当前位置: 仪器信息网 > 行业主题 > >

量子点材料

仪器信息网量子点材料专题为您整合量子点材料相关的最新文章,在量子点材料专题,您不仅可以免费浏览量子点材料的资讯, 同时您还可以浏览量子点材料的相关资料、解决方案,参与社区量子点材料话题讨论。

量子点材料相关的论坛

  • 量子点电视

    什么是量子点电视?量子点电视听上去很高深莫测,其实就是QLED电视的另外一个名称,QLED是"Quantum Dot Light-Emitting Diode"的简写,中文译名是“量子点发光二极管”,这是一项家电厂商期待在未来取代OLED的新技术,原理是通过蓝色背光源照射照射直径不同的红色和绿色量子点,从而形成红绿蓝(RGB)三原色,然后再通过滤光膜等呈像系统和驱动系统形成图像。说白了,量子点电视其实还是一种LED电视。量子点是一种纳米材料,其晶粒直径在2-10纳米之间,量子点受到电或光的刺激会根据量子点的直径大小,发出各种不同颜色的单色光。可以借助量子点发出能谱集中、非常纯正的高质量红/绿单色光。那么什么是LED电视呢?首先我们先来说说液晶电视的根源性产品——LCD电视。LCD(Liquid-Crystal Display)最开始其实是液晶显示器,加入收看电视功能后成为LCD电视。这种电视通过背光源照射液晶面板,RGB三色液晶分子通过不同排布完成成像。请记住一点:在LCD阶段,液晶电视重要的背光源是CCFL冷阴极背光灯,可以暂时理解为我们的灯管,我们将这时的LCD电视称之为CCFL冷阴极背光源液晶电视。随后LED电视出现了,其实LED依旧是一种LCD液晶电视,它的准确名称是LED背光源液晶电视,LED电视和LCD电视的成像原理完全相同,只是背光源由CCFL改为了LED,相比而言厚度更薄、更加节能,但没有本质区别。量子点电视有何优势?要说到量子点电视的优势,首先我们得来说说OLED。OLED有机发光二极管(Organic Light-Emitting Diode)的屏幕是由有电流通过时能够发光的有机材料组成,它让电视机更轻薄,甚至可以弯曲。不过,因为成本高、良品率低、有机材料易氧化、无法适应户外和强光环境、以及某些场景下能耗过高等问题,采用OLED技术的电视一直未能普及。OLED技术当前主要掌握在两家全球最大家电厂商LG和三星电子手中。这两家韩国厂商是老对手,同时也是重要的液晶面板生产厂商。LG押宝OLED,希望借此超越三星电子的全球电视厂商老大的地位。然而因为OLED现阶段的高价,导致市场销量一直难以达到预期。此时,三星电子决定将研发重心转移到QLED上来。与OLED电视相比,量子点电视有四大优势:更宽广色域显示、更精准色彩控制、更长使用寿命以及更强节能性。由于量子点受到电或光的刺激,会根据其直径大小,发出各种不同颜色的非常纯正的高质量单色光,这一点甚至比OLED显示屏更强,众所周知OLED显示屏是通过滤镜得到纯色,而通过过滤的色彩虽然更纯、但也会有失真的情况,而量子点并不需要过滤,也就不会出现这种情况。同时可以在更低的电压下工作,能耗会降到最低。此外,由于量子点电视使用的无机材料不易被氧化,因此其显像寿命比OLED多出两万小时。当前量子点电视值得买吗?当前暂时只有TCL一家厂商推出了量子点电视,且55英寸的量子点电视的官方售价高达12999元人民币,而TCL 55英寸的4K超高清LED电视的官方零售价格只有5599元人民币。一台量子点电视的售价是同尺寸同分辨率的LED电视售价的2倍还要高。TCL此时推出量子点电视,打造自己品牌的意味更浓。而三星电子和LG要明年才能加入量子点电视阵营,届时消费者可选的余地将会更大。同样,新推出的技术还有可能有缺陷,具体如何有待市场检验,所以综上所叙,现在量子点电视并不值得购买,建议消费者持币观望。此外,业界也有观点认为,85%以上的色域普通人的肉眼实际是很难分辨的,因此厂商强调的高色域效果消费者并非都能感受到,也就是说,OLED电视的色域已经完全能满足普通用户的需求了。http://img1.mydrivers.com/img/20141222/5d677d4db4334f2d8e207c471c7bdd82.jpg

