电池储能的需求也不断增长。 LIB 电解液的制造商必须对原材料进行质量保证 (QA),以便在使用前确保其组成符合所需的规格要求。本研究证明,采用衰减全反 射 (ATR) 采样技术的 Agilent Cary 630 FTIR 光谱仪可通过简单的方法快速、可靠地 鉴定 LIB 电解液溶剂。该方法也可用于致力于改进电池技术的研发 (R&D) 团队。前言电解液是锂离子 (Li-ion) 电池 (LIBs) 的关键组分,它能够促进 电池工作过程中在阳极与阴极之间的电荷离子转移。 LIBs 在 成本、容量、充电时间和寿命方面的整体性能在很大程度上依 赖于电解液的组成。 LIB- 电解液含有锂盐、溶剂和添加剂[1]。 常用的电解液为溶于碳酸酯溶剂(例如,碳酸乙烯酯 (EC)、 碳酸二乙酯 (DEC)、碳酸二甲酯 (DMC) 和碳酸甲乙酯 (EMC)) 中的六氟磷酸锂 (LiPF6)[2, 3]。电池生产中使用的原材料对 LIBs 的整体性能起着至关重要的 作用,因为这些材料会影响最终产品的可靠性和耐用性。为了 确保在生产过程中使用合适的原材料,原材料鉴定测试是 LIB 行业中至关重要的 QA 和安全性分析手段。傅里叶变换红外光谱 (FTIR) 是一种无损分析技术,广泛用于 原材料鉴定测试应用。 FTIR 通过测量 IR 辐射的吸收,得到样 品的特征化学指纹。这种简便易用的技术无需任何样品前处理 步骤,能够快速鉴定材料。本研究采用配备钻石晶体 ATR 附件 的 Agilent Cary 630 FTIR 光谱仪 (图 1)对常用的 LIB-电解液溶剂进行鉴别验证。本应 用简报介绍了使用 Agilent MicroLab 软件 创建参考光谱库,并 应用基于方法的方案确认各种电解液溶剂的鉴定结果。图 1. Cary 630 FTIR 光谱仪非常小巧、轻便(20 × 20 cm ,重 3.6 kg),易于操作并可根据样品进行放置,确保获得高质量结果实验部分仪器本研究采用两台配备钻石晶体 ATR 附件的 Cary 630 FTIR 光谱 仪。利用位于安捷伦科技有限公司全球解决方案开发中心(新 加坡)的仪器创建表 1 中列出的光谱参考库。使用该谱库创 建常规的材料鉴定方法。然后将该方法转移至位于澳大利亚 墨尔本的安捷伦光谱卓越中心的另一台仪器上,对 4 种“未 知”溶剂进行鉴定(图 2)。创建谱库采用表 1 中列出的化学品创建谱库。使用 MicroLab 软件可以 轻松创建、维护并管理谱库。只需几秒即可创建新谱库,并且 无论是在创建时还是在其他任意时间,均可直接从结果界面添 加光谱。表 1. 用作光谱标准物质以创建谱库的 LIB 溶剂溶剂名称简称CAS供应商碳酸乙烯酯EC96-49-1Sigma-Aldrich Co碳酸二甲酯DMC616-38-6Sigma-Aldrich Co碳酸甲乙酯EMC623-53-0Tokyo Chemical Industry Co. LTD乙酸乙酯EA141-78-6Sigma-Aldrich Co第 1 步:创建谱库已知溶剂数秒内生成谱库Agilent Cary 630 FTIR-ATR光谱采集第 2 步: 未知样品分析未知溶剂Agilent Cary 630 FTIR-ATR, 采用自动谱库搜索即刻获得用颜色标记的结果图 2. 使用 Agilent Cary 630 FTIR 光谱仪和 Agilent MicroLab 软件创建用于 LIB 溶剂鉴定的鉴定方法1 开始分析2 按照图片式软件指导进行操作3 即刻获得颜色标记的有指导意义的结果图 3. 使用直观的 Agilent MicroLab 软件,通过 Agilent Cary 630 FTIR 光谱仪获得答案只需三步即可轻松完成。图片式软件减少了培训需求,同时尽可能降低用户引 起错误的风险软件用于 Cary 630 FTIR 光谱仪的 MicroLab 仪器控制软件采用可 视化界面,可指导用户执行从样品引入到报告生成的各个分析 步骤(图 3)。样品使用 Cary 630 FTIR,通过分析 4 种独立的“未知”溶剂样品 (这些样品为市售溶剂,物质名称在容器标签上标明) 来测试 用户生成的谱库。样品包括两种碳酸甲乙酯溶液、碳酸二甲酯 和乙酸乙酯。分析使用配备 ATR 附件的 Cary 630 FTIR 分析液体样品时,将一小 滴样品置于 ATR 晶体上。测量完成后,可以用乙醇将晶体擦 拭干净(如有必要) 。仪器操作条件和参数如表 2 所示。表 2. Agilent Cary 630 FTIR-ATR 操作参数参数设置方法谱库搜索所用谱库用户生成的 LIB 溶剂谱库检索算法相似度光谱范围4000–650 cm–1背景扫描次数10样品扫描次数24光谱分辨率2 cm-1背景校正空气补零因子无切趾函数HappGenzel相位校正Mertz不同颜色表示的 置信度阈值绿色(高置信度): 0.95黄色(中置信度): 0.90–0.95红色(低置信度): 0.90结果与讨论采用 Cary 630 FTIR 分别分析了 4 种“未知”溶剂。使用相似 度算法搜索用户生成的 LIB-溶剂谱库,经鉴定,未知样品 1 和 2 为 EMC,匹配质量指数 (HQI) 分别为 0.99393 和 0.94530。未 知样品 3 经鉴定为 DMC,HQI 为 0.97820;样品 4 为 EA(HQI 为 0.99679),如表 3 所示。针对每个谱库项目,软件会自动计算 HQI,该值表示实测光谱 与谱库谱图的匹配程度。在原材料鉴定和确认工作流程中, HQI 通常用作合格/不合格标准。分析人员可以在 MicroLab 软 件中自行设置基于 HQI 的阈值。表 3. 使用 Agilent Cary 630 FTIR-ATR、用户生成的 LIB 溶剂谱库和相似度检索 算法所获得的 LIB 溶剂鉴定结果样品名称材料鉴定结果匹配质量指数未知样品 1碳酸甲乙酯 (EMC)0.99393未知样品 2碳酸甲乙酯 (EMC)0.94530未知样品 3碳酸二甲酯 (DMC)0.97820未知样品 4乙酸乙酯 (EA)0.99679用颜色标记的结果为了轻松查看 Cary 630 FTIR 生成的数据,根据用户定义的 置信度阈值对获得的每个样品的材料鉴定结果进行颜色标记 (图 4)。在本研究中, HQI 高于 0.95 的结果标记为绿色,表明光谱匹 配结果良好,材料的鉴定结果具有高可信度。如图 4 所示, 未知样品 2 的鉴定结果为中等置信度 (HQI :0.90–0.95),并 将颜色标记为橙色。根据分析目的的不同,中等置信度结果可 能向分析人员表明需要进一步研究所测试的溶剂批次。对结果进行颜色标记使 Cary 630 FTIR 系统成为一种简便易用 的一站式解决方案,有助于快速做出决策。样品测量完成后, MicroLab 软件会在屏幕上直接显示最终结果,无需用户进行 任何输入。该软件自动执行谱库搜索,并向操作人员提供最终 的经颜色标记的结果。Ac图 4. Agilent Cary 630 FTIR 光谱仪对 4 种 LIB 溶剂样品的鉴定分析结果(红色曲线)以及谱库匹配结果(蓝色曲线)。表中显示了未知样品 1 至 4 的匹配质量、所用 谱库和匹配结果名称(分别标记为 A 至 D)结论Agilent Cary 630 FTIR 光谱仪提供了一种简单易用的方法, 适用于对锂离子电池 (LIB) 电解液生产中所用的溶剂进行材料 鉴定。Cary 630 FTIR 和 MicroLab 软件有助于快速、轻松地创建 LIB 溶剂谱库,从而快速鉴定 4 种“未知”溶剂样品。MicroLab 软件根据匹配质量指数 (HQI) 对鉴定结果进行颜色 标记,简化了数据审查流程。通过谱库实现了所有 4 种溶剂 的准确鉴定,尽管其中 1 种样品被标记为需要进一步研究。本研究表明,配备 ATR 采样附件的 Cary 630 FTIR 具有出色 的灵活性,适用于对 LIB 相关溶剂进行材料确认。 Cary 630 FTIR 为 LIB 原材料制造商和 LIB 生产商提供了准确、可靠的 材料鉴定方法。它也为致力于开发新一代材料的研发团队提供 了支持。
