当前位置: 仪器信息网 > 行业主题 > >

流变学方法表征

仪器信息网流变学方法表征专题为您整合流变学方法表征相关的最新文章,在流变学方法表征专题,您不仅可以免费浏览流变学方法表征的资讯, 同时您还可以浏览流变学方法表征的相关资料、解决方案,参与社区流变学方法表征话题讨论。

流变学方法表征相关的资讯

  • 同步斯坦福——SRI流变学系列讲座I——流变学原理、定量表征与前沿应用
    简介:流变学是研究物质流动和变形的科学,它从力学的一个分支,逐步发展成为一门交叉学科,融合了物理、应用数学、化学、生物和医学、工程技术等诸多学科,其应用范围涵盖材料加工(3D打印)、医药制造、医学工程、电子和半导体、机械、汽车、冶金、石油、橡胶、纺织、塑料、化工、涂料和喷漆、选矿、食品、轻工、造纸、污水处理与环境工程等各个领域。系统流变学研究所致力于流变学学术前沿研究、工业应用和人才培养,并通过举办系列SRI流变学讲座促进产学研的深度交流、融合和协同创新。首届SRI讲座教授由世界著名流变学家Gerald G. Fuller院士开讲。Fuller院士不仅前沿学术成果丰硕,还具有解决工业实际问题以及传授流变学知识和技能的丰富经验。在本次讲座中,他将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等软物质分子和微结构的流变现象入手,使得与会者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 讲座时间:2017年1月4日-5日讲授语言:英语讲座地点:广州市大学城外环西路230号、广州大学图书馆附楼208会议室 讲座日程安排1月4日08:00注册08:30流变现象与物质函数09:30线性粘弹性10:30茶歇10:40粘弹性的物质微观结构基础11:40解析线性粘弹数据实践12:30午餐13:30粘性液体14:30剪切流变仪15:30茶歇15:40剪切变稀、剪切增厚的物质微观结构基础17:00休会1月5日08:30非线性粘弹性09:30拉伸流变仪10:30茶歇10:40非线性流变现象的物质微观结构基础11:40计算模拟12:30午餐13:30屈服应力、絮凝分散体14:30界面流变学15:30茶歇15:40生物流变学与食品流变学17:00休会 主讲教授简介:Gerald G. Fuller担任美国斯坦福大学化学工程系Fletcher Jones讲座教授,主要研究领域涉及光学流变仪、拉伸流变学和界面流变学,涵盖包括聚合物溶液和熔体、液晶、悬浮液和表面活性剂溶液等软物质材料。他曾获得流变学术界最高荣誉——Bingham奖。他是美国国家工程院院士、美国艺术与科学院院士,现任流变学国际委员会秘书长,并长期担任美国TA仪器资深流变顾问。 广州大学系统流变学研究所热忱欢迎各界流变学领域从业者热别是青年学生、教师和业界技术人员参加,并未参会人员提供免费的午餐、茶歇,但交通和住宿需自理。美国TA仪器也将全力支持本次活动!!名额有限。先报先得、额满为止!!请认真填写您的姓名、单位、职务、联系电话、电子邮箱,并于2016年12月30日(星期五)下午5:00之前发送至邮箱:vwang@tainstruments.com。
  • 赛默飞世尔科技宣布2011年度流变学讲座安排
    —— 注重实践培训以了解产品应用中国,上海(2011年1月11日)-服务科学全球领先的赛默飞世尔科技公司今天宣布了2011流变学讲座的相关安排。 赛默飞世尔科技流变学讲座坚持密切联系应用,以实用为导向的方针,帮助客户优化应用,开发创新应用。讲座目前在我公司于德国卡尔斯鲁厄及荷兰布雷达的培训中心开展。 在为期一天的小型讲座中,参加者将接受如何有效使用流变测量方法的指导。讲座将由诸多来自不同学科的主讲人负责。讲座主题将涉及流变学领域的一些基础课题,同时也会深度探讨部分专业课题。以下为讲座主题及日程安排:普通流变学2011年2月24日 布雷达(荷兰) 语言:英语2011年6月9日 布雷达(荷兰) 语言:英语2011年10月13日 布雷达(荷兰) 语言:英语 流变学和热分析2011年3月30日 关注点:涂料,涂层,粘合剂 纽伦堡(德国) 语言:德语2011年4月12日 关注点:聚合物 斯图加特 (德国) 语言:德语2011年4月14日 关注点:聚合物林茨 (奥地利) 语言:德语2011年6月9日 关注点:物料表征 柏林(德国) 语言:德语药品流变学和热熔挤出2011年11月23-24日 卡尔斯鲁厄(德国) 语言:德语 聚合物(小型讲座)2011年4月7日 北京 语言:普通话2011年5月19日 广州 语言:普通话 制药(小型讲座)2011年4月21日 广州 语言:普通话2011年5月10日 北京 语言:普通话 基础讲座“应用流变学”详细探讨了流变学理论和实践知识,旨在使参加者能运用和了解流变测量方法,讲座中包括以下三个单元,每个单元均接受单独预订:基础知识与旋转试验 Thermo Scientific HAAKE RheoWin软件 粘弹性、蠕变和振荡试验 应用流变学2011年2月1-3日 卡尔斯鲁厄(德国) 语言:德语2011年9月20-22日 多特蒙德(德国) 语言:德语 作为流变学领域的先驱,赛默飞世尔科技拥有多种Thermo Scientific材料物性表征解决方案,成功的为多领域工业提供技术支持。材料物性表征解决方案能够分析并测量多种产品的粘性、弹性、可加工性和与温度相关的力学性能变化。这些产品包括:塑料产品、食品、化妆品、药物和涂层、化学或石油化学产品以及一系列液态或固态产品。欲获取更多信息,请登录:www.thermoscientific.com/mc Thermo Scientific是服务科学世界领先的赛默飞世尔科技旗下品牌。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100多亿美元,拥有员工35,000多人服务客户。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲了解更多信息,请浏览公司网站: www.thermofisher.com 或中文网站www.thermo.com.cn ;www.fishersci.com.cn 。
  • 流变学,因为热爱,所以分享——访国际流变学会委员会秘书长Gerald G. Fuller院士
    p  2018年4月9日至10日,美国TA仪器在上海新园华美达广场酒店举办了a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/news/20180419/461889.shtml"span style="color: rgb(0, 176, 240) "“流变学原理与前沿应用大师课程”/span/a,这是一次“不一样”的课堂:课堂讲师分别是:美国工程院Gerald G. Fuller院士、Christopher Macosko院士,两位都曾荣获世界流变学最高奖项宾汉奖,作为流变学权威,能同时在同一课堂授课更是难得。同时,两位杰出的青年流变学家Amy Shen教授和乔秀颖博士也参与了大师课程的部分授课内容。/pp  仪器信息网编辑(以下简称“INSTRUMENT”)有幸亲临课堂现场,切身感受了课堂的“不一样”。出于对全球流变权威科学家的崇敬与好奇,经课前征求,笔者有幸对现任流变学国际委员会秘书长,界面流变学创始人Gerald G. Fuller院士进行了简短的课间采访,虽然采访时间非常有限,但是此次近距离的接触让笔者对Gerald G. Fuller院士有了全新的认识, 这位全球知名的流变学科学家,更像一个亲和、健谈的长者,侃侃而谈,话语间,流露出对流变学的热爱和对推动流变学发展的强烈使命感。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/7104e916-81ac-4db6-96a5-9d28a48ba216.jpg" title="IMG_5335_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "美国工程院Gerald G. Fuller院士/span/pp  4月9日下午2点余,Gerald G. Fuller院士授课间隙,由美国TA仪器工作人员担任翻译,笔者对Gerald G. Fuller院士的简短采访就此开始。/pp  strongINSTRUMENT: 据本次课程的组织方TA仪器中国区副总经理董传波先生介绍,您和Christopher Macosko院士对此次两天的流变课程均是无偿授课,是什么促成您不远万里由美国来到上海进行此次授课?/strong/pp  strongGerald G. Fuller:/strong回答这个问题之前,我想有必要首先介绍一下国际流变学委员会。1945年12月,国际科学联合会(International Council of Scientific Unions)组织了一个流变学联合委员会。这便是1953年组建的国际流变学委员会的前身,并分别于1973年和1974年被接纳为国际纯粹和应用化学联合会、国际理论和应用力学联合会的分支机构。委员会的主要职能包括:对流变学的专门名词进行命名 对流变学的论文进行摘要 组织国际流变学会议等。/pp  作为一个流变学研究者,我一直期望能帮助流变学能得到更广泛的传播。而在2016年第十七届世界流变学大会(The ⅩⅦth International Congress on Rheology)上,我有幸被推选为国际流变学委员会新一届秘书长。这更加深了自己对将流变学更广泛的推广到全世界的使命感。/pp  目前,国际流变学委员会在全世界许多国家和地区都设有分会,且在不断增加。已经设置分会的国家地区包括美国、欧洲、亚洲等,当然中国也早在1988年成为国际流变学委员会成员国之一,并有很好的合作。中国也有一批优秀的大学老师和研究机构从事着非常好的流变学研究,不过,中国地域非常辽阔,此次来到中国就是希望帮流变学在中国能够得到进一步的普及和推广。/pp  strongINSTRUMENT:您能否对流变学这门学科作一个大致的描述?/strong/ppstrong  Gerald G. Fuller:/strong流变学是研究材料的流动和变形的学科,是一门典型交叉学科,将力学、化学、物理与工程科学紧密结合在一起。学科特性决定了流变学是难以测量的,所以流变学一个很重要的研究方向,就是用数学模型来预测流体行为。但实际上,流变学的应用是十分广泛的,从我们吃的食物,到我们每个人的生活用品,再到一些新兴的材料工程,都会用到流变学理论。流变学在发达国家的应用更加普及一些,对于发展中国家,随着整体经济及科技实力的发展,在制造工艺中越来越多的需要流变科学来对其制造工艺进行指导。因此,国际流变学委员会便鼓励像我,或像Amy Shen教授等这样的人,对流变学进行教学和推广。/pp  正如刚才所述,中国已有很好的流变协会组织,但中国实在太大了,在很多地方都需要继续推广流变学知识,使流变学的技术人员得到更好的流变学培训。同时,在很多其他发展中国家,有很好的工厂和制造业,但却没有流变协会这样的组织,所以我们来帮助这些国家建立这样的组织,目前我们已经帮巴西、阿根廷、哥伦比亚等都建立起了自己的流变学学会。/pp  strongINSTRUMENT: 此次课堂中的一些企业学员反应,他们实验室购置的流变仪也很高端,很昂贵,但这些高端仪器的利用率却很低,而且真正懂仪器的人才也比较缺失。这是否是一种对资金和资源的浪费?这种困境有什么更好的办法去解决呢?/strong/ppstrong  Gerald G. Fuller:/strong我能明白你说的这种现状,我组织这样短期课程的一个原因就是为了解决这一问题。课堂把很多实验人员或仪器客户召集在一起,尽管他们中有一些可能是同行竞争关系,但是一旦大家坐在一起,就可以互相交流,互相学习。事实上,在美国,流变仪的市场销量非常好,有很多企业都会购买,他们知道如何很好的使用这些流变仪。而且,尽管美国的企业对流变仪已经很熟悉、很了解,他们也仍然会经常互相沟通,互相学习相关流变技术。我认为还是要让大家更多参与这样的活动,多交流、多沟通,互相学习,是推动这项学科继续很好发展的推动力。/pp  刚才是从社会企业的角度分析,从高校的角度出发,我建议高校开设专门的流变课程,让更多的学生受到正规的流变学教育,这样企业流变实验室就可以聘请有流变学背景的毕业生从事相关的工作,这样就可以提升流变相关仪器的使用效率。/pp  strongINSTRUMENT: 说道流变学的发展,能否谈一下流变学本身的发展与相应仪器技术的发展之间的关系?/strong/ppstrong  Gerald G. Fuller:/strong这个问题的本质还在材料本身,在材料不断发展和丰富的历史过程中,每当有新材料出现,我们需要知道如何去认识它,然后把材料和认识的方式二者结合起来,应运而生的便是如何去测试或表征材料。然后就逐渐衍生出那么多各种测试表征仪器设备以及对应的测试方法,接下来科研工作者需要考虑的便是如何选用更好的手段对材料进行分析和表征,进而提升对材料的认知。/pp  不管购买的是何种仪器或设备,我们最终还是要解决材料本质的问题,我们想知道材料的某种性质,然后应运而生的就是相应仪器出现。当然,仪器设备也会反过来促进我们进一步解决材料本质问题的能力。/pp strong INSTRUMENT: 可不可以谈一下流变学领域当下的一些热点研究?/strong/ppstrong  Gerald G. Fuller:/strong很多很多,只要研究对象具有流体特性,就可以应用到流变学理论。例如,我的实验室目前就把流变学应用在人体健康流域,因为人体组织也是一种流体我们利用自己搭建的一个流变仪研究血管和淋巴管中的生理学中的流体. INSTRUMENT: 目前,此次课堂已经进行了半天,许多学员也已纷纷给予好评。您能否谈谈您目前对此次课堂活动的感受?/pp  strongGerald G. Fuller:/strong吃午饭的时候,很多学员都过来问我问题,这让我非常开心,有些问题问的非常好,这证明他们在课堂上有用心的思考。有时,我会给出很好的回答,有时却并不能,但能与“学员”交流,一直都是非常棒的体验。在此,我称呼他们“学员”,但其实他们来自不同行业,有各自不同的应用,大家能聚在一起,思想碰撞,这是非常棒的事情。/pp strong INSTRUMENT: 本次“学员”中也有不少教授或研究员身份,您的热情授课形式也受到大家的欢迎。能否分享一些您的教学经验或建议。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/1b11ccae-c1ac-4e15-8d3d-c2d98c726298.jpg" title="01.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "Gerald G. Fuller与学员课下交流/span/ppstrong  Gerald G. Fuller:/strong我认为中国的教授们都是非常棒的,我可能无法给他们提出更好的建议。但是,我确实从事教育事业有了很长很长一段时间,在斯坦福大学已经教学38年,这期间最大的一个感受就是,当你真正赋予自己“课堂激情”的时候,学生们会感受到,他们会受到你激情的传染。所以,对于任何老师,你必须在学生们面前展示出你的热情,这会帮助学生对你所教学的内容产生兴趣,他们会意识到你正在讲的东西是如此重要。/pp span style="font-family: 楷体,楷体_GB2312,SimKai "strong 采访后记/strong/span/pp  参加此次流变学课堂的“学员”,有来自企业研发中心的技术人员,有来自高校院所流变实验室的学生代表、乃至教授。课堂中大家纷纷前排就坐、积极互动交流等场面,都让笔者感受到了国内年轻学者对流变学知识的渴望,也感受到Gerald G. Fuller及Christopher Macosko的课堂魅力。/pp  交流中,笔者与翻译人员谈及两位院士在课堂前一晚的晚餐期间,还在热烈的讨论讲课内容的具体细节时,Gerald G. Fuller直接笑言:“Yeah! Because we love it!”。整个两天的课堂中来看,Gerald G. Fuller所描述的“课堂激情”也始终贯穿了他所承担的六节课、6个多小时讲堂时间中。/pp  在课堂之外,Gerald G. Fuller的个人生活也极具色彩。据介绍,每次出差(包括这次),Gerald G. Fuller都会随身携带一个折叠式的轻便自行车,工作之余,不忘在周边来一次十余公里的骑行 生活中,Gerald G. Fuller更是会品尝到自己动手酿制葡萄酒(标注有专属的铭牌)。或许,课堂之上的专注、乃至流变学取得的成就,都源于其对生活、对工作的无限热爱。/pp  strong附:Gerald G. Fuller院士简介/strong/pp  美国国家工程学院的院士,现任流变学国际委员会秘书长,斯坦福大学化学工程系Fletcher Jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。Fuller教授曾获得流变学会最高荣誉宾汉奖章。同时Fuller 院士常年担任美国TA仪器流变学顾问。/p
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • 【安东不怕扰e直播】粉体流变学
    先进的真正粉体流变测量利用粉体流通池和粉体剪切样品池实现最为准确的粉体特性分析这两种真正的粉体流变测量样品池可帮助您真正地表征和了解粉体的特性。您可以使用各种专用的粉体测量方法,从而充分发挥流变仪的优势:可快速轻松地执行测试,同时可详细阐述用于质量控制和研发目的的测量结果。粉体剪切样品池适合用来测定压实态粉体的流动特性及其与时间相关的特性。通过额外附件可全面控制温度和湿度。粉体流通池是一种创新、科学的粉体特性分析方案,提供多种多样的测试方法。您可以在模拟、调整和优化等各种现实条件(例如制造过程中)下表征粉体的特性。安东帕创建于1922年,总部位于奥地利格拉兹。安东帕在密度和浓度的测量,溶解二氧化碳的测定,以及在流变学和黏度测量领域处于世界领先地位。安东帕业务遍及全球110多个国家,拥有32家销售分公司和8个生产基地。同时,在全球研发、生产、销售和支持网络中有3500多名员工负责质量、可靠性,以及Anton Paar的产品服务。自2003以来,慈善桑塔纳基金会是Anton Paar的所有者。
  • 美国TA仪器高分子流变学课程通知