  • 【转帖】量子点的“战争”不可避免

    量子点的“战争”不可避免随着现在一种被称为量子点的纳米材料越来越多地受到电子以及生命科学产业的重视,分析人士担心在量子点技术领域复杂的专利权问题将引发一场昂贵且没有赢家的法律战争。 纽约市雷克斯研究公司的副总裁Matthew Nordan认为,“在未来三年内很有可能会发生一场针对量子点技术的法律大战。” 然而,有专家称,也许有方法可以避免这些无谓的法律战争。 Stephen Maebius是美国华盛顿纳米科技行业法律顾问公司Foley & Lardner公司的主席,他表示“研究量子点的那些公司可以通过专利交换的方式来避免由诉讼引起的干扰,把原本花在长达数年官司的百万美元投入到研究中去。” 量子点是半导体纳米微晶体,大小只有十亿分之一米,仅仅由10个原子组成。这种材料在吸收了少量的光线后能够发出明亮的荧光。科学家们能够改变量子点吸收的光线颜色,然后再对量子点的体积和结构进行调整就能让这种材料散发出颜色极为精确的荧光。例如,直径大于6纳米的硒化镉量子点能够发出红色的荧光,而直径小于3纳米的硒化镉量子点则会发出绿色的荧光。 量子点能够帮助科学家们对细胞和器官的行为成像,而成像细节级别在价值5亿美元的全球生物探测试剂市场中是前所未有的。生命科学研究中所使用的传统的光燃料分子是作为分子标签使用,帮助科学家们监测细胞与器官生长、发展,而它们通常在几秒钟内就会失去发光能力。而量子点的发光时间却更长,让研究者们能够实时监测细胞与器官在死亡与健康情况下的表现。 美国加利福尼亚州海达德地区的Quantum Dot(量子点)公司刚成立不久,它已经和诸如Genentech,, Roche 和GlaxoSmithKline几个业界巨头开始合作。 量子点还能够通过吸收光线产生电子。美国科罗拉多州戈尔登地区的国家可再生能源实验室的研究人员在五月份一期的《纳米快讯》中解释说,这将使新的太阳能系统性能提高到现有最好的太阳能电池性能的两倍。目前我们生产的太阳能电池吸收光线中的一个光子,然后,最多把它转换成一个电子,而剩下的能源就被白白浪费掉。而量子点能够将太阳光中的单个高能量光子转换成多达三个电子。这意味着,理论上来说基于量子点的太阳能电池能够将太阳能中65%的能量转换成为电能,而今天最好的电池也只能够达到33%。 纳米技术法律与商业周刊的一位编辑John Miller解释说:“现在一些公司注册的专利含盖范围很广,几乎包括了所有的半导体纳米晶体,有的公司甚至在专利申请书上仅仅描述像硒化镉这样特殊的材料。” 和Quantum Dot公司一样,另一家位于加利福尼亚州帕洛阿尔托地区的Nanosys公司声称,拥有量子点领域中除Quantum Dot独家关键专利外的所有专利。 Quantum Dot公司的执行总裁 George Dunbar表示,“如果有人阻止我们获得知识产权,那我们一定会把他们揪出来。” 然而,几家研究量子电的公司针对这些排他主义性宣言已经想出了几个对策。 纽约州托伊地区Evident科技公司的总裁Clinton Ballinger说:“我们并没有看到有关专利重叠的声明,我们感觉每向前迈进一步,都好像是跨进了新的领域。虽然花费了很多时间在这片雷区探索,但是我们觉得手中好像有一份地图在指引我们前进。在那里我们几乎没有束缚。” 例如,Evident公司发布了第一个利用非重金属制成的量子点。 “日本和欧洲都十分反对使用镉,而大多数的量子点都是由镉或铅制” Ballinger说,他还指出美国很快也会开始限制这些金属的使用。 Nordan强调说“在量子点技术领域,人们谈论最多的就是诉讼,而不是专利授权。这就像是笼罩在这一领域上空的一片黑云一样,而在诸如富勒烯这类的领域中,你所听到的大多是竭尽全力的诉讼大战,而不是专利交换授权,和平相处。正确的解决办法是专利交换授权,专利交换在信息产业领域的运行非常成功,但是你必须把自己的骄傲抛在脑后。” 虽然以生命科学应用为目的出售量子点是明显的事实,但是Ballinger认为针对量子点技术的法律大战并不会出现。他说“我们完全接受专利授权,这是理智之选。” Dunbar并没有排除采用专利交换解决问题的可能性,但是他认为:“只有和那些财务状况稳定的公司进行交易时,专利交换才有用。而据我所知,目前达到这一标准的公司并不多。” 转载出处:中国科技信息网

  • TEM研究量子点(含图解)

    当前关于TEM研究量子点的国际经典前沿材料![em48] [em32] [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14288]最新经典[/url]

  • 【我们不一YOUNG】+水环境监测前沿科技之量子点技术

    [align=left][font=宋体][color=black][back=white]量子点光谱传感技术是清华大学电子工程系博士生导师鲍捷在全球范围内首次提出。量子点光谱传感技术是将量子点(新型纳米晶材料)与成像感光元件完美结合,通过把大量不同材料或粒径的量子点有规律地打印在薄膜上,代替传统光谱仪的分光元件,实现了光谱仪器的传感器化。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]简而言之,就是把我们原来的分光光路,变成了阵列分光。再形成指纹图谱进行分析。因此,量子点光谱传感技术开发的原位、实时的水质监测方法,通过测量被研究光[/back][/color][/font][font=宋体][color=black][back=white](水样中污染物质反射、吸收、散射或受激发的荧光等)的光谱特性,用非传统化学分析的手段获得水体中特定物质的光谱信息,包括波长、强度等谱线特征,建立光谱数据与水环境各要素的映射关系,通过光谱大数据分析,快速返回水域污染物信息,从而可以无需使用任何化学试剂实现监测水质参数,了解水质状况和测量获取水质特征吸光度谱示意图污染程度。[/back][/color][/font][/align]

  • 新方法可生产形状尺寸可控的石墨烯量子点

    科技日报 2012年05月19日 星期六 本报讯 (记者张巍巍)据物理学家组织网5月18日(北京时间)报道,美国堪萨斯州立大学的研究人员开发出一种新方法,可生产出大量形状和尺寸可控的石墨烯量子点,这或将为电子学、光电学和电磁学领域带来革命性的变化。相关研究报告发表在近日出版的《自然·通讯》杂志上。 由于边缘状态和量子局限,石墨烯纳米结构(GN)的形状和大小将决定它们的电学、光学、磁性和化学特性。目前自上而下的GN合成方式有平板印刷术、超声化学法、富勒烯开笼和碳纳米管释放等。但这些方法都具有生产率低、形状尺寸不可控、边缘不光滑、无法轻易转移至其他基底或溶解于其他溶剂等问题。 该校化学工程系的维卡斯·贝里教授等科研人员利用钻石刀刃对石墨进行纳米切割,使其变成石墨纳米块,这是形成石墨烯量子点的前提。这些纳米块随后将呈片状脱落形成超小的碳原子片,生成的ID/IG比值介于0.22和0.28之间,粗糙度低于1纳米的石墨烯结构。科研团队通过高分辨率的透射电子显微镜和模拟证明,生成的GN边缘笔直、光滑,而通过控制GN的形状(正方形、长方形、三角形和带状)和尺寸(不超过100纳米),研究人员能够大范围控制石墨烯的特性,使其应用于太阳能电池、电子设备、光学染料、生物标记和复合微粒系统等方面。 贝里表示,新型石墨烯量子点材料在纳米技术领域具有巨大的发展潜力,他们期望能通过此次研究进一步促进石墨烯量子点的发展。 总编辑圈点 石墨烯出现短短几年,产业界已有很多人预言它将成为未来电子业的中坚材料。制造纳米级的石墨烯点以代替硅晶单元,是石墨烯在电子业应用的关键一步,也是现在各国科学家竞相探索的目标。今年年初,美国莱斯大学成功利用碳纤维制造了纳米级的石墨烯圆片,效率比以往大为提高。这次堪萨斯大学实验成功的“石墨纳米切割”方式,进而能够控制石墨烯纳米点的形状,无疑开辟了一条新的技术思路。

