当前位置: 仪器信息网 > 行业主题 > >

粒径粒形特性分析

仪器信息网粒径粒形特性分析专题为您整合粒径粒形特性分析相关的最新文章,在粒径粒形特性分析专题,您不仅可以免费浏览粒径粒形特性分析的资讯, 同时您还可以浏览粒径粒形特性分析的相关资料、解决方案,参与社区粒径粒形特性分析话题讨论。

粒径粒形特性分析相关的资讯

  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 麦奇克Sync:添加剂颗粒的粒径和粒形分析在质量控制和研究领域中的应用
    p style="text-indent: 2em text-align: justify "span style="text-indent: 2em font-size: 16px "硅灰石是一种具有许多特殊性质的矿物质,使其可以用于其他产品的添加剂/填料以增强其特性。比如它可以增加塑料,油漆,陶瓷,建筑产品和冶金过程的性能。硅灰石的针状形貌,白度和助熔性能对陶瓷制造是非常重要的。 在陶瓷制造业中,随着烧制后亮度的增加和绿色/烧制强度的增加,收缩率将下降。对于油漆而言,在提高耐用性的同时促进了其平坦性及悬浮性。在各种塑料应用中,不仅改善了拉伸强度,而且降低了树脂含量及提高了热稳定性和粒径的稳定性。在许多应用中,其针状特性使其能够与许多其他物质(如玻璃和纤维)以及非纤维材料(如高岭土,云母,重晶石和石膏)竞争。作为填充材料,增强的强度随着尺寸的减小和宽长比的减小而增加。 化学硅灰石是由方解石和二氧化硅反应形成硅酸钙和二氧化碳而形成的。/spanbr//pp style="text-indent: 2em text-align: justify "硅灰石的白色针状晶体结构具有与大多数颗粒体系不同的宽长比。这使得它很容易通过在动态图像分析中表征的样品混合物中的形态来识别和量化。作为各种颗粒体系增强剂的添加剂/填料材料必须是以特定比例添加以获得最佳增强效果。/pp style="text-indent: 2em text-align: justify "20世纪70年代中期 美国麦奇克Microtrac引入激光衍射技术,激光衍射技术现已经成为工业粒度分析的主导技术。它的测量速度,耐用性和易用性使其成为可靠的输出和输入质量控制的标准应用方法。激光衍射技术是以等效球体直径的体积百分比来提供完整的粒径分布数据。/pp style="text-indent: 2em text-align: justify "动态图像分析技术在20世纪80年代就被引入到粒子表征领域。其核心技术(计算机速度和内存,数码相机分辨率和速度,光学镜头以及快速明亮的频闪照明)的飞跃发展促进了动态图像分析技术的迅速发展。这些硬件优势与高级的后期测量软件的增强功能相匹配,使图像分析成为当今粒子表征市场最强大的工具之一。它提供多达30种不同的粒度和形状分布。 随着科技的发展这两种技术(激光衍射技术和动态图像分析技术)现在已经整合到一个一台仪器中,能够同时测量流经同一样品池的同一样品。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/19900d83-eb79-46bf-8f53-1610fc54d5d8.jpg" title="3.png"//pp style="text-indent: 2em text-align: justify "在很多研究领域和工业材料加工质量控制过程中,硅灰石作为添加剂,很多用户只关注到用激光衍射技术测量硅灰石粒径的大小,但我们知道粒径测试归于识别和量化不同形状的颗粒效果不是很好,因为形状差别很大的颗粒可能具有相同的粒径,所以我们需要在激光衍射技术的基础上进一步研究硅灰石的形态参数。我们知道硅灰石需要以特定比例添加到各种颗粒体系以获得最佳增强效果。 硅灰石的针状形状使其区别于添加的正常微粒体系。 颗粒宽度除以颗粒长度得到的纵横比(W / L纵横比)是由动态图像分析技术测量和报告的形状参数之一。 这个参数可以非常方便的识别和量化颗粒混合物中硅灰石的量,由于Microtrac的Sync集激光衍射技术和动态图像分析技术于一台仪器的测量技术,能够提供每个单独颗粒的多于30种的大小和形态参数,从而为以数量和体积分布的结果提供较多的数据源,鉴于硅灰石的针状形状,宽长比是一个很好的参数来用于鉴定,分离和量化不合格批次中混合物中的添加比例。如果加入硅灰石的量较多会增加成本且会抑制流动,加入硅灰石的量较少不能达到需要的强度性能。所以需要一个合适的比例。通过动态图像分析技术设定W/L的某个阀值,在随机的可视化软件中经过搜索低于这个阀值的所有硅灰石的颗粒,就可以自动计算出加入的硅灰石占总量的比例。/pp style="text-indent: 2em text-align: justify "粒度在添加剂生产过程中是一个非常重要的参数,最近几年越来越来的用户不止是关注原料的粒度更关注颗粒的粒形分析,通过对这些颗粒的粒度粒形分析,可以提高产品的性能。Microtrac的Sync激光粒度粒形分析仪在同一样品上同时测量颗粒形状和粒度分布的自动化仪器,为颗粒系统混合物的工业的质量控制和各种研究领域提供了非常快速的分析,以确保任何混合物具有最佳比例的添加剂以获得理想的性能。在同一样品上同时测量颗粒形状和粒度分布的自动化仪器为颗粒系统混合物的QC要求提供了非常快速的分析。/pp style="text-indent: 2em text-align: justify "美国麦奇克Microtrac有限公司是世界上著名的激光应用技术研究和制造厂商。2018年3月发布了世界首款同步激光粒度粒形分析仪Sync,充分实现了激光粒度干湿两用,粒度、粒形同步测量!大昌华嘉DKSH是具有200年历史的瑞士国际贸易公司,作为美国麦奇克Microtrac在国内的总代理,负责其所有产品、技术的推广销售和服务。在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,在全国拥有14家办事处、5处维修点,3家应用实验室具有良好的市场声誉。2017年大昌华嘉销售麦奇克粒度仪近200台,在粒度仪方面,大昌华嘉在北上广的应用实验室皆配有应用工程师,提供多样化样品测试解决方案,为客户提供1年的免费质保,同时能为客户也提供预防性维护服务,客户可以选择延保,或者定期上门维护的服务。公司有十多位服务工程师分布在全国各维修网点,能对用户需求进行24小时快速响应。专业的SMT服务管理系统,要求工程师到客户处服务完成后需要客户在TAB上签字确认,后勤在办公室就可以实时收到服务是否完成以及客户的满意度。另外,大昌华嘉每年就粒度仪举办相关的市场活动近30场,并提供regular的用户培训会,用户可在网站和微信公众号随时报名参加。/pp style="text-indent: 2em text-align: justify "百舸争流,迎风直上!大昌华嘉和麦奇克粒度仪会继续保持在传统领域(化工,材料等)的优势,并加强在新的领域的开拓。随着国内用户对粒度分析的技术要求越来越专业,麦奇克也会根据客户不断提出的新要求来研发和推出新品,Sync就是最好的证明。/pp style="text-indent: 0em text-align: right "(作者:严秀英、姜丹)/p
  • RETSCH举办粒径分析技术交流会
    在颗粒分析研究技术日新月异的今天,RETSCH TECHNOLOGY(德国莱驰姊妹公司)的CAMSIZER无疑是其中最卓越、最完善的一台多功能粒径及形态分析仪,尤其是对于干燥的、可倾注的粉末,由于采用了动态数字成像技术,在10um至30mm宽广范围内,一次进样,即可得出粒径大小、粒度分布、颗粒个数、颗粒形态、球形度、透明度、表面积等多个相关参数和样品综合信息,并可比对筛分结果。简而言之,CAMSIZER是一台综合当今粒度分析技术的完美仪器。传统的激光粒度仪由于取样量偏小,重现性差,样品不具备代表性,对于球形度差的样品无法得出准确结果;传统的筛分技术只能测出颗粒的大概大小,无法进行计数,并且分析过程漫长,CAMSIZER采用专利的双镜头设计,可以实时捕捉样品颗粒的图像并进行储存和处理,进样量大,分析具有代表性和重现性,同时具备在线功能,它是由RETSCH TECHNOLOGY公司与JENOPTIK JENA公司(原德国蔡司ZEISS)合作研制的。适用样品: 盐、糖、塑料、催化剂、研磨剂、碳制品、沙、煤炭、咖啡、耐火材料、食品、聚苯乙烯、玻璃、陶瓷、肥料、药物、金属粉末、标准物质、水泥、矿石等。德国RETSCH(莱驰)BCEIA 展位号:9号展馆9018展台学术讲座时间:2007年10月18日上午9:30――11:30讲座地点:技术交流会B厅 讲座名称:样品粉碎及颗粒分析的综合解决方案 演讲人:Joerg Westermann
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • HORIBA发布新品纳米颗粒追踪粒径分析仪
    p style="text-align: justify text-indent: 2em "strong仪器信息网讯/strong 近日仪器信息网从HORIBA处获悉,HORIBA新品纳米粒度仪ViewSizer 3000已于2020年正式在中国上市。该产品是一款全新的多光源纳米颗粒追踪粒径分析仪,能同时给出颗粒的粒径分布和数量浓度信息,不仅能测量单分散样品的粒径,也能准确测量多分散性样品和多峰样品技术。该新品研发的技术来源于HORIBA刚刚于2019年收购的美国MANTA仪器公司。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/b3456bab-739e-4784-ac6e-f9ee64da138a.jpg" title="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg" alt="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg"//pp style="text-align: center text-indent: 0em "strongViewSizer 3000 多光源纳米颗粒追踪粒径分析仪/strong/pp style="text-align: justify text-indent: 2em "据了解,目前市面上可以进行单颗粒追踪的主要有两种技术,一种是ICP-MS,另外一种就是纳米颗粒跟踪分析技术(NTA),ViewSizer 3000正是一款采用了NTA技术的纳米颗粒追踪粒径分析仪。/pp style="text-align: justify text-indent: 2em "据HORIBA粒度表征应用工程师肖婷介绍,与普通的动态光散射纳米粒度仪相比,ViewSizer 3000具备如下三大优点:/pp style="text-align: justify text-indent: 2em "第一,仪器同时配备三种不同波长的激光光源,因而能够准确测量多分散性样品和多峰样品的粒径。/pp style="text-align: justify text-indent: 2em "第二,测量样品粒径分布的同时,能给出样品的数量浓度信息,并提供颗粒运动的视频,满足用户的可视化需求。/pp style="text-align: justify text-indent: 2em "第三,仪器可配置荧光功能模块,利用此功能可以扣除样品荧光的干扰,也可进行荧光标记,进一步测试各组分颗粒的粒径和数量浓度。/pp style="text-align: justify text-indent: 2em "ViewSizer 3000当前主要目标用户群为高校、研究所用户,肖婷表示,该仪器特别适合做生命科学和纳米材料方向的应用研究。在生命科学方向,ViewSizer 3000的荧光功能模块将发挥很大作用,通过荧光标记能得到各组分的粒径和数量浓度。而在纳米材料领域,该仪器能带来宽粒径分布的样品和多峰样品测量。/pp style="text-align:center"a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/cb5743d2-5345-4ce6-9a26-eab372832a55.jpg" title="640_300.jpg" alt="640_300.jpg"//a/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 110px " src="https://img1.17img.cn/17img/images/202004/uepic/c823118b-54b9-4f5f-b995-34a69862bcfd.jpg" title="微信图片_20200330103948.png" alt="微信图片_20200330103948.png" width="75" height="110" border="0" vspace="0"/想了解ViewSizer 3000更多信息?4月9日-10日,仪器信息网将联合中国颗粒学会举办首届“颗粒研究应用与检测分析”主题网络大会。HORIBA粒度表征应用工程师肖婷也将在4月10日10:00-10:30带来《纳米颗粒追踪粒径分析技术的特点及应用》的精彩报告,重点讲解ViewSizer 3000的更多性能特点和应用方案。欢迎大家报名参会。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 0, 0) "strong免费报名渠道:span style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "点击进入/span/spanstrong style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "首届“颗粒研究应用与检测分析”主题网络大会/a官网/span/strong,点击“我要参会”,报名即可。/p
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style="text-indent: 2em "涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。/pp style="text-indent: 2em "激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。/pp style="text-indent: 2em "/pp style="text-indent: 2em "1 实验部分/pp style="text-indent: 2em "1.1 主要原料及仪器br//pp style="text-indent: 2em "钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。/pp style="text-indent: 2em "1.2 试验方法/pp style="text-indent: 2em "(1) 干法测试/pp style="text-indent: 2em "称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。span style="text-indent: 2em "(2) 湿法测试/span/pp style="text-indent: 2em "湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。span style="text-indent: 2em "1.3 粒径分布参数/span/pp style="text-indent: 2em "Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。/pp style="text-indent: 2em "2 结果与讨论/pp style="text-indent: 2em "2.1 钛白粉粒径分布的测试/pp style="text-indent: 2em "2.1.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title="1.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。/pp style="text-indent: 2em "2.1.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title="2.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。/pp style="text-indent: 2em "2.1.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title="3.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。/pp style="text-indent: 2em "2.1.4 钛白粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。/pp style="text-indent: 2em "2.2 滑石粉粒径分布的测试/pp style="text-indent: 2em "2.2.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title="4.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。/pp style="text-indent: 2em "2.2.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.4 滑石粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。/pp style="text-indent: 2em "2.3 石墨烯粒度分布的测试/pp style="text-indent: 2em "2.3.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title="7.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。/pp style="text-indent: 2em "2.3.2 湿法测试(不加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title="8.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。/pp style="text-indent: 2em "2.3.3 湿法测试(加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title="9.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。/pp style="text-indent: 2em "2.3.4 石墨烯2种测试方法之间的差异/pp style="text-indent: 2em "从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。/pp style="text-indent: 2em "2.4 涂料粒径分析干法和湿法之间的差异/pp style="text-indent: 2em "干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。/pp style="text-indent: 2em "2.5 干法和湿法测试的重复性比较/pp style="text-indent: 2em "2.5.1 干法测试重复性/pp style="text-indent: 2em "重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title="10.webp.jpg"//pp/pp style="text-indent: 2em "2.5.2 湿法测试重复性/pp style="text-indent: 2em "选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title="11.webp.jpg"//pp/pp style="text-indent: 2em "目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。/pp style="text-indent: 2em "影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。/pp style="text-indent: 2em "3 结语/pp style="text-indent: 2em "讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。/pp style="text-indent: 2em "在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。/p
