当前位置: 仪器信息网 > 行业主题 > >

磷光发光材料铱

仪器信息网磷光发光材料铱专题为您整合磷光发光材料铱相关的最新文章,在磷光发光材料铱专题,您不仅可以免费浏览磷光发光材料铱的资讯, 同时您还可以浏览磷光发光材料铱的相关资料、解决方案,参与社区磷光发光材料铱话题讨论。

磷光发光材料铱相关的论坛

  • 【分享】化学发光中的荧光与磷光

    当处于基态的分子吸收紫外-可见光后,即分子获得了能量,其价电子就会发生能级跃迁,从基态跃迁到激发单重态的各个不同振动能级,并很快以振动驰豫的方式放出小部分能量达到同一电子激发态的最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为荧光。   如果受激发分子的电子在激发态发生自旋反转,当它所处单重态的较低振动能级与激发三重态的较高能级重叠时,就会发生系间窜跃,到达激发激发三重态,经过振动驰豫达到最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为磷光。   磷光是一种缓慢发光的光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段),而且与荧光过程不同,当入射光停止后,发光现象持续存在。发出磷光的退激发过程是被量子力学的跃迁选择规则禁戒的,因此这个过程很缓慢。所谓的"在黑暗中发光"的材料通常都是磷光性材料,如夜明珠。 荧光与磷光产生机理:电子依照泡利不相容排布在分子轨道上,当分子吸收入射光的能量后,其中的电子从基态S0(通常为自旋单重态)跃迁至具有相同自旋多重度的激发态。处于激发态的电子可以通过各种不同的途径释放其能量回到基态。比如电子可以从经由非常快的(短于10 秒)内转换过程无辐射跃迁至能量稍低并具有相同自旋多重度的激发态,然后从经由系间跨越过程无辐射跃迁至能量较低且具有不同自旋多重度的激发态(通常为自旋三重态),再经由内转换过程无辐射跃迁至激发态,然后以发光的方式释放出能量而回到基态S0。由于激发态和基态S0具有不同的自旋多重度,虽然这一跃迁过程在热力学上有利,可是它是被跃迁选择规则禁戒的,从而需要很长的时间(从10 秒到数分钟乃至数小时不等)来完成这个过程;当停止入射光后,物质中还有相当数量的电子继续保持在亚稳态上并持续发光直到所有的电子回到基态。

  • 【原创大赛】(一)简述红色硅酸盐发光材料的铝酸盐基质

    BaAl204:Eu2+ 。碱土金属基质研究简介:1975年Бланк等首先报道了MeAl2O4∶Eu2+ (Me∶Ca,Sr,Ba)接近传统ZnS型长余辉材料的发光特征。1991年复旦大学的宋庆梅等详细报道了铝酸锶铕(SrEu) O·7Al2O3 ]磷光体的合成及发光特性,指出荧光衰减曲线由两部分组成———指数曲线拟合后的快速衰减和非指数曲线拟合的慢衰减过程。1992年肖志国率先发现了以SrAl2O4∶Eu ,Dy为代表的多种稀土离子共掺杂的碱土铝酸盐型发光材料,由于Dy的加入使得长余辉发光材料的发光性能比SrAl2O4∶Eu2+的大大提高,余辉时间可达ZnS∶Cu的十倍以上,并于同年创建了公司,使该材料得以商品化。1993年松尺隆嗣等较详细地研究了铝酸锶铕SrAl2O4∶Eu2+的长余辉特性,得到其衰减规律为I= ct- n[i] ([/i] n= 1110) ,不同衰减时间内的发光亮度比ZnS∶Cu的高5 ~10 倍,衰减时间在2000 min以上时仍可达到人的肉眼能辨认的水平( 0132mcd/ m2 ) 。1995年唐明道等又对SrAl2O4∶Eu2+长余辉发光特性进行研究,这一材料的发光衰减符合I= ct- n的规律。同年宋庆梅等又在原有的基础上得到了掺镁的SrAl2O4∶Eu2+磷光体呈双曲线式衰减( I= ct- n [i],[/i] n= 1110) 的余辉发光强度,并指出掺钙的SrAl2O4∶Eu2+无任何长余辉效应。1993年中期开始国内外出现与SrAl2O4∶Eu ,Dy相关的专利申请,到目前为止有数十项之多;1996年开始出现相关的研究文献。目前铝酸盐体系达到实用化程度的长余辉发光材料有人们较熟悉的发蓝光的CaAl2O4 ∶Eu ,Nd;发蓝绿光的Sr4Al14O25∶Eu,Dy (标记为PLB ,发射光谱峰值490nm) 及发黄绿光的SrAl2O4∶Eu,Dy (标记为PLO ,发射光谱峰值520nm) ,它们都有不错的长余辉发光性能。在现代,铝酸盐体系长余辉发光材料的研究主要集中在两个方面:第一,基础研究领域,主要通过寻找新的铝酸盐长余辉发光体系和长余辉激活离子,在同一化合物及不同化合物中,研究基质组成、结构和余辉性能之间的关系,探讨长余辉发光的机理,总结影响长余辉发光性能的基本要素与规律。第二,应用开发研究,主要通过优化原料纯度、基质组份配比、激活离子浓度、助熔剂种类、热处理气氛及合成方法(高温固相法、化学沉淀法、水热合成法、溶胶凝胶法、燃烧合成法、微波法)等,进一步提高商业长余辉发光材料CaAl204:Eu2+,Nd3+、SrAl204:Eu2+,Dy3+和 Sr4A114025:Eu2+,By3+的长余辉发光性能,研究它们的应用特性如光照稳定性、耐水性及温度特性等此外,长余辉材料已从多晶粉末扩展至单晶、薄膜、玻璃陶瓷和玻璃等形态。铝酸盐长余辉发光材料的应用也从暗环境下弱光照明和指示,如紧急出口标志、消防通道、器具的标志及工艺美术品如夜光玩具等传统领域,拓展到高能射线探测如c-,a-,b-,g射线、光纤温度计以及工程陶瓷的无损探测等高新领域。关于发光材料基质,最常见的是铝酸盐和硅酸盐,有兴趣的朋友可以一起讨论。下一篇:(二)简述红色硅酸盐发光材料的硅酸盐基质[url]http://bbs.instrument.com.cn/topic/5948579[/url]