  • 专家创新胶体量子点太阳能电池转化效率纪录

    一个国际科研团队撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化,研制出了迄今转化效率最高的胶体量子点太阳能电池。据美国物理学家组织网9月18日报道,一个国际科研团队在最新一期的《自然-材料学》杂志上撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化(不易与其他物质发生化学反应),研制出了迄今转化效率最高(达6%)的胶体量子点(CQD)太阳能电池。吸光纳米粒子量子点是纳米尺度的半导体,其能捕捉光线(既可吸收可见光,也可吸收不可见光)并将其转化为能源。人们可将其喷洒到包括塑料在内的柔性材料表面,制造出比硅基太阳能电池更便宜、更经久耐用的太阳能电池。而且,胶体量子点电池的理论转化效率可高达42%,超过硅基太阳能电池31%的理论转化率。今年7月,多伦多大学的科学家研制出了转化效率为4.2%的胶体量子点太阳能电池。胶体量子点太阳能电池研制领域最大的挑战在于如何使量子点紧密结合在一起,因为量子点之间的距离越大,转化效率越低。然而,量子点通常由多出其1—2纳米的有机分子包裹,在纳米尺度上,这有点大,而有机分子是制造胶体的重要成分。为此,加拿大多伦多大学、沙特阿拉伯阿卜杜拉国王科技大学、美国宾夕法尼亚州立大学的科学家们开始考虑使用无机配位体来让量子点紧紧依附在一起,以尽可能节省空间。结果,科学家们不使用“庞大”的有机分子也获得了胶体的特征。“我们在每个量子点周围包裹了一单层原子,它们将量子点包裹成非常紧密的固体。”该研究的领导者、多伦多大学电子与计算机工程系博士后唐江(音译)表示。研究合作者、宾夕法尼亚州立大学的约翰-艾斯拜瑞说:“最新研究表明,我们能剔除电荷陷阱——电子陷入的位置。量子点紧密地结合在一起以及消除电荷陷阱,双管齐下使电子能快速且平滑地通过太阳能电池。”美国国家可再生能源实验室委派的实验室证实,新研制出的胶体量子点太阳能电池不仅电流达到了最高值,高达6%的整体能量转化效率也创下了纪录。“最新研究表明,无机配位体在构建实用设备方面具有强大的作用。”量子点太阳能电池研制领域的领导者、芝加哥大学教授德米特里·塔拉品说,“新的表面化学为我们制造高效且稳定的量子点太阳能电池铺平了道路,也将对其他利用胶体纳米晶体制造的电子和光电耦合设备产生影响。全无机方法的好处包括能显著改善电子的运输速度,让设备更加稳定等。”

  • 石墨烯结合量子点制成高灵敏光电探测器

    中国科技网讯 据物理学家组织网5月16日(北京时间)报道,西班牙塞西斯光学技术研究所用石墨烯结合量子点成功研发出一种混合型光电探测器,灵敏度是其同类探测器的10亿倍。研究人员指出,该研究预示了石墨烯在光学传感器和太阳能电池领域的新应用。相关论文发表在最新一期《自然·纳米技术》上。 石墨烯在光电子学和光电探测应用领域极有潜力,具有光谱带宽广、响应迅速的优点,但缺点是光吸收能力弱,缺乏产生多倍载荷子的增益机制。目前的石墨烯光电探测器响应度(一定波长的光在入射功率作用下的输出电流)在0.01A/W以下。 研究人员解释说,所需要的是一种迫使更多光被吸收的方法,石墨烯吸收光的效率仅为3%。为了提高光吸收率,他们转向了量子点。量子点是一种纳米晶体,能根据自身大小吸收不同波长的光。从本质上讲,光电探测器是一种把少量光转化为微小电流的设备,通过检测电流来确定有多少光进入了设备,或者直接用该电流产生其他反应,比如辅助产生摄影图像。 为了制造光电探测器,研究小组首先用标准的胶带法剥离出一层石墨烯作底片,用纳米印刷术在上面印上微小的黄金电极,然后用喷雾瓶将硫化铅晶体喷在上面。这些胶状晶体包含了各种大小的颗粒,几乎能吸收所有波长的光。他们用不同波长的光来照射探测器,检测其电阻和电量。 在制造量子点时,要保证在量子点和石墨烯之间实现配位体交换最大化,最大困难是找到合适的材料组合。研究人员说,他们经多次试验,终于使内量子效率达到了25%。在探测器中,量子点层中的光强烈而且可调,生成的电荷传导到石墨烯,在此电流多次巡回,响应度达到了107A/W。 研究人员还指出,在这种光电探测器基础上,还能造出更多新设备,如数字摄像机、夜视镜以及其他多种传感器设备。(记者 常丽君) 总编辑圈点 石墨烯极高的导电性着实令科学家着迷,也因此激发了科学家利用石墨烯来设计超高速光电探测器。传统的硅基光电探测器不能折叠,也不便宜,而且不够灵敏。多年来,一种便宜、可折叠的光电探测器一直是科学家们的梦想。单层石墨烯似乎可以胜任。然而单层石墨烯吸收光子的能力比硅还差,仅有3%的光子被吸收。而当量子点附着在其表面时,其吸收光子的能力可神奇地提高到50%。这样一来,可以穿在身上的电子产品或许真的不再是梦了。 《科技日报》(2012-05-17 一版)

