当前位置: 仪器信息网 > 行业主题 > >

力学机械性能

仪器信息网力学机械性能专题为您整合力学机械性能相关的最新文章,在力学机械性能专题,您不仅可以免费浏览力学机械性能的资讯, 同时您还可以浏览力学机械性能的相关资料、解决方案,参与社区力学机械性能话题讨论。

力学机械性能相关的论坛

  • 机械性能还是力学性能?无论在概念上还是在文字翻译上都是以机械性能为宜。

    这是材料学科中十分重要的术语,讨论和搞清楚其概念非常有必要。“机械性能”还是“力学性能”都由 Mechanical properties翻译来的,无论在概念上还是在文字翻译上都是以机械性能为宜。这在下述文献中说得很明白:赵中平, 王博, 卜梦婕.金属材料机械性能辨析 . 机械工业标准化和质量, 2013(10):32-34赵中平, 卜梦婕, 王博《力学性能还是机械性能》. 标准科学,2013, 475(12):77-80 赵中平 周蔷 王博, 卜梦婕 Mechanical properties 中文名的演变过程及其定义.中国科技术语.2015(1)43-46概要说明如下:该术语出自ASTM E6,其中MP的定义:“材料在力作用下显示的与弹性和非弹性反应相关或包含应力—应变关系的性能”。乍看该定义,好像容易理解为“力学性能”,但在MP定义下都有注解:Discussion-Theseproperties often been referred to as “physical properties”, but the term“mechanical properties” is preferred. 这注解正是为避免上述误解才加以说明:一般会从物理(力学)角度去理解,但还是称作机械性能为宜,否则无需这样注解。同时,周知用力做的功称为机械功,动能与势能的和是机械能,利用力学原理制成的装置称为机械,不称力学机,那么根据上述定义,利用力学原理或受物理力作用得到的性能称为机械性能,就是我国语言的约定俗成。从概念上说,MP的各种性能都是为满足机械(零件)的设计、制造、检验和使用所需的性能,理当称为机械性能。日本也称“機械的性質”,JIS G0203-2009《鉄鋼用語》第4107条“機械的性質 引張強さ…クリープ強さなど,機械的な変形及び破壊に関係する諸性質。对照英文 mechanical property。”英文有翻译问题,但日本和台湾地区都将其定名“机械性质”,这是国际共识。

  • 【讨论】“机械性能”和“力学性能”有什么不同?

    冬季在力学性能试验机版提出一个问题 :“机械性能”和“力学性能”有什么不同?(http://www.instrument.com.cn/bbs/shtml/20090601/1924360/ ) 有朋友说是一样, 亦有朋友说是广义与狭义的分别。我想从英文的角度探讨一下。英文书中有关应变(strain)、硬度(hardness)等性能都归于Mechanical property, 我记忆中没见过像force property之类的其他英文词组。 另外Physics 中有Heat, Sound, Mechanics各分支, 其对应中文是物理学中有热学、声学、力学。 可见:Mechanics : 力学Mechanical property : 力学性能“机械性能”一词的出现, 可能是有人将Mechanical property直译。话又说回来, “机械性能”和“力学性能”在中国流传了很久, 学术界或工程界是否赋与其新的内函, 发展成广义与狭义的分别就不得而知了。

  • 冷拔异型钢管中机械性能的检测

    点击链接查看更多:https://www.woyaoce.cn/service/info-22944.htmlCTI工业材料检测服务能够为工业材料领域提供全方位的材料检测(如:力学性能、成分分析、化学分析、金相分析、热学分析、涂镀层性能、老化性能等)、无损检测、失效分析、质量评定和安全评估等服务,适用于金属、高分子等各类原材料以及紧固件、机械零部件、塑料、橡胶等各类成品。同时我们还拥有先进的仪器设备、专业的技术人员,并具备现场抽样和检测的能力。无论您是需要检验材料应用特性、检测材料缺陷、分析失效原因或者研发新材料、进行基础研究,我们都能为您就近提供快速、高效及专业的服务,为材料质量及工程进展提供保证。金属材料测试服务测试对象材料黑色金属(钢铁材料)有色金属特种金属材料其他金属制品行业机械制造能源装备医疗器械交通运输等测试项目化学成分分析机械性能测试金相分析腐蚀性能热学性能&清洁度特色项目无损检测失效分析涂镀层分析焊接工艺评定丨焊接件性能

