当前位置: 仪器信息网 > 行业主题 > >

磷光材料

仪器信息网磷光材料专题为您整合磷光材料相关的最新文章,在磷光材料专题,您不仅可以免费浏览磷光材料的资讯, 同时您还可以浏览磷光材料的相关资料、解决方案,参与社区磷光材料话题讨论。

磷光材料相关的资讯

  • 基于主客体作用构建纯有机室温磷光材料的最新进展
    本文转载自公众号 ChinChemLett室温磷光具有长的发光寿命,大的斯托克斯位移以及在分析、生物成像、有机发光二管中有着广泛的应用。近几年来,纯有机室温磷光(RTP)材料受到了科研工作者的广泛关注,与无机发光材料和有机金属配合物材料相比,纯有机室温磷光材料具有柔性、低毒性、低成本、易修饰等特点。然而在室温条件下,由于弱的自旋轨道耦合,或者由氧气、高温、分子振动导致三线态激子的严重非辐射失活,使得有机磷光材料的室温发光效率往往很低。到目前为止,通过引入卤素重原子、芳香羰基,氢键,结晶(共晶),主客体作用,嵌入聚合物等策略,可以提高系间窜越(ISC)和抑制非辐射跃迁的速率,终成功地实现了纯有机室温磷光的构建。其中,卤素重原子(Br,I等)和其他杂原子(O和S等)可以促进单线态到三线体系间窜越(ISC),增强室温磷光发射;结晶、嵌入聚合物等策略可以产生刚性环境,从而抑制非辐射衰变,增强室温磷光发射。通过对近几年相关文献进行案例分析,Chinese Chemical Letters的编委、华东理工大学马骧教授课题组总结了基于主客体作用构建纯有机室温磷光材料的新研究进展,近期在Chinese Chemical Letters发表了Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions 的综述文章(https://doi.org/10.1016/j.cclet.2019.07.042)。文章首先介绍了构建室温磷光材料的常用策略以及主客体作用的概念,然后阐述了基于主客体作用实现纯有机室温磷光的机理,总结了近几年来不同主体基质下通过主客体作用产生室温磷光的研究进展,分别介绍了基于传统大环主体环糊精和葫芦脲,无定形羟基类固醇等甾体薄膜基质为主体分子以及以刚性晶体基质做主体的三种不同主体基质形式产生的室温磷光现象。后对未来主客体策略应用于纯有机室温磷光进行了展望。该文将发表在2019年第10期Fluorescence Basics and Technology专刊中。请点击下方链接阅读全文。本文转载自ChinChemLett扫描二维码阅读原文 点击查看更多往期精彩文章 上海交大开发新型探针:小至70nm 依然可实现超强拉曼信号 | 前沿用户报道折叠屏手机市场拓展的新契机——碳纳米点|前沿应用拉曼与统计分析神助攻,复旦破译PM2.5重要成分 | 前沿用户报道清华大学魏飞团队实现一步法制备纯度99.9999%半导体碳纳米管阵列严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】发现生命的轨迹——化石中的碳元素分析 | 前沿应用地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形!复旦巧用增强拉曼“识”雾霾 | 前沿用户报道 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载,文章版权、数据及所述观点归原作者原出处所有。HORIBA Scientific 发布及转载目的在于传递更多信息,以供读者阅读、自行参考及评述,并不代表本网赞同其观点和对其真实性负责。如果您认为本文存在侵权之处,请与我们取得联系,我们会及时进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。 点击下方“阅读原文”,阅读paper原文。阅读原文
  • 华理田禾、马骧团队:凝心聚力寻突破,室温磷光材料前景可期|前沿用户报道
    供稿:张婷编辑:chen磷光材料是一种应用广泛、具前景的发光材料,我们所熟知的夜明珠就是一种磷光材料。虽然与荧光同属于光致发冷光现象,但磷光的发光寿命远长于荧光,且具有较大的斯托克斯位移,这些特点使得其成为发光材料领域的研究热点。虽具备种种优势,但磷光的发光强度易受温度和氧气的影响,高温及高浓度氧气都会猝灭磷光。因此,能在室温条件下就可以发出磷光的材料——室温磷光材料的开发应用,就显得为重要。室温磷光材料的基础设计在近年来已经取得了很大的进展,但目前已报道的多数室温磷光材料仍然不够理想。一方面,这些材料大多含有重金属,而重金属通常价格较高且生物毒性较大;另一方面,大多数纯有机室温磷光材料是在晶态下发光,而晶体的培养过程相对复杂且重复性较差,不便于批量生产。因此,制备方法简单、低成本、发光性能稳定的无定形态纯有机室温磷光材料就成为目前亟待研究的重点。令人高兴的是,华东理工大学的田禾院士、马骧教授团队近年来一直致力于无定形态纯有机室温磷光材料的研究,对这一领域有着深刻的理解和认识,并且取得了一系列突破性进展。近期该团队受邀撰写了关于室温磷光材料的综述,并发表于Angew. Chem. Int. Ed. 该综述主要从无定形态纯有机室温磷光材料的设计思路入手,总结评述了近年来该领域的一些代表性研究成果和热门应用。发光机理实现高量产的重要途径减弱发光分子的非辐射失活为了得到高磷光量产的材料,减弱磷光发射的竞争过程便是一个很有效的途径,即减弱发光分子的非辐射失活过程。为了达到这一目的,近年来各大院校的研究团队们开发出一系列策略,包括:将发光分子套入具有保护作用的主体大环分子内、与聚合物相互掺杂或是直接共价连接、利用氢键等作用力将发光分子聚集在一起等等。这些策略都可以有效减弱发光分子的振动,并且保护发光分子不受外界猝灭因素的影响,从而实现室温磷光的发射。夜光标志(来源:baidu)多种思路突破难题室温磷光材料设计的科研成果基于上述思路,我们来看看近年来学界也都取得哪些突破性的研究成果。早在2016年,田院士和马教授课题组,就曾报道了一种制备纯有机室温磷光发射聚合物材料的简便方法,该团队采用的是共聚的思路,具体做法为:将磷光团与丙烯酰胺共聚,从而得到刚性无定形态聚合物。这种聚合物可以有效抑制发光分子的非辐射跃迁,从而可以实现高效室温磷光的发射。此方法适用于各种不同的磷光团,目前已基本实现了从近红外区到紫色可见光范围内的全光谱发射。据课题组介绍,在这一系列实验中,大量的发射光谱、激发光谱、量子产率等表征工作均使用HORIBA FluoroMax-4荧光光谱仪完成,该仪器可以同时测出发光材料的荧光及磷光发射光谱,并能够直接用CIE色坐标来表征材料的发光颜色。积分球附件也可以很方便地测出溶液态及固态材料的绝对量子产率。2018年,新加坡南洋理工大学赵彦利教授课题组采用的则是另一种思路,赵教授团队将磷光分子与聚合物掺杂来进行研究。具体做法是:将一个外围修饰有六个苯甲酸的磷光团,与无定形态的聚乙烯醇进行简单的掺杂,体系中丰富的氢键作用可以有效减弱分子振动造成的能量损失,减少磷光信号的猝灭。此外,紫外灯照射可以使聚乙烯醇内部形成共价键,进一步减弱了发光体的非辐射跃迁,从而实现了长寿命、高量产的室温磷光发射。综上,我们可以看到,对于无定形态纯有机室温磷光材料的设计,科研人员们一直在开展研究并且已经取得不少成果。不同颜色发光材料(来源:baidu)广阔前景未来可期室温磷光材料的热门应用上文我们已经介绍了室温磷光的一些科研发展,这些发展也使得室温磷光材料在防伪、生物成像、探针等领域表现出广泛的应用价值,下面我们就一起看看都有哪些具体的应用场景~1. 防伪防伪墨水(图片来源:baidu)大多数磷光材料在普通日光下没有任何发光现象,只有在紫外灯照射下才可以发出肉眼可见的光,且有一些材料的磷光寿命长,在关掉紫外灯后还可以有肉眼可见的余辉。因此,将室温磷光材料制成墨水,便可以实现文字或图案内容的加密和防伪。若将长寿命的室温磷光材料和短寿命的荧光材料结合在一起制成墨水,还可以使得加密内容在紫外光照射前、照射时、照射后分别呈现出不同的状态,进一步提升了防伪技术水平。2. 检测氧气浓度室温磷光材料也是一种可用于检测氧气含量的探针。我们知道氧气对荧光发射通常是没有影响的,而磷光却易被氧气猝灭,因此将一个具有荧光/磷光双发射的物质置于不同浓度的氧气环境中,我们发现其荧光强度固定不变,而磷光强度则会随氧气浓度的增加而减弱。根据这一原理便可以制得一个较为精确的比率式氧气浓度检测器,如果此类检测器所使用的物质可以用于生物体,则还可以进一步用于生物细胞内的氧气检测。编辑说:有人说“新材料科学技术的发现、利用和产业化,是材料科学技术的革命,是社会的巨大财富”,本文所谈到的磷光材料研究技术亦如此。在这里,我们要为科研人员们加加油,希望他们不懈努力,不断改进已有的制备技术或发明新的技术,研制出更多高性能或新性能的材料,让我们的生活始终充满“夜明珠”般璀璨的魅力。文章作者论文原文本综述论文由华东理工大学博士生张婷在田禾院士和马骧教授的指导下完成,并得到了新加坡南洋理工大学赵彦利教授、吴宏伟博士后和复旦大学朱亮亮教授的帮助和支持。题目&杂志:Molecular engineering for metal-free amorphous room temperature phosphorescent materials. Angew. Chem. Int. Ed.文章作者:张婷, 马骧, 吴宏伟, 朱亮亮, 赵彦利, 田禾. 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 创新手性对映体实现高效近红外圆偏振磷光
    【研究背景】圆偏振磷光(CPP)是一种自旋禁阻的辐射过程,因其在生物成像、光电器件等领域的潜在应用而受到广泛关注。与传统的磷光材料相比,CPP材料在实现高效三重态发射方面显示出更大的应用前景。尤其是近红外(NIR)磷光,因其在深层组织成像和传感中的优势,正在成为研究热点。然而,CPP材料的构建面临诸多挑战,如高效发光效率、长寿命和大不对称因子(gphos)的同时实现仍是难题。近日,来自香港中文大学(深圳)丘子杰,赵征以及唐本忠院士等研究团队在CPP材料的开发中取得了新进展。该团队设计并合成了一对新型的手性对映体R-和S-BBTI,这些化合物采用了高度扭曲的螺旋环锁定结构,并引入了重碘原子,显著提升了三重态的自旋翻转过程。研究发现,R/S-BBTI在二甲基亚硫酰胺溶液中实现了最高4.2%的NIR CPP效率,并展现出119μs的发光寿命。在晶体状态下,其量子效率达到了7.0%和166μs的寿命。利用详细的实验手性光谱学研究和理论计算,该团队揭示了自旋翻转过程如何调节电子和磁性跃迁偶极矩,从而增强了CPP的性能。此外,R/S-BBTI的磷光对氧敏感且可光激活,使其在细胞和肿瘤的缺氧成像中具有重要应用。这项研究为下一代手性磷光材料的开发提供了新的思路,展示了如何通过合理设计分子结构来优化三重激发态,推动了相关技术的进步。【表征解读】本文通过多种表征手段深入探讨了R-和S-BBTI分子的性质,揭示了其在圆偏振磷光(CPP)中的高效发光机制。首先,利用紫外-可见光吸收光谱仪(PerkinElmer Lambda 365)对这两种化合物的光吸收特性进行了分析,发现其具有显著的吸收特征,表明在可见光和近红外区域的活跃跃迁。这一发现为后续的发光特性研究奠定了基础。针对CPP现象,本文采用时间相关密度泛函理论(TD-DFT)进行计算,以研究其电子跃迁特性。通过自然跃迁轨道分析,获得了分子中激发态的详细信息,揭示了R/S-BBTI的激发态动力学过程及其与自旋翻转的关系。结果显示,R/S-BBTI的自旋翻转过程显著增强了CPP的性能,从而提高了其量子效率和发光寿命,这一微观机制为理解其高效发光特性提供了重要依据。在此基础上,采用荧光光谱(Edinburgh FLS1000)和圆二色性(CD)光谱等表征手段,进一步分析了R/S-BBTI在不同状态下的发光特性。通过控制不同的环境因素,观察到在不同浓度和溶剂条件下,这些分子展现出良好的圆偏振光特性。尤其是在晶体状态下,R/S-BBTI的CPP效率达到了7.0%,并具有较长的发光寿命(166 μs),显示出其在固态材料中的应用潜力。通过对氧敏感和光激活特性的探索,本文还开发了R/S-BBTI用于细胞和肿瘤的缺氧成像。采用共焦显微镜对HeLa细胞进行成像时,发现R/S-BBTI能够有效地标记缺氧区域,为生物成像提供了新的方法。这一应用进一步展示了新材料在生物医学领域的广泛前景。分子设计策略和圆偏振磷光Circularly polarized phosphorescence,CPP机制。参考文献:Hao, CY., Zhan, Z., Pantaleón, P.A. et al. Robust flat bands in twisted trilayer graphene moiré quasicrystals. Nat Commun 15, 8437 (2024). https://doi.org/10.1038/s41467-024-52784-7
  • 新疆理化所在聚簇触发磷光的非晶态铜基纳米颗粒检测TNT方面获进展
    铜基纳米颗粒(CuNPs)具有制备过程简单、原料易得、毒性低、可调谐的小尺寸、可定制的表面化学性质和良好的物理化学性能,在能量转换、催化、生物医学等领域备受关注。特别地,发光效率高、荧光寿命长的CuNPs发光材料促进了光学传感器的发展。然而,对于晶态金属基纳米材料而言,因晶格结构的长程有序性,其反应活性位点较少,且由于其无法达到绝对零度导致存在的晶体缺陷会抑制光生电子转移。因此,探索CuNPs的新型微观结构是发光材料和光学检测的迫切需求。近年来,非晶态金属基纳米颗粒已被验证,其无序结构不仅可以在能量转换领域通过减少电子与空穴的重组来促进金属核与表面配体之间的电荷转移,而且可以在催化领域通过其低配位原子暴露更多的反应位点。易于电荷转移的特点和丰富的反应位点特性,使非晶态CuNPs有望成为光致发光和光学检测的理想材料。然而,由于非晶态微观结构是CuNPs的热力学亚稳态,如何抑制其形成稳定晶体颇具挑战性。能否获得光学检测所需的具备优异光致发光性能的非晶态CuNPs仍然未知,而这对于超灵敏和高稳定检测至关重要。  中国科学院新疆理化技术研究所痕量化学物质感知团队利用谷胱甘肽配体抑制原子间金属键,促进铜基纳米材料非晶态的形成,通过调控溶剂极性制备出基于穿越空间共轭(TSC)的谷胱甘肽功能化非晶态CuNPs(GSH-CuNPs)。这一材料具有聚簇触发发射(CTE)的优异磷光性能。与之前报道的铜基纳米结构磷光材料相比,该材料具有较高的量子产率(13.22%)、较长的磷光寿命(21.7 μs)、较大的Stokes位移(298 nm)及抗机械致变色发光特性,利于光学检测。同时,非晶态CuNPs表面配体暴露的大量羧基和氨基为2,4,6-三硝基甲苯(TNT)提供了丰富的识别位点,可实现对痕量典型爆炸物TNT的超灵敏、特异性磷光猝灭检测。在此基础上,研究通过理论计算结合相关实验数据提出了光诱导电子转移(PET)的三重态磷光猝灭传感机制。此外,科研人员利用GSH-CuNPs的固态发光性能拓展建立了CuNPs-纸芯片(具备优异的可循环检测性能),实现了对固体TNT残留物的现场可视化采样检测;拓展建立的CuNPs-高分子传感芯片实现了对空气中痕量TNT微粒的超灵敏检测,为便携式现场探测器的集成开发及隐藏TNT爆炸物搜寻奠定了研究基础。该研究首次实现了由铜基配合物聚集诱导制备非晶态铜基纳米颗粒,从根本上有助于探讨金属基纳米材料的不同存在形式,并在痕量光学检测方面展示出潜力,为非晶态金属基纳米材料在痕量化学物质检测方面的传感原理挖掘及传感方法建立奠定了坚实基础。  相关研究成果以Amorphous Copper-Based Nanoparticles with Clusterization-Triggered Phosphorescence for Ultrasensing 2,4,6-Trinitrotoluene为题,在线发表在《先进才来哦》(Advanced Materials)上。研究工作得到国家重点研发计划、国家自然科学基金和中科院基础前沿科学研究计划从0到1原始创新项目等的支持。非晶态铜基纳米颗粒的结构示意、磷光发射及TNT检测机制
  • 科学家研制出黑磷光纤传感器
    p   近日,中国科学院深圳先进技术研究院研究员吕建成、喻学锋与英国班戈大学教授陈险峰等合作,成功研制出首个基于黑磷的光纤化学传感器,实现对重金属离子的超灵敏检测。 br/ /p p   倾斜光纤光栅是一种新型的光纤器件,大角度倾斜光栅结构能够将纤芯光学基模前向耦合到光纤包层,在特定的波长形成一系列离散的谐振峰,光的耦合将随着外界媒质折射率等的变化而变化。因此,倾斜光纤光栅是非常适合作为传感应用的光子器件。黑磷是近年来广受关注的一种具有直接带隙二维半导体材料,具有独特的二维平面结构、超高的比表面积、众多的活性位点,以及从可见到红外广阔的光谱响应范围,在光学检测方面展现出巨大的应用前景。 br/   该研究中,研究团队首次将黑磷和倾斜光纤光栅相结合,揭示了黑磷纳米层独特的光学调制作用,借助于倾斜光栅这种独特的光学结构,构建成新型的超灵敏化学传感器。本研究发展了一种原位层叠的修饰技术,将黑磷纳米片高效地附着在光纤器件表面,不同厚度的黑磷纳米层展现出对光信号独特的调制性。利用这一特性,该黑磷光纤传感器能够在亚ppb浓度水平检测到重金属铅离子,具有超高的灵敏度、超低的检测限,以及广阔的浓度检测范围。黑磷新型光纤传感器的成功研发,将为化学和生物传感提供一个优越的光学检测平台,从而推动黑磷化学生物传感器的应用研究进程。 br/   相关研究成果发表于Sensors and Actuators B: Chemical。该研究得到了国家自然科学基金、欧盟“第七框架计划”等的资助。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/4ba34206-8377-4380-a6fe-692cf085a316.jpg" title=" 1.jpg" style=" width: 600px height: 326px " width=" 600" vspace=" 0" hspace=" 0" height=" 326" border=" 0" / /p p strong 图.a):黑磷倾斜光纤光栅器件及其光学调制示意图,b):重金属离子检测的实验步骤,c):不同重金属离子浓度下TM模式共振的光谱图,d):不同重金属离子浓度下光谱的共振强度图。 /strong /p
  • 荧光/磷光体系溶液结构测定动静态激光光散射谱仪
