当前位置: 仪器信息网 > 行业主题 > >

磷酸肽

仪器信息网磷酸肽专题为您整合磷酸肽相关的最新文章,在磷酸肽专题,您不仅可以免费浏览磷酸肽的资讯, 同时您还可以浏览磷酸肽的相关资料、解决方案,参与社区磷酸肽话题讨论。

磷酸肽相关的方案

  • 一种用于磷酸肽鉴定和磷酸化位点定位的新型自动化、高选择性磷酸肽富集方法
    针对 HUPO 磷酸肽挑战赛,使用 AgilentAssayMAP Bravo 平台和 LC/Q-TOF 系统进行自动化磷酸肽富集以实现定性和定量分析。执行 CID 肽鉴定实验,在“磷酸肽”样品中鉴定出 437 种特有肽段,其中包括94 种磷酸肽。鉴定出 HUPO 序列表中的所有 89 种非磷酸肽。ECD 实验基于 89个非磷酸肽序列确定了 96 种磷酸肽的磷酸化位点。还将序列表中未列出的其余肽返回给 HUPO。在富集的“磷酸肽-酵母”样品中,鉴定出 287 中特有肽段,其中包括 264 种特有磷酸肽。富集的总体选择性约为 92.0%。此外,从富集的“磷酸肽-酵母”样品中仍鉴定出加入酵母中 96 种磷酸肽中的95 种。与开展本研究中的其他实验室相比,安捷伦从富集样品中回收的磷酸肽数量最多。
  • 【Application Note】磷酸肽的高效合成
    使用具有 CarboMAX™ 偶联方法的 Liberty Blue™ 自动微波肽合成仪能进行难以合成的磷酸肽的高效合成。微波能量的使用被证明对于偶联庞大的磷酸氨基酸衍生物非常有效,而使用CarboMAX 偶联方法可以在高温下保护酸不稳定的受保护磷酸基团,从而最大限度地减少副反应。
  • 采用气相交联与波恩-奥本海默分子动力学计算探测非共价肽肽离子复合物中精氨酸-磷酸肽相互作用
    采用立陶宛EKSPLA公司研制的NL301HT型纳秒调Q Nd:YAG激光器输出的355nm激光进行选择性紫外光致解离,配合质谱仪,进行了气相交联测量,和波恩-奥本海默分子动力学计算。探测了非共价肽肽离子复合物中精氨酸-磷酸肽相互作用
  • 采用 Agilent 8800/8900 串联四极杆 ICP-MS 通过 capLC-ICP-MS 同时测定多肽和磷酸肽
    结合毛细管液相色谱分离技术,Agilent 8800 串联四极杆 ICP-MS 在 MS/MS 质量 转移模式下可痕量测定磷酸肽中的磷与含硫多肽中的硫。使用 LC-ICP-MS 可获得前所未有的含硫和含磷物质的最低绝对检测限(分别为 11 fmol 和 6.6 fmol)。 硫的同位素比值测定结果与其理论值高度吻合,从而证明干扰得以有效消除。 所观测到的硫和磷的峰形和信噪比表现优异。测定结果表明串联四极杆capLCICP-MS 技术在使用非特殊标样测定含硫和含磷多肽的高灵敏度和同时绝对定量分析方面有巨大潜力。
  • 基于二氧化钛富集策略的人类磷酸化蛋白质组大规模鉴定
    在这部分工作中,我们采用了高 pH 反相色谱结合二氧化钛富集以及二氧化钛富集结合强阳离子交换分级两条技术路线来对实现对 Hela 细胞的磷酸化蛋白质组的深度覆盖。最终我们的实验一共鉴定到了 8,696 个蛋白质上的近 40,000 个磷酸化位点。 在二氧化钛富集结合强阳离子交换分级的技术路线中,SCX 分级的梯度还值得进一步优化,对于这种组分较少的预分级方法,阶梯洗脱会是一个更好的选择。这种大规模的磷酸化肽段富集方法对样品的起始量要求比较高,如果样品较少的话,建议采用二氧化钛富集结合强阳离子交换的策略,一般 2 mg 起始蛋白就能得到较多的磷酸化位点鉴定。ThermoFisher也提供了商业化的 IMAC 试剂盒(Cat # 88300),鉴于 IMAC 和 TiO2 对磷酸化肽段富集有着较好的互补性,这两者联用会对磷酸化蛋白质组的深度覆盖达到更好的效果。
  • 基于二氧化钛富集策略的人类 磷酸化蛋白质组大规模鉴定