    时间:2009.06.21-25地点:中国科学院长春应用化学研究所课程名称:“高分子流变学”课程主讲人:Prof. 王十庆(Shi-Qing Wang)美国Akron大学高分子科学系教授该课程分为二个部分,第一部分是高分子流变学的一般性介绍,第二部分是现代高分子流变学进展。王十庆教授采用汉语授课,具体授课时间为每天上午8:30-10:30,下午:15:00-17:00。课程内容:高分子流体的非线性流变学 简介 高分子流变学的任务 第一部分:线性响应第二部分:非线性现象和表征 第三部分:屈服、非线性响应的主要现象 第四部分:缠结流体的内聚力和弹性屈服 第五部分:流变学在加工中的应用 第六部分:结论-高分子流变学的未来发展目标 本次课程不收取任何讲课费用,但旅费及食宿费需自理! 诚挚地邀请各位及课题组同学前来参加! 若对此课程感兴趣,请与美国TA仪器市场部王冬妮联系Tel:021-54263957Email: vwang@tainstruments.com
  • 奥地利安东帕公司将举办08年全国巡回流变学研讨会
    奥地利安东帕公司将举办08年全国巡回流变学研讨会.研讨会上,我们的流变专家将和您一起共同探讨. 有兴趣者请填写报名表并电邮或传真给我们. 流变学: 原理,应用和最新进展 结合实际使用,介绍流变学原理, 希望学员针对自己的应用实际情况积极参与讨论,包括应用研究内容及方法建立. 我们的流变专家将和您一起共同探讨问题的答案.请在登记表中列出您最感兴趣的课题.谢谢. 要求: 基础的流变知识. 培训内容: 1.流变术语和测试性质 2.流动行为和旋转测试表征 3.粘弹性材料的形变和振荡测试表征 4.聚合物熔体,高分子溶液,分散体系,涂料,食品方面应用 5.最新技术如流变光学,界面流变,磁电流变,熔体拉伸,摩擦学等. 地点/时间: 2008年4月3日, 9:00-17:30, 地址:上海市肇家浜路500号上海好望角大酒店长恭厅 电话:021-64716060 联系方式: 奥地利安东帕(中国)有限公司 赵小姐 地址: 上海市北京西路1701号静安中华大厦1002室 电话: 021-62887878 传真: 021-62886810 邮编: 200040 2008流变学研讨会 时 间 城 市 2008年4月 上 海 2008年5月 武 汉 2008年5月 杭 州 2008年5月 南 京 2008年10月 北 京 * 武汉、杭州、南京、北京研讨会举办地点待定。 _____________________________________________________________________________________________________ 请报名登记: 您准备参加哪一次研讨会? 时间: 地点: 您感兴趣的课题? 参加人员名单 公司名称: 地址: 电话: 传真: 参与人员: (请留详细联系方式) 1) 2) 3) 日期: 请签字确认
  • 【突破局限】水凝胶及软物质的流变行为表征
    让我们从传统技术开始,您可能熟悉这些技术,流变仪和DMA,广泛用于机械测试。我们都同意它们都是伟大的技术,但它们在软物质材料方面存在一些主要限制: 1.软组织或易碎样品可能在测试后被破坏,甚至无法测试; 2.保持样品无菌是很困难的; 3.需要高水平的专业知识来运作,对操作人员有依赖性; 4.难以获得一致和可重复的数据; 5.无法测量凝血材料对血液的影响、无法测量形状各异的器官、3D打印支架的粘弹性等等。EB粘弹性分析技术就为突破传统技术的局限而设计的,主机小巧紧凑,可以放入洁净台或者培养箱中,通过无线连结的平板控制和采集数据,采用可拆卸的样品架和独特的专利技术,允许样品存储重复长期测量,更加智能的软件分析系统,结合AI的智能分析,使得测量模式从基于数据的实验科学转变为数据驱动的预测科学。 2022年12月28日将由2位嘉宾为我们带来相关应用介绍、技术分享,难点答疑!会议日程(点此报名,免费参会) 时间报告题目嘉宾报告摘要10:00水凝胶材料的合成及其流变行为表征经鑫(湖南工业大学 教授)水凝胶是一类大量含水的三维网络结构的聚合物材料,在药物释放、生物医用、组织工程等领域应用广阔。采用流变学手段表征了水凝胶材料的凝胶化过程及其流变行为,利用流变学手段探索了水凝胶的线性粘弹性等剪切特性,建立了凝胶流变特性与其微观结构及宏观力学性能之间的关系,探究了其在组织工程领域及柔性传感领域的应用。10:40水凝胶和软物质粘弹性的测量新技术刘兵 昇科仪器(上海)有限公司 经理EB粘弹性分析仪是一种新型的粘弹性分析技术,解决了传统流变和DMA在测量软物质生物材料方面面临的挑战,在水凝胶、组织工程、类器官、3D打印、凝血材料和高吸水材料领域已发展出非常成熟的应用,通过全球领先研究机构、大学和公司等的严格测试、批准和采用! 【点击下方图片,免费报名参会】
  • “聚”先锋 | 用热分析和流变学优化3D打印
    3D打印也称为增材制造,许多行业都将其视为一种多功能制造技术。3D打印可以实现快速成型和按需打印服务,以避免批量运行带来的潜在浪费。3D打印拥有创造复杂形状的独特能力,被广泛应用于制造业。许多标准制造方法无法在结构中产生空腔和底切。添加模式可以轻松创造各类独特形状。3D打印目前已扩展到一系列材料,包括生物相容性聚合物和各类金属,甚至被用于医疗保健等领域,用于定制打印医疗设备。01通过热分析优化3D打印材料为了优化3D打印材料,制造商需要仔细考虑最终材料的机械和热性能。虽然3D打印部件往往很轻,而且聚合物部件的正确组合可以拥有与金属相似的抗拉强度,但克服增材制造部件较低的机械和热性能是最大的挑战之一[2]。1.13D打印产品性能的工艺优化了解挤压过程如何影响打印材料的最终性能是一个非常热门的研究领域。其中汽车应用对材料的拉伸和热性能要求最高。幸好,目前有许多含有碳纤维、玻璃纤维和凯夫拉纤维的热塑性聚合物基质可用于3D打印部件,并能够在汽车应用中充分实现高性能[2]。 在3D打印过程中,要打印的基材被熔化,然后分层沉积以创建最终对象。在此过程中有多个参数可以优化,例如聚合物床层和喷嘴温度以及层间固化时间。 3D打印有多种方法,包括选择性激光烧结、生物打印和熔融沉积建模。熔融沉积建模是最常用的方法。 玻璃化转变温度是选择正确温度挤压非晶态聚合物的必要信息。对于半结晶聚合物,其熔化温度是应重点关注的数值。结晶度强烈影响聚合物的机械性能。 许多聚合物用紫外线固化,紫外线在聚合物材料中产生自由基,作为最终聚合物生产中交联过程的引发剂。交联程度越高,材料的硬度和强度就越高。通过改变样品暴露在紫外线下的时间长度可以影响交联的材料强度。 温度和固化时间都会影响聚合物在材料中的分子结构及其性能。因此,为了优化这些参数并探索其对最终材料的影响,材料设计师使用对聚合物性能细节敏感的测试技术。1.23D打印材料的热分析用于研究挤压过程对最终材料性能影响的主要热分析工具包括热重分析(TGA)、差示扫描量热分析(DSC)、热机械分析(TMA)和动态机械分析(DMA)[3]。每种技术都提供一些互补信息,可以将这些信息结合起来,以便人们对打印材料的性能有更深的了解。 热重分析(TGA)测量材料重量随温度或时间变化的幅度和变化率。TGA对于了解表征挤压的影响非常重要,因为许多材料在加热时会发生氧化或分解,从而导致重量变化[4]。热重分析是确定样品在挤压过程中是否发生降解的最佳方法之一。 差示扫描量热分析(DSC)可用于测量材料放热和吸热转变与温度的函数关系。挤压过程的常见关注点包括玻璃态转化温度、熔化温度和材料的比热容。 差示扫描量热分析和热重分析是用于了解挤压影响的强大而互补的技术组合。这些技术可用于分析聚合物在挤出温度下的热性能[3]。测量热膨胀系数(CTE)和玻璃化转变温度的热机械分析(TMA)是另一种配套工艺。由于玻璃化转变温度取决于材料的热历史,热机械分析可以用于检查挤压过程不会给成品带来任何不必要的力学行为。此外,增强材料在CTE中可能显示出各向异性,这取决于相对于纤维方向的测量方向[3]。 动态热机械分析(DMA)也被广泛用于材料工程,用于分析聚合物复合材料,因为其可以揭示材料在动态负载条件下的行为信息[5]。 DMA对于表征3D打印成品部件特别重要,反映了不同的配方和加工方法如何影响最终使用性能。1.3选择合适的3D打印热分析技术大多数3D打印生产线依赖于上述技术的组合。作为热分析领域的领跑者,沃特世品牌旗下的TA仪器是全球添加物制造商的首选仪器供应商。我们致力于帮助各行各业的用户找到适合其独特3D打印目标的仪器和方法。我们提供一系列性能卓越且易于使用的热分析仪器,TA仪器的综合热分析产品系列拥有所有必要的设备,可以完全表征基板的热性能和机械性能。 欲了解TA仪器的热分析仪可以如何满足您的应用需求,为您解决痛点,欢迎扫描文末“阅读原文”二维码与我们联系。02利用流变改进3D打印技术聚合物产品无处不在,从包装薄膜、酸奶杯到复杂的汽车零件均使用聚合物产品。尽管应用广泛,但塑料产品通常均通过相同的简单步骤进行制造:制造的起始步骤是应用聚合物基材料(通常为颗粒或粉末形式)加热材料以形成自由流动的熔体通过吹膜、注塑成型、挤出或增材制造(3D打印)等工艺实现熔化材料的成型冷却并凝固产品最终产品的特性和物理形态在很大程度上取决于其加工过程。制造商需要深入了解其材料和应用,以使最终产品的质量达到预期。在加工过程中了解材料是可能的,但这会导致更大的材料损失和更高的生产成本。但如果在加工前就以实验室规模进行材料表征则可有效解决这一顾虑。然后,制造商可根据材料的测量特性设计加工条件。制造商和研究人员都利用流变来研究材料的变形和流动。流变可提供有关液体和固体材料的关键、精确的见解,为成功的3D打印提供信息。3D打印和其他增材制造工艺可通过流变分析进行优化。流变学也适用于许多其他制造工艺。.1质量控制挑战在3D打印过程中,聚合物被熔化到熔融状态并通过3D打印机的管线和喷嘴挤出。因此,聚合物必须能够自由流动,并且需要具有尽可能低的黏度。同时,聚合物必须在挤出后立即保持其形状,并且在冷却过程中不能出现变形。对此,TA仪器的应用专家 Lukas Schwab指出,3D打印中使用的材料需要在黏度(液体流动性特征)和固体弹性之间实现精确的平衡。 将回收材料用于打印产品对聚合物制造商提出了另一个挑战。废旧塑料通常含有残留添加剂、颜色和填料,它们会影响熔体的质量、可加工性及其在制造过程中的行为。因此,再生塑料的加工及其终产品可能难以预测。因此,需要对生物塑料进行详细的分析。2.2预先质量控制尽管存在这些潜在的干扰和不确定性,制造商仍然可以执行强有力的预先品控和质量保证。其中的关键是分析性思考的两个角度:产品中使用的所有材料成分的相互作用必要的工艺参数,包括温度、压力和流量Waters的应用支持专家Marco Coletti在他的网络研讨会上解释了如何借助流变研究来优化 3D打印和增材制造工艺。扫描文末“阅读原文”二维码可获取该网络研讨会的视频链接。2.3轻松表征材料使用相应的功能强大的高精度流变仪可确定流变特性,这是材料表征的重要组成部分。 Waters的应用专家表示:“特别是在应用聚合物熔体等液态物质的情况下,如果没有足够的仪器,了解和预测流变特性可能会非常耗时。” 样品行为通常会根据作用于样品上的力的大小而发生变化,这意味着“样品的流动和变形行为只能通过实验模糊地预测,或通过流变进行更为精确的测量。”HR系列流变仪的核心部件可以轻松、安全、可靠地检测聚合物的粘弹性。制造工艺(包括3D打印)可在实验室规模上进行优化以获得理想的生产结果。43D打印的关键流变测量流变仪测量材料(液体或固体)在受力时的变形。应力、变形和剪切行为的结合构成了流变、材料变形科学的基础。TA仪器的Discovery HR系列混合流变仪是用于流变的多功能分析平台。其配置的专利技术,可以轻松测量直接张力、变形控制以及轴向力规格。Discovery HR系列混合型流变仪(HR10,HR20,HR30)进行旋转流变测量时,将样品放置在两个圆板之间的圆筒中并将圆板和样品压在一起。例如,之后可按规定的速度和方向旋转其中的一个圆板。TA仪器应用专家Lukas Schwab解释说:“旋转测量是确定材料黏度的合适方法,该方法可确定如在 3D 打印中的泵送和加工能力。” 相比之下,振荡测量(两个圆板中的一个以小振幅正弦方式来回移动)可提供有关样品平衡结构的更多信息,因此更多地用于确定材料的特性。振荡测量有助于解答不同产品批次的分子量或材料在较低力量作用下的行为等问题。 通常借助流变测量法来确定材料的黏度或黏弹性,Lukas Schwab总结道:“黏度是对内部摩擦引起的流动阻力的测量,其测量值取决于系统的微观特性,如粒径。反之,黏弹性是材料对变形力所作反应的特性的测量。就纯弹性材料而言,对其施加负载后不会耗散能量;反之,黏弹性材料由于材料变形,其应力-应变行为的效应存在一定程度的差异(滞后效应)。”Lukas Schwab解释说:在许多生产过程中将流变测量用作质量控制的方法,因为不良的黏弹性行为会导致材料性能不佳和变脆。黏弹性也可用于确定固体的耐久性和热机械分解行为。测量所有必要的特性(黏度、分子量、材料行为和黏弹性)可能看起来令人生畏,但Discovery HR系列混合流变仪以其行业领跑的准确性和易用性可为研究人员提供熔融或固体聚合物材料的完整图像。综上所述,无论您想要了解TA仪器在流变学或热分析领域有哪些卓越的产品和解决方案来满足您的应用需求,抑或想进一步观看流变学在3D打印优化上的作用,您都可以扫描文末“阅读原文”二维码与我们取得联系。阅读原文参考文献1.Trenfield, S. J., Awad, A., Madla, C. M., Hatton, G. B., Goyanes, A., Gaisford, S., Basit, A. W., Trenfield, S. J., Awad, A., Madla, C. M., & Hatton, G. B. (2019). Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opinion on Drug Delivery, 16(10), 1081–1094. https://doi.org/10.1080/17425247.2019.16603182.Mohammadizadeh, M., & Fidan, I. (2019). Thermal Analysis of 3D Printed Continous Fiber Reinforced Thermoplastic Polymers for Automotive Applications. Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 899–906. https://utw10945.utweb.utexas.edu/sites/default/files/2019/078%20Thermal%20Analysis%20of%203D%20Printed%20Continuous%20Fiber%20Re.pdf3.Billah, K. M., Lorenzana, F. A. R., Martinez, N. L., Chacon, S., Wicker, R. B., & Espalin, D. (2019). Thermal Analysis of Thermoplastic Materials Filled with Chopped Fiber for Large Area 3D Printing. Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 892–898. https://utw10945.utweb.utexas.edu/sites/default/files/2019/077%20Thermal%20Analysis%20of%20Thermoplastic%20Materials%20Filled.pdf4.TA Instruments (2022) 3D Printing Webinar, https://www.tainstruments.com/3-d-printing-and-additive-manufacturing-process-optimization-a-thermal-approach/, accessed May 20225.Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106, 149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双1,2,曹晓1,2,张嘉琪1,2,韩迎春1,2,赵欣悦1,2,陈全1,21.中国科学院机构长春应用化学研究所高分子物理与化学国家重点实验室 长春1300222.中国科学技术大学应用化学与工程学院 合肥230026作者简介:陈全,男,1981年生.中国科学院长春应用化学研究所研究员.本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造.于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的DistinguishedYoungRheologistAward(2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《NihonReorojiGakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者:陈全,E-mail:qchen@ciac.ac.cn摘要:流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工.本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词:流变学/剪切流场/剪切流变测试目录1.流场分类2.剪切旋转流变仪概述2.1测试原理2.2测试模式3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述3.1.1输入(输出)应变为施加在样品上的应变3.1.2流场为简单的剪切流场3.1.3输入(输出)应力为样品的黏弹响应3.2测试中常见问题I:仪器和夹具柔量3.3测试中常见问题II:仪器和夹具惯量的影响3.4测试中常见问题III:样品自身惯量的影响3.5测试中常见问题IV:二次流的影响3.5.1同轴圆筒夹具二次流边界条件3.5.2锥板和平板夹具二次流边界条件3.6测试中常见问题V:样品表面张力3.6.1样品的各向对称性3.6.2样品本身表面张力大小3.6.3大分子聚集3.7测试中常见问题VI:测试习惯3.7.1样品的制备:干燥和挥发问题3.7.2确定样品的热稳定性3.7.3样品体系是否达到平衡态3.7.4夹具热膨胀对测试的影响3.7.5夹具不平行和不同轴对测试的影响4.结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可.流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况.