  • 【转帖】量子点显示屏或将成主流 提高亮度鲜艳度减能耗

    美国、韩国和比利时的科学家将携手研发基于量子点发光二极管(QLED)的有源矩阵显示屏。与目前的显示屏相比,新显示屏在大大提高了亮度和画面鲜艳度的同时,还减少了能耗。  这种技术中用到的量子点(Quantum Dots)是一些肉眼无法看到的、极其微小的半导体纳米晶体,晶体中的颗粒直径不足10纳米。量子点由锌、镉、硒和硫原子组合而成。量子点有一个与众不同的特性:当受到电或者光(诸如LED产生的光)的刺激时就会发光,产生亮光和纯色,其发出的光线颜色由量子点的组成材料和大小、形状所决定。  美国QD Vision公司首席技术官赛斯·科-沙利文表示,该产品能够进行商业化生产并能同有机发光显示屏(OLED)相竞争。他解释说,制造OLED时,需要使用一个“阴罩”,当屏幕尺寸变大时,阴罩板容易发生热胀冷缩,会使得色彩等不够精确。而QLED的制造过程不需要使用阴罩,因此不会出现精确度减少的问题。另外,量子点还可悬停在液体中,并使用多种技术让其沉积,包括将其喷墨打印在非常薄的、柔性或者透明的衬底上。  沙利文指出,OLED还有一处不足,其纯色需用彩色过滤器才能产生,而QLED从一开始就能产生各种不同纯色,也在将电子转化为光子方面优于OLED,因此能效更高,制造成本更低。在同等画质下,QLED的节能性有望达到OLED屏的2倍,发光率将提升30%至40%。同时,OLED可以达到与无机半导体材料一样的稳定性、可靠性。  不过,QLED的发展也面临着两个挑战,其一是寿命短,最好的QLED寿命仅为1万小时,这对大尺寸显示屏来说还不够。其二是需要确保色彩能始终如一地再现。沙利文表示,该公司已经在这两方面取得了很大进步,QLED即将开始商业化生产。  据悉,QD Vision公司将与韩国LG显示器公司、比利时化学品公司Solvay合作,研发和制造这种新的QLED有源矩阵显示屏。QD Vision公司将提供量子点技术,而LG则负责产品生产。  QD Vision并非唯一一家研发量子点显示屏技术的公司,位于美国硅谷的Nanosys公司也在研发相关新产品,其产品中的一个液晶显示屏背光灯上有很多量子点,以提高能效和色质。

  • 人造钻石创室温量子比特存储时间新纪录

    科技日报 2012年06月09日 星期六 本报华盛顿6月7日电 (记者毛黎)全球著名的人造钻石超材料生产商六元素公司(Element Six)7日表示,美国哈佛大学和加州工学院以及德国马普光量子研究所合作,利用该公司获得的单晶体人造钻石,创下了室温量子比特存储时间超过1秒钟的新纪录。这是人类首次实现用一种材料在常温下将量子比特存储如此长时间。 研究人员认为,人造钻石系统的多能性、稳定性和潜在的延展性有望让其在量子信息科学和量子传感器领域开拓新的应用。六元素公司位于英国阿斯科特的人造钻石研发小组用化学气相沉积技术开发出新的人造钻石生长工艺。公司创新主任斯蒂芬·库伊表示,人造钻石科学领域发展迅速,新钻石合成工艺能将杂质控制在兆分之几,这是真正的纳米工程化学气相沉积钻石合成技术。 参与合作的哈佛大学物理学教授海尔·鲁金表示,六元素公司独特的人造钻石材料是研究获得进展的核心,常温下单个量子比特存储时间超过1秒是一项十分令人兴奋的成果,它是初始化、存储、控制和测量4项需求的结合。新发现有望帮助人们开发新的量子通信和技术,在近期则有助于研发新的量子传感器。 量子信息处理涉及操纵人造钻石中单个原子尺寸的杂质和探讨单个电子自旋量子特性,新的研究成果代表着量子信息处理的最新发展。在量子力学中,电子量子自旋(量子比特)可以同时是0和1,此特性提供了量子计算的框架,同时也提出了更直接的应用,如新的磁传感技术。 总编辑圈点 谁会对1秒钟锱铢必究呢?但从量子的标准来看,这算是很长一段时间了。在量子计算的构建过程中,长期以来人们都只能局限在数公里的范围内利用量子点传输量子信息,而如果一种材料能做到捕捉、较长时间的稳定存储住继而转发信息,也就意味着扩大了量子网产生作用的区域。更何况,很多物质的量子态都要求接近绝对零度,能在室温下操作量子比特,尤显珍贵。

  • 【原创大赛】那些年搞纳米材料的经历

    那些年搞纳米材料的经历今天,冬季版主之约,在材料版面发篇原创,想了好几个题目都觉得不合适,纳米人生题目太大,题目写小了又不好写,所以就定下了现在的题目。不搞纳米已经很多年了。2007年我考上了西北某重点大学的研究生,2008年,经过一年的理论学习,开始做实验,摆在我面前的有三条路可以选择,第一条做纳米材料,第二条做蛋白质与药物相互作用,第三条则是毛细管电泳。第二条道路我首先否认了,随后在第一条和第三条路之间进行选择。我选择了第一条路,做材料。我师姐和我说做材料简单。后来想想她是只知其一,不知其二。材料的基础研究就是合成和表征。最开始合成一个叫量子点的东西,合成很简单,但是表征是要花大价钱的,当时琢磨不透老师的意思,所以也没敢去表征,然后就是直接走应用的道路,等着将来有结果了,再回过头来去表征。但是,应用的过程是很艰辛的。我想利用我制成的量子点依靠它的荧光淬灭或者荧光增强来检测痕量重金属的含量。结果是在我加入了重金属以后,量子点的荧光强度不是按照既定的增强或者减弱,而是一会增强,一会减弱,这下我就很迷茫,觉得科学这东西不靠谱。当时也没有人能够指导自己,而自身也讳疾忌医,不敢向老师请教,所以直到今日,我还是没搞明白,我当初的量子点为什么不能够付诸实践。 工作以后,随着阅历的积累,我有了一定的感悟,那就是我合成的所谓量子点是介稳定状态,本身性质是不稳定的,而且合成的材料均匀性还是没办法保证,每次测量的结果不一致是很正常的。 其实,我对纳米还是抱有抵触情绪的,毕竟纳米材料的概念只是一个维度概念。在学校和研究所里,合成的成本不高,但是表征成本高。曾经听过一位院士说过,在一亩地里,如果能够找到一颗玉米,就证明纳米材料合成成功了,然后合成一篇,表征一篇,应用若干篇,现在纳米的杂志多如牛毛,文章就是这样出来的。某人用一种方法合成CdSe量子点,另外一个人用同样的办法再合成CdTe量子点,这样文章就出来了。纳米材料红红火火了十几年,十几年间,大量的科研经费就被无聊的表征所浪费。论合成,无机化学、分析化学、物理化学的学生都不如有机化学的学生。曾经有一位德高望重的教授说过,现代有机合成化学理论上可以合成任何有分子式的化合物,当然他指的是小分子,大分子的全合成还是有一定难度的。我们合成的四氧化三铁包二氧化硅即无应用价值也无应用前景,到头来只是发表了一堆烂文章。后来我转到毛细管电泳方向,尽管比搞材料辛苦,但是收获颇丰,也为毕业以后找工作提供了实验基础。能够自己动手做色谱实验实际上是非常幸福的啊!其实年轻的时候,千万不要为了清闲去现在一个前景不明朗的方向。我放弃了纳米,却赢得了未来。