    在二氧化钛富集结合强阳离子交换分级的技术路线中,SCX 分级的梯度还值得进一步优化,对于这种组分较少的预分级方法,阶梯洗脱会是一个更好的选择。这种大规模的磷酸化肽段富集方法对样品的起始量要求比较高,如果样品较少的话,建议采用二氧化钛富集结合强阳离子交换的策略,一般 2 mg 起始蛋白就能得到较多的磷酸化位点鉴定。ThermoFisher 也提供了商业化的 IMAC 试剂盒(Cat # 88300),鉴于 IMAC 和 TiO2 对磷酸化肽段富集有着较好的互补性,这两者联用会对磷酸化蛋白质组的深度覆盖达到更好的效果。
  • 原子吸收法检测磷酸铁中锰、钠、铅、锌、钛含量
    磷酸铁加热时易溶于盐酸,但难溶于其他酸,几乎不溶于水,该物质特有的性质,可作为制造磷酸铁锂电池的原材料,也可用作催化剂及制作陶瓷等,其中金属元素的含量直接影响该物质的性质,尤其是制作电池时,其中的金属元素含量多少,直接影响电池的导电性能。因此,准确检测其中金属元素含量意义重大,本文采用盐酸湿法溶解磷酸铁,使用原子吸收光谱仪检测磷酸铁中多种金属元素的含量,重现性较好。
  • 内标掺入SILAC法用于小量组织的蛋白质组及磷酸化蛋白质组定量
    在这篇工作中,我们采用内标掺入 SILAC 的定量方法对大鼠胰岛进行了蛋白质组以及磷酸化蛋白质组的定量研究。通过对 SILAC 培养基的成分比例调整,我们优化了 INS-1E 细胞的标记方法。胰岛内包含多种细胞类型,如α 细胞,β 细胞,δ 细胞等,我们发现采用 INS-1E 细胞系(一种β 细胞系)已经可以较好的覆盖胰岛的全蛋白质组和磷酸化蛋白质组。若关心胰岛中的α 细胞的话,则可以标记α 细胞系来作为内标掺入胰岛。此外,我们还可以采用多种细胞系作为内标,这种称为“Super SILAC”的方法来完成对复杂组织蛋白质的全覆盖。 在磷酸化蛋白质组学流程中,我们采用了自制的基于StageTip 的TiO2萃取小柱来灵活的实现小量样品的磷酸化肽段富集。样品量始终是磷酸化以及其他一些翻译后修饰研究绕不过去的话题,一般来说只有增加样品量,并采取适当的预分级手段才能更深度的去覆盖这些翻译后修饰蛋白质组。ThermoFisher 也提供了商业化的 IMAC 试剂盒(Cat # 88300),鉴于 IMAC 和 TiO2 对磷酸化肽段富集有着较好的互补性,这两者联用会对磷酸化蛋白质组的深度覆盖达到更好的效果。
  • LTQ-Velos-Pro-Orbitrap-Elite在磷酸化蛋白质组学中的应用
    从上述结果可以得出,LTQ-Velos-Pro-Orbitrap-Elite检测结果可靠性高,系统稳定性高,质谱质量轴稳定性高,在短时间内可以鉴定到大量高可信的磷酸化修饰肽段以及磷酸化位点,可以很好的应用于磷酸化蛋白质组学研究,同时本次实验还说明对样本使用TiO2进行多次重复富集可以显著提高样本中磷酸化肽段的比例,提高磷酸化肽段与位点的鉴定数目。
  • 电位滴定法测定磷酸水溶液中磷酸含量
    磷酸或正磷酸,是一种常见的无机酸,是中强酸。磷酸主要用于制药、食品、肥料等工业,包括作为防锈剂,食品添加剂,牙科和矫形外科,EDIC腐蚀剂,电解质,助焊剂,分散剂,工业腐蚀剂,肥料的原料和组件家居清洁产品。也可用作化学试剂,磷酸盐是所有生命形式的营养。本方法采用电位滴定的方法测定磷酸水溶液中的磷酸含量,所取样品为自制的含磷酸量约为1%的磷酸水溶液,通过检测,发现该方法检测磷酸含量的结果重复性良好、突跃明显,能够准确地测出磷酸含量,是一种检测磷酸含量的快速办法。
  • IC法测定乙烯利水剂中乙烯利、 亚磷酸、磷酸的含量