  • 可用于稳定一创纪录高容量锂离子电池性能的潜在材料
    p  strong美国西北大学的研究人员发现了可稳定创纪录高储电量电池性能的新方法。/strong/pp style="text-align: center "img title="1-1.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/e211e33e-7d72-40e5-911f-ee1ef1fbcc48.jpg"//pp style="text-align: center "电池正极结构示意图,红色为锂,绿色为氧,紫色为锰,深蓝色为铬,浅蓝色为钒。(来源:美国西北大学)/pp  在锂锰氧化物正极基础之上,这一创新可以使span style="color: rgb(255, 0, 0) "智能手机/span和span style="color: rgb(255, 0, 0) "电动汽车/span的电量增加至span style="color: rgb(255, 0, 0) "两倍/span以上。/pp  “span style="color: rgb(31, 73, 125) "i这一电池电极已达到某一有记载最高的过渡金属氧化物基电极的容量。它的容量已超过你现用手机或电脑的两倍。/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) "i美国西北大学McCormick工程学院,材料科学与工程专业Jerome B. Cohen教授Christopher Wolverton/i/span”/i/span/pp  span style="color: rgb(31, 73, 125) "i“这种电极的高容量表明其在用于电动车辆锂离子电池的目标上有了巨大提升。”/i/spanChristopher补充道。/pp  这一研究已于5月18日在科学发展杂志上在线报道。/pp  锂离子电池以在正负极间往复迁移锂离子的方式而工作。正极使用含有锂离子、过渡金属和氧的化合物制取。过渡金属,通常为钴,当锂离子在正负极间来回迁移时有效地储存和释放电能。正极容量因而受到参与反应的过渡金属中的电子数量的限制。/pp  一个法国研究团队于2016年首次鉴别出大容量锂锰氧化物的性能。span style="color: rgb(32, 88, 103) "strong通过使用成本更低的锰替代传统用的钴,研究人员开发出一个成本更低廉且具有之前两倍容量的电极。/strong/span但它也并非完美无瑕。strongspan style="color: rgb(32, 88, 103) "由于电池性能在头两个循环过程中会大大削减,科学家们认为它无法应用于市场。与此同时,他们并未完全理解电池性能衰退及其拥有大容量的化学根源。/span/strong/pp  在绘出一个综合的,原子间相接的正极图像之后,Wolverton的团队发现了材料具备高性能背后的原因:span style="color: rgb(255, 0, 0) "strong它驱使氧参与到反应过程中来。通过使用氧及过渡金属来储存与释放电能,电池具有了更大的容量来储存及利用更多的锂。/strong/span/pp  随后,西北大学的团队将他们的研发重点转向如何稳定电池性能并阻止它的迅速衰减。/pp  span style="color: rgb(31, 73, 125) "i“通过充电过程理论的辅助,我们运用高速计算彻底检索元素周期表,以寻找合金化该含有其它元素化合物的方法,从而去增强电池的性能。/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "i文章共同第一作者,Wolverton 实验室的前博士生Zhenpeng Yao”/i/span/pp  strongspan style="color: rgb(255, 0, 0) "计算鉴别出两种可能有效的元素:钒和铬。研究团队预估将锂锰氧化物与其中的一种混合将会产生可维持正极无与伦比高性能的稳定化合物。随后,Wolverton和他的搭档将在研究室中对这些理论上的化合物进行实验检测。/span/strong/pp  该研究作为电化学能源科学中心,这一由美国能源部科学局资助的能源前沿研究中心的一部分,受到了其基础能源科学项目(项目编码:DE-AC02-06CH11357)的支持。哈佛大学的博士后研究人员Yao,与麻省理工学院的博士后研究人员Soo Kim,均为Wolverton实验室的前成员,并作为文章的共同第一作者。/p
  • 约稿|锂离子电池材料晶体结构分析技术探讨
    p style="text-indent: 2em "span style="text-indent: 2em "据Technavio最新报告数据,锂离子电池全球市场规模在2020-2024年期间有可能增长478.1亿美元,且市场的增长动力将在预测期内加速。/spanbr//pp style="text-indent: 2em "无论是锂电实验室研究,还是商业化锂电失效分析,锂电材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。/pp style="text-indent: 2em "锂电材料晶体结构表征手段主要包括 X 射线衍射技术(XRD)、扩展 X 射线吸收精细谱(EXAFS)、中子衍射(neutron diffraction)、核磁共振(NMR)、电镜(EM)、拉曼散射(Raman)等。/pp style="text-indent: 2em "XRD是目前应用最为广泛的研究晶体结构的技术。而马尔文帕纳科(Malvern Panalytical )便是国内XRD市场主流品牌之一,近日,仪器信息网有幸邀请马尔文帕纳科分享了针对锂电材料晶体结构分析技术的探讨及技术展望。/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) font-size: 18px "istrong专题约稿|锂离子电池材料晶体结构分析技术探讨/strong/i/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "——“锂电检测技术系列——晶体结构分析技术”专题约稿/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "作者:马尔文帕纳科(Malvern Panalytical )/span/pp style="text-indent: 2em "strongInstrument:/strong贵司在锂电材料晶体结构分析方面,可以提供哪些仪器技术?有哪些技术优势?/pp style="text-indent: 2em "strongMalvern Panalytical:/strong锂电检测领域,马尔文帕纳科不仅可以提供电池检测需要的精密仪器,同时,还可以为相关用户获取高质量数据提供专业技术支持。具体而言,即针对不同的电池类型提供对应的解决方案。比如针对生产软包电池,马尔文帕纳科可以提供硬射线(银靶)的高端解决方案;针对原位充放电过程,使用马尔文帕纳科先进的GaliPIX探测器可以每30秒在线测量一次,对铜到银的辐射达100%的接收效率,捕捉到原位充放电过程中晶体相变的细节,进而了解电池相变引起的膨胀和收缩。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/31848243-1328-476c-8df2-fc26e7dbdc18.jpg" title="1.png" alt="1.