当前位置: 仪器信息网 > 行业主题 > >

锂钠钾离子

仪器信息网锂钠钾离子专题为您整合锂钠钾离子相关的最新文章,在锂钠钾离子专题,您不仅可以免费浏览锂钠钾离子的资讯, 同时您还可以浏览锂钠钾离子的相关资料、解决方案,参与社区锂钠钾离子话题讨论。

锂钠钾离子相关的资讯

  • 《单颗粒电感耦合等离子质谱法检测纳米颗粒》国家标准解读
    单颗粒电感耦合等离子质谱法(spICP-MS)是一种在非常低的浓度中检测单个纳米颗粒的方法。与传统表征金属纳米颗粒技术相比,使用单台ICP-MS,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测,这是透射电子显微镜(TEM)、动态光散射(DLS)等纳米粒径表征技术无法完成的,并且此方法可将样品中溶解的纳米颗粒离子与固体纳米颗粒区分开来。近期,国家纳米科学中心牵头制定了国内首项单颗粒电感耦合等离子体质谱法(spICP-MS)国家标准《GB/T 42732-2023 纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法》。本文特邀国家纳米科学中心葛广路研究员、郭玉婷高级工程师对该标准进行解读。一、背景 目前,基于纳米技术或含有工程纳米颗粒的产品已广泛使用,并开始影响有关的行业和市场。因此,消费者可能直接或间接地接触到(除天然纳米颗粒外的)工程纳米颗粒。在食品、消费品、毒理学和暴露研究中,工程纳米颗粒的检测成为纳米颗粒应用潜在效益和潜在风险评估的必要部分,迫切需要建立产品、试验样品和环境等复杂基质中痕量纳米颗粒检测方法标准。二、标准概述本标准包括范围、规范性引用文件、术语和定义、缩略语、适用性、步骤、结果、测试报告8章内容和1个资料性附录。本标准描述了使用电感耦合等离子体质谱法(ICP-MS)在时间分辨模式下测定单个纳米颗粒的质量和悬浮液中离子浓度,检测水相悬浮液中纳米颗粒,并表征颗粒数量与质量浓度、颗粒尺寸及数均尺寸分布的方法。三、适用性本方法仅限用于纯纳米颗粒的水相悬浮液、材料或消费品的水相提取液、食品或组织样品的水相消解液、水相毒理学样品或环境水样品。非水相样品处理见标准参考文献。水相环境样品经过过滤和稀释,食品和毒理学样品经过化学或酶消解和稀释。将水相悬浮液中的颗粒数量或质量浓度与原始样品中的浓度联系起来需样品相关提取、效率和基质效应等信息,并由用户进行额外验证。四、主要技术内容本文选取原理、重要参数传输效率和响应值及线性的确定、结果计算方面部分重点内容进行讲解,详细内容及仪器设置、试样制备等相关内容与注意的事项参见标准原文。1 原理单颗粒电感耦合等离子体质谱(spICP-MS)是一种能够在非常低的浓度下检测单个纳米颗粒的方法,此方法适用于水相悬浮液中无机纳米颗粒的尺寸及数均尺寸分布、颗粒数量浓度与质量浓度,悬浮液中离子浓度的测定。将常规的ICP-MS系统设置为以高时间分辨率模式采集数据。水相样品连续进入ICP-MS中,雾化后,一部分纳米颗粒进入等离子体并被原子化和电离。每个原子化的颗粒相对应的离子团为一个信号脉冲。使用合适的驻留时间和适当稀释的纳米颗粒悬浮液,质谱仪可实现单个纳米颗粒检测,称为“单颗粒”ICP-MS。对纳米颗粒悬浮液进行稀释,以避免违反“单颗粒规则”(即在一个驻留时间内有一个以上的颗粒到达检测器)。由于离子团中的离子密度很高,其产生的脉冲信号远高于背景(或基线)信号。脉冲强度、脉冲面积与纳米颗粒中被测元素的质量,也即纳米颗粒直径的立方成正比(假定纳米颗粒的几何形状是球形)。单位时间检测到的脉冲数与待测水相悬浮液中纳米颗粒的数量成正比。2 确定传输效率引入的样品只有一部分到达等离子体,结果的计算需要知道传输效率。使用已知的纳米颗粒标准样品测定传输效率。如果没有可用的纳米颗粒标准样品,可以使用任何其他良好表征过的纳米颗粒悬浮液,重新计算稀释倍数和浓度。纳米颗粒尺寸已知,颗粒浓度未知时,结合分析一系列与纳米颗粒相同元素的离子标准溶液,确定传输效率。3 确定响应值及线性随着纳米颗粒的直径增大,信号响应值将按三次方增加,所以需要对纳米颗粒每种组成每种尺寸范围的响应进行验证。校准最好使用纳米颗粒标准样品,无法获得这样的标准样品时,在相同的样品分析条件下,使用被测元素的离子标准溶液进行此步骤中的校准。分析离子溶液的标准工作液,用线性回归法确定校准曲线的相关系数,校准函数的斜率,即为ICP-MS响应值。4 结果计算4.1 检出限的计算由空白对照样品中的颗粒数量确定颗粒数量浓度检出限,结合平均颗粒质量,计算质量浓度检出限。由刚好能从背景中区分出来的脉冲信号强度决定颗粒尺寸检出限。4.2 颗粒浓度和尺寸、离子浓度的计算由时间扫描中检测到的脉冲数、传输效率、样品流速计算水相样品中的颗粒数量浓度;样品中颗粒信号强度、离子标准溶液的ICP- MS响应值、传输效率、驻留时间、样品流速、纳米颗粒材料的摩尔质量和被测物的摩尔质量计算单个颗粒的质量,假设颗粒为球形,计算得到颗粒的直径。由离子产生的连续基线信号估算样品中的离子浓度。通常,可以用商用软件或将测试数据导入定制的电子表格程序进行处理,以计算纳米颗粒的数量、质量浓度、尺寸(等效球直径)和相应数均尺寸分布,并同时确定样品中存在的离子质量浓度。本标准的资料性附录A给出了定制的电子表格程序处理数据的示例。五、结语本标准等同采用ISO/TS19590:2017 Nanotechnologies—Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry,于2023年8月6日发布,将于2024年3月1日实施,是国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准,支撑spICP-MS作为一种普适性方法的推广与应用。本标准由国家纳米科学中心、珀金埃尔默企业管理(上海)有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、清华大学、中国计量科学研究院、杭州谱育科技发展有限公司,安捷伦科技(中国)有限公司制定。在起草阶段,标准起草工作组选用金纳米颗粒,在国家纳米科学中心、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、安捷伦科技(中国)有限公司、杭州谱育科技发展有限公司,利用不同仪器进行了测试,使用仪器所带软件对颗粒尺寸和颗粒数量浓度进行了处理计算。在征求意见阶段,向四川大学、中国地质大学、武汉大学、清华大学深圳国际研究生院、东北大学、华东师范大学、中山大学、厦门大学、中国科学院过程工程研究所、中国科学院南京土壤研究所、中国科学院生态环境研究中心、上海市食品药品检验研究院、生态环境部南京环境科学研究所、中国科学院高能物理研究所、山东英盛生物技术有限公司等高校、科研院所和企业发送了标准征求意见材料,征求意见专家多为分析化学、纳米科学等领域专家,给本标准提出了具有代表性的意见,在此感谢他们对本项标准制定工作的支持。本文作者: 葛广路 研究员;郭玉婷 高级工程师 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 Email:gegl@nanoctr.cn guoyt@nanoctr.cn
  • 核磁共振助力 中德联合发现钠钾离子通道选择性新机制
    p  记者从中国科学技术大学获悉,该校田长麟教授研究组与德国莱布尼茨分子药物所Adam Lange及孙涵课题组合作,应用固体核磁共振、单通道电生理及分子动力学模拟等方法揭示了NaK离子通道的离子选择性新机制。该研究成果已发表在《自然· 通讯》上。/pp  离子通道是细胞膜上的一类特殊亲水性蛋白质微孔道,在细胞膜上形成动作电位和梯度电位,决定细胞的兴奋性和传导性。绝大多数离子通道对不同的离子有选择性的通透,但仍有一部分离子通道可以非选择性地通过几种离子。研究人员在KcsA钾离子通道结构基础上,提出了“钾离子通道通过选择过滤器中主链C=O形成水合离子配位方式实现离子选择性”的静态机制模型,获得了广泛认同。但是,近年来高分辨率X-射线晶体结构显示NaK离子通道在结合不同离子时其静态通道结构完全一致,这无法解释其如何识别和通透这些离子。/pp  田长麟课题组以非选择性通道NaK为研究对象,将其重组装到磷脂双分子膜内(还原离子通道所存在的细胞膜环境),并与Adam Lange组合作,通过魔角旋转固体核磁方法获得高分辨固体NMR谱图,并获得了不同金属阳离子条件下谱峰归属。NMR谱图数据表明,NaK在生理环境下通道存在两种构象,钾离子选择结合其中一种,而钠离子选择另一种。双方进一步通过固体核磁对原子间距离测量勾画出了两种构象的结构差别,并用分子动力学模拟的方法验证了两种构象分别对K+和Na+有高度的选择性。/pp  这一研究成果提出了离子通道选择性的新机制。/p