    成果名称 荧光/磷光体系溶液结构测定动静态激光光散射谱仪 单位名称 中国科学院化学研究所 联系人 程贺 联系邮箱 chenghe@iccas.ac.cn 成果成熟度 □研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介:荧光/磷光体系溶液结构测定动静态激光光散射谱仪通过引入二向色镜,采取叠光的手段,将785nm、633nm、532nm和457nm的激光作为光源,根据样品不同的吸收谱带选择样品无吸收的激光,解决了商业化动静态激光光散射谱仪无法测量荧光/磷光体系溶液结构的难题。该谱仪可精确测定流体力学半径在1nm-100&mu m,均方旋转半径在20nm-300nm尺寸范围的纳米、胶体、团簇颗粒等的溶液结构。 应用前景: 本项目可以吸引国内院所同行,尤其是本身已有商业化动静态激光光散射谱仪的同行的注意,吸引他们向我方申请加工、或者直接购买,在市场上有一定的应用前景。近两年来,仅德国ALV公司在中国市场购买就销售了15台左右谱仪,按每台谱仪的改装费80万元计算,我们的潜在市场至少有1200万元。
  • Anal. Chem. 四川大学吴鹏课题组:单线态氧特征磷光发射测定D2O纯度 | 前沿用户报道
    供稿:郎云贺成果简介近日,四川大学吴鹏课题组利用单线态氧1270nm的NIR-II特征发射(聚噻吩光敏剂)测定D2O纯度,相关文章已发表在Analytical Chemistry上,该工作也表明了单线态氧的NIR-II发射在分析检测中具有潜在的应用价值。背景介绍重水(D2O)在核工业及生物有机分析等领域应用广泛。但由于D2O与H2O的物理性质极为相似,加之D2O具有强吸湿性,致使区分D2O和H2O极具挑战。单线态氧的特征磷光发射(1270 nm,NIR-II)具有半峰宽窄、信号干扰小的特点,能够有效区分D2O/H2O。图文导读单线态氧的特征磷光发射强度与溶剂相关。与O-D(ν = 2550 cm-1)相比,高振动频率的O-H(ν = 3250 cm-1)能够更快速有效的促使单线态氧非辐射失活,表现为更弱的信号强度(图1A)。目前,最直接、方便产生单线态氧的方式是通过光敏过程(图1B)。然而,常规情况下该特征磷光发射非常弱,难以满足定量分析的要求。图1 光敏氧化产生的1O2特征磷光发射区分H2O和D2O四川大学吴鹏教授团队筛选具有优良光敏稳定性、较高单线态氧量子产率的聚噻吩光敏剂,加入至不同比例的D2O/H2O溶液中,利用激光器作为激发光源,通过提高激光功率增强了光敏氧化产生的单线态氧1270 nm磷光发射信号。信号采集时间约30 s,最终实现D2O纯度的定量分析与检测。收集1O2的弱磷光发射信号的仪器设置在本研究中,主要是由四川大学分析测试中心分子光谱组瞬态荧光光谱仪(HORIBA Fluorolog® -3)支撑,装备近红外检测器(H10330,Hamamatsu)。通过该仪器,完成了光敏剂分子荧光光谱、荧光寿命、单线态氧磷光光谱、单线态氧磷光寿命等的测量。HORIBA Fluorolog® -3 荧光光谱仪作者借助外置激光器(提高激光功率),得到了平滑的单线态氧磷光发射曲线(如图2D),实现了通过NIR-II光谱完成D2O纯度的定量分析。该仪器具有功能多样、灵敏度高等优势,NIR-II光谱平均扫描时间仅30 s。值得注意的是,该仪器与脉冲激光器相连接,能够得到不同溶剂的单线态氧寿命衰减曲线(图2E)。该仪器对发光强度很弱的单线态氧NIR-II磷光及其他稳态/瞬态相关的研究提供了广阔的平台。图2 光敏剂PT10的光物理性质研究如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息Analysis of the Isotopic Purity of D2O with the Characteristic NIR-II Phosphorescence of Singlet Oxygen from a Photostable Polythiophene Photosensitizer署名作者:Yunhe Lang, Shihong Wu, Qin Yang, Yanju Luo*, Xia Jiang, and Peng Wu*文章链接:https://doi.org/10.1021/acs.analchem.1c01160扫码查看文献吴鹏教授课题组简介吴鹏,四川大学分析测试中心/化学学院教授,博导,国家优青,四川省学术与技术带头人。近年来的研究工作以室温磷光和单线态氧的光物理和光化学调控为基础,探究其在核酸检测、光动力治疗等领域的新应用。已在Nat. Commun.、Angew. Chem. Int. Ed.、Nano Lett.、Chem. Sci.、Anal. Chem.等国际知名期刊上发表论文90余篇,H-index 38。
  • 宁波材料所近红外热活化延迟荧光材料与器件研究获进展
    近红外有机发光二极管(NIR-OLEDs)在生物成像、防伪、传感器、远程医疗、显微摄影、夜视显示等方面颇具实际应用价值,已成为有机电致发光器件的重要发展方向之一,而热活化延迟荧光(TADF)材料可以实现100%激子利用率,其量子效率可媲美基于贵重金属的磷光材料,具有应用潜力。受能隙定律的影响,近红外发光材料的基态(S0)和第一单态激发态(S1)势能面接近,近红外发光材料普遍存在严重的非辐射失活现象,在聚集态中表现得尤为严重。非掺杂器件在面板显示和一般照明应用中具有良好的重复性、高稳定性和低成本等优点以及商业化潜力。鉴于TADF材料具有强的分子内电荷转移(ICT)特征,在非掺杂条件下可较易获得深红色甚至近红外发射,因此亟需开发出光亮的NIR-TADF非掺杂材料。  近日,中国科学院宁波材料技术与工程研究所研究员葛子义和副研究员李伟等开发了一种在非掺杂条件下即可实现高效率的NIR-TADF,基于该材料的NIR-OLED最大外量子效率为9.44%,发光峰位于711nm,是目前已报道的基于TADF材料的NIR-OLED最高效率之一。科研团队探究了TADF材料的材料结构、发光特性与聚集态之间的关系。一般认为,非晶态薄膜的无序程度高于有序排列的单晶,薄膜中光团的光致发光量子产率(PLQYs)普遍高于晶体态。已知TADF分子的非辐射淬灭主要受Dexter能量传递(DET)机制主导下的分子间电子交换作用。DET过程的短程特性,在高浓度下会发生激子湮灭,故分子填充模式的微小变化可能对光电子性能产生影响,甚至决定光团的光物理性能。因此,研究团队设计了T-β-IQD单晶来深入探究材料在结晶态和未掺杂态下的高发光量子产率的机理。x射线晶体学分析表明,T-β-IQD具有面对面的堆积结构,且相邻有较大的层间滑动,TIQD晶体呈“头尾”排列。根据Kasha激子模型,T-β-IQD的二聚体跃迁偶极子与对应偶极子对齐方向的夹角(θ)分别为24.92°,为J型聚集体形式,可以提高辐射衰减率。在T-β-IQD晶体中,同时存在分子内和分子间CNH-C和C-Hπ协同作用(图1)。这种适度的分子内C-Hπ相互作用可以锁住β-TPA供体上的分子内叔丁基苯单元和萘,高度限制它们在结晶态下的旋转。同时,在晶体和共轭骨架中没有观察到明显的π-π堆积接触,这降低了浓度淬灭效应(ACQ)。根据DET机制,T-β-IQD晶体的邻腈核之间的远距离(8.50)有望抑制延迟荧光(DF)和三态激射灭(图2)。此外,在TIQD晶体中,相邻的IQD段之间形成了距离为3.35的强分子间π-π相互作用,表明相对于T-β-IQD晶体,分子间的堆积更为紧密,且具有严重的非辐射衰变。分子动力学(MD)模拟表明,T-β-IQD的受体面与二聚体对齐方向的夹角(θ)为27.5°,T-β-IQD在非晶态下倾向于以J-聚集体形式堆积。T-β-IQD的吡咯核间距为4.1。T-β-IQD的平面受体之间距离较大,避免了浓度猝灭效应。T-β-IQD分子的平面受体片段呈现角度错位排列,未观察到明显的共面堆叠,这将有助于抑制非掺杂薄膜中的ACQ效应。  在稀释THF溶液中,T-β-IQD几乎不发射,而当水分数(fw)增加到60%时,PL强度迅速增加,表现出明显的聚集诱导发光(AIE)特征(图2)。T-β-IQD在固体状态下表现出几乎与浓度无关的特性。这种独特的优点可以归结于它的RIR原理的AIE效应、具有C-Hπ和CNH-C分子间相互作用的J聚集性质以及晶体态的大中心到中心距离,这提高了非掺杂薄膜和基于材料的发射效率。  相关研究成果以Highly Efficient Near-Infrared Thermally Activated Delayed Fluorescent Emitters in Non-Doped Electroluminescent Devices为题,作为热点文章发表在《德国应用化学》上。研究工作得到国家杰出青年科学基金、国家重点研发计划、国家自然科学基金、宁波市科技创新2025重大专项等的支持。
  • “光谱仪在纳米材料领域中的应用”在线讲座问题集锦(5)
    纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 10月31日,HORIBA Scientific举办了光谱应用系列在线讲座(5)——“光谱仪在化学领域中的应用”,涉及:拉曼光谱、荧光光谱两大技术,现将问题整理后供大家参考。课程1:FLQ:苏州大学-材化部-林老师:您在讲座中提到设置激发区域与发射区域重叠至需要点上一阶,二阶瑞丽散射就能够消除倍频么?A:不需要。根据样品的具体发光信息判断,例如瑞利散射强度也可以作为定量依据;在三维荧光扫描中,通过勾选一、二级瑞利散射选项,可以有效扣除无效数据。 Q:广州工业大学-轻化-宋老师:请问目前能做SWCNT的三维荧光测试的荧光光谱仪有哪几种?A:HORIBA的Nanolog可以实现宽波长稳瞬态研究,并配置独有的NanoSizer软件,可以轻松获得碳管直径和手性指数。 Q:广州工业大学-轻化-宋老师:请问您说的与显微镜耦合,和已有的荧光显微镜有什么区别?A:荧光光谱仪与荧光显微镜耦合后,具有以下功能:1.利用氙灯宽波长范围特点,激发波长宽范围内可选,单色性强;2. 可获得单点或微区内样品的发射光谱信息;相比荧光显微只获得荧光强度,耦合后可以区分相似发光信息,提高特异性检测,获得全谱信息。 Q:杨老师:可以做显微荧光吗?A:可以。HORIBA可以提供市场上大多数品牌的荧光显微镜耦合方案,并且可实现单点或成像信息;此外,HORIBA还提供耦合显微镜实现荧光寿命成像分析。 Q:中科院生态中心-王老师:请概要阐述一下目前拉曼/荧光/磷光光谱本质上产生机理有什么不同?A:主要是激发态能级不同。拉曼属于散射信号;荧光、磷光则属于发射信号。 课程2:RamanQ:上海高研院-宏观量子-秦老师:拉曼散射波长主要受什么因素影响?强度、带宽?A:此处拉曼散射波长应该指的是拉曼谱峰的峰位。拉曼光谱是表征分子结构信息的,它的谱峰位置主要和折合分子量(即化学键两端的原子量)以及键能相关。例如,C-H(约3000波数)出现在高波数位置,而C-C(约1600波数)出现在相对低波数位置。此外,当样品受到应力作用时,谱峰的位置也会相应发生改变。谱峰强度主要和物质浓度相关,当物质具有偏振效应时,谱峰强度还和分子取向以及测试的偏振模式相关。带宽这里应该指拉曼光谱中的半高宽(FWHM),它主要与物质的有序程度相关。例如单晶硅的半高宽小于非晶硅。 Q:杨老师:如果将纳米材料加入到某些体系当中,是否还能通过拉曼光谱进行测试呢?A:可以。例如在有些研究中将碳纳米管导入特定细胞中,通过拉曼成像可以将不同的细胞区分出来。再比如在电池中掺入石墨烯等,可以通过拉曼光谱进行相应研究。 Q:苏惜不若:能简单介绍超低波数测量装置的原理吗?A:超低波数测量通过体布拉格光栅实现。通过组合与角度调节,终实现超低波数测量。 Q:苏惜不若:什么叫近场、远场,如何定义的?A:所谓近场光学,是相对于远场光学而言。传统的光学理论,如几何光学、物理光学等,通常只研究远离光源或者远离物体的光场分布,一般统称为远场光学。远场光学在原理上存在着一个远场衍射限,限制了利用远场光学原理进行显微和其它光学应用时的小分辨尺寸和小标记尺寸。而近场光学则研究距离光源或物体一个波长范围内的光场分布。在近场光学研究领域,远场衍射限被打破,分辨率限在原理上不再受到任何限制,可以无限地小,从而基于近场光学原理可以提高显微成像与其它光学应用时的光学分辨率。 Q:浩气长存:TERS的拉曼信号可以增强多少?A:TERS信号增强的量级与针尖密切相关。目前有报道将TERS用于单分子检测。 Q:中科院生态中心-王老师:HORIBA应用中心可以提供一些特殊样品测试服务吗?A:可以。具体情况请直接和我们联系,或者通过以下网址提交样品具体信息。www.horibaopticalschool.com关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 全球化学与材料科学Top10热点 预示哪些仪器或受追捧?
    p    strong 仪器信息网讯 /strong 近期,中国科学院科技战略咨询研究院、中国科学院文献情报中心与科睿唯安联合向全球发布了《2019研究前沿》报告和《2019研究前沿热度指数》报告。两个报告在文献计量指标的基础上,对2019年全球科技发展布局和竞争结构提出了分析和解释,遴选出2019年十个高度聚合的大学科领域排名最前的100个热点前沿和37个新兴前沿。 /p p   其中,化学与材料科学的Top10热点前沿主要分布在有机合成、电化学合成、先进材料、机器学习在化学和材料科学中的应用等领域。 /p p   在有机合成领域,碳氢键活化连续成为热点前沿,今年突出了与电化学的结合 碳氮键活化和钳形有机催化剂都是第二次进入热点前沿,分子机器是首次进入 在电化学合成领域,电化学合成氨首次入选 /p p   在先进材料领域,钙钛矿材料和高能量密度聚合物纳米复合材料都是连续入选热点前沿,有机超长磷光材料和纳米材料蒸发水技术首次入选研究前沿 近年来发展迅速的机器学习首次成为研究前沿。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/43055724-87f1-46f0-b6a4-dfb83c80af02.jpg" title=" 热点前沿.jpg" alt=" 热点前沿.jpg" / /p p style=" text-align: center " strong 化学与材料科学的Top10热点前沿 /strong /p p   该领域共有5项研究入选新兴前沿,主要涉及光催化剂、锌空气电池及半导体聚合物等材料类新兴前沿和非活化烯烃的官能化及含氧化合物的合成等有机化学反应领域的新兴前沿。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/30e807aa-c3de-4e83-a971-ee161cb38a0b.jpg" title=" 新兴前沿.jpg" alt=" 新兴前沿.jpg" / /p p style=" text-align: center " strong 化学与材料科学新兴前沿 /strong /p p   综合可见,化学与材料科学的前沿领域主要集中在聚合物和电化学方面;对应材料检测领域,电化学检测仪器(如 a href=" https://www.instrument.com.cn/zc/473.html" target=" _self" 电化学工作站 /a 、 a href=" https://www.instrument.com.cn/zc/1844.html" target=" _self" 充放电测试设备 /a 等)、光谱检测仪器(如 a href=" https://www.instrument.com.cn/zc/31.html" target=" _self" 红外光谱 /a 等)、色谱检测仪器(如 a href=" https://www.instrument.com.cn/zc/23.html" target=" _self" 液相色谱 /a 、 a href=" https://www.instrument.com.cn/zc/29.html" target=" _self" 渗透凝胶色谱 /a 、 a href=" https://www.instrument.com.cn/zc/51.html" target=" _self" 液质联用 /a 等)、 a href=" https://www.instrument.com.cn/list/sort/6.shtml" target=" _self" 热分析仪器 /a (如 a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" 差式扫描量热仪 /a 、 a href=" https://www.instrument.com.cn/zc/62.html" target=" _self" 热重分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/469.html" target=" _self" 同步热分析仪 /a 等)、 a href=" https://www.instrument.com.cn/zc/43.html" target=" _self" 核磁共振仪 /a 等仪器市场均可能伴随着“材料热”,预期在未来实现可观的市场增长。 br/ /p p br/ /p
  • 光电纳米材料及元器件重大专项通过验收
    中国科学院福建物质结构研究所承担的福建省科技重大专项新颖光电纳米材料及其原型器件研发日前通过了省级验收。   据介绍,该项目主要研发应用于显示和发光中的强荧光纳米高聚物材料、低核有机金属电致发光纳米材料、蓝光/紫外激光材料等纳米光电材料与器件。在强荧光纳米高聚物材料研发方面,获得10多种在紫外可见光范围内光致或热致变色、荧光可调等具有良好发光性能的新型高聚物发光材料,高聚物发光材料的粒度分布均匀,热稳定温度大于200℃ 在低核有机金属电致发光纳米材料与器件的研发方面,获得了系列含有机膦配体的低核铜化合物,基于低核铜磷光配合物的器件达到5V以内启亮,最大电流效率超过5cd/A,寿命长达55小时 在蓝光/紫外激光纳米材料与器件的研发方面,获得了在半导体激光泵浦下蓝光/紫外发光肉眼可见的新型纳米复合材料,材料直径和厚度分别超过过30毫米和3毫米。   项目申请中国发明专利23件。
  • 在聊iPhone X“AMOLED全面屏”前,你需要知道这些...