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "装载了电池样品的Empyrean衍射仪/span/pp style="text-indent: 2em "上图是马尔文帕纳科荷兰实验室对电池进行分析使用的仪器照片和电池样品照片。该仪器使用银靶辐射作为入射光源,光管发出的发散X射线需经过入射光路专用的银靶聚焦光反射镜反射,转化为焦点在探测器上的高强度聚焦光束,电池样品垂直固定在样品台上,光束穿透样品发生衍射,衍射光路使用CdTe重元素半导体感应芯片的GaliPIX3D矩阵探测器采集衍射信号,整套光路为透射几何。实测电池样品为商用方型手机电池。充放电循环设置为3.2-4.2V,1/3C-rate,共4循环。单次衍射扫描总时间为5分钟,实验总计14小时。/pp style="text-indent: 2em "如果用户没有软包电池的样品台,马尔文帕纳科可以为用户提供一个纽扣电池结构的原位充放电样品池,测试您的正负极材料。同时也可以提供加热和冷却选项。不同类型电池样品的解决方案如下表:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 302px " src="https://img1.17img.cn/17img/images/202005/uepic/1ef962a3-2486-4f22-bb67-36e136d13e1e.jpg" title="2.png" alt="2.png" width="600" height="302" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "马尔文帕纳科的主要优势是提供高质量数据,以及切实有效的解决方案,有助于用户电池材料研究及加工工艺改善,或帮助科研用户发表高质量文章。/span/pp style="text-indent: 2em "strongInstrument:/strong strong锂电检测领域主要用户分布于哪些领域?有哪些典型用户?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong马尔文帕纳科用户广泛分布在工业及学术领域。工业领域方面,中国电池行业非常成熟,如比亚迪、CATL等遍布全球的知名公司都是马尔文帕纳科的用户,工业领域通过使用马尔文帕纳科的新技术系统,不断提升电池的质量和性能。学术领域,主要是小规模开发新技术的用户,中国高校处于电池研究的前沿,研究人员正在利用马尔文帕纳科的系统来不断进行新材料的研究开发。/pp style="text-indent: 2em "strongInstrument/strong:strong贵公司针对锂电材料晶体结构分析开发了哪些应用解决方案?/strong/pp style="text-indent: 2em "strongMalvern Panalytical:/strong 马尔文帕纳科的Empyrean XRD平台以其优异性能和灵活性而闻名于世。结合马尔文帕纳科HighScore Plus软件,可以用于专门定制分析电池材料,用户可以从合成阶段到组装电池全流程分析电池材料。利用对应的解决方案,用户可以研究创新正极材料的晶体结构,可以测量合成石墨负极的石墨化程度,可以研究加热或冷却时这些材料的变化;对于组装好的电池,还可以原位测量和分析失效原因,并将这些失效与底层的晶体结构变化联系起来。同时,马尔文帕纳科不仅提供硬件和软件方案,还将提供专业知识和技术支持。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 146px " src="https://img1.17img.cn/17img/images/202005/uepic/c86492d7-c700-41de-9ef7-79f6185b453e.jpg" title="3.png" alt="3.png" width="600" height="146" border="0" vspace="0"//pp style="text-align: center "span style="text-indent: 0em "解决方案免费获取链接:/spanspan style="text-indent: 0em text-decoration: underline "a href="https://www.instrument.com.cn/application/Solution-926077.html" target="_blank" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 0em color: rgb(0, 176, 240) "链接/span/a/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 151px " src="https://img1.17img.cn/17img/images/202005/uepic/5dbe84d2-b164-421b-b6d0-c26224560fdb.jpg" title="4.png" alt="4.png" width="600" height="151" border="0" vspace="0"//pp style="text-align: center "span style="text-indent: 0em "解决方案免费获取链接:/spana href="https://www.instrument.com.cn/application/Solution-926219.html" target="_blank" style="text-indent: 0em color: rgb(0, 176, 240) "链接/a/pp style="text-indent: 2em "strongInstrument/strongstrong:近两年来,贵公司在锂电领域的业界表现如何?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong锂离子电池领域,马尔文帕纳科是X射线衍射解决方案的技术领导者。中国70%的大型电池厂家使用马尔文帕纳科的激光粒度仪与X射线系统来表征电池材料粒度及粒度分布与晶体结构。在研究中,马尔文帕纳科的原位XRD解决方案与GaliPIX探测器设置了很高的基准,该基准也是目前市场上其他产品无法企及的。/pp style="text-indent: 2em "strongInstrument:/strongstrong贵公司如何看待锂电市场为仪器企业带来的机遇?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong随着锂离子电池市场的快速发展,特别是在中国,仪器制造商的前景十分广阔。整体的仪器市场会有高增长的同时,对仪器质量和服务支持的需求也会很高。因此,只有拥有良好基础并做好充足准备的公司才能更好的把握锂电发展带来的机遇。/pp style="text-indent: 2em "strongInstrument:/strongstrong贵公司将采取哪些措施加强对锂电领域的拓展?/strong/pp style="text-indent: 2em "strongMalvern Panalytical: /strong马尔文帕纳科将完全以客户为中心,不断扩展马尔文帕纳科的服务支持和专家网络。由于电池技术仍在不断发展,马尔文帕纳科将不断调整已有的解决方案,以应对新技术引入带来的挑战,使马尔文帕纳科的客户能够缩短开发过程,并在工业规模扩大期间获得正确的解决方案。