  • 大连化物所提出颗粒细化诱导提高钠/锂离子电池循环容量的新机制
    近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队和燕山大学唐永福教授团队合作,在钠/锂离子电池电极储能机理研究方面取得新进展。  近年来,钠离子电池作为研究热点得到了国内外广泛关注,取得了快速发展。研究发现,具有较高Na+储存性能和循环稳定性的电极材料,对于提高钠离子电池的能量密度和倍率性能十分重要。 本工作中,研究团队设计了一种珊瑚状的FeP复合材料,该材料可锚定FeP纳米颗粒,并将其均匀分散在氮(N)掺杂的三维(3D)碳骨架(FeP@NC)上。珊瑚状FeP@NC复合材料具有较短的电荷转移路径和较高的导电氮掺杂碳网络,可显著改善复合材料的电荷转移动力学。同时,由于FeP纳米颗粒周围具有高度连续的N掺杂碳骨架和弹性缓冲的石墨化碳层,基于FeP@NC复合材料的钠离子电池(SIB)表现出优异的倍率性能和循环性能,在10A/g下经10000次循环后其容量保持率为82.0%。  更为重要的是,针对循环过程中电池容量逐渐上升的现象,研究团队结合电化学研究和原位电镜表征分析,证实了一种独特的颗粒细化在循环过程中提高容量的作用机制,这种容量提升效果在小电流下表现得更为显著。研究表明,均匀分布在氮掺杂碳基体上的FeP纳米颗粒,在第一个循环中经历了细化-复合过程,经过数次循环后呈现出全区域细化的趋势,这种细化对周围的非晶碳产生强烈的吸附作用,引起复合材料石墨化度和界面磁化强度逐渐增加,为Na+的存储提供了更多的额外活性中心,进而提高了循环容量。这种容量提升机制也可以扩展到锂离子电池(LIBs)。研究发现,在10A/g下,经5000次循环后,基于FeP@NC复合材料的LIBs的容量保持率为90.3%,超过了已报道的FeP基复合材料的容量保持率。  该研究提出了一种在循环过程中经颗粒细化诱导提高电池容量的新策略,为设计高性能的SIBs/LIBS负极材料提供了新思路。  相关成果以“A Coral-Like FeP@NC Anode with Increasing Cycle Capacity for Sodium-Ion and Lithium-Ion Batteries Induced by Particle-Refinement”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所DNL17博士研究生王灿沛。上述研究工作得到国家自然科学基金、中科院青年创新促进会等项目的资助。  文章链接:https://doi.org/10.1002/anie.202110177
  • 科学家发明癌细胞“照妖镜”:黄金纳米粒子
    以色列物理学家研发使用黄金纳米粒子检测早期癌症的方法首次通过人体测试。以色列巴伊兰大学纳米科技及先进材料研究所的德奥尔· 菲克斯勒教授率领的团队,经过5年的研究证实了纳米技术在癌症早期诊断中的光明前景。他们研发的非侵入无辐射光学系统,被用于检测脑部、颈部及口腔癌症,也可用来检测位于舌头、咽喉部位的癌症发病情况。该方法已在动物身上测试成功,最近也通过了人类测试,被确认有效。  几分钟即可检测出癌症且成功率超过90%  这种发明是如何工作的?如果一位口腔感到疼痛并伴有其他病症的患者去看医生,有一种令人不安的可能就是,该患者正受到口腔癌、舌癌或喉癌的折磨。医生要求患者使用一种特殊的混合物漱口,几分钟后便能确认患者是否患有癌症。  这样的测试很简单,患者只要花上几分钟,用含有黄金纳米粒子的混合物漱口,这些粒子能够有效给癌细胞着色,着色部位被一个专门研发的工具扫描成图,医生便可在电脑屏幕上查看结果。当前的临床试验表明,该方法可成功检测出人类舌头及咽喉部位的癌症。舌癌的检测在特拉维夫大学牙医学院进行,咽喉癌的检测由舍巴医学中心耳鼻喉部完成。菲克斯勒说:&ldquo 我们将试验结果和病人活检结果进行对比,该试验的成功率超过90%。&rdquo   两种技术手段成就这一快速检测技术  菲克斯勒研发的检测方法包括了两种在医学领域还未充分展示其全部潜能的技术手段,&ldquo 物理扩散&rdquo 技术和&ldquo 纳米技术&rdquo 。  &ldquo 物理扩散&rdquo 技术发展于上世纪70年代末,主要的理论基础是光束在身体器官上的反射能够帮助检测肿瘤。对被器官阻碍的光线扩散的研究可以显示出器官哪一部分吸收或反射了光线,从而有助于检测癌细胞生长。菲克斯勒说:&ldquo 研究者们花费了很长时间构建模型,尝试找出光线反射原理下器官发生了什么,然而该领域的研究停滞了一段时间,因为该模型无法确切显示肿瘤是否被检测到,也无法确认扩散源是否来自身体的不同部分。作为基础研究的极好模型,事实证明它没有多少临床价值。&rdquo 他解释道:&ldquo 被称为漫反射的理论模型自20世纪80年代就很流行,但对癌症的检测不能仅依赖于光线对器官的反射这一依据,要确认癌细胞是否生长,我们需要能够更好地描绘器官图像的物质或微粒。&rdquo   &ldquo 大约12年前,一种被称为分子药剂的新思路进入人们的视线。&rdquo 菲克斯勒说。和先前寻求大体图像的思路不同,新思路希望寻求分子层面的结论。以此思路为基础,一种被称为&ldquo 对比成像&rdquo 的方法在近十年中研发出来。运用该方法,医生将一种秘密药剂注射到患者身体中,植于医生希望探测癌细胞生长的地方,从而获得所需图像,这种秘密药剂就是纳米粒子。其中,黄金纳米粒子因其无毒且与人体具有较好的集成度而被广泛使用。  &ldquo 事实上,纳米粒子是在我们血液中运行的小型机器人。&rdquo 菲克斯勒解释说,&ldquo 当纳米粒子在癌症抗体分子中时,我们可以观察到,这些粒子能够黏着于癌细胞。因此无需核磁共振或CT检查,癌细胞便可被识别出来。因为某种量子特性,黄金纳米粒子在一定的波长下能够对光线产生很强的反射作用。&rdquo   近年来,一种使用黄金纳米粒子成像的技术被研发出来,基于这种技术的疾病探测和治疗仪器随之出现,但这种仪器有个实质问题,即如何平衡创建高清质量的图像与所需黄金数量的关系。  新算法模型还可将该技术扩展于检测其他疾病  菲克斯勒和他的同事对自己的探测方法不断改进。&ldquo 这就像在寻找隧道。&rdquo 他解释道,&ldquo 仅探测外部环境找到隧道并不容易,有时候你需要等待有人从里面出来。我们不仅依据粒子反射的光线,同时还根据人体组织上光线扩散产生的效果检测癌细胞。&rdquo   研究人员改变了黄金纳米粒子传统的球形形状,把它做成了杆形,改变了粒子反射波的长度,使粒子更深入地穿透到人体组织中。更重要是,他们研发了一种数学算法,能将粒子反映的信息转化成实际的图像。&ldquo 粒子穿透组织,我们看不到反射。&rdquo 菲克斯勒说,&ldquo 但我们可看到它们如何在人体组织内影响光扩散。基于从组织细胞反射出来的光子数量,可建立计算数学函数。&rdquo   菲克斯勒的方法不限于癌症检测,他还在开发多发性硬化症的诊断方法。他的研究引起了国际科学界的关注, 去年6月,伦敦医学院为他颁发奖学金,资助其之后一年在伦敦国王学院与其他科学家一同继续此研究。44岁的菲克斯勒出生于特拉维夫,现任巴伊兰大学先进光学显微镜实验室主任。 他在瓦伦西亚大学完成博士后工作,曾在中国华南师范大学激光研究所担任客座教授。
  • 【网络讲堂参会邀请】如何沉积纳米粒子 ——纳米粒子单层膜沉积实用指南
