当前位置: 仪器信息网 > 行业主题 > >

力学特性

仪器信息网力学特性专题为您整合力学特性相关的最新文章,在力学特性专题,您不仅可以免费浏览力学特性的资讯, 同时您还可以浏览力学特性的相关资料、解决方案,参与社区力学特性话题讨论。

力学特性相关的论坛

  • 落球式岩土力学特性测试仪 《SEH-FBT-S》

    落球式岩土力学特性测试仪《SEH-FBT-S》产品描述1.产品概要本仪器针对公路、铁路、水利、机场、桥梁、建筑等工程领域开发,可有效应用于设计、施工等各个阶段;仪器遵照现行规范要求,针对材料的强度、变形等力学特性,提供快速测试方法,有效解决不均匀变形问题。可快速测试岩土材料的变形模量、强度指标、地基系数K30、CBR、弯沉值、干密度、压实度等各种指标。2.测试对象粘土、粉土、砂土、砂砾石及水泥稳定土等各种岩土材料 3.检测技术现状在填方工程中,岩土材料力学特性(包括刚性特性及强度特性)是其最为重要的力学指标。同时,由于岩土材料的力学特性受到很多因素的影响,如材料种类,级配,含水量,密度,碾压方式等,长期以来一直寻求一种能够现场测试岩土材料力学特性的简便可靠的方法。特别是近年来,随着高速铁路,高速道路的迅猛发展,对填方工程的质量要求日益严格。我们从1999年起,与海内外合作伙伴一道,开发了以落球式材料力学特性测试技术(简称“落球检测技术”)为核心的岩土材料力学特性的现场测试技术。该技术不仅可以快速、简便地测出材料的刚性(如压缩模量、回弹模量、地基系数等),而且可以同时测出材料的强度指标(如内部摩擦角file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wps418C.tmp.png等、水泥稳定土的抗压强度等),具有极其广阔的应用领域。我们具有相关技术的全部知识产权,并申请和获得了多项国家发明专利,产品出口到日本等海外。 仪器参数1. 平台:小型一体化平台2. 操作系统:windows3. 噪声处理:平滑/LPF/BPF/HPF/合成增幅,采用消减冲击弹性波激振残留信号以识别反射波信号的方法 4. 可接收信号通道数:2通道,两个通道功能可互换,即可作为触发通道也可作为接收通道 5. 数据采集:支持触控、无线双操控,以及单点、连续双模采样 6. 支持GPS定位(选配)7. 提供数据库管理服务8. 工作温度:-10~50℃ 9. 工作电压:12V,连续工作8小时以上(电池可更换)10. 存储量:本机自带硬盘60G,可扩展 11. 采样精度:浮点插值补偿至24位12. 最大采集频率:500KHz,可调 13. 最小采样间隔:2us,可调14. 最大采集点数:20,000个,可调15. 显示/分辨率:液晶显示1280*800 16. 统计处理:各种平均、偏差处理以及异常信号的自动抽取 17. 信号处理:积分处理、频谱分析、相关分析、积算处理18. 图形处理:等值线快速成像19. 变形指标测试内容:压缩时弹性模量、回弹时弹性模量20. 变形指标测试测试方法:基于Hertz冲击理论21. 强度指标测试内容:内摩擦角、粘聚力(一轴压缩强度)22. 强度指标测试测试方法:基于Vesic空洞扩张理论23. 其他换算指标测试内容:K30、CBR、弯沉、干密度、压实度等24. 其他换算指标测试方法:根据压缩时弹性模量进行换算(理论或经验)25. 测试深度范围:0.1-0.3m左右 仪器特点功能强大:一机多能,测试内容丰富;满足各种现行施工设计规范;性能可靠:完善的理论体系;精度高、重复性好;标准程序化操作,全自动解析,无人为干扰;统计处理,更科学直观;操作简单:无需系统培训;无需重型机械;快速便捷:测试前无需平整地面;每分钟5-6测点;较诸传统方法,效率提高数百倍;直观反映:直接测试强度指标和变形模量,更直观反映材料的力学特性;适用范围广,不受施工场地制约;操作简便:触摸屏与遥控操作双重选择,也可一人测试,效率高。

  • 抗独特型抗体应用——药代动力学(PK)+ADA检测

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/anti-idiotype-antibody][b]抗独特型抗体[/b][/url]是一种能够特异性结合另一抗体独特位的抗体。独特型由多个抗原决定簇([/font][font=Calibri]Antigenic determinant[/font][font=宋体])组成,每个抗原决定簇都是一个独特位。抗原决定簇或独特位可存在于重链可变区,也可存在于轻链可变区,或者存在于两条链组成的表面。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗独特型抗体在治疗性抗体药物开发过程中有着非常广泛的应用。由于抗独特型抗体与抗药抗体([/font][font=Calibri]Anti-drug antibody, ADA[/font][font=宋体])之间的相似性,抗独特型抗体在免疫原性([/font][font=Calibri]Immunogenicity[/font][font=宋体])分析中可作为阳性对照用于抗药物抗体总量的测定。另外,在抗体药的药代动力学([/font][font=Calibri]PK[/font][font=宋体])和药效学([/font][font=Calibri]PD[/font][font=宋体])分析中,抗独特型抗体可用于检测血液中抗体药物的含量(游离型、结合型和总量)。[/font][/font][font=宋体] [/font][font=宋体][b]抗独特型抗体的不同应用[/b][/font][font=宋体] [/font][font=宋体][font=宋体]①药代动力学([/font][font=Calibri]PK[/font][font=宋体])分析[/font][/font][font=宋体][font=宋体]药代动力学([/font][font=Calibri]PK[/font][font=宋体])描述并表征了药物在人或动物体内的四个不同阶段:吸收、分布、代谢和排泄(也称为[/font][font=Calibri]ADME[/font][font=宋体])。在药物开发中,[/font][font=Calibri]PK[/font][font=宋体]分析提供了药物与身体相互作用以及疗效强度和疗效持续时间的基本信息。在开发生物仿制药时,需要通过比较[/font][font=Calibri]PK[/font][font=宋体]分析来评价与原研药在生物活性的潜在差异。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]根据结合模式和性质的不同,抗独特型抗体可分为三种类型:抗原阻断型、抗原非阻断型和药物靶标复合物型。基于这些特点,可以建立不同形式的[/font][font=Calibri]PK[/font][font=宋体]检测,以测量血清中的抗体药物含量,包括游离型、结合型或总量。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗独特型抗体可用于定量检测动物或人血清中的抗体药物水平,是[/font][font=Calibri]PK[/font][font=宋体]研究的关键检测试剂。抗体药物定量分析有多种分析方法,其中[/font][font=Calibri]ELISA[/font][font=宋体]为最常用的形式。在抗独特型抗体捕获[/font][font=Calibri]ELISA[/font][font=宋体]中,将抗独特型抗体包被在平板上,再将含有抗体药物的样本加入系统中,然后用特异性结合药物的标记抗独特型抗体定量抗体药物。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]②免疫原性[/font][font=Calibri]/[/font][font=宋体]抗药抗体([/font][font=Calibri]ADA[/font][font=宋体])检测[/font][/font][font=宋体][font=宋体]免疫原性评价主要采用抗药抗体([/font][font=Calibri]anti-drug antibody, ADA[/font][font=宋体])分析的方法进行,这是治疗性蛋白药物(如单克隆抗体、[/font][font=Calibri]ADC[/font][font=宋体]和融合蛋白)开发过程中的关键步骤。在这些情况下,通常采用多层次递进式进行(图[/font][font=Calibri]3[/font][font=宋体])。该方法首先采用高灵敏的筛选试验鉴别阳性抗体样本,使用验证性试验尽量减少假阳性结果,然后使用表征试验评估抗体的中和能力。[/font][/font][font=宋体][font=宋体]在整个过程中,抗独特型抗体是必要的试剂。检测[/font][font=Calibri]ADA[/font][font=宋体]的检测方法有多种,包括[/font][font=Calibri]ELISA[/font][font=宋体]、放射免疫沉淀法([/font][font=Calibri]RIPA[/font][font=宋体])、表面等离子体共振([/font][font=Calibri]SPR[/font][font=宋体])和电化学发光检测([/font][font=Calibri]ECL[/font][font=宋体])。其中,桥联[/font][font=Calibri]ELISA[/font][font=宋体]是最常用方法,可用于检测所有[/font][font=Calibri]ADA[/font][font=宋体]同种型([/font][font=Calibri]IgG[/font][font=宋体]、[/font][font=Calibri]IgM[/font][font=宋体]、[/font][font=Calibri]IgA[/font][font=宋体]等)。在典型的桥联[/font][font=Calibri]ELISA[/font][font=宋体]中,将抗体药物预包被在平板上,并将标记的抗体药物与患者样本一起孵育,以检测是否存在[/font][font=Calibri]ADA[/font][font=宋体](图[/font][font=Calibri]4[/font][font=宋体])。抗独特型抗体将用作阳性对照或参比标准品,用于样本中[/font][font=Calibri]ADA[/font][font=宋体]的定性分析。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][url=https://cn.sinobiological.com/services/anti-idiotype-antibody-service][b]抗独特型抗体制备[/b][/url][b]套餐[/b][/font][font=宋体][font=宋体]为支持药物开发,义翘神州为客户提供了从抗原制备、抗独特型抗体开发到检测方法建立和试剂盒开发的全方位、一站式的定制抗独特型抗体生产服务。我们拥有丰富的开发经验,包括不同抗体类型如全长[/font][font=Calibri]mAb[/font][font=宋体]、[/font][font=Calibri]F(ab')2[/font][font=宋体]、[/font][font=Calibri]Fab[/font][font=宋体]、[/font][font=Calibri]scFv[/font][font=宋体]、[/font][font=Calibri]VHH[/font][font=宋体]、[/font][font=Calibri]ADC[/font][font=宋体]、[/font][font=Calibri]bsAb[/font][font=宋体]和[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白等。定制的抗独特型抗体可用于建立药代动力学([/font][font=Calibri]PK[/font][font=宋体])[/font][font=Calibri]/ADA[/font][font=宋体]检测方法,以测定样本中的特异性抗体药物或[/font][font=Calibri]ADA[/font][font=宋体]水平。[/font][/font][font=宋体] [/font][font=宋体]服务:[/font][font=宋体]①抗独特型兔多抗制备服务[/font][font=宋体]交付内容:[/font][font=宋体]? 纯化抗体[/font][font=宋体][font=宋体]? [/font][font=Calibri]CoA[/font][/font][font=宋体][font=宋体]周期:[/font][font=Calibri]2-3[/font][font=宋体]个月[/font][/font][font=宋体] [/font][font=宋体]②抗独特型鼠单抗制备服务[/font][font=宋体]交付内容[/font][font=宋体][font=宋体]? 阳性克隆,[/font][font=Calibri]2[/font][font=宋体]管细胞[/font][font=Calibri]/[/font][font=宋体]克隆[/font][/font][font=宋体][font=宋体]? 纯化抗体,[/font][font=Calibri]10 mg/[/font][font=宋体]克隆[/font][/font][font=宋体][font=宋体]? [/font][font=Calibri]ELISA[/font][font=宋体]抗体对(可选)[/font][/font][font=宋体][font=宋体]? [/font][font=Calibri]CoA[/font][/font][font=宋体][font=宋体]周期:[/font][font=Calibri]4~6[/font][font=宋体]个月[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/anti-idiotype-antibody[/font][/font]