/pp style="text-indent: 2em "strong附1:马尔文帕纳科X射线衍射仪产品系列/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 267px " src="https://img1.17img.cn/17img/images/202005/uepic/50b4685a-3b98-40a3-a9bb-2f7f932d2190.jpg" title="5.png" alt="5.png" width="500" height="267" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "Empyrean 锐影系列多功能X射线衍射仪/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 161px " src="https://img1.17img.cn/17img/images/202005/uepic/23284c83-b66f-4f81-bb0c-91b0c5e5ce59.jpg" title="6.png" alt="6.png" width="500" height="161" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Aeris 系列台式X射线衍射仪/span/pp style="text-indent: 2em "strong附2:/strongspan style="text-indent: 2em " /spanspan style="color: rgb(0, 0, 0) "strong style="text-indent: 2em color: rgb(255, 0, 0) font-family: 宋体, " arial="" margin:="" padding:=""锂电检测系类专题约稿征集中/strong/span/pdiv class="ContL" id="newContent" style="margin: 0px padding: 0px color: rgb(68, 68, 68) line-height: 26px " arial="" white-space:=""p style="margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em "span style="margin: 0px padding: 0px text-indent: 2em "为促进锂电检测技术发展,近期,器信息网结合锂离子电池检测项目品类,从2019年起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) "(锂电检测系列专题内容约稿征集进行中,欢迎投稿:/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline "15311451191,yanglz@instrument.com.cn/spanspan style="margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) ")/span/ptable border="0" cellspacing="0" cellpadding="0" style="margin: 0px padding: 0px font-family: Arial, tahoma font-size: 12px " align="center"tbody style="margin: 0px padding: 0px "tr class="firstRow" style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "系列序号/span/strong/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "专题链接/span/strong/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "1/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——电性能检测技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian1" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "2/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——形貌分析技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian2" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "3/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——成分分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "a href="https://www.instrument.com.cn/zt/lidian3" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "【链接】/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "4/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——晶体结构分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "5/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月上线/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "5/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——X射线光电子能谱分析技术/span/p/tdtd rowspan="2" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "即将上线/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "6/span/p/tdtd width="359" style="margin: 0px word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="margin-top: auto margin-bottom: auto text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列——安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablep style="margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em "br//p/div
  • 快速分析锂离子电池电解液的劣化