  • 德国RETSCH(莱驰)多功能粒径及形态分析仪诚招各地代理商
    德国Retsch(莱驰)是基于分析样品前处理以及为固体颗粒粒径分析提供解决方案的世界级仪器制造商。Retsch产品在钢铁、农业、地质、生物医药、烟草、冶金、化工、食品、科研院校、电子电器、质检、商检、能源等各个领域拥有广泛的客户基础!为了满足人们对颗粒粒度粒形越来越高的测试要求,莱驰公司在中国市场隆重推出:Camsizer 多功能粒径及形态分析仪器。 Camsizer 多功能粒径及形态分析仪是全球唯一一台用干法测量颗粒粒度,并且可以同时分析粒径大小、粒径分布、颗粒个数、球形度、透明度、表面积等多个参数的仪器。传统粒度仪由于取样量小、重现性差,样品不具代表性无法得到准确结果; 而传统的筛分技术测试时间长且不能进行计数,只能得到颗粒的大概大小。Camsizer采用动态数字成像技术,利用专利的双镜头设计,实现对样品颗粒图像的实时捕捉、储存和处理。Camsizer是综合现代颗粒分析技术、功能最卓越、适用范围最广的完美仪器,带给您无与伦比的完美体验! Camsizer特征参数 测量范围: 10µ m~30mm 分析数据:颗粒大小、颗粒分布、形状、透明度、个数、球形度、表面积等 样品进样:自动进样系统 测量时间:约3分钟(视样品性质和进样量决定) 测量方式:干法、双镜头、动态测量 适用样品:食品(盐,糖,咖啡&hellip )、塑料、催化剂、研磨剂、玻璃、药物、建筑材料(水泥,沙...)、耐火材料、陶瓷、矿石、肥料、金属粉末、标准样品等等 适用行业:工厂实验室、研究机构、标准物鉴定、化工企业、材料、岩矿勘探等各行各业,可对生产线进行在线监控,是最理想的产品质量控制设备和工艺优化的必备辅助仪器。 欲了解更多资料请与德国Retsch (莱驰)中国总部联系: 电话:021-61506045/61506046 邮箱:info@retsch.cn 传真:021-61506047 网站:www.retsch.cn
  • 研讨会预告| 一次分析,两种测试:全新在用润滑油粒径/颗粒计数和金属含量分析方法
    润滑油承担着减小机械摩擦、散热等重要功能,是重工业、军事、航空、基础建设等现代化工业发展中必不可少的用品。确定合适的更换润滑油的时机,既可以降低使用成本,还可以预防机械故障和严重事故。通常情况下油品中的金属元素代表了机械磨损情况,油品中的添加剂元素含量也能反映出在用油的降解情况,因此这两者都是在用润滑油监控的重要指标。除此之外,在用油中的颗粒普遍被认为是造成机械磨损的主要原因。因此,在用润滑油一般既要监测其中的元素含量,又要监测其颗粒数量及粒径的信息(ISO 4406代码)。在传统的方法里,粒径/颗粒计数测试和金属含量分析是两种完全独立的方法,需要对油样品进行两次样品制备,消耗的样品量大,前处理耗时长,产生的废液多。珀金埃尔默全新的LPC 500™ 液体颗粒计数器是业内体积最小的自动化颗粒计数系统,其与Avio 500电感耦合等离子体发射光谱仪油品系统联用,每个样品用量少于1毫升,仅需45秒就能够实现一次进样分析、完成粒径/颗粒计数和金属分析两种测试,并获得重复性优异的结果。为评估LPC 500的准确度,在全程8小时的分析中定期分析检定流体。通常采用ISO清洁度代码来评估油品颗粒数分布情况。表1列出了粒径大于4 μm、6 μm 和14 μm时,每毫升预期颗粒数以及对应的ISO 4406代码。表1. 检定流体COA结果和对应的ISO 4406代码粒径( μm(c))颗粒数(颗粒数/mL)ISO 4406代码412,5402165,186201444016图1. 检定流体的颗粒计数分析准确度,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图2. 齿轮油样的颗粒计数分析稳定性,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图3. 576份在用油样的整个8小时分析过程中,50 ppm QC稳定性为了让大家更好的了解LPC 500激光粒度仪新品的特点及润滑油分析解决方案,我们将于2019年11月29日下午举办《珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍》在线讲座。欢迎大家报名参加。研讨会详情主题:珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍时间:2019年11月29日 14:00-15:00讲者:杨柳 珀金埃尔默产品专家立即报名扫描上方二维码,即可预约线上研讨会,在直播期间与讲师积极互动,还可获得精美礼品了解更多相关资料,扫描下方二维码,即可下载《分析在用润滑油粒径/颗粒计数和金属含量的新方法》。立即扫码
  • 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "2004年,Andre Geim和Konstantin Novoselov分离出当前知名度最高的二维材料——石墨烯,并获得2010年诺贝尔奖。作为石墨烯的重要衍生物,氧化石墨烯可以通过预先对石墨进行氧化,然后再剥离石墨层而获得。随着剥离程度的不同,氧化石墨烯一般具有单层、双层、三层以及少层(一般为2-5层)和多层(6-10层)结构。由于氧化石墨烯具有的独特二维结构以及优异的电学性能、光学性能以及化学活性等特性,使得其在超级电容器、透光薄膜、催化触媒以及抗菌净化等诸多领域具有广泛的应用前景。同时,由于氧化石墨烯生产成本低廉,原料易得,同时拥有大量的羧基、羟基和环氧基等诸多含氧基团(图1),因此比其他碳材料更具竞争优势。目前,全球拥有成千上万的研究人员从事氧化石墨烯材料研发工作,很多中国高校和研究所都有这样的研究团队或研究人员。世界上有数千家公司在研发氧化石墨烯产品,包括众多的中国公司。/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201912/uepic/77331f4f-7c4e-493b-adce-d0c4c84bb86d.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" style="text-align: center text-indent: 0em max-width: 100% max-height: 100% "//pp style="text-align: center text-indent: 0em "strong图1 氧化石墨烯结构示意图(a)和HRTEM图(b)/strong/pp style="text-align: justify text-indent: 2em "由于材料的尺寸、形状与材料的性能有着密切的关系,粒径是纳米材料最重要的表征参数之一。因此,获得尺寸及形状规则均一的氧化石墨烯纳米材料对于拓宽其应用领域,非常重要。然而,目前的制备技术一般获得的氧化石墨烯材料其尺寸以及形状均具有多分散性的特点。因而需要对产物进行处理,以获得尺寸及形状规则均一的氧化石墨烯纳米材料。/pp style="text-align: center text-indent: 0em "span style="font-size: 20px "strongspan style="color: rgb(0, 176, 240) "氧化石墨烯粒径调控技术/span/strong/span/pp style="text-align: justify text-indent: 2em "目前,针对于尺寸及形状多分散性的氧化石墨烯材料,其粒径调控技术主要有以下几种,现分别作简单介绍如下:/pp style="text-align: justify text-indent: 2em "strong1)氧化切割法/strong/pp style="text-align: justify text-indent: 2em "在石墨的氧化过程中,就石墨的内部碳原子而言,在氧化的开始阶段,石墨的sp2杂化结构将转变为sp3杂化结构,形成呈线状分布的环氧基,而后续的氧原子为了维持体系的稳定,将在环氧基线状分布的基础上,原位形成环氧基对。由于羰基比环氧基对的能量低,从而使得羰基在结构中具有更好的稳定性。因此,在氧化过程中,形成的环氧基对将原位转变为羰基,从而导致碳碳键断裂。如此循环,从而实现对石墨片的切割细化。而对于石墨边缘的碳原子而言,氧原子将首先与其结合并使石墨本身的碳碳键断裂,形成羰基。随着氧化反应的继续进行,从体系稳定性角度(能量最低),后续的氧原子将与内层(而非相邻)的碳原子结合形成碳氧键,同时再使内部碳碳键断裂。如此反复,进而实现对石墨片的切割作用。而该切割作用即可实现对氧化石墨烯产物粒径的调控优化。/pp style="text-align: justify text-indent: 2em "strong2)离心筛选法/strong/pp style="text-align: justify text-indent: 2em "离心筛选技术是在离心力的作用下,利用被离心样品物质的沉降系数、浮力、密度的差别,进行分离、浓缩、提取制备样品。作为一种高效便捷的分离技术,离心筛选已被广泛应用于固/液混合物的分离提纯等领域。/pp style="text-align: justify text-indent: 2em "在离心力场中,悬浮分散在水中不同粒径尺寸的氧化石墨烯会受到离心力的作用,而发生不同程度的沉降运动。通常,粒子的沉降速度与其粒径的平方成正比关系。也就是说,大粒子的沉降速度将大大快于小粒子。因此,通过高速离心,可以明显改善氧化石墨烯的粒径尺寸分布优化。/pp style="text-align: justify text-indent: 2em "strong3)超声细碎法/strong/pp style="text-align: justify text-indent: 2em "采用超声细碎技术,可明显加速多层氧化石墨烯的剥离,从而提高单层或少层氧化石墨烯的产率,同时对于细碎氧化石墨烯粒径尺寸以及优化其尺寸分布具有重要的作用。/pp style="text-align: justify text-indent: 2em "在适当的超声处理阶段,来源于超声波的震荡力会破坏氧化石墨烯之间的团聚(亦有利于层间剥离),同时粉碎细化氧化石墨烯,从而导致随着超声处理时间的延长,出现氧化石墨烯粒径尺寸的减小以及尺寸分布的窄化。当继续延长超声处理时间,由于此时的超声震荡力不足以再粉碎细化已经形成的较小尺寸的氧化石墨烯。因此,增加超声处理时间将不会再对氧化石墨烯的粒径尺寸起到粉碎细化作用。因此,在超声处理细化及优化氧化石墨烯粒径尺寸及其分布的过程中,存在临界处理时间。为了获得粒径尺寸及其分布满足需求的氧化石墨烯,必需选择适当的超声处理时间。/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 176, 240) font-size: 20px "strong氧化石墨烯粒径测试方法/strong/span/pp style="text-align: justify text-indent: 2em "现阶段,针对于氧化石墨烯材料粒径的表征方法众多,现简要介绍几种常用的测试方法如下:/pp style="text-align: justify text-indent: 2em "strong1)扫描电子显微镜 (Scanning Electron Microscopy, SEM) /strong/pp style="text-align: justify text-indent: 2em "SEM利用电子和物质的相互作用,以获取被测样品的各种物理、化学性质的信息,如形貌、组成、晶体结构等。SEM是对纳米材料尺寸和形貌研究最常用的方法。因此,该方法也常常用来测试表征氧化石墨烯的粒径尺寸状态(图2)。该方法是一种颗粒度观测的绝对方法,具有可靠性和直观性。但是,该方法的测量结果缺乏整体统计性,同时对一些不耐强电子束轰击的样品较难得到准确的结果。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/2a229252-f9c9-4537-9cb1-70fd8162027b.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg"//pp style="text-align: center text-indent: 0em "strong图2 氧化石墨烯粒径SEM图span style="text-indent: 2em " /span/strong/pp style="text-align: justify text-indent: 2em "strong2)透射电子显微镜 (Transmission Electron Microscope, TEM)/strong/pp style="text-align: justify text-indent: 2em "TEM是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子发生碰撞而产生散射,从而形成明暗不同的影像。TEM分辨率为0.1~0.2 nm,放大倍数为几万~百万倍,可用于观察超微结构。TEM是对纳米材料形貌、粒径和尺寸进行表征的常规仪器。该方法可直接观察氧化石墨烯材料的形貌和测定粒径大小(图3),具有一定的直观性与可信性。但是TEM测试的是材料局部区域观察的结果,具有一定的偶然性及统计误差,需要利用一定数量粒子粒径测量,统计分析而得到纳米粒子的平均粒径。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/b29af068-e379-4d3f-a146-92cc98809d46.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg"//pp style="text-align: center text-indent: 0em "strong图3 氧化石墨烯粒径TEM图/strong/pp style="text-align: justify text-indent: 2em "strong3)原子力显微镜 (Atomic Force Microscope, AFM)/strong/pp style="text-align: justify text-indent: 2em "AFM是利用测量探针与样品表面相互作用所产生的信号, 在纳米级或原子级水平研究物质表面的原子和分子的几何结构及相关性质的分析技术。AFM能直接观测纳米材料表面的形貌和结构。AFM测量粒子直径范围约为0.1nm~数十纳米,在得到其粒径数据的同时,即可观察到纳米粒子三维形貌。因此,该方法也常常用来测试表征氧化石墨烯的粒径形貌特征(图4)。同时,AFM可在真空、大气、常温等不同外界环境下工作,也不需要特别的制样技术,探测过程对样品无损伤,可进行接触式和非接触式探测等。但是,AFM测试观察范围有限,得到的数据不具有统计性,较适合测量单个粒子的表面形貌等细节特征。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/4ed4956d-b4ef-44ed-b765-1c76561c107e.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg"//pp style="text-align: center text-indent: 0em "strong图4 氧化石墨烯粒径AFM图/strong/pp style="text-align: justify text-indent: 2em "strong4)动态光散射 (Dynamic Light Scattering, DLS)/strong/pp style="text-align: justify text-indent: 2em "光通过胶体时,粒子会将光散射,在一定角度下可以借助于科学仪器检测光信号。DLS即通过测量样品散射光强度的起伏变化,而得出样品的平均粒径及粒径分布信息。DLS适用于氧化石墨烯工业化产品粒径的检测,测量粒径范围为1 nm~5 μm。该方法能够快速获得精确的粒径分布,重复性好,测试取样量较大,测试结果具有代表性。但是,其测试结果受样品的粒度以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品,且测试中易受粒子团聚和沉降的影响。/pp style="text-align: justify text-indent: 2em "strong5)拉曼光谱法 (Raman) /strong/pp style="text-align: justify text-indent: 2em "拉曼光谱法基于拉曼效应的非弹性光散射分析技术,拉曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的拉曼频移。利用拉曼光谱可以对纳米材料进行分子结构、键态特征分析、晶粒平均粒径的测量等。因此,该方法也常常用来测试表征氧化石墨烯的晶粒平均粒径(图6)。拉曼光谱法灵敏度高,不破坏样品,方便快速。但是也存在测试结果易受光学系统参数等因素的影响,而且傅里叶变换光谱分析常出现曲线的非线性问题等不足。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/43519652-3c6c-44a6-8ea6-9b86f2893737.