  • 基于零维硫化铅量子点与二维二硒化钨纳米片协同效应的高性能宽光谱光电场效应晶体管

    基于零维硫化铅量子点与二维二硒化钨纳米片协同效应的高性能宽光谱光电场效应晶体管

    近年来,伴随石墨烯研究发展而来的二维过渡金属硫属化合物(TMD)因其天然的半导体性,原子级的材料维度、超高的载流子传输能力等物理属性而成为当前光电子领域的研究热点。基于TMD的各类新颖器件被广泛地应用于电子、光电、传感等领域。作为一类典型的p型二维材料,巨纳集团低维材料在线91cailiao.cn提供的二硒化钨拥有达到350cm-1V-1s-1的高迁移率以及1.6 eV的合适带隙,是制备高灵敏光电探测器的理想材料。最近,基于二硒化钨纳米片的光电探测器被广泛报道,然而由于其较弱的光吸收和较窄的光谱响应范围,导致其光响应率不理想(0.02-7 AW-1),严重限制了其在微弱光电信号探测领域的应用。另一方面,低成本硫化铅量子点由于其极强的光吸收能力、溶液加工特性和可调的光响应特性被认为是柔性光电器件的明星候选材料,其被广泛地应用于近红外探测、光伏和光谱分析。美中不足的是硫化铅量子点光电探测器的响应率被其本身的低载流子迁移率所限制,阻碍了其在光电探测领域的广泛应用。基于以上两类器件的长期研究和积累,结合当前零维-二维杂化器件的研究现状,华中科技大学武汉光电国家实验室(筹)宋海胜和唐江教授研究团队巧妙利用了二硒化钨和硫化铅量子点优越互补特性设计和实现了零维-二维协同工作的高性能光电探测器。这种构建策略将量子点的光吸收特性与二维材料的高迁移率相结合,构建了零维-二维器件结构与type-II的能带结构,器件表现出超高的光响应度,达到了2×105 A/W,比单立材料制成的对应器件响应率高出了4个数量级。高响应率产生机制被证实来源于光致栅控效应。硫化铅量子点能够高效吸收入射光子,并将光生空穴注入到二硒化钨导电沟道,而光生电子被俘获在硫化铅量子点层,延长了光生载流子寿命,从而对二硒化钨起到光电导调控作用;同时,由于二硒化钨的高迁移率,大大减少了光生载流子在导电沟道的渡越时间,提高了器件的增益。与已报道的类似(零维-二维)结构的器件相比,该器件表现出更低的暗电流与更高的开关比;在整个栅控电压范围内,不论是开态还是关态,该器件都可正常工作。研制的零维-二维杂化器件在表现出高响应度的同时也拥有高的比探测率(7×1013 Jones)和快速的响应速度(7 ms);由于量子点的光敏特性,其光谱响应范围也相应拓宽到近红外范围,实现紫外到近红外的宽光谱探测。以上系列核心优势使其在光电探测领域有着巨大的应用前景。该项研究不仅为高性能光电探测器的研制提供了新思路,也为光电探测领域丰富了材料的选择性,拓宽了器件的应用范围。低维材料在线商城专注材料服务,主要销售以低维材料为代表的相关的实验室耗材和工具,比如各类二维材料,一维材料,零维材料,黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硫化钨WS2,hBN氮化硼晶体,黑磷,二碲化钨WTe2,二硒化钨WSe2,二硫化铼ReS2,二硒化铼ReSe2量子点,纳米线,纳米颗粒,分子筛,PMMA,探针......[align=center][img=,500,386]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311349_03_2047_3.jpg[/img][/align]

  • 什么是低维材料?

    在实体空间中,材料总是表现出长、宽、高3个维度,因此我们日常所见的材料一般都是拥有相当大维度的条、面、块。然而,当这些材料逐渐地变薄变细变小,在长宽高等某些维度或全部维度上的尺寸足够小时,就会成为“低维材料”,例如零维材料(量子点、原子簇等)、一维材料(高性能纤维、纳米线等)、二维材料(功能膜材料等)。事实上,当材料在某一维度的尺寸足够小时,比如达到一个分子乃至一个原子的尺度范围时,就会展现出不同于日常材料的特性,在力学、光学、磁学等领域具备神奇性能,变身为传说中的“智能材料”。