  • 【原创大赛】(二)简述红色硅酸盐发光材料的硅酸盐基质

    由于铝酸盐基磷光体在水中易水解,需在颗粒表面进行物理化学修饰,以提高其稳定性。Mitsuharu等人发现利用 CaO-Al2O3-SiO2作为基质材料体系,共掺杂稀土Eu2+和Nd3+合成的发射500-600 nm 波长光的长余辉蓄光材料,稳定性良好,发射波长取决于基质材料组成,并且都是由于Eu2+的4f-5d 跃迁引起的。据研究:用Eu激活的SrO-MgO-SiO2,可以合成发射波长为468-480 nm 的蓝色发光材料,但共掺杂稀土元素Dy的SrO-MgO-SiO2体系的硅酸盐长余辉磷光体尚无报道。本实验尝试采用以Sr2MgSi2O7作为基质,通过掺杂Eu离子,共掺杂稀土Dy离子,合成了一种稳定性良好的硅酸盐基蓝色长余辉蓄光材料。以硅酸盐为基质的发光材料由于具有良好的化学稳定性和热稳定性,而且高纯二氧化硅原料价廉、易得,长期以来人们都重视对硅酸盐体系荧光粉的研究和开发。硅酸盐体系发光材料已经发展成为一类应用范围广的重要光致发光材料和阴极射线光材料。如Zn2Si04:Mn2+早在1938年就用于荧光灯,作为光色校正荧光粉,至今仍是彩色荧光灯用荧光粉,在阴极射线显示管上,它也是常用的主要荧光粉。近年来随着等离子平板显示器(PDP)的快速发展,Zn2Si04:Mn2+成为PDP三基色荧光粉的主要绿色组分。1992年,我国肖志国等人开展了硅酸盐体系发光材料的研究,成功地研制出硅酸盐发光材料,该体系材料在500nm以下短波光激发下,发出420~ 650nm 的发射光谱,峰值为450 ~ 580 nm,发射光谱峰值在470~ 540nm之间可连续变化,呈现蓝、蓝绿、绿、绿黄或黄颜色长余辉发光。2002年,罗昔贤等首次在硅酸盐体系中发现了余辉时间长达10h以上的高亮度长余辉现象,并采用高温固相法合成了一系列硅酸盐长余辉发光材料。Eu2+、Ln 共激活的镁黄长石结构的焦硅酸盐化合物和镁硅钙石结构的硅酸盐化合物的余辉发光性能最好,发光颜色覆盖从469nm 的蓝色光区到536nm 的黄色光区,余辉时间长达10h 以上,且耐水性及温度特性好。并且研究了各发光材料的光谱特征、长余辉性能,测量了各发光材料的激发光谱和发射光谱以及余辉衰减曲线。同时研究了其应用性能,测量了发光材料的热释光谱和X 射线粉末衍射图谱,确定了发光材料的晶格类型。碱土氯硅酸盐是一类发光性能优良的基质材料,这是由于碱土卤化物和碱土硅酸盐都是支持Eu2 +发光的高效基质,由两者复合的碱土卤硅酸盐由于合成温度低、物理化学稳定性好而获得广泛研究。目前开发的硅酸盐体系长余辉发光材料主要特点如下:(1)化学稳定性比较好、耐水性比较强。曾对铝酸盐体系长余辉发光材料Sr2MgSi207:Eu2+,Dy3+进行了化学稳定性的对比试验。参SrAl204:Eu2+,Dy3+放入5%的NaOH溶液中浸泡2~3小时发光消失,而Sr2MgSi207:Eu2+,Dy3+浸泡20天后仍保持发光性能不变;(2)扩展了长余辉材料的发光颜色范围,发光颜色范围从469nm的蓝色光区536nm的黄色光区,余辉时间长达2000min以上。特别是蓝色长余辉发光材料Sr2MgSi207:Eu2+,Dy3+不仅应用特性优异,而且余辉亮度高、时间长,为长余辉发光材料增加了新的品种,填补了铝酸盐体系长余辉材料蓝色发光性能不佳的缺陷;(3)由于硅酸盐体系长余辉发光材料的应用特性优良,在某些领域的应用(如陶瓷行业),长余辉发光制品要优于铝酸盐体系。硅酸盐体系的发光性能尚未达到铝酸盐体系的水平,镁的正硅酸盐性能还未能得到应用,因此进一步提高硅酸盐体系的发光性能,还需要做更深入的研究工作。此篇与上一篇是我较早之前做研究时做的综述调研,关于这个课题,我还有一些其他方向的调研,有机会再与大家分享。上一篇:(一)简述红色硅酸盐发光材料的铝酸盐基质http://bbs.instrument.com.cn/topic/5948561主要参考文献如下: 刘志平,胡社军,黄慧民,李昌明。发光材料特征及其制备方法当代化工,2008 , 37 (5)。Sakai R,Katsumata T.Komuro S et al J.Luminescence,1999,85.149 刘应亮,丁红长余辉发光材料研究进展 无机化学学报,2001,17(2)。 林 林,尹 民,施朝淑,等。红色长余辉材料Mg2 SiO4 : Dy3+,Mn2 +的制备及发光特性发光学报,2006,27(3) : 3312335。 石 涛,周箭,申乾宏,等。溶胶凝胶法制备纳米晶γ2Al2O3 : T3+粉末及其发光性能硅酸盐通报,2009,28(2) : 2242228。 韩永飞,陈振强,李景照,等。Yb3 + : NaBi(WO4)(MoO4)的制备与性能表征硅酸盐通报,2009,28 (1) : 76279。 曲艳东,李晓杰,陈涛,等。铝酸盐系长余辉发光材料的研究新进展稀有金属,2006,30(1) : 1022105。 郭庆捷,徐明霞,曹佩玲。 Eu2 +激活的碱土铝酸盐长余辉发光材料的研究现状稀土金属材料与工程,2004,33 (3) : 2252228。 Nag Abanti,Kutty T R N. Effectof interface states associated with transitional nanophaseprecitates in theenhancement of red emission from SrAl12O19 : Pr3 + by Ti4 + incorporation. Journal of Physics and Chemistry of Solids,2005, 7: 1912199. 刘全生,章瑞铄,方潇功,黄原亮,张希艳,孟繁艳,董飞,孟庆贺。稀土掺杂Sr3Al2O6红色发光材料的制备与表征硅酸盐通报,2010,29(3) БланкЮС,Завьяловаид.Журналприкладнойспектроскопий,1975 ,T22 (B2) :2632266. Song Qingmei, Huang Jinfei,Wu Maojun,et al . Study on synthesisand luminescence property of Eu2 + activated strontium aluminates . J.FudanUniversity ( Natural Science) ,1991, 12 (2) :1442150. 松尺隆嗣,等。日本第248回萤光体同学会讲演予稿,1993 ,1:1. Tang Mingdao,Li Changkuan,GaoZhiwu,et al . The study on longpersistence of SrAl2O4 ∶Eu2 + . Chin. J .Lumin., 1995 , 16 (1) :51256 (inChinese) . Song Qingmei,Chen Jiyao, Wu Yazhong. A study on luminescence of Mg doped SrAl2O4∶Eu phosphors . J.FudanUniversity (Natural Science) ,1995, 34 (1) :1032106 (in Chinese) . Xiao Zhiguo. The new photoluminescence materialand dope ,The identify data for expert . Dalian ScienceCommittee . 1993 ,1 ,18.肖志国。蓄光型发光材料及制品.化学工业出版社,2002.Aizawa H,Katsumata T,Takahashi J,et a1.Fiber--optic thermometer using afterglow phosphorescencefrom long duration phosphor.Ele