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg"//pp style="text-align: center text-indent: 0em "strong图6 氧化石墨烯粒径Raman图/strong/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 176, 240) font-size: 20px "strong总结/strong/spanbr//pp style="text-align: justify text-indent: 2em "目前,针对于尺寸及形状多分散性的氧化石墨烯纳米材料,其粒径调控技术主要有氧化切割法、离心筛选法、超声细碎法等。同时,纳米材料粒度的测试方法众多,不同的粒度分析方法均有其一定的适用范围以及对应的样品处理方法。因此,在实际检测时,应综合考虑材料的特性、测量目的、经济成本等多方面因素,确定最终选用适当的氧化石墨烯粒径测试方法。/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "参考文献:/pp style="text-align: justify text-indent: 2em "[1] Su C, Loh K P. Carbocatalysts: graphene oxide and its derivatives [J]. Accounts of Chemical Research, 2013, 46 (10): 2275-2285./pp style="text-align: justify text-indent: 2em "[2] Erickson K, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472./pp style="text-align: justify text-indent: 2em "[3] Bianco A, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials [J]. Carbon, 2013, 65: 1-6./pp style="text-align: justify text-indent: 2em "[4] He Y, et al. Preparation and electrochemiluminescent and photoluminescent properties of a graphene oxide colloid [J]. Carbon, 2013, 56: 201-207./pp style="text-align: justify text-indent: 2em "[5] Li Z, et al. How graphene is cut upon oxidation? [J]. Journal of the American Chemical Society, 2009, 131(18): 6320-6321./pp style="text-align: justify text-indent: 2em "[6] Fan T, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale research letters, 2015, 10(1): 55./pp style="text-align: justify text-indent: 2em "[7] Khan U, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475./pp style="text-align: justify text-indent: 2em "[8] Zhao J, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS nano, 2010, 4(9): 5245-5252./pp style="text-align: justify text-indent: 2em "[9] Krishnamoorthy K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49./pp style="text-align: justify text-indent: 2em "[10] Hu X, et al. Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide [J]. Nano, 2014, 9(3): 14500371-8./pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "作者简介:/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 150px height: 196px float: left " src="https://img1.17img.cn/17img/images/201912/uepic/cba3ceb4-db0b-42e1-a0b4-d802034691c1.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" width="150" height="196" border="0" vspace="0"/胡学兵,博士,硕士研究生导师。2014年博士毕业于中国科学院上海硅酸盐研究所,现就任景德镇陶瓷大学教授。2008年和2017年分别在法国欧洲膜研究所和英国诺丁汉大学从事学术研修工作。主要从事面向环境、能源等应用的功能化石墨烯新材料及分离膜材料的研究开发工作。先后主持国家自然科学基金、江西省青年科学基金重大项目和江西省科技计划项目等各类项目10余项。2016年荣获中国科学技术协会全国科技工作者创新创业大赛金奖(江西省唯一),2017年荣获中国科学院开放基金项目一等奖,2018年“儒乐杯”江西省青年科技创新项目大赛全省前8强。先后在《Journal of Membrane Science》、《RSC Advances》、《Applied Surface Science》、《Journal of Porous Materials》、《Materials Letters》等期刊上发表学术论文67篇(SCI/EI收录39篇)。申请国家发明专利15项,已授权13项。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "12月18日,胡学兵教授将亲临由仪器信息网组织的strongspan style="text-indent: 2em color: rgb(0, 176, 240) "“a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "第二届‘纳米表征与检测技术’公益网络研讨会/span/a”/span/strong,更深入地讲解氧化石墨烯粒径尺寸测试表征技术,机会难得,业内同仁和莘莘学子可以点击下方图片或链接报名参会,与胡教授互动交流。/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strongspan style="text-indent: 2em "免费报名地址:/span/strong/spana href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self" style="text-decoration: underline "strongspan style="text-indent: 2em "https://www.instrument.com.cn/webinar/meetings/nano2//span/strongstrongspan style="text-indent: 2em "/span/strong/a/pp style="text-align: center "span style="text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self"img style="max-width: 100% max-height: 100% width: 664px height: 246px " src="https://img1.17img.cn/17img/images/201912/uepic/2206666c-651c-4189-ae79-e6c91973e92d.jpg" title="540_200.jpg" alt="540_200.jpg" width="664" height="246" border="0" vspace="0"//a/span/p
  • 麦克仪器发布全自动亚筛分粒径分析仪MIC SAS II新品
    Micromeritics全自动费氏粒径测试仪(MIC SAS II)易于使用的全自动数据记录功能MIC SAS II全自动亚筛分粒径分析仪,对Fisher Model95 SubsieveSizer (FSSS)进行升级,采用全自动操作,并可得到电子记录的数据,极大改善了FSSS的性能。MIC SAS II生成的“Fisher number”结果与前代产品(FSSS)一致。几十年来,空气渗透技术和FSSS已经成为许多工业的行业基准,因此许多仍在使用历史数据和旧的质量控制标准的领域,都要求新旧仪器的测试数据必须具备可比性和可重复性。Features and Benefits 产品特点和优势设置方法快速简单按步骤进行参数设置,确保无任何参数遗漏全自动分析样品压实和压力的稳定性全部由电脑控制,采集的数据具有高重复性安全性可通过密码保护将样品信息测试信息与用户ID绑定,避免未经授权的任何操作和参数修改实时数据显示可以在获取数据时查看数据简化方法开发Fisher Mapping利用使用者自定义的Fisher相关图得到优化数据相关一致性定制化报告生成自动创建使用者logo和风格的PDF报告卓越的控制软件SAS控制软件创建了仪器操作、数据采集、处理和报告以及系统集成的世界标准全新直观式触摸屏操作强大直观式触摸式用户界面,提高效率,能够轻松创建和检索SOPs符合ASTM标准完全符合ASTM B330-12和C721-14标准,用于测试铝、二氧化硅、金属粉末以及相关化合物的粒径What is Air-Permeability Particle Sizing?空气渗透法测试颗粒粒径空气渗透技术是已经很好地应用到测量粉体样品的比表面积(SSA)。使用该技术测定的SSA数据已经应用在多个行业广泛,例如制药、金属涂料、颜料和地质等行业MIC SAS II利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定SSA和平均粒径。Specifications产品规格尺寸与重量高度:55cm宽度:50cm长度:38cm重量:28kg创新点:1、全自动操作SAS II 是对Fisher Model 95 Subsieve Sizer (FSSS)进行升级,采用全自动操作,并可得到电子记录的数据,极大改善了FSSS的性能。 2、快速便捷设置方法快速简单,按步骤进行参数设置,确保无任何参数遗漏,数据实时显示,可以在获取数据时查看数据,简化方法开发。 3、全新直观式触摸屏操作 强大直观式触摸式用户界面,提高效率,能够轻松创建和检索SOPs全自动亚筛分粒径分析仪MIC SAS II
  • 北京“颗粒特性分析讲座及交流会”即将举行
    2010年度北京“颗粒特性分析讲座及交流会”即将举行 邀 请 函 美国贝克曼库尔特公司的颗粒特性表征产品进入中国已经二十多年,我公司的不断的发展有赖于贵校/贵公司及广大用户的支持。 为提供一个了解颗粒特性表征技术最新动态和一个交流使用心得的平台。我公司定于2010年8月13日在北京举行“颗粒特性表征技术讲座及应用交流会”。 诚邀贵单位有兴趣人士参加。望收到邀请函后,于2010年8月2日前与我公司联系,将回执e-mail至xiaoliang_ma@beckman.com,以便安排。 具体地点与准确时间,请咨询我公司北京颗粒特性分析仪器部麻经理(13801218151).。贝克曼库尔特公司 2010-7-9---------------------------------------------------------------------------------------------------------------------------------------------------------------- (敬请于2010年8月2日前 回复邮件至 xiaoliang_ma@beckman.com 。本讲座为免费参加,来往讲座地点交通费用以及外地来京住宿费敬请自行解决。若需我方代定酒店、车票等,请提早通知。) ----------------------------------------------------------------------------------------------------------------------------------------------------------------回 执 我单位有兴趣参加“颗粒特性表征技术讲座及应用交流会”。 单位名称:------------------------------------------------------------- , 部门:-------------------------------------------------------------- , 联系人:----------------------------------------------- , 联系电话:------------------------------------------------------------------------- , e-mail: , -------------------------------------------------------------------------------------- 联系地址:________________________________________________, 参加人数--------------------- 人。 感兴趣的产品: ☐ 激光粒度仪/☐ 纳米粒度仪/☐ 库尔特计数仪/☐ Zeta电位仪/☐ 固体(薄膜)平面Zeta电位仪 /☐ 比表面积分析仪 --------------------------------------------------------------------- ------------------------------------------------------------------------------------------ (敬请于2010年8月2日前回复邮件至 xiaoliang_ma@beckman.com 。本讲座为免费参加,来往讲座地点交通费用以及外地来京住宿费敬请自行解决。若需我方代定酒店、车票等,请提早通知。) -----------------------------------------------------—----------------------------------------------------------------------------------------------------------
  • 岛津携纳米粒径分析装置IG-1000参加2010中国颗粒学会盛会
    2010中国颗粒学会盛会于8月15日-18日在西安举行,这是国内颗粒分析行业最重要的学术会议,颗粒分析专家和年轻学者汇聚一堂,交流各自学术研究成果。作为分析仪器界最大供应商之一,颗粒分析仪器的知名专业生产厂商,岛津公司盛装出席,展出了岛津公司最新的纳米粒径分析装置IG-1000。会议上还通过报告的形式将岛津公司颗粒分析的最新技术和应用进展与与会专家学者进行了分享汇报。用户在岛津展台前就颗粒分析技术问题进行交流 此次会议上岛津的单纳米分析装置IG-1000备受关注。IG方法(Induced Grating method)是岛津公司开发的独一无二的纳米粒径测定技术,为此IG-1000获得了2009 Pittcon大奖,这是全球分析仪器界对于岛津公司先进粒度分析技术的充分肯定。 岛津公司纳米分析技术专家安国玉经理向与会的各位专家学者详细介绍了岛津IG-1000在纳米分析行业的最新应用以及IG-1000的测定优势所在。与目前采用散射光的动态光散射仪器(DLS)方法相比较, 优势明显。测定范围最低到0.5nm,在单一纳米颗粒领域可以获得十分良好的信噪比(S/N),灵敏度也非常高。即便样品中含有少量的粗大粒子时对测定也没有影响,分布广的样品可以得到正确的结果,克服了以往DLS产品耐污染性差的缺点。IG-1000不使用散射光,因此不受物理参数的限制,不要求输入折射率因子(refractive index)作为测量条件。IG-1000测定结果可以与其他纳米粒子测定手段如TEM和SEM等所得结果吻合。IG-1000的方便可靠之处还在于,可利用原始数据(衍射光强度对时间的变化)来进行测定结果的可靠性验证。 岛津公司纳米分析专家安国玉经理在进行IG-1000的报告 此次会议上岛津公司粒度分析仪器应用工程师冯旭先生也就其在卫生陶瓷洁具分析中的应用方法开发结果与各位进行了分享。卫生陶瓷洁具行业涉及到多种粉体原料的分析测试,粉体材料的粒径会影响到最终产品的外观美观度和耐用度,因为粉体原料的粒径分析至关重要,所以岛津公司近期就如何使用粒度分析仪器得到准确的结果进行了研究并与颗粒分析工作者进行分享。 岛津公司粒度分析仪器应用工程师冯旭先生在作报告 岛津公司粒度测定装置种类齐全,单一纳米粒径的新产品IG-1000可以与岛津其他多种型号的激光粒度仪联合使用,实现了从纳米到微米范围的可靠测定。
  • 我国首次拍摄到不同粒径石墨发光
    中国科学家在保证石墨完整性基础上获取其发光现象,并拍摄到不同粒径的发光“光谱图”,这在世界纳米碳材料领域尚属首次。不同大小石墨碎片在一定光照下发出不同颜色的光  在苏州近日举行的第四届新型金刚石与纳米碳材料国际学术研讨会上,苏州大学功能纳米与软物质研究院教授康振辉介绍了其领衔团队的最新研究成果——《水溶性的荧光碳量子点和催化剂设计》,该成果即将在国际顶尖杂志《德国应用化学》上发表。  据介绍,量子点是近年发展起来的一种新型荧光探针,与传统有机荧光染料相比,具有优良的光谱性能。康振辉表示,传统有机荧光染料分子,通常采用不同波长的光来分别激发产生不同颜色 而碳量子点发射光谱与粒径大小有关,通过调整其粒径大小,可以发出不同颜色的荧光,从而使不同生物分子标记、区分、识别变得更加容易,在生物化学、细胞生物学、分子生物学等研究领域显示出广阔的应用前景。  2009年,英国剑桥大学的费拉里等人通过氧电浆轰击首次观察到单层石墨片发光现象,但其原理是打断了部分碳原子之间的键结,利用石墨氧化后表面的缺陷而获得发光效果。康振辉团队的研究成果在此基础上更进一步。  “我们在保证石墨完整性前提下获取发光现象,并拍摄到不同粒径的发光‘光谱图’,这在世界纳米碳材料领域还是第一次。”康振辉说,他的研究团队将石墨切割成4纳米以下的碎片,给予一定光线照射即可发光,粒径不同发光也不同。如,1.2纳米发蓝光,3纳米则发红光。  此外,康振辉团队的研究成果还揭示出另一发现:“纳米级”石墨碎片具有“上转换”特性,能吸收长波长将之转换成短波长,实现低能向高能的聚变,将之与其他材料配合制成催化剂可以吸收“全光谱”太阳光。  康振辉介绍,一般催化剂只吸收4%的太阳光,其余96%则被浪费掉 而石墨碳粒子能与100%的阳光作用,催化效果大幅提升,在污水处理、环境净化等方面具有极强的应用性。
  • 研发、品控、运输的多面手,为什么粒径测量为众多行业所采用?