  • 俄科学家合成出一种光控纳米复合材料

    中国科技网讯 据俄罗斯科技网近日报道,莫斯科国立大学精细化工技术学院、俄罗斯科学院生化物理研究所和化学物理问题研究所的三个顶尖科研小组宣布,他们利用光敏配合基和硒化镉,成功合成了一种光控纳米复合材料。这种复合材料的性能可以通过改变特定波长的光照射而发生变化,可用于“智能”光敏控制设备。相关论文发表在《俄罗斯纳米技术》杂志上。 通过光线照射使光敏配合基的性能发生有针对性的变化,这是当前非常热门的研究领域。通常,这一研究领域的成果将有助于建立一些智能设备的原型,如分子光开关、光控逻辑模块、检测离子的传感器设备等等。研制出的最终产品将应用于生物信息学、纳米医学和其他一些应用科技领域。 科学家们成功地将配合基分子固定在硒化镉纳米粒子的表面,从而形成了复合连接。其中无机纳米硒化镉(科学家称之为量子点)具有荧光控制的特点。所谓荧光控制,是指一些原子和分子具有吸收较高能量的光子,然后释放能量较低光子的特殊能力,例如一些荧光染料,它们能够吸收太阳辐射出的不可见紫外线,然后自身发出可见光。这种光线的颜色很饱和,我们在舞厅里常常会看见这种荧光灯发出的光芒。硒化镉量子点的荧光特性毫不逊于有机荧光分子,后者在生物学和医学上广泛得以使用。例如,量子点发出的波长取决于纳米粒子的大小,通过改变纳米粒子的大小就可以指定它们发出波长的频谱区域,这一特性有助于建立具有良好灵敏度和清晰度的单分子光敏系统,其在纳米级无机量子点的研究中被广泛应用。 在此项研究中,科学家使用一个直径为3.7纳米的硒化镉粒子,这种纳米粒子尤其善于吸收最大波长为585纳米的可见光。光敏配合基根据光的影响而改变其配置能力,进而改变硒化镉量子点的荧光光谱和大小。在原始复合材料中可明显观察到波长598纳米的量子点荧光。用短波照射复合材料后,材料的配置发生变化,开始发出波长为670纳米的荧光。如果把复合材料放置在黑暗中或用可见光照射一段时间,配合基分子会自动恢复到原始状态,而复合材料也趋于最初的荧光特点。基于此原理,他们获得了这种通过改变特定波长的光照射来控制属性的复合材料。此外,这种变化是可逆的,复合材料可以很容易地返回到其原始状态。这一研究结果对构建光敏智能控制系统原型具有良好前景,可用于特殊领域的光敏开关。(记者 曲键) 《科技日报》(2012-05-26 二版)

  • 【原创大赛】OPTON的微观世界之量子阱

    [b]概 述[/b]那么量子阱是什么呢,小编就小小解释一下,量子阱就是指由2种不同的半导体材料相间排列形成的、具有明显量子限域效应的电子或空穴的势阱。量子阱器件,即指采用量子阱材料作为有源区的光电子器件。[b]一、量子阱的构造 [/b]如下图,量子阱器件的基本结构是两块N型GaAs附于两端,而中间有一个薄层,这个薄层的结构由AlGaAs-GaAs-AlGaAs的复合形式组成。在未加偏压时,各个区域的势能与中间的GaAs对应的区域形成了一个势阱,故称为量子阱。电子的运动路径是从左边的N型区(发射极)进入右边的N型区(集电极),中间必须通过AlGaAs层进入量子阱,然后再穿透另一层AlGaAs。量子阱器件虽然是新近研制成功的器件,但已在很多领域获得了应用,如量子阱红外探测器、GaA s、InP基超晶格、量子阱材料、量子光通讯和量子结构LED等,而且随着制作水平的提高,它将获得更加广泛的应用。[align=center][img]http://img1.17img.cn/17img/images/201708/uepic/7619d5a4-5212-41d1-95b8-22fa2b5257b1.jpg[/img][/align][align=center]量子阱的基本结构[/align][b]二、量子阱的微观世界[color=#0080ff][/color][/b]量子阱材料一般使用分子束外延(molecular beam epitaxy ,简称 MBE)或金属有机氧化物化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法(MOCVD)技术制备,对于量子阱材料界面结构的观察,晶体生长过程中出现的诸如层错,位错等缺陷的形成、特性及其分布等,我们一般利用高分辨透射扫描电镜(TEM)来观察,从而确定材料微观结构参数与器件宏观性能参数间的关系。众所周知,透射样品制备要求严格,制样困难,首先要将样品膜面利用进行对粘,再继续线切割为3mm×1mm;其次采用砂纸将样品打磨抛光使其厚度为60μm 左右,再抛光至 20μm;最后使用离子减薄仪将样品轰击为10nm以下。这个过程技术要求高,每一步都需要经验,不是一般人都可以做的,而且成本较高;而扫描电镜相比较而言,样品制备简单,导电样品直接用导电胶固定在样品台上,放入腔室内进行观察,对于不导电样品,我们也有自己的解决方案,一配备离子溅射仪,即喷金,二采用低电压模式,低电压成像是现代场发射扫描电镜的技术发展趋势,低电压成像可以呈现样品极表面细节、可以减少不导电样品的荷电(放电)现象、可以减少电子束对样品的损伤。对于薄膜材料更是如此,下面就是我们来看看采用蔡司sigma 500所测的量子阱材料,我们得到了10万和15万倍下的量子阱的背散射图片,可以看出样品界面出现了亮暗程度不同的衬度带,各层分界清楚,界面平整,层分布精度高,周期性好,厚度为 68.11nm,阱和势垒交替出现,从而确定周期厚度。[align=center][img]http://img1.17img.cn/17img/images/201708/uepic/901137de-31b1-4b78-8c0e-6ac036ce6687.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201708/uepic/8be28f2f-c1d1-447a-a5bd-6121db979911.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201708/uepic/2262e497-7347-4137-9f66-c0fdd579632e.jpg[/img][/align][align=center][/align][b]后 记[/b]随着分子束外延和金属有机化学汽相淀积技术的迅速发展,人们已能够生长出原子尺度的、界面平滑的优质超薄层半导体材料,可以在生长方向上精确地控制薄层的组分和厚度,从而实现超晶格量子阱结构,所以晶格量子阱结构材料及应用的研究已迅速发展成当今半导体物理和固体物理学中最重要的前沿课题之一,而扫描电子显微镜一定可以大展身手,那就跟紧小编的步伐,我们一起跟随蔡司扫描电镜去见证光电材料史的辉煌吧!