    相信昨天许多小伙伴们的朋友圈“起床刷”妥妥地被“iPhone X”占据了。这让小编不经感叹:果太美,尽管再昂贵,总有人黑着眼眶熬着夜̷̷看着发布会。图源: cnseoer.net虽然收到“一款有刘海的手机”、“刘海逼死强迫症”等这样那样的吐槽。但认真讲,这款此次苹果发布会中最耀眼的星——iPhone X还是给了我们“满屏”的惊喜。图源: cnseoer.net & weibo.com 速画本 iPhone X图源:mobile.zol.com.cn“屏”,可以说是目前各手机商家的兵家必争之地了。在手机屏幕的进化中,液晶屏、双曲屏、柔性屏、全面屏,不断刷新手机“颜值”。而“满屏”,也就是全面屏无疑是当前最火的话题。2016小米发布MIX概念机,其全面屏一时间震惊业界;三星S8带着“突破所限,大有可能”的响亮口号,携自家AMOLED全面屏登上了行业的年度舞台;当然,iPhone新机X也不出意外的采用了AMOLED全面屏。三星AMOLED全屏手机S8图源:news.smzdm.com据Digitimes公司公布的一份报告显示,2017年出货的智能手机中大约27.6%将采用AMOLED显示屏。在未来三年中,AMOLED屏幕的比例还可能会增加至50%。而这热到烫手、红到发紫的AMOLED到底是个什么样的小妖精,竟如此让各大手机厂商竞相追随?!小编觉得,想要开聊AMOLED,下面这些内容,小伙伴们还是有必要来看一看的! 原来这就是AMOLED! AMOLED 是英文Active-matrix organic light emitting diode的简写,中文全称为“源矩阵有机发光二极体”或“主动矩阵有机发光二极体”。其主要构造有三层:AMOLED屏幕、Touch Screen Panel(触控屏面板)和外保护玻璃。而作为一种新技术,AMOLED当然具备诸多优势。图源:ofweek.com 广色域简单来说,就是屏幕能够显示的色彩更多了。而具有更多意义,则是其对比度的有效提升(是LCD的几百倍),无论是更接近于黑夜的阴影,还是介于蓝绿之间的青色,都可以完美呈现。来源:amoledworld.com超薄AMOLED是自发光屏幕,由于发光体原理不同,不需要如LCD一般“背负”太多部件。集成触摸技术也让AMOLED显示屏可以做到更轻薄。 来源:amoledworld.com户外可读性强户外的强光下很难看清手机图像,这便是户外可读性差。户外可读性与“彩度X亮度”成正比,OLED的彩度远高于LCD,即使在明亮阳光下颜色也可清楚呈现。同时,蓝光的减少以及响应速度的增加,也进一步提高了阅读体验。 能耗低通过前文的构成图也看到,LCD有一个背光模组,它发射的亮度是100%,局部亮度控制是通过液晶分子的转动方向来实现的。而AMOLED屏则是“哪里需要亮哪里”,每个像素都可以被独立控制,无需恒定背光。可想而知,能耗将被大幅度降低。来源:amoledworld.com 高柔韧度“曲屏”、“全面屏”(full screen display)概念想必小伙伴们已不陌生。比起玻璃基板,AMOLED有更强的柔韧性。这样说起来,以后将手机卷起来揣在包包里,可能就不会只是脑洞里才会出现的场景了吧!图源:ofweek.com那都是OLED在带节奏! 说了这么多关于AMOLED的优点,归根结底,成就它的,就是基础的OLED。OLED即有机发光二极管(Organic Light-Emitting Diode)又称为有机电激光显示、有机发光半导体(Organic Electroluminescence Display, OLED)。与液晶显示(Liquid Crystal Display, LCD)是不同类型的发光原理。 其是香港美籍华裔教授邓青云(Ching W. Tang)于1983年在实验室中发现的,由此展开了对OLED的研究。OLED显示技术具有自发光、广视角、响应快、高对比度、低能耗、高柔韧性等优点。被誉为代替液晶技术理想的下一代显示技术。 如图所示,OLED多层结构包括玻璃基板(TFT)、阳极(Anode)、空穴注入层(HIL)、空穴传输层(HTL)、有机发光层(EL)、电子传输层(ETL)、电子注入层(EIL)、及金属阴极(Cathode)。 来源:百度百科 “OLED发光原理不同”,是我们说得最多的。那它到底是如何发光的呢? 套用《科普:OLED材料的发光原理》一文中非常形象的说明(部分改): 空穴和电子在发光层中相遇,然后复合,就像久未相见的恋人,一见面便紧紧抱在一起。电子空穴复合时会产生能量,释放出光子,就像情侣头上冒出的心一样。 光的颜色由光子的能量决定,如果能量的高低用情侣的亲密程度比喻的话(材料为取决于亲密程度的感情基础):特别亲密的发出蓝色(能量高发出蓝光),比较亲密的发出绿色(能量适中的发出绿光),一般亲密的发出红色(能量低的发出红光)。 图源:OLED新技术公众号 OLED能发出怎样的光,关键取决于材料。 按发明的时间来排列,目前一共有三代材料: 第一代:荧光材料利用单重态激子发光,具有寿命长、性能稳定等优势。但其只利用了25%,单重态激子使得荧光材料的量子产率较低,因此其诱发的蓝光效率也很低,无法达到深蓝; 第二代:磷光材料利用Ir和Pt等贵金属的重原子效应,能同时利用单重态和三重态激子发光,内部量子产率可以达到100%,效率远远优于荧光材料,但寿命及稳定性不如荧光材料,且因含贵金属而十分昂贵。目前红光和绿光磷光材料已经商业化。 第三代:热激活延迟材料(TADF)热活化延迟荧光材料从分子设计角度入手,不依靠贵重金属元素,同时兼具热活化延迟荧光特性(TADF)的纯有机化合物发光材料,实现低成本、环境友好、高效率、以及化学结构稳定性的潜能。 图源:yesky.com TADF材料的研发是当前OLED领域的热点,也成为实现全有机高效率功能发光层最有潜力的研究方向之一。 该类材料诞生于有机电子领域的先驱研究者之一——九州大学安达千波矢教授所领导的课题组。研发过程中,有两个评价其发光性能的重要指标,是课题组至始至终都要牢牢把握的:量子产率和荧光寿命。(无论哪一代OLED材料研究,这两个参数都是十分必要的) 安达千波矢教授课题组TADF材料研究 而辅助其完成测量任务的,就是滨松绝对量子产率测量系统Quantaurus-QY,外量子效率测量系统c9920-12/-11和荧光寿命测量系统Quantaurus-Tau。正是通过分别对光致发光和电致发光参数进行测试并得到了准确的结果,凭借这些指标,课题组才对有机分子设计做到了精准把握,推进了TADF材料的发展。滨松荧光寿命测量系统Quantaurus-Tau、绝对量子产率测量系统Quantaurus-QY滨松外量子效率测量系统C9920-12/-11 在发布会中呈现出的科技进步,也许大多只是成为人们谈资和新闻热点。但在其身后,却凝聚了无数科研、科技工作者们的汗水。不知多少实验的成败往复才会换来屏幕一寸的延展,也不知多少数据的积累分析才成就最后机身一毫米的变薄。在这一场时代性的OLED浪潮中,滨松也将继续坚守其中,推动并见证这每一次的改变。
  • 东方科捷推出液氮低温量子效率测试附件
    光致发光绝对量子效率测量是发光材料表征的重要手段;温度的变化对于表征材料的特殊应用有着重要的影响。2020年首发,东方科捷推出液氮低温量子效率(LN-QE)测试功能附件。 液氮环境下,发光分子被冷冻,发光会增强,特别对于磷光材料;某些磷光材料在室温下发光较弱,不利于光致发光量子效率的准确测量及数据对比,如果在液氮温度下就能很好解决这个问题。 其他特殊材料,比如AIE材料,如果进一步了解聚集导致的空间位阻形成的发光增强,可以对比分子冷冻位阻发光差异。延迟荧光材料,比如热延迟荧光材料,可以对照不同温度调节下的发光差异,结合荧光寿命数据,即可明确给出某些结论。 同理,如果材料发光既有荧光又有磷光,研究者关注磷光部分,希望通过材料设计及修饰提高磷光发光比重,那么,采用这套附件配合磷光光谱仪,即可获得液氮低温的磷光量子效率数据。 由于设计中包括液氮温度和积分球,当然,获得液氮低温下发光材料的吸收光谱,这也是值得兴奋的事情。通常发光材料吸收光谱,不能采用常用的紫外可见近红外分光光度计获得真实数据,我们通常是采用双单色仪(比如荧光光谱仪)同步扫描的方式获得。加上液氮温度和积分球,显然,固体材料的液氮温度下的漫反射吸收数据就垂手可得。 现有设备满足HORIBA荧光光谱仪配合需要,其他设备比如EDI,欢迎合作测试。
  • 荧光简介
    荧光是一种效应,1852年George Gabriel Stokes首次对其进行描述。他发现,萤石在紫外线照射下开始发光。荧光是一种光致发光形式,光致发光是一种材料以光照射后发射光子的现象。发射光的波长比激发光长。这种效应称为斯托克斯位移。Wymke Ockenga德国马尔堡菲利普斯大学细胞生物学与细胞病理学研究所 An Introduction to Fluorescence - Original Article Leica Science Lab. 荧光用作显微技术的工具荧光广泛应用于显微技术中,并用作观察特定分子分布的重要工具。细胞中大部分分子不发荧光。因此,它们必须以荧光分子(荧光物)标记。目标分子可以直接标记(比如DNA使用DAPI标记),或用与特定抗体结合的荧光物进行免疫染色。免疫染色通常需要固定细胞。荧光显微技术还可用于活细胞或组织的延时成像。为此,可用基因编码的荧光分子(如GFP,绿色荧光蛋白)标记目标蛋白。还可以用可逆结合的合成染料(如fura-2)或转基因天然存在蛋白(如GFP衍生物)标记目标分子(如Ca2+)。电子能态的改变导致发冷光发冷光即发生光效应,由电子从激发态转移到较低能态而引起。电子可以以不同的能态存在。基态是电子非常稳定的状态,这时电子的能量最低。如果电子吸收能量,它们可以跃迁至较高的能级,即激发态。由于激发态的能量多于基态,电子返回其基态时必须释放能量。能量可以通过发射光子的形式释放。发冷光有若干种形式,不同点在于系统的激发方式。例如,在电致发光中,系统由电流激发;化学发光是因为发生化学反应;而光致发光由光子激发引起。光致发光可以进一步分为两个亚组,即荧光和磷光。荧光与磷光之间的主要差异是发光的持续时间。光照停止时,荧光立刻结束。相较之下,磷光可在激发结束后持续数小时。荧光机理以对应波长的光照射时,荧光物才发荧光。波长取决于荧光团的吸收光谱,而且必须确保传递适当数量的能量,以将电子提升至激发态。电子被激发后,它们停留在这个高能态的时间非常短。电子经过弛豫过程回到基态或能级较低的另一个状态时,能量以光子形式释放。这个过程损失一些能量,相较于被吸收的光,荧光物发射的光波长较大且能量较低。磷光机理磷光分子的发光时间明显长于荧光物,因此它们储存激发能的途径肯定不一样。产生这种差异的根本原因是存在两种形式的激发能级,即单重激发态和三重激发态,它们基于不同的自旋排列。自旋是电子的一个属性。简言之,自旋描述电子本身旋转造成的角动量。电子自旋的方向可以是正的(+1/2),也可以是负的(–1/2)。高能级自旋对的彼此朝向可以是平行的,也可以是反平行的。在反平行自旋对中,各个角动量互相补偿,总自旋的值为零。这种自旋排列称为单重态。两个平行的自旋没有补偿效应,数值不等于零。在这种情况下,自旋处在三重态中。电子从单重激发态回到基态时产生荧光。但是,在一些分子中,激发电子的自旋可以转变为三重态,这个过程称为系间窜越。这些电子损失能量,直至它们处于三重基态。这个状态的能量高于基态,但低于单重激发态。因此,电子不能转回到单重态,也不能轻易地回到基态,因为由于量子力学的缘故,只允许数值为零的总自旋。所以,分子被其能态捕捉。但是,每次也会发生从三重基态返回基态的现象。这些变化引起光子释放,产生磷光。由于每次只能出现一些变化,因此三重基态起到能量库的作用,从而可在较长时间内产生磷光。发冷光在显微技术中的应用对于显微技术,荧光是最有用的发光类型。通过特定光源(如灯和滤光系统或激光),可以使用特定的波长轻松地激发荧光物,而且可以通过波长区分发射光和激发光(斯托克斯位移)。实验人员可以使用荧光成像来表征细胞内某种分子的数量和定位。荧光显微技术的另一个优点是可以同时使用若干个荧光物。只要求荧光物的激发波长和发射波长不一样。因此,可以同时观察不同的目标分子,这意味着可以同时进行众多研究,例如共存研究。
  • 香港科技大学唐本忠:纳米光学革命正在到来
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/2e585610-8fe0-4d17-b2fd-802522963a42.jpg" title=" 3816F60D3BA443E21D2C6E4AF4D07930.jpg" / /p p style=" text-align: center " 香港科技大学唐本忠教授 /p p   去年3月2日,《自然》杂志发表一篇新闻深度分析文章,预测“纳米光学革命”的来临(“The nanolight revolution is coming” Nature, 2016, 531, 26.)。量子点(quantum dots)和聚合物点(polymer dots)是一直备受关注的纳米发光材料,而具有聚集诱导发光(aggregation-induced emission, AIE)特性的纳米粒子(AIE dots)则是发光材料研究领域的一支新秀。 /p p   量子点是一种重要的零维纳米半导体,能够用于许多重要的领域,如光电、光伏、生物、医疗等。但它存在两个问题:第一,量子点的种类有限、合成复杂、稳定性差。第二,量子点存在聚集导致发光淬灭(aggregation-caused quenching, ACQ)效应。比如悬浮在水中的纳米粒子,一旦失去包覆的表面活性剂,纳米粒子就会形成不发光的聚集体。聚合物点是高分子聚集体,也存在ACQ问题。当高分子链在水介质中紧密聚集时,分子链间相互作用增强,导致其发光减弱甚或完全消失。 /p p   我们常用的有机发光材料多为小分子,其ACQ问题也很严重。举个例子,荧光素是一种合成染料,当其浓度很稀的时候,荧光素的发光效率为100% 但当浓度增加至10%左右时,其分子发生聚集,发光量子产率降至0%,也就是完全不发光了。生物体系的介质为水,而很多有机染料都会在水中自然聚集。显然,ACQ效应是一个令人烦恼的问题。 /p p   我们课题组研究的聚集诱导发光体系与上述传统体系完全相反。2001年,我们观察到一些噻咯分子在溶液中几乎不发光,而在聚集状态发光大大增强。因为发光增强是由聚集所引起的,故我们将此现象定义为AIE。 /p p   我们研究了典型的AIE分子六苯基噻咯(hexaphenylsilole, HPS)。在溶液中,HPS分子外围的苯环可以通过单键绕中心的噻咯环自由旋转。这种运动消耗激发态的能量,因而猝灭HPS分子的荧光。在聚集态,HPS分子的螺旋桨式构型可以防止π-π堆积和荧光猝灭 同时由于空间限制,分子内旋转受到很大阻碍。这种分子内旋转受限(restriction of intramolecular rotation, RIR)抑制激发态的非辐射衰变过程,打开辐射跃迁渠道,从而使HPS聚集体高效发光。 /p p   为了验证RIR工作机制,我们通过改变外部环境(降低温度、增大黏度和施加压力等),或者对分子结构本身进行修饰(利用共价键等锁住外围的转子),使分子内旋转不容易进行。在这些条件下,AIE分子发光增强,从而证实分子内旋转受限的确是导致荧光增强的原因,即RIR过程是AIE效应的主因。 /p p   除了旋转,分子也可震动。震动也可消耗能量,导致发光减弱。但一旦分子聚集之后,分子内震动受限也可使聚集体发光增强,从而产生AIE效应。旋转和震动都属于分子内运动,我们因此将AIE机理从RIR扩展至更通用的分子内运动受限(restriction of intramolecular motion, RIM)模型。 /p p   我们经常说一个正确的机理或者模型应有双重作用:一个是可以帮助理解以前观察到的现象,另一个更重要的是也可指导将来的分子结构设计。我们猜想:如果RIM机理正确的话,任何一个分子只要在单分子态易于旋转或震动,就有可能显示AIE效应。我们因此设计并合成了一系列易于旋转或震动的分子,并高兴地发现它们都有AIE活性。这一方面确认了我们提出的RIM机制的正确性,另一方面使得我们可以容易地开发覆盖整个可见波光范围的AIE材料体系。 /p p   上面讨论的AIE体系的发光皆为荧光,还有一种发光为磷光。虽然磷光比荧光更重要,但教科书告诉我们,有机分子溶液在室温下不可能发出长寿命磷光。溶液态如此,那聚集态情况如何呢?我们惊喜地发现一些简单有机分子的结晶可发出长寿命磷光。这种奇特的结晶诱导AIE现象使我们实现了纯有机聚集体的高效室温磷光。 /p p   有机分子发光,一般需要共轭电子结构,因此传统的发光材料都是芳香族或富含苯环的化合物。没有苯环的分子会发光吗?这个问题非常重要,因为自然界很多分子都不含苯环。我们发现很多不含芳香环的合成高分子和天然产物都可发荧光和磷光。这些分子的结构特点是富含杂原子。这些杂原子电负性很强,且有孤对电子,它们之间的空间电子相互作用导致刚硬的簇结构的生成。这些簇作为生色团发光,因此我们将其命名为“簇发光”。 /p p   氧、氮、磷、硫等杂原子都可形成簇结构,因此理论上都可发光。自然界的很多东西都富含杂原子,都存在簇发光现象,比如,大米、淀粉、纤维素、蛋白、DNA等在紫外光照射下都可发光。簇发光为我们寻找天然发光材料开辟了一条新路。通过AIE途径,我们有望从自然界寻找廉价、无毒、环保、益生的非凡发光材料。 /p
  • 中国科学家率先研发光学存储加解密技术
    日前,南京工业大学校长黄维院士领导的科研团队在《自然通讯》杂志发表论文称,已开发出一种全新的信息加解密技术,使以&ldquo 光&rdquo 作为载体的信息传输更为安全。据悉,该技术为国际首创。   一直以来,使用光学信号作为存储的器件只具备信息记录功能,如何在此基础上实现信息的加解密,成为光学存储研究领域的难题。由南京工业大学和南京邮电大学的科研人员组成的&ldquo 先进材料创新团队&rdquo ,在研究中巧妙地运用磷光金属配合物的长寿命发光优势,结合时间分辨成像技术,使原本只具备信息记录功能的光学信息存储器件增加了信息加解密功能。黄维说:&ldquo 这一技术突破开辟了有机光电子学研究与应用的新方向,像磷光金属配合物这样的多刺激智能响应光电功能材料,今后可以被广泛地应用在智能光电器件和生物传感等领域。&rdquo
  • 四川大学Science,解锁可持续能源冷却的新前景!