  • 纳米材料诱发的化学发光(一)

    以下是我写的综述的部分内容,望得到大家的指教4 纳米体系化学发光4.1纳米材料参与的电致化学发光广义的化学发光也包括电致化学发光(ECL),电致化学发光是指对电极施加一定的电压进行电化学反应,电极反应的产物之间或与体系中的某种组分发生化学反应,产生激发态物质,激发态物质回到基态时产生的发光[42,43]。它不但具有化学发光分析的许多优点,还具有电化学方法的一些特点,如电发光反应过程控制性强,选择性好等优点[44,45]。近年来,将纳米材料引入分析化学研究中已成为分析化学的一个研究热点,并取得许多创新性研究成果[46,47]。4.1.1半导体纳米粒子电致化学发光机理4.1.1.1半导体纳米粒子直接接受电极提供的能量生成激发态传统ECL是利用电极原位(in situ)产生试剂,这些试剂在溶液中反应,完成较高能量的电子转移而生成激发态的分子,不稳定的激发态分子回到基态过程中以光辐射形式释放能量[48-50]。同理,当电极施加双阶跃正负脉冲(或电位循环)时,半导体纳米粒子(A)在正电位阶跃时被氧化为A+,接着在负电位阶跃时被还原为 A-,A+ 与 A- 反应生成激发态的 A*,激发态的 A* 回到基态过程中时产生了化学发光[24,51-55]。对应的反应过程可以用(4.1)—(4.3)式表示。值得注意的是通过该机理产生发光的必要条件是:产生的还原态 A- 或氧化态 A+ 在溶液中,要能够稳定存在一定时间,从而使得A+ 能够与 A- 相遇、碰撞并产生激发态的 A*[24]。 A → A+ + e- (4.1) A + e- → A- (4.2) A+ + A- → A* (4.3) A* → A + hv (4.4)较典型的例子是He气氛下,在含有0.1mol/L THAP乙腈溶液中,对Pt电极施加双阶跃正负脉冲电位,并在 +2.7 V 和 -2.1 V循环阶跃,在正电位阶跃时,粒径为2-4nm的Si纳米半导体被氧化成稳定的 Si(NCs)+,接着电位阶跃负方向产生Si(NCs)-,并与Si(NCs)+ 碰撞产生激发态的Si(NCs)*,Si(NCs)* 回到基态时产生640nm的光发射[24]。4.1.1.2 半导体纳米粒子电化学产物与共反应物(coreactant)发生ECL反应若体系中含有共反应物(还原性或氧化性物质)时,仅在工作电极上施加正或负电压,即可生成激发态的A*而发光[24,53,56-58]。其反应过程可以用(4.1)—(4.3)式表示。产生的还原态 A- 或氧化态 A+也要能够稳定存在于溶液中一定时间,才能发生发光[24]。 A → A+ + e- (4.1)A+ + Re → A* + Ox (4.5)A* → A + hv (4.4)或 A + e- → A- (4.2)A- + Ox → A* + Re (4.6) 其中较为典型的例子是Zou[56]等将纳米CdSe沉积在石墨充蜡电极表面上并成膜,纳米CdSe膜在循环伏安下产生两个ECL通道(ECL-1和ECL-2)。并用ECL-1,在事先通N2 25min 含有0.1mol/L KNO3 pH 9.3 磷酸缓冲溶液中,扫描速率为0.06V/S 下,对H2O2进行了测定,线性范围: 2.5×10-7 ~ 6×10-5 mol/L,检测限: 1.0×10-7 mol/L。他们也提出了ECL的机理(式4.7—4.11)。CdSe NCs + ne → nR• - (4.7)O2 + H2O2 + 2e → OOH- + OH- (4.8)2R• - + OOH- +H2O → 3OH- + 2R* (4.9)or2R• - + H2O2 → 2OH- + 2R* (4.10) nR* → CdSe NCs + hv (4.11) 4.1.2 纳米金粒子对电致化学发光体系的催化作用 因纳米具良好的“生物相容性”和高的催化特性,近来人们对纳米金催化等特性的研究进展迅速[59]。崔华[60]研究小组,已将纳米金用于化学发光体系研究,报道了纳米金粒子的催化作用对液相电致化学发光的影响,发现纳米金的催化作用和电化学活性既可以增强两个阳极ECL发光通道,又导致了两个新的阴极ECL发光通道的产生。最近,Liu[61]等发现纳米金可以催化Ru(bpy)32+- pentoxyverine (喷托维林)体系的电致化学发光,将电致化学发光分析法与毛细电泳技术联用,在毛细电泳柱端成功测定了喷托维林,检测限为:6nmol/L;并将该方法用于喷托维林和人血清白蛋白结合常数的测定,测定值为:1.8×103 L/mol。4.1.3 纳米材料作为化学发光试剂的固载。钱柯君[62]等用反胶束法水解正硅酸乙酯(TEOS)合成球形luminol/ SiO2复合纳米微粒;再用壳聚糖修饰已合成的纳米微粒并标记DNA作为DNA探针,构建的DNA探针与固定在聚吡咯修饰电极上的靶DNA杂交。用ECL法对DNA杂交情况进行评估,仅互补序列DNA才可以与DNA探针形成双链DNA(dsDNA)并产生强的ECL。发现3个碱基错配互补靶序列和非互补靶序列产生的ECL可以被忽略,ECL强度与互补序列DNA的浓度在5.0×10-12~1.0×10-9 mol/L范围内呈线性关系,对互补序列DNA的检测限为:2.0×10-12 mol/L。4.2 纳米材料参与的化学发光传统的化学发光研究一般仅限于分子和离子体系。最近,纳米粒子在化学发光中的行为研究已经引起了人们的重视:无论是半导体纳米粒子还是金属纳米粒子在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应中都表现出特殊的活性。4.2.1纳米金参与的液相化学发光4.2.1.1 纳米金作为化学发光反应的微尺度平台Cui[26]等首次报道了,粒径为68-nm 的纳米金与KIO4—NaOH—Na2CO3之间的反应能够产生化学发光现象,该化学发光的光谱具有三个明显的发射带,分别位于380—390 nm, 430—450 nm和490—500 nm;该体系的化学发光强度随着溶液中

  • 【原创】求自发光(夜光)材料的原理,生产工艺条件

    本人现在急需自发光材料,即夜光材料的原理及生产工艺条件,只是苦于找不到什么资料,各位有没有什么相关资料给我学习学习啊,感激涕零啊!要是可以的话发到我邮箱xiashicheng@yahoo.com.cn 如涉及相关资料需要购买的话,也可以给我的邮箱留言,感激不尽啊!!!