    如何沉积纳米粒子——纳米粒子单层膜沉积实用指南 纳米颗粒的二维致密单层膜沉积是多种技术和科学研究的基础。例如,纳米粒子单层膜可以作为传感器上的功能层,也可以用来生产用于纳米球光刻的胶体掩模。但是,怎样才能高效、可靠地得到具有三维自由度的纳米颗粒溶液,并将这些颗粒限制在横跨大基底的(二维)单层中呢?传统的纳米颗粒沉积技术纳米颗粒沉积技术种类繁多。一些相对简单和快速的方法包括溶剂蒸发、浸渍镀膜和旋涂镀膜。然而,这些技术可能会浪费大量的纳米颗粒,并且无法有效控制纳米颗粒的密度和配位结构。溶剂蒸发溶剂蒸发容易产生所谓的咖啡渍圈环效应,这种效应是由马朗戈尼流动引起的。这将导致不均匀沉积,中心的纳米粒子沉积稀疏,而边缘则形成多层纳米粒子沉积。 浸渍镀膜另一方面,如果只是用纳米粒子覆盖基底,浸渍镀膜将是一种很好的技术。然而,使用这种方法沉积纳米颗粒单分子层是非常具有挑战性的。同时,浸渍镀膜需要大量的纳米颗粒,这在处理昂贵纳米颗粒材料时将成为一个大的限制因素。 旋涂镀膜旋涂镀膜也是一种很有吸引力的方法,因为它易于规模化放大,而且在半导体工业中是一种众所周知的技术。然而,使用这种方法,薄膜的质量和多个工艺参数紧密相关,如:自旋加速度、速度、纳米颗粒的大小、基材的润湿性和所用溶剂。这使得对薄膜属性的精确控制变得非常困难。而且,一般旋涂镀膜需要大量的纳米颗粒溶液。 气液界面的单层镀膜在这里,气液界面沉积纳米颗粒单层提供了一种高度可控的沉积方法,可以将其沉积在几乎任何基底上。纳米颗粒被限制在气液界面,界面面积逐渐减小,使得纳米颗粒更加紧密地聚集在一起,从而可以实现控制沉积密度的目的,因为单位区域面积沉积的纳米颗粒的数量很容易计算,这样对纳米颗粒的需求量就会大大降低。 单层薄膜形成后,可以通过简单的上下提拉基底即可将界面上的薄膜转移到基底上。 在线网络研讨会报名如果您对如何制备纳米颗粒单分子膜感兴趣,想获取更多这方面的知识,请报名参加由伦敦大学学院的Alaric Taylor博士举办的题为“纳米颗粒单分子层薄膜沉积实用指南”的网络研讨会。报告人Alaric Taylor简介:Alaric Taylor博士是伦敦大学学院工程和物理科学研究委员会(EPSRC)研究员,他在纳米光子材料的制造,尤其是通过在气-液界面开发胶体单层自组装方面有很高的造诣。 报告内容:? 详细讲解纳米颗粒沉积的具体操作? 指出需要注意的事情? 讲述纳米颗粒沉积的技巧 报告时间:2018年9月13日下午3:00(北京时间)报名联系:如需参会,请填好下列表格中的信息发送至,邮箱:lauren.li@biolinscientific.com;姓名单位邮箱电话特别提醒:因为可能会涉及电脑、系统、耳机等调试问题,建议大家提前5-10分钟进入链接。
  • 美专家用金纳米粒子制成药物递送装置
    美国麻省理工学院的一个科研小组利用金纳米粒子以及红外线,研制出了一个递送数种药物的可控装置。  科研小组在最新一期《美国化学学会-纳米》杂志上报告说,其设计所依据的原理是当金纳米粒子暴露在红外线之下时,它们就会融化,释放出其表面所携带的药物。不同形状的金纳米粒子会对不同波长的红外线发生反应,因此只要控制红外线的波长,就能控制金纳米粒子所携每种药物的释放时间。  癌症、艾滋病等很多疾病的治疗都涉及多种药物治疗方案。目前已有的药物递送装置最多只能释放两种药物,而且释放时间必须提前设定。而这种新型药物递送装置可以从患者体外进行控制,且理论上最多可以递送4种药物。
  • 医用纳米粒子可为农作物输送营养
    p style="text-indent: 2em "根据英国《自然》杂志旗下《科学报告》近日发表的一项纳米科学研究,除了人体外,用于递送药物的医用纳米粒子也可以帮助治疗农作物的营养缺乏症,其将在农业生产领域帮助大幅提高作物产量。/pp style="text-indent: 2em "在过去几十年中,脂质体作为一种先进的纳米药物传递系统,其优势已经被越来越多的人所承认。实际上,脂质体是指将药物包封于类脂质双分子层内而形成的微型泡囊体,这种纳米粒子可以穿过生物屏障,将填充在其内部的药物或其他物质递送至目标组织。它们已被证明可以有效地递送用来治疗癌症等疾病的药物。/pp style="text-indent: 2em "由于这种纳米粒子的生物相容性良好,甚至可以被正常代谢,因此其作为载体的开发潜力巨大。此次,以色列理工学院研究人员艾维· 施罗德及其同事,测试了纳米粒子向幼苗和完全长成的樱桃番茄植株递送营养素的能力。研究团队分别采用两种方式对缺镁和缺铁的植株进行处理,一种是载有镁铁元素的纳米粒子,一种是不包含在纳米粒子内的工业镁和工业铁。/pp style="text-indent: 2em "实验表明,经纳米粒子处理的植株克服了无法通过标准农业营养素治疗的急性营养缺乏症;施用14天后,经纳米粒子处理的营养缺乏植株恢复了健康,而用标准农业营养素处理的植株则没有。/pp style="text-indent: 2em "研究人员表示,纳米粒子会遍布植株的叶子和根部,之后被植株细胞摄取,并在那里释放出营养物质。该研究结果表明,纳米粒子不但改变了许多疾病诊断、治疗和预防方法,将纳米技术应用于农业生产,同样有望提高作物产量。/pp style="text-indent: 2em "编辑圈点/pp style="text-indent: 2em "据估计,到2050年全球人口将达到98亿。人口在增长,耕地在减少,未来的地球如何养活如此多的人口令人担忧。对越来越多的人而言,饥饿的阴影正在远去,但它也很可能卷土重来。科学家们提出了多种多样的应对方案,比如学会食用蛋白含量丰富的昆虫或者在实验室培养人造肉。不过,这样的食物恐怕会让不少人反胃。依靠科技手段提高农作物产量,大概是最靠谱也最容易被接受的途径。/p
  • TSI新型凝聚核粒子计数器(CPC)重新定义纳米粒子计数
    40多年来,TSI生产的 凝聚核粒子计数器(CPC) 为研究人员在纳米粒子计数领域提供了重要的支持。TSI第4代新型CPC整体改进了软件功能和性能,将继续成为气溶胶研究领域的基准。 TSI 新一代CPC 在可靠性和适用性上正建立起无与伦比的标准。现在,CPC数据可存储于CPC中,存储数据可随时本地访问,甚至远程访问。此外,新型CPC的所有型号和平台均使用相同的架构进行构建,操作直观,使用简单。 无论您需要校准和验证其它仪器,还是需要比较不同仪器间的性能,TSI生产的CPC都将是您参考计数器的最值得依赖的选择。长期环境监测用户可尽情享受新软件所带来的便利,新软件改善了筛选和输出大型数据集的方式。 新一代CPC能够减少停机时间和降低维修成本,不仅为您提高可靠的粒子数据,还能够优化您的研究。和研究行业的领导者携手合作,使用TSI新一代CPC,彻底变革您的粒子数据。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 光伏纳米粒子可用作量子光源
    研究人员发现新型光伏纳米粒子可以发射相同的光子流。图片来源:美国《每日科学》网站据最新一期《自然光子学》杂志报道,美国麻省理工学院研究人员证明,新型光伏纳米粒子可发出单一的、相同的光子流,这可能为研发新的量子计算技术和量子隐形传态设备铺平道路。量子计算的大多数路线使用超冷原子或单个电子的自旋作为量子比特,以构成此类设备的基础。大约20年前,一些研究人员提出使用光作为基本量子比特单位的想法。这样做的好处在于无需再使用控制量子比特的昂贵而复杂的设备,只需要普通的镜子和光学探测器。研究人员表示,有了这些类似量子比特的光子,就可用家用线性光学系统建造一台量子计算机。因此,这些光子的准备是关键,他们最终选择了铅-盐类钙钛矿纳米颗粒。纳米颗粒形式的卤化铅钙钛矿有着极快的低温辐射速率,光发射得越快,输出就越有可能具有定义明确的波函数,因此,快速的辐射速率使卤化铅钙钛矿纳米颗粒能够发射量子光。为了测试它们产生的光子是否真的具有这种特性,研究人员采用了标准测试,即检测两个光子之间的洪-欧-曼德尔干涉。在没有任何辐射增强或光子结构的情况下,结果显示出高达0.56±0.12的校正可见度。这些结果证明了钙钛矿纳米晶体作为不可区分的单光子的可扩展胶体源的独特潜力。
  • 银纳米粒子或可用于攻击肿瘤细胞
    科学日报报道,近日美国加州大学圣塔芭芭拉分校的科学家们设计了一种具有一对独特且重要特性的纳米粒子。这种球形粒子的组成成分是银,它被包裹在一个涂满缩氨酸的壳内部,后者使得它能够攻击肿瘤细胞。此外,这个壳是蚀刻的,因此那些没有攻击到目标的纳米粒子会自行分解和消除。这项研究被发表在期刊《自然材料》(Nature Materials)上。两个单独的银纳米粒子(红色和绿色)选中前列腺癌细胞为目标  纳米粒子的核心利用了一种名为电浆子光学(plasmonics)的现象。在电浆子光学里,纳米结构的金属,例如金和银,在被光线照射时会发生共振,且集中在靠近表面的地磁场。通过这种方式,荧光染料被增强,看起来比自然状态&mdash &mdash 也即没有金属存在时&mdash &mdash 要明亮10倍。但当核心被蚀刻时,这种增强效果会消失,粒子也就变得暗淡。  加州大学圣塔芭芭拉分校鲁奥斯拉蒂研究实验室发明了一种简单的蚀刻技术,利用了生物相容的化学制品快速分解和移除活体细胞外部的银纳米粒子。这种方法只会留下完整的纳米粒子用于成像或者量化,从而揭示了那些细胞被定位攻击目标,以及每一个细胞被内在化了多少。  &ldquo 这种分解是创造针对特定刺激物做出反应的药物的一个有趣概念。&rdquo 分子,细胞和发育生物学学院(MCDB)鲁奥斯拉蒂实验室的博士后研究员、斯坦福-桑福德伯纳姆医学研究所的盖里· 博朗(Gary Braun)这样说道。&ldquo 通过分解过剩的纳米粒子并通过肾进行清理,它能最小化偏离目标的毒性。