    【科学背景】随着全球气候变化日益加剧,寻找可持续的热管理策略成为当务之急。传统的石油化学衍生冷却材料由于吸收太阳光而面临效率挑战,这促使科学家们寻求新的解决方案。被动辐射冷却技术作为一种潜在的可持续策略引起了广泛关注,它利用材料本身的特性将内部热量辐射到更冷的外部环境,同时反射太阳辐射,无需外部能源输入即可实现自给自足的冷却效果。然而,现有的石油化学衍生冷却材料往往由于吸收太阳光而效率低下,这导致环境中的温度升高,从而减弱了其冷却效果。为解决这一问题,四川大学赵海波教授、王玉忠院士等人合作,研究开发了具有本征荧光特性的生物质气凝胶。这种新型材料利用DNA和明胶在有序分层结构中的聚集,通过荧光和磷光效应实现了在可见光区域的超过100%的太阳反射率。具体来说,这种气凝胶在0.4至0.8微米的波长范围内,展示了104.0%的太阳加权反射率,从而有效地降低了日照条件下的环境温度高达16.0°C。相关研究成果在“Science”期刊上发表了题为“A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling”的最新论文。研究团队通过水焊接的高效大规模生产方法,成功地实现了这种气凝胶的生产,并且展示了其在修复性、可回收性和生物降解性方面的优异表现,从而完善了整个材料的环保生命周期。这项研究不仅开辟了生物质荧光材料在辐射冷却领域的新应用,还为设计下一代可持续冷却材料提供了一种创新的思路和技术路径。【科学亮点】(1)实验首次发现了DNA和明胶聚集形成有序分层气凝胶,通过荧光和磷光效应实现了在可见光区域超过100%的太阳加权反射率。这一发现标志着在冷却材料领域的创新突破,为开发高效能、环保的冷却材料奠定了基础。(2)实验结果显示,该生物质气凝胶在高强度太阳辐射下能够显著降低环境温度长达16.0°C。这种高效的冷却效果归因于其优异的太阳反射特性,使其成为应对全球气候变化和能源消耗挑战的有力工具。(3)此外,通过水焊接方法高效生产的气凝胶表现出色的可修复性、可回收性和生物降解性,完整体现了环保意识的生命周期管理。这一特性使得生物质荧光材料成为设计下一代可持续冷却解决方案的重要组成部分。【科学图文】图1: 本征光致发光生物质气凝胶板示意图。图2. GE-DNA气凝胶的结构和形貌。图3. GE-DNA 气凝胶的可修复性、可回收性和生物降解性。图4. GE-DNA气凝胶的冷却机理和性能。【科学结论】本文开发出一种基于荧光诱导的生物质辐射冷却策略,旨在解决传统石油化学衍生冷却材料在吸收太阳光能方面的效率挑战。通过利用DNA和明胶(GE)构建的有序多层结构,作者实现了在可见光区域超过100%的反射率,特别适用于白天辐射冷却。此方法不仅优化了太阳光谱的反射性能,还通过荧光和磷光效应显著提高了冷却效果,将环境温度降低了16.0°C。通过水辅助制备技术,作者成功实现了这种气凝胶的大规模生产,生产出具有各向异性结构的气凝胶板,确保了其在光学上的均匀性和稳定性。这种完全由生物质原料制成的气凝胶不仅具有高修复性、可回收性和生物降解性,而且在其整个使用寿命中对环境没有负面影响。这一创新不仅为未来的能效高和可持续发展提供了新的材料选择,还为减少碳排放和能源消耗提供了重要的科学基础和技术路线。参考文献:Jian-Wen Ma et al. ,A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling.Science385,68-74(2024).DOI:10.1126/science.adn5694https://www.science.org/doi/10.1126/science.adn5694
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 分子荧光光谱的新方法、新视角、新探索
    p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   随着科研需求的发展,分子荧光光谱相关的新技术和新应用也在不断的深入拓展中,尤其是在附件的多样化、联机,以及其他功能性拓展方面表现得越来越明显。为了多方位展现分子荧光光谱领域的最新成果,仪器信息网特别策划制作《不可或缺分子荧光光谱技术及应用进展》网络专题,旨在展现分子荧光光谱仪的最新技术及应用情况。 /span br/ /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   作为分子荧光光谱领域的代表企业,HORIBA一直在推陈出新,推出了一系列分子荧光光谱新产品、新技术,给相关的科研用户提供了新的方法和视角。今天,我们特别邀请了HORIBA荧光产品经理周磊博士给大家分享HORIBA在分子荧光产品方面的布局和规划。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 230px height: 256px " src=" https://img1.17img.cn/17img/images/202012/uepic/936d099b-37f2-46a1-87fb-50a656e98b66.jpg" title=" 周磊.jpg" alt=" 周磊.jpg" width=" 230" height=" 256" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong HORIBA荧光产品经理 周磊博士 /strong /p p style=" text-align: justify " strong   仪器信息网:与其他分析仪器相比,不少人认为分子荧光光谱新产品的推出不是很活跃,甚至市场也略显“沉寂”,请问您如何评价该类仪器的市场活力及竞争格局? /strong /p p style=" text-align: justify " strong   周磊: /strong 分子荧光光谱确实是比较经典成熟的方法,不过仪器的核心技术水平一直在不断提升,应用领域也在不断扩大。HORIBA的分子荧光产品就一直在推陈出新,这些产品技术不仅得到了仪器信息网各位专家和用户的好评,甚至多次获得仪器信息网“优秀新品奖”,对于整个荧光光谱仪的创新起到了积极鼓励的作用。 /p p style=" text-align: justify "   例如Aqualog(同步吸收-三维荧光光谱仪),基于A-TEEM专利技术,在荧光内滤效应消除问题、超快三维荧光采集、复杂样品多组分分析等关键问题上具有全新突破,已在环境有机污染物、食品分析、医药等市场方面有突出的表现;另一款荧光寿命光谱仪Delta系列,具有全球同类产品中最快的寿命衰减采集时间(低至1ms)和超宽的寿命测试范围(25ps~1s)等性能。该系统一经推出,就受到了业界高度关注,发表了数篇重量级文献,其中仪器仪表类的国际一流期刊“Measurement science and technology”文章显示:“全球首次将百兆赫兹级半导体激光和超短10ns死时间TCSPC计时单元完美匹配,避免了样品的再激发和信号丢失问题,可快至1ms收集荧光衰减曲线。” 2014年刊登在“Spectrochimica acta part A: molecular and biomolecular spectroscopy”的文章显示:“基于最新技术的DeltaFlex系统,在无需更换检测器和电子器件条件下实现了皮秒至秒的宽寿命测试,首次利用内源氨基酸监测了不同温度对蛋白变性转换的动态影响。”另外,去年推出的小型荧光光谱仪Duetta也收到了良好反馈,解决了市场上小型荧光在近红外一区波长检测的短板,并且吸收和荧光功能二合一,因此在生物、医药等领域广受欢迎。 /p p style=" text-align: justify " strong   仪器信息网:从技术的角度出发,您认为目前分子荧光光谱有哪些新的技术值得期待? /strong /p p style=" text-align: justify " strong   周磊: /strong 随着稳瞬态荧光光谱技术的发展及多种硬件扩展附件的开发,如低温变温附件(液氮、液氦)、荧光显微镜耦合分析、各种激发源(白光激光器,OPO激光器、X射线源等)荧光光谱仪在不同科研实验室中发挥着重要作用。同时我们发现,在一些仪器功能上,市场正在逐渐接受新技术带来的新方法、新视角,还是以HORIBA几项新技术为例: /p p style=" text-align: justify "   Duetta的近红外一区高效检测能力解决了常规设备700nm以后的检测短板,拍照式的CCD检测技术带来了全新动态荧光光谱采集功能,可以在磷光材料、长余辉样品、易光漂白样品等应用上获得全新视角。 /p p style=" text-align: justify "   Delta荧光寿命光谱仪中的荧光寿命动力学技术,带来了全新的动力学研究视角,解决了光漂白样品不能直接用于动力学研究的问题以及常规寿命技术采集速度慢而不能用于动力学的困难局面,该技术已经成功的被用于蛋白质和药物的相互作用研究(Photochemistry and Photobiology, 2013, 89: 1071–1078)。TRES时间分辨发射光谱技术让我们能够观察到样品分子在某一时刻的发射光谱,并且可以按照很短的时间内(皮秒、纳秒)依次观察光谱的变化,从而说明发光机理。解决了常规寿命测试技术,因为测试速度慢,光源能量低,重复频率低以及高级拟合软件分析的问题,进而造成该技术没有很好地被利用起来的问题。Delta荧光寿命光谱仪可以同时配备多个检测器(最多可配置四个检测器),实现多通道检测,同时检测多个波长在物质作用变化时寿命的动态变化,提供全新的分析方向。 /p p style=" text-align: justify "   在时间分辨发射光谱中还有一个重要分支,延迟光谱(或磷光光谱)技术,其特点是通过门控技术(或单脉冲实时采集SSTD技术)对信号采集时间控制,有效分离不同时刻的发射光信号,譬如OLED材料中的荧光、磷光光谱分析,常规技术只是采用虚拟或者电子的门控进行采集,其是将荧光和磷光信号一并采集,最终按照时间输出,这样存在样品中的强荧光信号造成检测器饱和,而弱磷光信号又没有得到有效采集的问题。真正的门控技术,可以有效控制硬件设备的采集时间,避开荧光信号,特别适用于弱的磷光信号采集,这对于揭示磷光材料的真实发射光谱和发光机理是非常必要的手段。 /p p style=" text-align: justify "   此外,在寿命成像方面,常规技术中的逐点扫描技术,在获得一张寿命成像上花费很长的时间,HORIBA最新推出的FLIMera是一款大视场成像相机,可以实现视频级的荧光寿命成像。FLIMera不是单点共聚焦扫描成像,其每个像素点均包含4096的时间通道,24576个像素点可实现基于TCSPC的荧光寿命成像,完成快速荧光寿命成像,满足动态寿命成像的需求。 /p p style=" text-align: justify "   在日益受到客户关注的近红外区域,HORIBA模块化荧光光谱仪也有着其独有的优势,通过同一检测器就可完成稳态与瞬态的测试,并且相比较于采用常规的PMT而言,红外测试范围可以扩展至5500nm。 /p p style=" text-align: justify " strong   仪器信息网:从应用的角度出发,当前分子荧光光谱仪器的应用和研究热点分布在哪些领域?在科研过程中能给大家带来哪些“惊喜”? /strong /p p style=" text-align: justify " strong   周磊: /strong 荧光作为一个热门技术,一直以来被广泛用于生物医学研究、制药、化工、半导体材料、太阳能电池等领域。如今通过荧光信息给出物质相互作用时能量传递的证据,比如载流子寿命,还可以评价材料改性的影响,这在太阳能、光催化材料开发中有重要意义。 /p p style=" text-align: justify "   例如,在OLED发光材料中,已经不局限于过去的激发/发射光谱、量子产量的测定。随着第三代OLED的进展,TADF得到了重点关注,在TADF机理阐述中对于延迟光谱(或磷光光谱)的表征显得尤其重要,这对荧光光谱仪提出了更高的要求,不仅仅局限于常规功能上的采集,还需要延迟光谱能力,以及极短微妙寿命测试。太阳能材料中的钙钛矿作为明星材料已经得到跨越式发展,在太阳能电池研究过程中,对于载流子传输的表征尤其重要。寿命技术是一种便捷、易于使用的方法,但是太阳能钙钛矿层极其薄(nm级别)、发射波长偏红外、表面散射光强以及怕水和氧气,这些对于寿命设备的灵敏度、检测能力、光路设计、测试速度和气氛保护装置都提出了更高的要求。 /p p style=" text-align: justify "   荧光影像技术在生物医学研究和临床诊断检测中已经被广泛使用。近红外探针的开发在荧光影像技术中具有广阔的应用前景。近红外探针分为近红外一区和近红外二区探针,在常规的荧光光谱仪中很难满足这两个区的波长范围,特别是近红外一区的检测,典型的PMT检测波长范围难以达到,而科研大型模块化设备需要定制化配置和高成本、操作复杂的近红外PMT(例如型号R5509的PMT,需要预热2h,续流型消耗液氮)。 /p p style=" text-align: justify "   中红外材料在通信、环境监测及医学等领域具有重要的应用价值,因为其发光的波长范围处于中红外段,常规的荧光设备很难实现这个波长范围检测,并且过去的技术中又很难检测发光寿命。提供适用波长范围的高灵敏度检测器,并且同时能够检测寿命的检测器尤为重要。 /p p style=" text-align: justify " strong   仪器信息网:分子荧光光谱仪相关的应用标准情况怎么样?在应用拓展方面,有哪些制约因素? /strong /p p style=" text-align: justify " strong   周磊: /strong 分子荧光光谱仪相关的一些国家标准正在制定,HORIBA也参与到了一些标准的制定中去,例如教育部的行业标准“荧光光谱分析方法通则”等。作为HORIBA用户,美国NIST还基于HORIBA的荧光光谱仪制定了荧光标准方法。 /p p style=" text-align: justify "   我也从HORIBA用户国家计量科学院的贾志立副研究员那了解到:现在分子荧光光谱仪相关的应用标准,主要针对的是分光光度计,一方面是仪器相关的标准,包括仪器的分级、技术要求和试验方法等:另一方面是检测方法的标准,如叶绿素含量测定、炭黑分散性和刑事技术的微量物证的检测方法等,检测方法中关于发光物质荧光检测相关的标准较少。 /p p style=" text-align: justify "   另外,分子荧光光谱仪不仅包括分光光度计,还包括光学显微镜与光谱仪相结合的微区荧光系统,微区荧光系统在研究荧光材料的显微光谱信息方面应用广泛,但目前缺乏相关的标准。 /p p style=" text-align: justify "   目前在分子荧光光谱的应用拓展方面,还受到一些因素的制约:一方面可能是相关标准的宣贯方面不足:另一方面是一些仪器客户如高校、研究所的科研人员,对相关标准不熟悉,没有认识到标准在科研应用中的重要性:除此之外,相关标准物质的缺乏也会限制校准方法类标准的应用拓展。 /p p style=" text-align: justify " strong   仪器信息网:贵公司当前主推的产品?最具优势的领域? /strong /p p style=" text-align: justify " strong   周磊: /strong HORIBA是唯一研发设计生产全系列科研荧光光谱仪的厂家,型号涵盖了稳瞬态光谱仪,覆盖了紫外-可见、近红外、中红外光谱范围。针对不同应用领域,HORIBA会根据客户的实际应用需求特点,来推荐相应的特色配置,可以说我们并不会强调说主推某款产品。 /p p style=" text-align: justify "   譬如:Aqualog主要针对于复杂水环境,大气颗粒物中的发光基团等的整体研究,无论是软件功能或者硬件设计,都从环境工作者的角度出发,解决环境科研分析的需求。例如通过专业软件,进行化学计量学分析;Duetta针对于生物荧光探针等具有近红外一区快速检测需求的应用时(量子点,有机荧光探针、金纳米团簇等),由于其配备的CCD具有一次性采谱与宽检测范围(250~1100nm)的特点,在连续监测范围上十分具有优势,按压式的样品仓方面客户在实验室环境中操作时的便捷性,不开盖加样的设计满足了客户在测试过程中去添加样品,以此来查看两种或多种物质在反应过程中全谱的变化信息;荧光寿命光谱仪具有高能量窄脉宽寿命光源,皮秒稳瞬态检测器及自动拟合寿命软件,在太阳能钙钛矿,光催化研究中得到了广大科研用户的认可;模块化荧光光谱仪产品,通用性强,采用开放式模块化光路设计,根据用户的需求定制系统,并且在近红外光谱和寿命采集上具有其独有优势,可以同时检测近红外光谱与寿命。全新软件可以实现稳瞬态功能同时控制,内含特质化功能,同时包含多种数据处理方式,融合多种寿命测试技术,多元化满足客户寿命测试需求。模块化荧光光谱仪等主要针对于多功能,高灵敏度,定制化的科研领域在近红外研究领域,如稀土元素掺杂的材料中更有其独有的优势(碳管,三维荧光需求),同一检测器就可实现近红外光谱与寿命的测量,性价比更高);DeltaFlex和DeltaPro专注于荧光寿命的表征,在表征钙钛矿材料中载流子等方面(分子互作,比率荧光),有着很大的应用优势;视频级的荧光寿命成像技术(FLIMera荧光寿命成像相机),在研究神经传导,分子微环境(如pH值、离子浓度的不同)等领域有着非常广泛的潜在应用。 /p p style=" text-align: justify " strong   仪器信息网:针对当前的市场格局,贵公司在分子荧光光谱产品方面有什么样的定位和布局? /strong /p p style=" text-align: justify " strong   周磊: /strong HORIBA是以客户的需求为导向,不断开发满足客户不同应用需求的产品,并且针对不同热点研究领域,提供针对性的配置方案。HORIBA着重于科研应用市场,并且深入工业分析、研发市场。如果说HORIBA以往产品技术更加专注和擅长于高端科学研究领域,将来,更多领域的应用都需要更专业的仪器,我们会向专业化方向发展,新品Duetta的更快捷测试技术、更小巧的外观设计等也使该产品从科学研究领域向分析测试、工业应用市场的拓展成为可能,分析测试、工业领域等未来潜力市场也将得到HORIBA的重点关注。 /p p br/ /p