    如今粒度测量成为很多行业必不可少的分析方法,不仅因为颗粒特性会直接影响生产过程,也会影响产品的最终性质。现阶段有很多测量粒径的方法,为用户进一步了解样品的性质提供帮助。水泥的沉降性,巧克力的口感,癌细胞的有效靶向性,油漆的遮盖能力之间有何共性?无论是水泥颗粒,可可脂液滴,脂质体药物制剂还是色素颗粒,他们都受颗粒特性的强烈影响。微米技术,纳米技术并不是现代发明,这些技术对人类手工制品的性质有深远的影响。过去的几十年来,微米,纳米颗粒粒径测量的手段日渐丰富,这让我们得以改善生产工艺,运输条件,储存条件,有效期等,甚至是决定产品的最终性质。动态光散射技术和激光衍射技术如今被广泛应用于纳米颗粒和微米颗粒粒径测量。粒径测量广泛应用于各行各业,比如:食品饮料,制药,化工,建筑行业等。食品行业:许多食品在生产过程中,都会以一种形态体现,可以是悬浮液,粉末或乳剂。对于粉末样品,颗粒大小影响体积密度,从而影响粉末流动性;同样,在悬浮液样品中,颗粒大小对剪切黏度有影响,这反过来又会影响原材料的泵送,混合和运输。咖啡粉和牛奶的颗粒可能会影响咖啡的口感,同样颗粒大小也会影响食品的储存和稳定性。如果颗粒大小没有控制好,对于粉末样品来说就可能会结块,对于乳剂样品来说(牛奶),就有可能变质了。颗粒大小也会强烈影响食物的外观,质地和口感,人类舌头能够分辨出几微米的颗粒,因此食物颗粒大小的调整,会影响人们对食物的接受程度。制药工业:粒度是制药过程中的一个关键工艺参数,应用于粉末状活性药物成分(API),乳液,靶向药物等。输液以及注射剂中的粒度分析是安全静脉注射应用中的重要参数。对于粉末状原料药来说,药物的溶解速度以及生物利用度主要受粒度影响。这尤其影响机体中某种药物成分需要被控制或缓释的情形。给药后药物在机体内的分布,沉降,吸收率等也与颗粒大小有关,当针对靶向细胞用药时(比如癌细胞,内皮细胞等),这一点尤其重要,因为不同的靶向细胞对不同粒径颗粒吸收效果不同。脂质体是由磷脂双分子层组成的小泡状颗粒,被广泛用于靶向药物制剂,因此囊泡的大小起至关重要的作用,且具有明显的动态光散射的样品特性,过去几年,许多类似的囊泡(被称为外泌体),作为癌症靶向治疗的候选药物,已经引起了人类极大关注。另外,正如其他行业,颗粒大小也会影响药物粉末,颗粒悬浮液和乳剂的流动性,影响运输包装,配方性能等。油漆和涂料:在光学性能方面,颜料粒径影响颜料的色强,比如已知颜料与另一种颜料混合后的效果。此外他还会影响涂料散射光纤的方式,这对涂料的遮盖力和表面光洁度(亮面,哑光等)都有影响。由于涂料是含颗粒液体,其流变性能不仅仅取决于颗粒浓度,还取决于颗粒形状和大小。因此,颗粒大小对于预测涂料在运输,储存和应用过程中的流动行为非常重要。颜料颗粒与基质的相互作用决定了颜料乳液的稳定性,这样,颗粒大小也会影响颜料的保质期。建筑材料:粒度测量的另外一个应用方向为建筑材料的生产过程。例如在水泥生产过程中,研磨是一个非常耗能的过程,缩小粒度分布有助于节约能源,控制成本。混凝土的粒度测量需要坚固且易于清洗的仪器,除此以外,粒度对最终产品的性能也有很大的影响。粒径分布与其化学成分和比表面积一样,是影响水泥水化曲线和硬化强度的主要因素。具体来说,平均粒径的减小,会导致凝结时间缩短,早期硬化强度提高,相反,随着水泥逐渐老化,较粗颗粒逐渐发挥重要作用,粒径分布宽度也决定了水泥等建筑材料的填料密度和吸水量。总结:从以上示例中可以发现,众多行业都会涉及粒度测量,这将影响生产过程乃至最终产品性质。在众多测量技术中,应用动态光散射原理的安东帕Litesizer系列纳米粒度仪,以及应用激光衍射原理的PSA系列微米粒度仪能够有效帮助用户了解样品特性及其行为。
  • 从专利申请文献统计看近百年颗粒粒径检测技术演进
    p  strong编者按/strong:让PM2.5无所遁形的颗粒粒径检测技术,已被广泛应用于工业、化学、环境安全等诸多领域。本文作者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/8421654c-8b9f-40df-adeb-ff1dbf5948e4.jpg" title="00.jpg"//pp  2011年底,美国驻华大使馆在新浪微博的官方账号发出一条微博:“北京空气质量指数439,PM2.5细颗粒浓度408.0,空气有毒害??”该微博随即在国内引发了对PM2.5(细颗粒物)的强烈关注,最终PM2.5被纳入到常规空气质量监测体系中。事实上,让PM2.5无所遁形的就是颗粒粒径检测技术,其已被广泛应用于工业、化学、环境安全等诸多领域。笔者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号 G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp  strong各项技术并行发展/strong/pp  颗粒粒径或粒度分布的检测方法种类繁多,按照测量原理主要有7类技术分支,包括:筛分法、沉降法、显微图像法、光散射法、电阻法、静电法和超声法。笔者对各技术分支的专利申请量进行统计发现,光散射法的专利申请量最高,其早在20世纪70年代就进入人们的视线,是目前最先进、应用最广的一种颗粒测量技术。此外,排名第二的是显微镜法,尤其是电子显微镜图像分析技术是当前比较流行的分析手段,该方法优势明显,除了可得到颗粒的粒径,还可以对颗粒的结构、形状和表面形貌有一定的直观认识和了解。然后分别是沉降法和筛分法,这两种方法是测量颗粒粒径的传统方法,工艺过程简单、成本较低,且操作便捷、装置结构简单。/pp  在颗粒粒径检测技术演进的过程中,主要的发展趋势有2个方面:检测精确度的提高及检测对象的扩展。上世纪 40年代以前,业内主要是采用筛分法、沉降法和显微镜法。其中筛分法最早的专利出现在1933年,公开号为GB402402A 沉降法则是基于 Stokes重力沉降公式来测定粒径,沉降法的专利早期以国外专利申请为主。显微镜法是唯一可直接观测单个或混合颗粒形状、粒度和分布的方法,早期国内相关专利申请较少,从2010年才开始出现激增态势。此外,将显微镜法和其他粒度测试方法结合于一体的装置,是当前显微镜法的研究热点,如上海理工大学公开号为CN102207443A、CN102207444A的专利申请,就是利用传感器件将多种颗粒粒度测量方法融合在一起。/pp  随着计算机、电子和激光等技术的快速发展,20世纪70年代起,颗粒粒径检测逐渐开始实现检测对象的多元化,光散射颗粒粒度测量仪受到市场欢迎。光散射技术的思想最早由前苏联学者Mandelshtam于1926年提出,随后其应用逐步扩展至界面和胶体科学等领域,并开发出了荧光相关光谱法、X射线光子相关光谱法、动态光散射显微术等。近年来,对动态光散射仪器的应用需求明显增长,相关技术研究主要集中在对动态光散射仪器的局部结构改进和采用各种新技术改造传统装置以扩展新应用等方面。/pp  对于电阻法和基于电阻法发展起来的静电法和超声法,其理论基础的发展目前已趋于成熟。其中电阻法最早为美国Coulter公司创始人Wallace H. Coulter于1953年发明,随后Coulter公司将其商品化,开发出库尔特计数器,Coulter公司此后不断对电阻法进行深入研究,其生产的 Multisizer I全自动粒度分析仪仍是目前较为先进的颗粒测量多功能仪器。而其他公司和个人对于电阻法、静电法和超声法的研究,在1980年之后得到迅速发展,大量相关的专利都是基于Coulter公司技术的改进而来。/pp  总体而言,虽然不同检测方法均有其各自的特点和适应的颗粒类型,各技术之间呈现并行发展的趋势,但整体上呈现出向更快速、更准确以及更加便捷检测的方向发展,各分支的专利申请量也均呈现出上升趋势。/pp strong 两家公司平分秋色/strong/pp  笔者分析了排名靠前的主要申请人的核心专利数量和企业综合实力,发现在颗粒粒径检测领域,a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100646/"span style="color: rgb(0, 176, 240) "英国马尔文仪器有限公司/span/a(下称马尔文公司)和a style="text-decoration: underline color: rgb(0, 176, 240) " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100336/"span style="color: rgb(0, 176, 240) "美国贝克曼库尔特公司/span/aspan style="text-decoration: underline color: rgb(0, 176, 240) "(/span下称贝克曼公司)呈现平分秋色的竞争态势。/pp  马尔文公司成立于1963年,早在20世纪80年代,该公司便进行了颗粒粒径测量仪器的技术研发,其最早的研究方向是基于激光技术测定颗粒粒径。随后,该公司研发了利用超声法测量颗粒粒径的相关技术,相关专利包括US5121629A、GB9801667D0、WO2010/041082A2等。在 1980年到2010年间,马尔文公司在颗粒粒径检测的几个主要技术分支上均保持了稳定的专利申请量,在光散射法和超声法检测两个分支的专利申请量最大。/pp  马尔文公司在超声测量方面的主要产品为Ultrasizer MSV超声测量仪,该仪器可根据颗粒粒径与声波衰减之间的关系计算出颗粒粒度分布,同时还可以测出体系的固含量。随后,该公司在初代产品的基础上进行改进,开发出了探头式超声粒度测量仪。近年来,马尔文公司发展迅速,从专利申请分布来看,自2010年至今,该公司提交了50余件关于激光粒度分析的专利申请,这表明该公司可能欲向高精密仪器方向转型。/pp  贝克曼公司于1997年成立,现已成为世界最大的颗粒分析仪器公司,其于1953年制造出了世界上第一台颗粒粒度分析仪,并于1965年对该产品提交了专利申请NL6505468A。/pp  1983年贝克曼公司就进入了中国市场,并在北京、上海等地设立了代表处,此后不断完善专利战略,迅速占领了国内外市场。2000年之后,贝克曼公司进入超声颗粒测量领域,获得了一系列专利权,如公开号为WO0057774A1、US2006001875A1等。2000年至2012年,贝克曼公司在颗粒粒度检测的四个主要分支领域均进行了专利布局,其开发了基于电阻原理的Multisizer 3系列粒度分析仪,基于光脉冲原理的HIAC系列液体颗粒检测仪,基于光脉冲和库尔特原理的Multisizer 4e系列粒度分析仪,以及融合了超声与光散射原理的DelsaMax Pro粒径分析仪和DelsaMax CORE系列产品。其最新的DelsaMax Pro系列产品与马尔文公司的Zetasizer Nano系列产品采用的技术都结合了声学和光学颗粒检测技术,可见两家公司在该领域的竞争态势比较激烈。/pp  笔者认为,今后颗粒粒径检测领域的技术发展将更注重提高测量精度和对颗粒特性的多方面测定等方面,将不同颗粒粒径检测技术进行融合以提高检测性能将成为未来专利布局的热点。(詹雪)/pp(本文仅代表作者个人观点)/p
  • 技术干货 | 如何同时快速检测每个纳米颗粒的元素和粒径信息
    纳米材料,由于尺寸在1~100纳米范围,其微观尺度赋予其独特的光、电、磁、机械和光学等特性。纳米技术是一个快速发展的新兴领域,其发展和前景也给科学家和工程师们带来了许多巨大的挑战。纳米颗粒正在被应用于众多材料和产品之中,如涂料(用于塑料、玻璃和布料等)、遮光剂、抗菌绷带和服装、MRI 造影剂、生物医学元素标签和燃料添加剂等等。然而,纳米颗粒的元素组成、颗粒数量、粒径和粒径分布的同步快速表征同样也是难题。对于无机纳米颗粒,最为满足上述特点的技术就是在单颗粒模式下应用电感耦合等离子体质谱分析法,即单颗粒ICP-MS。ICP-MS 测量溶解样品和单纳米颗粒分析的响应信号如图1 所示。在分析溶解态元素时,产生的信号基本上属于稳态信号,测量单纳米颗粒时,产生的信号是非连续信号。四极杆作为检测器,工作时在各质荷比(m/z)停留一段时间,然后移动到下一质荷比(m/z);各质荷比(m/z)的分析时间被称作“驻留时间”,即工作时间。在各驻留时间的测量完成之后,执行下一次测量之前,通过一定时间进行电子器件的稳定。该时间段被称作“稳定时间”,即暂停和处理时间。当单颗粒的离子云进入四级杆后,如果单颗粒(“信号”峰)的离子云落在驻留时间窗口之外,则可能无法被检测到,如图3a 所示。当单颗粒的离子云落入驻留时间窗口内时,可以检测到该离子云,如图3b 所示。当快速连续检测到多个颗粒时,所得到的信号是一系列峰,各个峰都来自于某一颗粒,具体如图3c 所示。在单颗粒ICP-MS 中,瞬态数据的采集速度由两个参数组成:驻留时间和稳定时间。十分重要的是,ICP-MS 采集信号所需的驻留时间少于颗粒瞬态时间,从而避免因部分颗粒合并、颗粒重合和团聚/ 聚集产生的错误信号。稳定时间越短,颗粒遗漏的可能性就越小。最理想的情况是一秒钟内可进行10,000 次测量,不存在稳定时间,所有时间皆用于寻找纳米颗粒(图5c)。快速连续数据采集的另一个好处是可以从单个颗粒获得多个数据点,从而消除颗粒遗漏,或仅检测到颗粒部分离子云的情况。驻留时间越短,对单颗粒离子云采集的数据点越多,获得的峰型更加准确。珀金埃尔默公司NexION系列ICP-MS,最短驻留时间可达10 μs,单质量数据采集能力可达100000点每秒。配合专业的 Syngistix™ 软件,无需更多数据处理即可获得样品的颗粒浓度,尺寸及分布等信息,是进行单颗粒ICP-MS实验的首选。想要了解更多详情,请扫描二维码下载完整的资料和仪器信息。
  • 贝克曼库尔特颗粒特性新技术会在京举办
