当前位置: 仪器信息网 > 行业主题 > >

磷光材料

仪器信息网磷光材料专题为您整合磷光材料相关的最新文章,在磷光材料专题,您不仅可以免费浏览磷光材料的资讯, 同时您还可以浏览磷光材料的相关资料、解决方案,参与社区磷光材料话题讨论。

磷光材料相关的论坛

  • 【分享】化学发光中的荧光与磷光

    当处于基态的分子吸收紫外-可见光后,即分子获得了能量,其价电子就会发生能级跃迁,从基态跃迁到激发单重态的各个不同振动能级,并很快以振动驰豫的方式放出小部分能量达到同一电子激发态的最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为荧光。   如果受激发分子的电子在激发态发生自旋反转,当它所处单重态的较低振动能级与激发三重态的较高能级重叠时,就会发生系间窜跃,到达激发激发三重态,经过振动驰豫达到最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为磷光。   磷光是一种缓慢发光的光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段),而且与荧光过程不同,当入射光停止后,发光现象持续存在。发出磷光的退激发过程是被量子力学的跃迁选择规则禁戒的,因此这个过程很缓慢。所谓的"在黑暗中发光"的材料通常都是磷光性材料,如夜明珠。 荧光与磷光产生机理:电子依照泡利不相容排布在分子轨道上,当分子吸收入射光的能量后,其中的电子从基态S0(通常为自旋单重态)跃迁至具有相同自旋多重度的激发态。处于激发态的电子可以通过各种不同的途径释放其能量回到基态。比如电子可以从经由非常快的(短于10 秒)内转换过程无辐射跃迁至能量稍低并具有相同自旋多重度的激发态,然后从经由系间跨越过程无辐射跃迁至能量较低且具有不同自旋多重度的激发态(通常为自旋三重态),再经由内转换过程无辐射跃迁至激发态,然后以发光的方式释放出能量而回到基态S0。由于激发态和基态S0具有不同的自旋多重度,虽然这一跃迁过程在热力学上有利,可是它是被跃迁选择规则禁戒的,从而需要很长的时间(从10 秒到数分钟乃至数小时不等)来完成这个过程;当停止入射光后,物质中还有相当数量的电子继续保持在亚稳态上并持续发光直到所有的电子回到基态。

  • 带磷光的光度计

    那位大虾知道又便宜又好用的带磷光的荧光分光光度计。我公司想买一台,可又不知道选什么的。只要可以打荧光、磷光的谱就可以了。谁要有什么资料请和我联系。email:shanghai.macbet@gmail.com

  • 【求助】有关磷光测定入门

    我准备测室温磷光,由于没有基础,请高手多多指教。测定时须注意些什么?激发与发射波长的确定与荧光相同吗?磷光出现象容易吗?流体磷光是否在荧光模式就可以测定,而不必用磷光模式?磷光峰与荧光峰如何确认?还有诸多关于仪器使用的问题,望高手们及做过的志士仁人们不吝赐教啊!提前拜谢了!坐等!我的QQ:583842521

  • 怎么通过磷光光谱来计算三重态能量

    请教各位老师。最近看文献,有些列出一些有机物的三重态能量。我想知道该能量值怎么通过实验得到?是通过测定低温磷光光谱吗?那么由光谱数据怎么计算得到三重态能量呢?另外,磷光是不是一定要在低温下才能测定,常温为什么不行呢,仅仅是考虑到荧光的干扰吗?还是有其他原因?谢谢!

  • 磷光模式能否完全区分荧光和延迟荧光

    请问F-4600 FL Spectrophotometer 在用磷光模式测试光谱的时候,能否将长寿命荧光成分和短寿命荧光成分完全区分出来。在使用磷光模式40Hz下测试时发现存在峰与荧光峰位置一样,现在不清楚到底是荧光还是TADF。

  • 荧光磷光光谱

    仪器可以测稳态光谱和瞬态光谱,那如果想测磷光发射光谱和激发光谱应该是测瞬态还是测稳态?

