当前位置: 仪器信息网 > 行业主题 > >

磷酸化蛋白质

仪器信息网磷酸化蛋白质专题为您整合磷酸化蛋白质相关的最新文章,在磷酸化蛋白质专题,您不仅可以免费浏览磷酸化蛋白质的资讯, 同时您还可以浏览磷酸化蛋白质的相关资料、解决方案,参与社区磷酸化蛋白质话题讨论。

磷酸化蛋白质相关的资讯

  • 我国磷酸化蛋白质组分析技术获得新进展
    在国家自然科学基金的大力支持下(项目资助号:21021004),中国科学院大连化学物理研究所邹汉法研究员在磷酸化蛋白质组分析技术方面获得新进展,相关成果发表在最近一期的Nature Protocols上(2013,8,461-480)。(http://www.nature.com/nprot/journal/v8/n3/abs/ nprot.2013.010.html)。  固定化金属离子亲和色谱(IMAC) 是磷酸化蛋白质组学研究中最常用的磷酸化肽段富集技术之一,常规的IMAC使用的螯合基团有三羧甲基乙二胺、次氨基乙酸、亚氨基二乙酸等,在螯合铁、镓等金属离子后可用于磷酸肽的富集。其缺点是特异性不高,在富集磷酸肽的同时也富集了一些酸性肽。研究人员发现了磷酸酯锆或钛表面与磷酸肽之间的高特异性相互作用,并利用这一相互作用建立了以磷酸基团为螯合配体的新一代固定化金属离子亲和色谱技术。实验表明,该新型IMAC对磷酸肽富集的特异性优异,可以有效避免酸性肽段的非特异性吸附。与传统的IMAC相比较,其对磷酸肽的富集能力提高3-10倍,从而大大提高了蛋白质磷酸化分析的检测灵敏度和鉴定覆盖率。该新型IMAC方法自2006年发表首篇论文以来,已在Mol. Cell. Proteomics, J. Proteome Res., Anal. Chem.等蛋白质组学与分析化学权威期刊发表论文20余篇,其中2007年发表在Mol. Cell. Proteomics的一篇论文已经被引用110余次。采用该方法为核心技术进行了人类肝脏蛋白质磷酸化的规模化分离鉴定,建立了迄今为止国际上人类肝脏蛋白质磷酸化的最大数据集 (Mol. Cell. Proteomics,2012,11,1070-1083)。
  • 遗传发育所在植物磷酸化蛋白质组学技术研发方面获进展
    蛋白质磷酸化是在激酶催化下将磷酸基团转移到底物蛋白质上的可逆过程,是能够调控蛋白质结构与功能且参与细胞内信号转导的重要翻译后修饰,在植物的生长、发育、环境适应以及作物的产量和品质调控中发挥着重要作用。深度解析磷酸化蛋白质组,是探讨磷酸化如何参与这些生物学过程以及筛选与作物重要农艺性状相关的关键磷酸化靶点的有效手段。然而,与动物相比,植物磷酸化蛋白质组的深度解析在技术上更具挑战性。这是由于植物细胞具有致密的细胞壁和大量的色素以及其他次生代谢物。前者增加了蛋白质提取的难度,而后者干扰了磷酸肽富集的效率和特异性。 中国科学院遗传与发育生物学研究所汪迎春研究组通过探索一系列的实验条件,研发出高效的植物磷酸化蛋白质组学新技术。该技术的主要特点是利用脱氧胆酸钠高效抽提植物蛋白,同时消除常规方法中导致样品损失和灵敏度降低的两个步骤,即在蛋白酶消化前的样品净化和在磷酸肽富集前的脱盐处理,在色素与其他干扰分子共存的情况下进行高特异性、高灵敏度地磷酸肽富集。 科研人员应用这一方法,在拟南芥、水稻、番茄和衣藻等绿色生物的组织中高效纯化磷酸化蛋白质组(单针质谱可鉴定约11,000个磷酸位点)。由于该技术主要面向高等植物及其他绿色生物(如衣藻),且操作简便,降低了实验所需的人力和试剂费用,因此命名为GreenPhos。GreenPhos可定量分析不同植物的磷酸化蛋白组,分析深度深、定量重复性高,有望成为植物磷酸化蛋白组学的通用技术。研究人员应用该技术,深度解析了拟南芥响应不同时长盐胁迫的差异磷酸化蛋白质组,发现了包括剪接体蛋白和一些激酶响应盐胁迫的磷酸化事件。 11月27日,相关研究成果在线发表在《分子植物》(Molecular Plant,DOI:10.1016/j.molp.2023.11.010)上。研究工作得到国家重点研发计划与中国科学院战略性先导科技专项的支持。中国科学院植物研究所的科研人员参与研究。GreenPhos工作流程及多种绿色生物磷酸化蛋白质组鉴定结果
  • 张玉奎院士、张丽华研究员团队蛋白质组学最新成果:N-磷酸化蛋白质组的深度覆盖分析新方法
    仪器信息网讯 近日,中国科学院大连物理研究所生物分子高效分离与表征研究组(1810组)张丽华研究员和张玉奎院士团队,蛋白组组学分析最新成果发表于《自然-通讯》(Nature Communications)上。团队发展了N-磷酸化肽段高选择性富集新方法,并结合肽段的高效分离和高灵敏度鉴定,实现了N-磷酸化蛋白质组的深度覆盖分析。  与研究相对深入的发生在丝氨酸、苏氨酸和酪氨酸侧链氨基上的蛋白质O-磷酸化修饰相比,发生在蛋白质组氨酸、精氨酸和赖氨酸上的N-磷酸化修饰,由于P-N酰胺键具有较高的吉布斯自由能,且易发生水解,目前仍缺乏有效的N-磷酸化蛋白质组分析方法,制约了人们对其生物学功能的认识。  团队研制了具有核壳结构的亚二微米硅球,并通过在硅球表面键合双二甲基吡啶胺双锌分子,在中性条件下实现了N-磷酸化肽段的高效、高选择性、快速富集 通过基于该材料的on-tip富集方法和液质联用分离鉴定的结合,不仅从HeLa细胞中鉴定到3384个N-磷酸化位点(目前最大的哺乳动物N-磷酸化数据集),而且还发现N-磷酸化位点附近亮氨酸高度表达 建立的N-磷酸化蛋白质组分析新方法不仅为深入研究其生物学功能提供了基础数据,而且也为推动精准医学、合成生物学等领域的发展提供了技术支撑。  上述工作得到国家自然科学基金、国家重点研发计划、中科院大连化物所创新基金等项目的资助。文章链接:《自然-通讯》(Nature Communications)。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2.Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3.Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p  span style="font-family: 楷体,楷体_GB2312, SimKai "回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。/span/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg"//pp style="text-align: center "strong普渡大学 陶纬国教授/strong/pp  span style="color: rgb(255, 0, 0) "strong磷酸化蛋白突破性发现/strong/span/pp  通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。/pp  蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。”/pp  陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。/pp  那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。/pp  谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。”/pp  span style="color: rgb(255, 0, 0) "strong质谱用于生物大分子检测的思考/strong/span/pp  陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。/pp  在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。”/pp  同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。”/pp  现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。/pp  span style="color: rgb(255, 0, 0) "strong整合临床大数据/strong/span/pp  2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。”/pp  现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。/pp  目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。”/pp  陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。”/pp span style="color: rgb(255, 0, 0) "strong 热衷学界公益事务 出任CASMS主席/strong/span/pp  作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。”/pp  CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。”/pp  未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。/pp  span style="font-family: 楷体,楷体_GB2312, SimKai "strong后记:/strong临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。/span/pp style="text-align: right "采访编辑:李博/p
  • 成果|利用氢氘交换质谱分析糖原磷酸化酶的瞬时态的结构动力学
    大家好,本周为大家介绍一篇发表在J. Am. Chem. Soc.上的文章,Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry,文章作者是英国埃克塞特大学的Jonathan J. Phillips。  变构调节指在蛋白质的正构位点上的变化通过蛋白质内部传递,最终影响到变构位点的结构,从而调整白质功能。理解蛋白质功能转换背后的特定结构动态变化对于分子生物学和药物发现领域至关重要。尽管变构现象自从提出以来已有广泛的研究,但是关于信号如何在蛋白质内部长距离传递的具体机制仍然不甚清楚。很大程度上是由于缺乏能够在时间和空间上高分辨率测量这些信号的生物物理方法。糖原磷酸化酶(glycogen phosphorylase,GlyP)是研究变构调节常用的标准蛋白,GlyP与II型糖尿病和转移性癌症的治疗密切相关。GlyP作为一种典型的变构酶,其活性受磷酸化修饰、多种天然配体和药物的调控。本文旨在通过开发和应用非平衡毫秒级氢/氘交换质谱(neHDX-MS)技术,来精确定位GlyP在变构激活和抑制期间的动态结构变化。这项技术能够提供蛋白质在毫秒时间尺度上的局部结构动态信息,有助于揭示变构调节过程中的瞬态结构特征,从而为理解蛋白质的动态行为和设计变构调节剂提供重要的结构信息。  作者首先确定了能够完全激活或抑制GlyP的条件。25 mM 的AMP能实现GlyPb的最大激活(图1A)。32 mM咖啡因足以完全抑制GlyPa(图1B)。并且观察到50ms内AMP和咖啡因能够达到最佳激活/抑制状态(图1C和1D)。  图1.糖原磷酸化酶b的变构激活和糖原磷酸化酶a的抑制。  随后作者通过neHDX-MS捕捉由AMP引起的GlyPb变构激活过程中的局部结构扰动。通过激活过渡态与未激活和激活状态之间的HDX差异,作者将这些肽段分成了七个类群。其中重点值得关注的类群是c、d(其他类群对应区域及趋势不在此详细介绍),因为他们的HDX行为与未激活和激活时的稳定态都有明显差异,这些局部区域的结构变化是过渡态的独特体现(图2A)。其中,c类群主要涵盖了tower helix区(图2B),说明该区域在从未激活到激活状态的过渡态中,表现出相较于前后二者皆较高的动态性。d类群涵盖活性位点,说明活性稳点结构在因结合发生了结构稳定化现象。为了从原子水平理解这些瞬态结构变化,研究人员使用了一种基于Energy Calculation and Dynamics(ENCAD)的方法,Climber,来模拟从非活性状态到活性状态转变过程中的过渡态内部作用变化。结果显示,tower helix在激活过程中经历了氢键先断裂后形成的变化,这与观察到的HDX增加相一致(图4A)。  图2.GlyPB中表现不同结构动力学行为的类群。  图3.局部区域HDX动力学。  图4.GlyP在活性和非活性状态之间的结构插值。  随后作者探讨了咖啡因如何通过变构抑制影响GlyPa的结构动态。同样作者也比较了抑制过渡态与未抑制和抑制状态之间的HDX差异,分成了七个类群。在这几组类群中,仅有m表现出较未抑制和抑制状态都较明显的氘代上升趋势(图2C、图3C&D)。m区域涵盖了tower helix区(图2D),说明该区域在未抑制状态到完全抑制状态的过渡阶段内,发生了局部去结构化现象。此外,在280s loop和250′ loop区域也表现出类似的瞬时去稳定化现象。结合AMP激活实验中的现象表明,尽管咖啡因和AMP作用于GlyP的不同位点,但它们都可能通过类似的变构路径(即tower helix的去稳定化)来引起GlyP的变构调节,从而实现对该蛋白功能的调控。同样在Climber分析中,可以观察到对应区域发生了氢键重排,与neHDX-MS结果呼应(图4B)。  本文讨论了GlyP的变构调节中间态涉及的局部结构动态变化,并通过毫秒级neHDX-MS揭示了这些变化。结果表明激活和抑制过渡态都涉及到tower helix的氢键断裂和局部结构重排,这是两个途径的共同特点。本研究的亮点在于开发了一种新的neHDX-MS方法,能够在毫秒时间尺度上观察蛋白质的变构结构动态。这种方法不仅对理解GlyP的变构机制具有重要意义,而且可以广泛应用于不同蛋白质的变构研究,为理解蛋白质的变构调节提供了新的视角和工具。  撰稿:罗宇翔  编辑:李惠琳  文章引用:Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry  参考文献  Kish, M. Ivory, D. P. Phillips, J. J., Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J. Am. Chem. Soc. 2023, 146 (1), 298-307.