  • 【原创】用LS-45/55/荧光/磷光/分子发光光度计测粉末样品时出现问题啊

    用LS-45/55/荧光/磷光/分子发光光度计测粉末样品时出现问题啊! 我在测试ZnO粉末样品时,是将粉末装入一小试管中,结果测量时,发现装样品和不装样品测量的结果是一样的,这样也就说明我测量的纯粹的小试管的发光性质。或许是不是我测的粉末样品的发光非常的差还是我的技术问题? 请问如果用LS-45/55/荧光/磷光/分子发光光度计测粉末样品? 请各位指导![em63]

  • 纳米材料诱发的化学发光(二)

    望得到大家的指导纳米金粒子浓度的增大而线性增加,并且当纳米金粒子表面柠檬酸根离子被SCN—离子取代时,体系化学发光的强度显著增加;实验采用紫外可见吸收光谱、透射电镜(TEM)和X-射线光电子能谱(XPS)技术研究了CL反应前后纳米金的形貌、粒径和氧化态,在此基础上提出体系化学发光的机理可能是纳米金作为化学发光反应的微尺度反应平台,与反应过程中生成的CO3• 一和O2• 一自由基相互作用,在纳米金表面生成了Au(Ⅰ)络合物、二氧化碳双分子对、单线态氧分子对的激发态而产生化学发光(图4-2(a,b))。 图 4-2a 二氧化碳双分子以及单线态氧分子对参与的化学发光机理Figure 4-2a Mechanism of the chemiluminescence involving carbon dioxide dimer and singlet oxygen molecular pair 图 4-2b 与纳米金表面原子氧化相关的化学发光机理Figure 4-2b Mechanism of the chemiluminescence involving the oxidation of surface gold atoms.4.2.1.2 纳米金催化液相化学发光随后,Zhang[63]等发现不同粒径的纳米金于鲁米诺—H2O2液相化学发光体系具有不同程度的增强作用,其中粒径为38 nm的纳米金对于体系的化学发光具有最大的增强作用;提出了纳米金对该体系化学发光的增强作用可能的机理是由于纳米金对于反应过程中自由基的生成以及后续电子转移反应具有良好的催化作用;发现含有-OH、-NH2和-SH的有机化合物对于鲁米诺—H2O2—38 nm纳米金化学发光体系具有明显的抑制作用,在此基础上,进一步研究了鲁米诺—H2O2—38 nm纳米金化学发光体系测定含有-OH、-NH2和-SH的有机化合物分析应用潜力,取得了很好的结果。4.2.1.3 纳米金作为能量接受体诱导液相化学发光 Cui[64]等报到了粒径为2.6~6.0nm 的纳米金可以接受双(2,4,6-三氯苯基)草酸酯(TCPO)与过氧化氢(H2O2)的反应释放的能量产生间接化学发光,其最大发射波长位于~415nm;发现化学发光的强度与纳米金粒子的浓度(在9.1×10-10—3.3×10-8 mol/L)之间存在良好的线性递增关系;提出该化学发光可能的机理: TCPO被H202氧化生成高能量的中间体过氧环乙烷双酮(1,2-dioxetanedione),该中间体将能量传递给体系中共存的纳米金粒子而使纳米金被激发,激发态纳米金粒子在弛豫回到基态的过程中产生化学发光(图4-3)。 图 4-3 纳米金—TCPO—H2O2-体系的化学发光机理Figure 4-3. CL Mechanism for TCPO-H2O2-Gold Colloid System4.2.1.4 纳米金作为高效还原剂参与液相化学发光Zhang[65]等采用流动注射化学发光法(FIA-CL)研究了纳米金微粒对酸性KMnO4化学发光体系的影响,发现在2.0 mol/L H2SO4介质中纳米金可以与KMnO4发生氧化还原反应;对于粒径为2.6和6.0 nm的纳米金,它们与酸性KmnO4的反应速度快,可以在640 nm左右产生化学发光,并且化学发光的强度与纳米金粒子浓度(在4.6×10-6~2.94×10-4 mol/L浓度范围内)之间存在良好的线性递增关系;对于粒径大于6.0 nm的纳米金,由于与KMnO4的反应速度较慢,反应过程中并不伴随化学发光现象;提出化学发光反应的机理可能是酸性条件下KmnO4被纳米金还原生成激发态Mn(Ⅱ)*而产生化学发光。