  • 31项!2023年中国分析测试协会科学技术奖CAIA奖获奖名单揭晓
    仪器信息网讯 12月26日上午,在北京友谊宾馆召开了中国分析测试协会第八届理事会第八次会议,并颁发了2023年中国分析测试协会科学技术奖CAIA奖。该奖项设立于1993年,旨在奖励在分析测试领域的新发现、新原理、新方法、新应用研究中取得优秀成果的科技工作者和单位。经过函审、会审和综合评审,综合考量创新程度、技术指标先进性、科学价值、应用推广情况和经济或社会效益等方面,共评选出,一等奖14项,二等奖17项。一等奖为具有国内领先水平或具有较好社会经济效益的成果,二等奖为具有国内先进水平或在某一应用领域中由有突出效益的成果。中国分析测试协会理事长/中国科学院院士 江桂斌 致辞会议现场照片江桂斌理事长为2023年中国分析测试协会科学技术奖CAIA奖一等奖颁奖并合影再帕尔阿不力孜副理事长为2023年中国分析测试协会科学技术奖CAIA奖二等奖颁奖并合影附:2023年中国分析测试协会科学技术奖CAIA奖获奖名单序号获奖项目名称获奖单位主要完成人获奖等级1畜禽产品中新污染物超痕量识别及防控关键技术中国农业科学院农业质量标准与检测技术研究所、中国科学院生态环境研究中心、国家食品安全风险评估中心、江汉大学李晓敏,张庆华,程劼,张磊,董姝君,李敬光,李英明,王瑞国,王璞,王培龙一等奖2光响应材料与原位表征技术开发大连理工大学刘涛,邱志勇,李睿,孟银杉,赵亮,刘强一等奖3核酸适体灵敏检测环境健康相关分子的新方法及识别机制研究中国科学院生态环境研究中心、中国科学院精密测量科学与技术创新研究院赵强,徐国华,李亚飘,王超,于皓,孙琳琳,王晨,刘丽颖一等奖4活细胞蛋白质分析中国地质大学(武汉)材料与化学学院、华中科技大学同济医学院附属同济医院娄筱叮,夏帆,戴俊,胡晶晶,刘瑞,黄羽,吴霞一等奖5基于常压离子化质谱的生物标志物分析新方法及其应用北京大学、中国石油大学(北京)白玉,徐姝婷,韩晔华,马雯,聂洪港,刘明霞,艾万鹏一等奖6基于微等离子体的小型化原子光谱分析新方法、仪器及应用四川大学分析测试中心、四川省分析测试服务中心蒋小明,郑成斌,罗进,徐开来,吴鹏,侯贤灯一等奖7基于微纳材料光化学传感体系的构建及应用西华师范大学化学化工学院、南开大学化学学院、内江师范学院化学化工学院杨秀培,赵斌,霍峰,王亚,唐凤琳,侯胜利,张倩,陈连芳,刘宇航,张艺一等奖8基于新型识别元件的环境污染物光电快速分析技术研发及应用江苏大学,沭阳康源泰博生物科技有限公司张祯,龙凌亮,牛湘衡,郝楠,张波,吴向阳,王坤,徐婉珍,依蓉婕,李明一等奖9基于原位加载 CT 扫描的多相岩土材料三维成像分析技术山东大学、武汉理工大学王冀鹏,葛尚奇,程壮,申静怡一等奖10宽色度演变比率荧光可视化新方法及在快速检测中的应用中国科学院合肥物质科学研究院、军事科学院军事医学研究院环境医学与作业医学研究所、中科合肥智慧农业谷有限责任公司蒋长龙,房彦军,杨亮,林丹,徐诗皓一等奖11纳米发光体的电化学发光机制及其生物分析新方法研究南京大学雷建平,鞠熀先,王宁宁,冯亚强一等奖12适于生命体系中金属/类金属形态分析的光谱系统的创制及应用东北大学王建华,魏星,于永亮,陈明丽,舒杨,陈旭伟,杨婷,陈帅一等奖13碳氢能源快速复杂热化学反应特性在线检测与过程解耦分析及应用中国科学院过程工程研究所、北京工商大学、新疆大学、湖南省计量检测研究院曾玺,刘姣,柏文琦,马小红,钟梅,王芳,关宇,尤园江,胡丹丹一等奖14中药制造测量学的理论创建、标准制订及关键技术应用北京中医药大学、江苏康缘药业股份有限公司、北京同仁堂股份有限公司、北京康仁堂药业有限公司吴志生,王振中,乔延江,王团结,王志斌,张朝华,张志强,姚璐,王恺怡,李明爽一等奖15便携式 XRD 织构测试原位拉伸技术及其应用中铝材料应用研究院有限公司董学光,余康才,钟鼓,史晓成,胡国强,李秀磊,范荣辉二等奖16基于催化剂设计和活性调控的脑化学活体分析首都师范大学化学系林雨青,李凯,周敏,王超赵志强二等奖17基于功能化多孔有机材料的复杂样品前处理研究与应用山东省分析测试中心、中国标准化研究院、山东杰诺检测服务有限公司纪文华,丁尚志,王荣雨,兰韬,李丽丽,耿岩玲,张禧庆,段文娟,于金倩,王晓二等奖18基于贵金属纳米粒子的三类危害性物质快速比色检测技术中国科学院宁波材料技术与工程研究所、宁波大学、安庆师范大学吴爱国,张玉杰,李星,沈折玉,汪竹青二等奖19基于化学蒸气发生的原子光谱新型进样器和比色传感器研究成都理工大学、四川师范大学高英,黄科,张若曦,余莹,董亮,邓秀琴二等奖20基于磷光铱配合物的生物成像探针构建及基础研究西北工业大学、澳门大学、江西理工大学王万河,梁重恒,刘晋彪,王京二等奖21基于液质联用的胶原蛋白分析关键技术研究与应用中国科学院过程工程研究所、中国食品药品检定研究院张贵锋,徐丽明,高建萍,陈亮,刘玉莹,康跻耀,孔英俊,罗希,邢芳毓,张扬二等奖22面向公共安全的芬太尼类毒品与放射性核素现场快速检测新方法研究西南科技大学、中国空气动力研究与发展中心高速空气动力研究所何毅,陶洋,王元靖,刘大伟,于海利,林颖,崔云怡二等奖23面向生命健康的光电化学传感新方法青岛农业大学化学与药学院、河北大学化学与材料科学学院常加富,李海银,杨立敏,刘晓娟,李峰二等奖24纳米探针的功能设计、界面调控及生物测量应用研上海工程技术大学鲁娜,张敏,郑静,王金杰,史雪荣二等奖25镍基高温合金宏微观塑变行为及服役稳定性多尺度表征分析哈尔滨工业大学(威海)张鹏,朱强,王传杰,陈刚二等奖26生物燃料电池自供能传感新方法研究青岛农业大学化学与药学院盖盼盼,谷成成,李峰二等奖27食品安全危害因子的多元高灵敏免疫学分析新方法研究西北农林科技大学、鲁东大学张道宏,王建龙,王妍入,季艳伟,殷雪驰,程媛媛,舒蕊,王绍弛,刘晓静,邵晨二等奖28食品真实属性表征技术研究及应用深圳海关食品检验检疫技术中心、厦门大学环境与生态学院靳保辉,吴浩,陈波,易冰清,金晓蕾,王丙涛,颜治,赵旭,林燕奎,谢丽琪二等奖29食品中受损微生物的蛋白质组学分析及技术应用青岛海关技术中心、潍坊海关综合技术服务中心贾俊涛,唐静,李正义,徐琴,姜英辉,殷培军,林超,刘娟娟,黄小华,赵晗二等奖30食品中重金属和生物毒素等小分子污染物快速检测技术创新及应用暨南大学、清华大学深圳国际研究生院、深圳市三方圆生物科技股份有限公司、深圳海关动植物检验检疫技术中心唐勇,马岚,冷科明,谭攀,王宏,吴峰,江天久,谢冬霞,刘建利,刘磊二等奖31中医药便携质谱关键技术及应用北京中医药大学、北京理工大学、北京中医药大学中医内科学重点实验室、华颐药业有限公司张玫,姜婷,商洪才,徐伟,候俊玲,顾选二等奖
  • 聚焦环境与食品安全 | 第十七届全国青年分析测试学术报告集锦
    仪器信息网讯 2022年07月17日-18日,由中国分析测试协会青年学术委员会主办的“第十七届全国青年分析测试学术报告会”在山东青岛成功召开。会议开设生命分析、环境与食品分析、化学计量与标准物质三个专题的分会报告,以下是环境与食品分析专题报告集锦。中国分析测试协会青年学术委员会副主任、吉林大学宋大千教授主持17日上半段报告中科院烟台海岸带研究所 陈令新教授报告题目:现代海洋监测技术 微小型化与自动化监测该课题受线圈本的启发,发展了一种在微流控纸芯片分析装置上制造纸基阀的新策略,并基于比色检测器的纸芯片分析技术,研制了基于反射法的手持式纸芯片快速分析仪,实现海水营养盐在线监测系统。于2021年7月,在青岛海洋实验站进行国家重点研发计划“海洋安全保障”专项海上完成对比验收。天津大学 王勇教授报告题目:超分子分离 识别与组装王勇教授围绕超薄坚固超分子功能化2D膜分离技术,介绍了插层组装构建仿生异质结构氧化石墨烯膜,解析了基于弱相互作用的分离、识别机制及构效关系。北京师范大学 那娜教授报告题目:基于电喷雾的合成及反应研究本课题介绍利用电喷雾离子化技术快速制备合成各种纳米材料,包括聚合物包裹水溶性的钙钛矿量子点以及Zn掺杂钙钛矿的异质结材料等。与传统的合成技术相比,基于电喷雾的合成技术可将合成反应时间降至毫秒级别。东北师范大学 周明教授报告题目:全集成便携与可穿戴式体液电子器件周明教授团队通过将全集成、便携式与可穿戴式生物电子器件与体液相结合,构建了便携式与可穿戴式全集成体液电子器件,利用汗液和尿液可以实现对血糖及尿酸的体外检测,并搭建了用于可穿戴式电子器件的外源性物质燃料电池,可用于可穿戴式生物电子器件的电量供给。岛津企业管理(中国)有限公司 张玥报告题目:助力食品环境科研——岛津特色色质谱技术方案介绍报告中主要介绍了岛津在食品环境科研领域的整体解决方案和特色技术。岛津特色色质谱——超强扩展性辅助视频环境监测。中科院烟台海岸带研究所 陈令新教授主持17日下半段报告复旦大学 孔彪教授报告题目:超组装智能感知界面构筑及其生物传感应用复旦大学孔彪课题组开发动力学调控界面选择性超组装策略,利用前驱体中同时发生的(烯基)自由基聚合反应和(三甲氧基硅烷)水解聚合反应,成功构筑具有选择性中空结构的纳米机器人,且其拓扑结构可以精准调控。此外,该新型中空纳米机器人可以实现货物分子的可控装载及卸载,在生物医疗等领域具有潜在应用。中国分析测试协会青年学术委员会副主任、青岛科技大学 王晓春教授报告题目:新型分子荧光探针开发与应用小分子荧光探针具有灵敏度高、靶向识别,非破坏性、实时监测等优点,被广泛应用于生物监测和环境分析领域。王晓春教授围绕着荧光探针检测技术作为一种新型高效简便的检测手段在近年来的研究和应用情况,从研究背景、作用机理和应用范围等方向都进行了详细的分析介绍。吉林大学 高德江教授报告题目:光谱快速分析技术及其应用的研究报告中介绍了一种基于微波快速提取、高灵敏试剂识别、长光程显色技术的溴酸盐快速检测技术,并制备出相应的溴酸盐快速检测仪,该方法用于58中瓶装矿泉水、纯净水和矿物质中溴酸盐的测定,并与国标离子色谱检测结果和ICP/MS检测结果相比较,结果无显著性差异。北京海光仪器有限公司 焦振报告题目:有色蒸馏酒中氰化物的测定—连续流动分析法介绍了利用连续流动分析技术法,在试剂和样品混合之前,由间隔引入的空期将液流分割成一个个区段,并通过三部分测试数据得出经过该方法处理后,酒的回收率大大提高,可为有色酒或有混浊物的酒水样品的检测提供可参考的解决方案。东北大学 舒杨教授报告题目:荧光成像的高保真、定量分析探索和罗丹明等亲脂性阳离子信噪比低,光稳定性差,商业探针JC-1细胞摄取差异导致误差大、光稳定性差差相比,利用线粒体激活的探针信噪比高,可有效降低探针在非线粒体部位的发光造成的假阳性信号。南京师范大学 王琛教授报告题目:纳流控端面分析新方法报告就如何有效调控并精准分析纳流控的物质传输特性,利用探针修饰、分子识别发生在端面,研究了端面分析新方法,并对其做了精彩及详尽的讲解。新方法端面组装探针分子,方便容易,且系统稳定,引入功能材料界面,可有效调控,灵敏度也有所提高。青岛农业大学 盖盼盼教授报告题目:环境污染因子,光电传感新方法研究报告详细介绍了围绕信号探针创制和表界面电子传递调控,建立的若干环境污染因子光电传感新方法和研究过程。四川大学 吴鹏教授报告题目:选择性重原子效应促进的室温磷光分析报告介绍了室温磷光分析和重原子效应,就选择性重原子效应促进的室温磷光分析的发展与应用做了详细讲解。青岛大学 毕赛教授报告题目:基于DNA纳米技术的生物传感与纳米医学新方法报告主要介绍了利用光电磁纳米材料的优异性能,发展光电化学传感新体系和新界面,提高了灵敏度,实现了单分子生物分子的检测以及分子逻辑操作。拓展了DNA自组装的设计思路和应用范围,并应用于等温信号放大传感、原位成像、靶向协同治疗等,为诊疗一体化平台的开发提供了应用模型。青岛众瑞智能仪器股份有限公司 臧远泽报告题目:油气行业环境应急事件管控技术本报告介绍了LDAR泄漏检测与修复是对工业生产全过程物料泄漏进行控制的系统工程,通过常规或非常规检测手段,在一定期限内采取有效措施修复泄露点。并就LDAR的相关政策以及标准做了详细解读。黑龙江大学 徐英明教授报告题目:微纳结构材料的可控组装及其在环境气体检测中的应用徐英明教授在报告中介绍了微纳结构材料的可控组装及其在环境气体检测中的应用,并以CuO/NiO纳米符合材料和PANI/氧化物阵列材料等举例说明了具体应用情况。
  • 化学所在金属配合物低维晶体方面取得新进展
    p & nbsp & nbsp 低维有机晶态材料具有规整度高和结构缺陷少的特点,是揭示材料本征特性和构筑高性能光电器件的最佳选择之一,近年来在有机半导体电子学和纳米光子学等方面取得重要应用。考虑有机分子的组装特点,通常使用具有较强分子间作用力的平面型有机分子来制备高规整度的低维晶体。相比较,钌、铱等过渡金属配合物虽然被广泛用于多种光电领域,但因其溶解性较差和分子结构非平面型的特点,相关低维晶态材料的可控制备鲜有报道。 /p p style=" text-align: justify " & nbsp & nbsp 在国家自然科学基金委和中国科学院先导项目支持下,中科院化学研究所光化学实验室姚建年/钟羽武研究团队近年来在光功能金属配合物的设计合成与光电性能方面开展了系统性工作(J. Am. Chem. Soc.2015, 137, 4058 Angew. Chem. Int. Ed.2015, 54, 9192 & nbsp Coord. Chem. Rev.2016, 312, 22 & nbsp Sci. China Chem.2017, 5, 583)。在此基础上,他们近期选取两种结构和溶解度相似的金属铱、钌光功能配合物作为能量给、受体,制备了双组份均匀掺杂或异质结纳米棒晶体,实现高效三线态能量转移和微纳尺度下多级组装过程的原位观察(J. Am. Chem. Soc.2018, 140, 4269-4278)。 /p p style=" text-align: justify " & nbsp & nbsp 最近,科研人员通过溶液再沉淀法成功制备了甲基化苯基吡啶金属铱配合物的高质量一维管状微纳晶体,并进一步通过晶体掺杂,得到了两种不同铱配合物的二元能量转移晶体,实现聚集发光淬灭(ACQ)受体的光放大和微纳尺度温度响应功能。研究表明,当受体的掺杂量为0.2%时,此类晶体可以实现接近80%的三线态能量转移效率和800倍以上的受体磷光放大。在常温时,晶体表现出受体的红色磷光,固态量子产率达到40%。随着温度的降低,晶体的激子能量转移受到抑制,给体的绿色发光重新被激活,实现微纳尺度下发光颜色变化的原位调控与温敏监测。该工作表明了过渡金属配合物在低维晶体制备与光功能方面的独特应用,并为三线态激子能量转移的机制研究提供重要信息(Angew. Chem. Int. Ed.2018, 57, 7820-7825)。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/e32021df-136a-457d-afb5-bfd3ccfeb16d.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图:基于金属配合物低维晶体的光放大与温度响应 /p p br/ /p