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。  蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:  报告题目: 蛋白质组数据分析软件pFind系统新进展  报告人:中国科学院计算技术研究所贺思敏研究员贺思敏研究员  pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。  贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。  报告题目:构建心血管蛋白质组生物医学数据库及分析平台  报告人:浙江大学生物医学工程与仪器科学学院段会龙教授段会龙教授  心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。  该课题组目前已完成了如下工作:  (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。  (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。  (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。  报告题目:大规模蛋白质组研究中的质谱数据定量分析方法  报告人:国防科技大学机电工程与自动化学院谢红卫教授谢红卫教授  谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:  (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。  (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。  (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。  (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。  (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。  (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。  (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。  报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究  报告人:中国科学院大连化学物理研究所叶明亮研究员叶明亮研究员  叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。  在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。  在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。  在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
  • 全球首发!景杰生物全息空间蛋白质组学“透视”微观蛋白世界
    在世界经济论坛发布的《2023年十大新兴技术报告》中,空间组学被评选为未来最有潜力对世界产生积极影响的十大新兴技术之一。这标志着空间组学不仅在科研领域取得了显著成果,更有望为医学、农业等多个领域带来革命性的突破。在这一技术浪潮中,景杰生物以其卓越的科研实力和前瞻性的战略布局,成为空间蛋白质组学领域的佼佼者。自2021年6月首次推出空间蛋白质组以来,景杰生物不断对技术与体系进行全面优化,一次次刷新着空间蛋白质组学的研究边界。如今,景杰生物再次重磅推出“全息空间蛋白质组学”,为空间蛋白质组学研究提供了更为强大的工具。全息空间蛋白质组学依托于景杰生物创新的10X Proteomics平台,该技术能够支持组织微环境的全覆盖高深度蛋白质组空间检测。在实验中,景杰生物研发团队选择了癌症石蜡样本,运用全流程的先进仪器设施,如徕卡冷冻切片机、数字玻片扫描系统和蔡司激光捕获显微切割仪,进行一站式操作。经过烤片、脱蜡、复水、HE染色等一系列步骤后,成像技术精准定位目标区域,并进行无间隔地切割取样。酶解后使用Orbitrap Astral / timsTOF 最新款高性能质谱平台进行蛋白质组学检测,从而得到与组织微环境图像匹配的全覆盖空间蛋白质组学数据。通过对目标区域进行全覆盖检测,得到了带有空间位置信息的100份蛋白质组学数据,每份数据对应精细组织,无间隔地构成了“全息”的空间蛋白质组学数据集。这些数据集共检测到5500多个蛋白,平均每个样本可检测到4100多个蛋白,是目前最大最全面的全息空间蛋白质组学数据集之一。对于全息空间蛋白质组学得到的庞大数据集而言,如何有效地利用生信分析手段进行挖掘和展示是大家的重要关注点。为此,景杰生物生信和人工智能团队借鉴空间转录组的分析经验,针对全息空间蛋白质组学开发了一系列工具,帮助我们“看得见、挖得深、画得漂亮、画得清晰”。通过以上数据分析方案,可实现与空间转录组学类似的:全息空间样本点无监督聚类分析、类间差异分析/差异蛋白功能注释、单个差异蛋白空间可视化、基于清晰的组织病理特征注释和指定病理分组差异分析、基于反卷积等算法注释细胞类型得分/比例等等个性化分析。相信这样一套分析的组合拳,一方面可以将蛋白信息清晰还原到组织空间微环境中,另一方面也可以与临床病理信息精准结合,定会成为空间蛋白质组学研究的标杆,加速精准医学和基础研究。随着本次全息空间蛋白质组学发布,景杰生物已搭建成全球首个结合空间蛋白质组学、空间磷酸化修饰组学以及全息空间蛋白质组学的一站式空间组学平台。包含了既可以满足个性化选取不规则点位进行蛋白质组精准检测的空间蛋白质组学,又可以进行个性化选取不规则形状点位进行磷酸化修饰精准检测的空间磷酸化修饰组学,本次又实现对组织微环境进行高分辨率全覆盖式蛋白质组精准检测的全息空间蛋白质组学,满足蛋白质组研究的多项需求,为空间蛋白质组学研究提供更多选择。展望未来,全息空间蛋白质组学将在癌症研究、神经科学、免疫学等多个领域发挥重要作用。而景杰生物作为空间蛋白质组学的先驱和引领者,将不遗余力全面推进空间蛋白质组学的技术进步,为前沿研究保驾护航!
  • 赛默飞世尔科技推出新的蛋白质组学解决方案
    2008年8月18日,服务科技,世界领先的赛默飞世尔科技在2008年人类蛋白质组大会(HUPO 2008)上推出新的蛋白质组学工作流程解决方案,以及两个Thermo Scientific软件升级包。不久前推出的Proteome Discoverer 软件平台是一个综合性的、可拓展软件平台,可以对蛋白质组的数据进行定性和定量分析,作为Proteome Discoverer 的补充,新加入的部分将进一步升级Thermo Scientific Proteome Dynamics。  Proteome Dynamics是一套完整的蛋白质组解决方案,包括试剂,样品制备试剂盒和操作流程,质谱仪和具有特定功能的生物软件,以方便识别,定量和定性鉴定蛋白质。推出新品包括以下几个方面  • 自动化的磷酸化肽段工作流程—一套完整可自动化分析磷酸化肽段的操作流程  • SIEVE™ 1.2---主要对软件中无标记差异分析部分进行升级。基于液相色谱质谱数据比较对蛋白和肽段的变化进行衡量和鉴定  • ProSightPC™ 2.0—拓展了业界领先的自上而下的鉴定能力,支持所有高质量准确度的串联质谱实验的蛋白鉴定和表征  在过去的十年里,蛋白质组学领域大步发展,它对生物和医药领域的尖端科技产生了深远的影响。Thermo Fisher一直致力于蛋白质组科学的发展,打破了传统定性蛋白质组分析,转向更高级的定量蛋白质组,因而创造了蛋白质组动态研究蓝图。  新型自动化磷酸化肽段分析流程将Thermo Scientific技术与Pierce磷酸化肽段富集试剂盒、Kingfisher Flex 磁珠纯化系统和LTQ Orbitrap™ XL ETD 杂交质谱仪结合起来,可以完全实现对磷酸化肽段进行分析。致力于构建信号途径的科学家会发现固定化金属和金属氧化物的亲和色谱能够富集磷酸化肽段,然后用质谱对其分析是一个功能强大的技术。然而,样品的复杂度和低通量制备步骤成为一个主要的障碍。新型Thermo Scientific的整合操作流程对这类难题提供了一个简单、有效的解决方案。“样品制备和分析过程的每一部都是经过优化的。”Thermo Fisher Scientific 蛋白质学市场总监Andreas Huhmer说,“该工作流程可以使科学家实现整个过程无缝连接。  在2008年的人类蛋白质组大会上发布的另一款软件是Thermo Scientific 的SIEVE 1.2。通过比较“健康”或对照组和“疾病”或处理不需要同位素标记的样品的液相色谱质谱数据组,SIEVE可自动对无标记的蛋白和肽段进行差异分析。之前,研究者只能比较成对的数据。然而,在生物标志物发现的研究领域内,观察数据趋势是必须的,SIEVE 1.2 可以实现在单个趋势分析中观察多时间点和剂量点。  “SIEVE第一次发布后,我们从客户收到反馈的主要问题是SIEVE如何根据时间不同监控蛋白变化,如何更方便的在肽段和蛋白水平上解释其统计结果。”Thermo Fisher Scientific 蛋白质学市场程序经理Amy Zumwalt说,“为了满足这一需求,我们在这个版本中加入了趋势分析功能,并且完全重新构建了用户界面。新的向导界面将使差异实验结果和解释统计结果变得更容易。”  同样首次发布的软件还有Thermo Scientific 的ProSightPC 2.0,它最初是设计来方便“自上而下”(top-down)蛋白质定性鉴定。而现在可以支持所有高质量精度、高分辨率的串联质谱蛋白实验。ProSightPC 2.0可以实现对高质量精度的二级质谱数据进行高通量分析,无论其来自是“自上而下”(top-down),“自中而下”(middle-down),还是“自下而上”(bottom-up)的实验,而且可表征已知的翻译后修饰蛋白(PTM)。“Thermo Scientific 的ProSightPC 2.0是专门面向杂交质谱技术的,现在也可以支持新型LTQ Orbitrap XL ETD质谱的数据。”Andreas Huhmer说,“这给研究人员提供了独一无二的工具,可以对蛋白异构体和变异体的错综复杂的差异进行分析.  SIEVE采用一种新型图形界面,更易使用,而且重要的是它现在可以对液相色谱质谱的数据文件自动进行分析。而以前在处理数据之前必须手动挑选峰。而现在选择整个色谱图就可以对所有的峰进行自动分析了。  如需对Proteome Dynamics了解更多信息,请于2008年8月16日至20日访问阿姆斯特丹的HUPO #34展台,或致电800-810-5118或400-650-5118,电邮sales.china@thermofisher.com 或者访问www.thermo.com/orbitrap。  Thermo Scientific是Thermo Fisher Scientific的一部分,是全球科学服务领域的领导者  关于赛默飞世尔科技(Thermo Fisher Scientific)  Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲了解更多信息,请登陆:www.thermofisher.com
  • ​ 王方军、田瑞军等用高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,中科院大连化学物理研究所研究员王方军团队与南方科技大学教授田瑞军、副教授李鹏飞等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。相关研究成果发表在Cell Chemical Biology上。与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。团队通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位和蛋白质组学规模化序列鉴定。相关论文信息:https://doi.org/10.1016/j.chembiol.2022.01.005
  • 蛋白质靶向探针有望应用于超分辨率显微成像
    北京大学化学与分子工程学院教授陈鹏正在实验中。  作为生物体内含量最多的一类生物大分子,蛋白质是生物功能的主要执行者,在各种生命活动中扮演着关键角色。科学家一直在探索适用于活体环境的蛋白质操纵工具,以实现对目标蛋白质结构和功能的深入研究,这已经成为当今化学生物学领域的前沿热点之一。  在国家自然科学基金委“基于化学小分子探针的信号转导过程研究”重大研究计划的资助下,科学家们围绕“蛋白质靶向探针的发现及其在信号转导研究中的应用”取得了多项进展。  据北京大学化学与分子工程学院教授陈鹏介绍,国内多个课题组通过化学脱笼技术、双光子和近红外调控技术以及靶向小分子探针等策略,实现了细胞内蛋白质的特异激活,并研究了细胞信号转导过程的分子机制。  在化学脱笼技术方面,陈鹏课题组将非天然氨基酸定点插入技术与生物正交的“化学脱笼”反应相结合,提出了一种理性设计小分子激活剂的全新策略。例如,由蛋白激酶介导的磷酸化是细胞信号转导的关键过程,对绝大多数生理活动都有重要影响,但很多激酶在正常生理及病理条件下的分子机理还不明确。利用小分子激活剂可以在激酶的信号转导研究中获得新的信息。“我们在活细胞内激活‘效应蛋白OspF’,发现这种蛋白使细胞核内的‘磷酸化Erk蛋白’发生了由不可逆去磷酸化介导的‘核质转运’现象。”陈鹏表示。  近年来,蛋白质光控技术成为研究细胞信号转导的又一有力工具。其中,与紫外光激发探针相比,利用双光子激发的探针可以极大地降低细胞毒性,具有广阔的应用前景。清华大学刘磊课题组以蛋白质化学合成为核心技术,发展了靶向免疫蛋白的光控探针,并使用新发展的蛋白质探针研究了免疫细胞在精确的时空刺激下的定向运动。该探针将为理解和控制活体组织中细胞定位及与定位相关的细胞生命活动提供理想的分子工具。北京大学陈兴课题组则发展了利用近红外光激活并调控细胞信号转导通路的新方法。  在靶向蛋白质生成与降解方面,华东理工大学杨弋课题组利用天然光敏元件,构建了方便使用的光控基因表达系统。实验中,研究人员利用光对活细胞或活体动物的蛋白质生成水平进行了时间、空间上的精确调控,成功地控制了糖尿病小鼠体内胰岛素的生成与血糖浓度。  清华大学李艳梅课题组则利用蛋白质可调降解策略,实现了细胞内靶标蛋白质水平的降低,以达到降低其活性的目的。研究人员针对阿尔茨海默氏症相关重要“非酶蛋白Tau”在病人脑中含量异常升高的现象,采用“识别—切割”策略,对细胞内这类蛋白的含量进行调控。  在超高亮度光激活荧光蛋白质方面,研究人员围绕发展具有更高亮度及转化效率的荧光蛋白突变体这一难点,开展了诸多工作。中科院生物物理所徐涛课题组设计了新型单体光活化荧光蛋白,并成功应用于活细胞的超分辨率显微成像。实验中,研究人员解析了一种目前具有最高光子输出信号的荧光蛋白晶体结构,并发现其在亮度、稳定性、光子负荷等方面具有最佳整体性能,有望作为新的探针应用于超分辨率显微成像中。