    仪器信息网讯 2013年4月9日,贝克曼库尔特在北京翠宫饭店举办了“新技术新产品交流展示会”,并宣布贝克曼库尔特在Pittcon 2013上推出的DelsaMax系列纳米及Zeta电位分析仪正式登陆中国市场,70多位来自科研院所、质检机构、石油化工等单位的颗粒特性表征工作者参会并见证了这一时刻,仪器信息网作为特邀媒体亦出席了会议。会议现场  作为颗粒特性分析仪器产品的领先供应商,贝克曼库尔特此次重点推介的DelsaMax系列是DelsaNano系列的升级款,最大的创新点是DelsaMax系列拥有一个光源和两个独立检测系统,可以实现并行测量,即一次加样可同步进行纳米粒径测量与Zeta电位分析,能够在纳米生物技术、纳米粒结合等领域“大显身手”,这当属世界首创!  同时,贝克曼库尔特会上还特别展出了Multisizer4库尔特颗粒计数及粒度分析仪。这款产品是贝克曼库尔特经典产品Multisizer3的升级版,继续沿用了闻名半个多世纪的库尔特原理,但却加进了时代进步的元素——数码脉冲处理器(DPP)技术,这使得Multisizer4灵敏度大为提高,可广泛应用在生物技术、细胞生物学、石油化工等行业。  DelsaMax系列的三宗“最”贝克曼库尔特公司颗粒表征全球产品经理Matthew N Rhyner博士  会上,贝克曼库尔特技术应用专家Matthew N Rhyner博士介绍,DelsaMax系列利用电泳光散射及动态光散射原理,拥有31个检测器,测量过程仅需短短1秒钟,是一款纳米颗粒特性表征的“利器”,能够轻松应付生物制品成分表征、化学制品和材料两大市场的复杂要求。  据了解,DelsaMax系列当前共推出了DelsaMax Pro及DelsaMax Core两个型号。其中,DelsaMax Pro仅需45微升样品在短短1秒钟内便可获得纳米粒径与Zeta电位的结果,凭借“最小的样品量,最快捷的分析,成就最极致的结果”这一赞誉亮相Pittcon 2013。而DelsaMax Core则拥有独立的动态和真正的静态光散射检测器,样品容量低至1微升,能够测量从0.4纳米至10,000 纳米的颗粒大小与分子量。  Multisizer系列再出“重拳”会场展出了Multisizer4库尔特颗粒计数及粒度分析仪  Matthew N Rhyner博士说到,1947年,库尔特先生发明了以电阻变化法测量颗粒和细胞粒度及数目的库尔特原理(COULTER PRINCIPLE),而Multisizer系列产品正是采用这一原理,并在各行各业建立了雄厚的用户基础。现如今,随着科学技术的进步,库尔特原理也迈进了数码时代。  最新推出的Multisizer4创新引入了数码脉冲处理器(DPP)专利技术,分辨率、灵敏度都有了大幅提升,不但可精确分析粒径分布,还能分析微量颗粒的绝对体积、绝对数量。配合精确的体积测量泵,Multisizer4还可提供颗粒的个数与浓度。Matthew N Rhyner博士还举例到,Multisizer4在细胞生物学领域能够“大显神通”,如Multisizer4可以对生物细胞体积的改变作持续地跟踪、监测和分析。贝克曼库尔特公司技术工程师现场操作演示Multisizer4  除Matthew N Rhyner博士莅临现场作技术应用培训外,贝克曼库尔特中国及东南亚区颗粒特性分析部市场营运经理马作楠先生、颗粒分析产品部北区经理麻晓良先生等纷纷到场参会。贝克曼库尔特中国及东南亚区颗粒特性分析部市场营运经理马作楠先生  马作楠先生首先对各位用户能在百忙之中出席会议表示感谢,并对大家的到来表示欢迎。同时还说到,DelsaMax系列可谓是世界上第一台可以同时并实时测量纳米粒径与Zeta电位的粒度仪,曾在Pittcon 2013上亮相展出。而Multisizer4则是迄今为止功能最全、分辨率最高的颗粒计数及粒度分析仪,今天我们的工程师会亲自操作Multisizer4,测量矿泉水、眼药水以及洗眼液中的颗粒分布情况,让大家现场体验一下Multisizer4的优良性能。贝克曼库尔特颗粒分析产品部北区经理麻晓良先生  麻晓良先生说到,贝克曼库尔特公司于1997年由Beckman公司与Coulter公司合并而成,其创始人是世界科学仪器界传奇式人物阿诺贝克曼先生与沃勒斯库尔特先生。发展至今,贝克曼库尔特公司已成为世界上最大的颗粒分析仪器制造公司之一。  贝克曼库尔特公司业务主要分为专业测试、生命科学与临床测试3部分,其中,颗粒特性分析业务属于专业测试部,主要颗粒表征仪器产品则包括库尔特颗粒计数/粒度分析仪Multisizer系列、激光粒度仪LS系列与Delsa系列、比表面及孔隙分析仪SA3100。抽奖活动现场  此外,贝克曼库尔特公司的代理商——北京博力飞科技发展有限公司现场还安排了抽奖活动,以此回馈贝克曼库尔特颗粒特性分析仪器新老用户的支持。(撰稿:刘玉兰)  附录:http://www.coultercounter.com/     http://www.beckmancoulter.com.cn/     http://www.instrument.com.cn/netshow/SH100336/index.asp
  • JGR-Atmospheres: 中国典型燃煤城市的大气颗粒物中发色团的粒径分布特征
    作者:陈庆彩通讯作者:章炎麟通讯单位:陕西科技大学环境科学与工程学院、南京信息工程大学耶鲁大学-南京信息工程大学大气环境中心doi: 10.1029/2019JD031149成果简介近日,陕西科技大学陈庆彩研究团队与南京信息工程大学章炎麟研究团队联合研究并在Journal of Geophysical Research-Atmospheres上发表了题为“Size-resolved characterization of the chromophores in atmospheric particulate matter from a typical coal-burning city in China”的研究论文,报道了大气颗粒物中发色团的粒径分布特征。研究人员利用激发发射矩阵(EEM)光谱和平行因子(PARAFAC)分析了大气颗粒物中水溶性和水不溶性发色团的光学性质,描述了大气颗粒物中发色团种类和含量的粒径分布特征,增加了对气溶胶中发色团物质理化特征及其来源的认知。全文速览研究分析了山西临汾地区2017年夏、冬季不同粒径的气溶胶颗粒中发色团的吸光特征(UV-Vis光谱)以及荧光特征(EEM光谱)分别与颗粒物粒径之间的关系。不同粒径颗粒物的萃取液的总吸光度(Abs)和荧光体积(FV)随颗粒物粒径增大而减小,表明小粒径颗粒物对光吸收和光化学反应具有更大贡献。同时,相较于水溶性发色团,水不溶性发色团的总吸光度(Abs)和荧光体积(FV)达到了水溶性发色团的2-8倍。研究过程引言棕色碳(BrC)是气溶胶中具有吸收可见光能力的典型有机物质,其对地球温室效应具有潜在贡献,同时对光化学反应具有潜在的驱动效应。因此,了解这些发色团的来源和形成机制,并定量评估它们对地球大气中辐射强迫和大气中非均匀化学反应的影响,是表征这些发色团物理化学特征的必要条件。已经有研究指出了不同粒径的发色团物质的来源与吸光特性的差异,然而目前并未有通过EEM方法研究不同粒径大气颗粒中发色团的光学特性。本研究研究了大气颗粒物中水溶性和水不溶性发色团的粒径分布特征,比较了冬夏样品的光学性质(光吸收和荧光)的差异,同时探讨了光吸收与荧光性质的关系,以及光学性质与多环芳烃、有机碳和EC的相关性。图文导读通过不同性的溶剂萃取,获得不同粒径颗粒物的波长依赖指数(MAE365)、标准荧光体积(NFV)等变化趋势。Figure 1.Particle size and seasonal distributions of mass absorption efficiency at 365 nm (MAE365) and the NFV for WSM (a, c, e) and MSM (b, d, f). Panels (e) and (f) represents the average value of MAE and NFV in summer and winter respectively for WSM and MSM extracts.研究发现,夏季以及冬季的颗粒物中,水溶性以及水不溶性发色团的波长依赖指数(MAE365)、标准荧光体积(NFV)与粒径的关系特征均表现出相同趋势,即波长依赖指数(MAE365)以及标准荧光体积(NFV)均随粒径增大而减小。 由于多环芳烃可能是水不溶性组分中重要的光吸收和荧光物质,因此,本研究定量了7种多环芳烃对水不溶性组分的光吸收贡献。Figure 2. The average UV?visible absorbance spectra of MSM and the calculated UV?visible absorbance spectra of the selected PAHs (a and b), and the relative contributions of the selected PAHs to the total light absorption by MSM (c and d).结果表明,在280-550 nm范围内,多环芳烃对光吸收的贡献不超过7%,说明水不溶性发色团的成分复杂,在UV-Vis波段,多环芳烃并不是对光吸收的主要贡献物质。同时,在430 nm处,多环芳烃对光吸收贡献大,该物质可能是苯并芘。 通过PARAFAC模型得到了5种发色团的三维荧光光谱截面图。Figure 3. The PARAFAC model-resolved EEM components (C1, C2, C3, C4 and C5) for all of the aerosol extracts (n = 396) with the solvents water and methanol and extracted from different particle size samples.对获得的三维荧光光谱图通过平行因子矩阵分析(PARAFAC)得到5种不同发色团图谱,推测C1-C5发色团依次可能为HULIS-1物质、类色氨酸物质、HULIS-2物质、类络氨酸物质以及其它类氨基酸组分。 同时,研究了不同季节、不同粒径以及不同性溶剂萃取的条件下,不同发色团组分的相对贡献。Figure 4. Size-resolved distributions of the EEM components for winter samples (a and e) and summer samples (b and f) of WSM and for winter samples (c and g) and summer samples (d and h) of MSM.HULIS-1和类氨基酸组分在所有样品中占比高,相对含量分别为38%和31%。类酪氨酸组分占比低,平均含量仅4%;并且发色团含量特征随季节变化显著。小结该工作重点揭示了大气颗粒物中发色团的粒径分布特征,解释了小粒径颗粒物往往伴随更大的光吸收和光化学反应性贡献。这项工作从粒径分布角度阐述了气溶胶中的发色团特征,建议在未来的大气模型中,发色团的粒径分布以及性特征是光吸收以及光化学反应的重要考虑因素。课题组介绍 陈庆彩陈庆彩,男,山东人,博士,副教授,博士生导师。毕业于日本名古屋大学,取得理学博士学位。陕西省“百人计划”,陕西科技大学大气污染控制团队负责人,名古屋大学特邀教员,日本大气化学学会会员,ES&T等环境领域权威期刊审稿人。主要研究方向为气溶胶化学,包括大气棕碳(BrC)、长寿命自由基(EPFRs)等。参与和主持中国国家自然科学基金等十余项科研项目;已在ES&T等自然指数期刊一作发表9篇,其它学术论文20余篇;获得国家和软件注册权10余项。ORCID:http://orcid.org/0000-0001-7450-0073??个人主页:https://hj.sust.edu.cn/info/1015/1394.htm章炎麟,男,浙江杭州人,博士,教授,博士生导师。耶鲁大学-南信大大气环境中心大气化学与同位素研究团队负责人,入选“国家海外引才计划”青年学者,江苏省特聘教授,曾任日本学术振兴会(JSPS)外国人特别研究员。主要研究方向为大气化学、环境地球化学等。在国际著名期刊(包括Nature、ACP、EST、JGR和AE等)共发表SCI论文64篇(一作/通讯作者论文35篇),4篇学术论文入选ESI高被引论文。主持或作为科研骨干参加科技部和自然科学基金委等多项科研项目。同时担任环境科学、大气科学和地球化学等领域30余种SCI期刊(包括Nature)审稿人。??个人主页:https://www.researchgate.net/profile/Yanlin_Zhan HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。点击阅读原文,了解更多论文信息。
  • JGR-Atmospheres: 中国典型燃煤城市的大气颗粒物中发色团的粒径分布特征
    作者:陈庆彩通讯作者:章炎麟通讯单位:陕西科技大学环境科学与工程学院、南京信息工程大学耶鲁大学-南京信息工程大学大气环境中心doi: 10.1029/2019JD031149近日,陕西科技大学陈庆彩研究团队与南京信息工程大学章炎麟研究团队联合研究并在Journal of Geophysical Research-Atmospheres上发表了题为“Size-resolved characterization of the chromophores in atmospheric particulate matter from a typical coal-burning city in China”的研究论文,报道了大气颗粒物中发色团的粒径分布特征。研究人员利用激发发射矩阵(EEM)光谱和平行因子(PARAFAC)分析了大气颗粒物中水溶性和水不溶性发色团的光学性质,描述了大气颗粒物中发色团种类和含量的粒径分布特征,增加了对气溶胶中发色团物质理化特征及其来源的认知。研究分析了山西临汾地区2017年夏、冬季不同粒径的气溶胶颗粒中发色团的吸光特征(UV-Vis光谱)以及荧光特征(EEM光谱)分别与颗粒物粒径之间的关系。不同粒径颗粒物的萃取液的总吸光度(Abs)和荧光体积(FV)随颗粒物粒径增大而减小,表明小粒径颗粒物对光吸收和光化学反应具有更大贡献。同时,相较于水溶性发色团,水不溶性发色团的总吸光度(Abs)和荧光体积(FV)达到了水溶性发色团的2-8倍。棕色碳(BrC)是气溶胶中具有吸收可见光能力的典型有机物质,其对地球温室效应具有潜在贡献,同时对光化学反应具有潜在的驱动效应。因此,了解这些发色团的来源和形成机制,并定量评估它们对地球大气中辐射强迫和大气中非均匀化学反应的影响,是表征这些发色团物理化学特征的必要条件。已经有研究指出了不同粒径的发色团物质的来源与吸光特性的差异,然而目前并未有通过EEM方法研究不同粒径大气颗粒中发色团的光学特性。本研究研究了大气颗粒物中水溶性和水不溶性发色团的粒径分布特征,比较了冬夏样品的光学性质(光吸收和荧光)的差异,同时探讨了光吸收与荧光性质的关系,以及光学性质与多环芳烃、有机碳和EC的相关性。通过不同性的溶剂萃取,获得不同粒径颗粒物的波长依赖指数(MAE365)、标准荧光体积(NFV)等变化趋势。Figure 1.Particle size and seasonal distributions of mass absorption efficiency at 365 nm (MAE365) and the NFV for WSM (a, c, e) and MSM (b, d, f). Panels (e) and (f) represents the average value of MAE and NFV in summer and winter respectively for WSM and MSM extracts.