  • 【分享】GB/T 3098.1~20 紧固件机械性能

    GB/T 3098.1-2000 紧固件机械性能 螺栓、螺钉和螺柱GB/T 3098.2-2000 紧固件机械性能 螺母 粗牙螺纹GB/T 3098.3-2000 紧固件机械性能 紧定螺钉GB/T 3098.4-2000 紧固件机械性能 螺母 细牙螺纹GB/T 3098.5-2000 紧固件机械性能 自攻螺钉 GB/T 3098.6-2000 紧固件机械性能 不锈钢螺栓、螺钉和螺柱 GB/T 3098.7-2000 紧固件机械性能 自挤螺钉 GB/T 3098.8-1992 紧固件机械性能 耐热用螺纹连接副GB/T 3098.9-2002 紧固件机械性能 有效力矩型 钢六角锁紧螺母 GB/T 3098.10-1993 紧固件机械性能 有色金属制造的螺栓、螺钉、螺柱和螺母 GB/T 3098.11-2002 紧固件机械性能 自钻自攻螺钉GB/T 3098.12-1996 紧固件机械性能 螺母锥形保证载荷试验GB/T 3098.13-1996 紧固件机械性能 螺栓与螺钉的扭矩试验和破坏扭矩公称直径1~10mm GB/T 3098.14-2000 紧固件机械性能 螺母扩孔试验GB/T 3098.15-2000 紧固件机械性能 不锈钢螺母 GB/T 3098.16-2000 紧固件机械性能 不锈钢紧定螺钉 GB/T 3098.17-2000 紧固件机械性能 检查氢脆用预载荷试验 平行支承面法 GB/T 3098.18-2004 紧固件机械性能 盲铆钉试验方法GB/T 3098.19-2004 紧固件机械性能 抽芯铆钉GB/T 3098.20-2004 紧固件机械性能 蝶形螺母 保证扭矩---------------------------------------------------------------------下载地址: http://www.instrument.com.cn/download/shtml/062492.shtml

  • 机械性能测试的朋友请进

    有关于机械性能测试的朋友请团结一下,4077说了 提建议的用户达到20个就可以考虑 我们一起提议恢复材料试验机这个栏目

  • 大家好,谁能帮哥们查查机械性能试验用的试棒是什么规格啊?

    大家好,哥们有个问题想请教各位朋友了,我单位有个德国铸件,因为产品过大,想做理化试验和机械性能试验,可是不知道如何取样,具体尺寸不知道,做化学成分、屈服强度、抗拉强度;延伸率及布氏硬度等我就知道是个圆棒,中间是比较细的两头是粗的交接处有R可是不知道具体尺寸要求,无法取样麻烦各位好朋友给查查吧好吗,谢谢了啊好像得参照GB/T24182-2009金属力学性能试验标准不