&rdquo   这种移除无法渗透目标细胞的纳米粒子的方法非常独特。&ldquo 通过关注那些真正进入细胞的纳米粒子,我们能够理解哪些细胞是目标,并从更细节的角度研究组织传输通道。&rdquo 博朗说道。  有些药物能够独自穿透细胞膜,但很多药物,尤其是RNA和DNA基因药物,是带电的分子,它们会被细胞膜所阻隔。这些药物必须通过内吞作用进入细胞,在这个过程中细胞会吞没并吸收分子。&ldquo 一般需要纳米粒子作为载体来保护药物并护送它进入细胞,&rdquo 博朗说道。&ldquo 而这正是我们所要测量的:通过内吞作用载体的内在化。&rdquo   由于纳米粒子有一个核心壳结构,研究人员可以实现不同的表面涂层并对比各自肿瘤目标选择和内在化的效率。通过使用不同的目标受体转换表面药剂从而实现不同疾病的目标选择&mdash &mdash 或者细菌的目标生物体。根据博朗表示,这一方法应该能够发展一种药物传输极大化的方法。  &ldquo 这些新的纳米粒子拥有某些了不起的特性,在朝肿瘤传输目标药物相关的研究中它已经证明是一种非常有用的工具。&rdquo 加州大学圣塔芭芭拉分校纳米医学中心和MCDB学院特聘教授埃尔基· 鲁奥斯拉蒂(Erkki Ruoslahti)这样说道。&ldquo 它们在治疗感染方面也有潜在的应用。由可抵抗所有抗生素的细菌导致的危险感染越来越常见,现在急需解决这类问题的新方法。银常被用作抗细菌药剂,而我们的目标技术或可能将利用银纳米粒子治疗体内任何地方的感染变为现实。&rdquo (
  • 执着“钠”十年 钠离子电池迎来“破晓”
    div class="f14" id="content1" style="padding: 15px text-align: left line-height: 24px overflow-wrap: break-word word-break: break-all "p style="text-indent: 2em"“如果失败了呢?”/pp style="text-indent: 2em"“成与不成,这辈子只干这一件事。”/pp style="text-indent: 2em"当众多人聚焦锂离子电池的时候,他把目光转向了“冷门”的钠离子电池,这“一眼”就是10年,也是这“一眼”打开了钠离子电池产业化的大门。此时的胡勇胜,不仅是中国科学院物理研究所研究员,还是中科海钠的创始人。/pp style="text-indent: 2em"不久前,中科海钠生产的全球首款具备自主知识产权的钠离子电池实现量产,目前电芯产能可达30万只/月。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/68058764-5176-4f4f-83bf-f6a3aea0eda8.jpg" title="6373921644941066335814234.jpg" alt="6373921644941066335814234.jpg"//pp style="text-align: center text-indent: 2em"span style="font-size: 14px color: rgb(127,127,127)"全球首辆钠离子电池低速电动车亮相span style=""span style=""span style=""span style=""span style=""中科院/span/span/span/span/span物理所九十周年所庆 胡勇胜供图/span/pp style="text-indent: 2em"strong从“一枝独秀”到“珠联璧合”/strong/pp style="text-indent: 2em"历经200余年的电池在新一轮能源革命中迎来“大浪淘沙”。二十世纪九十年代,在众多二次电池中,锂离子电池率先抓住机遇强劲发展。/pp style="text-indent: 2em"据中关村储能产业技术联盟2019年统计数据显示:在全球电化学规模储能示范项目中,锂离子电池的占比高达80%。/pp style="text-indent: 2em"然而锂离子电池却面临无法回避的“天花板”。“在二次电池中,锂离子电池的性能虽是最好,但锂资源的储量有限,且70%分布在南美洲,而目前我国80%锂资源依赖进口。锂离子电池难以兼顾电动汽车和电网储能两大产业。”胡勇胜告诉《中国科学报》。/pp style="text-indent: 2em"“一枝独秀”的锂离子电池已无法全面改变传统能源结构,“百花齐放”的二次电池中,替代或补充锂离子电池的储能技术成为国际新能源技术的竞争热点。/pp style="text-indent: 2em"不仅如此,曾经的“主力队员”铅酸电池因其不可避免的环境污染及无法满足新国标标准面临“退役”问题,2019年4 月,《电动自行车安全技术规范》强制性国家标准规定电动自行车的整车质量(含电池)不高于55kg,但目前市场上铅酸电池电动自行车重量普遍超70kg。/pp style="text-indent: 2em"“目前碳酸锂大概4万元/吨,如果用锂离子电池替代铅酸电池,电动自行车的成本将大幅上涨。而碳酸钠平均仅有2千元/吨,用钠离子电池替代铅酸电池的优势显而易见。”胡勇胜告诉记者。/pp style="text-indent: 2em"在胡勇胜看来,钠离子电池具备低成本、长寿命和高安全性能等优势,不仅能在一定程度上成为锂离子电池的补充,缓解锂资源短缺的问题,还能逐步替代环境污染严重的铅酸电池,保证国家能源安全和社会可持续发展。/pp style="text-indent: 2em"值得一提的是,钠离子电池巨大的储能市场还包括光伏、风能等新能源接入储存系统。据了解,2018年我国弃光、弃风、弃水电量共计1022亿度电。胡勇胜指出:“储能是智能电网的重要环节,钠离子电池因其成本及资源优势将在大规模储能市场中大有作为。”/pp style="text-indent: 2em"“此外,钠离子电池凭借其诸多优势还有望在低速电动车、电动船、数据中心、通讯基站、家庭/工业储能领域快速发展。”胡勇胜表示。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/e6153daa-704a-4e50-956e-d0343781c3f6.jpg" title="6373921659667719991191109.png" alt="6373921659667719991191109.png"//pp style="text-align: center text-indent: 2em"span style="font-size: 14px color: rgb(127,127,127)"钠离子电池电动自行车在span style=""span style=""span style=""span style=""span style=""中科院/span/span/span/span/span物理所开展内部测试 胡勇胜供图/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/b1e3a2fa-98a8-4664-ab84-1e57bff52180.jpg" title="6373921663697436922747082.png" alt="6373921663697436922747082.png"//pp style="text-align: center text-indent: 2em"span style="font-size: 14px color: rgb(127,127,127)"span style=""span style=""span style=""span style=""span style=""中科院/span/span/span/span/span物理所和中科海钠设计制造的全球首辆钠离子电池低速电动车 胡勇胜供图/span/pp style="text-indent: 2em"strong“要做用户最需要的”/strong/pp style="text-indent: 2em"近年来,国际领域纷纷加码钠离子电池研发。2020年,美国能源部明确将钠离子电池作为储能电池的发展体系;欧盟储能计划“电池2030”项目将钠离子电池列在非锂离子电池体系的首位。/pp style="text-indent: 2em"实际上,在胡勇胜团队开展钠离子电池研究时,虽然钠离子电池不是热门领域,但已有其他团队在研究,但胡勇胜给自己定了“做科研就要做用得上的研究,做用户最需要的钠离子电池”的目标。/pp style="text-indent: 2em"“我们要做老百姓能买得起的低成本、高安全的电池。”