  • 力学试验的技术含量

    普遍的反应是现在力学试验员的工资都不是很高,那么,力学试验的技术含量到底有多高呢?对于力学试验员的技术要求又需要多高呢?是个人可以对试验机、硬度计进行操作并得到结果,就算满足了;还是说除设备操作外,包括材料性能、不同元素对材料特性的效果、设备维护(必要时修理)、设备验证等都掌握?

  • 法美两科学家获2012年诺贝尔物理学奖[图] 他们测量和操控单个粒子并保持其量子特性

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def81206.jpg戴维·瓦恩兰http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def8220e.jpg赛尔日·阿罗什http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/011349804739421_change_hzp2a20_b.jpg 10月9日,在瑞典首都斯德哥尔摩,瑞典皇家科学院专家解读2012年诺贝尔物理学奖得主研究成果。新华社记者 刘一楠摄 中国科技网讯 据诺贝尔奖委员会官方网站报道,北京时间9日17时45分,2012年诺贝尔物理学奖在瑞典斯德哥尔摩揭晓,法国物理学家塞尔日·阿罗什和美国物理学家戴维·瓦恩兰因“提出了突破性的实验方法,使测量和操控单个量子体系成为可能”获此殊荣。 塞尔日·阿罗什和戴维·瓦恩兰各自独立发明和发展了测量及操控单个粒子的方法,并能在实验过程中保有粒子的量子力学特质,而这种方式在此之前被认为是不可企及的。两位科学家的工作领域均属于量子光学,事实上,他们所采用的方法还有很多共通之处:戴维·瓦恩兰使用光子来控制和测量被囚禁的带电离子,塞尔日·阿罗什则采用了相反的途径,他控制并测量了被囚禁的光子,具体需要原子穿越陷阱来实现。 塞尔日·阿罗什1944年9月11日出生于摩洛哥卡萨布兰卡,目前居住于巴黎。1971年在法国皮埃尔与玛丽·居里大学,即巴黎第六大学取得博士学位。现任法国巴黎高等师范学院教授和法兰西学院教授,兼任量子物理系主任。他还是法国物理学会、欧洲物理学会和美国物理学会的会员,被认为是腔量子电动力学的实验奠基者。曾获洪堡奖、阿尔伯特·迈克尔逊勋章、查尔斯·哈德·汤斯奖、法国国家科学研究中心金奖等诸多奖项。其主要研究领域为通过实验观测量子脱散(又称量子退相干),即量子系统状态间相互干涉的性质会随时间逐步丧失。脱散现象可对量子信息科学形成两方面的影响:一是涉及量子计算领域,另一方面则与量子通信相关。 戴维·瓦恩兰1944年2月24日出生于美国威斯康星州密尔沃基。1970年在美国哈佛大学取得博士学位。现任美国国家标准技术研究所研究员和组长,美国科罗拉多大学波德分校教授。他还是美国物理学会、美国光学学会会员,并于1992年入选美国国家科学院。曾获得阿瑟·肖洛奖(激光科学)、美国国家科学奖章(物理学)、赫伯特·沃尔特奖、本杰明·富兰克林奖章(物理学)等。他的主要工作包括离子阱的激光冷却,以及利用囚禁的离子进行量子计算等,因此被认为是离子阱量子计算的实验奠基者。(记者 张巍巍) 《科技日报》(2012-10-10 一版) 他们是量子物理实验派双杰 ——记2012年诺贝尔物理学奖获得者 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def85615.jpg 10月9日下午,2012年诺贝尔物理学奖揭晓。瑞典皇家科学院诺贝尔奖评审委员会将奖项授予给了量子光学领域的两位科学家——法国物理学家塞尔日·阿罗什与美国物理学家戴维·瓦恩兰,以奖励他们“提出了突破性的实验方法,使测量和操控单个量子系统成为可能”。 诺奖官方网站称,塞尔日·阿罗什与戴维·瓦恩兰两人分别发明并发展出的方法,让科学界得以在不影响粒子量子力学性质的情况下,对非常脆弱的单个粒子进行测量与操控。他们的方式,在此前一度被认为是不可能做到的。 而这就是诺贝尔物理学奖此次垂青于两位实验派物理学家的原因。 进入量子光学的神秘之门 本届物理奖的两位得主戴维·瓦恩兰与塞尔日·阿罗什是同年生人。 塞尔日·阿罗什,1944年出生在摩洛哥卡萨布兰卡,1971年于法国巴黎的皮埃尔与玛丽·居里大学取得博士学位,目前在法兰西学院和法国巴黎高等师范学院任教授。在拿到本届诺贝尔物理学奖前,他已被业内誉为腔量子电动力学的实验奠基人。 戴维·瓦恩兰,1944年出生于美国威斯康星州密尔沃基,1970年于哈佛大学取得博士学位,目前作为研究团队带头人和研究员,就职于美国国家标准与技术研究院(NIST)与科罗拉多大学波德分校。瓦恩兰亦一直有着“离子阱量子计算实验奠基者”的头衔。 他们两人是量子物理实验派双杰。两人研究的范畴都属于量子光学,这一领域在上世纪80年代中期以后经历了长足发展,而他们的学术生涯一直在与单光子与离子打交道,研究光与物质在最基本层面上的相互作用。 曾经很长时间以来,实验派物理学家们想在一个微观层面上研究光与物质的相互作用,这完全是难以想象的事。因为,对于光或者其他物质的单个粒子而言,经典物理学已不适用,量子力学的法则在此时取而代之。但是单个粒子却很难从周围环境中被分离出来,并且,它一旦和周遭环境发生相互作用,便会立即丧失其神秘的量子特征。 如此让人束手无措的局面,使得很多量子力学理论所预言的怪异现象无法被科学家们直接观察到。于是长期以来,研究人员只能依靠那些法则已证明可能会影响到量子奇异特性的实验来进行观察研究。而这或许让实验派物理学家们感觉一直跟在理论的后边亦步亦趋。 真正改变实验物理学的人 扭转这一窘状的正是阿罗什与瓦恩兰,他们两人带领各自的研究小组,分别发展出理想的方法,用于测量并操控非常脆弱的量子态。 具体而言,两人所采用的方法既有共通特点亦各有精妙之处:瓦恩兰捕获带电原子(离子),随后使用光(光子)对其进行操控和测量,这些离子被放置在超低温中,防止被外界“打扰”。该方法关键在于巧妙的使用激光束以及激光脉冲抑制了离子的热运动,离子因此进入特定的量子叠加态中——叠加态正是量子世界最神秘的特性——从而保持住了单个粒子的量子特征。 而阿罗什虽然同样使实验处于真空和超低温环境,却采用的是完全相反的手段:利用原子对光子进行操控和测量。他将两面特制的、反射能力极强的镜子组成空腔,捕获住光子并让其在空腔中停留0.1秒——这点儿时间已足够光子在消失前绕地球一圈——这时他再让里德伯原子(比一般原子大1000倍的巨大原子)穿过空腔,每次通过一个里德伯原子,原子离开时,会“告诉”他空腔里还有没有光子。 试着分别去操纵一个光子与离子,借以深入洞察一个微观的世界——原本仅仅是理论学派的领域,正是塞尔日·阿罗什与戴维·瓦恩兰的研究“打开了新时代量子物理学实验领域的大门”。现在,借助他们的新方式,实验物理学家们得以操控粒子或对粒子进行计数。 实验、应用、改变人们的生活 但阿罗什与瓦恩兰的成就并不止于此。 在公布本届物理奖获得者后,诺奖组委会还介绍了两人的成果在应用层面上的意义。据组委会称,阿罗什与瓦恩兰在他们的研究领域采取了突破性的方法,产生其中一个应用是将建立起一种新型的、基于量子物理学的超快计算机,这或将导致极其先进的通信和计算模式。换句话说,这是向着研制具有惊人运算速度的量子计算机迈出了第一个脚步。科学家预想,或许,就在本世纪,量子计算机会彻底改变我们每个人的日常生活——正如经典计算机在上个世纪曾彻底颠覆每个人的生活方式一样。 而阿罗什与瓦恩兰的研究产生的另一个应用是:“会带来一种非比寻常的精准时钟,并在未来成为一个新的计时标准。”这种超高精度钟表的精确度将比今天所使用的铯原子钟高出数百倍。此前,世界最精确的时钟曾经就是瓦恩兰就职的科罗拉多州国家标准与技术研究所制造的量子逻辑钟,它的误差约为每37亿年1秒。 阿罗什与瓦恩兰展示了如何在不破坏单个粒子的情况下对其进行直接观察的方法,但他们做到的却不只是在量子世界控制住粒子,其带给人们生活的改变,将远超今天目力所能够看得到的。 那么,荣摘诺奖桂冠又是否改变了科学家本人的生活呢?据英国广播公司(BBC)在线版消息称,塞尔日·阿罗什本人仅仅提前了20分钟被组委会告知自己获奖的消息。 “我很幸运,”塞尔日·阿罗什说,但他指的并不是自己得奖这回事,“(接到来电时)我正在一条街上,旁边就有个长椅,所以我第一时间就坐了下来。”他形容那一刻的心情,“当我看到是