  • 王方军:高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,大连化物所生物分子结构表征新方法研究组(1822组)王方军研究员团队与南方科技大学田瑞军教授、李鹏飞副教授等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。 与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。  免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。  大连化物所王方军和肖春雷研究员通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位(Chin. Chem. Lett.,2018)和蛋白质组学规模化序列鉴定(Anal. Chim. Acta.,2021)。  相关研究结果以“Motif-dependent Immune Co-receptor Interactome Profiling by Photoaffinity Chemical Proteomics”为题,于近日发表于Cell Chemical Biology上。
  • 蛋白质组学在病毒入侵宿主中的研究
    2020年初,一场突如其来的疫情打乱了大家的生活节奏。面对来势汹涌的疫情,全国上下正在积聚力量,全力战胜新型高致病性冠状病毒(2019-nCoV)。医护人员、解放军战士、志愿者们纷纷奔赴武汉,与疫魔竞速,守卫着国民的生命安全,致敬最美逆行者!同时疫情研究者一样没有停下自己的脚步,特别是在分子水平,我们调研了基于Orbitrap超高分辨的蛋白质组学和结构组学技术在病毒学研究中的应用,谨以此文致敬白衣天使和深耕医学研究的学者。Orbitrap技术促进病毒机理研究病毒与宿主共同进化,获得捕获和操纵宿主细胞过程进行复制的机制传播。同样,宿主细胞会通过部署防御机制或通过适应感染环境。在整个感染过程中,细胞严重依赖于时空调控的病毒-宿主蛋白-蛋白相互作用的形成。 蛋白质组学方法与病毒学的结合促进了对病毒复制、抗病毒宿主反应和病毒对宿主防御的颠覆机制的深入研究。而Orbitrap技术依靠其高灵敏度、高精度,高通量等特性在该方面表现出色。案例一:Orbitrap技术深度挖掘病毒-宿主蛋白质相互作用2019年Viruses杂志上发表了基于组学技术研究宿主变化的综述,质谱技术中基于亲和纯化分离蛋白质复合物随后进行MS分析(AP-MS)的方法可以用于分离病毒-病毒和病毒-宿主多蛋白复合物,可识别间接和直接的蛋白质相互作用,提供相互作用事件的瞬时信息,或跟踪单个病毒基因产物的过表达,以深入了解单个蛋白质的功能;表达蛋白质组学技术(定量蛋白质组学和翻译后修饰组学)可以研究病毒蛋白的组成,宿主在病毒入侵过程中蛋白质和翻译后修饰的动态变化。(Viruses 2019, 11, 878 doi:10.3390/v11090878)迄今为止,基于蛋白质组学方法的进展已经为识别数量惊人的病毒-宿主蛋白关联铺平了道路,科学家基于这些数据构建了包含了5000多种病毒成分和宿主细胞之间的非冗余蛋白相互作用数据库。这些有价值的信息库包括相互作用蛋白数据库、VirHostNet(http://virhostnet.prabi.fr/)、VirusMentha(Nucleic Acids Res. 2015 43(D1):D588–D592)、IntAct-MINT(Nucleic Acids Res. 2015 43(D1):D583–D587)和Uniprot。 案例二:Orbitrap技术揭示新型塞卡病毒宿主因子Pietro, Scaturro, Alexey, et al. Nature, 2018 寨卡病毒(ZIKV)最近成为全球健康问题,由于它的广泛传播和与严重的联系新生儿神经症状和小头症。然而,与致病性相关的分子机制关于ZIKV的大部分仍然未知。 技术路线:利用赛默飞 LTQ-Orbitrap和Orbitrap Q Exactive HF质谱进行全蛋白质组学和修饰蛋白质组学(实验路线见下图a),研究对象为神经细胞系SK-N-BE2和NPC细胞,表征细胞对病毒的反应,在蛋白质组和磷酸化蛋白质组水平上的变化,利用亲和蛋白组学方法鉴定ZIKV蛋白的细胞靶点。使用这种方法,找到了386个与zikv相互作用的蛋白质,导致宿主在神经发育受损,视网膜缺陷和不孕。此外,确定了寨卡病毒感染后1216个磷酸化位点存在上调或下调,来自AKT, MAPK-ERK和ATM-ATR信号通路中,为防范ZIKV感染扩散提供机制基础。在功能上,系统地理解了ZIKV诱导后的宿主的蛋白质和细胞通路水平的扰动,并对感染后细胞施加Rock抑制剂药物干预,利用非标定量蛋白质组学方法分析差异蛋白进行验证(下图热图),补充这一空白。技术路线图案例三:Orbitrap技术深入探寻寨卡病毒病毒与宿主的相互作用Etienne Coyaud, et al. Molecular & Cellular Proteomics,2018,技术路线技术路线:本文利用生物素识别以及IPMS亲和纯化结合MS 方法,研究寨卡病毒侵染后病毒与宿主细胞蛋白质的相互作用(技术路线见上图),实验结果揭示了1224个蛋白3033多肽形成的相互作用网络(见下图a)。相互作用包括多肽加工和质量控制、囊泡方面的作用运输,RNA处理和脂质代谢。40%的 作用都是以新报道的相互作用。通过数据挖掘分析,揭示过氧化物酶体在ZIKV感染中的关键作用。病毒宿主蛋白相互作用网络图 温馨提示:积极防护 保护自己 戴口罩 勤洗手
  • 化学蛋白质组学揭示高铁血红素-蛋白互作谱
    大家好,本周为大家分享一篇最近发表在Journal of The American Chemical Society上的文章,A Chemical Proteomic Map of Heme−Protein Interactions1。该文章的通讯作者是美国斯克利普斯研究所的Christopher G. Parker研究员。高铁血红素(heme)是人体中许多蛋白质的辅助因子,也是血液中氧气的主要转运体。最近的研究也证实了高铁血红素可以作为一种信号分子,通过与伴侣蛋白质结合而不是通过其金属中心反应来发挥其作用。然而,目前关于血红素结合蛋白的注释还不够完整。因此,本文采用化学蛋白质组学的方法去揭示人体中与高铁血红素发生互作的蛋白质谱。化学蛋白质组学是揭示蛋白质功能和发现药物靶标的重要工具。其中,最常用的是基于活性的蛋白质分析(Activity-based protein profiling,ABPP),通过结合活性分子探针标记及串联质谱分析,实现对靶标蛋白的鉴定。如图1b,本文设计了一个“全功能”活性分子探针(HPAP),共包含3个部分:1. Hemin母核,用于与靶蛋白非共价结合;2.光活化基团-双吖丙啶,可在UV光照下生成卡宾,促使分子探针与蛋白发生共价交联;3. 炔基,可在铜催化下与含有叠氮的试剂(荧光标签,生物素)发生点击化学反应,后两者组成FF-control。具体实验流程如下图1a所示,用HPAP处理不同细胞(In Situ)或不同细胞来源的蛋白质组(In vitro),HPAP中的hemin母核可与靶蛋白发生非共价结合,经UV光照,HPAP-蛋白间形成共价交联,再利用点击化学可将HPAP-蛋白与荧光素(TAMRA)或者生物素标签相连,用于后续的荧光成像(In-gel fluorescence)或者链霉亲和素纯化、LC-MS鉴别定量(MS-based I.D. and quantitation)。 图1. (a)使用基于高铁血红素的光亲和探针(HPAP)识别血红素结合蛋白的流程示意图。(b) HPAP、hemin和FF-control的结构;(c) HEK293T裂解物中与HPAP结合的蛋白的荧光成像;(d) hemin加入对HPAP与蛋白结合的影响。作者首先使用了SDS-PAGE去评估了HPAP标记蛋白的能力。如图1c所示,随着HPAP浓度的提高,胶图上条带颜色也逐渐加深,说明HEK293T细胞裂解液中与HPAP结合的蛋白在逐渐增加。如图1d所示,在10 μM HPAP的条件下,逐渐加入hemin,可以看到胶图上条带颜色逐渐变浅,说明hemin与HPAP之间发生了竞争,HPAP模拟了hemin与蛋白的结合过程。随后,作者又使用已知的hemin结合蛋白来确认HPAP捕获目标蛋白的能力。如图2所示,这些已知蛋白被HPAP成功的标记上,但由于hemin的加入,条带的颜色在逐渐变浅(TAMRA)。Western blot的结果显示,蛋白的总量并无太大变化,但hemin的竞争结合,导致与HPAP结合的蛋白量在下降。以上实验均说明,HPAP具有较好的选择性标记能力,能够模拟hemin与靶蛋白的结合,并以共价交联的方式标记在蛋白上。 图2. 用已知的高铁血红素结合蛋白确认HPAP捕获目标蛋白的能力。验证了方法的可行性后,作者将HPAP与定量蛋白质组学结合用于绘制高铁血红素-蛋白质互作谱。考察了多种细胞系,包括:人胚胎肾细胞(HEK293T)、人慢性髓系白血病细胞(K562)以及人原代外周血单个核细胞(PBMCs)。每种细胞系设置了两种实验形式:1)特异性结合实验(Enrichment):通过将HPAP识别出蛋白与FF-Control识别出的蛋白进行对比,排除非特异结合的干扰(图1b),如果同一蛋白通过HPAP富集到的量是FF-control富集到的量4倍以上,则认为该蛋白是HPAP特异性结合蛋白。2)竞争性结合实验(Competition):观察HPAP富集的蛋白在hemin和HPAP同时存在时富集到的量的变化,变化大于3倍且具有显著性差异(p<0.05)的蛋白被认为是HPAP与hemin竞争性结合的蛋白。最终确定的高铁血红素结合蛋白应满足以上两种实验的筛选标准(图3a)。如图3b-d所示,总共鉴定出378个的高铁血红素结合蛋白,其中214个来自HEK293T, 182个来自K562, 107个来自PBMC。尽管三种细胞类型之间的结合蛋白有一些重叠,但大多数靶点蛋白只存在于一种或两种细胞类型中(图3b),这暗示血红素在不同细胞中可能发挥不同的功能。其中,19个靶点蛋白是在UniProt上已经注释为高铁血红素的结合蛋白,剩余都是未揭示的结合蛋白。这些结合蛋白按照功能可划分为:转运蛋白,转录因子,支架蛋白和酶(图3c),根据代谢通路又可进一步划分(图3d)。作者最后对几个新发现的结合蛋白进行了验证,并选择IRKA1进行进一步的作用机制研究。IRKA1在调节炎症信号通路中起着关键作用,IRAK1被IRAK4磷酸化,然后自磷酸化,产生NFkB介导的炎症反应。经实验确认(图4),hemin是IRKA1的一种变构活化配体,可增强其酶活性,促进IRAK1的自磷酸化。 图3. 基于蛋白质组学的HPAP-蛋白互作分析。 图4. Hemin对IRKA1的调节作用。总之,本文设计开发了一种基于高铁血红素的光亲和探针,它可以与化学蛋白质组工作流程结合,以识别不同蛋白质组中的高铁血红素结合蛋白。利用该方法也可拓展至其他分子配体靶标蛋白的识别。 撰稿:刘蕊洁编辑:李惠琳原文:A Chemical Proteomic Map of Heme-Protein Interactions参考文献1. Homan, R. A., Jadhav, A. M., Conway, L. P., & Parker, C. G. (2022). A Chemical Proteomic Map of Heme-Protein Interactions. Journal of the American Chemical Society, 144(33), 15013–15019.
  • 葛瑛团队成果:自上而下蛋白质组学表征人类心脏中肌球蛋白特异性表达
    大家好,本周为大家分享一篇预发表的文章,Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  肌球蛋白作为肌节的“分子马达”,产生心肌收缩所必需的收缩力。肌球蛋白轻链1和2 (MLC-1和-2)在调节六聚体肌蛋白分子结构中起着重要的功能作用。轻链中存在“心房”和“心室”亚型,在心脏中呈现出腔限表达。然而,近年来MLC亚型在人心脏的腔室特异性表达受到了质疑。在本文中,作者使用自上而下蛋白质组学质谱分析了成人非衰竭供体心脏的四个心脏腔室中MLC-1和-2心房和心室亚型的表达。  MLC-1v和MLC-2a是在所有供体心脏中呈现出腔限表达模式的MLC异构体。重要的是,作者的结果明确地表明,MLC-1v,而不是MLC-2v,在成年人心脏中是心室特异性的。图1展示了LV(left ventricle)、RV(right ventricle)、LA(left atrium)和RA(right atrium)中MLC异构体的检测和定量。作者发现MLC-1v存在心室特异性表达,而MLC-2v没有特异性,并在心房组织中发现了与MLC-2v和pMLC-2v分子质量相匹配的峰。此外,在所有(n=17)无心脏疾病的捐赠者的每颗心脏的心房组织中都能检测到MLC-2v。MLC-2v占总MLC-2含量的百分比采用单因素方差分析(one-way ANOVA)进行定量分析,认为MLC-2v占总MLC-2含量的百分比具有统计学意义,心室和心房间差异显著,LA和RA间横向差异显著。  图1. MLCs Top-down MS分析  接下来作者使用串联质谱(MS/MS)鉴定了MLC-2v蛋白质序列。位于心房组织MLC-2v上的去酰胺化翻译后修饰(PTM)被定位到氨基酸N13。去酰胺化位点与调控磷酸化位点Ser14相邻。磷酸化位点附近的脱酰胺基团所带来的额外负电荷模拟了MLC-2a在Ser22/23位点的双磷酸化模式(图2C)。心房特异性的MLC-2v去酰胺化可能与心房内心力的产生有关。磷酸化诱导了MLC-2的构象变化,而第二负电荷的加入可能有助于提高钙敏感性并诱导蛋白质进一步的构象变化。  图2. Top-down MS/MS 鉴定  总的来说,自上而下蛋白质组学对整个人类心脏的MLC亚型表达进行了无偏差分析,揭示了之前意想不到的亚型表达模式和PTMs。  撰稿:张颖  编辑:李惠琳  文章引用:Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.