为此,降低电池正负极材料成本成为胡勇胜团队首先思考的重要课题。实际上,目前锂离子电池常用的活性元素是Ni和Co,但成本较高,能否找到又有活性成本又低的元素替代呢?通过不断的研究,胡勇胜团队惊喜地发现Cu在钠离子电池中不但具有活性,而且成本只有Co的1/4和Ni的1/2,正是替代Ni和Co的“完美”元素,经过多年的探索,胡勇胜团队最终成功研制出Cu基钠离子层状氧化物正级材料。/pp style="text-indent: 2em"挑战接踵而至,能否降低钠离子电池负极材料成本呢?“当时,石墨作为成熟的锂离子电池负极材料却几乎不具备储钠能力;无定形硬碳是众多研究的焦点,但价格较高。通过对碳源前驱体进行调研,我们发现无烟煤的成本平均1800元/吨,如果用无烟煤制备无定形碳负极材料将有利于大幅降低电池成本。基于这样的考虑,我们立即开始实验,最终研制出了无烟煤基钠离子电池负极材料。”胡勇胜回忆道。/pp style="text-indent: 2em"在团队成员、span style=""span style=""span style=""span style=""span style=""中科院/span/span/span/span/span物理所副研究员陆雅翔看来,成功降低钠离子电池成本的关键在于敢于另辟蹊径、大胆创新。“在当时,国内外对钠离子电池的研究主要集中于借鉴锂离子电池的研发思路,所以迟迟没有突破性的进展,我们没有跟随大家的脚步,而是另辟蹊径,大胆尝试,挑战别人忽视的、认为不可能的道路。”/pp style="text-indent: 2em"在攻克钠离子电池正负极材料成本问题后,胡勇胜团队继续深入挖掘钠离子电池的其他优势,发现钠离子电池不仅拥有更好的安全性,在遇到零下40度的低温时,钠离子电池汽车还能释放80%的电量,比锂离子电池汽车更加“耐寒”。“此外,钠离子电池汽车充电速度更快,仅需20分钟,接下来将挑战10分钟的充电速度。”胡勇胜告诉记者。/pp style="text-indent: 2em"对于电池制备而言,建立完整的生产线不仅重要而且投资巨大,值得一提的是,钠离子电池可以直接使用锂离子电池的生产线,无需重建。“不久前,我们使用锂离子电池生产线生产了8万支钠离子电池。正因为可以直接使用锂离子电池的生产线,钠离子电池市场化的速度将更快,可以站在前人的‘肩膀’上,我们也无比感激。“胡勇胜表示。/pp style="text-indent: 2em"目前,胡勇胜团队在钠离子电池正负极材料、电解液等关键材料体系和电芯制造、装配工艺等工程技术上都已具备完全自主研发能力,产品核心专利已获得中国、美国、欧盟等多个国家和地区的授权。/pp style="text-align: center text-indent: 2em"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/f4d74efb-8d0c-49c7-87a6-7d59c34b0bc6.jpg" title="6373921688906975629629651.jpg" alt="6373921688906975629629651.jpg"//pp style="text-align: center text-indent: 2em"span style="font-size: 14px color: rgb(127,127,127)"span style=""span style=""span style=""span style=""span style=""中科院/span/span/span/span/span物理所和中科海钠设计制造的全球首座百千瓦时钠离子电池储能电站 胡勇胜供图/span/pp style="text-indent: 2em"strong眼前有产业 脚下有科研/strong/pp style="text-indent: 2em"实际上,胡勇胜与物理所的缘分已有20年。2001年,胡勇胜便来到物理所攻读博士学位,师从陈立泉院士,也正是这一份师生谊改变了胡勇胜未来的职业生涯。/pp style="text-indent: 2em"博士毕业后,胡勇胜先后到德国和美国进修,就在完成学业之时,陈立泉联系胡勇胜,希望他能回到物理所工作。/pp style="text-indent: 2em"“我毫不犹豫地就回来了,因为我的导师和团队凝聚力。陈老师始终心系国家能源安全,从长远出发推动电动中国梦想的实现,不畏困难,敢于挑战,这种家国情怀和科研精神令我敬佩。此外,陈老师满心栽培学生,他带领下的团队有激情、有梦想、有情怀,我非常喜欢团队的科研氛围。”胡勇胜回忆道。/pp style="text-indent: 2em"在当时,团队成员都为自己设定了研究方向和目标,“做用户最需要的钠离子电池,这辈子只做这一件事”正是胡勇胜为自己定的目标。/pp style="text-indent: 2em"“当时国内的科研条件随着国家的发展有了很大的改善,此外,span style=""span style=""span style=""span style=""span style=""中科院/span/span/span/span/span也提供了很好的科研平台和转化平台,作为科研人员,如果我们还不能做出点成绩,就真的太对不起国家,对不起老师了。”胡勇胜坦言,“实际上,我也想过可能失败,但如果大家都在观望一个领域时,它可能是机遇,如果大家都已经开始做了,可能它就不再是机会了。”/pp style="text-indent: 2em"树立目标容易,将目标变成现实并非易事。付诸实践的头几年,是胡勇胜最困难也最难忘的时光。“由于国际上关于钠离子电池的研发并没有实质性进展,很多要从零开始。那些年,我们每天都在挖空心思地研究钠离子电池技术,’早晨捧着希望来,晚上带着失望归是常态,那是研发最困苦的时期,也是我最安静思考且难忘的时光,这为钠离子电池成功研发奠定了坚实的基础。”胡勇胜回忆时感慨道。/pp style="text-indent: 2em"在胡勇胜看来,产业化与做科研完全不同,“基础研究强调前沿性,而产业化要做以用户为导向和市场需要的产品,不能为了新而新。此外,实验室研究阶段很多问题是看不见的,而当进入工程化阶段后,要保证产品的一致性和稳定性是很有挑战的事情。”/pp style="text-indent: 2em"酒香也怕巷子深,寻找投资人和合作者,为科研成果注入转化资本,是每个科研成果转化征程中的必经且不易之路。产业化初期,出差作报告、谈合作、找厂家是胡勇胜的常态,为此他幽默地说道:“那些年,我不是在出差,就是在出差的路上。”/pp style="text-indent: 2em"在陆雅翔看来,不管再忙,胡勇胜都会“挤”时间思考电池的技术研究,跟团队探讨灵感和难点,“胡老师总有用不完的精力,即使再忙他都会利用零碎的时间阅读最新文献,关注科研最新动态,思考问题的解决方案,这种勤奋和科研热情也激励着团队。”/pp style="text-indent: 2em"随着钠离子电池产品的优越性能和低廉成本逐渐被国内外所认可,胡勇胜也从最初的主动找合作,转变为越来越的合作“找上门”,产业化的“羊肠小道”逐渐走成了“康庄大道”。/pp style="text-indent: 2em"十年磨一剑,今年,是胡勇胜团队深耕钠离子电池的第10年,也是中科海钠市场化的“破晓”之刻,他对未来充满了期待,期待钠离子电池走进寻常百姓家,期待钠离子电池成为守护国家能源安全的“主力军”,“但科研是产业化的基础,在带领团队产业化的同时,还必须潜心科研,为钠离子电池实现充电更快、能量密度更大、安全性更高、成本更低的未来夯实基础。“/pp style="text-indent: 2em"“高山仰止,景行行止,虽不能至,然心向往之。“胡勇胜感慨道。/pdiv /div/div
  • 用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