  • Biomed. Opt. Express:首次利用量子点控制脑细胞

    神经细胞能够被量子点控制,图片来自CNRI/Science Photo Library。在量子物理学和神经科学的史无前例的结合中,称作量子点(quantum dot)的微小颗粒首次被用来控制脑细胞。对大脑的这种控制可能有朝一日提供一种治疗诸如阿尔茨海默病、抑郁症和癫痫症之类的疾病的非侵入式方法。在近期,量子点可能通过重新激活视网膜细胞而被用来治疗眼睛失明。美国华盛顿大学西雅图分校Lih Lin说,“很多脑部疾病是由于不平衡的神经活性而导致的。操纵特异性神经元可能允许它们恢复到正常的活性水平。”人工刺激大脑的一些方法已经存在,不过每种方法都有它的缺点。尽管在帕金森疾病中人们采用深度大脑刺激方法来触发脑细胞活性并阻止导致虚弱性震颤的异常信号传导,但是该方法所需的电极是高度侵入性的。颅磁刺激(transcranial magnetic stimulation)方法能够刺激来自头部外面的脑细胞,但是它不是高度靶向的,因而同时影响大脑大部分区域。光遗传学研究人员能够利用光控制基因修饰的脑细胞,但是由于这些修饰,这种技术迄今为止在人类中被视为是不安全的。如今,Lin领导的研究小组利用量子点---光敏感性的直径只有几个纳米的半导体颗粒---设计出另一种方法。首先,他们在用量子点覆盖的薄膜上培养前列腺癌细胞。这些癌细胞的细胞膜紧挨着量子点放置。研究小组然后将光照射在纳米颗粒上。来自光线的能量激活量子点内的电子,从而导致周围的区域带负电荷。这就导致癌细胞中一些电压控离子通道打开从而允许离子进入或逃离癌细胞。在神经细胞中,打开离子通道是产生动作电位的关键性一步,而这种动作电位是大脑中细胞进行沟通的信号。如果电压变化足够大的话,动作电位就产生。当Lin领导的研究小组在神经细胞中重复他们的实验时,他们发现刺激量子点导致它的离子通道打开,这样神经细胞就被激活。对人而言,量子点将需要被传送到大脑组织。Lin声称这应当不是一种问题。她说,“一种重要的优势在于量子点表面能够被不同分子修饰。”这些分子能够附着到量子点上以便靶向特异性脑细胞,也能够以静脉注射方式进行传送。一种关键性障碍是将光源传送到大脑。为此,Lin认为这种技术将在重新激活视网膜受损细胞中首次使用,因为视网膜自然地吸收光线。共同作者Fred Reike是视网膜疾病的专家。他说,量子点在这种领域有着较大的潜力,因为它们能够直接影响在视力的信号传导途径中发挥着关键性作用的离子通道。英国利兹大学Kevin Critchley对此也同意,“量子点在生物医学应用中有着光明的未来”,但是可能也存在一些限制,如潜在性毒性问题。Lin说,“基于我们的研究结果,我们对这种技术在帮助我们解答生物学问题以及最终诊断和治疗人类疾病上的潜力保持乐观。”

  • “量子反常霍尔效应”离诺贝尔物理奖有多近?

    我国科学家首次发现“量子反常霍尔效应”这一科研成果离诺贝尔物理奖有多近2013年04月11日 来源: 中国科技网 作者: 林莉君 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244421_change_wtt3427_b.jpg量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244437_change_wtt3428_b.jpg理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导 “这个研究成果是从中国实验室里,第一次发表出来了诺贝尔物理奖级别的论文,这不仅是清华大学、中科院的喜事,也是整个国家发展中喜事。”4月10日,诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授高度评价了我国科学家的重大发现——量子反常霍尔效应。 由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于3月14日在线发表这一研究成果。由于此前和量子霍尔效应有关的科研成果已经3获诺贝尔奖,学术界很多人士对这项“可能是量子霍尔效应家族最后一个重要成员”的研究给予了极高的关注和期望。那么什么是量子反常霍尔效应?对它的研究为什么引起世界各国科学家的兴趣?它的发现有什么重大意义? 重要性 突破摩尔定律瓶颈 加速推动信息技术革命进程 在认识量子反常霍尔效应之前,让我们先来了解一下量子霍尔效应。量子霍尔效应,于1980年被德国科学家发现,是整个凝聚态物理领域中重要、最基本的量子效应之一。它的应用前景非常广泛。 薛其坤院士举了个简单的例子:我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”薛其坤打了个形象的比喻。 然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”薛其坤说,而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。 自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2006年, 美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等有多个世界一流的研究组沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。 薛其坤团队经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。 “量子反常霍尔效应可在未来解决摩尔定律瓶颈问题,它发现或将带来下一次信息技术革命,我国科学家为国家争夺了这场信息革命中的战略制高点。”拓扑绝缘体领域的开创者之一、清华大学“千人计划”张首晟教授说。 创新性 让实验材料同时具备“速度、高度和灵巧度” 从美国物理学家霍尔丹于1988年提出可能存在不需要外磁场的量子霍尔效应,到我国科学家为这一预言画上完美句号,中间经过了20多年。课题组成员、中科院物理所副研究员何珂告诉记者:“量子反常霍尔效应实现非常困难,需要精准的材料设计、制备与调控。尽管多年来各国科学家提出几种不同的实现途径,但所需的材料和结构非常难以制备,因此在实验上进展缓慢。” “这就如同要求一个运动员同时具有刘翔的速度、姚明的高度和郭晶晶的灵巧度。在实际的材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲是一个巨大的挑战。”课题组成员、清华大学王亚愚教授这样描述实验对材料要求的苛刻程度。 实验中,材料必须具有铁磁性从而存在反常霍尔效应;材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态,即一维导电通道;材料的体内必须为绝缘态从而对导电没有任何贡献,只有一维边缘态参与导电。 2010年,课题组完成了对1纳米到6纳米(头发丝粗细的万分之一)厚度薄膜的生长和输运测量,得到了系统的结果,从而使得准二维超薄膜的生长测量成为可能。 2011年,课题组实现了对拓扑绝缘体能带结构的精密调控,使得其体材料成为真正的绝缘体,去除了其对输运性质的影响。 2012年初,课题组在准二维、体绝缘的拓扑绝缘体中实现了自发长程铁磁性,并利用外加栅极电压对其电子结构进行原位精密调控。 2012年10月,课题组终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2—25800欧姆——世界难题得以攻克。 课题组克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美的句号。 “下一步我们主要的努力方向是全面测量材料在极低温下的电子结构和输运性质,寻找更好的材料体系,在更高的温度下实现这一效应。那时,也许我们能对其应用前景作更好的判断。”王亚愚告诉记者。 外界评说 这是凝聚态物理界一项里程碑式的工作 “实验成果出来以后,量子霍尔效应的发现者给我发了一封邮件。他写道:我深信拓扑绝缘体和量子反常霍尔效应是科学王冠上的明星。”张首晟向记者展示了这封邮件。 《科学》杂志的一位审稿人说:“这项工作毫无疑问地证实了与普通量子霍尔效应不同来源的单通道边缘态的存在。我认为这是凝聚态物理学一项非常重要的成就。”另一位审稿人说:“这篇文章结束了多年来对无朗道能级的量子霍尔效应的探寻。这是一篇里程碑式的文章。” 延伸阅读 霍尔效应与反常霍尔效应 霍尔效应是美国物理学家霍尔于1879年发现的一个物理效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。产生的横向电压被称为霍尔电压,霍尔电压与施加的电流之比则被称为霍尔电阻。由于洛伦兹力的大小与磁场成正比,所以霍尔电阻也与磁场成线性变化关系。 1880年,霍尔在研究磁性金属的霍尔效应时发现,即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应的相关研究已3次获得诺贝尔奖 量子霍尔效应在凝聚态物理的研究中占据着极其重要的地位。它就像一个富矿,一代又一代科学家为之着迷和献身,他们的成就也多次获得诺贝尔物理奖。 1985年,诺贝尔物理奖颁给了德国科学家冯·克利青,他于1980年发现了整数量子霍尔效应。 1998年,诺贝尔物理奖颁给了美国科学家:美籍华人物理学家崔琦以及施特默、劳弗林。前两人于1982年发现了分数量子霍尔效应,而后者则对这一效应进一步给出了理论解释。 2010年,诺贝尔物理奖颁给了英国科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们俩在2005年发现了石墨烯中的半整数量子霍尔效应。 此外,量子化自旋霍尔效应于2007年被发现,2010年获得欧洲物理奖,2012年获得美国物理学会巴克利奖。(记者 林莉君 李大庆) 《科技日报》(2013-04-11