  • 首届中国计算蛋白质组学研讨会在京召开
    蛋白质组学的兴起带动了质谱技术的快速发展,而质谱技术的进步则拓宽了蛋白质组学研究问题的广度。随着蛋白质组学的兴起,特别是质谱技术的快速发展,蛋白质组学研究中产生的数据规模越来越大。依靠简单的手工处理已经远远不能满足问题的需求,通过先进的计算机算法与软件工具来自动处理大批量的蛋白质组数据已经成为蛋白质组学研究的重要分支,这就是“计算蛋白质组学”(Computational Proteomics)。  仪器信息网讯 为了总结交流近年来我国计算蛋白质组学领域的基础研究与前沿动向,推动计算技术在蛋白质组研究中发挥更加切实的作用,2010年11月10-11日,由中国科学院计算技术研究所主办的“首届中国计算蛋白质组学研讨会”在北京中国科学院计算技术研究所召开。来自全国高等院校、科研机构、企事业单位的150余位从事计算蛋白质组学及其相关研究的专家学者参加了此次会议。会议现场  会议主办方代表贺思敏研究员在会上表示:一般来说,计算蛋白质组学以计算技术为主要手段,是基于质谱技术的规模化蛋白质表达分析,也包括结构与功能的高通量分析。近年来,随着“精密蛋白质组学”概念和LTQ Orbitrap等技术的诞生,计算蛋白质组学的的研究发展迅速。  从2005年开始美国相继举办了3次蛋白质组学研讨会,欧洲也陆续开展了3次蛋白质组学研讨会,其他国家会议也相继设立蛋白质组学的专题会议。同时,国际上专业的学术期刊也相继刊载了蛋白质组学的综述文章,这标志着计算蛋白质组学已经取得了学术界的普遍重视,首届中国计算蛋白质组学研讨会也正是应运而生。  在我国,一些从事生化领域研究的专家几乎从不“上岸”,而部分毕业于信息领域的专家又从不“下水”,当然也存在着一批学者教授属于“两栖”作战,这样的研究现状不利于计算蛋白质研究的快速发展,因此,本次研讨会也是为了促进计算技术与生化领域的专家交流沟通。中国科学院计算技术研究所贺思敏研究员  同时,大会还邀请了20多位计算蛋白质领域的著名专家学者做了精彩的学术报告,报告内容涉及质谱数据分析、蛋白质鉴定、翻译后修饰、蛋白质定量、蛋白质相互作用、蛋白质定位、蛋白质结构、蛋白基因组学等。上海复旦大学杨芃原教授报告题目:糖蛋白结构的质谱数据库  目前,通过各种技术构建专业性强、针对性明显的糖链结构数据库已经引起了关注。杨芃原教授的研究基于生物质谱的数据分析,建立了蛋白质糖基化位点以及糖链结构数据库。并开发了一套糖蛋白鉴定和糖链结构确立的理论算法,并将理论算法在我们创建的软件GRIP(Glycopeptide Reveal & Interpretation Platform)中全部实现。分析表明,该方法可有效进行通量化的糖蛋白结构质谱分析,展现了比较好的应用前景。加拿大西安大略大学张凯中教授报告题目:利用串联质谱技术解析多糖结构  张凯中教授主要介绍了生命科学中蛋白糖结构及其和串联质谱与计算机科学的关系。张凯中教授表示,蛋白质中糖结构的变化是一种重要的蛋白质转录后修饰;蛋白质被酶处理后,经色谱分离,可用串联质谱解析其多糖结构。基于糖肽序列从头测序算法,张教授通过分析花生类蛋白质中的多糖结构得到了一种多项式时间算法简单模型,实践表明,该方法更具启发性。美国加州大学旧金山分校关慎恒教授报告题目:利用稳定同位素代谢标记研究哺乳动物动态蛋白质组的数据处理平台  据关慎恒教授介绍,放射性同位素标记与稳定同位素标记是目前用于研究蛋白周转的主要工具。关慎恒教授利用稳定同位素代谢标记,通过测量小数组织中的1000多个蛋白的代谢常数,建立了复杂生物体系蛋白代谢周转组动力学的试验和信息处理平台。通过此平台,可以处理无标定量、SILAC。氢氘交换的实验数据。华大基因张勇先生报告题目:从新一代测序技术的组学到基于质谱仪的蛋白质组学--华大基因的生物信息学  张勇先生介绍到,对于海量数据的信息分析和挖掘成为华大基因立足世界基因组领域的根本。除了测序仪,质谱仪无疑成为蛋白质组领域的高通量仪器。目前,华大基因通过利用海量数据的信息学分析从而识别关键要素,发挥了高通量、低成本的仪器特性。华大基因也逐步从 DNA、RNA水平,向蛋白质水平研究发展。。加拿大滑铁卢大学马斌教授报告题目:利用质谱和同源数据库进行全蛋白测序  马斌教授首先谈到了,蛋白质数据库搜索和传统同源查找时遇到的问题,并分别给出了“分两步走”和“兼听则明”的两个解决办法。另外,串联质谱(MS/MS)的在该领域的应用仍然是一个非常具有挑战性的问题。马斌教授提出了一种新算法和自动化软件(CHAMPS),实验表明,该方法具有大于99%的序列覆盖率和100%的蛋白质序列准确性。中科院计算所孙瑞祥副研究员报告题目:电子转运裂解质谱特征及其在蛋白质鉴定中的应用  孙瑞祥研究员指出,近10年内,肽段或完整蛋白质在质谱仪中的裂解技术-电子捕获裂解(ECD)与电子转运裂解(ETD)逐渐发展起来。其中,目前市场上ETD主流仪器的供应商主要有赛默飞世尔、布鲁克、安捷伦、ABI、日立等公司。ECD和ETD在蛋白质组学中的应用,特别是在蛋白质的翻译后修饰鉴定和“自顶而下”的完整蛋白质裂解研究中已经展示出了诱人的前景。中科院大连化学物理研究所叶明亮研究员报告题目:基于质谱的蛋白质组学数据处理新方法和平台发展  叶明亮研究员介绍到,在蛋白质组学数据处理方法和平台方面分别发展了针对非修饰肽段和磷酸化肽段鉴定的数据筛选方法。此外,还发展了一种结合二级质谱(MS2)和三级质谱(MS3)图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的高灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。参会者合影留念  另外,为了使参会人员能够获得有关蛋白质组质谱数据分析的基本技能,同时了解到本学科发展的最新动态,本次会议还安排了质谱技术与蛋白质组学基础培训,共有72人注册参加了此次培训课程,培训现场提问的听众络绎不绝,气氛十分活跃。培训人员与专家交流探讨
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA, Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • 中国人类蛋白质组计划:精准解密中国人的健康密码
    凤凰中心 中国科学院院士贺福初有一个比喻:基因组和蛋白质组的关系就像词典与文章、元素表与化工厂。基因组学中微小的差异,在蛋白质组学中可以被千倍甚至近万倍地放大。因此,要真正阐释生命,必须从蛋白质组中寻找答案。 北京市昌平区中关村生命科学园的主入口处,一栋由南北双楼组成的银白色建筑呈一字型展开。这里是国家蛋白质科学中心—北京(凤凰中心)的总部大楼,也是“中国人类蛋白质组计划”(以下简称CNHPP)的主要研究基地,从2014年6月至今,有关人类蛋白质组的庞大数据在这栋建筑中陆续被测量和解读。 偶尔从门口经过的人也许无法想象,这些数据有一天会完全改变眼前的生活。基于人类基因组这部“天书”而发展起来的精准医疗,将因为人类蛋白质组信息的清晰而变得更加精细和普适。 不久前,凤凰中心主任、北京蛋白质组研究中心主任、蛋白质组学国家重点实验室副主任秦钧在第一届生命组学与精准医学大会上对CNHPP作了介绍,《中国科学报》记者就该计划对其进行了专访。 只有蛋白质组才能从根本上阐释生命 《中国科学报》:人类基因组计划完成了对人类23对染色体上全部DNA携带的遗传信息的总和——30亿个碱基对的测序工作,人体“天书”已完整地呈现在了人类面前。现在对人类蛋白质组展开研究,其意义是什么? 秦钧:科学界曾经认为,只要绘制出人类基因组序列图,就能了解疾病的根源,但事实并非如此。 基因是人类遗传信息的载体,是生命奥秘最原始、最根本的物质基础。蛋白质是基因表达的产物,是构成有机体的主要成分,是所有生命活动的载体和功能执行者,是细胞执行生长、发育、衰老和死亡等各种生命活动的基本单位。蛋白质与基因密切相关,但是在此基础上又产生很多变化,造就了生物体不同的形态、形状,或者执行不同的功能。 一个有机体只有一个基因组,但是同一个有机体的不同细胞中的蛋白质的组成和数量却随细胞种类和功能状态的不同各有差异。比如,人体不同组织器官的基因组是一样的,但是各个组织器官的蛋白质组不完全一样。人和鼠的基因组的差别仅为1%,但是其形态、性状差别非常大,这就是蛋白质组不一样的体现。 中国科学院院士贺福初有一个比喻:基因组和蛋白质组的关系就像词典与文章、元素表与化工厂。确实如此,基因组学中微小的差异,在蛋白质组学中可以被千倍甚至近万倍地放大。因此,要真正阐释生命,必须从蛋白质组中寻找答案。 《中国科学报》:在CNHPP开展之前,中国科学家已经主导执行过“人类肝脏蛋白质组计划”(HLPP)。和HLPP相比,CNHPP对研究方法和技术提出哪些新的要求? 秦钧:与前期的HLPP相比,无论从研究思路、技术方法,还是平台和团队,CNHPP都有较大的改进和完善,研究范围也显著扩大。特别是对数据质量、数据产出的速度等要求也越来越高。比如,蛋白质组的分析速度、精度以及在定量、可视化等方面要求不断提升。在CNHPP中,我们将对象扩展到心脏、肝脏、胃、肺脏、肾脏等人体器官,获得的实验数据不仅可以在器官内比较,更可以在器官间分析,获得全面的认识。 样本检测效率可提升6倍 《中国科学报》:为了绘制人类蛋白质组的精细图谱,CNHPP都将展开哪些研究?秦钧:主要开展的研究包括:建立样本采集方法标准、样本预处理和生物质谱分析策略;进行含有定量信息的正常组织和疾病、疾病旁组织蛋白质表达谱、磷酸化谱、转录因子谱构建;建立临床蛋白质组大数据平台;通过数据分析、知识挖掘,发现若干疾病人群特征性信号通路变化的线索以及它们和病人手术后存活的关系。 这其中包含了很多难题。首先需要攻克的是蛋白质分离鉴定的速度、样本通量,除此之外,还有微量或痕量蛋白质的分析、蛋白质组大数据构建和多维度组学对接、蛋白质组数据的深入分析和知识挖掘的方法策略等。 《中国科学报》:CNHPP从2014年6月启动,迄今取得了哪些进展? 秦钧:主要包括五个方面的进展。 首先,建立了样本采集方法标准,并推广至全体项目团队,各临床团队已完成100组以上的样本,包括正常组织、疾病组织、疾病旁组织的收集。第二,建立了样本预处理和生物质谱分析策略,包括表达谱、磷酸化谱、转录因子谱方法标准。第三,建立了一种新蛋白质组分析策略,可在接近和达到样本蛋白表达数量的水平上,将检测时间缩短至传统蛋白质组技术的1/7左右。该分析策略已作为本项目的技术规范应用在所有样本的检测分析中。第四,通过测定和分析个体的蛋白质组数据,进行含有定量信息的正常组织和疾病、疾病旁组织蛋白质表达谱、磷酸化谱、转录因子谱构建。最后,通过初步数据分析,发现若干疾病人群特征性信号通路变化的线索。 蛋白质是最终解决精准医学问题的出路 《中国科学报》:你刚才提到了对蛋白质组数据的分析,其实将所得到的海量数据转换成有意义的海量信息才是研究的主要目的,现有的信息分析技术能够达到这一目标吗? 秦钧:我们通过联合相关生物学家、临床学家以及生物分析学家分析海量实验数据,一是通过各种生物信息学分析方法,努力从数据中挖掘有用的信息;二是依靠生物学家、临床学家,从生物学问题,临床问题、临床需求等方面研读数据。 现有的生物信息技术还不能完全按照我们的要求和期望分析蛋白组学数据。从规模和深度来看,CNHPP产生的数据对当前生物信息学是个挑战。因此,我们还在不断开发和整合新的生物信息技术,希望构建一个整合、快速、功能强大、完善的生物信息分析平台,以满足不断产生的海量数据的分析,这其实也是CNHPP的一个主要发展方向。 《中国科学报》:CNHPP的科学价值如何切实造福人类? 秦钧:从现阶段看,至少在以下几个方面可造福人类。 一是通过对重大疾病发生发展过程中的重要调控通路和重要调控蛋白质进行研究,揭示重大疾病的发生发展机制,同时获得一批重要疾病诊断标志物、药物靶标,从而提高重大疾病的防诊治水平。比如,通过筛选更多更具有诊断和判别意义的生物标志物,提高重大疾病的早期诊断能力或者为疾病早期预警、健康体检监测等提供重要依据,通过对疾病发生发展密切相关的蛋白质及其信号通路等的研究,为精准医疗提供判别依据和相应的手段。二是可以通过新的诊断试剂、创新药物以及相关科学仪器、诊疗设备等多种产品的市场化推动生物医药经济的发展。 《中国科学报》:CNHPP如何促进精准医疗的发展? 秦钧:我要特别强调CNHPP对目前正在筹划、即将启动的中国精准医疗计划的启示。美国的精准医疗计划没有包含蛋白组学的内容,是个很大的缺陷。中国的精准医疗计划在蛋白组学上有考虑和布局,是一个显著的进步。 蛋白质最终会是精准医学的出路。现在蛋白组学刚刚起步,相当于基因组学10~15年前的水平,但其发展势头已展现出蓬勃生机。中国的蛋白组学起步早,进步快,在世界的蛋白质组学领域占有一席阵地。最近建成、投入试运行的国家蛋白质组学大科学设施——凤凰中心已在CNHPP的实施中发挥了作用。其强大的蛋白质组解析能力,正在发展的蛋白质组生物信息学技术和方法,统一的样本准备流程,均一的质量控制方法和与临床医生的紧密合作、无缝连接,已对CNHPP高质量数据的产出和分析提供了坚实的基础和保障。
  • 科学家发展蛋白质组学分析新方法
    近日,中国科学院大连化学物理研究所研究员叶明亮、研究员秦洪强团队开发了表征蛋白质中组氨酸残基反应活性的蛋白质组学分析新方法。该工作筛选并获得了具有组氨酸优异反应效率的α, β-不饱和醛探针,发展了基于烯醛探针的组氨酸标记技术和可逆酰肼化学富集方法,通过蛋白质组定量技术实现了人类蛋白质组中的组氨酸反应活性的高效表征。相关成果发表在《美国化学会志》上。  氨基酸亲核反应活性的表征推动了共价药物靶点和候选药物分子的发现。组氨酸占据超过1/5人源酶活性中心,在生理环境中既是质子的供体又是质子的受体,受到蛋白质空间微环境的精细调控。然而,由于缺乏可以在生理条件下标记组氨酸的化学探针,在此之前难以实现组氨酸活性的全局性表征。  本工作发现α, β-不饱和醛在生理状态下可与组氨酸残基发生迈克尔加成反应,且引入的醛基可作为富集标签用于后续的可逆酰肼富集。与基于点击化学的经典活性蛋白质组分析方法(ABPP)相比,该策略引入活性最高的烯醛探针——丙烯醛作为反应基团和富集标签,是目前报道的最小尺寸的ABPP多功能探针。  同时,该方法样品处理流程简便,引入标签质量小,并通过可逆富集过程引入稳定同位素标记试剂,有效避免了传统工作中制备同位素连接臂的繁琐流程和高成本。该方法共定量了超过8200个组氨酸残基的标记效率,筛选到317个高亲核反应性组氨酸残基,并且发现组氨酸的反应活性和其磷酸化呈负相关。  该方法为后续基于组氨酸的共价靶向偶联药物的开发提供了数据支持,且丙烯醛衍生物也可作为新型反应基团用于共价抑制剂的研制。
  • 蛋白质组学Cell重磅新成果:黄超兰团队利用新型绝对定量质谱法揭示CD3ε 的多重信号转导功能