  • 【分享】纤维的机械性能

    机械性能 纺织纤维在各种外力的作用下,和种变形的性能称为纺织纤维的机械性能。外力作用包括拉伸、压缩、弯曲、扭转、磨擦等各种形式。 纺织纤维的机械性能应包括纤维的强度、伸长、弹性、耐磨性、弹性模量等。纤维的强度:纤维的强度是指纤维抵抗外力破坏的能力,它在很大程度上决定了纺织商品的耐用程度。 纤维的强度可用纤维的绝对强力来表示,它是指纤维在连续增加负荷的作用下,直至断裂时所能承受的最大负荷。其法定讲师单位为牛顿(N)或厘牛顿(cN)。过去习惯用克力或公斤力表示。 由于纤维强力的与纤维的粗细有关,所以对不同粗细的纤维,绝对强力无可比性,因此,常用相对强度来表示纤维的强度。相对强度是指单位线密度(每特或每旦)纤维所能承受的最大拉力。法定计量单位为牛/特(N/tex)或厘牛/特(cN/tex)。过去习惯用克力/旦表示。 纤维的弹性:纤维及其制品在加工和使用中,都要经受外力的作用,并且产生相应的变形。当外力的作用去除后,纤维的一部分变形可恢复,而另一部分变形则不会恢复。根据纤维的这一特性,可将纤维的变形为成三个部分,即当外力去除后能立即恢复的这部分变形称急弹性变形;当外力去除后,能缓慢地恢复的这部分变形称缓弹性变形;当外力去除后,不能恢复的这部分变形称塑性变形。 纤维的弹性就是指纤维变形的恢复能力。表示纤维弹性大小的常用指标是纤维的弹性回复率或称回弹率。它是指急弹性变形和一定时间的缓弹性变形占总变形的百分率。纤维的弹性回复率高,则纤维的弹性好,变形恢复的能力强。用弹性好的纤维制成的纺织品尺寸稳定性好,服用过程中不易起皱,并且较为耐磨。如:涤纶具有优良的弹性,其制成的服装具有挺括、耐磨等特性。

  • 玩具物理机械性能检测样品分配作业指导书

    根据CNAS-CL17,检测和校准实验室能力认可准则在玩具领域的应用说明,对于原始数据记录和检测报告上的检测数据,应能清楚的表达出该数据对应的测试样品及具体测试部位。特别是对于玩具的机械物理性能测试项目,同一个样品上可能进行许多项测试,此时,以你刚刚用图示的方式清楚的表达记录上的数据与样品的溯源关系。哪位仁兄涉及玩具物理与机械性能检测领域,你们有没有玩具样品分样的作业指导书,同时,在报告上是怎么体现数据与样品间溯源关系的。谢谢