最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯.笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1.流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场.更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”).流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应.虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如SentmanatExtensionalRheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因.图1中分别展示了剪切和拉伸2种形变[14].施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动.剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直.而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变.同样,连续的拉伸形变称为拉伸流动.拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行.施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离.在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场.然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度.在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场.假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图1Figure1.Illustrationoftworepresentativemodesofdeformation:thesimpleshearforwhichthedirectionofvelocitygradientisperpendiculartothatofvelocity,andtheuniaxialelongationforwhichthedirectionofvelocitygradientisparalleltothatofvelocity.(ReprintedwithpermissionfromRef.[14] Copyright(2012)Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数.为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的.即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17].该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18].然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2.剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧).目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪.本小节主要围绕旋转流变仪展开介绍.旋转流变仪主要分为应力控制型和应变控制型2种.应力控制型旋转流变仪一般使用组合式马达传感器(combinedmotortransducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separatemotortransducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用.之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别.对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T(T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数.因此,可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图2Figure2.GeometryandparametersKγandKσofparallel-plate,cone-and-plateandCouettefixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试.但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性.例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20].(2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择.此外,需要注意的是,为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度.(3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应.在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应.根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图3Figure3.ThedifferentresponsesofNewtonianfluid,Hookeansolid,andviscoelasticmaterialstotheimposedsteadyflow(stressgrowth,transientorsteadymodethatdependsonthefocus),stepstrain(stressrelaxation,transientmode),stepstress(creepandrecovery,transientmode)andsmallamplitudeoscillatoryshear(SAOS,dynamicmode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应.通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式.通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力.剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动.(2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等.其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stressrelaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creepandrecovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stressgrowth).这些测试的共性是关注样品在一个特定刺激下的转变过程.以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间.(3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应.以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间.通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(smallamplitudeoscillatoryshear,简称SAOS).对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间.当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(largeamplitudeoscillatoryshear,简称LAOS).需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心.因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力.然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题.需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1)应变作用在样品上;(2)应力为样品自身的响应;(3)流场为简单剪切流场.这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠.接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.3.1.1输入(输出)应变为施加在样品上的应变该假设的关键在于没有考虑仪器和夹具柔量的影响,即假设样品的应变可以直接从角位移得到.然而,在力的作用下,仪器和夹具自身也会旋转一定的角度.只有当该角位移远小于作用在样品上角位移时,上述假设才能成立.由于夹具通常由不锈钢或者其他金属材料制造,其模量通常在~1011Pa或者更高的范围,而测试样品,特别是高分子材料即使是在玻璃态,模量通常小于1010Pa,因此,似乎夹具的形变可以忽略.但是,需要指出的是,平板和锥板的夹具通常被设计成细长空心的圆柱形,而夹具中间的样品通常为扁平的圆片状,这种形状上的差异会显著增加夹具柔量的影响.除此之外,夹具与样品之间的滑移也可造成施加应变和样品实际应变的区别[21~23].这种滑移会消耗一部分施加的角位移,假设被消耗的角位移为θslip,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff).对于平行板样品,由于应变参数Kγ=R/H,这使得在相同的实际应变Kγθeff下,旋转的角位移θeff随着板间距H的增加而增加,而θslip则改变较少,因此,滑移的效应会随着板间距的增加而弱化,该结果也可以用做滑移是否存在的间接判据:即如果存在滑移,则其造成的误差会随着板间距的增加而减少.对于滑移效应更为直接的判据就是通过微小的示踪粒子直接观测板附近的粒子的运动是否和板的运动一致.3.1.2流场为简单的剪切流场上文中提到,剪切流变仪设计的一个基本原则就是生成纯粹的剪切流场并记录样品在该流场下的响应.然而,由于受到界面和样品自身的影响,样品中实际的流场未必为纯粹的剪切流场,该效应通常在大剪切速率下出现.例如,对于同轴圆筒夹具测试低黏度样品,当泰勒数大于一个定值时,或者对于平行板和锥板测试低黏度样品,当雷诺数大于一个定值时,流场会偏离简单的剪切流场.以平行板为例(如图4所示),在高雷诺数下,由于离心作用,旋转的上板附近的流体沿着板的径向向外运动,为了填补这些流体流出的空隙,静止下板附近的流体会沿着径向向内运动,这2种流体的运动就会造成一次流基础上出现叠加的二次流,从而导致测试扭矩的增加和相应的剪切增稠假象[24].图4Figure4.Thesecondaryflowoccurswhensampleunderrotarygeometrymovesradiallyoutwardandsampleonthestaticgeometrymovesradiallyinward.对于具有一定弹性的样品,假设其自身的松弛时间为τ,当韦森堡数Wi=τγ˙大于1时,也可能会在低泰勒数(同轴圆筒)或者低雷诺数(平行板或者锥板)的条件下出现弹性非稳定二次流,这种二次流的出现也会造成剪切增稠的假象.下文中,我们会对同轴圆筒和锥板以及平板出现二次流的边界条件进行更详细的讨论.此外,在高度缠结的高分子溶液或者高分子熔体等黏度较高的体系中,剪切速率过高的时候可能会出现剪切带或者较强的壁面滑移,这种剪切速率的非均一分布往往有利于体系自由能的降低.对于高分子熔体,在高剪切速率时,自由表面附近可能出现熔体破裂的现象.这些现象的出现也都会导致测量体系的流场严重偏离简单剪切流场.通常,剪切带、壁面滑移和熔体破裂等现象都会导致体系的应力减少及随之增强的剪切变稀效应(应力或者黏度随时间急剧下降).对于一些极端的情况,甚至会出现剪切应力σ不随剪切速率γ˙γ˙的增加而增加的特殊现象(此时黏度η=σ/γ˙γ˙~γ˙β且β≤−1).为了减弱熔体破裂的现象带来的实验误差,通常可以采用锥板加组合板的特殊夹具(cone-partitionedplate,简称CPP夹具)(如图5所示).CPP夹具中,锥板(绿色)与马达相连,组合板分为2个部分,中心平板(尺寸小于锥板,灰色)和环绕中心平板的环状板(蓝色),两者同轴且分离,共同组合成类似于与锥板同等大小的平板.其中,中心板与传感器相连并记录扭矩,环状板与仪器相连且被固定.测试过程中,一般熔体破裂发生在样品边缘.因此,只要当破裂的边缘没有深入到中心板,所记录的扭矩受到边界熔体破裂的影响就可以忽略[25].图5Figure5.SchematicviewoftheCPPfixture.Green:cone red:sample blue:outerpartition(section) yellow:translationstages(section) orange:bridge(section) grey:innertool(Drawingnotinscale).Thesamplediskshouldhavesizesufficientlylargerthantheinnerplate.(ReprintedwithpermissionfromRef.[25] Copyright(2016)AmericanChemicalSociety)3.1.3输入(输出)应力为样品的黏弹响应其实,上述二次流出现是由样品内部流场的不稳定性带来的效应,会导致额外的应力.在流变测试中,另一个无法忽略的就是测试扭矩的贡献中包含仪器和夹具自身的惯量的贡献.对于真实样品的测试扭矩应该等于测试总扭矩减去仪器和夹具自身的惯量造成的额外扭矩.上面文中提到,对于纯弹性的流体,流变测试中其自身的弹性产生的扭矩T与旋转角度θ具有正比的关系,即T~θ,此时T相对于θ的相位角δ为0°;对于纯黏性的样品,流变测试中其自身的黏性所产生的扭矩与旋转角度相对于时间的导数具有正比的关系,即T~θ˙,此时T相对于θ的相位角δ为90°;对于惯性导致的扭矩,其大小与加速度成正比,即T~θ¨,此时T相对于θ的相位角δ为180°,这种区别可以作为出现惯量效应的判据.例如,在动态测试中,样品黏弹性引起的相位角在0°和90°之间,一旦测试时出现了90°和180°之间的相位角,则必然出现了仪器惯量效应.特别是在高频动态测试中,由于θ=θ0sin(ωt),则惯量I贡献的扭矩高达T0=Iω2θ0,因此,商业的旋转流变仪通常频率ω的测试上限在102rad/s.虽然有些仪器支持测试更高的频率,如103rad/s或者更高,但是测试高于102rad/s的数据时,需要时刻注意分析惯量对于扭矩的贡献.此外,由于自由表面的存在,表面张力对于扭矩的贡献有时也是难以忽略的,该贡献在低黏度的样品中表现得尤为突出.由于表面张力的存在,样品具有收缩表面积的趋势,这会造成剪切作用下界面形状或面积变化时额外的法向力或者剪切力.例如,在平板和锥板夹具中,样品过度充满或者未充满的时候,样品的自由表面会产生突出或者凹陷的曲面结构,这种曲面结构的产生会引起额外的法向力.当样品在剪切流场中,自由表面的面积也会随之出现波动性的变化,这种变化通常会产生弹性应力响应,从而导致额外的应力贡献.通常可以通过填充合适量的样品、增加样品的各方向对称性和引入表面活性剂降低表面张力等方法来抑制表面张力的影响.下文中,我们会结合一些实验实例进一步阐释上述旋转流变仪测试的假设条件失效的情况.此外,我们总结了流变测试中一些不良测试习惯导致无法正确获取实验数据的情况.最后,我们会针对上述内容,给出一些避免类似错误结果的建议.3.2测试中常见问题I:仪器和夹具柔量流变仪能够准确测量样品模量的一个前提是传感器和夹具的柔量远小于样品的柔量,或者换言之,传感器和夹具的刚度远大于样品的刚度(刚度等于柔量的倒数).其中,夹具的刚度不仅与夹具的模量相关,也与夹具的尺寸和形状相关.如果将夹具设计成圆柱形,则其刚度κ与夹具横截面半径R的4次方成正比,与圆柱体的高h成反比:一方面,为了抑制样品的温度对传感器和马达的影响,并减少夹具的惯量,平行板和锥板夹具常被设计成细长的形状(较小的R和较大的h),这种结构会减少夹具的刚度;另一方面,为了增加样品的测试扭矩,常将样品制成扁平的形状,这种形状的差别使得夹具与样品刚度的区别远低于制造夹具的材料和样品模量上的区别,而导致实际施加在样品上的真实应变低于设定应变,这种应变的误差会导致样品流变测试结果的显著误差.例如,刘琛阳等分析了双头应变控制型流变仪ARESG2(TA)的仪器柔量对线性黏弹性的影响[26].如图6(a)所示,在样品模量大于105Pa时,用25mm平行板的测量结果明显偏离8mm平行板的测量结果.虽然样品的模量不发生变化,样品的刚度随着尺寸R的增加而增加,造成了测量时夹具产生了更多的形变,这导致了实际施加在样品上的应变的减少和相应的测试模量的降低;为了说明这个问题,图6(b)展示了相对于指令应变(黑色方块),经过传感器校正后的实测应变(红色圆点)较小,而经过夹具校正后的应变则更小(绿色三角),该应变可反映施加在样品的实际应变.图6Figure6.(a)Theeffectofgeometrycomplianceonlinearviscoelasticity (b)Comparisonofcommandedstrain(as100%),measuredstrain(withforcerebalancetorquetransducers(FRT)compliancecorrection),andcorrectedstrain(withtoolcorrection)obtainedforapolyisobutylenesampleat−20°Cusing25mmparallelplates(ReprintedwithpermissionfromRef.