    p style="line-height: 1.5em text-align: justify text-indent: 2em "span style="text-align: justify "日前,黄超兰课题组及合作者的最新成果,利用新型绝对定量质谱法解析T细胞受体(TCR)磷酸化修饰动态全过程,揭示了CD3ε 的新型信号转导及其在CAR-T细胞治疗中的应用。相关成果近日发表在《Cell》。/spanbr//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 193px " src="https://img1.17img.cn/17img/images/202007/uepic/c9be87de-7748-4400-ab38-28fab92a68ad.jpg" title="黄超兰.png" alt="黄超兰.png" width="600" height="193" border="0" vspace="0"//pp style="text-align: justify "strongspan style="text-align: justify "  2020年7月29日,北京大学医学部精准医疗多组学研究中心黄超兰团队,中科院上海生化与细胞所许琛琦团队、美国加州大学圣地亚哥分校惠恩夫团队,联手在Cell上发表了题为“Multiple signaling roles of CD3ε and its application in CAR-T cell therapy”的论文,该研究通过开发基于质谱的绝对定量蛋白质组新方法,揭示了T细胞受体-共受体(TCR-CD3)复合物酪氨酸在不同抗原刺激下的动态磷酸化修饰全貌,解析了不同CD3链ITAM结构域磷酸化特征的奥秘,从中发现了其中一条亚基CD3ε的单磷酸化新功能,有望助力于设计全新的CAR-T疗法。/span/strong/pp style="text-align: justify "strongspan style="text-align: justify "/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 245px " src="https://img1.17img.cn/17img/images/202007/uepic/b6abe943-5c1a-4258-8d80-ee14ae449013.jpg" title="high light.png" alt="high light.png" width="600" height="245" border="0" vspace="0"//pp style="line-height: 1.5em text-align: justify "  TCR-CD3复合物在T细胞的发育、激活及对病原的免疫反应中起着决定性作用。这一重要作用来自于CD3链胞内端的免疫受体酪氨酸激活基序(Immunoreceptor tyrosine-based activation motif-ITAM)。而ITAM的多样性功能主要取决于其结构域的酪氨酸(Tyrosine)磷酸化,比如招募SYK激酶家族蛋白ZAP70进而激活下游的信号传导。另外,ITAM的功能也被广泛应用在对嵌合抗原受体(CAR)的研究中。其中CD3ζ亚链便常用于构建CAR-T细胞疗法抗肿瘤活性,但其他CD3链的功能和对于CAR的设计也还有很多未知。/pp style="line-height: 1.5em text-align: justify "  strong深入探索 CD3 ITAM的酪氨酸动态磷酸化模式可为全面理解不同CD3链的功能提供核心信息。/strongTCR-CD3受体复合物有10个ITAM结构域分布着20个磷酸化位点,在时间分辨率下实现对全部磷酸化位点的同时定量分析在技术上极具挑战性。为了直观比较不同TCR刺激下的磷酸化模式,精确绘制出TCR所有酪氨酸磷酸化的动态过程,黄超兰团队开发了一种新颖的绝对定量方法Targeted-IP-Multiplex-Light-Absolute-Quantitative Mass Spectrometry(TIMLAQ-MS)。区别于目前报道的蛋白组绝对定量手段,不需要加入同位素重标的合成肽段,而是巧妙地利用串联质量标签(TMT),设计将6个标准样品和4个分析样品混合起来作为内标。标准样品为不同浓度梯度的合成非重标磷酸化/非磷酸化CD3肽(A)和从未经抗原刺激的T细胞中通过IgG抗体免疫沉淀下来的背景蛋白(B)的混合物 用数据依赖采集(Data-dependent acquisition, DDA)结合平行反应监测(Parallel reaction monitoring, PRM)的方式获得抗原刺激下,TCR-CD3免疫沉淀(IP)复合物中不同酪氨酸位点的磷酸化/非磷酸化在不同时间点的定量结果。strongTIMLAQ 成功绕过了以前的定量方法中通常使用的同位素重标记肽,既节约了成本,又有效降低了方法的复杂性和数据采集误差,进一步提高了定量准确性,最终可完全实现在一次测量中对不同时间点全部ITAM磷酸化修饰的绝对定量,描绘TCR-CD3复合物的酪氨酸动态磷酸化修饰全貌。/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 492px " src="https://img1.17img.cn/17img/images/202007/uepic/17408230-fe19-4e90-a93b-06bbeea1254b.jpg" title="111.png" alt="111.png" width="600" height="492" border="0" vspace="0"//pp style="line-height: 1.5em text-align: center "基于TIMLAQ-MS法的CD3 ITAM磷酸化修饰鉴定/pp style="line-height: 1.5em text-align: justify "  strong利用这一方法鉴定到在不同的TCR刺激条件下,CD3各亚基主要表现为双磷酸化修饰模式,而唯独CD3ε呈现出单磷酸化修饰模式。/strong前研究表明,双磷酸化的ITAM与激酶家族蛋白ZAP70有很强的结合而激活下游信号传导,而单磷酸化的ITAM则表现出很低的结合性。strong本文中这一特殊的新发现驱使作者进一步深入探索CD3ε在TCR通路中的新潜在功能。/strong结果显示,单磷酸化的CD3ε可通过专门募集抑制性Csk激酶减弱TCR信号传导,strong说明TCR中既有激活基元又有抑制基元,总体呈现为一种自制的信号传导机制。/strong作者团队进一步深入研究,发现一旦将CD3ε细胞质结构域整合到第二代CAR中,CD3ε的ITAM结构域可以通过募集Csk减少CAR-T细胞因子的产生,而CD3ε的BRS结构域则可以通过募集p85促进CAR-T细胞的持久性。总体而言,将CD3ε应用于CAR的设计可显著提高CAR-T细胞的抗肿瘤活性。/pp style="line-height: 1.5em text-align: justify " strong 从一个重要的基础生物学问题开始,为解决问题而开发一个新颖方法,得到新发现,再深入探索生物学功能,最后有望贡献在治疗方法上。黄超兰教授,许琛琦教授和惠恩夫教授作为本文的共同通讯作者,完美地演绎了不同交叉领域共同合作而产生的精彩结果。/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 338px " src="https://img1.17img.cn/17img/images/202007/uepic/e5f4a9aa-d6b8-4604-a6a5-28e0177de6e9.jpg" title="222.png" alt="222.png" width="600" height="338" border="0" vspace="0"//pp style="text-align: justify "span style="text-align: justify "  黄超兰教授是北京大学医学部精准医疗多组学研究中心主任,北京大学医学部基础医学院长聘副教授,北京大学生命科学联合中心研究员,曼彻斯特大学荣誉教授。近年来,黄超兰教授带领团队积极开发基于质谱的蛋白质组学新方法,实验室拥有国际领先的仪器、技术和方法,致力于为生物学和临床研究中遇到的难题提供最有质量保证的全面蛋白质组和质谱技术手段。 仅从2015年至今,黄教授在高影响因子的杂志上就发表了近50篇文章 (目前已累计发表SCI论文80余篇),不但自己开发最前沿的质谱技术(迄今为止,课题组研发的单细胞蛋白质组技术,在单一体细胞中鉴定的蛋白数量是全球领域最高水平),更发挥了强大的合作力量,以她高超的质谱技术助力了众多科学家的科研发展。曾协助美国普林斯顿大学教授,美国科学院外籍院士颜宁课题组,利用质谱技术有效分析了ACAT1蛋白周围游离的脂质,为ACAT1作用底物的鉴定提供了最为直接有效的证据,相关工作发表在Nature上sup1/sup。最重量级的是协助中科院院士,西湖大学校长施一公教授利用高分辨交联质谱技术对剪接体复合物的成分和相互作用进行准确鉴定,促进了剪接体复合物在冷冻电镜上的超高分辨率结构鉴定,相关工作发表在两篇Science上sup2,3/sup。/span/pp style="text-align: justify line-height: 1.5em text-indent: 2em "strongspan style="text-align: justify "北京大学医学部精准医疗多组学研究中心/span/strongspan style="text-align: justify ",在“双一流”的支持下,正式成立于2018年6月,为北京大学医学部直属二级单位。黄超兰教授担任中心主任。中心主要基于临床医学热点和难点问题,通过临床医学,创新技术和基础学科的交叉,开展协同创新研究和研发,攻克医学重大难题。/spanspan style="text-indent: 2em "以重要的临床问题为根,利用前沿的高通量多组学技术(基因、转录、蛋白、翻译后修饰、代谢、微生物)和人工智能分析手段,结合临床信息,打造成规模化专业化的临床生物标志物(包括疾病预防,诊断,机制,疗效和药物靶点)开发、验证和标准化的创新平台。/span/pp style="text-align: justify "span style="text-align: justify "br//span/pp style="line-height: 1.5em text-align: justify "  原文链接:a href="https://doi.org/10.1016/j.cell.2020.07.018" target="_blank"https://doi.org/10.1016/j.cell.2020.07.018/a/pp style="line-height: 1.5em text-align: justify "br//pp style="line-height: 1.5em text-align: justify "  参考文献:/pp style="line-height: 1.5em text-align: justify " span style="font-size: 14px " sup1 /supQian et al., Nature, 2020 581(7808):333-338/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 14px "  sup2/sup Yan et al., Science, 2015 349(6253):1182-1191/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 14px "  sup3 /supWan et al., Science, 2016 351(6272):466-475/span/ppbr//p
  • STED显纳镜显示线粒体蛋白质的合成情况
    人类线粒体DNA编码了13种重要的多肽,这些多肽是连接氧化磷酸化(OXPHOS)复合物的多亚基复合物的组成部分,这些复合物主要存在于内陷的嵴膜上。内界膜(IBM)含有丰富的动态接触位点,用于从细胞膜导入蛋白质的移位酶。大多数OXPHOS亚单位采用核编码,因此必须通过外膜在与内界膜的接触位点处从胞浆中导入。由于大多数OXPHOS成分导入后需与mtDNA编码的成分整合组装,那么线粒体内翻译发生于何处?由于线粒体编码的成分也是这些复合物的组成部分,所以蛋白质合成发生于何处?题图:以STED显纳镜分辨率拍摄的人类线粒体网络截面。(更多细节见图1)。本论文采用了基于点击化学的方法,并结合受激发射损耗显纳镜(STED)来解决以上问题。报告显示,在培养的人类细胞中,大部分线粒体蛋白质的合成是在嵴膜上检测到的,且在空间上与RNA加工和成熟的位点相分离。图1:图片显示了人类线粒体网络截面,以共聚焦显微镜和STED显纳镜的分辨率拍摄,用775nmSTED激光器损耗AF594,用660nmSTED激光器损耗AF532。这些图片是显示新合成蛋白质的亚线粒体位置的关键图像。绿色的荧光信号代表新合成的线粒体蛋白,品红色是线粒体内界膜中发现的线粒体蛋白(TIM23)的免疫荧光抗体。阅读完整文章:Zorkau M., Albus C., Berlinguer-Palmini R., Chrzanowska-Lightowlers Z. & Lightowlers R.Zorkau M., Albus C., Berlinguer-Palmini R., Chrzanowska-Lightowlers Z. & Lightowlers R.High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cellsPNAS February 9, 2021 118 (6) e2008778118 https://doi.org/10.1073/pnas.2008778118了解更多:徕卡显微
  • 为人类谋健康 | 蛋白质组学驱动的精zhun医学大时代