    1. 前言随着全球工业化的进展,能源需求的增长,研究高性能的储能装置受到相关领域的广泛关注,锂离子电池是目前综合性能优异的电池体系。锂离子电池属于二次电池,可以充电后,再次使用,常用在电动汽车,手机,便携笔记本电脑中,属于绿色环保能源。具有体积小,寿命长,高电压,高功率密度,无记忆效应等特点。1.1 锂离子电池工作原理锂离子电池主要通过锂离子的“嵌入/脱出”实现电池能量的存储和释放。过渡金属的嵌锂化合物常用于正极材料,他们的晶格结构对电池的容量至关重要。如以LiCoO2为例,充电过程发生的反应如下:充电时,在外电场作用下,Li+从LiCoO2晶格脱出,穿过电解液隔膜,嵌入石墨负极,电子通过外电路从正极流出,流入负极,正极电压升高,负极电压降低,电池端电压升高,完成充电。放电时,Li+从石墨负极脱出,嵌入LiCoO2正极,电子经外电路从负极流出,对负载做功,流入正极,正极电压降低,负极电压升高,电池端电压降低,实现放电做功。 1.2 锂离子电池电解液正极材料,负极材料,隔膜材料,电解液材料是锂离子电池的四大关键部分。研发电池的关键材料是国内外开发的重点。其中电解液被称为锂离子电池的“血液”,是正负极材料之间传输电子的通道,是获得高功率,高能量密度,长寿命的锂离子电池的保证。电解液通常由纯度高的有机溶剂、锂盐、添加剂等组成。随着锂离子电池不断的充放电过程,电池会出现劣化,其中电解液状态是评价电池劣化的最主要因素之一,也是评价电池劣化的最直观的方法。因此,分析电解液的劣化非常重要。电解液分析的传统方法,如GC / LC-MS、核磁共振、傅里叶红外,这些方法在样品制备和前处理方面,耗时长,操作繁琐。另外,对于电解液中含量较少的成分,传统的方法很难检测出它们的变化差异。而三维荧光结合多变量分析方法,能够以更短的时间、更容易、高灵敏度的检测电解液的变化。客户可以使用三维荧光进行电解液中成分变化的筛选,联合传统分析方法确定变化的具体物质。因此三维荧光提供了一种快速寻找电池劣化的原因,可以有效减少或避免在研发或使用过程产生这种劣化的原因,大幅提高分析效率。 详细的应用数据请点击:https://www.instrument.com.cn/netshow/sh102446/s926995.htm荧光分光光度计F-7100和多变量分析软件3D SpectAlyze日立荧光分光光度计具有超高的扫描速度,无需复杂的样品前处理,能够快速测定样品。另外,日立具有专用多变量分析软件3D SpectAlyze,因此可以提供数据测量和解析一体化,从而获取样品的详细信息。使用荧光分光光度计结合多变量分析软件可以快速评价荧光强度发生变化的体系。
  • 赛默飞离子色谱助力锂离子电池品质提升
    赛默飞离子色谱助力锂离子电池品质提升关注我们,更多干货和惊喜好礼您是否留意到,有一样东西,没有它就没有智能手机和平板电脑,没有它也没有重生的苹果及现在的小米,没有它您也享受不到微信带来的各种便利,当然您更不能坐在舒适、安静及环保的新能源汽车里环游世界,这都是锂电池的功劳。不管您是生活在繁华的大都市还是宁静的小乡村,它影响着我们工作和生活的方方面面。锂电池是1912年由Gilbert N. Lewis早提出并研究,1991年索尼公司商品化了锂离子电池,2019年诺贝尔化学奖颁给了约翰B古迪纳夫等三人,以表彰他们在锂电领域做出的贡献。我国也非常重视锂电产业,近几年出台多部政策鼓励新能源汽车的发展,在政策的推动下,中国锂电产业规模迅猛增长。2018年,中国锂电产业规模约占产业规模的41%,跃居首位,且持续高速增长,据专家预测到2025年,我国锂电产业规模将超过6000亿元,市场前景广阔。锂离子电池的四大关键材料为正极、负极、电解液及隔膜,其中电解液在电池正负极之间进行离子和离子化合物的传输,它的含量和性能直接决定了电池的电导率、容量和输出电压,因此电解液中不同锂盐含量和配比直接影响电池的性能,故锂盐含量的监控就变得尤为重要。 赛默飞解决方案赛默飞Integrion高压离子色谱仪可助您轻松实现锂盐监控,若您选择小粒径柱,分析速度能让您有点小激动。 Thermo Scientific™ 图 常见6种锂盐快速分离色谱图(点击查看大图)Thermo Scientific™ Dionex™ Integrion 高压离子色谱仪图 碳酸酯溶剂在线去除系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析电解液中锂盐具有以下特点:仪器高耐压可达6000psi(PEEK材质),兼容小粒径色谱柱;分析效率高,15min内可完成常规锂盐的分析;柱容量高,分离度好,目标物之间无相互干扰,定量结果准确可靠;选配在线处理系统,兼容碳酸酯溶剂直接进样,无需担心样品水解。赛默飞离子色谱交流群飞飞Hi 老兄,新买的新能源汽车充满电放几天就没电了,咋回事呢?赛老师是电池里的杂质离子引起的“自放电”。飞飞杂质离子来自哪呢?赛老师电解液中碳酸酯和锂盐、正极和负极材料、隔膜和阻燃剂等都能引入杂质离子,即使ppb级别的杂质离子都能影响电池性能。飞飞什么手段能监控ppb级别的杂质离子呢?赛老师赛默飞家的Integrion离子色谱可以助您轻松实现ppb级别杂质离子准确定量,并且配备“只加水”特色技术,省去您配淋洗液的麻烦。图 电解液中常见杂质阴离子分离图谱(点击查看大图)图 “只加水”离子色谱仪原理图(点击查看大图)图 淋洗液自动发生器(Eluent Generator,EG)原理图(点击查看大图)图 在线浓缩、中和、去除重金属离子及疏水性化合物系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析锂离子电池材料杂质离子特点:配备“只加水”技术,可帮您消除每次配制淋洗液的烦恼;多步高压梯度,多组分同时分析时,可兼顾分离度及分析效率;OH体系灵敏度优于碳酸体系,适用于痕量杂质分析;淋洗液和再生液通道完全隔离的微膜抑制器,无交叉污染;可满足电解液碳酸酯溶剂及锂盐、正极和负极材料、隔膜、阻燃剂及粘胶中ppb级别杂质离子监控;可满足标准GB/T 24533-2019及GB/T 18282-2014的要求;选配在线处理系统,实现样品在线浓缩、中和、去除重金属离子及疏水性化合物。赛默飞为电池研发者提供了离子与质谱联用方案,为电池充放电过程中副反应产物定性、为活性物质降解机理提供监控方案,助力研发者掌握电池内部化学变化规律,为我们提供更高性能的电池。图 六氟磷酸锂降解机理途径研究图 电解抑制器原理图(点击查看大图)图 离子色谱串联质谱(IC-MS/MS)(点击查看大图) 滑动查看更多 赛默飞离子色谱与质谱联用特点:Chromeleon变色龙统一操作软件,可实现离子色谱与质谱的同时控制;联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;可助您探索电池充放电过程内部化学变化的奥妙。 总结从电解液中锂盐含量的监控,到电池材料杂质离子检测,再到电池内部物质转化的研究,赛默飞离子色谱均能为您提供优质的解决方案。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 浅谈现有锂离子电池检测标准