  • 【原创】有关磷光分析法一本好书

    书 名:室温磷光分析法原理与应用-分析化学新方法新技术丛书作 者:朱若华 出版日期:2006年3月1日出版社: 科学出版社发行部ISBN号: 7-03-016469-5 内容提要: 本书系统地介绍了室温磷光分析法的历史、应用和发展趋势,分章节讨论室温磷光分析技术(包括流体室温磷光法和固体基质室温磷光法等)的原理、发生机理、实验方法和应用范围;讨论各种分析技术的特点和影响因素。本书共分9章:首先阐述了室温磷光的光物理基础;然后介绍了室温磷光仪器和测量技术,固体基质室温磷光分析法,流体室温磷光技术,包括环糊精诱导室温磷光、胶束增敏室温磷光、敏化/猝灭室温磷光和无保护及不除氧室温磷光法,最后着重介绍了室温磷光传感器的原理和发展,并系统地讨论了生物大分子蛋白质和核酸的室温磷光和内源性以及外源性室温磷光探针技术在生命科学中的应用。本书可供高等院校发光分析或分子光谱分析专业研究生和教师使用,也可供从事分析化学、生命科学、环境、医学等工作的科研人员参考。 目录: 前言序言第1章 磷光光物理基础 1.1 磷光发展简史1.2 光致发光的物理基础1.3 磷光特征1.4 结构效应和环境影响1.5 磷光猝灭 1.6 三线态的研究方法及相关过程的应用参考文献第2章 室温磷光测量仪器、装置与技术2.1 磷光仪器的基本组成 2.2 磷光测量技术2.3 除氧技术参考文献 第3章 固体基质室温磷光 3.1 因体基质3.2 重原子微扰剂3.3 刚性化机理3.4 氧气和温度对SS-RTP的影响3.5 固体表面发光量子产率的测定3.6 SS-RTP实验技术3.7 应用参考文献第4章 表面活性剂有序介质增稳室温磷光4.1 表面活性剂胶束有序介质及胶束动力学4.2 胶束增稳室温磷光法(MS-RTP)4.3 其他有序介质体系的应用4.4 MS-RTP的应用参考文献第5章 环湖精诱导室温磷光5.1 大环化合物简介5.2 主-客体包配平衡5.3 CD-RTP中的重原子微扰剂和第三、第四组分5.4 除氧方法5.6 非除氧CD-RTP的机理5.6 应用与展望参考文献第6章 敏化和猝灭流体室温磷光6.1 溶液中的能量转移6.2 敏化和猝灭室温磷光原理和条件6.3 敏化和猝灭RTP的实验技术及应用参考文献第7章 流体介质中的无保护和胶态纳/微晶体自保护室温磷光7.1 无保护介质室温磷光7.2 胶态纳/微悬浮晶体自保护室温磷光参考文献第8章 室温磷光光化学传感器8.1 传感器的基本特征8.2 室温磷光传感器8.3 RTP传感器的应用8.4 结论和展望参考文献第9章 生物分子的室温磷光研究与应用9.1 蛋白质的室温磷光研究9.2 核酸的室温磷光研究9.3 外源性磷光探针在生物医学领域的应用参考文献主题索引