    随着人类基因组计划的完成,因对基因组的解读需求,后基因组时代到来;蛋白质是生命活动的功能执行者,是基因编码的终产物和药物作用于体内的直接靶标,我们期待借助超高分辨质谱技术为依赖的蛋白质组学技术来解读基因组学的天书,让质谱表征的蛋白质组学能够为生命活动提供更加贴近表型的解释。它为疾病致病机理发现、癌症的早期诊断及新型标志物研发、预后预测、精zhun分型、指导用药、临床样本数字化等均提供了准确全面的信息,为人类的疾病治疗策略、药物开发等提供新方案,是人类对抗疾病、保持健康的又一利器。1. 蛋白质组学与癌症的诊断与治疗基于超高分辨质谱的癌症蛋白质组学分子图谱的全景研究,目前已得到长足的发展,其中中国的蛋白质组学人也作出了非常优异的工作。科学家们试图对癌症患者的样本进行蛋白质组学分析,寻找每种癌症的驱动靶点,并使用特定的药物进行干预治疗。CNHPP团队有许多代表性工作,如2019年发表于Nature的围绕乙肝病毒感染相关的临床早期肝细胞癌患者样本进行蛋白质组学与磷酸化蛋白质组学分析,将患者分为三个亚型,并发现了早期肝癌的治疗靶点SOAT1[1];而发表于Cell的关于肺腺癌的研究,选取了中国人群的103例肺腺癌的癌与癌旁组织,进行蛋白质组学表达谱及磷酸化翻译后修饰谱的表征,发现了aging这一在不吸烟的女性患者显著富集的特征,通过蛋白质组学数据将病人分为三个亚型且可有效指征病人的预后,并发现了HSP90β可作为潜在的诊断标志物[2]。Fig1. HBV相关的早期肝细胞癌样本多组学分析示意图(点击查看大图)Fig.2 肺腺癌样本多组学分析示意图(点击查看大图)2. 人类的追求:瘦与长寿除了我们一直关注的肿瘤的话题,特别是年轻人,总有一个特别关注点,那就是减肥,而随着工业化进程的推进,现代人拥有了源源不断的能量来源,也使得肥胖成为一个全球性的问题。发表于蛋白质组学专业领域杂志MCP上的文章中[3],作者应用TMT定量蛋白质组学技术,揭示了年龄因素及长期、短期高脂饮食对小鼠的影响的研究发现,在短期的高脂饮食组中,差异蛋白主要集中于脂代谢和氧化还原通路,而长期的高脂饮食则使得差异变化的蛋白集中于免疫应答通路及体液调节系统-肾素-血管紧张素系统;值得关注的是,若再引入年龄因素,在高脂饮食与衰老因素的共同作用下,发生了剧烈的蛋白质表达量的变化(155个差异蛋白),主要集中于尿素循环、免疫应答/补体激活、细胞外基质重塑以及细胞凋亡等途径。这也提示我们,随着我们年龄的增长,要更加关注自己体重的变化哦。Fig.3 各比较组差异蛋白(点击查看大图)随着年龄的增长,许多疾病的风险加大,而衰老本身,也是一个人类关注的永恒的主题。作为神经退行性疾病的阿尔茨海默病(AD),对患者本身及其家庭都会带来较重的负担,故对高危患者的早期识别与诊断尤其重要。发表于衰老领域专业杂志Aging cell的文章[4],作者根据患者的认知障碍程度,将患者分为轻度及重度认知障碍组与对照人群组的与神经元在生物学上有相似之处的血小板样品进行TMT标记的差异蛋白质组学分析,发现四种血小板蛋白PHB,UQCRH,GP1BA和FINC的组合有希望成为判断患者认知能力的生物标志物。Fig.4轻度及重度认知障碍组与对照人群组差异蛋白及通路图(点击查看大图)同样发表于Aging cell的文献对衰老的蛋白质组学研究中的标志物和通路进行综述[5],在对血浆、血清、尿液、唾液及多种组织的研究中,共鉴定到232种年龄相关的蛋白,对这蛋白进行富集分析,其主要集中于胰岛素样生长因子(IGF)通路、丝裂原活化蛋白激酶(MAPK)、缺氧诱导因子1(H1F1)、细胞因子信号通路、叉形头转录因子O亚型(FOXO)代谢通路、叶酸代谢通路、晚期糖基化终末产物(AGE)以及其受体 (RAGE)的代谢通路等。这些通路许多都已证明与衰老相关,如IGF1通路,其激活的下游MAKP通路以及PI3K通路汇聚靶点mTOR都会影响细胞的生长、分化等功能,并最终影响人类的衰老、寿命。Fig.5衰老相关蛋白富集通路分析(点击查看大图)3. 未来已来:质谱技术在生物大分子临床检测中的应用在各个领域的疾病的基础研究及临床检测中,基于质谱的定量蛋白质组学均可作为一个强劲的工具,为人类关注的健康主题开展研究,探究其治病机制、寻找更可靠有效的治疗手段等;而除基础研究外,质谱大分子检测技术也直接走向临床,造福患者。如依赖超高分辨质谱检测的类胰岛素生长因子IGF1的案例,IGF1是一种人体内的激素,其与胰岛素有着相似的功能,可参与并维持血糖水平,并与生长激素一起促进骨骼和组织的生长。IGF1检测可用于临床诊断生长发育迟缓的青少年儿童及用药后评价。质谱对于检测IGF1突变的检测优于免疫法,且不受制于抗体的产品,使得质谱法对IGF1的检测逐渐成为金标准。利用Transcend II TLX-4与Orbitrap超高分辨质谱连用的方法,使得对IGF1的超高通量的精zhun定量成为可能。Fig.6 IGF1检测流程图(点击查看大图)面对新冠大流行的局面,RT-qPCR技术以其超高的灵敏度成为新冠病毒检测的金标准;而面对日益增长的检测需求,RT-qPCR也出现了如试剂短缺等问题。质谱仪器同样具备超高的灵敏度,使用质谱来辅助新冠病毒检测的方法也应运而生。2020年发表于AC的文章中[6],研究人员利用超高分辨质谱的PRM的采集模式,对来自新冠病毒的NP蛋白和S蛋白的特异的靶标肽段,在模拟的体液复杂样品体系中进行定量, 结果显示检测所需病毒颗粒的滴度约为2 × 105个病毒颗粒/mL, 使其成为一种有吸引力的替代RT-qPCR的检测方法。Fig.7 SARS-CoV-2靶标肽段PRM分析工作流程示意图(点击查看大图)参考文献:[1] Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Nature, 2019, 567(7747): 257-261.[2] Xu J Y, Zhang C, Wang X, et al. Integrative proteomic characterization of human lung adenocarcinoma[J]. Cell, 2020, 182(1): 245-261. e17.[3] Plubell D L, Wilmarth P A, Zhao Y, et al. Extended multiplexing of tandem mass tags (TMT) labeling reveals age and high fat diet specific proteome changes in mouse epididymal adipose tissue[J]. Molecular & Cellular Proteomics, 2017, 16(5): 873-890.[4] Yu H, Liu Y, He B, et al. Platelet biomarkers for a descending cognitive function: A proteomic approach[J]. Aging cell, 2021, 20(5): e13358.[5] Moaddel R, Ubaida‐Mohien C, Tanaka T, et al. Proteomics in aging research: A roadmap to clinical, translational research[J]. Aging Cell, 2021, 20(4): e13325.[6] Cazares L H, Chaerkady R, Samuel Weng S H, et al. Development of a parallel reaction monitoring mass spectrometry assay for the detection of SARS-CoV-2 spike glycoprotein and nucleoprotein[J]. Analytical chemistry, 2020, 92(20): 13813-13821.如需合作转载本文,请文末留言
  • 葛瑛团队成果:利用Top-down蛋白质组学建立缺血性心肌病的肌节proteoform图谱
    大家好,本周为大家分享一篇发表在J. Proteome Res上的文章:Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。缺血性心肌病(Ischemic cardiomyopathy,ICM)是一种高度异质性的心血管疾病,大多数是由于左心室收缩功能障碍使得流向心脏的血液减少,从而导致氧气剥夺和心肌缺氧。ICM是心力衰竭的主要病因,是造成全球死亡率升高和疾病负担增加的主要因素之一,但其潜在的分子机制还有待深入研究。肌节作为心脏收缩的基本单位,由以肌动蛋白为基础的细肌丝和以肌球蛋白为基础的粗肌丝组成,它们附着在一个Z盘结构上。研究发现肌节蛋白质翻译后修饰(PTMs)和亚型的改变在心脏生理病理进程中扮演着重要角色。基于质谱的Top-down蛋白质组技术是以完整蛋白质为分析对象,可以提供不同表型心脏病蛋白质PTMs和亚型变化等生物信息,但目前还缺乏ICM肌节proteoforms图谱变化的相关报道。因此,作者利用Top-down蛋白质组学技术,在正常和ICM条件下构建了肌节proteoform图谱,并探究其变化对ICM发病机制的影响,从而为人类ICM的研究提供独到的见解。为了揭示ICM的分子变化情况,作者首先利用不同的pH条件,去除心脏功能正常的供体左心室(Left ventricular,LV)心肌组织(donor,n=16)和ICM患者LV心尖组织(ICM,n=16)的胞质蛋白质,对富集到的肌节蛋白质进行LC-MS/MS检测分析(图1)。心尖是在ICM患者进行左心室辅助装置植入手术期间获取的,实验已经证明LV和心尖组织具有相似的肌节proteoform图谱,两者可以进行相互比较。通过去卷积图谱上proteoform的峰强度与同一蛋白质所有proteoforms的总强度之比来进行蛋白质修饰水平的定量,而蛋白质表达的定量则依赖提取离子色谱图(EIC)峰下面积(AUC)的积分来计算。整个实验流程,从样品制备到LC-MS/MS分析,用时不到3h,表明该方法具有快速与高通量的优点。  图1. 非标记Top-down蛋白质组学的实验流程:对无心脏病史的非衰竭供体(donor,n=16)和ICM患者(ICM,n=16)的LV组织进行肌节蛋白质的提取,然后进行LC-MS/MS分析。Top-down蛋白质组学策略提供了正常供体和ICM心脏组织中的proteoform图谱,如图2所示。作者检测到了许多肌丝蛋白,包括心肌肌钙蛋白I(cardiac troponin I,cTnI)、肌钙蛋白C(troponin C,TnC)、原肌球蛋白(tropomyosin,Tpm)亚型、α-肌动蛋白(α-肌动蛋白)亚型、心室型肌球蛋白轻链2(MLC-2v)、心室型肌球蛋白轻链1(MLC-1v)和心房型肌球蛋白轻链1(MLC-1a),同时也检测到了多种Z盘蛋白,包括ENH2、肌肉LIM蛋白(muscle LIM protein,MLP)、富含半胱氨酸蛋白2(cysteine rich protein 2,CRIP2)、cypher-5、cypher-6、elfin、calsarcin-1(Ca1-1)和四个半LIM结构域蛋白2(four and a half LIM domains 2,FHL2)(图2)。随后,作者采用碰撞活化解离(CAD)模式对所有检测到的肌节蛋白质进行MS/MS分析,以进一步表征蛋白质。比如,实验结果显示MLC-2v上的磷酸化位点位于Ser19,并且实现了21%的序列覆盖率,这些数据表明Top-down的MS/MS分析可以对完整肌丝蛋白质进行测序,以用于蛋白质的鉴定和表征。  图2. 正常供体和ICM患者心脏组织中的proteoform图谱。(a)代表性的基峰色谱图(BPC)表明肌节蛋白和Z盘蛋白呈高分辨分离(MLP、CRIP2、cTnT、ENH2、cypher-6、elfin、cypher-5、FHL2、calsarcin-1、cTnI、Tpm、MLC-1V、MLC-1a、MLC-2v、α-actin和TnC) (b)去卷积质谱图显示肌节蛋白和Z盘蛋白的多样性,红色p和pp分别表示单磷酸化和双磷酸化形式的proteoform。  紧接着,作者对3个正常供体组织样本进行了LC-MS/MS检测,结果表明它们的BPC和总离子色谱图(TIC),以及质谱信号强度的重现性非常好,证明了该分析方法稳健的重现性。为了比较两组样本间的蛋白质表达水平,作者对来自同一正常供体的组织样本,分别提取50、400、500、600、750、1000和1200 ng的总蛋白质进行LC-MS/MS检测以评估仪器响应线性,结果如图3a所示,它们表现出高度相似的proteoform图谱。图3b展示了代表性肌节蛋白(ENH2、cTnI、α-Tpm、MLC-1v、MLC-2v和TnC)的EIC,通过测定每个EIC的AUC丰度总和,建立了250~1200 ng的相互线性范围。如图3c所示,不同总蛋白量相关性结果的R2均大于0.99,表明该检测方法具有优异的重现性、灵敏度和线性,所以有信心将其用于样本间的蛋白质定量。  图3. 关键肌节蛋白相互线性范围响应的测定。(a)50、400、500、600、750、1000和1200 ng总蛋白质的BPC,proteoform图谱高度相似 (b)ENH2、cTnI、α-Tpm、MLC-1v、MLC-2v和TnC的EIC(结合同一蛋白质所有proteoforms前3~5个最丰富电荷状态的离子) (c)每个肌节蛋白的AUC与250~1200 ng总蛋白(每个点重复3次)显示出相互线性相关(R20.99)。与正常供体样本相比,作者在ICM组中检测到了cTnI和ENH2的PTM和表达水平的显著变化。在供体和ICM组中,作者检测到了三种主要的cTnI proteoforms,包括未磷酸化的cTnI、单磷酸化的cTnI(pcTnI)和双磷酸化的cTnI(ppcTnI)同样也在两组中检测到了未磷酸化的ENH2和单磷酸化的ENH2(pENH2)(图4a)。与供体组相比,实验观察到ICM组LV组织中cTnI和ENH2表达水平的显著降低(图4b),同时发现它们的总磷酸化水平在ICM组中也显著降低(图4c),其中cTnI和ENH2的总磷酸化水平分别降低了35%和34%。此外,为了确定ICM组织中cTnI和ENH2磷酸化水平的降低是否相互依赖,作者对两者磷酸化水平进行了线性拟合,发现cTnI和ENH2磷酸化水平表现出很强的线性相关(r=0.8926,p0.00001)(图4d)。这些发现也与作者先前对肥厚型心肌病(Hypertrophic cardiomyopathy,HCM)患者心脏的研究结果相一致(Ying Ge, et al. Proc Natl Acad Sci USA. 2020 117(40):24691-24700),表明可能是由异常的PKA信号通路介导了cTnI和ENH2磷酸化水平的协同降低。  图4. ICM组中cTnI和ENH2磷酸化水平协同降低。(a)正常供体(蓝色)和ICM(红色)中代表性去卷积质谱图和EIC,红色p和pp分别表示单磷酸化和双磷酸化 (b)cTnI和ENH2表达水平的定量,两组在p0.05时被认为有统计学差异 (c)用mol pi/mol protein计算cTnI和ENH2总磷酸化,水平线代表组内中间值,两组在p0.001时被认为有统计学差异 (d)cTnI和ENH2磷酸化水平间的线性相关性(r=0.8926,p0.00001:线性相关性很强)。  Tpm是一种细丝相关蛋白,共有几种可以与cTnT和α-actin相互作用以调控肌肉收缩的蛋白质亚型。作者在先前的研究中证实了人类心脏中存在α-Tpm、β-Tpm、和κ-Tpm,其中α-Tpm是表达最为丰富的亚型(Ying Ge, et al. J Muscle Res Cell Motil. 2013 34(3-4):199-210)。在本项研究中,未磷酸化的α-Tpm、单磷酸化的α-Tpm(pα-Tpm)和单磷酸化的κ-Tpm(pκ-Tpm)是主要检测到的TPM亚型(图5a),而未磷酸化的κ-Tpm、γ-Tpm和skβ-Tpm丰度较低。