  • 【资料】化工设备机械基础----金属的力学性能

    化工设备机械基础第二章 金属的力学性能 所谓金属的力学性能就是指金属在受到外力作用时,抵抗变形的能力及其破坏规律。之所以要研究金属材料的力学性能,是为了在保证安全的前提下,尽可能经济地使用它们。材料力学的基本知识材料力学的基本知识材料力学的基本知识本章内容§2-1弹性体的变形与内力§2-2材料的力学(机械)性能§2-1弹性体的变形与内力一、变形与内力的概念二、变形的度量三、直杆受拉(压)时的内力四、受拉(压)直杆内的应力一、变形与内力的概念 1.弹性变形与塑性变形 在外力作用下,物体发生变形,外力去除后,变形可完全恢复,这种在外力去除后可完全恢复的变形,叫弹性变形。相应地,在外力去除后,物体具有消失变形的性质,称为弹性。塑性变形是不可恢复的变形。弹性变形和塑性变形的区别内力的概念 受外力作用后物体内部相互作用力的情况要发生变化,同时物体要产生变形,这种由外力引起的物体内部相互作用力的变化量称为附加内力,简称内力。 二、变形的度量杆件在拉伸或压缩时,其长度将发生改变,若杆件原长为L,受轴向拉伸后其长度变为L+△L(或为L1),△L(△L=L1-L)称为绝对伸长量。绝对伸长量只反映杆的总变形量,但不能说明杆的变形程度。实验表明,用同样材料制成的杆件,其变形量与应力的大小及杆件原长有关。截面积相同、受力相等的条件下,杆件越长,绝对伸长越多。一点处的线应变三、直杆受拉(压)时的内力2.轴力的计算受轴向外力作用的的直杆,其任意截面上的轴力,在数值上等于该截面一侧(任意一侧)所有轴向外力的代数和。背向该截面的外力取正值,指向该截面的外力取负值。应力是单位面积上的内力,它的大小可以表示内力分布的密集程度。用相同材料制成的粗细不同的杆件,在相等的拉力作用下,细杆易断,就是因为横截面上的正应力较大的缘故。杆件受拉时的正应力称为拉应力;受压时的正应力称为压应力。4.正应力和剪应力的效应由上可知:受拉(压)直杆内,最大正应力位于杆的横截面内;最大剪应力位于杆的45°和135 °斜截面内。正应力所起的作用是要把两个相邻截面拉开;剪应力所起的作用是使两个相邻的斜截面有产生相对错动的趋势。一旦45 °和135 °斜截面上的最大剪应力增大到某一数值时,在这些斜截面之间均将发生相对错动,这种错动称为滑移。塑性变形就是斜截面间产生滑移的宏观表现。§2-2材料的力学性能一、拉伸试验二、温度对材料的力学性能的影响三、金属的缺口冲击试验四、硬度试验五、弯曲试验在设计构件时,必须考虑合理选用材料问题。而合理选用材料就必须了解材料的性能。材料的力学性能包括物理性能、力学性能(机械性能)、化学性能(耐腐蚀性能)和加工工艺性能等。其中,材料的力学性能是本章的研究重点。材料的力学性能是通过各种力学试验如拉伸、压缩、弯曲、冲击、疲劳、硬度等得到的。 一、拉伸试验试件是按标准尺寸制作的,以便能统一比较实验的结果。试件的横截面形状有圆形与矩形两种。