    :建立了IC法检测乙烯利水剂中乙烯利、磷酸、亚磷酸的方法。选用SH–AC–1阴离子分离柱,淋洗液选用3.6 mmol/L Na2CO3+4.5 mmol/L NaHCO3,等度淋洗,流速2.0 mL/min,进样量10 ?L,抑制电导检测,样品水溶解。在此条件下,线性相关系数均大于0.999;亚磷酸、磷酸和乙烯利检出限 (S/N=3) 分别为12.1 ?g/L、53.4 ?g/L和73.7 ?g/L;相对标准偏差 (RSD) 为0.58%、2.87%和1.26%,样品平均加标回收率在97.0%~100.1%,重现性好。该方法简便、快速、灵敏、准确,可以用于乙烯利水剂中乙烯利、磷酸和亚磷酸的同时测定。
  • Plasma 2000型ICP-OES测定锂离子电池用碳复合磷酸铁锂正极材料中的铁离子溶出率
    目前,锂离子电池用的磷酸铁锂材料具有极高的安全性、超长的循环寿命、良好的高温性能和稳定的放电平台等特点,是用于电动交通工具、储能电池和大倍率电动工具电池的唯一侯选正极材料。不同的制造工艺会导致极大的性能差异,其中,磷酸铁锂材料的自放电问题是较为严重的问题之一,采用钢研纳克生产的Plasma 2000型电感耦合等离子体发射光谱仪测定锂离子电池用的磷酸铁锂材料的铁离子溶出率效果非常好的,能够满足试验的要求。
  • 精确修饰位点谱图库的建立与磷酸化蛋白质组的 DIA 解析
    PTM位点鉴定错误的概率较高,将位点错误的鉴定结果作为谱图库,会导致DIA解析结果的不可靠。实验使用Thermo ScientificTM Orbitrap Fusion三合一质谱仪,基于ptmRS/phosphoRS建立可靠的翻译后修饰DIA流程,突破了PTM DIA解析的瓶颈。使用phosphoRS/ptmRS筛选PTM定位准确的谱图,作为谱图库用于DIA,结果显示,具有精确PTM定位的谱图库中98.4%的磷酸化肽都获得了可靠的DIA解析(Q0.01),峰面积CV值20%的肽段占86.9%,实现了准确可靠的大规模PTM DIA定量。
  • 离子色谱法测定米诺膦酸中磷酸盐亚磷酸盐含量
    采用AS14阴离子交换色谱柱,用Na2CO3和NaHCO3溶液洗脱时,磷酸盐以HPO42-的形式存在,无法与亚磷酸盐分离,用Na2CO3和NaOH溶液洗脱,磷酸盐以PO43-形式存在,与亚磷酸盐分离度较好,且不受其他常规阴离子干扰。采用抑制型电导检测,可用于米诺膦酸中磷酸盐与亚磷酸盐的测定。
  • 喷雾干燥法技术在合成球形磷酸铁锂的研究中的研究应用
    磷酸铁锂具有热稳定性好、充放电效率高、环境友好、价格便宜的特点,被认为是极有潜力的锂离子电池,特别是动力锂离子电池正极材料。目前,研究者们广泛采用高温固相法、液相法、共沉淀法、微波加热等方法来合成磷酸铁锂,并通过碳包覆或掺杂等方式来提高材料的电导率以发问其电化学性能。喷雾干燥法是从料液中获得超微干粉的一种较好的方法,这种由液态经过雾化和干燥在瞬间直接变成粉体的过程,已经广泛应用于食品、医药、电子和材料等一些与原材料颗粒大小密切相关的领域。与其他一些粉末生产相比较,喷雾干燥法具有如下一些优点:1.可以保证组分分布均匀,精确控制化学计量比,适合制备多组分的复合粉末;2.保证粉末具有较高的纯度和活性;3.喷雾赤豆工序简单,生产过程连续,产能大,生产效率高,有利于工业化生产;4.喷雾干燥的颗粒大都呈规则的球形,有利于提高粉末的振实密度。
  • 磷酸二氢钾含量的测定 应用资料
    磷酸二氢钾含量的测定 应用资料磷酸二氢钠加入水中,用1mol/L氢氧化钠滴定溶液测定磷酸二氢钾。滴定值上升到滴定曲线上的最大拐点。根据氢氧化钠的滴定体积计算磷酸二氢钾的浓度。
  • 伊班膦酸钠注射液中磷酸盐与亚磷酸盐测定
    伊班膦酸钠(Ibandronate sodium),化学名为羟基-3-(甲基戊基胺)-丙烷-1,1-双膦酸钠,是一种新的用于治疗骨肿瘤诱发的高钙血症和骨质疏松的药物,特点为低剂量、高效和耐受性良好。对伊班膦酸钠注射液中少量游离磷酸盐和亚磷酸盐进行检测,可更好的控制药品的质量。现行的药品标准中,仅测定磷酸盐的含量。本实验的建立离子色谱检测方法,可同时测定磷酸盐和亚磷酸盐含量,该方法灵敏度高,重现性好。