研究发现,夏季以及冬季的颗粒物中,水溶性以及水不溶性发色团的波长依赖指数(MAE365)、标准荧光体积(NFV)与粒径的关系特征均表现出相同趋势,即波长依赖指数(MAE365)以及标准荧光体积(NFV)均随粒径增大而减小。由于多环芳烃可能是水不溶性组分中重要的光吸收和荧光物质,因此,本研究定量了7种多环芳烃对水不溶性组分的光吸收贡献。Figure 2. The average UV?visible absorbance spectra of MSM and the calculated UV?visible absorbance spectra of the selected PAHs (a and b), and the relative contributions of the selected PAHs to the total light absorption by MSM (c and d).结果表明,在280-550 nm范围内,多环芳烃对光吸收的贡献不超过7%,说明水不溶性发色团的成分复杂,在UV-Vis波段,多环芳烃并不是对光吸收的主要贡献物质。同时,在430 nm处,多环芳烃对光吸收贡献大,该物质可能是苯并芘。通过PARAFAC模型得到了5种发色团的三维荧光光谱截面图。Figure 3. The PARAFAC model-resolved EEM components (C1, C2, C3, C4 and C5) for all of the aerosol extracts (n = 396) with the solvents water and methanol and extracted from different particle size samples.对获得的三维荧光光谱图通过平行因子矩阵分析(PARAFAC)得到5种不同发色团图谱,推测C1-C5发色团依次可能为HULIS-1物质、类色氨酸物质、HULIS-2物质、类络氨酸物质以及其它类氨基酸组分。同时,研究了不同季节、不同粒径以及不同性溶剂萃取的条件下,不同发色团组分的相对贡献。Figure 4. Size-resolved distributions of the EEM components for winter samples (a and e) and summer samples (b and f) of WSM and for winter samples (c and g) and summer samples (d and h) of MSM.HULIS-1和类氨基酸组分在所有样品中占比高,相对含量分别为38%和31%。类酪氨酸组分占比低,平均含量仅4%;并且发色团含量特征随季节变化显著。该工作重点揭示了大气颗粒物中发色团的粒径分布特征,解释了小粒径颗粒物往往伴随更大的光吸收和光化学反应性贡献。这项工作从粒径分布角度阐述了气溶胶中的发色团特征,建议在未来的大气模型中,发色团的粒径分布以及性特征是光吸收以及光化学反应的重要考虑因素。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 3D打印粉体材料粒度粒形分析的“黄金CP”
    3D打印技术对多数普通人来说还属于“只闻其声未见其人”的技术。它是一项不同于以往的新型制造技术。3D打印是一种主要用于构建复杂结构三维物体的增材制造技术。主要优势在于制造复杂结构、个性化定制产品。目前在汽车工业、航天航空、医疗领域里的一些复杂结构体,均有望通过3D打印轻松实现。3D打印技术期望在制造业普及程度提高,核心要素之一是新兴材料的发展。3D打印材料的技术水平和产品多样性支撑着整个产业的发展。目前,市场上使用比较普及的3D打印材料主要包括:塑料(ABS、PLA、尼龙、光聚合物等),金属(钢、银、金、钛、铝等单质或者合金)两大类,其形态一般有粉末状、丝状、层片状、液体状等。就目前的市场来看,塑料类材料在消费级产品制造中是主流。其生产材料主要是ABS、PLA、尼龙和光聚合物这四种。但如果从市场需求和大工业、高科技产业角度来看,金属类材料3D打印制作的产品更具有广阔前景。尤其是在航空航天、军工、汽车、医疗等行业的运用上具备很大的发展空间。目前全球3D 打印耗材市场的年增长率超过了20%,其中金属粉末的需求量的增长速率远高于塑料材料。尽管目前塑料3D 打印材料扔占据整个市场接近50%的份额,但是以钛合金粉末为代表的金属粉末,将在未来几年里全面赶超塑料3D 打印耗材。1、金属3D打印技术基本原理:首先在计算机中用CAD设计软件创建出三维模型并导出STL文件,然后将模型横向分割成多层。3D打印机使用生成的数字三维数据,控制高能激光束或电子束逐层熔化金属粉末,形成立体复杂工件。根据加工过程金属粉末材料的使用工艺差异,金属3D打印技术常见的有以下几类:1)激光选区熔化(SLM)技术。采用高能激光束照射熔融预先铺展好的金属粉末原料,逐层“打印”出工件。2)激光近净成型(LENS)技术。其原理是在用高能激光按预先编制的打印轨迹熔化同步供给的金属粉末适用于不锈钢、钛及钛合金、Co-Cr-Mo合金等金属粉末的3D打印制造。3)电子束选区熔化(EBSM)是采用电子束照射预先铺展好的金属粉末原料,形式上跟SLM技术相似。4)纳米颗粒喷射金属成型(NPJ)。这种技术采用的是高温液态“铁水”(内含纳米合金颗粒)。这些金属以液体的状态进入3D打印机,打印机用含有金属纳米颗粒的“铁水”喷射成型。2、3D打印金属粉体材料金属粉体材料是金属3D打印工艺的原材料,其基本性能对成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形貌、粒度分布、流动性等方面。当前主流的3D 打印金属粉末制备方法包括:气雾化法(GA)、等离子旋转电极法(PREP)、等离子雾化法(PA),以及射频等离子球化法(PS)等等。气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。采用气雾化法所得粉末粒度分布宽,平均粒径小,杂质易于控制。但生产出的粉末由于工艺特性导致颗粒内部易产生气泡,粉末形状不均匀以及出现行星球等问题。 左图:粉体理想状态 ;右图:A卫星球 B不规则、内部气泡(缺陷)等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成,制备的粉末球形度可达99.5%以上。但是这种工艺制造的粉末粒径分布较窄,主要介于50~150μm,存在平均粒径偏大的问题。射频等离子球化工艺是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子。例用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。该工艺得到的粉末粒度范围可以达到20~50μm。国内一些知名企业有成熟的工艺应用。应用该工艺生产的AlSi9Cu3打印粉具有较好的耐高温、耐腐蚀性能。经验证的打印力学性能(SLM工艺,打印态)抗拉强度可达480MPa,屈服强度可达300MPa。综上所述,3D打印金属粉末的性能跟粉末的粒度分布、颗粒形貌息息相关。同时,现有的各种生产工艺生产的粉体都存在粒形、粒径相关问题。这使得粒型、粒度分布检测和生产工艺过程控制成为3D打印技术中的重要环节。引入先进的粒度、形貌检测设备,为工艺改进、生产控制、产品质检提供科学数据是势在必行的。3、金属粉体粒度分析仪器原理及特点在粒度分析领域,存在多种不同测量原理、集多门现代科学技术为一体的粒度测量仪器。例如:激光粒度分析仪、库尔特计数器、颗粒图像处理仪、离心沉降仪等等。激光粒度分析仪是现今广为流行的粒度测试仪器,它具有量程大、测量动态范围宽等诸多优点,被广泛的运用到粉体的生产、科研领域。3.1 激光粒度仪原理激光粒度仪3D结构图激光粒度仪光学原理简图(GB/T 19077-2016)光是一种电磁波。它在传播过程中遇到颗粒时,将与之相互作用,其中的一部分将偏离原来的行进方向,这种物理现象称之为光的散射(衍射)。一束平行光在传播过程中遇到障碍物颗粒,光波发生偏转,偏转的角度跟颗粒的大小相关。颗粒粒径越大,光波偏转的角度越小;颗粒粒径越小,光波偏转角度越大。激光粒度分析仪就是根据这种光波的物理特性进行粒度分析的。TOPSIZER参数:量程:0.01-2000μm ,红、蓝激光双光源技术激光粒度分析仪是目前使用领域较广的粒度分析仪,这是由于激光粒度分析仪的内在技术优势决定的。激光粒度分析仪测试量程大,通常可以达到0.1μm到750μm以上。而且不需要任何形式的软件、硬件换挡操作即可实现全量程范围内的样品测试(这种特性通常被称为仪器的动态测量范围)。仪器动态测量范围大,则使用的局限性小,测试宽分布样品的能力强。激光粒度分析仪测试重复性精度高、测试速度很快,一个样品的测试过程一般只需2~3分钟,测试标准粒子重复性精度可达到0.5%以内。3.2 颗粒图像处理仪原理颗粒图像处理仪将电子图像捕捉分析技术与光学成像设备相结合,用数字摄像机拍摄经过光学设备放大、成像的颗粒图像,由计算机自动的对颗粒的形貌特征和粒度进行分析和计算。PIP9.1 量程0.5-3000μm颗粒图像处理仪适用于粉末颗粒的粒度测量、形貌观察和圆度分析,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散、形貌状况。PIP9.1颗粒图像处理使用生物显微镜加工业级高清数码摄像机的硬件组合,有效满足了5-1000μm范围内的粉体颗粒形貌分析需求。该形貌分析范围覆盖了大多数3D金属打印粉体的粒径分布区间。这样的硬件组合在满足技术需求的前提下,具有高性价比。3.3 图像法粒度分析仪、激光粒度分析仪的优缺点一图简述优缺点可以说,激光粒度仪加颗粒图像处理仪是3D打印粉体材料粒度粒形分析的黄金搭档检测设备。通过这两种仪器,能够有效分析粉末耗材的粒度分布及颗粒形貌是否到达理想状态。为进一步优化粉末生产工艺,提供科学数据支持。同时,仪器还能够作为生产企业的粉体产品物性参数检测仪器,为产品质量提供保障。参考资料:1.中国粉体网,曲选辉,《金属3D打印对粉末有何要求,有哪些新工艺,听听专家怎么说》2.材料导报,程玉婉、关航健、李博、肖志瑜,《金属3D打印技术及其专用粉末特征与应用》
  • 聚焦颗粒物来源解析,先河环保推出颗粒物粒径监测与溯源决策支持系统
    2021年,生态环境部发布《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》(环办监测函[2021]218号),该方案强调:“十四五”期间将按照“国家负责统一规范和联网、地方负责建设和运维”的模式,进一步加强细颗粒物(PM2.5)和臭氧(O3)协同控制监测能力建设。同时,方案中特别提到,要“以交通、工业园区和排污单位为重点开展污染源专项监测,组建和完善全国协同控制监测网络,掌握PM2.5与O3的主要来源、浓度水平、生成机理、传输规律等,更好支撑多污染物协同控制和区域协同治理。”可以说,对颗粒物进行全天候、全方位、全粒径的监测溯源是后续精准治理必不可少的步骤。仪器信息网获悉,河北先河环保科技股份有限公司(以下简称:先河环保)推出颗粒物粒径监测与溯源决策支持系统,该系统可有效支撑颗粒物与臭氧协同控制。本次第二十一届中国国际环保展览会(CIEPEC2023)上,先河环保携颗粒物粒径监测与溯源决策支持系统亮相。展会期间,先河环保总裁助理、生态环境物联网与大数据应用技术国家地方联合工程研究中心主任潘本锋接受了仪器信息网的独家采访。先河环保总裁助理、生态环境物联网与大数据应用技术国家地方联合工程研究中心主任潘本锋仪器信息网:从2022年各地区陆续发布“十四五”时期生态环境保护规划中几乎都提到:要加强协同控制PM2.5和臭氧污染。针对该热点,先河环保在产品层面有的解决方案?潘本锋:目前,颗粒物和臭氧是影响大气环境质量的主要污染物,也是目前大气环境治理的重点与难点。而国家提出的加强细颗粒物和臭氧协同控制具体来说,就是要落实“问题、时间、区域、对象、措施”五个精准要求,进而实现污染物的精准监测及溯源解析,为制定城市大气污染控制对策提供必要的科学依据。因此,围绕大气颗粒物污染的精准溯源、科学研判、依法治理,先河环保推出了颗粒物粒径监测与溯源决策支持系统,该系统可有效支撑颗粒物与臭氧协同控制。图解颗粒物粒径监测与溯源决策支持系统仪器信息网:该产品(颗粒物粒径监测与溯源决策支持系统)与传统的空气监测类产品有何不同?在研发设计与技术创新上,有何亮点和突破?潘本锋:颗粒物粒径监测与溯源决策支持系统是对颗粒物进行全天候、全方位、全粒径的颗粒物监测溯源。这套系统基于颗粒物监测数据,结合源解析算法,对颗粒物分粒径进行实时源解析、及时预警和精准溯源,实现数据的统一收集、统一展示和统一分析。也就是说,这套系统能够协助我们快速确定颗粒物的来源,比如颗粒物是来自于机动车?还是工地扬尘?或是来自于生活源或工业源?类似这样的粒径溯源会为我们下一步的治理提供信息,指导各地开展精细化管控,实现精准治污、科学治污、依法治污,为国家提供可靠和技术与数据支撑。系统采取“一张网、一中心、四应用”的总体架构,布局科学合理,让人一目了然。其中,“一张网”统筹粒径监测、走航监测等各种基础数据;“一中心”集成各源各类大气环境数据资源,实现数据采集汇聚、数据计算研发、数据存储共享、数据资产管理,为数据应用提供服务;“四应用”囊括了实时监测、粒径分析、颗粒物来源解析以及粒径与空气质量关联分析四大模块,实现精准溯源,助力颗粒物污染高效、并持续地改善。目前,这套平台系统已取得软件著作权。仪器信息网:依托这套系统,先河环保能够为各地的颗粒物污染管控带来哪些具体的帮助?潘本锋:依托这一系统,可以为各地大气颗粒物污染管控提供三方面的帮助:一是帮助各地政府构建颗粒物粒径监测网。这套系统通过高精度粒径监测站与微型站的组合方式,以粒径移动监测作为固定站补充,帮助各地政府全面掌握各区域粒径分布与污染来源。粒径监测网可以覆盖环境空气质量评价点、区域预警、道路、工业园区等,实现对区域颗粒物数据的全天候、全方位、全粒径的动态立体监测与评估,为环境颗粒物监管提供数据支撑。环保展上展出高精度粒径监测站与微型站二是协助建设颗粒物粒径监测与溯源决策支持平台。通过建设智慧平台,可实时展示各监测设备状态及监测浓度,并对粒径段数据、粒径分布及变化趋势、粒径浓度变化规律进行统计分析,这便于我们掌握道路扬尘、施工扬尘、固定燃烧源、机动车和工艺过程源等对本地颗粒物污染的贡献,实现对PM10和PM2.5的实时源解析溯源。三是实现颗粒物粒径溯源分析研判服务。依托颗粒物粒径监测与溯源决策支持平台,融合大气环境监测数据及其他专业数据资源,我们提供的颗粒物粒径数据溯源分析研判服务可为政府部门提供准确、及时的数据信息和科学、高效的管控建议,以实现颗粒物污染精准溯源。仪器信息网:目前该系统是否已经进入市场应用阶段,效果怎样?潘本锋:目前,颗粒物粒径监测与溯源决策支持系统已经推向市场,特别是在扬尘精细化治理领域取得了较好的管控效果。目前,先河环保已在河南、河北、山西等区域安排了试点。比如在河北某试点,我们利用粒径谱监测仪、颗粒物粒径溯源解析车等对当地PM10进行来源解析,结果显示,这座城市的扬尘源(道路尘、施工尘)为第一大贡献源,且夜间4μm—10μm大粒径段颗粒物浓度显著高于白天。为此,先河环保专家组协助政府开展常态化、高标准的扬尘源针对性管控,同时狠抓重点时段,强化夜间粗颗粒管控,提出了许多管控建议。比如,进一步强化施工工地治理、采取道路清洗湿扫、严格重点运输车辆扬尘管控等措施。经过几天的综合整治,该试点扬尘污染控制效果明显,扬尘污染数据及大粒径段污染占比下降明显。仪器信息网:立足十四五,展望未来,先河环保将在哪些领域进一步加强布局?潘本锋:步入十四五以来,先河环保紧抓“高质量发展与技术创新”,并积极布局下一步的技术创新和产业规划。我们力争将科技创新有效转变为产品创新、模式创新、应用创新,驱动公司技术和高质量发展共同进步。当前,“双碳”是各地政府关注的重点,先河环保围绕国家降碳、减污、扩绿等目标,持续推动生态环境和“双碳”全产业链业务,并将整合生态环境监测、监管和治理全产业链的创新资源,紧扣以生态大脑为核心的生态环境大数据分析、环境治理体系,加快构建生态环境的产业创新。我们将持续构建高效、精准、专业的现代化治理体系,不断推进源头治理、系统治理、综合治理业务的创新与深耕,协助区域生态环境质量持续改善和区域经济协调绿色发展,进而推动整个生态环境产业做大做强。先河环保展台后记:本次,先河环保还带来了水生态、污水治理、交通污染监测、温室气体监测等众多明星产品,覆盖了多个领域。潘本锋特别介绍到,随着大家对“双碳”愈发加大关注,先河环保在未来还会在温室气体方面加强与相关科研机构的合作,并推出新的产品。比如本次带来的XHCRDS100P高精度温室气体在线监测系统可以对大气环境中的温室气体(CO2,CO,H2O,CH4)进行精准实时监测。预知该系统详情,请持续关注仪器信息网有关环保展温室气体监测领域的后续报道。