  • 【求助】“生成动力学”的概念

    关于DLC薄膜摩擦磨损性能的论文,论文里面有这么一句:Consequently friction seems to be controlled by the transfer film whose kinetics of formation strongly depends on the partial pressure of water vapor.可大概译为:摩擦特性由转移膜控制,而后者的生成动力学强烈依赖于水蒸气的分压。问一下,生成动力学的概念在什么书上可以找到?请高手指点,谢谢了。

  • 【转帖】物理力学

    物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。物理力学的产生物理力学作为力学的一个分支,是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。在这样的背景条件下,促使了物理力学的建立。物理力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。物理力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。物理力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。物理力学注重运算手段,不满足于问题的原则解决,要求作彻底的数值计算。因此,物理力学的研究力求采用高效率的运算方法和现代化的电子运算工具。物理力学注重从微观到宏观。以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而物理力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是物理力学建立的主导思想和根本目的。虽然物理力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。物理力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。物理力学的主要内容物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。

  • 【求助】关于吸附动力学实验

    我现在做细真菌菌丝对DDT的吸附特性研究,其中包括动力学,就是每隔一段时间取吸附体系中的溶液然后马上将菌丝去除测液体中残留的DDT。主要问题就在即时去除菌丝这方面,用一次性过滤器加有机系滤膜过滤的话时间够及时但DDT损失太大,如果用离心的方法,时间好像有点延后,而且体系中菌丝量很少离心效果不能保证,况且每次取样也不能太多。有没有高人指点一下有没有什么比较灵巧的解决方案?

  • 【资料】什么叫物理力学

    物理力学physical mechanics  从物质的微观结构及其运动规律出发 ,运用近代物理、物理化学和量子化学等学科的成就,通过分析研究和数值计算阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释的力学分支。物理力学的基础是量子力学、统计力学和原子、分子物理学。  物理力学是20世纪 50 年代末出现的 。首先提出这一名称并做了开创性工作的是中国学者钱学森。物理力学产生的背景是:①出现了极端条件下的工程技术问题,所涉及的温度可高达几千至几百万开,压力达几万到几百万大气压(1大气压等于101325帕),应变率达106~108秒-1等 。在上述条件下,介质和材料的性质很难用实验方法直接测定,而需用微观分析的方法来阐明。②出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题。③出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项。④由于对新材料的需求以及大批新型材料的出现,要求寻找一种以微观理论为依据合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。  物理力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已比较清楚,为从微观状态推算出宏观特性提供了基础和可能。  其特点是:①注重机理分析。着重分析问题的机理,并借助建立理论模型来解决具体问题;只在作机理分析的资料不足时,才求助于新的实验。②注重运算手段。不满足于问题的原则解决,要求直接利用物理力学的成果作彻底的数值计算,力求采用高效率的运算方法和现代化的电子运算工具。③注重从微观到宏观。物理力学建立在近代物理和近代化学成就之上,运用这些成就建立起物质宏观性质的微观理论 ,是物理力学建立的主导思想和根本目的。  虽然物理力学引用了近代物理和近代化学的许多结果 ,但它并不完全是统计物理或物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术中提出的各种具体问题。物理力学面临的问题要比基础学科中提出的问题复杂得多,它不能只靠简单的推演方法或只借助于某一学科的成就,而必须尽可能结合实验和运用多学科的成果。  研究内容主要有平衡现象和非平衡现象。平衡现象包括气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡等;解决这类问题主要借助于统计力学方法。非平衡现象包括4个方面:①趋向于平衡态的过程 ,如各种化学反应和驰豫现象(包括能量驰豫和化学驰豫)。②偏离平衡状态较小的稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射输运等。③远离平衡态的问题,如开放系统中遇到的各种能量耗散过程。④平衡和非平衡状态下发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。  物理力学的研究工作 ,目前主要集 中在以下 3 个方面:①高温气体性质:研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的驰豫现象。②稠密流体性质:主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等。③固体材料性质:利用微观理论研究材料的弹性、塑性、强度以及本构关系等。