  • 有人测过碳点的量子产率吗

    请问测量碳点的量子产率的时候,我配置的碳点在390nm时强度最高,那我应该在390nm下计算碳点和硫酸奎宁的荧光积分面积吗,我看文献都用的是360nm,还有就是荧光积分面积是测量激发光谱后自己用origin拟合后积分得到还是直接用机器测量得到,因为我用的稳态荧光里面有直接测量量子产率的程序,但是好像只能扣背景,不能放入参比物质

  • 碳量子点如何做拉曼检测?

    不管是啥量子点,荧光都特别特别强,但是呢碳量子点做拉曼检测的文献报道还挺多的,不知道人家怎么才能测出来拉曼信号的。用显微共聚焦拉曼,532,785都试过了,全都测不出碳量子点的拉曼,求助该肿么办~~

  • 请教,有人用荧光光度计做量子点的测定吗?

    我看见我同学在用荧光光度计做量子点的测定,我想问一下,什么叫量子点?好像这个名词很时髦,还有为什么荧光可以用来测定量子点?另外我看见她扫描的时候,横坐标是波长,纵坐标是强度,那么这个强度是什么强度?那个同学说,随着激发次数的增加,纵坐标的强度应该是减小的,可是为什么会是每次扫描以后强度都是上升的呢?我很想得到大家的一些看法和探讨,谢谢大家了。

  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器

    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。[来源:科技日报][align=right][/align]

  • 氮掺杂石墨烯量子点TEM表征问题

    氮掺杂石墨烯量子点TEM表征问题

    请问一下大家。我用量子点做TEM表征,图片是这样的结果,并没有观察到单个的分散均匀的量子点,想知道是什么原因?[img=,690,665]https://ng1.17img.cn/bbsfiles/images/2022/12/202212292132020884_5501_5901340_3.jpg!w690x665.jpg[/img]

  • 中国科大率先实现高精度量子测量术

    精度可达到纳米量级2013年04月19日 来源: 中国科技网 作者: 吴长锋 杨保国 最新发现与创新 中国科技网讯 记者从中国科大获悉,该校郭光灿院士领导的中科院量子信息重点实验室孙方稳研究组,在国际上首次利用量子统计测量技术实现不受传统光学散射极限限制的相邻发光物体的测量和分辨,其精度可以达到纳米量级。研究成果近日发表在国际权威刊物《物理评论快报》上。 如何提高测量精度,数百年来一直是科学研究的主要课题和技术发展的主要追求目标。因此,新型的测量技术不断被开发,而其中最有吸引力的就是利用量子力学基本原理实现的量子测量方法。随着量子力学的发展以及相关量子信息技术的开发和应用,量子测量一方面可以实现超过经典测量极限的高精度测量,另一方面可以实现经典方式无法完成的各种测量。 孙方稳研究组利用物体发光的量子统计属性,设计并实验实现了不受经典光学散射极限限制的量子统计测量技术,其精度可达纳米量级。实验中,他们用氮原子取代金刚石材料中的一个碳原子,与近邻的空穴形成氮—空穴色心——一种极其微小的发光体。然后,他们巧妙地利用简单的光学收集装置,通过探测色心所发出的光子数,基于它们的量子统计属性,成功实现了两个相距8.5纳米的氮—空穴色心独立成像和分辨,同时测量了每个色心的结构,测量精度达2.4纳米。如果通过增加收集光子数,可以把精度提高到1纳米以内。实验中所需的光路简单,测量系统稳定,不受量子消相干效应的影响。 量子统计测量技术除了适用于相邻物体的光学成像,还可以测量和分辨发光体的其他光学属性,如发光寿命、波长等。同时,该测量技术可实时测量近邻物体的动力学演化以及它们之间的相互作用,为实现进一步的量子信息技术提供了新的测量技术,也将在化学、材料、生物医学等方向得到应用。(记者吴长锋 通讯员杨保国) 《科技日报》(2013-04-19 一版)

  • 碳量子点TEM图求助

    碳量子点TEM图求助

    做了一个碳量子点的TEM,由于没做好功课,用了普通碳支持膜,并且没有纯化量子点,然后电子束打到样品上,样品开始蠕动鼓泡,最后形成一个圆环状的东西,请问一下这是什么[img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162155555269_3851_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162155559970_3065_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162155572351_9480_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162156003224_254_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162156028616_9426_3315367_3.jpg!w690x518.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制