  • 【原创大赛】(一)简述红色硅酸盐发光材料的铝酸盐基质

    BaAl204:Eu2+ 。碱土金属基质研究简介:1975年Бланк等首先报道了MeAl2O4∶Eu2+ (Me∶Ca,Sr,Ba)接近传统ZnS型长余辉材料的发光特征。1991年复旦大学的宋庆梅等详细报道了铝酸锶铕(SrEu) O·7Al2O3 ]磷光体的合成及发光特性,指出荧光衰减曲线由两部分组成———指数曲线拟合后的快速衰减和非指数曲线拟合的慢衰减过程。1992年肖志国率先发现了以SrAl2O4∶Eu ,Dy为代表的多种稀土离子共掺杂的碱土铝酸盐型发光材料,由于Dy的加入使得长余辉发光材料的发光性能比SrAl2O4∶Eu2+的大大提高,余辉时间可达ZnS∶Cu的十倍以上,并于同年创建了公司,使该材料得以商品化。1993年松尺隆嗣等较详细地研究了铝酸锶铕SrAl2O4∶Eu2+的长余辉特性,得到其衰减规律为I= ct- n[i] ([/i] n= 1110) ,不同衰减时间内的发光亮度比ZnS∶Cu的高5 ~10 倍,衰减时间在2000 min以上时仍可达到人的肉眼能辨认的水平( 0132mcd/ m2 ) 。1995年唐明道等又对SrAl2O4∶Eu2+长余辉发光特性进行研究,这一材料的发光衰减符合I= ct- n的规律。同年宋庆梅等又在原有的基础上得到了掺镁的SrAl2O4∶Eu2+磷光体呈双曲线式衰减( I= ct- n [i],[/i] n= 1110) 的余辉发光强度,并指出掺钙的SrAl2O4∶Eu2+无任何长余辉效应。1993年中期开始国内外出现与SrAl2O4∶Eu ,Dy相关的专利申请,到目前为止有数十项之多;1996年开始出现相关的研究文献。目前铝酸盐体系达到实用化程度的长余辉发光材料有人们较熟悉的发蓝光的CaAl2O4 ∶Eu ,Nd;发蓝绿光的Sr4Al14O25∶Eu,Dy (标记为PLB ,发射光谱峰值490nm) 及发黄绿光的SrAl2O4∶Eu,Dy (标记为PLO ,发射光谱峰值520nm) ,它们都有不错的长余辉发光性能。在现代,铝酸盐体系长余辉发光材料的研究主要集中在两个方面:第一,基础研究领域,主要通过寻找新的铝酸盐长余辉发光体系和长余辉激活离子,在同一化合物及不同化合物中,研究基质组成、结构和余辉性能之间的关系,探讨长余辉发光的机理,总结影响长余辉发光性能的基本要素与规律。第二,应用开发研究,主要通过优化原料纯度、基质组份配比、激活离子浓度、助熔剂种类、热处理气氛及合成方法(高温固相法、化学沉淀法、水热合成法、溶胶凝胶法、燃烧合成法、微波法)等,进一步提高商业长余辉发光材料CaAl204:Eu2+,Nd3+、SrAl204:Eu2+,Dy3+和 Sr4A114025:Eu2+,By3+的长余辉发光性能,研究它们的应用特性如光照稳定性、耐水性及温度特性等此外,长余辉材料已从多晶粉末扩展至单晶、薄膜、玻璃陶瓷和玻璃等形态。铝酸盐长余辉发光材料的应用也从暗环境下弱光照明和指示,如紧急出口标志、消防通道、器具的标志及工艺美术品如夜光玩具等传统领域,拓展到高能射线探测如c-,a-,b-,g射线、光纤温度计以及工程陶瓷的无损探测等高新领域。关于发光材料基质,最常见的是铝酸盐和硅酸盐,有兴趣的朋友可以一起讨论。下一篇:(二)简述红色硅酸盐发光材料的硅酸盐基质[url]http://bbs.instrument.com.cn/topic/5948579[/url]

  • 【原创】用LS-45/55/荧光/磷光/分子发光光度计测粉末样品时出现问题啊

    用LS-45/55/荧光/磷光/分子发光光度计测粉末样品时出现问题啊! 我在测试ZnO粉末样品时,是将粉末装入一小试管中,结果测量时,发现装样品和不装样品测量的结果是一样的,这样也就说明我测量的纯粹的小试管的发光性质。或许是不是我测的粉末样品的发光非常的差还是我的技术问题? 请问如果用LS-45/55/荧光/磷光/分子发光光度计测粉末样品? 请各位指导![em63]