  • 【转帖】生物力学biomechanics

    生物 力学是应用 力学 原理和方法对生物体中的力学问题定量研究的 生物物理学 分支。其研究范围从生物整体到系统、 器官 (包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、 鞭毛 和纤毛运动到植物体液的输运等。 生物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与 生理学 、 医学 有关的力学问题。依研究对象的不同可分为 生物流体力学 、 生物固体力学 和 运动生物力学 等。 在科学的发展过程工, 生物学 和力学相互促进和发展着。 哈维 在1615年根据 流体力学 中的连续性原理,按逻辑推断了 血液循环 的存在,并由马尔皮基于1661年发现蛙肺微血管而得到证实; 材料力学 中著名的扬氏模量是扬为建立声带发音的弹性力学理论而提出的;流体力学中描述直圆管层流运动的泊松定理,其实验基础是狗主动脉血压的测量;黑尔斯测量了马的动脉血压,为寻求血压和失血的关系,在 血液 流动中引进了外周阻力的概念,同时指出该阻力主要来自组织中的微血管;弗兰克提出了心脏的流体力学理论;施塔林提出了物质透过膜的传输定律;克罗格由于对微循环力学的贡献,希尔由于肌肉力学的贡献而先后(1920,1922)获诺贝尔生理学或医学奖。到了20世纪60年代,生物力学成为一门完整、独立的学科。生物固体力学是利用材料力学、弹塑性理论、 断裂力学 的基本理论和方法,研究 生物组织 和器官中与之相关的力学问题。在近似分析中,人与 动物 骨头的压缩、拉伸、断裂的强度理论及其状态参数都可应用材料力学的标准公式。但是,无论在形态还是力学性质上,骨头都是各向异性的。20世纪70年代以来,对骨骼的力学性质已有许多理论与实践研究,如组合杆假设,二相假设等,有限元法、断裂力学以及应力套方法和先测弹力法等检测技术都已应用于骨力学研究。骨是一种复合材料,它的强度不仅与骨的构造也与材料本身相关。骨是骨胶原纤维和无机晶体的组合物,骨板由纵向纤维和环向纤维构成,骨质中的无机晶体使骨强度大大提高。体现了骨以最少的结构材料来承受最大外力的功能适应性。木材和 昆虫 表皮都是纤维嵌入其他材料中构成的复合材料,它与由很细的玻璃纤维嵌在合成树脂中构成的玻璃钢的力学性质类似。动物与植物是由 多糖 、蛋白质类脂等构成的高聚物,应用橡胶和塑料的高聚物理论可得出蛋白质和多糖的力学性质。粘弹性及弹性变形、弹性模量等知识不仅可用于由氨基酸组成的蛋白质,也可用来分析有关细胞的力学性质。如细胞分裂时微丝的作用力,肌丝的工作方式和工作原理及细胞膜的力学性质等。生物流体力学是研究生物 心血管系统 、消化呼吸系统、 泌尿系统 、 内分泌 以及游泳、飞行等与 水动力学 、 空气动力学 、 边界层理论 和流变学有关的力学问题。人和动物体内血液的流动、植物体液的输运等与流体力学中的层流、端流、渗流和两相流等流动型式相近。在分析血液力学性质时,血液在大血管流动的情况下,可将血液看作均质流体。由于 微血管 直径与 红细胞 直径相当在微循环分析时,则可将血液看作两相流体。当然,血管越细,血液的非牛顿特性越显著。

  • 【分享】材料力学性能与试验综述

    材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。测定材料在一定环境条件下受力或能量作用时所表现出的特性的试验,又称材料力学性能试验。试验的内容主要是测量材料的强度、硬度、刚性、塑性和韧性等。力学试验包括:自然暴露试验和人工模拟试验(试验室试验),人工模拟试验通常采用试验机等仪器设备来进行。试验室试验常用方法如下几种 : (1) 规定一种机械运动。这是应用最为广泛的试验方法。 机械性能试验可分为静力试验和动力试验两大类。静力试验包括拉伸试验、压缩试验、弯曲试验、剪切试验、扭转试验、硬度试验、蠕变试验、高温持久强度试验、应力松弛试验、断裂韧性试验等。动力试验包括冲击试验、疲劳试验(见疲劳强度)等。 机械性能试验在各种特定的试验机上进行。试验机 按传动方式分机械式和油压式两类,可手动操作或自动操纵。有的试验机还带有计算机装置,按编好的程序自动进行试验操作和控制,并可用图像和数字显示出结果,提高试验的精度,使用方便。 1)规定一种接近实际环境的机械运动来模拟。 2)根据试验产品破坏或失效的等效原理来规定一种机械运动。 用规定一种机械运动的方法作试验的特点是,当满足各项运动特征参数的容差要求时,试验具有高的再现性。 (2) 规定一种试验机,这是用试验样品破坏或失效的等效原理而引出的一种试验方法。 规定试验机试验方法的特点是试验中不需要测量运动特征参数,但在某些情况下再现性较差。 (3) 规定一种结构响应谱,主要用于冲击试验中。国内外力学环境试验方法标准中规定的力学环境试验,常见的有以下几种:正弦振动试验; 随机振动试验; 冲击试验; 碰撞试验; 离心恒加速度试验;摇摆试验; 倾跌与翻倒试验;弹跳试验; 撞击试验; 自由跌落试验等。测试屈服强度的材料试验机一般依据特定的使用标准进行测试。这在相关行业标准或者国内外的标准有规定。如果没有相关的标准则需要使用材料试验的供求双方按照力学试验的人工模拟试验来进行试验方法的订制,并且得到供求双方的认可为依据。

  • 上海应物所等研究发现带有极性基团的表面也有疏水特性

    表面的亲疏水性质在蛋白质折叠、两亲分子的自组装、微流动技术、分子的识别检测技术和自清洁表面材料的制备等多个学科领域及应用技术研究中都起着关键的作用。对表面的亲疏水性质的误判,会导致对表面和表面附近物质的相互作用的错误理解,进而影响对整个系统的物理分析和相应的实验、应用设计。 由于水分子是极性分子,所以带有极性基团的分子对水有很强的亲和力,可以吸引水分子并且易溶于水。因此一般认为,这类带有极性基团的分子形成的固体材料的表面容易被水润湿,是亲水表面。目前在实验和实际应用中,一般人们就通过在表面修饰极性基团的手段从而使得表面变亲水。 事实果真如此吗?最近,中国科学院上海应用物理研究所水科学和技术研究室的王春雷博士和方海平研究员等通过理论分析发现,固体表面的亲水和疏水特性(浸润性)还明显依赖于表面上极性分子的偶极长度。通过理论模型和分子动力学模拟证明,偶极长度存在一个临界值,当表面上极性分子的偶极长度小于此临界长度时,无论极性分子的偶极矩有多大,水分子仍无法“感受”到固体表面偶极的存在,从而使带有极性基团的表面也有疏水特性;当偶极长度大于此临界长度时,随着偶极矩和偶极长度增大,固体表面会变得越来越亲水。相关研究结果发表在国际学术期刊Scientific Reports (2012, 2, 358)上。 为什么会这样呢?当一个带有极性基团的分子在水中,其正、负极性基团分别被水中的氧和氢原子所吸引(水中的氧和氢原子分别带有负、正电),或者形成氢键,会导致这个分子与水分子产生强大的亲和力。当这些分子形成固体材料的表面时,如果分子小,偶极长度短,水分子之间的空间位阻效应(拥挤效应)不能保证水分子中的氢原子被吸引到表面上的负电荷,同时氧原子被吸引到正电荷(如图的下半部分)。这导致整体表面的电偶极与水之间的相互作用较弱,表现出“意外的”疏水特性。当偶极长度增大,空间位阻效应减弱,更多的水分子中的氢原子(或氧原子)被吸引到与表面上的负(或正)电荷很近的距离,界面变得更亲水。分子动力学模拟还证实该临界偶极长度的存在具有普适性,即很多类型的极性表面上均存在这样的临界偶极长度。 在此以前,该研究组曾在2009年提出,当固体表面的电偶极排布合适,使得吸附在表面的第一层水表现出有序,可以导致第一层水上面出现(只有不完全亲水表面才有的)水滴,该表面呈现“表观的疏水” (Phys. Rev. Lett., 2009, 103, 137801; J. Phys. Chem. C, 2011, 115, 3018)。这一理论预言已得到澳大利亚课题组的实验证实(Soft Matter, 2011, 7, 5309; Langmuir, 2011, 27, 10753)。这些工作说明了有极性基团的表面也可以表现出疏水或者“表观的疏水”性质,并有助于描绘表面的亲疏水性质与极性基团之关联的完整图像。 该项研究工作由上海应物所、上海大学、四川大学和浙江大学的研究人员合作完成,得到了中国科学院、国家自然科学基金委、科技部、中国博士后科学基金会、上海市科学技术委员会和上海市人民政府(通过上海超级计算中心)的共同资助。 论文链接http://www.cas.cn/ky/kyjz/201205/W020120522494508564815.jpg 上图:水中的氧原子(桔黄色哭脸)和氢原子(黄色小球)分别被表面上正、负极性基团所吸引,空间位置受到约束。当表面上正、负极性基团的距离比较小时,表面附近的水分子会非常拥挤,导致不稳定。下图:表面附件的水分子间距离增大后,系统达到稳定。但不能保证水分子中的氢原子(黄色小球)被吸引到表面上的负电荷,同时氧原子(绿色笑脸)被吸引到正电荷,使水分子感受不到表面电荷的吸引力,从而使固体表面表现出疏水特性。