4.2.2 纳米半导体(NCs)参与的液相化学发光Talapin[66]等首次在碱性H2O2水溶液中,观察到CdSe/CdS 核-壳结构纳米半导体晶体膜的化学发光现象,并认为该化学发光性质与量子约束轨道相关。随后, Wang[67]等发现碱性H2O2和碱性高锰酸钾,可以直接氧化CdTe NCs 产生强的化学发光,化学发光强度与粒度相关,随着粒度的增大而增强。采用流动注射化学发光法(FIA-CL), 在 3.33-nm CdTe NCs浓度为:1×10-3 mol/L,0.1 mol/L NaOH 条件下,考察了发光系统对不同浓度H2O2的响应,CL强度对H2O2 在1×10-4~1 ×10-2 mol/L浓度范围内呈线性增强;同时也考察了表面活性剂对发光体系的影响。通过光致发光光谱法, CL光谱法和透射电镜法探究了可能的氧化化学发光机理(式4.12—4.16)。RSH + O2 + OH- → O2- + RS + H2O (4.12)O2- + CdTe → CdTe(e-1Se) + O2 (4.13)O2- + H2O2 → OH• + 1O2 (4.14)OH• + CdTe → OH- + CdTe(h+1Sh) (4.15)CdTe(h+1Sh) + CdTe(e-1Se) → (CdTe NCs)* → hv (4.16)5 结论与展望目前,半导体纳米粒子和金属纳米粒子的电致化学发光和化学发光行为己经引起了人们的关注。从Bard[24,50-54]、崔华[26,59,62-64]、张新荣[25,68-71]等研究组报道的工作表明,纳米粒子诱导化学发光反应的研究刚刚起步。从他们报道的研究工作可以看出,纳米粒子可以作为能量接受体、微尺度反应平台、还原剂、催化剂等参与化学发光反应。能量接受体:纳米粒子在量子效应的作用下可能使纳米粒子具有块体材料所没有的特殊能级结构而产生良好的荧光特性。这些具有荧光特性的纳米粒子可以被化学反应释放的能量所激发从而产生化学发光。发光体:通过电化学法和化学法可以向纳米粒子注入电子(electron)和空穴(hole),电子和空穴再结合(recombination)之后便形成激发子(exciton),形成的激发子能产生特定波长的光。微尺度反应平台:纳米粒子虽然可以均匀分散在液相,但是纳米粒子与液相本体之间仍然存在固/液界面,从而导致在纳米粒子表面进行的化学反应处于一个固/液界面微尺度反应平台,从而改变了化学发光反应的物理化学过程。还原剂:对纳米粒子液相电化学行为的研究已经表明,在量子尺寸效应的诱导下产生了一定能级分裂的纳米粒子簇,可能作为一个整体接受电子或空穴的注入[72]。另外,组成纳米粒子的活性基本单元(如配位不足的表面原子)也可能独立参与氧化还原反应。故这些具有较高的氧化还原活性的纳米粒子可以作为化学反应的氧化剂或还原剂诱导化学发光。催化剂:纳米粒子可以作为催化剂充当氧化还原过程中电子转移的中介。液相化学发光反应涉及一系列活泼的中间产物如自由基和激发态产物,纳米粒子高的表面活性可能会与参加化学发光反应的初始物质、中间体和激发态物质发生相互作用,从而改变了化学发光反应历程以及化学发光反应的速率。总之,纳米材料作为一种新型化学发光响应单元对提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义。而且,已报道的一系列基于纳米材料的新的化学发光体系在生命科学、环境科学和分析化学等领域可能具有广阔的应用前景。