[26] Copyright(2011)SocietyofRheology)为了准确地测量样品的模量,通常建议选取合适尺寸的夹具来直接测量.由于夹具的形变通常正比于扭矩,因此在测量较高模量范围的样品时,为避免柔量的影响,需减少样品和夹具尺寸来降低扭矩.而对于测量较低黏度的样品,需要增加样品和夹具的尺寸来增加扭矩,使得扭矩大于仪器传感器的测试下限.笔者的经验是,25mm板使用的上限通常为~105Pa,8mm板的使用上限为~107Pa,而如果需要准确地测量高分子玻璃态模量(~109Pa),需要使用3mm左右的夹具.对于黏度极低的样品,除了选择更大的板(如50或60mm的夹具)以外,还可以使用过采样技术(oversampling)[27],拓宽动态测试的扭矩测试下限,提高相位角的准确程度.但是考虑到小夹具上样的困难,可利用柔量校正来拓展夹具的使用上限.很多流变学者具体研究了柔量的校正方法,例如1982年,Gottlieb和Macosko[28]讨论了仪器柔量对动态流变测量的影响以及力传感器的校正方法.在2008年,Hutcheson和McKenna[29]详细地研究了夹具尺寸对玻璃化转变区附近的流体的动态振荡测试和应力松弛测试结果的影响,并提出相应的校正方法.本文以Hutcheson和McKenna的校正方法为例[29],简单介绍一下动态剪切数据的校正方法.为了准确测定特定夹具下整个仪器系统的柔量系数,作者设计加工了上下板“连体”的参比夹具(如图7所示),并直接测量了参比夹具的柔量.根据柔量相加原则,流变仪器实测复合扭转刚度κ0∗的倒数等于仪器夹具刚度κt和样品刚度κs∗的倒数之和:由于仪器和夹具的柔量均来源于其固体弹性,可以将两者简化为一个与黏弹样品串联的弹簧,其刚度可简化为实数κt.在已知κt的基础上,可利用公式(6)校正测试的实验数据κmes∗,得到样品的实际复数刚度κs∗.图7Figure7.Asimpleschematicshowingthegeometryofthesolidrodandthedisposableplatens(ReprintedwithpermissionfromRef.[29] Copyright(2008)AmericanInstituteofPhysics).3.3测试中常见问题II:仪器和夹具惯量的影响对于仪器和夹具惯量的校正是准确进行瞬态和动态流变测试的基础.旋转流变仪测得的扭矩不仅来源于样品自身的应力响应,也来源于马达和夹具在加速过程中的惯量贡献.早在1991年,Krieger等讨论了单头的应力控制型流变仪仪器和夹具惯量对测试的影响[30],他们发现,当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.最近,Lauger等研究了流体在振荡剪切模式下的仪器和夹具惯量的影响[31],并给出了通过流变仪测量的实测扭矩、样品产生的扭矩以及仪器和夹具自身惯量产生的扭矩的三者之间的矢量关系(图8).图8Figure8.Vectordiagramoftorques,includingaccelerationtorqueTa,totalorelectricaltorqueT0,andsampletorqueTs,whereδδandααarephaseangleofT0andTs,respectively.ThesampletorquecanbedecomposedintoviscouspartTvandelasticpartTe(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology).其中,仪器测试的实测扭矩T0等于样品扭矩Ts和仪器加速惯量产生的扭矩Ta之和.换言之,样品产生的扭矩应该等于总扭矩减去仪器加速时惯量产生的扭矩,该扭矩可利用相位角分解成弹性贡献部分Te和黏性贡献部分Tv.此外,Lauger等研究表明[31].:对于牛顿流体,惯量产生的扭矩与样品扭矩的比率可表达为其中I为测量设备的转动惯量,|G∗|为样品的复数模量的绝对值,ω为测试的角频率.然而,需要指出的是公式(8)仅适用于牛顿流体,对于黏弹性体系并不准确.据此,可以通过计算仪器和夹具惯量产生的扭矩与样品扭矩之比来判断仪器和夹具惯量的影响.例如:图9展示了Lauger等利用单头的MCR系列流变仪(AntonPaar)测试黏度为4mPas的S4oil频率扫描测试.在测试的频率范围内,该流体应为牛顿流体.其中蓝色正三角表示实测的扭矩T0,绿色倒三角表示校正了仪器和夹具惯量贡献后的样品贡献的扭矩Ts.在最低频区域,实测扭矩与样品贡献扭矩近似相等,说明样品的贡献占主导,此时测得的复数黏度(红色圆)接近样品稳态黏度4mPas.但是随着频率的增加,实测扭矩大于样品贡献的扭矩且两者差距逐渐增加,在频率小于25rads−1(竖箭头所示)的区域,虽然实测扭矩已经远大于样品的扭矩贡献,即实测的T0/Ts已接近2个数量级(横箭头所示,这与通过公式(8)计算的结果Ta/Ts=Iω2Kσ/(Kγ|G∗|)=IωKσ/(Kγ|η∗|)=95近似相等),经过校正得到的样品扭矩计算的黏度仍然接近4mPas,说明测试结果仍然有效.该例子展示了当前流变仪的技术水平已经臻于成熟:即使在惯量贡献的扭矩占主导的情况下,仍然可以通过仪器校正得到准确的样品扭矩.但是在频率高于25rads−1区域惯量校正开始失效,造成了稳态黏度激增的假象.图9Figure9.FrequencysweepmeasurementontheS4oilsamplewithviscosityof4mPas(CP60-0.5geometry).Inadditiontothecomplexviscosity,themeasuredtotaltorqueT0andthesampletorqueTsobtainedaftertheinertiacorrectionareplottedagainstangularfrequencyωω.Arrowspointtodatapointsat25rads−1(seetext),abovewhichtheinertiacorrectionfails.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)在动态振荡测试中,样品黏弹性引起的相位角应当在0°和90°之间(图8所示),因为90°和0°相位角分别对应纯黏性和纯弹性的扭矩贡献Tv和Te,而惯量产生的相位角为180°.图8中,高频处仪器测试的实测扭矩T0远大于样品测试扭矩Ts,表明仪器加速扭矩Ta在测试T0中占据主导,此时的相位角应接近180°.因此,一旦测试时出现了90°和180°之间的相位角,或者动态测试出现G' ~G"~ω2的结果,即可判定出现了仪器惯量效应[32].为了避免实验测试中的不良数据,仪器惯量造成的扭矩Ta与材料自身产生的扭矩Ts之比Ta/Ts应小于一个极限值(该值与仪器的状态和校正的准确性相关).减少惯量影响的一个行之有效的方法是选择合适的夹具.公式(8)中,与夹具几何尺寸相关的参数为Kσ/KγKσ/Kγ.对于锥板,Kσ/Kγ=3β/(2πR3),因此,减少锥角ββ和增加板半径R均有利于减少惯量影响,而对于平板,Kσ/Kγ=2h/(πR4),因此,减少板间距h和增加板半径R均有利于减少惯量影响,或者选择更轻质的夹具来减少I亦可减少惯量影响.总之,无论锥板或平板,增加R或者选择轻质夹具都是减少惯量影响的有效手段.为了降低仪器和夹具惯量影响,对于单头的应力控制型流变仪,需要定期进行惯量的校正,并在更换夹具时做相应的校正.对于双头的应变控制型的流变仪,使用具有力反向平衡功能的传感器可以极大地抑制惯量带来的误差,其表现虽远超单头的流变仪,但也无法完全消除惯量的影响.因此,需要对具体的实验测试结果进行综合的分析和甄别.3.4测试中常见问题III:样品自身惯量的影响剪切流变仪测试中一个基本假设是流场的单一性,即流场是纯粹的剪切流场,这一假设在高速振荡测试过程中失效[33].即在振荡测试中,流变仪通过夹具迫使样品产生往复运动,使得样品内部产生剪切波,当板(夹具)间距与剪切波波长相当或大于剪切波波长时,样品的自身惯量的影响会使得施加样品的剪切流场偏离纯粹的剪切流场.Schrag给出了在剪切流变测试不受该剪切波干扰的临界条件[34],即板间距需远小于其波长λs,其表达式为:式中ρ是流体的密度,|η∗|=|G∗|/ω是复数黏度的绝对值,其中|G∗|是复数模量的绝对值,δ是相位角.研究表明,在给定的频率范围内选取合理的板间距h是减少样品惯量影响数据误差的关键.以水为例,密度为ρ≈1gcm−3,黏度为η≈10−3Pas,相位角δ≈90°,当频率ω=102rads−1时,可估算出λs≈0.9mm.用平板测试一般要求间距在0.5~1mm,因此无法满足hλs.当使用锥板测试时,板间距最宽的部分可以估算为h=βR,因此,半径为25mm、锥角为1°的锥板,h=0.44mm,同样也无法满足hλs.由公式(9)可知剪切波长λs随着样品黏度的增加而增加,因此,上述问题一般不会在黏度较高的高分子溶液或高分子熔体中出现.图10展示了Lauger等利用双头的MCR系列流变仪(AntonPaar)对牛顿流体S4oil在半径相同(R=30mm),锥角分别为0.5°(红色)、1°(绿色)、2°(蓝色)不同的夹具下的振荡剪切测试,研究了样品惯量对流体相位角的影响[31].该流体在测试范围内为牛顿流体.我们发现样品在低频区域表现牛顿流体性质,相位角均为90°,随着频率的增加,相位角逐渐降低,流体出现了一定的弹性响应,且锥角越大,相位角降低越多(箭头指向).相位角的减少导致了储能模量G' ~ω2的标度区域的出现,该结果非常类似于黏弹流体的松弛末端行为,但其实为样品惯量造成的实验假象.显然,此相位角减少的不同来源于测试夹具的区别而非样品的区别.究其原因,是锥板最外侧的板间距βR(0.5°,1°,2°板分别为0.26,0.52和1.05mm)逐渐逼近于通过公式(9)计算出来的λs≈2.0mm,使得样品惯量造成的实验误差逐渐显现.图10Figure10.Phaseangle(circles)andstorageG' (triangles)andlossmodulusG"(squares)fortheS4oilmeasuredinSMTmodewiththreeconeangles,0.5°(red),1°(green),2°(blue).Thearrowindicatesthedirectionofincreasingtheconeangle.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)3.5测试中常见问题IV:二次流的影响在稳态或瞬态测试中,高剪切速率时,由于流动不稳定性的影响可能导致剪切流场出现失稳,造成二次流的出现[24,35~37],使得剪切流变仪测试中剪切流场单一性的基本假设失效.二次流叠加在剪切流场上,会增加仪器测量的扭矩,导致测试样品的表观黏度突然增加.研究表明,对于不同夹具,均可出现二次流.下面我们将对同轴圆筒、锥板和平板3种夹具的几何流场出现二次流的边界条件进行阐述,并通过实例展示二次流对实验数据的影响.3.5.1同轴圆筒夹具二次流边界条件泰勒给出了牛顿流体在同轴圆筒夹具的测量过程中失稳的临界条件[38~40]:可避免Taylor-Couette涡流出现的稳定区间的泰勒数Ta满足:其中R1和R2分别为同轴圆筒夹具中流体的内径和外径(如图2所示),而同轴圆筒夹具的剪切速率为:γ=ΩKγ≈ΩR1/(R2−R1),由此可以得到避免Taylor流的条件:3.5.2锥板和平板夹具二次流边界条件锥板和平板具有不同于同轴圆筒的边界条件,其产生二次流的一个主要原因是离心作用:即高速转动的板附近的流体产生沿着半径方向向外的速度分量,同时诱发静止板附近的流体向内流动(如图4所示).对于锥板和平板夹具,雷诺数Re可定义为[41]:其中h为特征的板间距(平行板h等于间距,锥板h=βR).Turian等研究表明[41],对于利用锥板和平板测试的牛顿流体,实际扭矩T和理想稳定流场下的扭矩T0之比与雷诺数相关:给定T/T0误差1%,即T/T0=1.01,可以得到一个特征的临界雷诺数Recrit=4,该情况下尚未发生持续的湍流.利用Recrit和剪切速率γ˙=ΩR/h,可以估算锥板和平板稳态剪切的临界条件:据此我们可以根据实验条件和夹具参数计算出不稳定流场的临界条件.从公式(14)可以看出,选择较小h的平行板可以抑制二次流,但h过小的时候,两板间微小的不同轴或不平行都会被放大,影响测试的准确性[42].因此,需要选择合适的板间距.为了更直观地展示牛顿流体的二次流不稳定流场对实验数据的影响,图11是我们利用单头应力控制型流变仪MCR-302(AntonPaar)实测的水在剪切速率扫描实验中的黏度相对剪切速率的图,可以看出,在低剪切速率出现的类似于剪切变稀的现象(蓝色区域)可能由于传感器扭矩低于仪器测试下限(Tmin=0.11~0.25μNm)或者表面张力的影响,而在高剪切速率下(红色区域),剪切增稠的异常现象是由于板的高速转动引发了二次流.图11Figure11.SteadyshearflowmeasurementsofH2Ousingcone-and-platewithdiameterof50mm,thescatteredplotsintheblueregimeareobtainedfromtorquebelowthelow-torquelimit,thethickeningbehaviorintheredregimeisduetosecondaryfloweffect.3.6测试中常见问题V:样品表面张力在使用旋转流变仪测试低黏度的牛顿流体时,表面张力往往会影响到测试结果.很多低黏度流体异常的实验数据都和其表面张力有关[42,43].而表面张力的产生与样品的各向对称程度、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系[32,44~47].为了使读者更加清楚地了解表面张力对流变实验数据的影响,下面我们将分别从样品的各向对称性、样品自身表面张力的大小以及样品自身存在吸附和聚集3种情况阐述表面张力对实验结果的影响.3.6.1样品的各向对称性保证样品的各向对称是流变测试中获得准确实验数据的基础,样品的各向非对称性可能在填充上样时即存在,如过度填充或者填充不足均可造成样品的各向非对称性,各向非对称性也可能在测试过程中产生,如样品的边界在流场下存在一定的形状的波动,或样品不对称的挥发引起样品边缘与板的接触线和接触角的不对称性.Ewoldt等[32,44]研究低黏度样品的剪切流变测试时,发现测试扭矩会受到这些边缘形状变化的影响(如图12所示).对比完全对称的理想条件,非理想情况下接触线、接触角Ψ(s)和半径都发生了明显的变化.将接触线看作闭合曲线,可沿闭合曲线积分得到由表面张力引起的扭矩变化.例如,沿z轴的扭矩Tz可表示为:图12Figure12.(a)Contactlineandinterfaceangle:idealversusnon-idealcases.Inthenon-idealcase,asymmetriesareexaggeratedcomparedtotypicalloadingandcanalsooccurasaresultofoverfilling (b)Contactlineinz=0planerepresentedbyanarbitraryparametriccurve,r–r_(s).(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).公式中,r(s)是半径,Γ(s)是表面张力,t^l,r是闭合曲线的切线矢量.从公式(15)中可知表面张力产生的扭矩与接触线的几何形状、样品的表面张力和界面角均相关.样品填充不足或过量填充都会导致表面张力引起扭矩增加.此外,样品挥发也可导致样品填充不足,是高分子溶液或水凝胶体系流变测试过程中最容易忽略的问题.图13显示了Johnston等[44]研究了随着水分蒸发,样品从填充过度到填充不足过程中扭矩的变化.他们发现,刚开始填充过度会随着水蒸发而缓解,扭矩先减小并保持了一定时间,之后的样品量继续减小导致样品填充不足,接触线断开,此时产生更大的扭矩,然后扭矩会继续保持,直到在更长的时间再次提高.出现此现象的原因是水蒸发会同时导致接触线和接触角的改变,从而增加了样品的各向非对称性.因此,对于溶液体系的测试,需要考虑溶剂挥发、样品填充不足导致表面张力引起的扭矩增加,这些因素会影响测试结果.图13Figure13.Evaporation-inducedcontactlinemigration,whichcausessurfacetensiontorque.Thegeometryisparallelplate(diameter40mm)withconstantvelocityΩΩ=0.01rads−1.Insetimages(viewsfrombelow)illustratethecontactlinesoftheoverfilledandunderfilledcases(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).3.6.2样品本身表面张力大小样品自身的表面张力的不同也可造成测试结果的显著不同.Johnston等[44]讨论了水和正癸烷在稳态剪切测试过程中测试扭矩与剪切速率的依赖关系,虽然两者室温下的黏度近似,分别为1.17和1.57mPas,利用同轴圆筒测量的低剪切速率下的扭矩却大相径庭,这主要源于水和正癸烷表面张力的不同(75和25.3mNm−1),从图14可以看到,相对于正癸烷溶液,具有更高表面张力的水在低剪切速率下显示出由表面张力导致的扭矩平台1μNm,值得注意的是,其中4组水的测试结果表现出该扭矩平台,但仍有2组水的测试结果没有表现出扭矩平台,Johnston等认为这可能与前面3.6.1节讨论的接触线的不确定性有关.图14Figure14.Steadyshearflowwithdifferentsurfacetension(waterandn-Decane)usingtheconcentricdoublegap(DG)geometry(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology)3.6.3大分子聚集对于一些低黏度的蛋白溶液体系,在低剪切速率下的流变测试时,通常需要考虑空气与水界面处形成的蛋白表面膜产生的界面张力和蛋白溶液中蛋白聚集的影响[46,47],表面膜形成和蛋白聚集可导致包括黏度增加、剪切变稀增强和表观屈服应力的出现,这些表面的因素有时会误导研究人员对溶液的整体流动特性的判断.