  • 【转帖】不锈钢的力学性能——抗拉强度、屈服强度

    不锈钢的强度由各种因素来确定,但最重要的和最基本的因素是其中添加的不同化学元素,主要是金属元素。不同类型的不锈钢由于其化学成分的差异,就有不同的强度特性。(1)马氏体型不锈钢 马氏体型不锈钢与普通合金钢一样具有通过淬火实现硬化的特性,因此可通过选择牌号及热处理条件来得到较大范围的不同的力学性能。马氏体型不锈钢从大的方面来区分,属于铁—铬—碳系不锈钢.进而可分为马氏体铬系不锈钢和马氏体铬镍系不锈钢。在马氏体铬系不锈钢中添加铬、碳和钼等元素时强度的变化趋势和在马氏体铬镍系不锈钢中添加镍的强度特性如下所述。马氏体铬系不锈钢在淬火—回火条件下,增加铬的含量可使铁素体含量增加,因而会降低硬度和抗拉强度。低碳马氏体铬不锈钢在退火条件下,当铬含量增加时硬度有所提高,而延伸率略有下降。在铬含量一定的条件下,碳含量的增加使钢在淬火后的硬度也随之增加,而塑性降低。添加钼的主要目的是提高钢的强度、硬度及二次硬化效果。在进行低温淬火后,钼的添加效果十分明显。含量通常少于1%。在马氏体铬镍系不锈钢中,含一定量的镍可降低钢中的δ铁素体含量,使钢得到最大硬度值。马氏体型不锈钢的化学成分特征是,在0.1%----1.0%C,12%---27%Cr的不同成分组合基础上添加钼、钨、钒和铌等元素。由于组织结构为体心立方结构,因而在高温下强度急剧下降。而在600℃以下,高温强度在各类不锈钢中最高,蠕变强度也最高。

  • 【资料】声音特性

    (一)响度(loudness):人主观上感觉声音的大小(俗称音量),由“振幅”(amplitude)和人离声源的距离决定,振幅越大响度越大,人和声源的距离越小,响度越大。(单位:分贝dB)  (二)音调(pitch):声音的高低(高音、低音),由“频率”(frequency)决定,频率越高音调越高(频率单位Hz(hertz),赫兹[/url,人耳听觉范围20~20000Hz。 20Hz以下称为次声波,20000Hz以上称为超声波)例如,低音端的声音或更高的声音,如细弦声。  (三)音色(music quality):声音的特性,由发声物体本身材料、结构决定。又称音品。  频率是每秒经过一给定点的声波数量,它的测量单位为赫兹,是以一个名叫海里奇R.赫兹的音响奇人命名的。此人设置了一张桌子,演示频率是如何与每秒的周期相关的。  1千赫或1000赫表示每秒经过一给定点的声波有1000个周期,1兆赫就是每秒钟有1,000,000个周期,等等。  (四)乐音:有规则的让人愉悦的声音。噪音:从物理学的角度看,由发声体作无规则振动时发出的声音;从环境保护角度看,凡是干扰人们正常工作、学习和休息的声音,以及对人们要听的声音起干扰作用的声音。  (五)音调,响度,音色是乐音的三个主要特征,人们就是根据他们来区分声音。

  • 什么是抗独特型抗体?抗独特型抗体三种类型及应用

    [font=宋体][font=宋体]抗独特型抗体是一种能够特异性结合另一抗体独特位的抗体。独特型由多个抗原决定簇([/font][font=Calibri]Antigenic determinant[/font][font=宋体])组成,每个抗原决定簇都是一个独特位。抗原决定簇或独特位可存在于重链可变区,也可存在于轻链可变区,或者存在于两条链组成的表面。[/font][/font][font=宋体] [/font][font=宋体][b]抗独特型抗体三种类型:[/b][/font][font=宋体] [/font][font=宋体]①抗原非中和型[/font][font=宋体]不具有抗体结合区特异性,治疗性抗体仍可与其目标抗原相结合。这种类型的抗独特型抗体可用于检测抗体药物总量。[/font][font=宋体]②抗原中和型[/font][font=宋体]具有抗体结合区特异性,与其目标抗原相互竞争,因此,此类型可用于检测游离型抗体药物。[/font][font=宋体]③药物靶标复合物型[/font][font=宋体][font=宋体]仅特异性地识别抗体[/font][font=Calibri]-[/font][font=宋体]靶标复合物,不与未结合的抗体或未结合的目标抗原相结合。这种类型的抗独特型抗体仅能检测结合型抗体药物。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]抗独特型抗体的不同应用[/b][/font][font=宋体]①免疫原性分析[/font][font=宋体][font=宋体]免疫原性分析对于生物药物开发具有重要的意义。几乎所有的生物制药产品(如蛋白、抗体、多肽偶联药物或寡核苷酸等)都会诱导机体内免疫应答,从而导致抗药抗体([/font][font=Calibri]ADA[/font][font=宋体])的产生。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗独特型抗体属于高度特异性[/font][font=Calibri]ADA[/font][font=宋体]。多克隆抗体能较大限度地模拟血样中的真实情况,还具有制备周期较短和成本低的优势。因此,大多数情况下,在分析患者样本中是否存在[/font][font=Calibri]ADA[/font][font=宋体]时,抗独特型多克隆抗体通常用作阳性对照。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]②药代动力学([/font][font=Calibri]PK[/font][font=宋体])分析[/font][/font][font=宋体][font=宋体]抗独特型抗体也是药代动力学([/font][font=Calibri]PK[/font][font=宋体])分析的关键工具试剂之一。 在临床前研究和临床研究中,[/font][font=Calibri]PK[/font][font=宋体]分析可用于评估抗体药物的用药剂量和毒性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗独特型单克隆抗体特异性强,可作为[/font][font=Calibri]PK[/font][font=宋体]分析的检测试剂,用于检测人或动物血清中的抗体药物含量。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/anti-idiotype-antibody-service][b]抗独特型抗体制备服务[/b][/url],同时拥有综合性的抗独特型抗体开发平台,涵盖兔多抗、杂交瘤、噬菌体、流式单[/font][font=Calibri]B[/font][font=宋体]细胞和[/font][font=Calibri]Beacon[/font][font=宋体]单[/font][font=Calibri]B[/font][font=宋体]细胞技术,为客户提供更多选择。详情可以关注抗独特型抗体制备服务[/font][font=Calibri]https://cn.sinobiological.com/services/anti-idiotype-antibody-service[/font][/font]

  • 【分享】不锈钢的力学性能

    一、强度(抗拉强度、屈服强度)不锈钢的强度由各种因素来确定,但最重要的和最基本的因素是其中添加的不同化学元素,主要是金属元素。不同类型的不锈钢由于其化学成分的差异,就有不同的强度特性。(1)马氏体型不锈钢 马氏体型不锈钢与普通合金钢一样具有通过淬火实现硬化的特性,因此可通过选择牌号及热处理条件来得到较大范围的不同的力学性能。 马氏体型不锈钢从大的方面来区分,属于铁—铬—碳系不锈钢.进而可分为马氏体铬系不锈钢和马氏体铬镍系不锈钢。在马氏体铬系不锈钢中添加铬、碳和钼等元素时强度的变化趋势和在马氏体铬镍系不锈钢中添加镍的强度特性如下所述。马氏体铬系不锈钢在淬火—回火条件下,增加铬的含量可使铁素体含量增加,因而会降低硬度和抗拉强度。低碳马氏体铬不锈钢在退火条件下,当铬含量增加时硬度有所提高,而延伸率略有下降。在铬含量一定的条件下,碳含量的增加使钢在淬火后的硬度也随之增加,而塑性降低。添加钼的主要目的是提高钢的强度、硬度及二次硬化效果。在进行低温淬火后,钼的添加效果十分明显。含量通常少于1%。在马氏体铬镍系不锈钢中,含一定量的镍可降低钢中的δ铁素体含量,使钢得到最大硬度值。马氏体型不锈钢的化学成分特征是,在0.1%----1.0%C,12%---27%Cr的不同成分组合基础上添加钼、钨、钒和铌等元素。由于组织结构为体心立方结构,因而在高温下强度急剧下降。而在600℃以下,高温强度在各类不锈钢中最高,蠕变强度也最高。

  • 【分享】材料力学性能试验的定义和分类

    测定材料在一定环境条件下受力或能量作用时所表现出的特性的试验,又称材料力学性能试验。试验的内容主要是测量材料的强度、硬度、刚性、塑性和韧性等。材料机械性能的测定与机械产品的设计计算、材料选择、工艺评价和材质的检验等有密切的关系。测出的机械性能数据不仅取决于材料本身,还与试验的条件有关。例如,取样的部位和方向、试样的形状和尺寸,试验时的加力特点,包括加载速度、环境介质的成分和温度等,都会影响试验的结果。为了保证试验结果的相对可比性,通常都制订出统一的标准试验方法,对试验条件一一作出规定,以便试验时遵守。  机械性能试验可分为静力试验和动力试验两大类。静力试验包括拉伸试验、压缩试验、弯曲试验、剪切试验、扭转试验、硬度试验、蠕变试验、高温持久强度试验、应力松弛试验、断裂韧性试验(见断裂力学分析)等。动力试验包括冲击试验、疲劳试验(见疲劳强度)等。  机械性能试验在各种特定的试验机上进行。试验机按传动方式分机械式和油压式两类,可手动操作或自动操纵。有的试验机还带有计算机装置,按编好的程序自动进行试验操作和控制,并可用图像和数字显示出结果,提高试验的精度,使用方便。 [em09502][em09511]