    “纳米银”是“银纳米颗粒”的简称或俗称,指由银原子组成的颗粒,其粒径通常在1~100nm范围。银材料表面具有抑菌性质早已为人熟知,其机理是位于材料表面的银原子可以被环境中的氧气缓慢氧化,释放出游离的银离子(Ag+),这些银离子通过与细菌壁上巯基结合,阻断细菌的呼吸链,最终杀死附着在材料表面的细菌。由于纳米颗粒的小尺寸效应和表面效应,随着颗粒尺寸的减小,纳米银的表面原子数与其内部原子数的比例急速升高,最终导致其银离子的释放速率显著增高,杀菌效果更加显著。利用纳米银抑菌特性的各种产品,包括纺织品、化妆品、药品等,以及其他工业产品,越来越多的研发并被投入使用。这些纳米银最终将会进入到环境中,对生态环境和生物健康产生影响。快速地检测和表征在各种不同的环境基体下的纳米粒子的技术手段因此显得极为必要,而珀金埃尔默公司的单颗粒ICP-MS技术则可以很好的应对这项挑战。本实验带您了解不同的废水中,单颗粒ICP-MS测定纳米银的能力。样品水样:是从加拿大魁北克省蒙特利尔附近的污水处理厂抽取。废水:是经过污水处理厂最终处理后排放到河里的废水,在二级沉降池后收集。混合溶液:经过生物处理后离开曝气池,到达二级沉降池处理悬浮物和沉积物的废水,从二级曝气池收集。海藻酸盐:一种在废水中可以检测到并由废水中溶解性有机碳组成的ppm级多糖。海藻酸盐溶液被用作于比较废水样品的一个已知的控制和替代物。用去离子水溶解从褐藻提取的海藻酸钠(Sigma-Aldrich, St. Louis, Missouri, USA)配制成浓度为6ppm的海藻酸盐溶液,并震荡一个小时。实验平均粒径为67.8±7.6nm的用PVP包裹的Ag ENPs标准品(用TEM定值,nanoComposix™ Inc., San Diego, California, USA),加入10mL到所有样品中,使浓度为10ppb(5,000,000粒/mL)。样品用去离子水稀释10-1000倍,测试前超声5分钟。所有样品一式三份。使用PerkinElmer NexION 300D/350D ICP-MS进行分析,采用SP-ICP-MS模式,在Syngistix™ 软件纳米分析模块下进行。实验参数如表1所示。实验结果图1显示了0.1ppb(50,000粒/mL)Ag ENPs标准品的粒径分布,相当于66.1±0.1nm的平均粒径,浓度为52,302±2102粒/mL。对粒径的测试结果和TEM定值的一致性表明海藻酸盐基并不影响测量精度。图1:在6ppm海藻酸盐溶液中的Ag的粒径分布在确定海藻酸盐溶液技术的准确度的基础上,排放废水和混合溶液样品进行下一步的测量。图2和图3显示了废水和混合溶液各自的粒径分布。分析前样品稀释100倍,表2显示了粒径大小和颗粒浓度的测试结果。另外,平均粒径与证书标称值一致,颗粒浓度接近计算值,表明没有废水基体会影响测量结果。这些结果表明,可以准确测量在废水样品中的Ag ENPs。图2:稀释100倍废水中Ag的粒径分布图3:稀释100倍的混合溶液中Ag的粒径分布结论实验证明SP-ICP-MS具有准确测试三种不同类型废水样品中的银纳米粒子的能力。虽然废水基体很复杂,但是它们不会抑制SP-ICP-MS准确测量粒径和纳米粒子浓度的能力。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 中科院研发出基于二硫化钼/碳纳米复合材料的钠型双离子电池
    p  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队,成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。相关研究成果以Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery为题,在线发表在Small上。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/6177974b-2ba4-49ab-b8d7-66db7c701632.jpg" title="1.jpg"//pp  锂离子电池已广泛应用于便携式电子设备、电动汽车、储能设备等领域。但由于锂离子电池的大规模应用加之锂资源的匮乏和分布不均,使锂离子电池成本日益攀升,难以满足未来能源存储的低成本、长循环寿命、安全可靠等要求。钠与锂有相似的物理化学性质,且储量丰富、成本较低,使得基于钠离子的二次电池体系的研究近年来受到广泛关注。然而钠离子半径较大,导致Na+在电极材料中扩散缓慢,从而影响电池的倍率性能和循环性能。/pp  为改善钠离子电池的倍率性能和循环性能,唐永炳研究团队成员朱海莉、张帆等成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。该电池采用膨胀石墨作为正极材料,具有分级结构的MoS2/C纳米复合材料作为负极材料。由于这种具有分级结构的MoS2/C具有更宽的晶体片层间距,有利于提高Na+在其中的离子扩散速率,且碳层的引入提高了材料的电导率,使基于该MoS2/C纳米复合材料的钠型双离子电池具有良好的倍率性能和循环性能。结果表明,该电池在1.0-4.0V的电压区间,2C的电流密度下循环200圈后容量保持率为85%。这种新型钠离子电池在低成本、环保大规模储能领域,如清洁能源、智能电网等具有潜在的应用前景。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "研究工作得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。/span/ppbr//p
  • 表面活性剂:从分子到纳米粒子
    p  韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。/pp  表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。/pp  现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。/ppbr//p
  • 新型纳米粒子可提高恶性脑瘤治疗效果
    p style="text-indent: 2em "美国研究人员设计出一种新型纳米粒子,能同时将两种药物运送到大脑肿瘤部位,增强对一种死亡率很高的脑瘤——多形性胶质母细胞瘤的治疗效果,已在动物实验中取得成功。/pp style="text-indent: 2em "多形性胶质母细胞瘤是一种难以治疗的常见恶性脑肿瘤,死亡率很高。直接注射药物难以通过血脑屏障抵达大脑和肿瘤细胞迅速对单一药物产生抵抗力,是治疗该疾病的两大难点。/pp style="text-indent: 2em "美国麻省理工学院研究人员在英国《自然· 通讯》杂志上报告说,他们给脂质体纳米粒子加上转铁蛋白涂层,能使粒子顺利通过血脑屏障,并准确抵达肿瘤部位同时避开正常细胞。/pp style="text-indent: 2em "脂质体是一种中空的人工球状微粒,外壳是脂质双分子层。研究人员在脂质体内部装上化疗药物替莫唑胺,负责破坏肿瘤细胞的DNA(脱氧核糖核酸);用外壳装载一种名为“JQ-1”的实验药物,负责阻止肿瘤细胞修复DNA损伤。两者联合发挥作用,能减少药物抵抗。/pp style="text-indent: 2em "与直接注射药物相比,用这种加了转铁蛋白涂层的脂质体运送药物能起到更好的效果,实验鼠的脑部肿瘤缩小的幅度更大,生存率也更高。此外,新方法还能避免直接注射药物导致的一些不良反应。/pp style="text-indent: 2em "研究人员说,该方法还能用于运送其他抗癌药物。血脑屏障的存在使许多药物无法用于脑肿瘤,新技术将改变这种状况,扩大选择范围。/p
  • 英国Syrris纳米粒子合成系统在南方科技大学成功安装和实验
    Syrris专注于为化学研发人员设计制造自动化仪器,在流动化学、微反应器和自动化技术方面处于世界领先水平。 此次在南方科技大学成功安装的是Syrris公司独家的Altas和Aisa两套纳米粒子合成系统。纳米粒子相对于普通材料,可以提供更独特或更优异的性能,如磁、光、电气等物理属性。通过化学工艺参数的准确控制来确保需要的纳米粒子性能,如:粒子形状、大小、表面结构组成等。纳米粒子的合成方式有两种:一是传统的批式合成,另一种是新兴的流动合成,Syrris公司可提供多种规格的批式自动化合成系统和流动微反应系统。 下图是南方科技大学量子点实验室安装的Altas全自动纳米粒子合成系统和Aisa流动合成纳米粒子系统。主要应用于先进显示照明QLED和发光材料的合成。
  • 纳米粒子揭开微小世界“面纱”