  • HORIBA | 平时使用仪器遇到这些困惑,你怎么办?——拉曼/荧光/椭圆偏振光谱仪
    使用光谱仪器时,如何巧妙制样?针对不同的样品,测试方法有哪些区别?仪器测试结果如何分析解读…11月13日,HORIBA的资深工程师们,就拉曼、荧光、椭圆偏正光谱仪器日常使用技巧,为大家分享了自己多年的宝贵(xue)经(lei)验(shi)。分享过程中,同学们也纷纷提出自己的问题,不知道是否也有你的困惑,我们一起看看吧:荧光光谱1.为什么样品信号之前的背景光平台不是平的?在进行磷光寿命测试时,前端的小段曲线是由光源产生的,即激发光还没有完全消失,就开始了样品信号采集,后边部分属于光源消失后磷光衰减的信号,进行寿命拟合的时候只要选择后边尾部即可。2.问水拉曼峰怎么测?1)开启仪器;2)将标准盛有三重去离子水的比色皿放入样品仓;3)打开软件,选择Spectra——emmission功能;4)点击Run进行信号采集即可。参数详见如下:激发波长350nm,水拉曼峰值,峰值波长397nm。实验条件:激发波长350nm,带宽5nm,0.5nm步进,发射波长扫描范围365~450nm,带宽5nm,积分时间1s;样品要求:必须是超纯水,三重蒸馏水或去离子水,HPLC级(18.2 MΩ,5.用HORIBA的荧光光谱仪测荧光寿命,是用上升沿还是下降沿拟合寿命的?对于荧光寿命,拟合时上升下降沿的信号都要用到,对于磷光寿命,仅用下降沿部分拟合即可。具体拟合步骤及要点可与工程师联系。椭圆偏振1.请问老师,这个可以测量颗粒物表层吸附物质的厚度吗?纳米级别,烟尘颗粒由于椭偏光斑在微米至毫米尺度,无法分析离散态的纳米级别颗粒表层2.老师您好,请问衬底是石英片,可以测膜的厚度吗?可以,只要薄膜光学透明即可使用椭偏测试拉曼光谱1.CLS那个没看懂?简单的来说,CLS是数据统计的分析方法。夹峰法是以单个谱峰的峰强、峰面积、峰位的特性为拉曼成像依据。而CLS是以整张光谱或者某段光谱为依据,赋予不同的颜色。适用于已知混合物的拉曼成像。2.细胞的那个是这么做的呀?详细请见文章ACS Appl. Mater. Interfaces, 2017, 9 (7), pp 5828–5837,文章的拉曼部分在北京DEMO实验中心完成的,欢迎讨论。3.用JobinYvonLabRam HR800仪器,325 nm 的激光测薄膜光致发光,有时PL谱的曲线有波动,就是线一抖一抖的,请问能怎么改善呢?能测到发光峰,但是曲线上有很多小的正弦波。两个方面:一个需要标准样品测试,检验仪器本身是否有问题。另一个方面,考虑薄膜的厚度问题,是否刚好发生多次反射。之前有经历,特定的玻璃片上测样品,也有小正弦波,更换玻璃片之后就没有了。4.那请问如果是贴壁细胞呢 直接光斑扫描?贴壁细胞,做完封片,可以直接通过平台移动实现细胞成像。5.指甲油有要求吗?指甲油不要涂到样品上?指甲油本身有很好的拉曼信号,不能直接涂到样品上,建议选择亮色,这样能够看清楚指甲油的本身分布。若样品量比较大,建议选择大号的盖玻片,操作相对简单。6.请问G/D的物理意义G峰为石墨烯的特征峰,归属于sp2碳原子的面内振动,出现在1580 cm-1附近,该峰能够表征石墨烯的层数。D峰为石墨烯的无序振动峰,出现在1350 cm-1附近处,表征石墨烯中的结构缺陷或边缘。所以G/D峰,可以反映石墨烯的层数和缺陷分布。7.测细胞必须要涂指甲油吗?不是必须,封片的好处是减缓水份蒸发。8.老师,做矿物的话激光波长用多少合适大多数矿物532 nm激光比较合适,对于有荧光背景的,考虑红光激发。9.半導體異物量測方式?測試過532,633,785 laser量測都只有螢光訊號,異物大小約1~3um若异物在表层,可以考虑325 nm尝试下。若还是不行是否可以考虑用PL成像来区别异物。10.如何衡量石墨烯条带的边缘质量?见问题6,G/D比值成像及D峰成像都是不错的选择。11.鲁老师,请问罗丹明溶液633直接测拉曼,如何计算光斑内有效分子数?影响影子的计算方法我们在上一次的报告中有提到。详细可参见Phys. Chem. Chem. Phys., 2015,17, 21149-21157。文章是用XploRA仪器实现的,欢迎讨论。12.样品中有水,可以用3D得到水分布吗样品若是半透明的,可以实现水的分布的3D. 常见的地质样品,包裹体中的水分可以用3D表征。这是一篇文章,里面用拉曼证明了油水凝胶中的水分分布,你可以参考下。Nature Communications 8, Article number: 15911 (2017) doi:10.1038/ncomms15911。文章的拉曼部分在北京DEMO实验室完成的,欢迎讨论。13.请问测拉曼时荧光效应太强,背底太高可以怎么改善?一般是某些样品会出现,跟样品有关系,可是又需要样品的拉曼数据抑制荧光背景的方法:更换不同的激发波长;长时间激光照射光漂白;数值处理等。目前有效的是更换不同的激发波长测试。14.请介绍一下实时在线原位拉曼技术?在线原位技术是一个比较宽泛的命题,常见的有有机化学合成在线检测,高温高压在线检测,锂电池在线检测,电化学在线检测。若大家都有兴趣,我们可以专门利用一次讲座交流。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 中科大在高分子光物理和光化学领域取得重要成果
    近日,中国科学技术大学合肥微尺度物质科学国家研究中心张国庆教授团队在高分子光物理和光化学领域取得重要成果。相关成果分别以“Functional Roles of Polymers in Room-Temperature Phosphorescent Materials: Modulation of Intersystem Crossing, Air Sensitivity and Biological Activity”为题发表于Angewandte Chemie(DOI:10.1002/anie.202218712);以“Organic Photocatalyzed Polyacrylamide without Heterogeneous End Groups: A Mechanistic Study”为题发表在ACS Catalysis上(DOI:10.1021/acscatal.2c05972)。在高分子光物理领域,中国科学技术大学张国庆教授和张学鹏研究员团队,将具有分子内电荷转移态(ICT态)特征的染料(如图1,Dye1)共聚到不同极性的高分子中,研究了高分子基质对RTP材料的三大功能化调控作用。图1.高分子极性对染料单-三线态能极差(∆EST)的调控作用首先,S1态具有ICT属性的染料,在越极性高分子中,S1能级越低,具有局域跃迁属性的T1态的能级在不同高分子中几乎保持不变,因此可以通过改变高分子极性来调控染料的∆EST,进而实现对其热激活延迟荧光和RTP发射比例及发光颜色的调控。传统上调控系间窜越(ISC)一般采取改变染料自身化学结构的方式,而该工作提供了一个通过外部基质极性调控ISC的独特方法。图2.高分子基质形貌对RTP强度和寿命的调控作用其次,传统上高分子RTP材料易被氧气渗透,难以实现空气中的RTP。作者发现可以通过高分子链形成交联离子键来改变高分子形貌,获得空气中高效和超长的RTP。例如Dye1-co-PQAS和Dye2-co-PQAS,其本身因多孔疏松在空气中无RTP;但与聚丙烯酸阴离子络合之后,变得光滑致密,在空气中获得了超长的绿色和红色余辉。图3.高分子基质与染料产生的活性氧的协同杀菌作用最后,作者将磷光染料与季铵盐共聚,带正电的聚季铵盐基质和带负电的细菌膜具有静电吸附效应,更易于将磷光染料产生的活性氧释放到细菌周围,从而实现了杀菌效率的大幅提升。该工作创新性的揭示了高分子基质对RTP材料的系间窜越、氧气通透性和杀菌能力的“主动”调控作用,为拓展高分子RTP材料的新功能与新应用提供了新思路。中国科学技术大学合肥微尺度物质科学国家研究中心张国庆教授和张学鹏研究员为该论文的通讯作者。该工作得到了国家自然科学基金、中国科学技术大学量子科技创新计划、中国科学技术大学重要方向项目培育基金等项目的资助。在高分子光化学领域,张国庆教授和合作博士后黄文环发展了一种以廉价、可大量工业制备的酰亚胺类化合物为光催化剂,在365-nm LED光照下高效合成无杂端基聚丙烯酰胺的方法,并对光诱导聚合机理及聚合体系的性质进行了详细研究,同时还展示该方法在软物质光刻方面的初步应用。光诱导反应一直是人工光合作用、太阳能电池、有机合成方法学、可控高分子聚合等领域的研究重点。相对于传统的热引发聚合,光诱导的高分子聚合反应条件更加温和、速度更快,在时间与空间上的可控性更好。然而,大多数光诱导聚合体系往往采用一些光化学惰性分子作为敏化剂和引发剂,这些分子不可避免地作为端基共价结合到聚合物中,对其机械性能、生物相容性和环境毒性等相关特性产生了不可控的影响。该论文提出了一种有别于传统光诱导聚合的方法,实现了聚丙烯酰胺(PDMA)的无杂端基制备(图1),获得了相对于传统方法的组分“纯净”高分子,为后续探究这种“纯净”高分子的特性,以及引发剂作为端基共价接到聚合物对其性能的影响提供了条件。图1.聚合示意图(a)传统聚合:将引发剂作为一个末端基团 (b)光诱导N,N-二甲基丙烯酰胺(DMA)聚合:以工业 单体二甲基丙烯酰胺DMA本身作为引发单元研究团队对光诱导聚合体系(萘酰亚胺分子与DMA单体)光处理前后的荧光光谱变化、核磁信号变化等进行了表征,发现该聚合体系在光照两分钟之内转化率接近100%,聚合过程具有光可控性,并且萘酰亚胺分子并未共价结合到聚合物上。图2.聚合体系的性质及聚合机理示意图研究团队除了对这一体系的聚合机理进行探讨(图2)、聚合物TGA,DSC等性质进行研究之外,还展示了这一体系在软物质光刻方面的初步应用(图3)。目前团队已经可以利用波长更长的紫光和更多的工业单体进行无杂端基聚合反应,有望未来几年实现产业化应用。图3.光刻示意图及光刻体系的光谱性质中国科学技术大学合肥微尺度物质科学国家研究中心张国庆教授和陈彪特任副研究员为该论文的通讯作者;博士后黄文环为该论文的第一作者。该工作得到了国家自然科学基金、中国科学技术大学量子科技创新计划、中国科学技术大学重要方向项目培育基金等项目的资助。
  • HORIBA:近10年推出了哪些分子荧光光谱技术?——点亮光谱仪器“高光”时刻系列活动
    2012-2021年,光谱仪器及技术突飞猛进,相关的新产品、新技术层出不穷:拉曼、近红外、激光诱导击穿光谱、太赫兹、高光谱、超快光谱、光谱成像......不仅给科研注入了新的活力,更是给企业带来了客观的经济效益。“光谱十年”之际,仪器信息网特别策划《点亮光谱仪器 “高光”时刻》系列活动,以期盘点光谱仪器及相关技术的突出成果,展现光谱仪器及相关厂商的“高光”时刻。本期,我们特别邀请到了HORIBA 科学仪器事业部荧光产品经理周磊博士讲述HORIBA分子荧光光谱仪的“高光”时刻。仪器信息网:过去十年间,哪些光谱技术的进步让您印象深刻?周磊博士:从1972年推出第一台商业化模块化荧光光谱仪至今,HORIBA Scientific已经拥有50多年设计和生产各类荧光光谱仪的历史。HORIBA从荧光光谱仪这项技术刚开始起步时就一直在推陈出新,每一个新产品都伴随着全新技术的应用,并且一直站在模块化、多寿命技术(相调制、TCSPC、Strobe、MCS、SSTD等)、多功能扩展、多附件耦合的技术前沿,不断创新发展产生了一系列突破性的技术革新,最让人印象深刻的技术包括:表1近10年令人印象深刻的分子荧光技术时间新技术2011• 推出Aqualog光谱仪• 同步吸收-三维荧光技术:消除内滤效应,获得真实指纹图谱2012• 单壁碳纳米管三维荧光分析软件NanoSizer® :管径、手性指数分析• 多波长对动态扫描技术:同时多组激发/发射波长切换,获得多波长下的荧光强度动力学,适合比率荧光研究2013• 新一代近红外检测技术:全新单点液氮制冷型IGA检测器,工作温度-196℃,具有低噪音,高灵敏度,宽波长范围~2200nm可选的特点2014• 推出Delta系列荧光寿命光谱仪• 创新的荧光寿命动力力学技术:1ms获得荧光寿命,连续动态采集寿命变化• 快速荧光寿命检测技术:新一代高频脉冲光源(100MHz)、死时间10ns的计时单元和皮秒寿命检测器• 新一代25ps寿命检测器:一体式设计、信号装置集成化,避免时间展宽• 新一代皮秒高频脉冲激光器:100MHz可调脉冲皮秒寿命光源,即插即用,全软件控制频率匹配寿命测试2015• 近红外阵列检测技术---碳纳米管红外三维荧光分析(~2200nm)2016• 快速显微光谱成像技术:配合CCD检测器,快速高分辨区域成像• 显微寿命技术:提出光纤耦合、自由光路耦合的标准化方案,轻松耦合多种显微镜,实现显微寿命测试2017• 双通道寿命同时采集技术:配合计时单元的短死时间10ns,同时采集双波长下寿命曲线2018• 推出Duetta荧光及吸收光谱仪• A-TEEM吸收-透射三维荧光技术:同时获得吸收光谱和荧光光谱,消除内滤效应,得到准确的峰位和强度,扩展荧光测试浓度范围• 新一代5ps检测器,满足5ps~1s全寿命范围测试2019• 新一代寿命软件Eztime:寿命拟合全自动化、触摸软件设计• 新一代光谱仪技术:集成长焦长350mm、双进口/双出口、非对称光路设计、全谱慧差校正和三光栅塔轮技术2020• 四通道寿命同时采集技术:配合计时单元的死时间2021• 推出新一代模块化荧光光谱仪Fluorolog-QM• 单脉冲实时采集(SSTD)技术:全波长范围185~5500nm寿命采集• 新一代激发光源技术:低功率高收集效率无臭氧氙灯,波长范围扩展至180nm起• 新一代积分球技术:全球认证内衬材料spectraLon® ,99%漫反射、宽波长范围250~2500nm,低抖动;专用装样孔、固液分离式测量,避免球体污染• 新一代高灵敏红外稳瞬态检测器:采用液氮制冷,低噪音高效率、宽波长范围响应(800~5500nm可选)、同时满足稳态和寿命测试仪器信息网:截至目前,贵公司有哪几款光谱仪器曾经获得“科学仪器优秀新品”奖 ?该仪器研发的背后有什么样特别的故事? 周磊博士:HORIBA的分子荧光产品一直在推陈出新。这些产品技术不仅得到了仪器信息网各位专家和用户的好评,也多次获得仪器信息网“优秀新品奖”,为整个分子荧光市场注入了新活力。2011年 Aqualog获得2011科学仪器优秀新产品Aqualog® 凭借其高灵敏度、超快速等国际领先技术, 成为全场唯一获奖的分子荧光光谱仪,也是六年来唯一获得此奖项的分子荧光光谱仪。2014年 DeltaFlex获得2014科学仪器行业优秀新产品 2014年,DeltaFlex凭借全球同类产品中最快的寿命衰减采集时间(低至1ms)和超宽的寿命测试范围(25ps~1s)等性能,成为全场唯一获奖的分子荧光寿命光谱仪,也是九年来唯一获得此奖项的分子荧光寿命光谱仪。2018年 Duetta获得2018科学仪器行业优秀新产品 Duetta凭借全球产品中唯一能够一次采集覆盖宽光谱范围(250~1100nm)和专利A-TEEM技术,成为全场唯一获奖的分子荧光光谱仪。2018年 Duetta同期获得2018Pittcon Today Gold Award仪器信息网:获奖产品的销售情况如何?解决了哪些关键问题?有哪些典型用户或典型的应用案例?行业影响力及用户的反馈情况如何?周磊博士:Aqualog(同步吸收-三维荧光光谱仪)基于A-TEEM专利技术,在荧光内滤效应消除、超快三维荧光采集、复杂样品多组分分析等关键问题上具有全新突破,已在环境有机污染物、食品分析、医药等市场方面有突出的表现。