  • 药物代谢动力学研究中总药物分析

    了解不同时间药物在血浆或血清中的浓度,对于计算一种药物的代谢动力学很有必要;反之,药物动力学也是药物吸收、分布、代谢和排泄过程的一部分。准确了解药物在体内吸收、分布、代谢和排泄的规律,便于精确地计算所需药物剂量,既能保持有效的药物浓度,同时避免用药过量致毒。预先对多屏深孔Solvinert(MultiScreen Deep Well Solvinert )和多屏Solvinert滤板进行了验证,进行血浆或血清中蛋白质的板内沉淀,以便展开总药物分析。在滤板上可以快速、细致并完整地转移滤液,这样就可以在进行总药物分析之前为样品制备提供一个自动化兼容的平台。Solvinert滤板过滤的滤液中不含蛋白质,这与质谱分析法和紫外线分析法的结果一致。使用多屏深孔和多屏Solvinert滤板可产生有复验性的结果,它是一个稳定且可靠的平台。血清中的蛋白质被这些滤板过滤并沉淀之后,得到的样本中基本上不含蛋白质,回收率很高,便于萃取。药物动力学特性可以让新药开发商更了解药物的有效性和安全性,而这在新药的注册审批中是必要的。为了更好地了解候选药物的代谢动力,金斯瑞( GenScript)建议用动物来做药物分布及其代谢的研究,分析在不同时间段、不同组织或血清中,药物及其代谢物的情况。金斯瑞进行精确的药物和药物代谢动力学研究,涉及两个主要方面:药物分布及其代谢动力研究和抗体药物的代谢动力研究。群体药代动力学研究的是个体之间药物浓度变异来源及其相关性,这些个体是指按临床上相关剂量接受候选药物的目标患者人群。患者的某些人口统计学特征、病理生理特征以及治疗方面的特征,比如体重、排泄和代谢功能、以及接受其他治疗,都能够有规律地改变药物剂量-浓度关系。例如,主要由肾脏排除的药物,在接受同样剂量的情况下,在肾功能衰竭患者体内的稳态浓度,通常高于肾功能正常的患者体内的稳态浓度。群体药代动力学的研究目的就是找出那些使剂量-浓度关系发生变化的、可测定的病理生理因素,确定剂量-浓度关系变化的程度,当这些变化与临床上有意义的治疗指数改变相关的情况下,能够恰当地调整剂量。在药品开发中使用群体PK方法,使获得完整的药代动力学资料有了可能,不但能从来自研究受试者的相对稀疏的数据中获取资料,而且还能从相对密集的数据或从稀疏数据和密集数据的组合中获取资料。群体PK方法能够分析来自各种不均衡设计的数据,也能分析因为不能按常用的药代动力学分析方式分析而通常被排除的研究数据,比如从儿科患者和老年患者获取的浓度数据,或在评价剂量或浓度与疗效或安全性之间的关系时所获取的数据。传统药代动力学研究的受试者通常是健康的志愿者或特别挑选的患者,一组成员的平均情况(即平均血浆浓度-时间曲线)一直是关注的主要焦点。许多研究将个体之间药代动力学的变异作为一个需要降到最低的因素进行观察,通常是通过复杂的研究设计和对照方案,或通过有严格限制的入选标准/排除标准,将其降到最低。事实上,这些资料对在临床应用期间可能会出现的变异至关重要,但是却被这些限制所掩盖。而且,传统药代动力学研究只关注单个变量(例如肾功能)的作法,还使其难以研究变量之间的交互作用。

  • 【资料】药代动力学研究在新药研发中的应用

    新药研发是一个快速发展的领域,随着组合化学等高技术和天然药物分离制备技术的发展,加快了候选药物的出现。在这些候选药物中,不仅需要对其药效学进行评价,药物代谢和动力学性质也是非常重要的新药筛选指标。理想的药物需要具有持久的药物作用时间和良好的生物利用度。每年都会有大量的候选药物因为其药代动力学参数和代谢特征不佳而被淘汰。因此,在新药的设计、筛选过程中应该考虑候选药物可能出现的代谢特征以及药代参数特点,以获得更为有效的药物。体内药物动力学和代谢研究在新药的研发过程中是相当重要的,需要申报临床研究的药物都需要进行临床前药代动力学研究。除了传统的动物试验以外,目前一些体外实验技术也在新药研发筛选过程中应用,包括组合给药技术,代谢预测模型以及体外肝代谢研究等,这些技术的应用将使对于药物代谢及动力学的筛选变得简便,几种技术的互补将大大加快新药研发的进程。全国科学技术名词审定委员会1999年公布的药学名词“pharmacokinetics”定名为“药动学”,而 “药物代谢动力学”与“药代动力学”为不推荐用名。本文综述的是药物动力学及代谢的应用,故采用 “药代动力学”(pharmacokinetics and metabolism)表达以上意思。1 药代动力学研究的内容药代动力学是应用动力学原理与数学处理方法,定量描述药物在体内的动态变化规律,研究通过各种途径进入人体的药物,其吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excre- tion),即ADME过程,并且探讨药物在体内发生的代谢或者生物转化途径,进一步确证代谢产物的结构,研究代谢产物的药效或者毒性,使其结果为新药的定向合成、结构改造和筛选服务。描述药物体内过程的药动学参数主要有以下几个,速率常数(rate constant),包括吸收速率常数(ka)、总消除速率常数(k)以及尿药排泄速率常数(ke)等:生物半衰期(biological half life,t1/2),表征药物在体内的量或者血药浓度消除一半所需的时间,是衡量一种药物从体内消除快慢的指标;表观分布容积(apparent volume of distribution,AUC),是体内药量与血药浓度间相互关系的一个比例常数,是药物的特征参数,对于一个具体的药物来说,其值大小能够表示出该药的分布特性;清除率(clearance),指单位时间从体内消除的含药血浆体积或单位时间从体内消除的药物表观分布容积,常用Cl,又称体内总清除率表示。

  • 【分享】材料力学性能与试验综述

    材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。通常采用力学试验来测量。力学试验包括:自然暴露试验和人工模拟试验(试验室试验),人工模拟试验通常采用试验机等仪器设备来进行。试验室试验常用方法如下几种 :(1) 规定一种机械运动。这是应用最为广泛的试验方法。 1)规定一种接近实际环境的机械运动来模拟。 2)根据试验产品破坏或失效的等效原理来规定一种机械运动。 用规定一种机械运动的方法作试验的特点是,当满足各项运动特征参数的容差要求时,试验具有高的再现性。(2) 规定一种[url=http://www.okyiqi.com/pages_products/prolist_7.html][color=black]试验机[/color][/url],这是用试验样品破坏或失效的等效原理而引出的一种试验方法。 规定试验机试验方法的特点是试验中不需要测量运动特征参数,但在某些情况下再现性较差。 (3) 规定一种结构响应谱,主要用于冲击试验中。国内外力学环境试验方法标准中规定的力学环境试验,常见的有以下几种:正弦振动试验; 随机振动试验; 冲击试验; 碰撞试验; 离心恒加速度试验;摇摆试验; 倾跌与翻倒试验;弹跳试验; 撞击试验; 自由跌落试验等。材料承受材料试验机加载荷时或其他各种外力加载荷时所表现出的力学特征,用作测定材料在一定环境条件下受力或能量作用时所表现出的特性的试验,又称材料力学性能试验。试验的内容主要是测量材料的强度、硬度、刚性、塑性和韧性等。机械性能试验可分为静力试验和动力试验两大类。静力试验包括拉伸试验、压缩试验、弯曲试验、剪切试验、扭转试验、硬度试验、蠕变试验、高温持久强度试验、应力松弛试验、断裂韧性试验等。动力试验包括冲击试验、疲劳试验(见疲劳强度)等。  机械性能试验在各种特定的试验机上进行。试验机按传动方式分机械式和油压式两类,可手动操作或自动操纵。有的试验机还带有计算机装置,按编好的程序自动进行试验操作和控制,并可用图像和数字显示出结果,提高试验的精度,使用方便。 测试屈服强度的材料试验机一般依据特定的使用标准进行测试。这在相关行业标准或者国内外的标准有规定。如果没有相关的标准则需要使用材料试验的供求双方按照力学试验的人工模拟试验来进行试验方法的订制,并且得到供求双方的认可为依据。