对于圆形截面拉伸标准试件(尺寸符合国标的试件),标距L与直径d之间有如下关系 :试验过程实验时,先量出试件的标距L和直径d,然后将试件装在材料试验机上,启动加力机构,缓慢增加拉力P直至断裂为止。在加力过程中随时记录载荷P和相应的变形量Δl的数值。同时还要注意观察试件变形和破坏的现象。电子万能试验机万能试验机试件夹具目前的材料试验机均配有计算机数据采集系统,在实验时,通过计算机采数,可采集载荷P和位移Δl ,在坐标纸上以横坐标表示Δl ,纵坐标表示P,画出试件的受力与变形关系的曲线,这个曲线称为拉伸曲线。下图所示为低碳钢的拉伸曲线。 试件的中途卸载与重复拉伸反映材料机械性能的主要指标是: 1.强度性能,用屈服极限σs 和强度极限σb 来表示,反映材料抵抗破坏的能力。2.弹性性能,用弹性模量E来表示,反映材料抵抗弹性变形的能力。3.塑性性能,用延伸率δ和截面收缩率ψ来表示,反映材料具有的塑性变形的能力。 2 其它材料拉伸时的机械性质取对应于试件产生0.2 % 的塑性应变时的应力值为材料的屈服强度,用 σ0.2表示。 二、温度对材料机械性能的影响 高温时的蠕变与应力松弛蠕变现象与蠕变极限发生蠕变的条件(两个)持久强度应力松弛三、金属的缺口冲击试验金属的缺口冲击试验是将带有缺口并具有标准尺寸的长方形时间放在摆锤式冲击试验机上,利用摆锤下落时的冲击力,将试件从缺口处冲断的一种试验。摆锤冲断试件所消耗的功称为冲击功,用Ak表示,单位时焦耳(J)。试件上开有规定形状和尺寸的缺口是为了造成缺口底部的应力集中与能量集中,试件的断裂将从这里开始,根据测得的冲击功值可以判定材料对缺口的敏感程度。缺口的形状有U形和V形两种,由于U形缺口在反应材料的缺口效应(即缺口的存在对冲断试样的敏感性)上不如V形缺口,现在多用V形缺口。用V形缺口试件测得的冲击功用Akv表示,称为夏比V形缺口试样冲击值。如果将测得的冲击功值除以冲断处的截面面积(Aku/F或Akv/F),则得到的是单位断开截面的冲击功(平均值),称为材料的冲击韧性,用αku或αkv表示,单位是焦耳/厘米2。2.测取Aku与Akv的目的预测材料出现脆性断裂的可能性;确定材料的脆性转变温度。四、硬度试验和弯曲试验1.硬度试验 硬度是表示材料抵抗它物压入的能力。常用的硬度试验方法有布氏硬度和洛氏硬度。硬度测定中所产生的压痕,是材料发生大量塑性变形之后形成的。所以硬度也是衡量材料抵抗塑性变形能力大小的一种指标。硬度试验是在局部材料上进行的,方法简便,并且可直接在构件表面测定硬度值,而不致造成构件的破坏。2.弯曲试验弯曲试验是将一定形状和尺寸的试样放置在弯曲装置上,用具有规定直径的弯心将试样弯曲到所要求的角度后,卸除所加载荷,检查试样背面有无裂纹、裂缝或断裂,借以了解材料(或焊接接头)承受塑性变形的能力。弯心直径越小,在不出现裂纹的条件下试样弯曲后的α角越答,表示试样承受塑性变形的能力越好。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=156681]化工设备机械基础----金属的力学性能[/url]