    澳大利亚国立大学(ANU)的物理学家使用纳米粒子开发新的光源,将使人们有能力揭开比人的头发还要细小数千倍的极微小物体世界的“面纱”。发表在最新一期《科学进展》杂志上的这一发现,可能会对医学科学产生重大影响。这种技术成本低、效率高,有助于创造新一代显微镜,观察小到十亿分之一米的物体。  使用纳米颗粒,研究人员将相机和利用其他技术看到的光频率提高了7倍。研究人员说,光的频率可增加到多高是没有限制的。频率越高,使用该光源所能看到的物体越小。这项只需要一个纳米颗粒就能工作的技术,可被应用到显微镜中,帮助科学家以传统显微镜10倍的分辨率放大超微小事物的世界,例如细胞和单个病毒的内部结构。  传统的光学显微镜无法为纳米级物体生成高度放大的图像。依靠超分辨率显微镜技术或使用电子显微镜可帮助实现,但这样的技术速度慢、成本高,而且还可能破坏样品。基于光的显微镜有助于解决这个问题。研究人员借助“极紫外线光”,可看到今天使用的传统显微镜无法看到的东西。  ANU开发的技术也可作为一种质量控制措施,用于半导体行业,简化制造过程。电脑晶片由非常细小的元件组成,其特征大小几乎只有十亿分之一米。在芯片生产过程中,制造商使用微小的极紫外光光源实时监测这一过程,能及早诊断出任何问题,从而提高芯片制造的质量和产量。
  • 日本开发出可用于生物传感器的金银纳米粒子
    日本北陆尖端科学技术大学院大学日前宣布,该校研究人员研制出金银纳米粒子,它可用于制作高灵敏度生物传感器,以帮助医生检查患者的血液、尿液或者基因诊断等。  研究人员首先制作出直径约14纳米(1纳米等于十亿分之一米)的金纳米粒子,然后在其表面覆盖厚度约4纳米的银薄膜,接着在银薄膜上再覆盖一层厚度为0.1纳米的金,形成了金夹银的结构。研究人员观察这种结构的特性后发现,其不仅具有与单纯银纳米粒子相同的灵敏度,而且还具有金的特性——化学稳定性高,而且容易与生物体内相关分子结合。  领导这项研究的该校副教授前之园信也说:“如果使用这种纳米粒子,生物传感器的性能将实现飞跃性提高,成本也将大幅降低。”
  • 离子色谱与离子选择电极结合的巨大潜力
    环境指标测定河流、湖泊和其他水体中铵离子(NH4+)浓度有两种基本方法。铵离子浓度是一个重要的环境指标,因为高浓度的铵(通常由工业污染或从农田中冲洗出来的过量肥料引起)会导致有毒有害的藻华。第一种选择是使用离子色谱法分析水样,通常与简单的电导检测器结合使用。第二种选择是使用电位测定法分析样品,在电位测定法中,离子选择电极(ISE)上的铵离子产生电压。离子选择电极通常由一个玻璃碳电极组成,该电极覆盖在一个膜上,膜上含有一个优先与特定离子结合的分子,称为离子载体,当遇到该离子时,离子选择电极可以产生电压。正如所料,这两种选择各有优缺点。带有电导检测的离子色谱法快速简便,但不如电位法灵敏,难以测定低浓度的铵离子。但离子选择电极电位滴定法可能会受到水样中其他离子的干扰。尽管离子载体(如无活性菌素)优先与铵离子结合,但它也会对水中的其他离子(尤其是钾离子和钠离子)产生反应,从而导致铵离子浓度的测量不准确。流动池因此,由斯德哥尔摩KTH皇家理工学院的玛丽亚库特罗(Maria Cuartero)领导的瑞典和葡萄牙研究团队决定尝试将这两种选择结合起来。他们希望这种组合型的仪器具有电位滴定法的灵敏度,并能够区分离子色谱法中的不同阳离子。为了将它们结合起来,库特罗和她的同事们创造了一个流动池,其中有三个离子选择电极的空间,然后将其简单地耦合到离子色谱柱上。来自色谱柱的洗脱液首先流经电导检测器,然后流经流动池,在流动池中它可以与离子交换膜相互作用。研究者们自己制作了这个模型。像往常一样,这些离子交换电极是基于玻碳电极,但研究人员用碳纳米管覆盖了这一点,以增强离子电荷向可检测电压的转化。在此基础上,他们涂覆了一种膜混合物,该混合物由聚合物基质、增塑剂、阳离子交换剂和溶解在四氢呋喃中的离子载体组成。最初,库特罗和她的团队将三个相同的离子交换电极插入流动细胞,每个电极都以非活性蛋白作为离子载体。这种设置提供了最可靠的测量,因为可以比较三个离子选择电极的响应。作为组合系统的首次测试,他们尝试使用它来分析一种特殊制备的锂、钾、钠和铵阳离子溶液。除了使他们能够优化各种分离参数外,这些试验还证实,所有四种阳离子都可以通过离子色谱法进行清晰分离,从而可以通过电导检测器和流动池中的离子交换检测器进行检测。多离子测定当溶液中所有阳离子的浓度相同时,它们从电导检测器中产生相似的响应,在得到的色谱图中显示出四个大小相似的峰。但是,由于非活性蛋白对铵离子的反应最好,因此离子交换电极对铵离子的反应比其他阳离子更强,产生的峰值要小得多。然而,离子选择电极仍然检测到了其他阳离子,尤其是钾,这表明如果单独使用流动池,它会高估铵离子浓度。正如研究人员在《ACS测量科学》(ACS Measurement Science Au)的一篇论文中所报告的那样,这些测试也证实了离子选择电极比电导检测器更灵敏,能够检测微摩尔浓度下的铵离子。最后,库特罗和她的团队表明,这种组合与实际水样的效果一样好,离子选择电极能够区分铵离子,并准确测定瑞典、西班牙和葡萄牙10个环境水样中的铵离子浓度。但这可能只是一个开始,因为有多种方法可以改善这种组合。首先,库特罗和她的团队表明,通过简单地插入含有优先与不同离子结合的离子载体的离子,电位流动池可以同时测量多个离子。此外,流动池应该很容易缩小,因为它是基于电极的,可能允许组合系统安装在单个芯片上。作者简介——乔恩埃文斯(Jon Evans)乔恩埃文斯是一位科学作家、编辑和作家。他为《新科学家》、《化学世界》和《今日材料》等出版物撰写了广泛的科学主题。他的最新著作《科学中的伟大思想》(2020)由约翰默里出版社出版。他还是一家名为JES Editical的编辑出版公司的创始人,该公司为科技型公司和组织制作广泛的书面材料,包括杂志、技术简报和新闻稿。JES社论最近出版了一本名为《实验室之谈:分析》的新杂志,刊登了对分析领域鼓舞人心的科学家的采访。符斌 供稿
  • 国家国际科技合作重点专项“高性能纳米线钒系锂离子动力电池联合研发”通过验收
    受科技部国际合作司委托,湖北省科技厅于6月27日组织专家组在武汉召开了由武汉理工大学承担的国家国际科技合作重点专项“高性能纳米线钒系锂离子动力电池联合研发”项目验收会。验收会技术验收由复旦大学赵东元院士主持,来自全国各地7位专家参加了验收。  该项目面向清洁高效能源的可持续发展,通过与哈佛大学开展合作,建成了单次百公斤级纳米线钒系正极材料中试线和自动化电子生产线,完成了纳米线钒系动力电池的装配和装车实验,进行了电动汽车示范运行,该项目依托武汉理工-哈佛大学纳米联合重点实验室和材料复合新技术国际联合研究中心,实现强强合作,发表高水平学术论文60余篇,申请国外发明专利2项、国内发明专利50余项,授权专利18项,培养人才30多人,对我国发展清洁高效能源系统产生了积极影响。
  • 重金属离子纳米检测技术取得新进展
    反应过程  随着纳米技术的飞速发展和纳米产业的不断扩大,许多纳米材料不断地涌现出来。由于金纳米颗粒具有较高的摩尔吸光系数和依靠距离可变的光学性质,它在化学、物理和生物等领域已有广泛的应用,其中可视化检测则是金纳米颗粒重要的应用之一。  中国科学院成都生物研究所天然产物研究中心邵华武研究员课题组与国家纳米科学中心蒋兴宇研究员课题组合作发展了一种用金纳米颗粒肉眼就可以检测水中的重金属离子的新方法。其操作是首先把含有多巯基的木瓜蛋白酶吸附在金纳米颗粒上,该蛋白表面的一些功能团(如巯基、羧基和氨基等基团)可以识别一些重金属离子(汞离子、铅离子和铜离子),而这些离子的加入则可以使金纳米颗粒聚集,同时在此过程中溶液的颜色则会从红色变为紫色,根据这个现象我们用肉眼就可以直接检测水中的重金属离子。  实验结果表明,检测灵敏度与金纳米颗粒的大小有关,较大的金纳米颗粒的检测灵敏度更高。该方法在水质监测中将具有潜在的应用。  该研究结果已在Biosensors and Bioelectronics (2011, 26, 4064-4069)上发表。
  • 上海应物所在纳米粒子活细胞成像、胞吞和胞内运输方面取得进展
    p  近日,中国科学院上海应用物理研究所物理生物学研究室与加州大学圣地亚哥分校合作,发展了一种基于金纳米粒子的荧光-纳米等离子体双模态成像fPlas探针,并对其在胞内运输中的聚集过程及聚集态对其传输动力学的影响开展研究。相关结果发表于《自然-通讯》(Nature Communications, 2017, 5, 15646)。/pp  胞吞及囊泡运输是细胞信号传导和能量交流的重要生理过程。其中,纳米粒子的胞吞和胞内运输过程研究是设计新型纳米药物载体和纳米诊疗方法的基础。物理生物学研究室的博士研究生刘蒙蒙和副研究员李茜等在研究员樊春海和加州大学教授Lal的指导下,通过发展fPlas探针实现了在单细胞水平半定量研究纳米粒子聚集状态的方法,可以清晰区分活细胞中呈单分散、小聚集体和大聚集体的金纳米粒子,并与暗场显微镜下的绿色、黄色以及亮黄色颗粒信号分别对应。他们进一步通过纳米等离子体成像与荧光成像的联用,实现了活细胞内纳米粒子聚集状态与定位信息同时获取。对金纳米粒子在细胞内通过微管进行运输,并且对在运输过程中发生逐步聚集的过程进行了实时成像,发现其聚集状态对相关囊泡的运动状态有重要影响。这一研究结果揭示了纳米粒子在细胞内的运输与其聚集状态直接相关,为设计新型纳米药物提供了新的思路和靶点。/pp  centerimg width="500" height="279" alt="" src="http://www.cas.cn/syky/201706/W020170614416182049650.jpg"//centerp/pp style="text-align: center " 上海应物所在金纳米粒子活细胞成像和胞内运输方面取得进展/p/p