  • 【分享】万能材料试验机的材料力学性能与试验方法

    材料的力学性能是指材料在不同环境下,承受各种外加载荷时所表现出的力学特征。测定材料在一定环境条件下受力作用时所表现出的特性的试验,又称材料力学性能试验。试验的内容主要是测量材料的强度、硬度、刚性、塑性和韧性等。力学试验包括:自然暴露试验和人工模拟试验,人工模拟试验通常采用万能材料试验机等仪器设备来进行。  试验室常用的试验方法如下:  最为广泛的试验方法是规定机械运动测试。机械性能试验可分为静态试验和动态试验两大类。静态试验包括拉伸试验、压缩试验、弯曲试验、剪切试验、扭转试验、硬度试验、蠕变试验、高温持久强度试验、应力松弛试验、断裂韧性试验等;动态试验包括冲击试验、疲劳试验等。机械性能试验在针对不同材料而生产的万能材料试验机上进行。试验机按传动方式分机械式和油压式两类,可手动操作或自动操纵。有的万能材料试验机(比如益环仪器)还带有计算机装置,并配有专用的测试软件,按编好的程序自动进行试验操作和控制,用图像和数字显示出结果。提高试验的精度和准确度,且使用起来更加方便,易于实验员操作。  规定一种接近实际环境的机械运动来模拟,根据试验产品破坏或失效的等效原理来规定一种机械运动。用规定一种机械运动的方法作试验的特点是,当满足各项运动特征参数的容差要求时,试验具有高的再现性。规定一种试验机,这是用试验样品破坏或失效的等效原理而引出的一种试验方法。规定试验机试验方法的特点是试验中不需要测量运动特征参数,但在某些情况下再现性较差。规定一种结构响应谱,主要用于冲击试验中。国内外力学环境试验方法标准中规定的力学环境试验,常见的有以下几种:正弦振动试验;随机振动试验;碰撞试验;离心恒加速度试验;摇摆试验;倾跌与翻倒试验;弹跳试验;撞击试验;自由跌落试验等。测试屈服强度的万能材料试验机一般依据特定的使用标准进行测试。这在相关行业标准或者国内外的标准里面都有规定。

  • 【分享】药物动力学的计算机模拟 (Pharmacokinetic Modeling & Simulation)

    [size=3][font=Times New Roman]药物动力学(pharmacokinetics)是定量研究药物在生物体内吸收、分布、排泄和代谢随时间变化的过程的一门学科,有时候也称作“药物代谢动力学”,“药代动力学”,“药动学”等名称。药物动力学已经渗放到药物治疗学,临床药理学,分子药理学,生物化学,生物药剂学,分析化学,药剂学,药理学及毒理学等多种科学领域中,它的发展将对药物评价,新药设计,药物剂型改进,临床指导合理用药,以及优化给药方案等具有重大的实用价值。药物动力学与临床药学相结合,产生了临床药物动力学(clinical pharmacokinetics),主要是研究实现临床给药方案个体化,包括给药途径、给药剂量、给药间隔时间等方面的内容。新药研发过程费用昂贵、时间冗长、淘汰率高。平均一个新药的研发需要花费10多亿美元,耗时约10年时间。大约有90%的候选药物在临床期间被淘汰,这是研发过程费用昂贵的主要因素。候选药物淘汰的原因中很大一部分是药物动力学方面引起的,例如口服吸收性差,生物利用度低,半衰期过短等等。传统的新药研发流程中,药物动力学的研究处于研发的中后期。近年来,人们开始在药物研发的早期对药物动力学(吸收、分布、代谢、排泄、药物相互作用)进行研究,以尽早淘汰药动参数不理想的候选药物。所谓的药物虚拟筛选(virtual screening),是指对化合物在其合成之前通过计算机模拟预测其药动学相关的特性而进行筛选。计算机模拟药物动力学为全球各大制药公司应用,并会在药物的研发过程中起到越来越重要的作用。其主要原理是应用化合物的物化性质、相关的体外实验数据以及人体生理学方面的知识,结合数学模型模拟化合物在人体内的吸收、分布、代谢和排泄。该项技术的应用有助于在新药开发过程中对化合物进行高通量筛选(high throughput screening),并能对临床试验的设计进行指导作用,以达到提高药物研发的效率和安全性、降低药物研发成本的目的。[/font][/size]

  • 【转帖】计量学的发展史与物理学的发展紧密相关

    近代物理学的发展是从经典力学开始的,它研究宏观物体的低速机械运动的现象和规律,可追溯到17世纪初。这时欧洲的科学发展迅速,物理学已开始发展成为一门测量科学,它逐步引入了“物理量”的概念。如质量、力和加速度等,用它们之间的相互关系描述物理现象。英国物理学家牛顿深入研究了经典力学的经验规律,发现了它的基本规律,以牛顿三定律和万有引力定律表示,奠定了经典力学的基础。在这些定律中,物理量之间的数学关系可看作是某个物理量的定义,也可看作是一种现象或物质性质的定义。因而近代计量学的发展是与近代物理学同步发展和互相促进的。当物理量的测量知识逐渐形成科学体系,计量学就从实验科学中分离出来,成为一门提高物理量量化精确性的科学。随着天文学、数学、原子物理和量子物理学的不断发展,社会经济、文化不断进步,近代计量学的研究对象扩展,专业门类增多,量程从宏观拓宽到微观领域。计量学的内容更加完备,通常可以概括为:计量单位和单位制;计量器具(包括基准器和标准器);量值传递和溯源;物理常数、材料和物质特性的测定;不确定度、数据处理和测量理论及其方法;计量法制管理等方面。从计量的社会功能可分为科学计量、工程计量和法制计量。如果从伽利略到牛顿时期的近代科学革命算起,近代计量学已有300多年的历史,大致可分以下三个阶段。

  • 【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:纳米尺度下的力学性能:见微知著【讲座时间】:2015年09月23日 14:00【主讲人】:魏伯任学历:成功大学机械工程学博士,现职:海思创公司应用科学家研究领域。【会议介绍】纳米尺度下力学性质的测试一直是科研界与工业界关注的重要问题。随着测试技术往与其他性质相互串连的方向发展,其应用层面更是不断地朝不同领域扩展。今日的纳米压痕早已不再只是硬度与弹性模量的测试,在结合相对应技术架构的搭配之下,已经能够针对接口特性、破裂韧性、高温蠕变、残余应力等进行高精度与高分辨率的测试。 现阶段的复合技术已经够在多方面获得进展,如接口附着能、表面能、多层膜的破裂韧性等等。除了在学术理论技术方面的进展之外,在工业应用方面也因应各种生产需求,朝针对产品整体面向的质量管控与良率监控的自动化方向发展。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月23日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16665、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 干扰物的特性

    请问水果中农药残留检测中的干扰物的特性是什么啊,,比如说分子量,功能团,极性,溶解度,PKa值等。。。在农药残留分析时有必要考虑干扰物的特性吗?