    p  由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。/pp  strong1 电池安全性能检测标准简介/strong/pp  目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。/pp  应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3)/pp  和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。/pp  目前,国内外常用的锂离子电池标准列表归纳于表1。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title="003.jpg.png" alt="003.jpg.png"//pp  strong2 现有标准的侧重点分析/strong/pp  现行的主要标准可概括为以下几类:/pp  strong2.1 主要针对运输过程中的外部环境和机械振动/strong/pp  如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。/pp  strong2.2 主要针对设计和制造过程/strong/pp  如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。/pp  strong2.3 主要针对锂离子电池电性能和安全性/strong/pp  如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。/pp  strong3 现有标准的不足/strong/pp  过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。/pp  根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。/pp  迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。/pp  在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。/pp  strong4 结束语/strongbr//pp  安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。/pp  随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。/pp  span style="color: rgb(127, 127, 127) "i文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局)/i/span/p
  • 喷雾干燥技术在锂离子电池中的应用分享
    《求是》杂志于 5 月 16 日发表习总书记重要文章《正确认识和把握我国发展重大理论和实践问题》。文章指出要正确认识和把握碳达峰碳中和,须知绿色低碳发展是一个复杂工程和长期任务;需要狠抓绿色低碳技术攻关,加快先进技术推广应用,深入推动能源革命,增加新能源消纳能力,加快建设能源强国。而锂离子作为新兴的储能物质,具备其能量密度高、安全性好、无记忆效应、循环寿命长等优点,被广泛应用于各种可穿戴电子设备和电动汽车等领域。近年来新能源汽车已成为全球锂电产业高速发展的主要动力。此外,电化学储能作为电网储能技术的重要组成部分,在削峰填谷、新能源并网和电力系统辅助服务等大政方针下扮演着愈发重要的角色。当前市场迫切需要开发出更高能量密度、更低成本、循环稳定性更好和可逆比容量更高且安全的锂离子电池,满足行业应用的同时实现社会绿色可持续发展。为方便大家了解关于锂离子材料的最新研究动态,我们给大家分享几篇相关综述和一些利用喷雾干燥技术开展的研究应用,供大家参考学习。代表综述1Particuology (2022): Balancing particle properties for practical lithium-ion batteries作为最先进的二次电池,锂离子电池在索尼公司于 20 世纪 90 年代初推出以锂钴为负极材料电池后,一直占据着消费电子市场。锂离子电池高效运行的关键在于富锂离子的电解质与电极中活性材料颗粒之间的有效接触。电极材料的颗粒特性影响锂离子的扩散路径、扩散阻力、与活性材料的接触面积、电化学性能和电池的能量密度。为了使锂离子电池达到满意的综合性能,不仅要注重材料的改性,而且要平衡电极材料颗粒的性能。因此,本文将从三个方面分析颗粒特性对电池性能的影响:颗粒尺寸、颗粒分布和颗粒形状。深入了解粒子对电极和电池的作用和机理,将有助于开发和制造实用的锂电池。锂电池本质上是锂离子在两个电极之间反复循环 “流动”,锂离子会不断地被脱嵌和嵌入到正负极材料中,这是电极材料颗粒与电解液接触和反应的过程。因此,锂化和脱锂过程受电极材料颗粒特性的影响。由于电极中活性物质粒子的高比表面积,以及传输和化学转化中多层次结构的多样性,平衡粒子的性能成为实际 LIBs 技术突破的关键。颗粒的形态和尺寸影响锂离子的扩散路径、扩散阻力以及活性材料与电解质的接触面积,进而影响 LIBs 的电化学性能。较小的粒子通常具有较短的从粒子内部到表面的路径,而球形粒子可以提供较大的接触面积并提高电极中的活性物质含量。同时,颗粒大小分布对电极材料颗粒的堆积有直接影响,这种空间效应会影响锂离子的脱嵌,从而影响电池性能。下图作者使用八卦图的方式,展示平衡理念,非常形象的描述了离子颗粒特性的几个因素。更多内容请阅读原文献内容。2Materials (2018): Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries锂离子、钠离子及相关电池中电极材料的性能不仅取决于其化学成分,还取决于其微观结构。因此,合成方法的选择至关重要的。在各种各样的合成或成型路线中,报道了越来越多的组合方法,喷雾干燥作为一种多功能工具脱颖而出,提供了扩大到工业级别的潜力。在这篇文章中,概述了迅速增加的文献研究数量,包括溶液的喷雾干燥和悬浮液的喷雾干燥。并特别关注待喷雾干燥的溶液/悬浮液配方的化学方面;也考虑了喷雾干燥前驱体的后处理以及由此产生的颗粒形态。在表格中引用了 300 多种出版,其中条目根据最终化合物组成、起始材料、碳来源等列出。作者建议,关于电极材料的合成,应从早期阶段考虑将结果从克级的实验室规模转移到公斤级工业规模的可能性。这在电极材料研究中尤其重要,因为在从小批量到大批量或连续生产时,由于传热问题,微观结构通常是放大时受影响最大的特性之一。容易放大是喷雾干燥的优势之一,这是一种通用且强大的技术,其在食品和制药行业已成为经典的方法,最近已扩展到电极材料领域的研究。下图来源原文献中:喷雾干燥发表文献&喷雾干燥原理介绍喷雾干燥微观颗粒形态喷雾干燥流程示意图3Drying Technology (2017): Laboratory spray drying of materials for batteries, lasers, and bioceramics喷雾干燥技术是一种适用于各种先进材料规模化生产的工艺。广泛应用于材料、化学、食品和制药工业领域。该方法具有连续性、可扩展性、成本低、易于产业化等特点。它提供了生成具有特殊结构的功能性粉末的能力,例如复合材料、核壳或封装颗粒等。最近的实验室规模研究集中在开发:用于下一代锂离子电池的纳米/微结构电极材料,具有增强的电池容量和优异的电化学性能透明材料的激光陶瓷生物陶瓷,如具有改善生物活性和治疗效果的骨替代物、牙科植入物和胶连剂本文综述了这些应用领域的研究进展,并强调了实验室规模的喷雾干燥在相应的先进材料加工路线中的重要性。BUCHI 经典实验室喷雾干燥仪 B-290 示意图不同电极材料合成路线(点击查看大图)相关研究应用介绍1Dalton Trans(2021): Spray-dried assembly of 3D N,P-Co-doped graphene microspheres embedded with core-shell CoP/MoP@C nanoparticles for enhanced lithium-ion storage通讯作者:上海交通大学何雨石教授具有精确控制工程的过渡金属磷化物(TMP)材料的微/纳米结构调控的新型合成方法的发展对于实现其在电池中的实际应用至关重要。本研究采用喷雾干燥技术构建了三维(3D)N,P 共掺杂石墨烯(G-NP)微球,微球内嵌 CoP@C 和 MoP@C 两种核-壳型纳米粒子(CoP@C ⊂ G-NP, MoP@C ⊂ G-NP)。