  • 【原创大赛】(二)简述红色硅酸盐发光材料的硅酸盐基质

    由于铝酸盐基磷光体在水中易水解,需在颗粒表面进行物理化学修饰,以提高其稳定性。Mitsuharu等人发现利用 CaO-Al2O3-SiO2作为基质材料体系,共掺杂稀土Eu2+和Nd3+合成的发射500-600 nm 波长光的长余辉蓄光材料,稳定性良好,发射波长取决于基质材料组成,并且都是由于Eu2+的4f-5d 跃迁引起的。据研究:用Eu激活的SrO-MgO-SiO2,可以合成发射波长为468-480 nm 的蓝色发光材料,但共掺杂稀土元素Dy的SrO-MgO-SiO2体系的硅酸盐长余辉磷光体尚无报道。本实验尝试采用以Sr2MgSi2O7作为基质,通过掺杂Eu离子,共掺杂稀土Dy离子,合成了一种稳定性良好的硅酸盐基蓝色长余辉蓄光材料。以硅酸盐为基质的发光材料由于具有良好的化学稳定性和热稳定性,而且高纯二氧化硅原料价廉、易得,长期以来人们都重视对硅酸盐体系荧光粉的研究和开发。硅酸盐体系发光材料已经发展成为一类应用范围广的重要光致发光材料和阴极射线光材料。如Zn2Si04:Mn2+早在1938年就用于荧光灯,作为光色校正荧光粉,至今仍是彩色荧光灯用荧光粉,在阴极射线显示管上,它也是常用的主要荧光粉。近年来随着等离子平板显示器(PDP)的快速发展,Zn2Si04:Mn2+成为PDP三基色荧光粉的主要绿色组分。1992年,我国肖志国等人开展了硅酸盐体系发光材料的研究,成功地研制出硅酸盐发光材料,该体系材料在500nm以下短波光激发下,发出420~ 650nm 的发射光谱,峰值为450 ~ 580 nm,发射光谱峰值在470~ 540nm之间可连续变化,呈现蓝、蓝绿、绿、绿黄或黄颜色长余辉发光。2002年,罗昔贤等首次在硅酸盐体系中发现了余辉时间长达10h以上的高亮度长余辉现象,并采用高温固相法合成了一系列硅酸盐长余辉发光材料。Eu2+、Ln 共激活的镁黄长石结构的焦硅酸盐化合物和镁硅钙石结构的硅酸盐化合物的余辉发光性能最好,发光颜色覆盖从469nm 的蓝色光区到536nm 的黄色光区,余辉时间长达10h 以上,且耐水性及温度特性好。并且研究了各发光材料的光谱特征、长余辉性能,测量了各发光材料的激发光谱和发射光谱以及余辉衰减曲线。同时研究了其应用性能,测量了发光材料的热释光谱和X 射线粉末衍射图谱,确定了发光材料的晶格类型。碱土氯硅酸盐是一类发光性能优良的基质材料,这是由于碱土卤化物和碱土硅酸盐都是支持Eu2 +发光的高效基质,由两者复合的碱土卤硅酸盐由于合成温度低、物理化学稳定性好而获得广泛研究。目前开发的硅酸盐体系长余辉发光材料主要特点如下:(1)化学稳定性比较好、耐水性比较强。曾对铝酸盐体系长余辉发光材料Sr2MgSi207:Eu2+,Dy3+进行了化学稳定性的对比试验。参SrAl204:Eu2+,Dy3+放入5%的NaOH溶液中浸泡2~3小时发光消失,而Sr2MgSi207:Eu2+,Dy3+浸泡20天后仍保持发光性能不变;(2)扩展了长余辉材料的发光颜色范围,发光颜色范围从469nm的蓝色光区536nm的黄色光区,余辉时间长达2000min以上。特别是蓝色长余辉发光材料Sr2MgSi207:Eu2+,Dy3+不仅应用特性优异,而且余辉亮度高、时间长,为长余辉发光材料增加了新的品种,填补了铝酸盐体系长余辉材料蓝色发光性能不佳的缺陷;(3)由于硅酸盐体系长余辉发光材料的应用特性优良,在某些领域的应用(如陶瓷行业),长余辉发光制品要优于铝酸盐体系。硅酸盐体系的发光性能尚未达到铝酸盐体系的水平,镁的正硅酸盐性能还未能得到应用,因此进一步提高硅酸盐体系的发光性能,还需要做更深入的研究工作。此篇与上一篇是我较早之前做研究时做的综述调研,关于这个课题,我还有一些其他方向的调研,有机会再与大家分享。上一篇:(一)简述红色硅酸盐发光材料的铝酸盐基质http://bbs.instrument.com.cn/topic/5948561主要参考文献如下: 刘志平,胡社军,黄慧民,李昌明。发光材料特征及其制备方法当代化工,2008 , 37 (5)。Sakai R,Katsumata T.Komuro S et al J.Luminescence,1999,85.149 刘应亮,丁红长余辉发光材料研究进展 无机化学学报,2001,17(2)。 林 林,尹 民,施朝淑,等。红色长余辉材料Mg2 SiO4 : Dy3+,Mn2 +的制备及发光特性发光学报,2006,27(3) : 3312335。 石 涛,周箭,申乾宏,等。溶胶凝胶法制备纳米晶γ2Al2O3 : T3+粉末及其发光性能硅酸盐通报,2009,28(2) : 2242228。 韩永飞,陈振强,李景照,等。Yb3 + : NaBi(WO4)(MoO4)的制备与性能表征硅酸盐通报,2009,28 (1) : 76279。 曲艳东,李晓杰,陈涛,等。铝酸盐系长余辉发光材料的研究新进展稀有金属,2006,30(1) : 1022105。 郭庆捷,徐明霞,曹佩玲。 Eu2 +激活的碱土铝酸盐长余辉发光材料的研究现状稀土金属材料与工程,2004,33 (3) : 2252228。 Nag Abanti,Kutty T R N. Effectof interface states associated with transitional nanophaseprecitates in theenhancement of red emission from SrAl12O19 : Pr3 + by Ti4 + incorporation. Journal of Physics and Chemistry of Solids,2005, 7: 1912199. 刘全生,章瑞铄,方潇功,黄原亮,张希艳,孟繁艳,董飞,孟庆贺。稀土掺杂Sr3Al2O6红色发光材料的制备与表征硅酸盐通报,2010,29(3) БланкЮС,Завьяловаид.Журналприкладнойспектроскопий,1975 ,T22 (B2) :2632266. Song Qingmei, Huang Jinfei,Wu Maojun,et al . Study on synthesisand luminescence property of Eu2 + activated strontium aluminates . J.FudanUniversity ( Natural Science) ,1991, 12 (2) :1442150. 松尺隆嗣,等。日本第248回萤光体同学会讲演予稿,1993 ,1:1. Tang Mingdao,Li Changkuan,GaoZhiwu,et al . The study on longpersistence of SrAl2O4 ∶Eu2 + . Chin. J .Lumin., 1995 , 16 (1) :51256 (inChinese) . Song Qingmei,Chen Jiyao, Wu Yazhong. A study on luminescence of Mg doped SrAl2O4∶Eu phosphors . J.FudanUniversity (Natural Science) ,1995, 34 (1) :1032106 (in Chinese) . Xiao Zhiguo. The new photoluminescence materialand dope ,The identify data for expert . Dalian ScienceCommittee . 1993 ,1 ,18.肖志国。蓄光型发光材料及制品.化学工业出版社,2002.Aizawa H,Katsumata T,Takahashi J,et a1.Fiber--optic thermometer using afterglow phosphorescencefrom long duration phosphor.Ele