  • 碱性磷酸酶的分离提取及比活力的测定
    一、实验原理碱性磷酸酶(alkaline phosphatase EC 3.1.3.1简称为ALPase)广泛存于微生物界和动物界。ALPase能催化几乎所有的磷酸单酯的水解反应,产生无机磷酸和相应的醇、酚或糖。它也可以催化磷酸基团的转移反应,磷酸基团从磷酸酯转移到醇、酚或糖等磷酸受体上。在磷的生物和化学循环过程中,ALPase起了及其重要的作用。在生物体内ALPase与磷的代谢直接相关,参与磷与钙物质的消化、吸收、分泌以及骨骼的形成等生理生化过程。ALPase的作用最适PH在碱性区域,一般在PH9.0~10.5范围内。Mg2+对该酶的活力有显著的激活使用。
  • IC法测定乙烯利水剂中乙烯利、 亚磷酸、磷酸的含量
    用离子色谱抑制电导法检测乙烯利水剂中乙烯利、亚磷酸、磷酸,方法简便快速,重现性好,其分析的科学性和可操作性强,可以作为检测农药乙烯利及其杂质离子的方法,可用于控制工艺,适用于大批样品的定性及定量分析。
  • 喷雾干燥法技术在合成球形磷酸铁锂的研究
    磷酸铁锂具有热稳定性好、充放电效率高、环境友好、价格便宜的特点,被认为是极有潜力的锂离子电池,特别是动力锂离子电池正极材料。目前,研究者们广泛采用高温固相法、液相法、共沉淀法、微波加热等方法来合成磷酸铁锂,并通过碳包覆或掺杂等方式来提高材料的电导率以发问其电化学性能。喷雾干燥法是从料液中获得超微干粉的一种较好的方法,这种由液态经过雾化和干燥在瞬间直接变成粉体的过程,已经广泛应用于食品、医药、电子和材料等一些与原材料颗粒大小密切相关的领域。与其他一些粉末生产相比较,喷雾干燥法具有如下一些优点:1.可以保证组分分布均匀,精确控制化学计量比,适合制备多组分的复合粉末;2.保证粉末具有较高的纯度和活性;3.喷雾赤豆工序简单,生产过程连续,产能大,生产效率高,有利于工业化生产;4.喷雾干燥的颗粒大都呈规则的球形,有利于提高粉末的振实密度。
  • 喷雾干燥法技术在合成球形磷酸铁锂的研究中的应用
    磷酸铁锂具有热稳定性好、充放电效率高、环境友好、价格便宜的特点,被认为是极有潜力的锂离子电池,特别是动力锂离子电池正极材料。目前,研究者们广泛采用高温固相法、液相法、共沉淀法、微波加热等方法来合成磷酸铁锂,并通过碳包覆或掺杂等方式来提高材料的电导率以发问其电化学性能。喷雾干燥法是从料液中获得超微干粉的一种较好的方法,这种由液态经过雾化和干燥在瞬间直接变成粉体的过程,已经广泛应用于食品、医药、电子和材料等一些与原材料颗粒大小密切相关的领域。与其他一些粉末生产相比较,喷雾干燥法具有如下一些优点:1.可以保证组分分布均匀,精确控制化学计量比,适合制备多组分的复合粉末;2.保证粉末具有较高的纯度和活性;3.喷雾赤豆工序简单,生产过程连续,产能大,生产效率高,有利于工业化生产;4.喷雾干燥的颗粒大都呈规则的球形,有利于提高粉末的振实密度。
  • 来亨喷雾干燥技术在合成球形磷酸铁锂的研究中的应用
    磷酸铁锂具有热稳定性好、充放电效率高、环境友好、价格便宜的特点,被认为是极有潜力的锂离子电池,特别是动力锂离子电池正极材料。目前,研究者们广泛采用高温固相法、液相法、共沉淀法、微波加热等方法来合成磷酸铁锂,并通过碳包覆或掺杂等方式来提高材料的电导率以发问其电化学性能。喷雾干燥法是从料液中获得超微干粉的一种较好的方法,这种由液态经过雾化和干燥在瞬间直接变成粉体的过程,已经广泛应用于食品、医药、电子和材料等一些与原材料颗粒大小密切相关的领域。与其他一些粉末生产相比较,喷雾干燥法具有如下一些优点:1.可以保证组分分布均匀,精确控制化学计量比,适合制备多组分的复合粉末;2.保证粉末具有较高的纯度和活性;3.喷雾赤豆工序简单,生产过程连续,产能大,生产效率高,有利于工业化生产;4.喷雾干燥的颗粒大都呈规则的球形,有利于提高粉末的振实密度。