例如,Castellanos和Colby等研究了牛血清蛋白和抗体溶液黏度对剪切速率的依赖性[47].他们发现:不含表面活性剂成分的牛血清蛋白在液-气界面处形成聚集膜,在低剪切速率下出现明显的表观屈服应力和相应的η∼γ˙−1η∼γ˙−1的屈服区域(图15(a)).添加表面活性剂能抑制和延缓蛋白表面膜的产生,从而弱化了屈服区域,但经过较长的等待时间(41天),蛋白聚集导致屈服区域逐渐重新形成(图15(b)).图15Figure15.(a)Increaseofapparentviscosityofsurfactant-freeBSAsolutionsduringtheproteinaggregation.(b)Increaseofviscositywithtime,owingtotheproteinaggregationinthemAbsolutionsevenafterintroductionofthesurfactant.(ReprintedwithpermissionfromRef.[47] Copyright(2014)TheRoyalSocietyofChemistry)3.7测试中常见问题VI:测试习惯如上面所述,3个基本假设都是在比较极端的情况下会失效,如样品刚度足够高,需要考虑仪器和夹具柔量的影响;黏度足够低或者剪切强度足够大,需要考虑仪器夹具惯量和样品惯量的影响以及施加流场是否为纯粹的剪切流场.而在实际流变测试中,也有一些情况满足上述3个基本假设,却得不到准确的测量数据.下面总结了流变测试过程中一些容易忽略的问题.为了避免这些问题,提高流变测试的正确性和准确性,需要建立良好的测试习惯.3.7.1样品的制备:干燥和挥发问题对于聚合物熔体,如果样品干燥不充分时,或者测试过程中暴露在湿度较大的环境中,样品中的微气泡和水分会对测试结果产生显著影响,尤其含有氢键和离子极性组分的聚合物(如离聚物),溶剂(如水)对其流变行为的影响明显.此外,对于水凝胶和溶液体系,测试前和测试过程中需要考虑样品自身溶剂挥发对测试结果的影响,对于溶剂高挥发性的溶液体系这是常见的问题,通常可以使用液封(如用石蜡油密封水溶液)的方法避免溶剂的挥发.图16展示的是Wolff等[48]对聚二甲基硅氧烷树脂(PDMS)在具有气泡(圆)和无气泡(三角)条件下的频率扫描测试,发现损耗模量几乎不受气泡的影响,松弛末端满足G' ' ∼ω1∼ω1标度关系,而储能模量受气泡影响较大,逐渐偏离G' ∼ω2标度关系,这是气泡/样品界面的慢松弛过程导致的.图16Figure16.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforaPDMSsiliconeoilwithandwithoutbubbles(ReprintedwithpermissionfromRef.[48] Copyright(2013)Spring)图17展示了Shabbir等[49]对聚四氢呋喃磺酸锂离聚物(PTMO-Li)在干燥和一定湿度条件下的频率扫描测试,他们发现湿度对离聚物的流变性能有很大影响,储能模量和损耗模量相较干燥条件下下降一个数量级左右,由此可见干燥样品对于流变测试的重要性.图17Figure17.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforPTMO-Liindriedandundriedstates.(ReprintedwithpermissionfromRef.[49] Copyright(2017)SocietyofRheology)3.7.2确定样品的热稳定性在进行流变测试之前,对于不熟悉的聚合物样品,需要进行TGA和DSC测试,了解样品的热稳定性和玻璃化转变温度,以便于测试条件的选择,比如:低温测试时样品接近玻璃态,模量接近109Pa左右,样品较高的模量下突然变化夹具间隙会导致仪器法向力的激增,损坏空气轴承和力传感器;高温测试时,不了解样品热稳定性,测试温度过高会导致样品发生化学交联和降解行为,影响测试结果.通常,对于容易交联的样品,可以采取添加少量稳定剂的办法抑制化学交联,获取准确的实验数据.图18展示了Stadler等[50]对低分子量低密度聚乙烯分别在加入少量稳定剂和不加稳定剂条件下,复数黏度随时间扫描变化,可以看出当时间经过4300s之后,样品黏度突然增加,这主要由于体系中含少量双键的组分发生化学交联导致,而加入少量稳定剂的样品持续到8.24×105s(~9.5天)后,样品才开始降解,说明加少量稳定剂的办法可以有效抑制样品的化学交联.此外,为排除样品在测试过程中发生变化,对测试产生的影响,建议完成所有测试后,再次重复第一步测试,通过数据重复性来考察样品是否在测试过程中发生变化,以保证样品数据的可靠性.图18Figure18.ThermalinstabilityofsamplemLLDPEF18F.Thesamplewithoutstabilizerexceedsthe±5%criterionafter4300sowingtothecrosslinking,whilethesamplewithstabilizerstayswithinthiscriterionfor8.24×105s(≈9.5days).(ReprintedwithpermissionfromRef.[50] Copyright(2014)Springer).3.7.3样品体系是否达到平衡态在测试过程中确保样品体系在测试前是否达到平衡稳态是获取准确数据的前提.例如超高分子量聚乙烯样品,从结晶状态加热到熔体状态后,往往需要较长时间才能达到链充分缠结的平衡态.例如,图19展示了超高分子量聚乙烯样品在加热到160°C熔融后,体系从低缠结状态达到缠结平衡态的过程中储能模量G' 的变化,作者发现,热平衡时间随着合成分子的时间(图中标示),也即分子量增加而增加,对于合成30min的样品,热平衡时间长达约一天之久[51].这种缠结程度低于平衡缠结程度的样品也可以通过在稀溶液中沉降高玻璃化温度的长链高分子(如高于缠结分子量的聚苯乙烯)来制备[52,53].图19Figure19.Buildupofmodulusindisentangledpolymermeltswithtimeofultra-high-molecular-weightpolyethylene.ThetopschemeshowsthemechanismandthebottomfigureshowsthemeasuredstoragemodulusG' (t)againsttime(symbols),whereG' (t)hasbeennormalizedbytheequilibriumplateaumodulusGN0.Curvesarethepredictionsbasedontubetheory.(ReprintedwithpermissionfromRef.[51] Copyright(2019)AmericanChemicalSociety)此外,对于高填充体系、不相容聚合物共混物等极难达到平衡态的体系,常需高速施加预剪切,使体系保持初始态的一致性.需要注意的是,该初始态往往处于非平衡态.3.7.4夹具热膨胀对测试的影响除了前面3.1和3.2节提到夹具柔量和惯量对测试结果的影响,在测试过程中还需要考虑夹具的热膨胀对测试结果的影响,不同材质的夹具具有不同的热膨胀系数.现在很多仪器在输入夹具类型时已经考虑到热膨胀系数.但是很多自制的夹具和可抛弃的夹具在使用之前需要人为地测量热膨胀系数并输入.此外,样品也具有一定的热膨胀系数,因此在测试温度范围很宽时,需要在加热过程中适当增大板间距,在降温过程中适当减少板间距,从而保持样品的填充程度一致.此外,还需考虑控温组件的结构也会对夹具的传热温度梯度造成影响[54],即使是同一个夹具在不同控温组件下的膨胀系数也是不同的,夹具膨胀系数的差异直接会影响设置夹具间距的大小,尤其在设置夹具间距很小的情况下(如锥板),板受热膨胀可能会使两板直接接触,造成法向应力的激增从而损坏空气轴承和力传感器.3.7.5夹具不平行和不同轴对测试的影响保证夹具的平行与同轴也是获取实验数据的关键.随着测试夹具频繁使用,以及不小心跌落,非常容易造成夹具不平行和不同轴,这样会导致仪器校零出现误差以及仪器法向力影响测试结果.因此,在测试中需要注意夹具的正确使用,特别是不要将不使用的夹具立在桌面上或者高处,以防止跌落造成夹具的变形.4.结论与展望本文结合作者多年的流变测试经验,从流场类型和仪器的特征出发,对流变仪进行了简单的分类.重点阐述了旋转流变仪的工作原理,剪切流变测试的假设条件及其失效的情况,和实际测试中一些不良的测试习惯及其导致的结果.简言之,流变仪器测试时,只有当输入或输出的应变或应力为施加在样品上的应变或应力,且流场为纯粹的剪切流场时,测试的结果才是可靠的结果.这些基本前提都是会在一定的测试条件下失效.我们结合一些实验实例,具体解释了这些假设条件失效的情况,以及在实际流变测试中仪器完全满足基本假设的情况下,一些不良测试习惯对测试的影响,具体总结如下:(1)当样品的刚度接近仪器夹具和传感器的刚度时,在样品形变的同时,仪器夹具和传感器也会发生一定的形变,造成样品的真实应变低于仪器设定的应变.此时,准确校正夹具和传感器的扭转柔量对于样品的测试是非常重要的.一般的校正过程中考虑夹具和传感器的柔量(或者刚度)为常数.然而,真实测试中,该柔量也会随着测试条件(如温度)和仪器状态的变化而变化.因此,从实验操作上来讲,更可行的方法就是选择合适的夹具来增加施加在样品上的应变和因仪器柔量消耗的应变之比.(2)当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.因此,在瞬态和动态等具有加速过程的测试中,当样品反馈的实际扭矩较小时,源于仪器和夹具加速度过程中的惯量贡献会影响到测试结果.对于单头的旋转流变仪来说,马达和传感器集成在一边,仪器惯量的影响更大.虽然双头的旋转流变仪具有力反向平衡功能的传感器,可以很大程度上抑制仪器惯量的影响,但是也无法完全消除该影响.由于仪器的惯量影响与夹具和仪器的状态相关,需要对仪器进行定期的惯量校正.(3)在高速振荡测试过程中,样品在往复运动过程中会产生剪切波,当(夹具)板间距与该剪切波波长相当时,样品自身的惯量影响会使得施加样品内部的流场偏离纯粹的剪切流场,造成相位角的变化和相应的测试模量的变化;在高剪切速率时(如稳态或瞬态测试时),流动的不稳定性使剪切流场产生失稳,造成二次流的出现,二次流叠加在剪切流场上会增加仪器测量的扭矩,导致测试中出现“剪切增稠”的假象.因此,给定的频率范围内选取合理的板间距h是减少样品惯量影响和抑制二次流的关键.(4)对于低黏度的牛顿流体,表面张力对实验结果的影响往往会被忽略.表面张力产生的扭矩大小与样品的各项对称性、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系.因此,在低黏度样品测试过程中,建议结合显微工具在线地观测测试过程中样品形状的变化.(5)上述四个方面是在样品模量足够高、黏度足够低或者剪切强度足够大的极端情况下,测试中3个基本假设失效的情形.其实,在实际流变测试中即使仪器完全满足测试需求和基本假设的情况下,流变测试者如果没有养成良好的测试习惯,也会得不到准确的数据.因此,我们总结了一些常见容易忽略的问题,例如样品干燥和挥发、样品自身热稳定性,样品是否达到平衡态,夹具和样品热膨胀、夹具的不平行不同轴等问题.我们针对上述容易忽略的问题进行了阐述,希望有助于流变测试的初学者养成良好的测试习惯,了解这些知识对于维护仪器、保护样品以及获取准确的测试数据都是十分重要的.虽然流变仪器测试过程中会存在上述因素的干扰,但是读者在熟悉流变仪的原理和养成良好的测试习惯的前提下,是很容易判断出实验数据出现问题的“症结”所在,使得流变仪不再成为科研工作中的“黑箱”.最后需要指出,本文关注的测试手段仅限于剪切流场.由于拉伸流场较剪切流场难实现,高分子流变学的实验研究多数在剪切流场下进行.对于加工过程中同等重要的拉伸流场下测试的仪器和研究还在快速的发展之中[15,55~57].笔者计划在后续的综述中探讨拉伸测试的仪器原理和测试技巧.参考文献[1]TadmorZ,GogosCG.PrinciplesofPolymerProcessing.2nded.Hoboken,NewJersey:JohnWiley&Sons,2013[2]PtaszekP.LargeAmplitudeOscillatoryShear(LAOS)measurementandfourier-transformrheology:applicationtofood.In:AhmedJ,PtaszekP,BasuS,eds.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2017.87−123[3]KanedaI.RheologyControlAgentsforCosmetics.RheologyofBiologicalSoftMatter.Tokyo:Springer,2017,295−321[4]EleyRR.JCoatTechnolRes,2019,16(2):263−305doi:10.1007/s11998-019-00187-5[5]AhmedJ,PtaszekP,BasuS.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2016[6]ZhangZ,LiuC,CaoX,GaoL,ChenQ.Macromolecules,2016,49(23):9192−9202doi:10.1021/acs.macromol.6b02017[7]ChenQ,TudrynGJ,ColbyRH.JRheol,2013,57(5):1441−1462doi:10.1122/1.4818868[8]LiuS,WuS,ChenQ.ACSMacroLett,2020,9:917−923doi:10.1021/acsmacrolett.0c00256[9]LarsonRG.TheStructureandRheologyofComplexFluids.NewYork:OxfordUniversityPress,1999[10]MihaiM,HuneaultMA,FavisBD.PolymEngSci,2010,50(3):629−642doi:10.1002/pen.21561[11]AriawanAB,HatzikiriakosSG,GoyalSK,HayH.AdvPolymTechnol:JPolymProcessInst,2001,20(1):1−13[12]LundahlMJ,BertaM,AgoM,StadingM,RojasOJ.EurPolymJ,2018,109:367−378doi:10.1016/j.eurpolymj.2018.10.006[13]LiB,YuW,CaoX,ChenQ.JRheol,2020,64(1):177−190doi:10.1122/1.5134532[14]WatanabeH,MatsumiyaY,ChenQ,YuW.Rheologicalcharacterizationofpolymericliquids.In:MatyjaszewskiK,MöllerM,eds.PolymerScience:AComprehensiveReference.Amsterdam:Elsevier,2012.683−722[15]MarínJMR,HuusomJK,AlvarezNJ,HuangQ,RasmussenHK,BachA,SkovAL,HassagerO.JNon-NewtonFluid,2013,194:14−22doi:10.1016/j.jnnfm.2012.10.007[16]WatanabeH,MatsumiyaY,InoueT.Macromolecules,2002,35(6):2339−2357doi:10.1021/ma011782z[17]YoshidaH,AdachiK,WatanabeH,KotakaT.PolymJ,1989,21(11):863−872doi:10.1295/polymj.21.863[18]TroutonFT.ProcRSocLondon,SerA,1906,77(519):426−440doi:10.1098/rspa.1906.0038[19]LiuC,ZhangJ,ZhangZ,HuangS,ChenQ,ColbyRH.Macromolecules,2020,53(8):3071−3081doi:10.1021/acs.macromol.9b02431[20]ZhangJ,LiuC,ZhaoX,ZhangZ,ChenQ.SoftMatter,2020,16(21):4955−4960doi:10.1039/D0SM00572J[21]BuscallR,McGowanJI,Morton-JonesAJ.JRheol,1993,37(4):621−641doi:10.1122/1.550387[22]BuscallR.JRheol,2010,54(6):1177−1183doi:10.1122/1.3495981[23]BallestaP,PetekidisG,IsaL,PoonW,BesselingR.JRheol,2012,56(5):1005−1037doi:10.1122/1.4719775[24]MagdaJ,LarsonR.JNon-NewtonFluid,1988,30(1):1−19doi:10.1016/0377-0257(88)80014-4[25]CostanzoS,HuangQ,IannirubertoG,MarrucciG,HassagerO,VlassopoulosD.Macromolecules,2016,49(10):3925−3935doi:10.1021/acs.macromol.6b00409[26]LiuCY,YaoM,GarritanoRG,FranckAJ,BaillyC.RheolActa,2011,50(5−6):537doi:10.1007/s00397-011-0560-3[27]PogodinaN,NowakM,LäugerJ,KleinC,WilhelmM,FriedrichC.JRheol,2011,55(2):241−256doi:10.1122/1.3528651[28]GottliebM,MacoskoC.RheolActa,1982,21(1):90−94doi:10.1007/BF01520709[29]HutchesonS,McKennaG.JChemPhys,2008,129(7):074502doi:10.1063/1.2965528[30]KriegerIM.JRheol,1990,34(4):471−483doi:10.1122/1.550138[31]LäugerJ,StettinH.JRheol,2016,60(3):393−406doi:10.1122/1.4944512[32]EwoldtRH,JohnstonMT,CarettaLM.Experimentalchallengesofshearrheology:howtoavoidbaddata.ComplexFluidsInBiologicalSystems.In:SpagnolieSE,ed.ComplexFluidsinBiologicalSystems.NewYork:Springer,2015.207−241[33]YosickJA,GiacominJA,StewartWE,DingF.RheolActa,1998,37(4):365−373doi:10.1007/s003970050123[34]SchragJL.TransactionsoftheSocietyofRheology,1977,21(3):399−413doi:10.1122/1.549445[35]ShaqfehES.AnnuRevFluidMech,1996,28(1):129−185doi:10.1146/annurev.fl.28.010196.001021[36]McKinleyGH,PakdelP,ÖztekinA.JNon-NewtonFluid,1996,67:19−47doi:10.1016/S0377-0257(96)01453-X[37]PakdelP,McKinleyGH.PhysRevLett,1996,77(12):2459doi:10.1103/PhysRevLett.77.2459[38]ChandrasekharS.HydromagnetsandHydrodynamicsStability.NewYork:DoverPublishing,1981[39]LarsonRG.RheolActa,1992,31(3):213−263doi:10.1007/BF00366504[40]TaylorGI.PhilosTransRSocLondon,SerA,1923,223(605-615):289−343doi:10.1098/rsta.1923.0008[41]TurianRM.IndEngChemFundam,1972,11(3):361−368doi:10.1021/i160043a014[42]Andablo-ReyesE,VicenteJd,Hidalgo-AlvarezR.JRheol,2011,55(5):981−986doi:10.1122/1.3606633[43]GriffithsD,WaltersK.JFluidMech,1970,42(2):379−399doi:10.1017/S0022112070001337[44]JohnstonMT,EwoldtRH.JRheol,2013,57(6):1515−1532doi:10.1122/1.4819914[45]ShipmanRW,DennMM,KeuningsR.IndEngChemRes,1991,30(5):918−922doi:10.1021/ie00053a014[46]SharmaV,JaishankarA,WangYC,McKinleyGH.SoftMatter,2011,7(11):5150−5160doi:10.1039/c0sm01312a[47]CastellanosMM,PathakJA,ColbyRH.SoftMatter,2014,10(1):122−131doi:10.1039/C3SM51994E[48]WolffF,MünstedtH.RheolActa,2013,52(4):287−289doi:10.1007/s00397-013-0687-5[49]ShabbirA,HuangQ,BaezaGP,VlassopoulosD,ChenQ,ColbyRH,AlvarezNJ,HassagerO.JRheol,2017,61(6):1279−1289doi:10.1122/1.4998158[50]StadlerFJ.Korea-AustRheolJ,2014,26(3):277−291doi:10.1007/s13367-014-0032-2[51]HawkeLGD,RomanoD,RastogiS.Macromolecules,2019,52(22):8849−8866doi:10.1021/acs.macromol.9b01152[52]WangX,TaoF,SunP,ZhouD,WangZ,GuQ,HuJ,XueG.Macromolecules,2007,40(14):4736−4739doi:10.1021/ma0700025[53]TengC,GaoY,WangX,JiangW,ZhangC,WangR,ZhouD,XueG.Macromolecules,2012,45(16):6648−6651doi:10.1021/ma300885w[54]LippitsDR,RastogiS,TalebiS,BaillyC.Macromolecules,2006,39(26):8882−8885doi:10.1021/ma062284z[55]StadlerFJ,StillT,FytasG,BaillyC.Macromolecules,2010,43(18):7771−7778doi:10.1021/ma101028b[56]LingGH,WangY,WeissR.Macromolecules,2012,45(1):481−490doi:10.1021/ma201854w[57]ScherzLF,CostanzoS,HuangQ,SchlüterAD,VlassopoulosD.Macromolecules,2017,50(13):5176−5187doi:10.1021/acs.macromol.7b00747
  • 食品流变学:对环境的影响
    p  strong什么是流变学?/strong/pp  流变学是物理学的一个分支,它研究物质在液体状态下的流动,或研究软固体在塑性流动中的反应。食品流变学关注的是食品在严格规定的条件下的稠度、流动度和其他机械性能,以帮助我们了解食品可以储存或保持稳定的时间以及产品的质地。改变流变学变量有助于微调食物的感知方式,甚至有助于改善食物在口中的感觉和风味的释放。/pp  strong食品流变学的需要/strong/pp  食物结构复杂,是一种在单一质量内具有不同性质的固体和液体的混合物。质地通常是决定产品是否被消费者接受的因素 例如,这可能是它的延展性或产品的乳脂性。根据食品的流变状态(固体、凝胶、液体或乳状液)和相关的流变行为对其进行分类,并可测量其流变特性。这些特性会影响食品加工厂的设计、保质期以及吸引消费者的感官特性。流变性被视为一种功能特性,在整个生产链中,直到消耗和消化的那一刻都是重要的。/pp  人们对人类健康和饮食的兴趣增加,意味着水果和蔬菜因其营养特性而需求量很大。这些功能性食品富含多酚和类胡萝卜素,可以预防某些疾病,还有额外的心理益处。尽管对食品的分析成本高、耗时长,但对水果和蔬菜制品的产品开发和工业加工的研究仍在增长。/pp  栽培的水果和蔬菜被加工成流体,如植物组织的食品悬浮液,如汤、酱汁和果泥,具有颗粒分数和连续的血清相,这是混合、混合、筛分和高压处理的结果。颗粒浓度、粒径和形态是决定植物组织悬浮液流变特性的关键结构要素,在加工过程中,每种悬浮液都会受到不同操作的影响。/pp  strong食品流变学的环境后果/strong/pp  与此相结合的是消费者对更方便、更多样化的食品生产、更快的生产速度、更高的质量和更长的保质期、更健康、更美味的食品的需求——想想最喜欢的低脂肪食品吧。这导致了食品保存、巴氏杀菌、杀菌、烹调和干燥等方面的技术发展,取代了传统方法。/pp  这种兴趣和消费需求的增加并不是没有环境影响的,而且这一次也并非都是坏事。与传统方法相比,一些工艺更节能,节约用水,减少排放。传统的加热方法依靠燃料燃烧或电阻加热在产品外部产生热量。热量通过传导和对流传递到产品上,但这些方法容易受到设备表面热量损失的影响,需要高温才能确保彻底加热。/pp  有些问题可以通过控制和监控系统以及食品加工厂设备的巧妙设计来解决,但这一行业需要更好的技术。这可能包括电磁技术,以部分取代已确立的保存工艺或欧姆和介电加热,这是有希望替代传统热处理方法。这种体积形式的加热可以看到食物中直接产生的热能,因此有助于减少过多的烹调时间,同时提高能量和热效率。/pp  strong结论/strong/pp  新的热技术和非热技术可以生产高质量的产品,提高加热效率,从而节约能源。这些工艺通常更清洁、环保,因此对环境的影响比传统工艺小。/pp  这些新的加工技术正吸引着食品加工商的注意,因为这将使他们能够以减少环境足迹和降低加工成本的方式提供高质量的产品。/pp  strong背景资料/strongbr//pp  a href="https://www.instrument.com.cn/zc/84.html" target="_self"流变仪/a,即用于测定聚合物熔体,聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器,分为旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。/ppbr//p
  • 复杂流体流变学讲习班及前沿研讨会通知
    由国际聚合物加工学会主办的“国际聚合物加工学会亚澳地区会议(Polymer Processing Society Asia/Australia Conference, PPS2007, http://www.pps-2007.com)”将于2007年7月12~14日在上海举行,届时众多流变界学术带头人将参与这一盛会。利用这一宝贵的机会,交通大学流变学研究所与美国TA仪器公司联合筹备, 力邀国内外知名流变学家,于2007年7月9~11日,在2007PPS这一国际会议召开之前举办复杂流体流变学讲习班及前沿研讨会,旨在提高国内外从事流变学研究有关科技人员和青年教师的科研教学水平。课程面向从事高聚物、石化、橡胶、塑料、涂料、油墨、粘合剂、食品和日用化妆品等课题研究开发人员。 讲习班由上海交通大学化学化工学院、流变学研究所周持兴教授主持,邀请国际、国内流变学领域的知名专家、教授授课。各国教员均积累了为青年教师和工业界举办速成讲习班的丰富经验。本讲习班将集各家之所长,精心策划,形象举例,师生交流,以期事半功倍地使代表在短时间内掌握基础理论与实验技术,了解学科前沿,并应用于各自的教学和科研工作,也便于部分代表在随后举行的2007PPS会上得到更大收获。讲课内容:1.流变学基础:包括流变学基础原理,流变学性质的测量,流变学数据的分析与解释,流变仪的选择,流变学测试方法的设计2.聚合物溶液与熔体:包括聚合物溶液、熔体的典型流变性质:线性粘弹性,稳态剪切粘度,法向应力差,拉伸粘度;大分子拓扑结构与流变学;流变学法确定大分子的结构信息(分子量、分子量分布)3.多相体系流变学一:聚合物共混物4.多相体系流变学二:聚合物基复合材料5.聚合物加工流变学6.流变学的应用日程7月8日 会议报到7月9日 星期一8:30-10:00 流变学基础I(M.Bousmina)10:00-10:20 茶歇10:20-11:30 流变学基础II(M.Bousmina)11:45-13:00 午餐13:00-15:30 聚合物溶液与熔体(许元泽,H.Watanabe)15:30-15:50 茶歇15:50-18:00 多相体系流变学I(郑强,俞炜)7月10日 星期二8:30-10:00 多相体系流变学II(M.Bousmina)10:00-10:20 茶歇10:20-11:30 多相体系流变学III(M.Bousmina)11:45-13:00 午餐13:00-15:30 聚合物加工流变学(周持兴)15:30-15:50 茶歇15:50-18:00 流变学的应用(姚明龙)7月11日 星期三流变学前沿专论参加人员:(演讲题目待定)Prof. Mosto Bousmina, (Department of Chemical Engineering, Laval University, Canada)Prof. Hiroshi Watanabe, (Institute of Chemical Research, Kyoto University, Japan)Prof. Ping Gao, (Dept. Chem. Eng. Hongkong University of Science and Technology)Prof. Hyun Wook Jung (Department of Chemical and Biological Engineering, Applied Rheology Center, Korea University, Korea)Prof. Wook Ryol Hwang (School of mechanical and aerospace engineering, Gyeongsang National University, Korea)姚明龙 博士(美国TA仪器)许元泽教授(复旦大学高分子系)郑强教授(浙江大学高分子科学与工程学系)周持兴教授(上海交通大学高分子科学与工程学系)俞炜副教授(上海交通大学高分子科学与工程学系)会务与注册讲习班地点:上海交通大学浩然科技大厦讲习班日程:2007年7月9至11日注册费:800元/人,包括会务费、资料费,住宿自理。请将款项汇至以下帐号,并请注明“复杂流体流变学研修班”注册时间、地点及课程详细日程安排见回执后即发。详细信息请登录网站:www.tainstruments.com.cn联系人:王冬妮美国TA仪器 中国市场部电话:021-54263957 Email: vwang@tainstruments.com传真:021-64956366
  • “聚”先锋 | 用热分析和流变学优化3D打印
    3D打印也称为增材制造,许多行业都将其视为一种多功能制造技术。3D打印可以实现快速成型和按需打印服务,以避免批量运行带来的潜在浪费。3D打印拥有创造复杂形状的独特能力,被广泛应用于制造业。3D打印目前已扩展到一系列材料,包括生物相容性聚合物和各类金属,甚至被用于医疗保健等领域,用于定制打印医疗设备。许多标准制造方法无法在结构中产生空腔和底切,这就需要通过其他方法来优化3D打印材料。。01 通过热分析优化3D打印材料为了优化3D打印材料,制造商需要仔细考虑最终材料的机械和热性能。虽然3D打印部件往往很轻,而且聚合物部件的正确组合可以拥有与金属相似的抗拉强度,但克服增材制造部件较低的机械和热性能是最大的挑战之一。1.1 3D打印产品性能的工艺优化了解挤压过程如何影响打印材料的最终性能是一个非常热门的研究领域。其中汽车应用对材料的拉伸和热性能要求最高。幸好,目前有许多含有碳纤维、玻璃纤维和凯夫拉纤维的热塑性聚合物基质可用于3D打印部件,并能够在汽车应用中充分实现高性能。在3D打印过程中,要打印的基材被熔化,然后分层沉积以创建最终对象。在此过程中有多个参数可以优化,例如聚合物床层和喷嘴温度以及层间固化时间。3D打印有多种方法,包括选择性激光烧结、生物打印和熔融沉积建模。熔融沉积建模是最常用的方法。玻璃化转变温度是选择正确温度挤压非晶态聚合物的必要信息。对于半结晶聚合物,其熔化温度是应重点关注的数值。结晶度强烈影响聚合物的机械性能。许多聚合物用紫外线固化,紫外线在聚合物材料中产生自由基,作为最终聚合物生产中交联过程的引发剂。交联程度越高,材料的硬度和强度就越高。通过改变样品暴露在紫外线下的时间长度可以影响交联的材料强度。温度和固化时间都会影响聚合物在材料中的分子结构及其性能。因此,为了优化这些参数并探索其对最终材料的影响,材料设计师使用对聚合物性能细节敏感的测试技术。1.2 3D打印材料的热分析用于研究挤压过程对最终材料性能影响的主要热分析工具包括热重分析(TGA)、差示扫描量热分析(DSC)、热机械分析(TMA)和动态机械分析(DMA)。每种技术都提供一些互补信息,可以将这些信息结合起来,以便人们对打印材料的性能有更深的了解。热重分析(TGA)测量材料重量随温度或时间变化的幅度和变化率。TGA对于了解表征挤压的影响非常重要,因为许多材料在加热时会发生氧化或分解,从而导致重量变化。热重分析是确定样品在挤压过程中是否发生降解的最佳方法之一。差示扫描量热分析(DSC)可用于测量材料放热和吸热转变与温度的函数关系。挤压过程的常见关注点包括玻璃态转化温度、熔化温度和材料的比热容。差示扫描量热分析和热重分析是用于了解挤压影响的强大而互补的技术组合。这些技术可用于分析聚合物在挤出温度下的热性能。测量热膨胀系数(CTE)和玻璃化转变温度的热机械分析(TMA)是另一种配套工艺。由于玻璃化转变温度取决于材料的热历史,热机械分析可以用于检查挤压过程不会给成品带来任何不必要的力学行为。此外,增强材料在CTE中可能显示出各向异性,这取决于相对于纤维方向的测量方向。动态热机械分析(DMA)也被广泛用于材料工程,用于分析聚合物复合材料,因为其可以揭示材料在动态负载条件下的行为信息。 DMA对于表征3D打印成品部件特别重要,反映了不同的配方和加工方法如何影响最终使用性能。02 利用流变改进3D打印技术聚合物产品无处不在,从包装薄膜、酸奶杯到复杂的汽车零件均使用聚合物产品。尽管应用广泛,但塑料产品通常均通过相同的简单步骤进行制造:1. 制造的起始步骤是应用聚合物基材料(通常为颗粒或粉末形式)2. 加热材料以形成自由流动的熔体3. 通过吹膜、注塑成型、挤出或增材制造(3D打印)等工艺实现熔化材料的成型4. 冷却并凝固产品最终产品的特性和物理形态在很大程度上取决于其加工过程。制造商需要深入了解其材料和应用,以使最终产品的质量达到预期。在加工过程中了解材料是可能的,但这会导致更大的材料损失和更高的生产成本。但如果在加工前就以实验室规模进行材料表征则可有效解决这一顾虑。然后,制造商可根据材料的测量特性设计加工条件。3D打印和其他增材制造工艺可通过流变分析进行优化。流变学也适用于许多其他制造工艺2.1 质量控制挑战在3D打印过程中,聚合物被熔化到熔融状态并通过3D打印机的管线和喷嘴挤出。因此,聚合物必须能够自由流动,并且需要具有尽可能低的黏度。同时,聚合物必须在挤出后立即保持其形状,并且在冷却过程中不能出现变形。将回收材料用于打印产品对聚合物制造商提出了另一个挑战。废旧塑料通常含有残留添加剂、颜色和填料,它们会影响熔体的质量、可加工性及其在制造过程中的行为。因此,再生塑料的加工及其终产品可能难以预测。因此,需要对生物塑料进行详细的分析。2.2 预先质量控制尽管存在这些潜在的干扰和不确定性,制造商仍然可以执行强有力的预先品控和质量保证。其中的关键是分析性思考的两个角度:1. 产品中使用的所有材料成分的相互作用2. 必要的工艺参数,包括温度、压力和流量2.3 轻松表征材料使用相应的功能强大的高精度流变仪可确定流变特性,这是材料表征的重要组成部分。Waters的应用专家表示:“特别是在应用聚合物熔体等液态物质的情况下,如果没有足够的仪器,了解和预测流变特性可能会非常耗时。” 样品行为通常会根据作用于样品上的力的大小而发生变化,这意味着“样品的流动和变形行为只能通过实验模糊地预测,或通过流变进行更为精确的测量。”制造商和研究人员都利用流变来研究材料的变形和流动。流变可提供有关液体和固体材料的关键、精确的见解,为成功的3D打印提供信息。