  • 【分享】求助热机械性能分析(昆明)

    我在昆明工作,急需要测试几个样品的热膨胀系数,需要用到热机械性能分析,但在昆明没找不到,不知在昆明有没有人可做此类工作。如果昆明没有将样品寄到省外也行。测试费开不开票都无所谓。请各位老虾多多支持!我的邮箱为:ynjhb@163.com或ynjhb@sina.com

  • 35CrMo 材料 KCU 机械性能

    30 kJ / m 2而我们工厂告诉我们35CrMo 硬片 7.0-8.0千焦/CM2 软片 的是 4.0-5.0 千焦/CM2 这个数值对应不上啊 , 不知道是不是说的一个机械性能, 请求专业人士解答还有这个KCU 是不是我说的冲击韧性还是冲击强度? (我非专业都不大明白)这个KCU国内有第三方检测的机构吗 感激不尽

  • X射线传感器窗口透射膜机械性能测试中的正负压控制解决方案

    X射线传感器窗口透射膜机械性能测试中的正负压控制解决方案

    [size=16px][color=#339999]摘要:针对X射线窗口膜材料机械性能测试中对真空度和高压压力的准确控制需要,本文提出了相应的解决方案。解决方案中采用了薄膜电容真空计、压力传感器、电动针阀、压力调节阀和真空压力PID控制器,与真空泵和高压气源配合,可在膜材料样品两侧形成准确的真空压差、微压差和高压压差,由此为窗口膜材料的杨氏模量、破裂压力和压力循环测试提供所需的真空压力环境。控制器自带的计算机软件可独立进行上述真空压力控制操作,并可显示和存储整个控制过程中的多个参数随时间变化曲线。[/color][/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 窗口膜是X射线探测器的核心组件之一,其具有真空密封、透过X射线的功能。窗口膜的机械强度和透过X射线能力是决定X射线探测器性能的重要因素。图1所示为X射线探测器结构示意图。[/size][align=center][size=16px][color=#339999][b][img=01.X射线探测器及其透射窗口,650,241]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130946305619_2340_3221506_3.jpg!w690x256.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 X射线探测器及其机构示意图[/b][/color][/size][/align][size=16px] 探测传感器的稳定及可靠运行需要金属外壳密封,外壳顶部的探测端需要集成化的高透过率窗口,此窗口在保证X射线高透射的前提下,还能保证传感器处于高真空环境。高真空环境下工作,传感器可以有效地被冷却到适宜的工作温度,同时能避免了空气对传感器表面污染。因此,端窗膜至少需要承受一个大气压的压力差,这要求膜具有高的机械强度和稳定性。目前常见的窗口膜材料主要有:铍膜、聚合物膜、金刚石膜、氮化硅膜和石墨化碳膜。[/size][size=16px] 为了测试评价窗口薄膜材料的机械强度和稳定性,需要在X光探测器内外真空压力的模拟环境下,测试膜材料的杨氏模量和爆裂强度,并进行多次压力循环考核试验。图2所示为薄膜材料机械性能测试时的真空压力环境示意图。[/size][align=center][size=16px][color=#339999][b][img=02.窗口膜机械性能测试真空压力分布示意图,500,171]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130946532094_6847_3221506_3.jpg!w690x236.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 窗口膜性能测试时的真空压力环境示意图[/b][/color][/size][/align][size=16px] 在图2所示测试环境中,薄膜样品片固定在一个金属盘上,金属盘上有一已知直径的小孔。将金属盘固定在真空室上,使样品膜的顶面暴露在大气或正压环境中,底面暴露在真空室的可变压力下,通过控制加载的正压和真空度,可在膜样品量程形成一定的压差。膜样品在不同条件下存在三种状态:无压差自然状态、微压差延展状态和高压耐压状态,三种状态如图3所示。[/size][align=center][size=16px][color=#339999][b][img=03.窗口膜压差变形示意图,500,166]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130947126106_6551_3221506_3.jpg!w690x230.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 窗口膜压差变形示意图[/b][/color][/size][/align][size=16px] 在不同的压差状态下,需要对X射线窗口膜材料进行以下三项机械性能测试:[/size][size=16px] (1)在微压差状态下,控制膜顶面上的压力为一个标准大气压,膜的底面为变真空状态,使用浅焦平面显微镜物镜或非接触激光位移探测器等装置测量不同真空度下膜样品中心偏差,根据压差和中心偏差所建立的函数,可以测量得到窗口膜的杨氏模量。[/size][size=16px] (2)机械性能测试的另一个重要指标是薄膜的破裂压力,此时需要将膜样品底面的真空控制为一个大气压,而膜样品顶面压力控制为线性变化高压正压。[/size][size=16px] (3)为了考核膜窗口材料的稳定性,还需要进行压力循环测试,即膜样品两侧压差经历循环变化(10000次,绝压101~103kPa)的考核试验。[/size][size=16px] 由此可以看出,在窗口膜机械性能测试中,需要在膜的两侧形成准确的真空压力及其动态变化控制,为此本文提出以下真空压力控制解决方案。