  • 喷雾干燥技术在合成球形磷酸铁锂的研究中的应用
    磷酸铁锂具有热稳定性好、充放电效率高、环境友好、价格便宜的特点,被认为是极有潜力的锂离子电池,特别是动力锂离子电池正极材料。目前,研究者们广泛采用高温固相法、液相法、共沉淀法、微波加热等方法来合成磷酸铁锂,并通过碳包覆或掺杂等方式来提高材料的电导率以发问其电化学性能。喷雾干燥法是从料液中获得超微干粉的一种较好的方法,这种由液态经过雾化和干燥在瞬间直接变成粉体的过程,已经广泛应用于食品、医药、电子和材料等一些与原材料颗粒大小密切相关的领域。与其他一些粉末生产相比较,喷雾干燥法具有如下一些优点:1.可以保证组分分布均匀,精确控制化学计量比,适合制备多组分的复合粉末;2.保证粉末具有较高的纯度和活性;3.喷雾赤豆工序简单,生产过程连续,产能大,生产效率高,有利于工业化生产;4.喷雾干燥的颗粒大都呈规则的球形,有利于提高粉末的振实密度。
  • 喷雾干燥法合成球形磷酸铁锂的研究
    磷酸铁锂具有热稳定性好、充放电效率高、环境友好、价格便宜的特点,被认为是极有潜力的锂离子电池,特别是动力锂离子电池正极材料。目前,研究者们广泛采用高温固相法、液相法、共沉淀法、微波加热等方法来合成磷酸铁锂,并通过碳包覆或掺杂等方式来提高材料的电导率以发问其电化学性能。喷雾干燥法是从料液中获得超微干粉的一种较好的方法,这种由液态经过雾化和干燥在瞬间直接变成粉体的过程,已经广泛应用于食品、医药、电子和材料等一些与原材料颗粒大小密切相关的领域。与其他一些粉末生产相比较,喷雾干燥法具有如下一些优点:1.可以保证组分分布均匀,精确控制化学计量比,适合制备多组分的复合粉末;2.保证粉末具有较高的纯度和活性;3.喷雾赤豆工序简单,生产过程连续,产能大,生产效率高,有利于工业化生产;4.喷雾干燥的颗粒大都呈规则的球形,有利于提高粉末的振实密度。
  • 多聚磷酸盐的测定
    多聚磷酸盐是一类重要的品质改良剂,它们在食品工业中主要用于保持食品的水分,调节ph值,乳化、缓冲、螯合金属离子等。在海产品的保存和运输过程中加入一定量的多聚磷酸盐,可以保证水分不会缺失。然而,多聚磷酸盐会促使血液凝结,其降解产物——磷酸盐也可能增大摄入者心脑血管疾病发生的可能性,……
  • 微波消解磷酸酯
    磷酸酯是磷酸的酯衍生物,用作含磷农药、难燃液压油、润滑油等。利用特殊的催化酯化方法,能够制备长链磷酸酯,广泛应用于金属加工业领域,在高载荷引起边界润滑条件下减少摩擦和磨损。水性和油性磷酸酯常用于铝轧制液,钢板轧制液,拉削液,冲压油,超精研,磨削液,冷轧液等产品中。对于磷酸酯中磷含量的检测可以判断产品的优劣,采用微波消解法对磷酸酯进行前处理,该方法具有快速、简便、节省试剂、消解完全等特点,测定结果的精密度和准确度良好,有利于对磷元素的分析检测。
  • 土壤磷酸酶的分光法测定方案
    磷酸酶能酶促有机磷化合物的水解。试验表明,土壤微生物对于土壤含磷有机物的矿化起着主要的作用 某些高等植物的根系也有磷酸酶活性。土壤的磷酸酶活性可以表征土壤的肥力状况(特别是磷的状况)。
  • 使用SALD-2300测试磷酸铁和磷酸铁锂的粒度
    本文利用岛津激光粒度仪SLAD-2300,建立了锂电池正极材料磷酸铁锂及其主要原料磷酸铁的粒径大小和分布的测定方法,可为了解材料的粒度信息提供重要参考。实验表明,样品制备简单,测试速度快,重复性优良,本法满足此类正极材料的粒度测试要求。
  • 水质磷酸盐的测定
    离子色谱法检测水质中的磷酸盐预处理简单,方法快捷、有效且准确度高离子色谱法检测水质中的磷酸盐预处理简单,方法快捷、有效且准确度高
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制