  • 热分析和流变技术在材料表征及加工方面应用研讨会
    中国,上海 (2010年6月13日)----服务全球,世界领先的赛默飞世尔科技有限公司与德国耐驰公司密切合作,携手进一步拓展中国地区的销售业务,并将于6月25日举办各种流变学和热分析领域的应用技术交流会。 交流会由两个公司的资深技术专家进行深入全面的讲解,不仅向您展示最新的热分析和流变技术,更重要的是帮助您从实验数据中获得最有价值的材料信息。内容丰富实用、图例精彩,相信一定会为您的工作提供有效的帮助。在此,我们热诚的邀请您的参与,相信您绝对不枉此行! 会议注册请点击www.thermo.com.cn/mcseminar。 德国耐驰仪器公司作为全球热分析技术的领导者,秉承专业、专注的精神长达半个世纪之久,一贯为客户提供品质一流、技术领先、工艺精湛的热分析仪器,在各行业赢得了广泛认可,公司也取得了长足的发展! 流变学领域的领先者之一赛默飞世尔科技凭借其丰富的Thermo Scientific材料物性表征解决方案为各行各业的客户提供支持。材料物性表征解决方案对塑料、食品、化妆品、药品、涂料、化学品和石化产品,乃至各种液体或固体的粘度、弹性、可加工性和温度相关力学变化进行分析和测量。欲了解更多信息,请访问www.thermoscientific.com/mc。 Thermo Scientific是全球服务科学领域的领导者赛默飞世尔科技旗下品牌。日程安排 6月25日(周五) 成都市一环路南三段66号 四川雅乐大酒店 附楼B座二楼凯旋厅 08:30 ~ 09:00 签到、领取资料 09:00 ~ 10:10 热分析技术进展 10:30 ~ 12:00 热分析技术在材料表征方面的应用 12:15 ~ 13:15 午餐. 13:30 ~ 15:30 流变技术及其在材料表征、加工方面的应用 15:30 ~ 17:00 自由讨论 详情咨询: 耐驰科学仪器商贸(上海)有限公司成都分公司 联系人:姜丽丽 电话:028-86528518 传真:028-86528718 Email: lili.jiang@nsi.netzsch.cn 赛默飞世尔科技(中国)有限公司 联系人:冯敏 电话:021-68654588-2257 传真:021-64451101 Email:info.mc.china@thermo.com 敬请在6月21日前网上注册页面提交您的回执,或与我们取得联系,以便我们进行安排。谢谢! 关于赛默飞世尔科技 赛默飞世尔科技(纽约证券交易所代码:TMO)是全球科学服务领域的领导者,致力于为客户提供全面支持,让世界变得更健康、更清洁、更安全。公司拥有员工35000名,年收入超过100亿美元,所服务客户包括:医药和生物科技公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制等行业。公司借助Thermo Scientific和Fisher Scientific这两个主要品牌,为客户提供了独特的连续技术开发以及最便捷的采购方案,为公司的主要股东创造利润和其他价值。公司的产品和服务有助于加快科研步伐,帮助客户解决从复杂研发到常规测试再到现场应用中遇到的各类分析挑战。欲获取更多信息,请访问公司网站: www.thermoscientific.com (英文) 或 www.thermo.com.cn www.fishersci.com.cn (中文) 关于耐驰 德国耐驰仪器制造有限公司(NETZSCH-Gerä tebau GmbH)是德国耐驰集团旗下子公司,总部位于德国北巴伐利亚塞尔布,全球员工人数超过2200人,年营业额2.92亿欧元。耐驰分析与测试产品系列包括各种用于研发和质量控制的热分析仪器,品种齐全,涉及塑料、化学、无机材料和建筑材料以及环境分析等多个行业和领域。产品线中还包括用于确定固体、熔体和液体的热分析特性的仪器。欲了解更多信息,请访问耐驰公司网站:www.netzsch-thermal-analysis.com
  • “不一样”的课堂:流变学听两权威院士娓娓道来
    p  strong仪器信息网讯/strong 流变学是介于力学、化学和工程学等之间的交叉、边缘学科,应用范围十分广泛,如聚合物加工、石油、食品、血液、悬浮液、润滑剂等均与流变学有关,但由于其机理多用张量等比较复杂的形式展现,所以一直以来,流变学都被认为是一门“高大上”的学科。分析检测方面也是如此,虽然流变表征手段能够获得很多的样品信息,但许多研究工作者,一般会更倾向于使用常见的热分析检测手段。/pp  随着对产业升级及技术革新要求越来越高,流变学如何从一门理论研究学科走向应用端成了更多流变界专家关注的重要命题。TA仪器作为流变技术的领导者,一直将推动流变学及其应用在全世界的发展作为自己的使命。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/d5c1c8f8-1190-4020-b9f8-c5eb3364e65e.jpg" title="IMG_5324_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong四位授课讲师/strong/span/ppspan style="color: rgb(0, 176, 240) "(从左至右:Christopher Macosko院士,Amy Shen教授,Gerald G.Fuller院士,乔秀颖博士)/span/pp  2018年4月9日至10日,美国TA仪器在上海新园华美达广场酒店举办了“流变学原理与前沿应用大师课程”,这是一次“不一样”的课堂:课堂讲师分别是:美国工程院Gerald G. Fuller院士、Christopher Macosko院士,两位都是世界流变学最高奖项宾汉奖获得者,作为流变学权威,能同时在同一课堂授课更是难得。同时,两位杰出的青年流变学家Amy Shen教授和乔秀颖博士也参与了大师课程的部分授课内容。此次课程不仅吸引了来自中国流变学术界的领军人物前来“朝圣”,更有众多产业界的技术专家们纷纷慕名而来,课程席位一票难求!大家都希望近距离接触并体验如此“不一样”的课程。课堂授课内容既包含最基础的流变概念及原理,同时也就实际应用问题进行了探讨,更融合了很多有趣的课堂小实验,如置身全美顶级名校课堂,所有学员亲历了一场流变盛宴。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c0784c25-c631-499d-81e4-4d1501422b93.jpg" title="IMG_5144_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong院校及企业学员签到/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/f99f079f-f707-4445-a8c6-0334b162b1e0.jpg" title="IMG_5174_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong授课现场/strong/span/pp  仪器信息网编辑有幸参加了本次课堂第一天的授课,“不一样”的课堂难能可贵,所以按授课时间顺序,以图文形式对授课内容作以简记,以飨读者。/pp  strong第一节:流变学介绍:主要现象,材料性能/strong/ppstrong  授课人:Christopher Macosko 院士/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/9c71c80d-25c4-42e7-98e0-00cbf6803e47.jpg" title="IMG_5185_副本.jpg"//pp style="text-align: center "strong style="color: rgb(0, 176, 240) text-align: center "授课中的Christopher Macosko 院士/strong/pp  首先,Christopher Macosk院士介绍了流变学的概念,一句话概括即是研究复杂材料的流动与变形的学科。接着以现场道具(硅胶泥、面包片涂奶油等)实例介绍了流变学的主要研 究内容,即应力、应变、应变速率,及他们之间的关系。同时也介绍了牛顿流体与非牛顿流体的不同流变表现,对日常生活中的一些现象用流变学语言进行了生动解释,如应力松弛,、挤出胀大,爬杆效应等。最后以表面活性剂溶液、聚合物溶液、缠结聚合物、乳胶、凝胶等常见研究对象为例,分别解析了他们的应力应变曲线关系图。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/a785c8df-23d8-4600-8c63-430b3a096994.jpg" title="IMG_5195_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong课下答疑时间/strong/span/pp  strong第二节:线性黏弹性/strong/ppstrong  授课人:Amy Shen教授/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/51d36e55-87ca-4513-ab70-0151598c8806.jpg" title="IMG_5203_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong授课中的Amy Shen教授/strong/span/pp  当应变振幅较小时,高聚物的流动呈现线性黏弹性。Amy Shen教授介绍了线性黏弹性的概念、相关公式机理。并重点介绍了Maxwell模型的内容及推导过程。/pp  strong第三节:线性黏弹性微观结构基础/strong/ppstrong  授课人:Gerald G . Fuller 院士/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/e8d205ef-644c-46eb-a31d-afbaa0c9cee0.jpg" title="IMG_5214_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong授课中的Gerald G . Fuller 院士/strong/span/pp  Gerald G . Fuller院士首先以聚合物溶液、缠结聚合物、乳液等为例,讲解了松弛现象产生的微观原理。并讲道,线性黏弹性测试可用于探测复杂流体,软物质的微观结构,而线性黏弹性区的确定可以通过对材料施加一定外部刺激(应变或应力),材料的性能不依赖于外界刺激的这一段可以定位为线性黏弹区。不同材料的松弛时间可以通过材料内部松弛的物理机制来估计。最后,分别以聚合物稀液体的熵跃、刚性颗粒的旋转分散、乳液的表面张力、缠结聚合物链的蠕变等现象对松弛现象进行总结。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/76507d2d-8988-4bb4-b08d-398f1182a357.jpg" title="IMG_5244_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "课下答疑时间/span/strong/pp  strong第四节:线性黏弹性课堂实践/strong/ppstrong  授课人:乔秀颖 博士/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/54b89022-7e7e-4437-b902-a65c546c83a9.jpg" title="IMG_5254_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong授课中的乔秀颖 博士/strong/span/pp 线性黏弹性课堂实践上,课堂为每位学员准备了流变性能不同的两种硅胶泥样品(黄色和蓝色)。乔博士首先让大家通过用手推、拉、挤压动作,体验两种样品的 不同流动变形现象,并让大家考虑是什么影响了这两种样品的不同表现。最后,通过流变实验数据对比分析,为大家解惑两种样品流变性能差异的原因。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/8fa0b327-4876-4201-b753-ff4aefd585d2.jpg" title="IMG_5261_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "互动实验中/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/f3d38631-b1cd-4f2c-a872-ca75787ba544.jpg" title="IMG_5306_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "课下答疑时间/span/strong/pp  strong第五、六节:一般粘性流体、剪切流变仪/strong/ppstrong  授课人:Christopher Macosko 院士/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/3dbb8cf8-46d3-4ebd-884d-e428ae32d66f.jpg" title="IMG_5243_副本.jpg"//pp style="text-align: center "strong style="color: rgb(0, 176, 240) text-align: center "思考时间/strong/pp  Christopher Macosko院士通过向学员展示水、油、聚合物等多种物质的流动性,表明了生活中常用材料的黏度范围很广,日常生活中的一些常见行为如涂抹护肤品,刷漆以及工业中的加工过程如挤出成型,注塑成型等过程需要的剪切速率也呈现数量级的差异。通过这些实例物体的典型流变数据参数,进一步演示推导了广义牛顿流体的本构方程,并分别介绍了多种数据拟合模型。接着第六节课, Macosko院士又向大家详细介绍了剪切流变仪的结构、工作原理、实际应用案例等,同时,结合一些实际案例,解析了剪切流变仪的数据解析过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/d013921c-bc18-4743-b2bf-013d5f802a04.jpg" title="IMG_5233_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong听课时间/strong/span/pp  strong第七节:剪切变稀,剪切增稠的微观结构基础/strong/ppstrong  授课人:Gerald G . Fuller 院士/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/24a3b283-d418-4e3a-9c6f-bc9df7b8e379.jpg" title="IMG_5272_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong课上答疑时间/strong/span/pp  课堂首先展示了剪切变稀、剪切增稠研究在历史上那些里程碑的发现:1984年,Laun通过不同体积分数的带电苯乙烯-丙烯酸乙酯共聚物悬浮液发现剪切黏度与体积分数和应力有关,并观察到剪切变稀、屈服和剪切增稠现象。 1989年,Russel发现黏度与无量纲应力与颗粒大小无关。2000年,Foss发现相对零剪切黏度只取决于体积分数。2005年,Lee发现第一法向应力差在高剪切速率下相对较小,改变信号变为负值(剪切 增稠)。接着具体讲解了剪切变稀和剪切增稠的概念及微观机理,以及在实际生活应用实例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/159f399a-7ddc-42bd-9ab7-093d14dbc565.jpg" title="IMG_5259_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "课程道具集合/span/strong/pp  以上是第一天的全部课程内容,课程第二天,还由Christopher Macosko 院士和Gerald G . Fuller 院士共同讲解了非线性黏弹性、拉伸流变仪、非线性现象的微观结构基础、应力/絮凝悬浮体、界面流变学、凝胶及实例分析、微流变测量等精彩内容。同时,两位院士还为大家精心准备了28道实际应用中的问题供学员第一天节课后回去思考,并将在第二天课程中一一揭晓答案。/pp  整天课程下来,你会感受到课堂的内容非常丰富,笔者也听闻两位院士在课堂前一晚的晚餐期间,还在热烈的讨论讲课内容,再看课上的每一个实验道具、每个互动也足见两位院士为课堂精心的准备。据本次课程的组织方TA仪器中国区副总经理董传波先生介绍:两位院士均对流变学在中国的推广及传播满怀热情,对此次TA仪器组织的课程无偿授课,并在课程设计上亲历亲为,课堂上倾囊相授。他们对流变学的热爱令人感动!这场“不一样”的大师课程必将成为中国流变界内的一段佳话。更加荣幸的是,在授课茶歇期间,笔者有机会采访了Gerald G . Fuller 院士,对本次授课背后的故事、世界流变学发展现状等进行了交流,谈及讲堂上无限的授课热情时,Gerald G . Fuller 院士直接以“I love it”表达对流变学、对传播流变学知识的热爱。更多采访内容,请关注仪器信息网对Gerald G . Fuller 院士的后续专访报道。