与正常供体组相比,skβ-Tpm在ICM组中的表达显著降低,而α-Tpm和κ-Tpm在两组比较中无显著变化(图5c)。γ-Tpm的丰度太低,致使很难对其进行准确定量。尽管Tpm亚型的比例变化对心脏功能的影响还不得而知,但skβ-Tpm在ICM组中表达水平的显著降低同样也在先前HCM患者心脏中观察到(Ying Ge, et al. Proc Natl Acad Sci USA. 2020 117(40):24691-24700),因此有理由推断skβ-Tpm表达水平的变化可能会改变心脏功能,并使得ICM患者心脏收缩功能受损。除此之外,在正常供体组和ICM组中也都检测到了α-actin的两种亚型:骨骼肌α激动蛋白(Skeletal α-actin,α-SKA)和心脏α肌动蛋白(Cardiac α-actin,α-CAA),如图5b所示。它们在心肌中共表达,在肌节结构和完整性中具有重要作用。与正常供体组相比,实验观察到α-SKA在ICM组中的表达显著增加(图5d)。结合作者先前观察到α-SKA在非衰竭供体心脏中的表达显著增加(Ying Ge, et al. Anal Chem. 2015 87(16):8399-8406),实验结果说明衰竭心脏中表达上调的α-SKA可以作为一种有前景的心脏病生物标志物。  图5. Tpm和α-actin不同亚型的表达。(a)Tpm在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,共鉴定到α-Tpm、β-Tpm、κ-Tpm和γ-Tpm四种亚型,红色p表示单磷酸化和双磷酸化 (b)α-CAA和α-SKA在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图 (c~d)依据AUC进行Tpm和α-actin亚型的定量,两组在p0.005时被认为有统计学差异。  作者也对Z盘蛋白质进行了鉴定和定量,例如MLP和Cal-1。图6a和图6c分别对应两种蛋白质的去卷积质谱图,其中MLP为未磷酸化和单磷酸化形式(pMLP),Cal-1则表现出多种磷酸化proteoforms,包括单磷酸化(pCal-1)、双磷酸化(ppCal-1)和三磷酸化(pppCal-1)。与正常供体组相比,实验观察到MLP和Cal-1的总磷酸化水平在ICM组中的表达显著增加,分别增加了27%和4%(图6b和图6d)。MLP和Cal-1都与心肌病的发病相关,但目前尚未清楚PTMs如何影响其中的分子机制。本项研究首次揭示了ICM患者中MLP和Cal-1的磷酸化水平增加,但两者的总磷酸化水平呈负线性相关,说明它们不太可能被相同的激酶磷酸化或是在Z盘上有着密切的相互作用。  图6. MLP和Cal-1在ICM组中的磷酸化水平增加。(b)MLP在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,红色p分别表示单磷酸化的MLP (b)MLP总磷酸化的计算,两组在p0.01时被认为有统计学差异 (c)Cal-1在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,红色p、pp和ppp分别表示单磷酸化、双磷酸化和三磷酸化的Cal-1 (d)Cal-1总磷酸化的计算,两组在p0.05时被认为有统计学差异。基于质谱的Top-down蛋白质组学技术,本研究对供体和ICM心脏组织中的proteoform图谱进行了详细分析,观察到多个蛋白质在表达和修饰水平上发生了显著改变,总的结果在proteoform层面揭示了与晚期缺血性心力衰竭相关的分子变化。值得注意的是,作者发现cTnI和ENH2磷酸化水平在ICM组中协同降低,表明缺血性心力衰竭时PKA信号通路出现异常。此外,在ICM组中也观察到了MLP和Cal-1这两种Z盘蛋白磷酸化水平的显著增加,并且也检测到了ICM组中Tpm和α-actin不同蛋白亚型的表达变化。总的来说,本研究强调了在proteoform水平研究ICM的必要性,有助于揭示ICM的发病进程和开发可行的治疗方案。  撰稿:陈昌明  编辑:李惠琳  原文:Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Chapman EA, Aballo TJ, Melby JA, et al. Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. Journal of Proteome Research. 2023, 22 (3): 931-941.
  • 质谱分析法又立功!新的帕金森病诊断尿液蛋白质标记物被发现
    普渡大学和Tymora Analytical Operations的科学家团队通过对尿液胞外囊泡(EVs)蛋白质和磷酸化蛋白质进行质谱分析识别了一组可用于诊断帕金森病的蛋白质标志物。该项工作于本月发表在Communication Medicine,其中详细介绍了研究工作。该研究的部分资助来源于迈克尔J福克斯帕金森研究基金会,该组织的一部分工作就是探究EVs分析是否能识别新型的帕金森病标志物。EVs是由细胞分泌到各种体液中,被认为能反映来源细胞的分子组成。鉴于检测源自癌细胞的外泌体中的蛋白质或核酸比检测患者血液或尿液中自由循环的癌细胞相关核酸或蛋白质可能更容易的想法,胞外囊泡已成为液体活检研究的一个热门领域。同样的思路也适用于神经退行性疾病,尤其是从血液或尿液样本中寻找这些疾病的标志物,血液或尿液相比于脑脊液易于获取,但含有的相关标志物浓度通常较低。总部位于印第安纳州威斯特拉法叶市的Tymora是普渡大学化学生物学和分析化学教授安迪陶(Andy Tao)实验室的衍生企业。Tymora的首席执行官是Communication Medicine论文的通讯作者之一Anton Iliuk。Tymora专注于EVs的蛋白质组学和磷酸化蛋白组学分析,将其作为研究服务出售给外部合作伙伴以及用于其内部生物标志物和诊断方法的开发工作。2018年,该公司及其合作者在Journal of Proteome Research杂志上发表了一项研究,在该研究中,他们在尿液中收集的EVs中鉴定出约860种磷酸化蛋白质和超过2,000种未修饰的蛋白质。迈克尔J福克斯帕金森研究基金会的研究项目副总裁Shalini Padmanabhan是该论文的作者之一,她表示,基金会的研究人员在阅读该研究时“对结果很有兴趣”,因为鉴定到的蛋白中包括几种与帕金森病有关的蛋白质。Padmanabhan指出,当时基金会已经收集了大量来自帕金森病患者的尿液样本,并由Tymora技术看到一个检验新方法(识别帕金森病患者EVs蛋白质特征相对于健康对照组的变化)的机会。研究人员使用Tymora的EVtrap技术从哥伦比亚大学欧文医学中心收集的82个尿液样本中分离出EVs(21个健康对照组,13个携带与帕金森病相关的LRRK2突变但健康的人,28名没有LRRK2突变的帕金森病患者和20名携带LRRK2突变的帕金森病患者)。EVtrap方法使用包被疏水和亲水基团的磁珠来结合EVs的脂质双层膜。该方法可灵敏且可重复地捕获EVs,同时限制高浓度循环蛋白的捕获,这是相对于其他一些EV富集方法的优势。在分离出外泌体后,研究人员在赛默飞Q-Exactive HF-X仪器上进行LC-MS分析其蛋白质。他们识别4,476个独特的蛋白质和2,680个独特的磷酸化蛋白质,从中筛选出48个潜在的标记物,并最终确定了6个最佳标志物。他们发现,这六个标志物组合可以在曲线下面积为0.94的情况下区分健康人群和帕金森病患者。随后,研究人员用两个实验验证了这些表现最佳的蛋白质和与帕金森有关的其它蛋白质。其中一个实验利用靶向质谱技术测定13名健康对照组和23名帕金森病患者的蛋白质,另一个实验使用免疫方法测定10名健康对照组和10名帕金森病患者的蛋白质。Tao 表示,他的实验室继续与哥伦比亚大学的研究小组合作获取更多的样本,并且正在与普渡大学的同事Jean-Christophe Rochet合作研究蛋白质聚集在帕金森病、阿尔茨海默病和Lewy小体痴呆等神经退行性疾病中的作用。Tao 和 Rochet 正在探讨的一个问题是外泌体是否可能成为突触核蛋白α-synuclein(α-syn)的有用来源。在帕金森病患者中,错误折叠的α-syn聚集形成路易氏小体在大脑中积累,被认为会引起神经元损伤,也被认为是潜在的药物靶标和生物标志物。对于帕金森病的诊断,α突触核蛋白种子扩增检测方法前景光明。该方法通过将来自患者的αSyn与正常αSyn孵育并观察其是否产生帕金森病的特征性聚集物。通常,αSyn突触核蛋白样品从患者脑脊液中收集,需要进行脊髓穿刺。这促使研究人员探索通过血液或尿液样品等微创性的方式收集这种蛋白质,其中外泌体是一种潜在的采样途径。Padmanabhan指出,“虽然α-synuclein的分布范围及与帕金森病生物学相关性的全面了解仍不充分,但已有人提出外泌体可能富集有α-synuclein,包括病理性形式。”她补充说,到目前为止,福克斯基金会将外泌体用作αSyn的样本来源的主要工作侧重于在血液中的外泌体,“血液中α Syn的存在已经有研究支持”。然而,她表示该组织“继续探索所有可能的CSF替代方案,以改进临床使用的检测,作为我们持续开展的突触核蛋白生物学研究项目的一部分”。CEO Iliuk表示Tymora不打算继续开发Communication Medicine论文中确定的标记物,但他指出,神经退行性疾病,特别是阿尔茨海默病,已成为Tymora内部生物标志物开发工作和为外部客户工作的重点。Iliuk指出,虽然血浆被广泛认为是临床诊断阿尔茨海默病生物标志物的最切实可行的替代样本,但帕金森病的研究显示了尿液EVs作为神经退行性疾病生物标志物来源的潜力。他说:“我们在血浆方面做了相当多的工作,我认为那是主要关注的地方。但是我们最近一直在研究尿液。现在还处于非常初期的阶段,人们对其作为一种可行的样本还存在很多犹豫,因为它距离大脑太远了,所以并不是一个合情合理的选择。但我认为帕金森病的研究表明神经退行性疾病的标志物可以传播到尿液中并被检测到。”福克斯基金会支持了许多其他在尿液中寻找帕金森病蛋白标记物的努力,包括2021年由马克斯普朗克生物化学研究所蛋白质组学和信号转导部门主任Matthias Mann实验室发表的蛋白质组学研究,该研究确定了几种潜在的帕金森病蛋白标志物。文章链接:https://www.nature.com/articles/s43856-023-00294-w
  • 布鲁克在ASMS上发布CCS-Enabled 4D-蛋白质组重要进展
    * 布鲁克 PaSER™ 软件现在将具有变革性的支持 CCS 的 DIA-NN 深度神经网络学习与突破性的 dia-PASEF 功能相结合,以实现:* 40 分钟梯度从细胞裂解物中定量 8000种蛋白质* 在 Evosep One 上 4.8 分钟方法,定量 5000 种蛋白质* 只需 10 ng 细胞裂解物消化液,95 分钟梯度即可定量 5000 种蛋白质* timsTOF Pro上开发 CCS 加持的 “prm Live” 功能,实现低成本靶向蛋白质组学研究,可同时定量 1800 个以上的肽段,并保证最高的灵敏度和良好的 CVs* 基于 CCS 的 TIMScore™ 算法也获得重大进展,大大提升了磷酸化肽和蛋白质鉴定覆盖率,并且提高了肽段鉴定的可靠性* 用于高置信度序列确证的全新 OligoQuest™ 软件和工作流程,能支持RNA和修饰寡核苷酸的药物开发* SCiLS™ autopilot 软件,用于使用布鲁克 IntelliSlides™ 在 timsTOF fleX 和 rapifleX MALDI 平台上进行自动质谱成像 (MSI) 采集* 展示2021年6月推出的两个新产品:* timsTOF SCP 用于无偏单细胞蛋白质组学 (SCP),例如,用于空间癌症生物学,研究基于不同细胞类型的特异性蛋白质组,并将它们与 sc-RNA-seq 转录组相关联。* 第二代的 timsTOF Pro 2, 带来前所未有的蛋白质组学分析深度和通量。———————————————————————————————————————————2021 年 11 月 2 日美国费城 —— 布鲁克在第 69 届 ASMS 会议上宣布了新产品 CCS-enabled 4D-蛋白质组学,用于增强 timsTOF Pro 2、timsTOF fleX 和 timsTOF SCP 质谱仪的主要功能。布鲁克生命科学质谱副总裁 Rohan Thakur 博士表示:“斯克利普斯研究所 Yates 实验室开发的 TIMScore 是通过针对正向和诱饵/反向肽评估预测的实验 CCS 来增加肽选择的精确度。在我们与柏林 Charité 医学院 Ralser 实验室的合作中,CCS 值的效用增强了 DIA-NN,并且在我们与乌得勒支大学 Scheltema 实验室的合作中,它还增强了对 PhoX™ 交联肽的检测。最后,Dana-Farber 癌症研究所Marto实验室刚刚发布了支持 CCS 的 prm Live,其中具有实时保留时间校正功能,可对 1800 多种肽进行平行靶向的高灵敏度、低 CV 定量。”A. CCS-enabled DIA-NN 支持的 PaSER ,可用于 dia-PASEF 工作流程转化蛋白质组学需要高通量、短梯度和蛋白质组深度覆盖,它可以由dia- PASEF实现。这一成果发表在《Nature Methods》[Mann,Nat Meth 2020],得到了各种蛋白质组学软件包的支持,包括dia-NN、Spectronaut、MaxQuant和PEAKS Online。DIA-NN 软件 [Demichev, Nat Methods. 2020] 1.8 版包含用于深度神经网络学习的全新 CCS 支持模块,以在 dia-PASEF 中对肽谱匹配进行评分 [Demichev, bioRxiv 2021]。目前布鲁克正在与柏林Charité 医学院的Vadim Demichev博士和Markus Ralser博士合作,将CCS-enabled DIA-NN集成到timsTOF平台的PaSER GPU蛋白质组学软件中,能够增强鉴定和定量。Ralser 教授及其同事的工作加速了大样本队列中的转化蛋白质组学,并且通过使用 dia-PASEF 实现了在 5 分钟的采集时间内鉴定超过5000 种的量化蛋白质这一革命性的提升。柏林Charité 医学院爱因斯坦生物化学教授Markus Ralser博士评论道:“timsTOF Pro出色的性能令人印象深刻。我们也很高兴看到布鲁克将Vadim Demichev的DIA-NN开源版本纳入其PaSER实时蛋白质组学工作流程,并期待与布鲁克的合作能进一步改进4D-蛋白质组学工作流程。”图:dia-PASEF 扫描功能的图形表示B. prm-PASEF Live 增加了靶向肽的数量并进行高灵敏度定量分析与传统prm方法相比,prm-PASEF工作流程在靶向更多化合物的同时保持了非常高的灵敏度。现在新的prm-PASEF 编辑器可以独立使用,也可以在与 Skyline™ 一起使用来建立 prm 方法。