  • 广州“颗粒特性分析讲座及交流会”即将举行
    2010年度广州“颗粒特性分析讲座及交流会”即将举行邀 请 函 美国贝克曼库尔特公司的颗粒特性表征产品进入中国已经二十多年,我公司的不断的发展有赖于贵校/贵公司及广大用户的支持。 为提供一个了解颗粒特性表征技术最新动态和一个交流使用心得的平台。我公司定于2010年8月10日上午10:00至下午3:30甲座广州建国酒店三楼M 会议厅举行“颗粒特性表征技术讲座及应用交流会”。 诚邀贵单位有兴趣人士参加。望收到邀请函后,于2010年8月2日前与我公司联系,将回执传真至020-85187072,或e-mail至wchen@beckman.com,以便安排。 联系人:陈 卫 联系电话:13602766146 ,020-8518 7188 传真:020-85187072 电子邮箱: wchen@beckman.com贝克曼库尔特公司 2010-7-9---------------------------------------------------------------------------------------------------------------------------------------------------------------- (敬请于2010年8月2日前回传本回执,贝克曼库尔特公司, Fax:020-85187072,或回复邮件至 wchen@beckman.com 。本讲座为免费参加,来往讲座地点交通费用以及外地来穗住宿费敬请自行解决。若需我方代定酒店、车票等,请提早通知。) ----------------------------------------------------------------------------------------------------------------------------------------------------------------回 执 我单位有兴趣参加“颗粒特性表征技术讲座及应用交流会”。 单位名称:------------------------------------------------------------- , 部门:-------------------------------------------------------------- , 联系人:----------------------------------------------- , 联系电话:------------------------------------------------------------------------- , e-mail: , --------------------------------------------------------------------------------------联系地址:________________________________________________, 参加人数--------------------- 人。 感兴趣的产品: ☐ 激光粒度仪/☐ 纳米粒度仪/☐ 库尔特计数仪/☐ Zeta电位仪/☐ 固体(薄膜)平面Zeta电位仪 /☐ 比表面积分析仪 --------------------------------------------------------------------- ------------------------------------------------------------------------------------------ (敬请于2010年8月2日前回传本回执,贝克曼库尔特公司, Fax:020-85187072,或回复邮件至 wchen@beckman.com 。本讲座为免费参加,来往讲座地点交通费用以及外地来穗住宿费敬请自行解决。若需我方代定酒店、车票等,请提早通知。) -----------------------------------------------------—---------------------------------------------------------------------------------------------------------- 北京“颗粒特性分析讲座及交流会”即将举行 上海“颗粒特性分析讲座及交流会”即将举行
  • 上海“颗粒特性分析讲座及交流会”即将举行
    2010年度上海“颗粒特性分析讲座及交流会”即将举行 邀 请 函 美国贝克曼库尔特公司的颗粒特性表征产品进入中国已经二十多年,我公司的不断的发展有赖于贵校/贵公司及广大用户的支持。 为提供一个了解颗粒特性表征技术最新动态和一个交流使用心得的平台。我公司定于2010年8月11日举行“颗粒特性表征技术讲座及应用交流会”。 诚邀贵单位有兴趣人士参加。望收到邀请函后,于2010年8月2日前与我公司联系,将回执e-mail至hexiang_hu@beckman.com,以便安排。 具体地点与准确时间,请咨询我公司上海颗粒特性分析仪器部胡经理(13801783816).贝克曼库尔特公司 2010-7-9---------------------------------------------------------------------------------------------------------------------------------------------------------------- (敬请于2010年8月2日前 回复邮件至 hexiang_hu@beckman.com 。本讲座为免费参加,来往讲座地点交通费用以及外地来沪住宿费敬请自行解决。若需我方代定酒店、车票等,请提早通知。) ---------------------------------------------------------------------------------------------------------------------------------------------------------------- 回 执 我单位有兴趣参加“颗粒特性表征技术讲座及应用交流会”。 单位名称:------------------------------------------------------------- , 部门:-------------------------------------------------------------- , 联系人:----------------------------------------------- , 联系电话:------------------------------------------------------------------------- , e-mail: , -------------------------------------------------------------------------------------- 联系地址:________________________________________________, 参加人数--------------------- 人。 感兴趣的产品: ☐ 激光粒度仪/☐ 纳米粒度仪/☐ 库尔特计数仪/☐ Zeta电位仪/☐ 固体(薄膜)平面Zeta电位仪 /☐ 比表面积分析仪 --------------------------------------------------------------------- ------------------------------------------------------------------------------------------ (敬请于2010年8月2日前回复邮件至 hexiang_hu@beckman.com 。本讲座为免费参加,来往讲座地点交通费用以及外地来沪住宿费敬请自行解决。若需我方代定酒店、车票等,请提早通知。) -----------------------------------------------------—----------------------------------------------------------------------------------------------------------
  • 美国康塔仪器公司正式推出欧奇奥(Occhio)系列粒度粒形分析仪
    美国康塔仪器公司40余年专注于多孔材料物性表征仪器研发和制造,同时注重与相关领域的合作,通过我们的努力为您提供材料物性表征的最现代化全方位解决之道。 颗粒大小及其形貌是描述颗粒性质的两个主要参数,因此粒度和粒形是材料物性表征的重要组成部分。用于表征粒径及其分布的粒度仪在经历了电阻法计数器(上世纪70年代末引入我国)、沉降法粒度仪(上世纪80年代末流行)和激光粒度分析仪(上世纪90年代末开始占统治地位)的发展阶段后,正面临着新的发展机遇,因为仅能提供单一参数的粒度仪已经无法满足日新月异的工业科技对同样粒度的颗粒进行属性区分要求! 欧奇奥(Occhio)仪器为您提供最准确的颗粒材料特性分析方法----图像分析法。图像分析法是颗粒分析领域革命性的进步。随着光学、信息科学技术的飞速发展,将直观的显微观察方法与统计学相结合的最新图像法粒度粒形表征不仅能够得到个别颗粒的直观信息,还能够得到大量样本的粒径、粒形的统计信息,从而帮助使用者全方位地表征样品。 比利时欧奇奥(Occhio)仪器公司作为欧洲一家专业制造图像法粒径粒形分析仪器的公司,融合了法国和意大利的技术团队,拥有强大硬件设计和颗粒图形统计处理能力,能够在几分钟内完成数万颗粒的图像采集、统计处理,从而为您快速提供准确的粒径粒形信息。这里没有黑匣子或者晦涩的概念,有的只是在瞬间展现的各种颗粒形状和几十种参数的兴奋&hellip .. 欧奇奥(Occhio)的4大系列产品能够为您提供从200纳米到20厘米颗粒的干法/湿法动态或静态图像分析,为从纳米颗粒、蛋白质、金刚石到水泥、泥沙、烟草、食品、谷粒、泡沫(皂泡、油泡、啤酒泡沫)等大颗粒提供粒度分布、粒形分布、颗粒计数,甚至孔隙度信息,用于粉体,纤维,悬浮液,乳液和泡沫的全自动粒度粒形分析仪。 美国康塔仪器公司作为欧奇奥中国总代理,负责在中国的销售、服务和技术支持。如果您还有任何疑问,请随时与我们的产品专家联系,他们将为您耐心服务,与您一起探索迷人的颗粒世界! 欧奇奥仪器系列简介见下表。如需了解该系列仪器详细信息及具体参数,欢迎向美国康塔仪器公司中国代表处垂询。
  • 贝克曼库尔特颗粒特性分析技术讲座举办
    仪器信息网讯 2012年5月23日,为了给用户提供一个了解颗粒特性分析技术最新动态和交流使用心得的平台,贝克曼库尔特在清华大学环境学院成功举办了“颗粒特性分析技术讲座”,贝克曼库尔特高层携公司相关技术专家出席了会议,为40多位颗粒特性分析工作者作了精彩的讲解;仪器信息网作为特邀媒体应邀参加。会议现场贝克曼库尔特分析仪器产品全球市场经理THOMAS ED HORTON先生(左)和分析系统市场专家HANDY YOWWANTO先生(右)出席会议贝克曼库尔特中国及东南亚区域颗粒特性分析部市场营运经理马怍楠主持会议贝克曼库尔特颗粒特性分析部技术应用经理MATTHEW RHYNER博士  贝克曼库尔特微粒表征产品系列概述  MATTHEW RHYNER博士首先介绍说:“贝克曼库尔特微粒表征产品涉及Z + MultisizerTM系列库尔特计数器、LSTM系列激光散射粒度分析系统、DelsaNanoTM纳米粒子分析仪、XLA/XLI超速分析离心机和SA3100比表面分析仪等,主要为具有粒度、电荷、浓度和孔隙度等特性相关需求行业和学术界的客户提供解决方案”。随后,MATTHEW RHYNER博士就这五类产品的技术优势应用领域做了系统的阐述。贝克曼库尔特颗粒特性产品重大里程碑展示  四大颗粒表征方法的技术优势和典型应用  MATTHEW RHYNER博士分别详细介绍了激光衍射法、库尔特法、动态光散射法和zeta电位的测试方法、常见问题、技术优势和典型应用。  (1) 激光衍射法  MATTHEW RHYNER博士讲到:“激光衍射法是一种测量粒度的方法,是世界上最流行的粒度测量技术,可以为用户提供快速和一致的结果,并且在能想象到的几乎每个行业中都有所应用,如药品乳剂、粉末涂料、咖啡、化妆品、调味品、污水等行业领域”。LS系列激光粒度分析仪  贝克曼库尔特LS系列激光粒度分析系统是基于此原理制造的,该仪器的激光器为先进的高功率光纤连接固体光源,寿命长 可同时采用4个波长(450nm,600 nm,780 nm及900 nm)及背散射测量 干法样品台采用最先进的“龙卷风”系统及设计,“快速气流变换“技术配置无须早期设计之空气压缩机,模拟龙卷风产生机理,产生高度剪切力以达至最佳而非破碎性分散效果。  (2) 库尔特法  MATTHEW RHYNER博士讲到:“库尔特法由库尔特先生于1948年发明,并于1953年10月20日取得专利权,是一种独特的非光学方法,用于对稀释的导电液体中存在的物质进行粒度分析,在过滤效率、干细胞、蛋白质聚集体、体外诊断体液、细胞水肿动力学、海水等领域有着广泛的应用前景。”  贝克曼库尔特生产的Multisizer 3颗粒计数仪正是基于此原理制造的。该仪器适用于分析颗粒、细胞、微生物等 可分析光学技术不能检测之浓度极低样品,如水样品。细菌等 具备精确体积测量泵,可作定量分析,而且不受颗粒形状、颜色及光学特性(折光率与吸光率)的影响,实时提供颗粒计数与粒度分布,分辨率高。Multisizer 3库尔特颗粒计数仪  (3) 动态光散射法和zeta电位分析法  MATTHEW RHYNER博士讲到:“动态光散射是一种用于估计非常小物体直径的技术,可检测的最小粒子粒度为0.6nm-7μm,在纳米粒子和生物样品分析方面应用广泛,适合分析球形粒子,难于分析圆柱形粒子。”  “zeta电位是一种用于计算粒子在溶液中所带电荷的参数,是根据物体的电泳淌度计算而来,可以对样品进行定性比较、测定等电位点、鉴定涂层的效果或质量。”DelsaNano系列纳米粒度/Zeta电位仪  与上述表征方法相关的贝克曼库尔特的仪器是DelsaNano系列纳米粒度/Zeta电位仪是基于这两种方法制造的。它的主要特点是:该仪器采用了高灵敏度技术,可以测量高浓度样品和极低浓度样品的Zeta电位以及纳米粒度,不需前处理,浓度动态范围达四个数量级。现场讨论  另外,讲座会还特设了颗粒分析技术问答环节,参会者积极讨论,增强了仪器用户与厂商专家的互动,取得了良好的效果。清华大学环境学院高工郭玉凤女士(上图中间位置),在讲座上积极参与讨论,对整个讲座的用户交流起到了积极的推动作用。贝克曼库尔特高层与参会用户合影留念  附录:  http://www.instrument.com.cn/netshow/SH100336/  http://www.beckmancoulter.com.cn/