例如,陕西科技大学陈庆彩团队围绕“大气颗粒物中新型健康风险物质的污染特征、来源和形成机制”课题研究方面取得重要进展,并在ES&T、ACP、EI等一系列大气环境领域顶级期刊上发表7篇高水平论文。大气颗粒物中的发色团物质组分复杂,基于HORIBA Aqualog 同步吸收-三维荧光光谱仪,使用A-TEEM方法可以有效鉴定和识别多种简单发色团类型,并能够提供构建化学反应中结构-活性之间的关系,对于揭示具体种类发色团产生光化学反应提供了重要方法途径。Aqualog扫描速度快,比常规扫描速度快百倍;软件可自动溯源硫酸奎宁校正曲线及校正内滤效应影响,以及锐利和拉曼散射线,快速输出至多变量分析(例如PARRAFAC),是实时在线分析大气气溶胶的利器。陕西科技大学陈庆彩教授所用的大气气溶胶在线分析系统照片(图上部设备为Aqualog)荧光寿命光谱仪Delta系列,具有全球同类产品中最快的寿命衰减采集时间(低至1ms)和超宽的寿命测试范围(25ps~1s)等性能。该系统一经推出,就受到了业界高度关注,助力科研人员发表了数篇重量级文章,其中仪器仪表类的国际一流期刊“Measurement science and technology”文章就曾提到:“全球首次将百兆赫兹级半导体激光和超短10ns死时间TCSPC计时单元完美匹配,避免了样品的再激发和信号丢失问题,可快至1ms收集荧光衰减曲线。”刊登在“Spectrochimica acta part A: molecular and biomolecular spectroscopy”的文章显示:“基于最新技术的DeltaFlex系统,在无需更换检测器和电子器件条件下实现了皮秒至秒的宽寿命测试,首次利用内源氨基酸监测了不同温度对蛋白变性转换的动态影响。”北京大学分析测试中心作为国内较早的DeltaFlex寿命光谱仪的用户之一,一直以来服务于科研用户。平台在购买荧光寿命测试系统的时候,关妍博士比较了多个厂家,最终选择HORIBA 的DeltaFlex也是考虑了多方面的因素,包括仪器操作简单、相应的配置性能好、具有多种扩展性等。关妍博士在接受仪器信息网采访时曾表示:“其中光源、检测器、计时单元是三个关键因素:一套设备覆盖了皮秒到秒的测试范围;配备了紫外可见区和近红外区两个波段的检测器;此外,计时单元的响应速度等也决定了测试的准确性等,测试速率是满足预期的。”(https://www.instrument.com.cn/news/20170614/222022.shtml )。关妍博士最新的两篇文章( “Ultralong Polymeric Room Temperature Phosphorescence Materials Fabricated by Multiple Hydrogen Bondings Resistant to Temperature and Humidity”和“Organic Persistent Luminescent Materials: Ultralong Room-Temperature Phosphorescence and Multicolor-Tunable Afterglow” )基于HORIBA磷光寿命技术和延迟光谱功能对材料的双重(荧光和磷光)发射进行了深入研究,并且在不同的延迟时间获得了从蓝色到黄色到紫红色的多色可调余辉,有望应用于高水平的防伪。HORIBA磷光寿命技术使用无拖尾的SpectraLED光源,真实实现1μs寿命测试,可以消除闪烁氙灯拖尾的影响。延迟光谱功能采用真实门控技术,全波长185~5500nm光谱范围覆盖,避免虚拟(或电子)门控造成的检测器饱和和灵敏度不高的问题。北京大学分析测试中心关妍博士所用的DeltaFlex照片北京大学分析测试中心关妍博士所用的Nanolog和DeltaFlex的照片另外,HORIBA在2018年推出的荧光光谱仪Duetta也收到了良好反馈,解决了市场上小型荧光在近红外一区波长检测的短板,并且吸收和荧光功能二合一,因此在生物、医药等领域广受欢迎。西南大学国家特聘专家郭鸣明教授研究组是Duetta最早的用户之一,课题组自2018年底购置Duetta荧光仪以来,已完成超过千余个测样量,目前是课题组使用最频繁最方便快捷的仪器之一。超快的三维荧光光谱图测试功能为课题组节省了大量的工作时间,荧光紫外吸收同步测试方法更是方便了制样与节约检测时间,动力学跟踪方法已经是科研工作者进行科学研究探索中不可或缺的方法,多种样品支架满足课题组多个方向的人员使用,固体、液体、薄膜均能快捷检测。前段时间郭鸣明教授还利用该仪器成功测出室温磷光光谱。更多研究成果可以参考课题组已经发表的代表作:Influence of carbon nano-dots in water on sonoluminescence. Nanoscale, 2021,13, 14130-14138和 Optically induced insulator-to-semiconductor transition in fluorescent carbon quantum dots measured by terahertz time-domain spectroscopy, Carbon, 2021, 174, 741-749。西南大学国家特聘专家郭鸣明教授研究组所用的Duetta照片仪器信息网:贵公司光谱仪器的生产工艺是如何把控的?在产品的质控及生产车间管理方面有什么独特的地方?周磊博士:HORIBA Scientific拥有200年的光学光谱产品研发、设计、生产经验,公司掌握着两大核心设计能力,即核心部件如光栅、探测器(包含独有的皮秒寿命检测器)、单色仪的研发制造能力和整体光学光谱系统的设计生产能力。从上世纪70年代开始一直专注于TCSPC系统的开发,拥有寿命系统所有核心部件的研发和生产经验,不断在稳瞬态系统上保持高性能以及简单实用的特点。凭借核心部件研发制造能力,HORIBA可以开发出更高性能指标的光学光谱仪器。同时,仪器制造的创新需求又在推动核心部件技术的不断发展。这种独有的核心能力,成就了HORIBA仪器的百年品质。2018年HORIBA美国新工厂揭幕,投资21亿日元,建筑面积12,292m2,专注提升荧光和搭建光谱技术的研发及生产。HORIBA相信,为客户提供的产品质量和服务水平是确保我们超越客户期望和公司持续成功的关键,我们通过 ISO-9001:2015 标准认证的质量管理体系帮助我们实现目标并不断提高效率。HORIBA Instruments Incorporated 新研发及生产工厂HORIBA对待每一个产品都非常用心,所有核心部件出厂之前都要进行长时间大量的内部检测,采用多控制流程,例如文件管理控制,CE、REACH、RoHS法规要求、客户满意度调查系统、设备校准和认证。整机仪器,如荧光光谱仪,不同用户的配置是不一样的,有些甚至是定制的,所以我们所有的设备都是单独逐一测试。我们有一套严格的QC指标,这些QC测试人员与生产仪器者独立分工,做到确认检验和过程中质量问题的预防和控制。荧光光谱仪强调强度校正(激发/发射端、积分球,检测器、光谱仪及偏振等),从而保证宽光谱范围检测准确性。在校正方法和工具开发上,HORIBA一直以来与NIST保持长期标准方法开发合作。HORIBA荧光光谱仪整体系统采用NIST标准校正样品、工具和方法,保证整机性能可溯源。仪器信息网:未来贵公司光谱产品线的发展规划,重点发展哪些类别的光谱产品?周磊博士:HORIBA是唯一研发设计生产全系列科研荧光光谱仪的厂家,型号涵盖了稳瞬态光谱仪,覆盖了紫外-可见、近红外、中红外光谱范围。针对不同应用领域,HORIBA会根据客户的实际应用需求特点,来推荐相应的特色配置,并不会刻意主推某款产品。譬如:Aqualog主要针对于复杂水环境,大气颗粒物中的发光基团等的整体研究,无论是软件功能或者硬件设计,都从环境工作者的角度出发,解决环境科研分析的需求,比如通过专业软件,进行化学计量学分析,判断污染物的组分;Duetta针对于生物荧光探针等具有近红外一区快速检测需求的应用(量子点,有机荧光探针、金纳米团簇等),由于其配备的CCD具有一次性采谱与宽检测范围(250~1100nm)的特点,在连续监测波长范围上十分具有优势,按压式的样品仓方便客户在实验室环境中操作时的便捷性,不开盖加样的设计满足了客户在测试过程中去添加样品,以此来查看两种或多种物质在反应过程中全谱的变化信息;荧光寿命光谱仪具有高能量窄脉宽寿命光源,皮秒稳瞬态检测器及自动拟合寿命软件,在太阳能钙钛矿,光催化研究中得到了广大科研用户的认可;模块化荧光光谱仪产品Fluorolog-QM,通用性强,采用开放式模块化光路设计,根据用户的需求定制系统,并且在近红外光谱和寿命采集上具有其独有优势,可以同时检测近红外光谱与寿命。全新软件可以实现稳瞬态功能同时控制,内含特质化功能,同时包含多种数据处理方式。融合多种寿命测试技术,多元化满足客户寿命测试需求。模块化荧光光谱仪等主要针对于多功能,高灵敏度,定制化的科研领域,在近红外研究领域,如稀土元素掺杂的材料中更有其独有的优势,同一检测器就可实现近红外光谱与寿命的测量,性价比更高;针对纳米材料研究专门开发的Nanolog模块化荧光光谱仪,配合专利技术碳管分析软件,特别适合于碳基半导体研究中的碳管管径、手性指数分析,扩展波长的近红外阵列检测器,轻松实现2100nm范围的三维光谱检测;DeltaFlex和DeltaPro专注于荧光寿命的表征,在表征钙钛矿材料中载流子等方面(分子互作,比率荧光)有着很大的应用优势;视频级的荧光寿命成像技术(FLIMera荧光寿命成像相机)在研究神经传导、分子微环境(如pH值、离子浓度的不同)等领域有着非常广泛的潜在应用。仪器信息网:从行业发展角度来说,您认为目前光谱仪器整体技术水平怎么样?未来最具前景的光谱仪器或者技术是什么?最具前景的应用将体现在哪些方面?周磊博士:HORIBA是以客户的需求为导向,不断开发满足客户不同应用需求的产品,针对热点应用领域,推出专业化解决方案。例如目前非常热门的OLED显示材料、钙钛矿太阳能电池、AIE、碳基半导体等。HORIBA着重于科研应用市场,并且深入工业分析、研发市场。如果说HORIBA以往产品技术更加专注和擅长于高端科学研究领域,将来更多领域的应用都需要更专业的仪器,我们会向专业化方向发展。新品Duetta的更快捷测试技术、更小巧的外观设计以及磷光光谱(延迟光谱)中经典的真实门控技术,太阳能应用的专属寿命系统也使HORIBA荧光从科学研究领域向分析测试、工业应用市场的拓展成为可能,分析测试、工业领域等未来潜力市场也将得到HORIBA的重点关注。
  • “光谱仪在化学领域中的应用”在线讲座问题集锦集锦(4)
    化学是在原子层次上研究物质的组成、结构、性质、及变化规律的自然科学,是重要的基础科学之一。 10月24日,HORIBA Scientific举办了光谱应用系列在线讲座(4)——“光谱仪在化学领域中的应用”,涉及:ICP光谱、拉曼光谱、荧光光谱、SPR四大技术,现将问题整理后供大家参考。 课程1:ICP光谱课程Q:戚老师:可以测出F吗?A: 目前ICP-OES不能进行F元素的定性定量检测。如果波长范围是120-800nm的话,可以测试卤素元素,诸如Cl和Br。 Q:南昌-王老师:ICP 采用什么检测器?A:ICP光谱仪有两种类型检测器,CCD与PMT。这取决于具体应用,如果样品每次都要分析20个元素以上,宜采用CCD检测器;如果对分辨率要求比较高,或需要测试卤素元素,就需要采用PMT检测器。 Q:苏州热工-宋先生:等离子高温,具体温度达到多少?A:等离子温度可以达到6000-10000K,正因为有这么高的温度,才能够激发多达70多种元素。 Q:863检测-ALLEN:合金钢里面铅如何能提高检测准确度?A:对于合金钢样品来说,如果Pb是以痕量存在的话,可以采用基体匹配才进行测试。当然如果合金钢本身基体效应不大,可以直接采用标准曲线法进行测试,所以具体还是取决于合金钢的种类。 Q:浙江大学-材料系-余老师:测试硅纳米颗粒中的Si、O、P、B等元素,用OES好还是AES?A:ICP-OES和ICP-AES是同一个意思,都是指等离子体发射光谱仪,早期称之为ICP-AES,后因为质谱仪的出现,为区别质谱仪,将AES改为OES。ICP-OES可以测试Si纳米粒子中Si、P和B。但是O元素测试不了。另外也取决于Si纳米颗粒中这几种元素的含量,目前ICP光谱仪在水溶液中测试精度是在ppb级别。 Q:计量学院-DONG:ICP对进样系统的清洗有哪些要求?A:ICP进样系统的清洗取决于仪器使用是否很频繁。对于雾化器,可以通过注射器进行清洗,对于雾化室我们采用大量高纯水来进行冲洗。 Q:计量学院-DONG:ICP-OES的浓度检测结果是直接给出的,还是要提取光谱数据进行后期数据处理?A:ICP-OES的测试结果可以由软件直接给出。例如建立方法时,你可以直接按照固体里面的单位进行设置,也可以按照溶液里面的单位设置。同时软件还可以输入称重值、定容值,终给出对应的原始固体里面的含量。 Q:863检测-ALLEN:目前ICP 2000 2 主要采用峰面积换是峰高进行定量,哪个准确度高些?A:ICP光谱仪定量分析主要是基于元素的强度和它的浓度成正比,根据比尔定量建立标准曲线,进一步进行精确定量分析。 Q:中科院生态研究中心-王老师:测试中雾化器起什么作用?A:在CIP-OES中,雾化器的作用主要是将液体样品进行汽化变为气溶胶。 Q:863检测-ALLEN:你们的ICP 可以采用峰面积定量吗?A:ICP-OES定量是根据峰相对应的强度来进行定量分析。分析模式可以采用大点法,或者高斯法。 Q:ICP-OES检测与ICP-MS检测的优缺点?A:ICP-OES和ICP-MS的区别测试的浓度范围不同。ICP-OES检测范围是ppb~%, ICP-MS的检测下限比较低,可以到ppt,ppq这么低的下限,但是浓度过高,检测器会饱和损坏。 Q:863检测-ALLEN:那一般金属材料元素分析必须集体匹配才可以检测?A:金属材料在分析测试时,根据各自的配比,所用的方法都不尽相同。对于一些高纯样品,因为所测元素时痕量范围,一般采用基体匹配较为合适。课程2:拉曼光谱课程Q:江苏大学-高老师:我们能采用拉曼光谱仪进行定量分析吗?A:拉曼可以做定量分析,对于溶液来说比较容易,因为不存在取样是否均匀的问题;对于固体样品来说,由于样品分布不均匀,显微拉曼无法准确定量,可以用透射拉曼实现 Q:江苏大学-高老师:拉曼可以对所有的样品作三维成像吗?是否能够看到内部结构?A:只要激光能穿透进样品,都可以做三维成像,具体三维成像能做多深,跟样品的消光系数和激发波长有关。在三维成像图上,可以使用透视法或切片观察截面方法看到内部结构 Q:xiaolu:成像的原理是什么?空间信息只能是有机么?A:成像是通过软件控制自动平台的位置,获取一个区域里的各个点的拉曼光谱,然后通过后续的数学处理解析光谱获得。如果要获取不同物质的分布图,可以根据光谱的相似度进行解析,相同的光谱归为一类,不相同的光谱归为另外一类;如果获取物质的峰信息分布,可以拟合光谱的峰位、峰强和峰面积即可。 Q:songwei:请问三维成像的硬件要求及测试的空间分尺度?A:只要配备XYZ自动平台即可进行三维成像;空间分辨率跟激光光斑的尺寸有关,光斑直径d=1.22λ/NA,λ是激光波长,NA为物镜的数值孔径,以532nm激发波长,100x物镜为例,光斑直径约1um,所以能达到横向1um,纵向2um的空间分辨率 Q:xiah:在分析浅表面成分时,什么样的条件比较适合?A:寻找在样品中穿透较浅的激光用于分析表面成分。一般来说,紫外激光在样品中穿透比较浅,适合于分析浅表面样品,但是不是绝对的 Q:lei:请问你们用拉曼做定量分析时是根据什么定量,如何选择特征峰?A:定量是根据特征峰的积分强度来分析的。特征峰好是单峰;如果没有单峰,可以通过峰位拟合的方法获取特征峰的积分强度;如果峰位非常复杂,难以找到特征峰,可以通过化学计量学的方法进行定量分析。 Q:jessy:可以用同一台拉曼仪器可以将结构分析和荧光的各相异性的分析结合在一起吗?A:可以。拉曼光谱仪同时是一台性能非常好的光致发光光谱仪。 