  • 利用声学特性的无损检测技术___超声波检测技术

    利用声学特性的无损检测技术___超声波检测技术无损检测导论(2005年元月电子修订版)夏纪真 编著 第二章无损检测技术及其应用 无损检测技术的基础是物质的各种物理性质或它们的组合以及与物质相互作用的物理现象。迄今为止,包括在工业领域已获得实际应用的和已在实验室阶段获得成功的无损检测方法已达五、六十种甚至更多,随着工业生产与科学技术的发展,还将会出现更多的无损检测方法与种类。本书仅能就几个主要方面作简单扼要的介绍。除了对于工业上已经广泛应用的五大常规无损检测技术(超声波检测、磁粉检测、涡流检测、渗透检测和射线照相检测)给予一定的工艺介绍外,对其他方法仅作概念性介绍。若需对其中某项方法作深入了解时,应查阅相应方法的专业技术介绍资料。§2.1 利用声学特性的无损检测技术§2.1.1 超声波检测技术什么是超声波?超声波有什么特性?声波是指人耳能感受到的一种纵波,其频率范围为16Hz~2KHz。当声波的频率低于16Hz时就叫做次声波,高于2KHz则称为超声波。一般把频率在2KHz到25MHz范围的声波叫做超声波。它是由机械振动源在弹性介质中激发的一种机械振动波,其实质是以应力波的形式传递振动能量,其必要条件是要有振动源和能传递机械振动的弹性介质(实际上包括了几乎所有的气体、液体和固体),它能透入物体内部并可以在物体中传播。利用超声波在物体中的多种传播特性,例如反射与折射、衍射与散射、衰减、谐振以及声速等的变化,可以测知许多物体的尺寸、表面与内部缺陷、组织变化等等,因此是应用最广泛的一种重要的无损检测技术--超声检测技术。例如用于医疗上的超声诊断(如B超)、海洋学中的声纳、鱼群探测、海底形貌探测、海洋测深、地质构造探测、工业材料及制品上的缺陷探测、硬度测量、测厚、显微组织评价、混凝土构件检测、陶瓷土坯的湿度测定、气体介质特性分析、密度测定……等等。超声波具有如下特性:1)超声波可在气体、液体、固体、固熔体等介质中有效传播。2)超声波可传递很强的能量。3)超声波会产生反射、干涉、叠加和共振现象。4)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)--从而引出了“功率超声应用“技术--例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。5)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。工业无损检测技术中应用的超声波检测(UltrasonicTesting,简称UT)是无损检测技术中发展最快、应用最广泛的无损检测技术,占有非常重要的地位。在超声波检测技术中用以产生和接收超声波的方法最主要利用的是某些晶体的压电效应,即压电晶体(例如石英晶体、钛酸钡及锆钛酸铅等压电陶瓷)在外力作用下发生变形时,将有电极化现象产生,即其电荷分布将发生变化(正压电效应),反之,当向压电晶体施加电荷时,压电晶体将会发生应变,亦即弹性变形(逆压电效应)。因此,利用压电晶体制成超声波换能器(探头),对其输入高频电脉冲,则探头将以相同频率产生超声波发射到被检物体中去,在接收超声波时,探头则产生相同频率的高频电信号用于检测显示。除了利用压电效应以外,在某些情况下也利用磁致伸缩效应(强磁材料在磁化时会发生变形的现象,可用作振源或用于应变测量),也有利用电动力学方法(例如本章后面叙述的电磁-声或涡流-声方法)。(3)耦合方法的确定-超声探头与被检工件之间存在空气时,超声波将被反射而无法进入被检工件,因此在它们之间需要使用耦合介质(耦合剂),视耦合方式的不同,可以分为:接触法-超声探头与工件检测面直接接触,其间以机油、变压器油、润滑脂、甘油、水玻璃(硅酸钠Na2SiO3)或者工业胶水、化学浆糊等作为耦合剂,或者是商品化的超声检测专用耦合剂。水浸法-超声探头与工件检测面之间有一定厚度的水层,水层厚度视工件厚度、材料声速以及检测要求而异,但是水质必须清洁、无气泡和杂质,对工件有润湿能力,其温度应与被检工件相同,否则会对超声检测造成较大干扰。接触法和水浸法是超声检测中最主要应用的两种耦合方式,此外还有水间隙法、喷水柱法、溢水法、地毯法、滚轮法等多种特殊的耦合方式。(4)检测条件的准备-选择适当的超声探伤仪、超声探头、参考标准试块(或者采用计算法时的计算程序或距离-波幅曲线、AVG或DGS曲线等),以及在检测前对仪器的校准(时基线校正、起始灵敏度设定等)。[/si

  • “量子力学在哪?你正沉浸其中”——看量子力学在真实世界中的10大应用

    新视野 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188203_change_chd2882_b.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188218_change_chd2883_b.jpg 数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途——譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种过程虽缓慢、成效却十分积极的积累中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息编码,以至于编写一种1和0的语言来操作它们。此后的十年中,贝尔实验室的科学家制作和改良了世界首枚晶体管。到1954年,美国军方成功制造出世界首台晶体管计算机TRIDAC。与之前动辄楼房般臃肿的不靠谱的真空管计算机前辈们相比,TRIDAC只有3立方英尺大,耗电不过100瓦特。今天,英特尔和AMD的尖端芯片上,已经能够摆放数十亿个微处理器。而这一切都必须归功于量子力学。 二、量子干涉“搞定”能量回收 无论怎样心怀尊敬,对于我们来说,不太容易能把量子力学代表的理论和它带来的成果联系在一起,因为他们听起来就是完全不相干的两件事。而此“能量回收”就是个例子。 每次驾车出行,人们都会不可避免地做一件负面的事情——浪费能量。因为在引擎点燃燃料以产生推动车身前进的驱动力同时,相当一部分能量以热量的形式散失,或者直白地说,浪费在空气当中。对于这种情况,亚利桑那大学的研究人员试图借助量子力学中的量子干涉原理来解决这一问题。 量子干涉描述了同一个量子系统若干个不同态叠加成一个纯态的情况,这听起来让人完全不知所谓,但研究人员利用它研制了一种分子温差电材料,能够有效的将热量转化为电能。更重要的是,这种材料的厚度仅仅只有百万分之一英尺,在其发挥功效时,不需要再额外安装其他外部运动部件,也不会产生任何污染。研究团队表示,如果用这种材料将汽车的排气系统包裹起来的话,车辆因此将获得足以点亮200枚100瓦灯泡的电能——尽管理论让人茫然,这数字可是清楚明白。 该团队因此对新型材料的前途充满信心,确定在其他存在热量损失的领域,该材料同样能够发挥作用,将热能转变为电能,比如光伏太阳能板。而我们只需知道,这都是量子干涉“搞定”的。 三、不确定的量子,极其确定的时钟 作为普通人, 一般是不会介意自己的手表是快了半分钟,还是慢了十几秒。但是,如果是像美国海军气象天文台那样为一个国家的时间负责,那么这半分半秒的误差都是不被允许的。好在这些重要的组织单位都能够依靠原子钟来保持时间的精准无误。这些原子钟比之前所有存在过的钟表都要精确。其中最强悍的是一台铯原子钟,能够在2000万年之后,依然保持误差不超过1秒。 看到这种精确的能让人紊乱的钟表后,你也许会疑惑难道真的有什么人或者什么场合会用到它们?答案是肯定的,确实有人需要。比如航天工程师在计算宇宙飞船的飞行轨迹时,必须清楚地了解目的地的位置。不管是恒星还是小行星,它们都时刻处在运动当中。同时距离也是必须考虑的因素。一旦将来我们飞出了所在星系的范围,留给误差的边际范围将会越来越小。 那么,量子力学又与这些有什么关系呢?对于这些极度精准的原子钟来说,导致误差产生的最大敌人,是量子噪声。它们能够消减原子钟测量原子振动的能力。现在,来自德国大学的两位研究人员已经开发出,通过调整铯原子的能量层级来抑制量子噪声程度的方法。它们目前正在试图将这一方法应用到所有原子钟上去。毕竟科技越发达,对准时的要求就越高。 四、量子密码之战无不胜篇 斯巴达人一向以战斗中的勇敢与凶猛闻名于世,但是人们并不能因此而轻视他们在谋略方面的才干。为了防止敌人事先得知自己的军事行动,斯巴达人使用一种被称作密码棒的东西来为机密信息加密和解密。他们先将一张羊皮纸裹在一根柱状物上,然后在上面书写信息,最后再将羊皮纸取下。借助这种方式,斯巴达的军官能够发出一条敌人看起来显得语无伦次的命令。而己方人员只需再次将羊皮纸裹在同等尺寸的柱状物上,就能够阅读真正的命令。 斯巴达人朴素的技巧,仅仅是密码学漫长历史的开端。如今,依靠微观物质一些奇异特性的量子密码学,已经公开宣称自己无解。它是一种利用量子纠缠效应、基于单光子偏振态的全新信息传输方式。其安全之处在于,每当有人闯入传输网络,光子束就会出现紊乱,每个结点的探测器就会指出错误等级的增加,从而发出受袭警报;发送与接收双方也会随机选取键值的子集进行比较,全部匹配才认为没有人窃听。换句话说,黑客无法闯入一个量子系统同时不留下干扰痕迹,因为仅仅尝试解码这一举动,就会导致量子密码系统改变自己的状态。相应的,即便有黑客成功拦截获得了一组密码信息的解码钥匙,那他在完成这一举动的同一时刻,也导致了密钥的变化。因而当合法的信息接收者检查钥匙时,就会轻易发现倪端,进而更换新的密钥。 量子密码的出现一直被视为“绝对安全”的回归,不过,天下没有不透风的墙。拥有1000多年前那部维京时代海盗史的挪威人,已经打破了量子密码无解的神话。借助误导读取密码信息的设备,他们在不尝试解码的条件下,就获得了信息。但他们承认,这只是利用了现存技术上的一个漏洞,在量子密码术完善后即可趋避。http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d706.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d707.jpg 五、随机数发生器:上帝的“量子骰子” 所谓的随机数发生器,并不是老派肥皂剧中那些奇幻神秘的玩意。它们借助量子力学,能够召唤出真正的随机数。不过,科学家们为什么要不辞劳苦地深入量子世界来寻找随机数,而不是简单轻松地抛下硬币、掷个骰子?答案在于:真正的随机性只存在于量子层级。实际上只要科学家们收集到关于掷骰子的足够信息,那么他们便能够提前对结果做出预测。这对于轮盘赌博、彩票甚至计算机得出的开奖结果等等,统统有效。 然而,在量子世界,所有的一切都是

  • 流变特性 流变机理

    我们使用Brookfield粘度仪可以对物料(如膳食纤维溶液)本身的流变特性,如随温度变化的粘度、随速率变化的粘度、触变环、屈服应力等进行测定,但我们更想搞清楚的是其流变机理,即是什么因素如物料的分子量、化学组成等等影响其流变特性的,请教,该从什么角度去探讨,方案在哪?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制