这种有意义的设计显示了微观结构 G-NP 和核壳 CoP@C/MoP@C 纳米粒子系统的化学性质之间的密切相关性,这有助于锂离子电池(LIBs)中的负极性能。所获得的结构具有通过共掺杂杂原子(N,P)制备的稳定的多孔 G-NP 骨架,该骨架具有三维导电高速通道,允许离子和电子快速通过并保持材料的整体结构完整性。内部碳壳可有效抑制体积变化并防止 CoP/MoP 纳米颗粒聚集,提供出色的机械稳定性。因此,CoP@C ⊂ G-NP 和 MoP@C ⊂ G-NP 复合材料在 0.1 A g-1 的电流密度下具有 823.6 和 602.9 mAh g-1 的高比容量;在 1 A g-1 下,500 次和 800 次循环后,比容量为 438 和 301mAh g-1,表现出及其出色的循环稳定性。下面为原文献截图:制备工艺示意图(点击查看大图)电化学性能测试(点击查看大图)2Adv. Energy Mater. (2018): Spray-Dried Mesoporous Mixed Cu-Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Li-Ion Battery Anodes本研究开发了剥离石墨烯包裹的介孔氧化铜镍(CNO)纳米复合材料,采用快速喷雾干燥技术,通过石墨烯纳米片(GNSs)均匀包裹了分层介孔 CNO 纳米砌块,其协同效应有效地保护了电活性物质免受充放电过程引起的体积变化影响。由于脱落的石墨烯片的笼化效应产生的有趣结构和形态特征,这些 3D/2D CNO@GNS 纳米复合微球有望作为高性能锂离子电池的负极材料。它们表现出前所未有的电化学行为,如高可逆比容量(在低 0.1 mA g-1 下的初始放电容量超过 1700 mAh g-1; 在 1 和 5 mA g-1 下,800 次和 1300 次循环后,比容量为 850 和 730 mAh g-1;在超过 2000 次循环 10 mA g-1 的非常高的电流密度下,比容量仍高于 400 mAh g-1),出色的库伦效率和长期稳定性(超过 3000 次循环,容量保持率>55%)。与通过传统技术制备的大多数过渡金属氧化物和纳米复合材料相比,其在高电流密度下是显著的。这种简单而创新的材料设计对开发用于锂离子电池或其他储能设备的先进转换材料具有启发意义。(点击查看大图)(点击查看大图)(点击查看大图)(点击查看大图)3ACS Appl. Mater. Interfaces (2020): MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid−Electrolyte Interphases on Silicon Nanoparticle Bundles通讯作者:上海交通大学何雨石教授,同济大学杨晓伟教授喷雾干燥技术制备高度稳定的纳米硅负极。硅基材料是下一代锂离子电池理想的负极材料;然而,在充放电过程中,硅的体积变化很大,导致电极断裂和固体不稳定−电解质界面(SEI)层,严重影响其稳定性和库仑效率。新兴的 2D MXene 由于其有趣的表面物理化学特性,在电催化领域得到了广泛的研究。本研究将硅纳米颗粒封装在坚固的微米级 MXene 框架中,其中 MXene 纳米片通过毛细管压缩力作用力下发生预褶皱,以有效缓冲体积变化,另外通过简单的热自交联反应在相邻纳米片之间形成了丰富的共价键(Ti−O−Ti)进一步保证了 MXene 框架相邻薄片的坚固性。这两个因素都稳定了电极结构。此外,在充放电循环时, MXene 纳米片上丰富的氟/F封端基团有助于在框架外原位形成高度紧凑、耐用且机械坚固的富含 LiF 的电解质界面(SEI)层,这不仅抑制了 Si 和有机电解质之间的副反应,还增强了 MXene 框架的结构稳定性。得益于这些优点,本研究所制备的阳极具有高达 1797 mA h/g 的高比容量,并且 500 次循环后,高容量保持率为 86.7%,平均库仑效率为 99.6%。可以说,这项工作为其它具有强烈体积效应的高容量电极材料提供了思路。(点击查看大图)(点击查看大图)(点击查看大图)4Ionics (2021) 27: Green and efficient synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material with outstanding electrochemical performance by spray drying method通讯作者:天津工业大学时志强教授,宁波大学阮殿波教授高镍层状材料由于具有高比容量等优点,已被广泛作用锂离子电池的正极材料。然而,传统的共沉淀法存在生产周期长、污水污染等缺点,因此开发一种高效、环保的合成方法具有重要意义。基于此,本文以醋酸盐为原料,采用喷雾干燥法成功合成了 LiNi0.8Co0.1Mn0.1O2 材料,并研究了喷雾溶液浓度对电化学性能的影响。XRD、SEM 和 EDS 测试结果表明,合成的 LiNi0.8Co0.1Mn0.1O2 材料样品具有层状晶体结构,一次粒子堆积形成二次球形粒子微观结构、组分分布均匀。恒电流充放电测试结果表明,高浓度溶液制备的样品表现出优异的循环性能,初始放电容量为 199.3 mAh g-1,在 2.8-4.3 V 下循环 300 次后容量保持率高达 83%,电流密度为 1C(1C=180 mAh g-1 )。电池制备工艺图(点击查看大图)5Journal of Electroanalytical Chemistry (2019): Silicon@graphene composite prepared by spray–drying method as anode for lithium ion batteries通讯作者:江苏大学刘云建教授本文采用喷雾干燥法(进、出口温度分别为 160℃ 和 110℃)结合低温还原技术制备了硅@石墨烯复合材料作为负极材料。通过改进的 Hummers 方法合成了氧化石墨烯材料,并超声波处理将氧化石墨烯粉末分散到 5% 的乙醇溶液中。并在剧烈搅拌下将纳米硅粉末均匀地分散到氧化石墨烯悬浮液中形成硅@石墨烯复合材料。XRD 结果表明复合材料由硅和石墨烯组成,并经 FT-IR 和拉曼光谱验证。 SEM 和 TEM 结果表明,硅@石墨烯粉末为微米级别的球形颗粒,石墨烯片包裹了纳米硅颗粒。硅@石墨烯复合材料显示出优良的电化学性能,当硅和氧化石墨烯的质量比在 1:4 时,可表现出最佳的电化学性能,在100 mAh g-1 时具有 1298.1 mAh g-1 的高初始充电容量。此外,该样品表现出良好的倍率性能,这表明它是一种很有前途的锂离子电池负极材料。(点击查看大图)(点击查看大图)(点击查看大图)瑞士步琦公司是实验室喷雾干燥领域全球市场领导者,提供纳米至微米级颗粒的完整解决方案,从 1979年推出第一台实验室喷雾干燥仪 B-190 以来,迄今已有 40 多年的历史。凭借其高品质的产品,专业的服务,领先优势的制造工艺技术如压电技术喷雾、红宝石喷嘴冒、专利技术静电涂层分离器和溶剂安全处理惰性循环装置等深受广大客户青睐!如需上面文献资料或更多产品资料信息,欢迎联系我们。
  • 助力新能源发展,分享锂离子电池前沿内容