  • 【分享】日本成功利用有机 EL材料发光识别癌细胞

    [font=Arial,Helvetica,sans-serif]据日本共同社网站6月12日报道,日本群马大学副校长竹内利行(内分泌代谢专业)等人近日成功研发出了通过有机EL材料使体内的癌细胞发出红色可视光的新技术。极为细小的癌细胞若仅靠肉眼经常容易被忽视。据称,该技术在内视镜检查的配合下,有助于发现胃和肠等器官表面上细小的癌细胞。 据竹内等人介绍,有机EL材料“铱络化物”在特殊光线的照射下,在与空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]同的氧气浓度约20%的环境下不会发光,而在浓度低于10%时则会发光。癌细胞因扩散速度快而经常处于低氧状态,因此在“铱络化物”的作用下可以发光。 竹内等人将“铱络化物”注射到带有癌细胞的白鼠的静脉中,成功令发生癌变的部位发光。据称,实验中即使仅2毫米的癌细胞也可以识别,只要距离表面深度1厘米以内均可以发现。 该技术应用于人体时,通过从内视镜的前端喷射“铱络化物”,被消化道吸收后即可凭借发光与否识别癌细胞。与目前癌细胞检查所使用的正电子发射断层成像装置(PET)和磁共振成像装置(MRI)相比,此项技术的费用相对较低。[/font]

  • 【求助】求“包头稀土研究院研制出的一种新型红色发光材料”相关论文或专利

    包头稀土研究院研制出一种新型红色发光材料介绍。包头稀土研究院研制出一种新型稀土钛酸钙体系红色长余辉荧光粉,其初始亮度达到国内商用红粉的200%以上,具有发光品质优良、余辉性能良好、物理化学性能稳定、合成工艺简单等特点,是目前行业中难得的新型发光材料。依托这些研究,包头稀土研究院申请国家发明专利和实用新型专利各一项希望相关知情大侠能帮助下载这两篇专利或相关论文,以考察这则新闻的真实性,若钛酸钙长余辉真有其好,愿竭诚合作,谢谢!