  • 【原创大赛】国产ICP铜对磷光谱干扰的校正测试

    国产ICP铜对磷光谱干扰的校正测试一、实验目的针对硅业工业硅产品中铜元素含量过高,导致测试磷元素结果误差较大的原因,通过本方法的研究消除铜元素对磷元素的光谱干扰,使磷元素的测试结果更加准确。二、实验原理 采用基体匹配法通过单道扫描型ICP2000测试磷元素的含量,可大大消除铜元素对磷元素的光谱干扰,通过优化仪器条件,使测试结果更加稳定、准确。三、实验部分3.1 仪器与试剂3.1.1 仪器ICP2000型电感耦合等离子体发射光谱仪3.1.2 试剂硝酸(优级纯)、氢氟酸(优级纯)3.1.3 溶液配备分取0、0.1ml、0.2ml、1ml 1000ug/ml的磷标准溶液至100ml容量瓶中,定容至刻度。分取0、0.1ml、0.2ml、1ml 1000ug/ml的磷标准溶液至100ml容量瓶中,再分别加入0.5ml 1000ug/ml的铜标准溶液至容量瓶中,配制基体匹配标准溶液。3.2 仪器条件仪器功率:1200W,等离子气流量10L/min,载气流量:0.5L/min,辅气流量:0.5L/min,负高压:800V,寻峰步距:0.001nm,积分时间0.3s,磷元素的波长选择213.620nm、214.911nm。3.3样品前处理因无客户的实际样品及详细的样品含量,故本方法采用标准溶液配置模拟样品,模拟样品中磷和铜的浓度基本与客户实际样品定容后的浓度一致。模拟样品的配制:配置0.5ppm的磷标液加入5ppm的铜基体,定容后待测。四、实验数据针对实际样品的信息,确定铜元素对磷元素有一定的光谱干扰,会对结果有较大程度的影响,故采用磷元素的单标绘制工作曲线,用ICP2000分别测试只含磷元素的溶液及铜磷混合溶液,如下图1、2、3所示http://ng1.17img.cn/bbsfiles/images/2011/11/201111222118_332226_1766615_3.gif 图1 只含磷元素的测试效果1http://ng1.17img.cn/bbsfiles/images/2011/11/201111222119_332227_1766615_3.gif 图2 213.620nm处测试磷铜混合溶液http://ng1.17img.cn/bbsfiles/images/2011/11/201111222119_332228_1766615_3.gif 图3 214.911nm处测试磷铜混合溶液对比美国铂金埃尔默ICP-OES7300测试结果如下图4、5所示http://ng1.17img.cn/bbsfiles/images/2011/11/201111222120_332229_1766615_3.gif 图4 PE ICP213.615处测试磷铜混合溶液http://ng1.17img.cn/bbsfiles/images/2011/11/201111222121_332230_1766615_3.gif

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制