Q:中科院生态研究中心-王老师:激光拉曼测试分析,如何选择合适激光器波长?A:如果做表面薄膜分析,可选择紫外激光;如果不是薄膜且样品没有荧光干扰,那尽量选择短波长的可见激光;如果样品有荧光干扰,则要选择合适的激光去避开,比如荧光出现在700nm等长波长的地方,则选择用473nm或532nm去避开,如果荧光出现在500nm等短波长的地方,则选择785nm等长波长激光去避开。课程3:荧光光谱课程Q:张老师:荧光寿命如何测定?A:荧光寿命是当某种物质被一束激光激发后,该物质的分子吸收能量后从基态跃迁到某一激发态上,再以辐射跃迁的形式发出荧光回到基态。当激发停止后,分子的荧光强度降到激发时大强度的1/e所需的时间称为荧光寿命。用脉冲激发源,通常是激光二管或LED,在发出一个脉冲光的同时,产生一个同步“start”计时信号,输入到计时电子装置(计时单元)。脉冲的光激发了样品,在一定时间后它回到基态并发出光子,发射光脉冲入射到检测器,它提供一个“stop”信号到计时电子装置,start和stop两个信号的差异输出到直方图。这个过程重复多次,直到直方图完全建立。在观察足够长的单光子计时条件后,直方图中对应时间通道的光子数和这个时间衰减的强度成比例。激发态的衰减理论上是遵从一个指数行为,但是荧光光子的发射是随机出现的,所以需要多次循环激发-发射来建立这个衰减曲线。 Q:四川大学-陈老师:样品有光漂白现象,怎么避免?A:建议采用CCD作为光谱仪检测器,配合可以级成像光谱仪,一次快速采集全谱信息,可以消除时间造成的光谱漂移,避免由长时间光辐射造成的“光漂白”。 Q:中科院生态研究中心-王老师:请简要介绍下荧光/磷光产生机理?A:荧光是物质吸收光后发生出一定波长光的现象(通常是发射出较长波长的光)。荧光的时间尺度通常是皮秒到微秒范围。发射发生在较长的时间尺度(微秒到秒级),这个尺度的发光通常被称为磷光。由于激发态分子会损失能量到环境中,发射光的波长通常在较长的波长(较低的能量)位置,磷光甚至会发生在更长的波长位置。我们可以采用Jablonski diagram能级图说明荧光和磷光的定义,荧光总是发生在从低的激发态能级回到基态的过程中,电子从较高的能级到跃迁至基态,其需要时间在纳秒尺度。由于时间尺度和环境的影响,荧光基团可以被认为是一种很好的纳米尺度的探针,同时基于荧光分子对于局域环境(粘度、PH值、介电常数、性、温度和分子间相互作用等)的其敏感,导致其被广泛应用。课程4:SPR课程Q:Xiah:如果我分析的分子比较大,是否会将相互反应的槽堵塞?A:不会。SPRi流路设计满足粗样品和粘稠样品的测试需求,如:血清、血浆和细胞等。 Q:jiang:我们想在SPR的芯片上做自己的功能化,请问你们的芯片能不能让我们自己做功能化?A:可以。HORIBA采用开放式芯片设计,完全支持您的专属开发需求。 Q:四川大学-陈老师:SPR和SPRi有什么区别?A:表面等离子体共振(SPR)是一种物理光学现象,当金属薄膜表面质量发生改变时,会引起表面折射率产生变化,通过测量这种变化,可得到分子作用动力学及浓度等信息,从而了解分子之间的相互作用。SPRi技术将等离子体共振技术、成像技术(Imaging)和微阵列芯片技术进行结合,可一次获取百种生物分子相互作用的信息,这种阵列测量方式突破了传统通道式测量的局限,特别适用于快筛及实时成像的应用要求。 关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 2014光谱系列网络讲座(2):HORIBA Scientific荧光新技术与前沿应用
    荧光是物质中的电子吸收光的能量由低能级转变为高能级,再跃迁回低能级时所释放的光。通过对荧光寿命、磷光寿命及光谱研究,可以获得样品的分子结构、分子间距(FRET)、微环境变化、量子产率、各向异性、荧光寿命及荧光寿命成像(FLIM)等信息。荧光技术可以广泛应用于生物、化学、材料科学、环境、制药、食品等领域。讲座内容:1、荧光简介2、荧光原理及技术3、荧光光谱仪组成4、荧光新解决方案5、荧光产品服务与培训支持主讲人:周磊博士(荧光产线技术支持 )开课时间:2014年6月30日 10:00-12:00 (网络教室于9:30开放)报名条件:需注册为仪器信息网用户环境配置:电脑、耳麦(需音频交流的用户请准备麦克风) 报名 (限120人,额满为止)讲座预告:HORIBA拉曼-AFM技术新进展 9月22日 10:00-12:00 报名真空紫外光谱技术和应用 9月25日 10:00-12:00 椭圆偏振及辉光放电光谱技术 9月关注我们邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 天津港东开发国内第一台高速荧光分光光度计
    热烈庆祝天津港东开发国内第一台高速荧光分光光度计!F-380荧光分光光度计波长扫描速度可达30000nm/min(500nm/s) 磷光分析可测量短达1ms的磷光寿命,并可以应用于各种样品类型。   F-380荧光分光光度计性价比好,关键部件等采用进口器件。   F-380型荧光分光光度计是我公司新开发的高端荧光光谱仪,产品结构新颖、价格适中、功能完善,完全适合科研、医疗、化工、生化、环保以及临床检测、食品检验等领域。     F-380型荧光分光光度计 关于(新)F-380型荧光分光光度计   产品型号:F-380   产品简介:F-380型荧光分光光度计是我公司新开发的高端荧光光谱仪,产品结构新颖、价格适中、功能完善,完全适合科研、医疗、化工、生化、环保以及临床检测、食品检验等领域。   仪器的用途   F-380型荧光分光光度计是我公司新开发的高端荧光光谱仪,产品结构新颖、价格适中、功能完善,完全适合科研、医疗、化工、生化、环保以及临床检测、食品检验等领域。   仪器的规格与性能指标   1 基本参数   波长范围:200-750 nm和零级光(200-900 nm,选用特殊光电倍增管R928F)   色散元件:采用凹面衍射光栅(闪耀波长:激发300nm/发射400 nm)   带宽:EX:1.0,2.5,5.0,10.0nm   EM:1.0,2.5,5.0,10.0,20.0 nm   接收器:R3788光电倍增管   光源:150W氙灯   波长扫描速度:15 nm/min,60 nm/min,240 nm/min,1200 nm/min,2400 nm/min,12000 nm/min,30000nm/min(500nm/s)   工作温度:10-30℃   工作湿度:≤70%   体积:680W×540D×320Hmm   重量:48kg   2 主要技术指标   分辨率1.0 nm   波长准确度:±2.0 nm   灵敏度:150:1水拉曼峰(P-P)   3 主要特点   (1)F-380具有性能稳定,使用方便等特点。尖端光谱仪制造技术,使其拥有更杰出的性能。光学设计,也提升了灵敏度等技术指标,也使仪器紧凑,占用更小实验台面积。   (2)内置的切光器功能可将样品在激发光束下的暴露时间缩短至扫描时间的8%。样品暴露时间的缩短,可保护容易发生光反应的样品,提高延续性实验的分析精度。磷光分析可测量短达1ms的磷光寿命,并可以应用于各种样品类型。   (3)除荧光和磷光外,标准配置中还包括了发光测定功能。系统光能量通过能力强,信噪比高,因而可对化学发光和生物发光进行有效测定。   (4)自动预扫描能帮助您找到最优的荧光分析条件,可以快速探知未知样品的光谱信息,同时完全避免将其他散射光谱峰错误设定为荧光激发或荧光发射峰。   (5)基于Microsoft Windows的控制及分析软件,简洁易用,使您轻松进行参数设置、数据采集和数据处理,同时提供更多三维谱图计算功能,以及提供方便的数据输出和用户可自由设计地报告格式。   (6)采用USB2.0接口,数据传输速度快,连接方便。   (7)高强度的150瓦氙灯,为200-900nm波长范围内的测定提供充足的光能。   (8)独特的水平狭缝设计同时应用于激发和发射光束,有效提高了灵敏度。同时在标准的10mm比色皿,只要0.6ml样品就可进行正常测定。   (9)系统有更丰富的定量分析功能。重复标样测定功能提供了最精确的工作曲线,统计校验进一步保证了分析精度。   (10)为了最大程度地保证稳定性,F-380拥有激发光束配比监测系统,可监测不同波长下光源强度的微小变化。   (11)多样有用的附件,从固体样品支架到自动偏振附件,F-380都可以配备,协助您解决最困难的应用分析问题。   (12)三维光谱图在1分钟内即可完成,提供最丰富的光谱信息,等高线图和鸟瞰图给您多个观察的角度。使三维谱图的定性分析功能发挥极致。   4 仪器的原理   F-380型荧光分光光度计具有双单色器,可以记录物质的激发光谱和荧光光谱,采用计算机完成仪器的系统控制和数据采集。其工作原理图如下:    图4-1 工作流程图   由光源发出的光,通过激发单色器后变成单色光,而后照在荧光池中的被测样品上,由此激发出的荧光被发射单色器收集后,经单色器色散成单色光而照射在光电倍增管上转换成相应的电信号,经放大器放大反馈入A/D转换单元,将模拟电信号转换成相应的数字量。并通过显示器或打印机显示记录下被测样品的谱图。这就是荧光分光光度计的基本工作原理。      详情请登入:http://www.tjgd.com/Client/Product.aspx?prodcutId=170
  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 《Science》、《 Nature》近期化学前沿要闻一览
    1.实时多光谱光生成像技术进展和应用 (Advances in real-timemultispectral optoacoustic imaging and its applications) 光生成像对生物组织内的光散射不敏感,而且,与传统光成像技术不同,光生成像是一种能对组织内部高分辨率可视化成像的技术。最近,在激光技术、检测策略和反演技术方面的进步大幅促进了光生成像技术的发展。一个明显的标志是二维和三维的视频速率多光谱成像技术的发展。Taruttis等就光生成像技术的发展及其在生物和临床应用方面撰写了相关综述。(Nature Photonics DOI: 10. 1038/NPHOTON. 2015. 29) 2.一种超快充电的铝离子电池 (An ultrafastrechargeable aluminium-ion battery) 开发可充电电池系统可以满足从个人电子设备到大型电网的各种能量需求。可充电式铝基电池具有低成本、低可燃性及高容量的潜在优点。不过,在过去30年中研究者们在研究铝离子电池的过程中一直遇到各种问题,如阴极材料分解、低的放电电压(约0.55伏)、寿命短、衰减快等。Lin等最近报道了一种高容量的可充电式铝电池,这种电池使用铝金属作为阳极,三维石墨泡沫作为阴极,不可燃的离子液体作为电解质。这种电池表现出接近2V的放电电压,以及 70mAh g&ndash 1的比容量。他们发现这种阴极可以进行快速的离子扩散和插入,因此1分钟内便可完成充电,并且在7500个循环内没有容量衰减。(Naturedoi: 10. 1038/ nature 14340) 3.具有稳定三线激发态的超长有机磷光材料 (Stabilizing tripletexcited states for ultralong organic phosphorescence) 通过分子设计的手段来控制有机分子的发光性质催生了很多高性能的光电子器件的诞生。不过,在合成具有长寿命激发态分子方面科学家们却一直没有很大突破,这主要是因为激发态是一种极不稳定的状态,很容易失活。An等报道了一种可调节发光寿命的分子设计方法,这种方法可适用于多种类型的分子,其原理是通过强耦合作用来稳定分子的三线态能级。他们设计的分子发光寿命最长可达1.35s,远长于传统的有机荧光分子。作者称他们的工作为拓展有机磷光材料的应用范围迈开重要一步。(Nature Materials DOI: 10. 1038/ NMAT 4259) 4.一种颜色可调、可编织的纤维状聚合物发光电化学电池(A colour-tunable,weavable fibre-shaped polymer light-emitting electrochemical cell) 可穿戴电子设备和光电子设备的出现不仅需要开发高度柔性的器件,同时还要满足器件可以编织,这样才有实际应用价值。Zhang等开发了一种颜色可调、可编织的纤维状聚合物发光电化学电池(PLEC)。这种纤维状的PLEC是通过全溶液加工的办法加工的,因此便于放大规模生产。他们设计的纤维电池具有同轴结构,阴极为修饰过的金属线,阳极为导电碳纳米管,中间夹着电致发光聚合物层。纤维状带来了独特的优势,例如发光不受视角影响、能提供多种颜色、质轻、柔性、可编织。这种可编织的电池有望未来被制作成可发光的智能衣服。(Nature Photonics DOI: 10. 1038/ NPHOTON.2015. 37) 5.激光诱导定位的质谱成像 (Mass spectrometryimaging with laser-induced postionization) 基质辅助激光解吸电离质谱成像技术(MALDI-MSI)可以同时记录组织切片内很多细胞的水平分布情况,不过它的灵敏度受到离子数量的限制。Soltwisch等使用波长可调的定位激光技术来激发气相离子的二次解离。通过这种办法,他们成功将动植物组织分子内离子产率的提高了100倍。作者称这项技术可以使得灵敏MALDI-MS成像技术在微米尺度范围检测横向分布成为可能。(ScienceDOI:10.1126/science.aaa1051) 6.基于可调纳米结构的量子点高效发光器件 (High-efficiencylight-emitting devices based on quantum dots with tailored nanostructures) 半导体量子点材料因其独特的光学特性而被科学家广泛关注,这些特点包括发射波长随尺寸变化、窄发射光谱、高发光效率等。最近,Yang等人报道了基于量子点的全系列蓝光、绿光、红光发光器件,每种器件都有超过10%的极高的外量子效率。他们发现量子点的纳米结构,尤其是中间层的组成成分和外层厚度对决定器件效率起到至关重要的作用。这些器件均是通过溶液加工法制备的,因此易于放大规模生产。其中,绿光和红光器件的寿命分别超过90000 和 300000小时。 (Nature Photonics DOI: 10. 1038/ NPHOTON. 2015. 36) 7.使用P型金属氮化物纳米线阵列在可见光条件下解离水 (Visible light-drivenefficient overall water splitting using p-type metal-nitride nanowire arrays) 依靠太阳能来电解水制氢气是一种未来生产可再生能源的途径之一。Kibria等报道了一种利用可见光高效、稳定的电解水制备氢气的方法。他们所使用的材料是p型掺杂的氮化铟镓纳米阵列。在中性水 (PH= 7)的条件下,体系的表观量子效率为12.3%。通过使用双层p型掺杂的氮化镓/氮化铟镓纳米线异质结结构,他们展示出在聚光条件下太阳能-氢气转换效率达到1.8%。作者称这一稳定高效的纳米级光催化体系有潜力应用于大规模的太阳能-燃料转化方面。(Nature Communications DOI: 10.1038/ ncomms 7797) 8.通过人造界面偶极来控制钙钛矿异质结界面的能带排列 (Controlling bandalignments by artificial interface dipoles at perovskite heterointerfaces) &ldquo 界面即器件&rdquo 这一概念广泛影响了很对基于界面的电子器件,如催化剂、清洁能源系统和最近出现的多功能器件。很多器件的性质决定于界面间的能带排列,而能带排列常受界面偶极的影响。不过,在钙钛矿材料中人为的创造和控制界面偶极还没有被尝试过,而这种方法对这类材料可能会很有效果。Yajima等人报道了可在钙钛矿金属-半导体异质结中调控能带排列的办法。他们通过在界面处插入正电荷或负电荷改变界面偶极实现这一目标的。作者称这种方法可用来改变功函数,从而提高器件性能。(Nature Communications DOI: 10. 1038/ ncomms 7759)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制