  • 高校科研院所招聘联盟刚刚发布了华南理工大学发光材料与器件国家重点实验室-发光材料设计职位,坐标广东,速来围观!

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-发光材料设计[b]职位描述/要求:[/b]合作导师:唐本忠(tangbenz@ust.hk)、吴水珠(shzhwu@scut.edu.cn) 、赵祖金(mszjzhao@scut.edu.cn)、秦安军(msqinaj@scut.edu.cn)、胡蓉蓉(msrrhu@scut.edu.cn)、王志明(wangzhiming@scut.edu.cn) 要求: 1) 熟悉有机光电功能材料、聚集诱导发光或光电器件等领域相关基础理论知识和实验技能;有较强有机合成功底或OLED器件制备研究背景者优先 2) 或者具有生物、医学、物理等领域的相关基础知识和实验技能,有较强的化学生物学背景者优先; 3) 具有光学(荧光、光声)性质的分子或纳米材料的设计与制备及其在生物检测、生物成像、疾病诊断与治疗等方面的应用; 4) 中英文写作能力较好,发表SCI论文2篇以上; 5) 遵守科研学术道德,身心健康,有团队精神和责任心,执行力强。[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59923]查看全部[/url]

  • 【技术@创新】中科院化学所成功制备多色发光和掺杂白色发光的新型纳米材料

    [font=黑体]据中国科学院网2007年12月13日报道:[/font]最近,在自然科学基金委、科技部和中国科学院的支持下,中科院化学所光化学院重点实验室姚建年院士课题组用改进的物理[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法制备了具有多色发光性质的有机小分子纳米带及其组装体。研究结果发表在新一期的《先进材料》上(Adv. Mater. 2007, 19, 3554-3558)。研究中发现,在溶液以及非晶薄膜中发蓝光的有机小分子五苯基环戊二烯(PPCP)被制成结晶的一维纳米带组装体之后,出现了多重发光性。在用紫外、蓝光、绿光激发PPCP纳米带时,可以分别得到蓝光、绿光以及红光的发射。进一步的实验结果表明,纳米材料中低能级的发光来自于晶体中的缺陷发光中心,同时材料的发光在一维结构的长度方向有自汇聚作用,从而使多色发光性质增强。

  • 光致发光应用原理、范围

    一般光致发光指荧光及磷光现象。发光量子产率与激发光波长(或能量)有关,发光强度随激发波长的变化称为激发光谱。激发光谱与发射光谱间符合斯托克斯规则。光致发光可用于研究物质的电子状态,发光物质的痕量分析,发光体的分子取向,发光过程的动力学研究等等。采用发光探针,可以大大扩展光致发光的应用范围,在生物医学、环境科学等领域有广阔的应用前景。

  • 【求助】谁有《有机电致发光材料与器件导论 》作者是黄春辉的电子版

    [color=#DC143C][size=3]一段时间没登录仪器网了现在发现很多资料都找不到了,以前找资料很方面的啊,特别是向书一类的资源好像没有了,不知道是为什么回到主题,谁有《有机电致发光材料与器件导论 》电子版比如PDF格式或者超星图书,能共享一下吗,或者好心发到我的邮箱sugar1989220@163.com,非常感谢了[/size][/color]

  • 【原创】有关磷光分析法一本好书

    书 名:室温磷光分析法原理与应用-分析化学新方法新技术丛书作 者:朱若华 出版日期:2006年3月1日出版社: 科学出版社发行部ISBN号: 7-03-016469-5 内容提要: 本书系统地介绍了室温磷光分析法的历史、应用和发展趋势,分章节讨论室温磷光分析技术(包括流体室温磷光法和固体基质室温磷光法等)的原理、发生机理、实验方法和应用范围;讨论各种分析技术的特点和影响因素。本书共分9章:首先阐述了室温磷光的光物理基础;然后介绍了室温磷光仪器和测量技术,固体基质室温磷光分析法,流体室温磷光技术,包括环糊精诱导室温磷光、胶束增敏室温磷光、敏化/猝灭室温磷光和无保护及不除氧室温磷光法,最后着重介绍了室温磷光传感器的原理和发展,并系统地讨论了生物大分子蛋白质和核酸的室温磷光和内源性以及外源性室温磷光探针技术在生命科学中的应用。本书可供高等院校发光分析或分子光谱分析专业研究生和教师使用,也可供从事分析化学、生命科学、环境、医学等工作的科研人员参考。 目录: 前言序言第1章 磷光光物理基础 1.1 磷光发展简史1.2 光致发光的物理基础1.3 磷光特征1.4 结构效应和环境影响1.5 磷光猝灭 1.6 三线态的研究方法及相关过程的应用参考文献第2章 室温磷光测量仪器、装置与技术2.1 磷光仪器的基本组成 2.2 磷光测量技术2.3 除氧技术参考文献 第3章 固体基质室温磷光 3.1 因体基质3.2 重原子微扰剂3.3 刚性化机理3.4 氧气和温度对SS-RTP的影响3.5 固体表面发光量子产率的测定3.6 SS-RTP实验技术3.7 应用参考文献第4章 表面活性剂有序介质增稳室温磷光4.1 表面活性剂胶束有序介质及胶束动力学4.2 胶束增稳室温磷光法(MS-RTP)4.3 其他有序介质体系的应用4.4 MS-RTP的应用参考文献第5章 环湖精诱导室温磷光5.1 大环化合物简介5.2 主-客体包配平衡5.3 CD-RTP中的重原子微扰剂和第三、第四组分5.4 除氧方法5.6 非除氧CD-RTP的机理5.6 应用与展望参考文献第6章 敏化和猝灭流体室温磷光6.1 溶液中的能量转移6.2 敏化和猝灭室温磷光原理和条件6.3 敏化和猝灭RTP的实验技术及应用参考文献第7章 流体介质中的无保护和胶态纳/微晶体自保护室温磷光7.1 无保护介质室温磷光7.2 胶态纳/微悬浮晶体自保护室温磷光参考文献第8章 室温磷光光化学传感器8.1 传感器的基本特征8.2 室温磷光传感器8.3 RTP传感器的应用8.4 结论和展望参考文献第9章 生物分子的室温磷光研究与应用9.1 蛋白质的室温磷光研究9.2 核酸的室温磷光研究9.3 外源性磷光探针在生物医学领域的应用参考文献主题索引