Jarrod Marto 教授等人在《Analytic Chemistry》最近发表的一篇论文 《PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors》对prm-PASEF Live进行了介绍,文中采用动态调整保留时间窗口的方式,以使用 iRT 肽作为保留时间标准,在 60 分钟的采集中定量来自细胞裂解液的 1857 种肽段,以实现可重现的多目标监测。这种创新的prm-PASEF Live概念克服了色谱保留时间漂移的问题,提高了在多目标监测中的定量精度和重现性。C. TIMScore 加入 CCS-enabled 数据库搜索引擎在4D-蛋白质组学应用中,CCS值可用于非标记定量的“Match Between Runs”[Cox,MCP 2020]。TIMScore利用机器学习产生CCS值,并将CCS值应用于搜索引擎的算法中,使搜索引擎能够大幅提高肽段和蛋白质鉴定数目,同时保持更严格的假阳性率(FDR)。数十万个实验数据点被用来训练ML算法,该算法能够准确预测胰蛋白酶和磷酸化肽的CCS值。磷酸化在细胞信号转导和生物学中起着关键作用,但磷酸化肽准确鉴定难度大。在Dana-Farber癌症研究所,TIMScore使Eric Fischer教授提供的未富集白血病细胞系样本中磷酸化肽的鉴定数量提升了10% 以上。南佛罗里达州大学的Stanley Stevens教授补充说:“TIMScore 使从小鼠小胶质细胞系中富集的磷酸化肽的鉴定增加了 11%。CCS值和4D-蛋白质组学已经成为我们基于质谱的蛋白质组学的应用中不可或缺的技术。TIMScore有望改变DDA搜索的执行方式,鉴定更多有意义的肽段和蛋白质,使我们能够使用CCS值进行更深入的蛋白质组研究。”图:TIMScore,机器学习支持CCS预测,可减少肽模糊度并提高置信度D. 全新发布 OligoQuest™ 布鲁克发布了最新软件OligoQuest,作为面向生物制药客户的合规软件套装BioPharma Compass 中的一部分,该软件强化了RNA 和寡核苷酸表征功能。OligoQuest 结合 maXis II 和 timsTOF Pro 等质谱仪上同位素高准确度测定功能,能够对核酸大分子进行准确表征,例如sgRNA及其杂质。并且,布鲁克特有的PASEF扫描模式,可快速深度覆盖复杂样品信息,例如酶解mRNA等。OligoQuest软件是与RiboDynamics,LLC共同开发,其所提供的算法和工作流程,可以用来注释大于100个碱基的核酸二级谱图。RiboDynamics 首席执行官Dan Fabris和康涅狄格大学高级教授 Harold S. Schwenk 解释说:“同位素高准确度与超高分辨率质谱相结合,对于高度修饰的 RNA 分析前景广阔,这是之前的商业软件无法提供的。 使用 OligoQuest 简化相应的分析工作,将大大加速 RNA 领域的研究和开发。” 图:OligoQuest 界面显示 3' - 和 5' -末端和内部片段匹配以进行序列确认E. 用于自动 MALDI 质谱成像(MSI)的 SCiLS autopilot布鲁克今年推出了SCiLS autopilot软件结合IntelliSlides玻片用于MALDI 成像的自动设置。SCiLS autopilot 自动完成从玻片载入到数据采集的六项关键性能优化。样本的扫描图像由IntelliSlide 上的条形码上登记注册和自动检测组织边缘,然后进行多步骤自动优化,以减少 MALDI 成像所需的时间和经验,并确保重复性和图像质量。通过 SCiLS autopilot 进行自动化,非专业用户可以方便的使用 MALDI 成像,将生理组织背景添加到 4D-Omics 研究中。布鲁克 MALDI 成像业务总监 Michael Easterling 博士表示:“随着 MALDI 成像在生物制药中的广泛应用,智能自动化对于确保MALDI成像的无缝整合和结果准确度至关重要。数据采集和处理软件与成像质谱平台(如 timsTOF fleX)的深度系统集成,为多组学研究提供了空间生理信息。”图:实现快速、精确的 MALDI 成像测量自动设置参考文献: [Mann, Nat Methods 2020]: https://doi.org/10.1038/s41592-020-00998-0 [Demichev, Nat Methods. 2020]: https://dx.doi.org/10.1038%2Fs41592-019-0638-x [Demichev, bioRxiv 2021]: https://doi.org/10.1101/2021.03.08.434385 [Cox, MCP 2020]: https://doi.org/10.1074/mcp.tir119.001720 [Marto, Anal. Chem. 2021]: https://doi.org/10.1021/acs.analchem.1c02349
  • 蛋白质组学技术在病毒研究中的应用
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 蛋白质组学是生命科学领域中的一门新兴学科,可以高通量的分析正常及病理条件下机体、组织、细胞或亚细胞成分中全部蛋白质,对不同空间、不同时间上动态变化的蛋白质组的整体进行比较,分析不同蛋白质组之间在表达数量、表达水平和修饰状态下的差异。蛋白质组学可以发现与疾病相关的特异性蛋白质,对病变相关蛋白的研究可以为探索病毒本身及其感染机制提供信息,且这些蛋白还可能作为疾病诊断潜在的生物标志和治疗的药物靶点。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong蛋白质组概念的提出及常用技术/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "蛋白质组(proteome)这一概念由Wilkins和Williams等在1994年首次提出,以它作为研究对象的蛋白质组学是后基因组时代产生和发展的一门新兴学科,其从整体上分析组织,细胞内动态变化的蛋白质组成、表达水平与翻译后修饰,探索蛋白质的功能及蛋白质之间相互作用与联系。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "蛋白质组学中对蛋白表达分析方面的研究应用较多的技术有双向凝胶电泳(two-dimensional electrophoresis,2-DE)、基于2-DE将其重复性和精确性加以改进的双向差异凝胶电泳(two-dimensional difference electrophoresis,2D-DIGE),以及对筛选到的差异表达蛋白进行快速精确鉴定的串联质谱技术(mass spectrometry,MS),其中质谱技术是蛋白质组学研究中的核心技术。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在质谱技术中的基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrum,MALDI-TOFMS)是分析多肽和蛋白质混合物的主要方法,此外,使用标记的氨基酸在细胞中进行稳定同位素标记(stable-isotope labeling by amino acids in cell culture,SILAC) 是一种鉴定和定量病毒感染后细胞蛋白中表达差异的有效方法。蛋白质组学技术在病毒学中的应用有助于病毒感染及病毒宿主间的相互作用机制研究。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong蛋白组学技术在及其感染机制研究中的应用案例/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "病毒寄生于宿主细胞中,需要不断地适应和改变宿主的环境。他们能够编码多种多功能蛋白质,这些蛋白能与宿主蛋白发生一系列的相互作用以完成病毒的各种功能。目前,许多病毒的基因组已完成测序,但由于受到病毒影响而发生相应改变的宿主蛋白组、宿主蛋白翻译后修饰等还未被完成阐明。近年来,高通量技术的兴起,如基于质谱技术的定量或半定量蛋白组方法,已被广泛应用于病毒宿主相互作用的研究中。依托质谱技术的蛋白质组学飞速发展,不仅促进了病毒蛋白质组学研究的不断进步,同时也加快了对于病毒相关的宿主蛋白鉴定。今后相关研究数据仍会急速增加,这需要更加先进的生物信息学技术对数据进行处理,更全面地了解病毒感染过程。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(255, 0, 0) "案例1: SARS(severe acute respiratory syndrome-associated coronavirus,SARS-CoV)冠状病毒研究中的蛋白组学技术/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "SARS基因组的基因产物包括20多种蛋白质,据报道,有研究学者首次应用DIGE技术分析了SARS-CoV感染的Vero E6细胞,鉴定出355个在SARS-CoV感染后表达发生变化的蛋白,其中186个显著差异表达蛋白,为理解SARS-CoV的感染和致病机制提供了线索。对感染SARS-CoV的BHK21细胞进行SILAC定量分析及进一步功能分析表明,BAG3可以抑制SARS-CoV的复制。对感染病人的血清蛋白质组分析,有助于返现可用于病毒感染的诊断、预后及治疗的生物标记。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(255, 0, 0) "案例2: 禽流感病毒(avian influenza virus,AIV)研究中的蛋白质组学技术/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "据报道,研究学者利用2-DE技术筛选H9N2感染人源细胞系后不同时间点的差异表达蛋白,运用质谱技术鉴定到22种蛋白,主要包括细胞骨架蛋白、RNA加工途径相关蛋白和代谢相关蛋白等,其中表达差异显著的蛋白主要参与细胞骨架网络的构成。这些蛋白的鉴定有助于理解禽流感病毒在哺乳动物中的复制及其宿主之间的相互作用。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(255, 0, 0) "案例3: 揭示新型寨卡病毒宿主因子的蛋白质组学技术/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "寨卡病毒(ZIKV)是一种与登革热病毒,西尼罗河病毒和丙型肝炎病毒(HCV)有关的黄病毒,具有单链RNA基因组,编码多蛋白,共翻译和翻译后加工成三个结构蛋白,前体膜和包膜以及七种非结构蛋白。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "据报道,有研究学者使用人类神经前体细胞和神经细胞 SK-N-BE2 进行整合蛋白质组学方法,以表征细胞在病毒侵染后的蛋白质组和磷酸化蛋白质组变化,并使用亲和蛋白质组学来鉴定ZIKV蛋白的细胞靶标。通过亲和纯化结合液相色谱和串联质谱技术(AP-LC-MS / MS)鉴定与人SK-N-BE2神经母细胞瘤细胞中表达的10种ZIKV蛋白中的每一种相互作用的细胞蛋白和相关复合物,研究鉴定到了386种 ZIKV 相互作用蛋白、ZIKV 特异性和泛黄病毒活性相关的宿主因子,这些宿主因子已知与神经元发育、视网膜缺陷和不育相关。由此,相关论文作者绘制了神经元细胞中的ZIKV蛋白-宿主蛋白相互作用网络。此外,研究还分析确定了在 ZIKV 感染后特异性上调或下调的1,216个磷酸化位点,表明病毒感染引起基本信号传导通路为 ZIKV 感染引起的增殖停滞提供了新的见解。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "当前,span style="text-indent: 2em "通过比较蛋白质组学对病毒感染前后的蛋白表达图谱进行鉴定,进一步对病毒感染引起的差异表达蛋白进行功能分析和验证,探索其在病毒感染中的潜在作用机制、寻找病毒的作用靶标,为病毒的预防诊治提供理论依据和解决途径。 /span因此,在继病毒感染细胞的差异蛋白质组分析后,为更能反映真实的变化规律,更到位的解释病毒感染和致病机制,进行病毒感染宿主机体的差异及功能蛋白质组分析将是研究发展的趋势。/ppbr//ppbr//ppbr//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong参考文献:/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "董 书 伟 ,荔 霞 ,刘 永 明 ,等 .蛋 白 质 组 学 研 究 进 展 及 其 在 中 兽 医 学 中 的 应 用 探 讨 [J ] . 中 国 畜 牧 兽 医 , 2 0 1 2 , 3 9 (1 ) : 4 5 ~ 4 9 ./pp style="text-align: justify text-indent: 2em line-height: 1.75em "Liu H.Advances of SARS-Cov genome[J].Journal of Chinese General Practice,2003,2(11):1~4./pp style="text-align: justify text-indent: 2em line-height: 1.75em "Liu N,Song W,Wang P,et al.Proteomics analysis of diferen- tial expresion of celular proteins in response to avian H9N2vi- rus infection in human cels[J].Proteomics,2008,8(9):1851~ 1858./pp style="text-align: justify text-indent: 2em line-height: 1.75em "Pietro S ,Alexey S , Haas D A , et al. An orthogonal proteomic survey uncovers novel Zikavirus host factors[J]. Nature, 2018./pp style="text-align: justify text-indent: 2em line-height: 1.75em " /ppbr//p
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K, et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel J V, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制