  • 二氧化硅纳米粒子可将近红外光转为紫外可见光
    据物理学家组织网近日报道,新加坡国立大学工程学院生物工程系的研究人员研制出一种新技术,能够通过纳米粒子将红外光转化为紫外光和可见光,为深层肿瘤的非侵入性疗法铺平了道路。据称,该技术能够抑制肿瘤生长,控制其基因表达,是世界上首个使用纳米粒子治疗深层肿瘤的非侵入性光动力疗法。相关论文发表在近日出版的《自然医学》杂志上。  领导该项研究的新加坡国立大学副教授张勇(音译)说,人体内的基因会释放出一些特定的蛋白,从而保证机体的健康。但有些时候这个过程也会出现差错,导致包括癌症在内的一些疾病的产生。此前人们已经发现非侵入性光疗法能够控制基因的表达,纠正这一过程。但使用紫外光有一定副作用,有时甚至得不偿失 而可见光穿透力较弱,无法照射到组织深处的肿瘤。为此,他和他的团队开发出一种外面包裹着一层介孔(处于宏观和微观之间的尺度)二氧化硅的纳米粒子。他们发现,这种纳米粒子在被引入患者病灶区域后,可将近红外光转化为可见光或紫外光。通过这种方法就能有效激活基因,控制蛋白质的表达,从而达到治疗癌变细胞的目的。  研究人员称,与紫外光和可见光相比,近红外光安全且具有更强的穿透力,它能达到更深层的目标肿瘤组织而不会对健康细胞造成伤害,他们正计划将其扩展到其他以光为基础的疗法当中。该技术具有极为广泛的应用前景,除光疗法外,还可以被用于生物成像和临床诊断,借助这些纳米粒子可以获得更清晰精确的癌细胞图像。目前该项目已经获得了来自新加坡A*STAR研究所和新加坡国家研究基金的资助,下一步该团队还将借此技术开发出用于快速诊断的试剂盒。
  • 添加纳米线让锂离子电池更安全
    p style="text-indent: 2em "无论手机、笔记本电脑、还是电动车辆都离不开锂离子电池,它是“点燃”我们日常生活的重要能源。然而近些年,锂离子电池却因为实实在在的着火事件而引起了舆论的关注。怎样才能开发出更为安全的电池呢?据科学家在ACS期刊的纳米板块发表的文章介绍,在电池中加入纳米线不仅可以提升电池的耐火性,同时也能提升电池其他方面的性能。/pp style="text-indent: 2em "在锂离子电池中,锂离子通过电解质往返穿梭于两电极之间,传统锂离子电池的电解质是盐和有机溶剂构成的液体,很容易蒸发,是造成火灾的隐患。因此,学者们将研究的重心转向了固态电解质。被提议担起固态电解质的“人选”有很多,然而这些物质大多或稳定性不够,或不能满足大规模生产的需要,二者不可得兼。这其中,聚合物电解质因其良好的稳定性、低成本和灵活性而被认为是担当固态电解质的潜力股,但是它的导电性和力学性能却较差,因此,科学家们通过添加一系列化合物来设法提升聚合物电解质的性能。陶新永和他的研发团队制备出的硼酸镁纳米线恰好就具有良好的力学性能和导电性,如果把硼酸镁纳米线加入到固态电解质中,是否电池也会被赋予相应的良好特性呢?陶新永的团队对此十分好奇。/pp style="text-indent: 2em "他们在固体电解质中混合了5、10、15、20重量百分比的硼酸镁纳米线并进行实验观察,发现硼酸镁纳米线确实可以提升电解质的导电性,这种提升与离子通过电解质的速度和数量息息相关,离子通过电解质的速度越快,快速通过的数量越多,电解质的导电性能就越好。此外,硼酸镁纳米线的添加还使得电解质能够承受更大的压力。研究团队还测试了加入硼酸镁纳米线后电解质的可燃性,发现它几乎不可燃烧。而由硼酸镁纳米线强化的固态电解质与阴阳极配对所构成的电池,在速率性能和循环容量上都比电解质中不含硼酸镁纳米线的电池有所提升。/p
  • 我国引进首台纳米离子探针通过验收
    我国引进的第一台NanoSIMS 50L型纳米离子探针验收会于近日在中国科学院地质于地球物理研究所召开。中国科学院地质于地球物理研究所副所长吴福元研究员为组长的专家组认真听取了法国CAMECA公司纳米离子探针设计师、Franç ois Hillion博士所作的验收报告。专家组对仪器的验收指标有关问题进行了提问,一致认为该仪器的技术参数不仅全部达到合同要求,大部分还优于合同要求的验收指标。纳米离子探针  纳米离子探针具有极高的空间分辨率(Cs+源束斑小于 50nm,O-源束斑小于200nm),与我所已有的CAMECA ims 1280高精度离子探针互补,构成国际上非常先进的的离子探针分析平台。新引进的NanoSIMS 50L型纳米离子探针配置了7个信号检测器(每个配置法拉第杯和电子倍增器),可以同时测量7个同位素(或元素),分析精度好于千分之一。该仪器可以分析除稀有气体以外,元素周期表中从H至U的全部同位素(元素),并能获取同位素分布的高分辨图像。纳米离子探针的引进,为我国比较行星学、地球科学、材料科学、以及生命科学等领域提供了新的大型实验分析平台。
  • 离子色谱净化小柱- Na离子小柱促销
    货号: SBAA-Na产品描述:离子色谱净化小柱- Na离子小柱规格:1mL,10支/盒原价:370.00元优惠价:298.00元促销时间:2012-5-29至2012-6-28。上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 科学家研发出用于快速和超灵敏病毒诊断的数字等离子体纳米气泡检测新技术
    病毒引起的传染病给人类的生命安全和身体健康带来了巨大威胁,目前来说对疾病的快速和灵敏诊断仍然是一个迫切且未满足的需求。数字免疫分析技术由于其单分子检测和绝对定量的能力,在近些年来取得了显著进步,但复杂的操作步骤限制了其应用。  近日,美国研究团队在《Nature Communications》杂志上发表题为“Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics”的文章,研发出用于快速和超灵敏病毒诊断的数字等离子体纳米气泡检测新技术。  等离子体纳米气泡是指短脉冲激光激发纳米颗粒产生的蒸汽气泡,放大其固有吸收,可通过二次探测激光进行检测。等离子体纳米气泡的寿命为纳秒,对纳米颗粒的物理性质(如大小、形状、浓度和聚集状态)十分敏感。该研究利用等离子体纳米气泡这些特性设计了一个光射流装置,使纳米颗粒的悬浮液在微毛细管中流动,使用两束激光同步激活纳米颗粒并检测等离子体纳米气泡。由于等离子体纳米气泡是瞬态事件,且激光脉冲之间没有串扰,创建了约16pL的微尺度“虚拟检测区”,并以无间隔的方式对“开”和“关”信号进行计数,以此对检测目标进行定量分析。研究表明将此方法应用于检测呼吸道合胞病毒(RSV)时,具有较好的特异性和灵敏度(1拷贝/µL)。  该研究提出的数字等离子体纳米气泡检测方法具有一步操作、单纳米颗粒检测、在室温下能够直接检测完整病毒、无需复杂液体处理等优点,是一种快速、超灵敏的诊断技术。  论文链接:  https://www.nature.com/articles/s41467-022-29025-w
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 青海省标准化协会公开征求《工业氯化钙中钠镁 钾含量的测定电感耦合等离子体原子发射光谱法》等3项团体标准意见
    各相关单位及专家:按照青海省标准化协会团体标准工作程序,标准起草单位已完成《工业氯化钙中钠镁钾含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》3 项团体标准征求意见稿,根据《青海标准化协会团体标准管理办法》的要求,现在网上公开征求意见,欢迎提出宝贵意见。征求意见截止时间为2023年11月15日,请您在截止日期之前将您的意见反馈至青海标准化协会。协会联系方式协会秘书处:刘伟朝:18297212652、韩建华:13909712796协会邮箱:qhsbzhxh@163.com意见征求涵15.pdf工业氯化钙中钠镁钾含量的测定-文本.pdf附件2:意见反馈表.doc硫酸钾镁肥中钙镁钠含量的测定-文本.pdf工业盐中10种金属离子含量的测定 -文本.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制