  • 荧光磷光光谱

    仪器可以测稳态光谱和瞬态光谱,那如果想测磷光发射光谱和激发光谱应该是测瞬态还是测稳态?

  • 什么是激发光谱(excitation spectrum)?

    以各种不同波长的单色光激发发光体,测定一定波长下发光强度随激发波长变化的曲线称为激发光谱。激发光谱反映了不同波长激发光引起的发光的相对效率。激发光谱可供鉴别发光物质,在进行发光测定时选择适宜的激发波长。一般激发光谱与吸收光谱大致相同,随激发态各能级间能量转移机理的不同有时也会有很大差异。磷光的激发光谱与受单线态-三线态跃迁制约的吸收光谱相比灵敏度高很多。

  • 特殊的化学发光现象之三:纳米化学发光和电致化学发光

    如前所述,对于化学发光的研究一般仅局限于分子和离子水平以及简单的分子聚集体如胶束和微乳液等。纳米材料作为一种微尺度的物质构成单元,其特殊的Kubo 效应、小尺寸效应、表面效应及量子隧道效应使其呈现许多奇异的物理、化学性质。近年来,有关纳米材料参与的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应体系受到了越来越广泛的关注。对于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光反应,张兴荣课题组从2002 年开始利用纳米材料优良的催化性能发展了一系列基于纳米材料的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光传感器,主要用于易挥发性有机物的测定。例如,乙醇和丙酮蒸气在7 种金属氧化物纳米材料的催化氧化作用下具有化学发光现象,其中纳米TiO2 催化作用下的化学发光信号最强,其可能的发光中间体被认为是氧化生成的激发态乙醛分子,并具有很高的选择性。其它易挥发的有机物如丁酮和乙醛也能够在纳米材料的催化氧化作用下产生[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光。而挥发性氯代有机物在纳米TiO2 的作用下转化为Cl2;生成的Cl2 被富集在填充纳米TiO2 的管中,可以用柱后化学发光法检测。Bard 等于2002 年在Science 上发表第一篇有关纳米粒子的液相电致化学发光的报道以来,纳米粒子参与的液相电致化学发光和化学发光行为也已经引起了人们的关注。Bard 等报道半导体纳米粒子如Si,CdS,CdSe,CdSe/ZnSe,Ge 以及CdTe 等都可以产生电致化学发光。Poznyak 等报道了半导体CdSe/CdS 纳米粒子与H2O2 反应可以产生液相化学发光,其中CdSe/CdS半导体纳米粒子被鉴定为发光体。Corrales 等人报道了纳米TiO2 型着色剂,其化学发光特性可用于聚合物热稳定性的表征。在半导体纳米粒子参与的化学发光或电致化学发光反应中,半导体纳米粒子的表面缺陷以及量子尺寸效应是产生化学发光的基础。总之,纳米材料作为一种新型化学发光响应单元对于提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义

  • 高校科研院所招聘联盟正在寻找华南理工大学发光材料与器件国家重点实验室-有机聚合物太阳电池材料与器件 职位,坐标广东,谈钱不伤感情!

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-有机聚合物太阳电池材料与器件 [b]职位描述/要求:[/b]导师:马於光(ygma@scut.edu.cn)、苏仕建(mssjsu@scut.edu.cn)、陈江山(msjschen@scut.edu.cn) 1) 已取得或将于近期取得博士学位,35周岁以下; 2) 具有新型高效有机发光材料(含钙钛矿)开发、有机电致发光器件设计与制备、有机电致发光材料及器件中的光物理及器件物理机制研究、有机激发态研究(含自旋光电子器件)等研究背景; 3) 热爱科研、勤奋努力,有良好的团队协作精神和沟通协调能力,须全时工作,不得兼职; 4) 良好的英文阅读、写作、及交流能力,在重要学术刊物上发表至少1篇学术论文; 5) 能独立开展相关课题的研究,协助指导研究生,配合完成项目申报。 [b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59920]查看全部[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制