    锂离子电池是一种先进的电池技术,主要由正极、负极、隔膜和电解质四个部分组成。目前,全世界都在关注新能源的研发,针对锂离子电池从原材料前体制作到最终电池生产,Micromeritics拥有可供电池生产各个阶段使用的不同仪器。 为帮助广大用户更深入了解Micromeritics在锂离子电池方面的技术手段,本次研讨会将会讲解锂离子电池的基础知识,以及Micromeritics的不同表征仪器在锂离子电池的研发、生产环节中的应用。内容将涉及锂离子电池中的正极、负极、隔膜、固态电解质等多孔材料的比表面、孔径分布、孔容、颗粒尺寸、密度和粉体宏观性质的测量分析,同时结合部分理论知识和应用案例让大家更好地理解学到的知识。 如您对锂离子电池方面的专业内容感兴趣,欢迎参加我们的网络研讨会。 时间2022年4月28日14:00-15:00 主题锂离子电池基础知识及Micromeritics产品在该领域的应用 主讲人张晓天博士 应用科学家 如何报名参加Step 1: 扫描下方二维码 Step 2:点击“报名观看”,填写信息并提交完成注册 Step 3:直播开始前,通过原报名链接或二维码进入直播间 Step 4:已报名用户请选择“我已报名 直接进入”,通过验证后即可观看Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。 公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有世界级的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 锂离子电池原料的含水量检测
    pstrong一、前言/strongbr/  锂电池与我们生活息息相关,扮演着不可或缺的角色。比如我们每天不离手的手机以及笔记本电脑,家用电器等。作为交通工具的飞机、混合动力车、电动车等对锂离子电池的需求也显著增加。在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。br/strong二、水分对锂电池的影响及市场现状/strongbr/strong2.1 水分会对锂离子电池造成哪些不良影响?/strongbr/  主要表现为电池容量小,放电时间变短,内阻增大,循环容量衰减,电池膨胀等现象,因此在锂离子电池的制作过程中,必须要严格控制环境的湿度和正负极材料、隔膜、电解液的含水量。br/strong2.2 锂离子电池水分控制方法检测现状?/strongbr/  目前市场上水分含量测定的技术方法最常用的是加热失重法和卡尔费休法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。br/strong三、分析与方法/strongbr/strong3.1 仪器/strongbr/  AKF-BT2015C 锂电池卡氏水分仪br/strong3.2 技术参数及特点/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/2f8bdcbf-c688-4dfd-aa4d-bedd9c41a0f0.jpg" title="1.jpg"//ppstrong特点:/strongbr/1. 卡氏顶空样品瓶加热技术,有效避免加热炉膛和反应杯污染;br/2. 禾工独创的样品瓶连接器,让载气无须穿刺样品瓶隔垫即可进入到样品瓶内部,密封性好,减少隔垫耗材的同时可拆卸方便;br/3. 精确流量控制设计,载气消耗量仅为同类进口产品管式加热炉的十分之一;br/4. 大功率散热槽设计,迅速冷却样品瓶,提高工作效率;br/5. 7" 高分辨率彩色触摸屏界面,多参数显示,直观简洁;一键测定,操作极为简便;br/6. 防凝结保温管路无死体积设计,保证挥发后的水分管壁系统无残留;br/7. 加热温度最高达300° ,0-100ml 气体流量自由调节,满足大多数固体原料水分测定需求;br/8. 全自动恒流极化检测,无需人工设定终点,检测精度高,水分测量分辨率达到0.1ug br/9. 一键启动,操作简单,稳定可靠,故障低,使用寿命长;br/strong3.3 分析原理/strongbr/  样品用卡氏加热炉专用密封进样小瓶装载,用顶空瓶连接器密闭后进入加热槽中,样品中的水分(还可能有其他挥发性的溶剂)以蒸气的形式完全释放,通过干燥载气(如干燥的空气或者氮气)由顶空瓶经加热伴管路转移到KF 滴定杯中,然后卡尔费休水分测定仪进行检测并显示测量数据。br/strong3.4 检测方法/strongbr/1.将电解液注入电解池以及电解电极的阴极室内,液位至下刻度线,加入微量水然后电解至平衡。br/2.将气源连接至卡氏加热炉,将干燥样品瓶装入加热槽,温度设置为250℃,流量调整为50mL/min,吹扫样品瓶和管路内可能存在水分,等待再次平衡。br/3.将样品瓶移至冷却槽冷却后取出,用电子天平称取约0.5~3g 样品置于样品瓶内,然后在水分仪上点击开始测量,同时将样品瓶装入加热槽。br/4.输入样品称取的重量,等待测量结束后显示最终测量结果。br/strong四、数据与结论/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c2469d3d-16f8-4766-a1cb-7d8da27630e8.jpg" title="2.jpg"//ppstrong结论说明:/strongbr/  通过本实验方法,可以精确测得锂离子电池原料的水分含量,检测结果精度与重复性均达到进口同类产品的水平。AKF 库仑法卡尔费休水分测定仪和KH-1 卡氏加热炉顶空进样器联用,能自动扣除漂移,操作便捷,能准确可靠的测出锂电池跟原料的含水量。/p
  • 飞行安全 第 一:如何让锂离子电池更安全?
    2013年1月7日,一架波音787飞机上的保洁人员发现飞机后舱冒烟。一名机修工在经过仔细检查后,发现火灾源自APU电池外壳的盖子。所幸这架飞机当时停在美国洛根国际机场,因此183名旅客和11名机组人员均未受伤。九天后的2013年1月16日,另一架波音787飞机因出现主锂离子电池事故而不得不紧急降落在日本高松机场。因此,联邦航空管理局(FAA)在NTSB(美国国家运输安全委员会)开展调查前,停飞了整个787“梦幻客机”机队。01 被忽视的严重问题 NTSB调查发现,火灾最可能的原因是锂离子电池发生内部短路。这种短路导致热失控,造成相邻电池温度升高,从而导致过热、火灾甚至爆炸。波音787飞机是第*一架使用大型锂离子电池的飞机,经过一番艰难排查,发现其存在一定的局限性。总结如下:波音、FAA和电池制造商并未完全解锂离子电池的相关风险。然而,这不是锂离子电池第*一次在飞机上引发问题。就在今年,FAA发布了一份在线清单,列出了从1991年3月至2019年5月22日发生的258起独立事件,其中包括锂离子电池导致的烟雾、火灾、过热或爆炸。自2016年4月以来,国际民用航空组织一直实施有关锂离子电池航空运输的严格法规——美国今年也已效仿此项举措。那么,为什么锂离子电池如此危险?制造商可采取哪些措施来降低风险?02 什么原因导致锂离子电池过热?NTSB调查发现,电池发生的内部短路会导致火灾。短路会导致电流过大,使电池过度加热,从而使之点燃。如今,人们普遍认为,电池内异物产生的细小金属颗粒是导致短路的原因。产生这种现象的方式如下:1. 化学短路在这种情况下,阴极附近的电解质内尺寸为20μm至50μm的微小金属颗粒发生电离。电离原子带正电荷,表明它们会被吸引至阳极。在向阳极移动时,它们会穿透电池隔板,从而导致阴极至阳极侧发生短路。2. 物理短路如果阴极电解质中存在大金属颗粒(如尺寸超过100μm),则它们的尺寸大到足以在隔板上打孔,并将电流直接从阴极传送至阳极侧,从而再次发生短路。03 如何对应以确保安全?为确保安全操作,电池制造商和电池组件提供商必须检查并减少生产中的金属异物。必须将异物保持在最*低限度的区域如下:阳极和阴极材料导电增强剂浆料形成过程镀层和干燥过程检查这类区域中的金属异物的尺寸和密度将有助于避免发生会导致整个波音787机队停飞的现场故障。 日立X射线异物分析仪EA8000 日立分析仪器开发出专门用于检测和分析锂离子电池内金属异物的X射线分析仪EA8000,它创新性地协同使用X射线透射成像与先进的X射线荧光光谱,具有极快的测量速度、高准确性和高精密度等特点,可用于维持整个锂离子电池生产过程中的质量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制