  • 美国TSI公司空气动力学粒径谱仪获评“2014科学仪器行业最受关注仪器”
    2015年4月22日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2015 (第九届)中国科学仪器发展年会(ACCSI 2015)在北京京仪大酒店召开,会议主题为&ldquo 创新创造价值&rdquo , 出席会议人数达800余位。作为ACCSI 2015的&ldquo 重头戏&rdquo ,年会主办方颁布了多项产品奖项。其中,TSI公司的空气动力学粒径谱仪(APS-3321)获得&ldquo 2014科学仪器行业最受关注仪器&rdquo 大奖。 TSI3321型空气动力学粒径谱仪 (APS) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。 APS 粒径谱仪使用取得专利(美国专利号5561515)的双峰光学系统,具有无与伦比的粒径检测精度。它还包括新设计的喷嘴结构和改进的信号处理。因此,它具有更大的小粒径检测效率、提高的质量分布精确度并有效消除错误背景计数。 TSI公司的空气动力学粒径谱仪(APS-3321)可广泛用于各类相关科学研究和实际应用,如究吸入毒理学,给药研究,大气研究,环境空气监测,室内空气质量监测,滤料和空气清洁器测试,气溶胶特性测试和粉尘粒径检测等。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 全新颗粒表面特性分析仪上市正式进军颗粒科学与技术领域
    全新颗粒表面特性分析仪上市正式进军颗粒科学与技术领域8月12-14日,纽迈科技携新产品“颗粒表面特性分析仪”参加“中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会”,正式进军颗粒科学与技术领域。颗粒表面特性分析仪适用于在非破坏的条件下连续监测悬浮液状态下颗粒与溶剂之间的表面化学、亲和性、润湿性以及颗粒的比表面积。对于粉体(浆料,粉料)的分散性,稳定性,亲和性以及比表面积的分析测试快速有效准确的测量手段。 PQ001颗粒表面特性分析仪产品功能:1. 悬浮液体系颗粒比表面积2. 粒子分散性、稳定性3. 颗粒与介质之间亲和性4. 粉体质量控制、分散工艺研究试用范围如下:1、颗粒:SiO2、SiC、ZnO、Al2O3、BaCO3、石墨烯、活性炭、炭黑等一百多种;2、悬浮体系溶剂类型:水、乙醇、丁酮、甲苯等各类含H质子溶剂。应用领域:1)制陶术:湿式制程、加工工艺改善, 分散性的质控和研发2)纳米科技:纳米粒子表面的化学状态, 如: 吸附和脱附作用, 比表面积的变化 等3)电子材料:浓稠状浆料和研磨液 (CMP) 的开发及品管4)墨水:碳黑、颜料分散, 最适研磨条件, 表面亲和性及化学和物理状态5)能源:电池, 太阳能板等的碳黑, 纳米碳管和浆料的分散, 粒子表面的化学和物理状态6)制药:API湿润性、亲和性及吸水性的差异7)其他: 全部的浓稠分散悬浊液体, 纳米纤维, 纳米碳等.纽迈科技提供专业的颗粒应用解决方案,强大的研发生产能力,完善的售后服务能力,欢迎来电了解颗粒表面特性分析仪详细信息
  • 世界首台动态三维彩色粒度粒形分析仪问世
    世界首台动态三维彩色粒度粒形分析仪发布会在中国上海举行  仪器信息网讯 2014年10月14日上午,值第十二届中国国际粉体加工/散料输送展览会(IPB 2014)之际, 美国康塔仪器公司在上海国际展览中心举办了新闻发布会,宣布世界首台动态三维彩色粒度粒形分析仪MORPHO 3D问世。新闻发布会现场  过去,观察样品颗粒的全貌是依靠显微镜,对极少量颗粒进行拍照存档,但如何对颗粒的粒形进行科学的定量,一直是困扰科学家的课题。近年来,随着微电子技术渗入到各个科学领域,图像法粒度粒形分析仪应运而生,因其测量的随机性、统计性和直观性等特点,被公认为是测定结果与实际粒度分布吻合最好的测试技术。  然而,常规的图像法粒度粒形分析仪只能测得颗粒的长度和宽度,不能测量厚度,已无法满足日新月异的工业科技对同样粒径的颗粒进行属性区分要求。  鉴于此,比利时欧奇奥(Occhio)仪器公司经过十余年探索,成功推出了世界首台动态三维彩色粒度粒形分析仪MORPHO 3D,不仅可实现颗粒长度、宽度和厚度的三维测量,还可进行彩色成像。欧奇奥公司海外销售总监杰罗姆&bull 萨巴蒂尔(Jerome SABATHIER)  杰罗姆&bull 萨巴蒂尔介绍说,MORPHO 3D突破性地采用了两部呈90度角的相机由样品正上方和左侧采集数据的技术,以及欧奇奥专利皮带输送技术,首次实现了颗粒三维信息的真实获取,再结合欧奇奥公司的&ldquo 骄子&rdquo (Callisto)3D彩色分析软件,可用于分析非球形颗粒如小球、谷物、药片、玉米、化肥、大米等的粒度及厚度 其彩色分析功能还可以呈现颗粒颜色,并根据颗粒的不同颜色分析每种颗粒群所占比例。同时,其新型及独特的样品分散器能够将一个个颗粒完全分散开,从而保证颗粒之间无干扰采集数据 样品传送带可以将颗粒保持在同一位置,从而得到真实颗粒粒度及厚度即颗粒的三维数据。MORPHO 3D动态三维彩色粒度粒形分析仪从左到右依次为:3D成像分析仪原型机、专利螺旋式干法分散器、动态粒度粒形实时显示  作为欧奇奥公司的战略合作伙伴和中国总代理,美国康塔仪器公司特别将这款创新型颗粒粒度粒形分析仪推向中国市场,希望能够为中国客户打造出材料颗粒特性表征现代化与全方位解决之道。美国康塔仪器公司中国区经理、首席代表杨正红  杨正红表示:&ldquo 正如上世纪90年代末激光粒度分析仪逐渐取代沉降法分析一样,颗粒分析领域正在迎来一个新的时代。目前,国内的混凝土等行业对3D分析有着迫切的需求,因此,MORPHO 3D可以适时、及时地满足这种需求,我们希望越来越多的科研人员和工程师能够关注到MORPHO 3D动态三维彩色粒度粒形分析仪。&rdquo 由MORPHO 3D 捕捉到的颗粒成像效果  会上,与会者对MORPHO 3D动态三维彩色粒度粒形分析仪产生了极大的兴趣,纷纷就该新品的性能特点与应用领域提问,杰罗姆&bull 萨巴蒂尔现场回答了与会者的疑问。  后记:  会后,美国康塔仪器公司中国区经理、首席代表杨正红受仪器信息网编辑邀请,专门撰写了一篇内容详实的图像颗粒测试技术约稿,内容包括不同颗粒测试方法的优缺点、图像颗粒分析法发展历史与优势,以及MORPHO 3D的性能特点及应用领域等。在此,仪器信息网特别将约稿全文呈上,以飨读者。  点击下载:杨正红-图像颗粒测试技术约稿全文编辑:刘玉兰
  • 百特激光粒度仪助力中国航天事业, 圆满完成月壤粒度粒形分析任务
    2020年12月17日,嫦娥五号携带月球样品安全着陆,任务圆满完成,带回共计1731克月球岩石和土壤样品。2021年7月12日,中国空间技术研究院钱学森实验室获得了首批国家航天局发放的月球样品,对样品进行了尺寸、形态学和组成的研究。10月19日,中国科学院在北京发布了由我国科学家主导独立完成的嫦娥五号月球科研样品研究成果,这些成果得到国际专家的高度评价,彰显了我国科学家的科研水平和创新能力。丹东百特Bettersize3000Plus激光图像粒度粒形分析仪作为主力分析设备出场并且圆满完成任务,彰显了国产粒度分析设备的国际先进地位。图1. 首批月球科研样品发布会(图源网络)图2. Bettersize3000Plus激光图像粒度粒形分析仪研究月壤的物理及化学性质对月球的探索、月球资源利用具有重要的指导意义。探测月壤粒度粒型及分布情况对人类了解月球有极大帮助。通过是否有颗粒团聚反映月球是否存在水资源,亦可以通过分布结果推断月球的自然现象,包括太阳风注入、气象/微气象撞击、风化等。通过测量不同地点月壤的粒形粒径信息,可以研究月球不同地形的成因。钱学森实验室运用丹东百特Bettersize 3000 Plus激光粒度分析仪测量了样品的粒形和粒径分布。Bettersize 3000 Plus激光图像粒度粒形分析仪是一台集激光、图像二合一的粒度粒形分析仪器。激光衍射技术和动态图像分析技术相辅相成,扩大了分析范围,实现了对毫米、微米乃至纳米样品粒径的准确测量,同时还可以让研究者对颗粒的形态了如指掌。图3. 激光散射+显微图像二合一系统(百特专利技术)根据实验,月壤的粒径分布范围宽泛,小颗粒可至0.31μm,大颗粒可达到515.70μm。根据粒径的累计分布图,土壤分析常用的典型粒径值:有效粒径D10,中间粒径D30,中值径D50,限制粒径D60分别为4.75±0.39μm,、24.34±0.91μm、55.24±0.96μm和71.87±0.89μm。从粒径的频率分布图可以观察到月壤样品为宽分布样品,粒径分布连续且不间断。通过Bettersize3000Plus配备的高速CCD摄像头拍摄的图像,月壤的颗粒形态均匀,平均圆形度为0.875,仅有10%左右的颗粒圆形度小于此值。此结果与阿波罗计划带回的月壤样品先前的测量结果有所不同,其原因是分级方法的不同——阿波罗月壤样品使用了根据质量进行筛分的方法。2008年至2010年重新使用激光法对阿波罗月壤样品进行分析,得出中直径结果为66.47-30.05 μm,与丹东百特Bettersize 3000 Plus的结果更为接近。丹东百特Bettersize 3000 Plus对样品分散效果更强,避免了筛分法可能存在的团聚现象,并且不会对珍惜样品造成损伤及损耗,结果更直观可靠。图4. 编号CE5C0400月球样品的颗粒形貌和粒度分布测试结果丹东百特Bettersize 3000 Plus在月壤研究方面做出多次出色的贡献,其激光与图像联合的技术为实验室研究提供助力。在正式月壤样品测量前,钱学森实验室事先使用了模拟月壤对仪器进行了准确性的验证,粒形和粒径的实验结果都十分准确可靠,通过仪器测量得出的分析结果极具参考价值,因此钱学森实验室继续选择了丹东百特的仪器对真正的珍贵月壤样品进行尺寸和形态学的研究。无独有偶,德国慕尼黑大学环境与地球研究院同样使用了丹东百特的仪器进行月壤分析与研究,丹东百特Bettersize 3000 Plus的结果也得到了实验室的一致好评。图5. 现服役于德国慕尼黑大学环境与地球研究院的Bettersize 3000 Plus国内外诸多高端科研项目不约而同选择了百特激光粒度仪辅助项目研究,对于稀有样品的分析也不在话下,足以见得百特仪器优良的特性得到了客户的信赖。丹东百特未来亦将不断精进技术,以优越的产品质量助力中国航空航天事业再上一层楼。参考文献:【1】H. Zhang, X. Zhang, G. Zhang, K. Dong, X. Deng, X. Gao, Y. Yang, Y. Xiao, X. Bai, K. Liang, Y. Liu, W. Ma, S. Zhao, C. Zhang, X. Zhang, J. Song,W. Yao, H. Chen, W. Wang, Z. Zou, and M. Yang, Size, morphology, and composition of lunar samples returned by Chang’E-5 mission, Sci. ChinaPhys. Mech. Astron. 65, 000000 (2022), https://doi.org/10.1007/s11433-021-1818-1(附论文链接)
  • TSI推出新一代Scanning Mobility Particle Sizer(SMPS)扫描电迁移率粒径谱仪,可测量粒径范围低至1nm
    精确测量仪器领域的全球领导者TSI公司宣布推出该款新型1nm Scanning Mobility Particle Sizer(SMPS)扫描电迁移率粒径谱仪。 TSI的SMPS扫描电迁移率粒径谱仪被广泛应用于测量1微米以下的气溶胶粒径分布的标准。和3777型纳米增强仪和3086型差分静电迁移率分析仪配套使用,SMPS粒径谱仪能够测量纳米的粒径范围扩展至1nm。 当整合到SMPS扫描电迁移率粒径谱仪中后,3777型1nm纳米增强仪让研究者能够以高分辨率并且快速地测量纳米级气溶胶的数量浓度和粒径。3777型纳米增强仪,和TSI的3086型 1nm-DMA差分静电迁移率分析仪已经被最优化,能够将散逸损失降至最低,且能够和SMPS粒径谱仪整合,测量1nm到50nm的粒径,并且能够与3081A型长差分静电迁移率分析仪配套使用测量1nm到1 μm的粒径。 “该款1nm 凝聚粒子计数器让研究者能够在气体到颗粒转换过程边界进行测量,”TSI颗粒物测量仪器的高级全球产品经理Jürgen Spielvogel如是说。应用包括材料科学研究、大气和气候研究、基础气溶胶研究、颗粒物成核与生长研究以及其他各类研究。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制