[/size][size=16px] 在图2所示测试环境中,薄膜样品片固定在一个金属盘上,金属盘上有一已知直径的小孔。将金属盘固定在真空室上,使样品膜的顶面暴露在大气或正压环境中,底面暴露在真空室的可变压力下,通过控制加载的正压和真空度,可在膜样品量程形成一定的压差。膜样品在不同条件下存在三种状态:无压差自然状态、微压差延展状态和高压耐压状态,三种状态如图3所示。在不同的压差状态下,需要对X射线窗口膜材料进行以下三项机械性能测试:[/size][size=16px] (1)在微压差状态下,控制膜顶面上的压力为一个标准大气压,膜的底面为变真空状态,使用浅焦平面显微镜物镜或非接触激光位移探测器等装置测量不同真空度下膜样品中心偏差,根据压差和中心偏差所建立的函数,可以测量得到窗口膜的杨氏模量。[/size][size=16px] (2)机械性能测试的另一个重要指标是薄膜的破裂压力,此时需要将膜样品底面的真空控制为一个大气压,而膜样品顶面压力控制为线性变化高压正压。[/size][size=16px] (3)为了考核膜窗口材料的稳定性,还需要进行压力循环测试,即膜样品两侧压差经历循环变化(10000次,绝压101~103kPa)的考核试验。[/size][size=16px] 由此可以看出,在窗口膜机械性能测试中,需要在膜的两侧形成准确的真空压力及其动态变化控制,为此本文提出以下真空压力控制解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 根据上述X射线探测器窗口膜材料机械性能测试对真空压力的要求,所设计的真空压力控制系统结构如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.X射线探测器窗口膜机械性能测量装置真空压力控制系统结构示意图,690,236]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130947316561_3586_3221506_3.jpg!w690x236.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图4所示的真空压力控制系统中,采用了分体法兰对接密封结构,即顶部和底部法兰通过对接方式将被测窗口膜样品密封夹持在中间位置。其中,顶部法兰提供样品膜上方的高压空间,底部法兰提供样品膜下方的真空空间,并分别配置相应的真空和压力控制装置。通过真空压力控制装置可以精确控制膜样品两侧的压差,为膜样品的机械性能测量提供所需真空压力环境。[/size][size=16px] 真空压力控制系统包括两部分内容:[/size][size=16px] (1)底部法兰真空控制装置:在膜样品下方提供准确可控的真空环境,真空度变化控制范围为绝对压力10~760Torr。采用绝对压力1000Torr量程的薄膜电容真空计测量膜样品下方的真空度,两个电动针阀分别调节进气和排气流量,真空泵进行抽气。真空压力PID控制器采集真空计信号,并根据设定值进行PID比较计算后输出控制信号,由此来自动调节电动针阀使真空度快速达到设定值。[/size][size=16px] (2)顶部法兰高压控制装置:在膜样品上方提供准确可控的高压环境,高压变化控制范围为表压0~1MPa。采用1MPa量程的压力计测量膜样品上方气压,压力调节阀输出所需气压,高压气瓶提供高压气源。真空压力PID控制器采集压力计信号,并根据设定值进行PID比较计算后输出控制信号,由此来自动调节压力调节阀使气压快速达到设定值。[/size][size=16px] 图4所示的真空压力控制系统,可完成窗口膜机械性能测试中的以下三项压差变化控制:[/size][size=16px] (1)杨氏模量的微压差控制:顶部法兰膜样品上方空间保持常压,对底部法兰膜样品下方的空间进行真空度控制,由此在膜样品两侧形成微压差,使膜样品产生变形以提供变形量测量。[/size][size=16px] (2)破裂高压控制:底部法兰膜样品下方空间保持常压,对顶部法兰膜样品上方的空间进行线性高压控制,控制压力从常压开始按照设定速率进行线性升压,并同时记录压力变化曲线。一旦压力升到一定高压产生破裂,则压力测量值会产生突变,由此得到破裂压力值。[/size][size=16px] (3)压力循环控制:关闭进气针阀和全开排气针阀,使底部法兰膜样品下方空间的真空度达到真空泵的抽取极限(如绝对压力1Pa)。然后对顶部法兰膜样片上方空间进行压力交变控制,控制器通过可编程的设定压力程序,使得压力在绝对压力101~103kPa之间周期性交替变化,周期数值可任意设定,如一万次等。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过上述真空压力控制解决方案,可实现各种X射线探测器窗口材料机械性能测试中的真空压力准确控制,解决方案具有如下特点:[/size][size=16px] (1)为窗口膜材料多个机械性能参数测试提供相应真空度和高压的准确控制。[/size][size=16px] (2)真空压力控制的整个过程全部自动化,真空压力按照测试要求所输入的设定值进行全自动控制,且具有很高的测量和控制精度。[/size][size=16px] (3)所采用的电动针阀和压力调节阀都具有很高的响应速度,有效缩短了压差稳定时间。[/size][size=16px] (4)真空压力PID控制器配备有相应的计算机软件,通过计算机软件就可独立完成真空压力控制,其中包括参数设置、控制运行、以及控制参数及其随时间变化曲线的自动显示和存储。[/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/size][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制