/pp style="text-align: center "----------------------------------------------/ppstrong 附:授课专家介绍/strong(排名不分先后)/pp style="padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) "strongspan style="font-size: 19px line-height: 28.5px font-family: ' times new roman' , serif "img src="http://img1.17img.cn/17img/images/201803/insimg/e13772bc-1b29-4b5b-84b7-75e0e9fa981e.jpg" title="1.jpg" style="max-width: 675px width: 160px height: 213px " height="213" hspace="0" border="0" vspace="0" width="160"//span/strongstrongGerald Fuller/strong, 斯坦福大学化学工程系Fletcher Jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。Fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。/pp style="padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) "strongspan style="font-size: 19px line-height: 28.5px font-family: ' times new roman' , serif "img src="http://img1.17img.cn/17img/images/201803/insimg/df1537c1-b825-4109-a479-533c0d6f418a.jpg" title="2.png" style="max-width: 675px width: 160px height: 180px " height="180" hspace="0" border="0" vspace="0" width="160"//span/strongstrongChristopher W. Macosko/strong, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获AIChE及SPE的奖项及流变学会宾汉奖章。/pp style="padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) "strongspan style="font-size: 19px line-height: 28.5px font-family: ' times new roman' , serif "img src="http://img1.17img.cn/17img/images/201803/insimg/014e9720-c926-4034-9873-d2d0dec85778.jpg" title="3.png" style="max-width: 675px width: 160px height: 229px " height="229" hspace="0" border="0" vspace="0" width="160"//span/strongstrongAmy Shen/strong,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。Shen教授的研究主要聚焦于复杂流体的微流体,黏弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。Amy Shen最近还被流变学学会选为学术委员。2003年荣获Ralph E. Powe Junior Faculty Enhancement Award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。/pp style="padding: 0px color: rgb(68, 68, 68) white-space: normal line-height: 24px background-color: rgb(255, 255, 255) "strongspan style="font-size: 19px line-height: 28.5px "img src="http://img1.17img.cn/17img/images/201803/insimg/d2efebff-1eb7-4a33-b8f8-e5c6beb452c6.jpg" title="55.jpg" style="max-width: 675px width: 160px height: 222px " height="222" hspace="0" border="0" vspace="0" width="160"//span/strongstrong乔秀颖/strong, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯· 普朗克胶体与界面研究所进行博 士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。/p
  • 美国TA仪器流变学进阶培训课程公布
    美国TA仪器流变学进阶培训课程  2010年7月27日北京  物质流变是自然现象,也是认识世界的方法 是材料制备的科学基础,又是材料制备的关键技术途径。其中高分子流变学是高分子物理、高分子化学、流体力学、固体力学、计算科学的重要交叉学科。  为了让加深对此技术的了解,加强流变学研究者和广大客户之间的交流,美国TA仪器的资深流变专家Aloyse Franck 博士将就在此次培训课程中与大家分享和交流国内外先进的流变技术和应用。  主讲人:Aloyse Franck 博士  Aloyse Franck 博士毕业于苏黎世联邦理工学院化学工程系。他的科研经历包括曾经负责建立New Jersey公司在欧洲的技术应用实验室,在New Jersey 公司曾担任流变科学产品经理,主要负责拓展流变产品线和开发ARES 流变仪。由于工作出色,后又负责New Jersey 公司包括流变仪、粘度测定仪和热分析仪的材料科学产品线的市场部经理,领导建立德国知名的流变技术和培训中心CER. 在TA公司,Aloyse Franck博士先后担任了流变的技术研发负责人和研发部门的AR和ARES系列流变仪的首席流变顾问。  Aloyse Franck博士在流变领域具有超过20年的应用,产品研发和市场管理经验, 是欧洲知名的流变专家,对流变仪在各个行业的应用有着非常深入和广泛的了解。  时间:  2010年7月27日 9:00-16:00  地点:  北京朝阳区光华路15号铜牛国际大厦9层  沃特世科技(上海)有限公司北京办事处  日程:  上午  9:00-9:15 签到  9:15-9:30 欢迎词  9:30-10:00 流变学理论和测试介绍  10:00-10 40 表面/界面流变学(技术与应用)  10:40-11:00 茶歇  11:00-11:40 大应变振荡剪切(LAOS)与傅里叶转换(FT)流变学(技术与应用)  12:00-13:30 午餐  下午  13:30-14:00 流变学应用  14:00-15:45 小角激光光散射(SALS)(技术与应用)  14:45-15:00 茶歇  15:00-15:45 法向力的测定  15:45-16:00 Q & A  如有兴趣参加,请填写好以下回执表,回传或email报名! 席位有限,先到先得,请速报名!  我有兴趣参加,请预留席位。  很遗憾,我无法出席该活动,请将活动相关资料邮寄给我。  我对微量热技术非常感兴趣,请派专员与我联系。姓 名 职位 公司名称 地址 邮政编码 电话(Office) (Mobile)E-mail   注:此次活动全程免费, 并提供相应资料  详情请垂询:TA仪器市场部 王健小姐  电话:800-820-3812/021-54263957 传真:021-64951999  Email:vwang @tainstruments.com
  • 药典委热分析与流变学多项公示稿发布
    近期,国家药典委员会相继发布了一系列国家药品标准草案公示稿,其中包含与热分析和流变相关的通则,公示期均为3个月。01 流变学指导原则流变学是研究外力作用下物质变形和流动的科学,此处的“物质”可以是固体、液体和气体,如果引入时间变量,那么“万物皆可流”。在药学领域,流变学的应用主要集中于注射剂、糖浆剂、涂剂、凝胶剂、软膏剂、乳膏剂和透皮贴剂。而出于质量源于设计的理念以及仿制药质量和疗效一致性评价的要求,流变学研究在药品处方工艺开发、质量控制、贮存稳定性、使用时感官特性和患者顺应性等方面已得到越来越多的应用。本次公示的流变学指导原则内容主要包含:√ 概述√ 牛顿流体黏度测定√ 非牛顿流体流动测定√ 黏弹性测定√ 屈服应力测定国家药典委员会此次对于流变学指导原则的增订和公示,为药学流变学检测方法开发提供了具体指导,对助力我国药品检验技术水平的不断提高具有十分重要的意义。02 动态蒸汽吸附法标准草案动态蒸汽吸附法(Dynamic Vapor Sorption,DVS)是研究物质与蒸汽相互作用的一种方法。通过使载气在规定的相对湿度(或分压)下流过悬浮在超灵敏微天平上的样品,连续获取时间-重量的数据,直至吸附平衡,快速测量水分或有机蒸汽的吸收和损失。由于此过程中,吸附质蒸汽是动态流动的,所以叫“动态”蒸汽吸附。对于药物研发来说,对水-固体相互作用以及水分对活性药物成分(API)和赋形剂的物理化学性质的影响有全面和详细的了解至关重要。美国药典规定水分不作为杂质处理,但应尽可能严格地监测和控制药物中的水分(USP general chapter 1241)。目前《中国药典》尚未收载水固相互作用指导原则,因此本次药典委对动态蒸汽吸附法的起草可以说填补了这一领域的空白,具有非凡的意义。
  • 流变仪与热分析在聚合物加工与表征方面应用技术交流会
    尊敬的先生/女士:  2010年3月1日,全球服务科学领域的领导者赛默飞世尔科技公司与热分析仪器和热物性分析仪的主要供应商德国耐驰仪器公司宣布,双方将携手进一步拓展中国地区的销售业务,并将举办各种流变学和热分析领域的应用技术交流会。  作为重要的应用领域,双方将首先携手在聚合物加工和表征技术方面为广大用户提供更广泛全面的支持,兹定于2010年4月为大家呈现一系列精彩的技术交流会。交流会由两个公司的资深技术专家进行深入全面的讲解,内容丰富实用、图例精彩,相信一定会为您的工作提供有效的帮助,我们真诚的邀请您的参与。交流会的具体内容及详细安排如下:[交流会内容]:  ■聚合物实验设置和准备 ■ 聚合物在实验室测试用样品的共混  ■微量混合与注射技术 ■ 样品制备与优化  ■毛细管挤出流变学 ■ 聚合物熔体与溶液拉伸流变学  ■稳态测试与蠕变回复 ■ 动态振荡测试  ■热分析技术在聚合物表征方面的应用 [技术交流会时间、地点]:  4月1日 杭州,浙江大学玉泉校区 上午9:00~下午 3:30  4月8日 青岛,青岛科技大学 上午9:00~下午 3:30  4月15日 南京,中国林业科学研究院 上午9:00~下午 3:30 为了更好地为您服务,请填妥报名表并传真或Email给我们: 姓名 电话/手机 拟参加交流会 场次□ 4月1日 杭州 □ 4月8日 青岛 □ 4月15日 南京其它参加 人员姓名 单位 传真 地址 邮政编码 Email [详情咨询]: 赛默飞世尔科技(中国)有限公司 耐驰科学仪器商贸(上海)有限公司 联系人:冯敏 联系人:李静 电话:021-68654588-2257 电话:021-51089255-686 传真:021-64451101 传真:021-58663120 Email:info.mc.china@thermo.com Email: jing.li@netzsch.com
  • 赛默飞世尔再度开设国际流变学讲座
    赛默飞世尔科技2009年再度开设内容宽泛的国际流变学讲座课程德国卡尔斯鲁厄市(2009年1月20日)-服务科学全球领先的赛默飞世尔科技公司宣布,将于2009年再度开设包括基础流变学讲座及有关各种材料特性主题的专家讲座的全球性课程。 公司位于德国卡尔斯鲁厄、萨默塞特(美国新泽西州萨默塞特郡)、荷兰布雷达、法国巴黎、印度孟买和中国上海的培训中心坚持密切联系应用,以实用为导向的方针,帮助客户优化应用,开发创新应用。 在为期一天的小型讲座中,参加者将接受如何有效使用流变测量方法的指导。流变学主题将在普通流变学讲座或专业流变学讲座中进行讨论,由多学科主讲人负责主讲。 基础讲座“应用流变学”详细探讨了流变学理论和实践知识,旨在使参加者能用限定方法运用和解释流变测量方法,讲座中包括以下单元: -- 基础知识与旋转试验 -- Thermo Scientific HAAKE RheoWin软件 -- 粘弹性、蠕变和振荡试验 上述单元也可以单独预订。 在专为经验丰富或经过培训的流变学家开设的专家讲座中,外聘的知名主讲人负责阐述主要重点领域,更多细节内容则通过实际培训进行讨论。作为流变学领域的先锋之一,赛默飞世尔科技公司在2009年将增加中国和英国的流变学讲座,进一步完善内容宽泛的讲座课程。 小型讲座“普通流变学” 2009年2月26日 布雷达(荷兰) 语言:英语 2009年3月3日 南特(法国) 语言:法语 2009年3月5日 波尔多(法国) 语言:法语 2009年3月10日 巴黎(法国) 语言:法语 2009年3月12日 史特拉斯堡(法国) 语言:法语 2009年3月17日 里昂(法国) 语言:法语 2009年3月19日 马赛(法国) 语言:法语 2009年4月10日 浦那(印度) 语言:英语 2009年6月9日 曼彻斯特(英国) 语言:英语 2009年6月25日 布雷达(荷兰) 语言:英语 2009年10月8日 布雷达(荷兰) 语言:英语 小型讲座“油漆、油墨和涂料” 2009年4月8日 孟买(印度) 语言:英语 小型讲座“油田” 2009年4月9日 成都(中国) 语言:中文 2009年4月16日 西安(中国) 语言:中文 2009年4月23日 上海(中国) 语言:中文 2009年5月20日 广州(中国) 语言:中文 2009年5月26日 克拉玛依(中国) 语言:中文 2009年5月28日 塔里木(中国) 语言:中文 2009年6月9日 大庆(中国) 语言:中文 2009年7月7日 天津(中国) 语言:中文 2009年7月9日 东营(中国) 语言:中文 小型讲座“淀粉与食品” 2009年4月14日 阿姆利则(印度) 语言:英语 小型讲座“聚合物” 2009年3月26日 北京(中国) 语言:中文 2009年4月9日 成都(中国) 语言:中文 2009年4月16日 西安(中国) 语言:中文 2009年4月16日 加尔各答(印度) 语言:英语 2009年4月23日 上海(中国) 语言:中文 2009年5月20日 广州(中国) 语言:中文 小型讲座“纳米分散和微分散的特征” 2009年1月28日 卡尔斯鲁厄(德国) 语言:德语 2009年4月22日 柏林(德国) 语言:德语 小型讲座“流变学和热分析” 2009年3月3日 杜塞尔多夫(德国) 语言:德语 2009年3月12日 汉堡(德国) 语言:德语 2009年3月17日 莱比锡(德国) 语言:德语 2009年5月7日 葛莱芬西(瑞士) 语言:德语 2009年6月11日 洛桑(瑞士) 语言:法语 2009年7月7日 慕尼黑(德国) 语言:德语 基础讲座“应用流变学” 2009年2月17-19日 卡尔斯鲁厄(德国) 语言:德语 2009年3月3-4日 萨默塞特(美国新泽西州) 语言:英语 2009年4月21-23日 杜塞尔多夫(德国) 语言:德语 2009年6月9-10日 萨默塞特(美国新泽西州) 语言:英语 2009年6月16-18日 卡尔斯鲁厄(德国) 语言:德语 2009年9月15-16日 萨默塞特(美国新泽西州) 语言:英语 2009年10月20-22日 卡尔斯鲁厄(德国) 语言:德语 专家讲座“聚合物流变学” 2009年7月7-8日 卡尔斯鲁厄(德国) 语言:德语 专家讲座“拉伸流变学” 2009年7月16日 卡尔斯鲁厄(德国) 语言:德语 赛默飞世尔科技公司借助Thermo Scientific综合材料特性解决方案,成功地为多种行业提供了帮助和支持。这些产品能对塑料、食品、化妆品、药品和涂料以及各种液体和固体的粘度、弹性、加工性能及受温度影响的机械变化等特性进行分析测量。欲获取更多信息,请访问公司网站:www.thermo.com/mc。 Thermo Scientific是服务科学世界领先的赛默飞世尔公司旗下品牌。 -------------------------------------------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。该公司年度营收达到100亿美元,拥有员工30,000多人,其客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则为卫生保健、科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司网站:www.thermofisher.com (英文),www.thermo.com.cn (中文)。
  • 一举两得——拉曼光谱与流变学这对完美搭档,你get到了吗?
    安东帕MCR流变仪与Cora 5001拉曼光谱仪的组合拉曼光谱技术已经与多种技术实现联用,如微波合成-拉曼、SEM-Raman、AFM-Raman、DSC-Raman等,今天为大家介绍另一种与拉曼联用的完美组合——流变-拉曼组合!流变学——提供复杂流体的宏观材料函数,获取聚合物黏弹性特征。拉曼光谱——提供复杂流体的微观结构变化信息,提供分子结构、 应力、 修饰、 晶型等化学信息。安东帕Cora5001拉曼光谱仪流变-拉曼联用可以实时评估聚合物的某些特性,包括成分、分子结构、剪切流变性能等,还可以获得加工稳定性等重要信息。非常适合固体以及熔融体聚合物的表征分析。之所以拉曼光谱技术在“联用界”这么受青睐,主要是由拉曼技术的三大优势成就的:拉曼光谱一般采用的是非接触式、非破坏式的测量方式,这使得与之结合的另一种测量方法不会受到任何干扰;拉曼光谱可以很方便的使用拉曼探头收集信号,探头可使仪器的固定和组装变得更易实现;拉曼光谱采集过程非常方便,样品不需前处理,因此样品在进行另一项测试过程中无论发生相变、熔融、变形都可以随时获取光谱。有不少分析专家已慢慢认识到拉曼光谱或许可以成为原位-实时测量应用中光谱传感器的较优选择之一,当它与其他技术进行联用时,可以得到“1+12”的功效。下面就以一次聚乙烯的流变-拉曼联用实验展示这个完美组合的魅力吧!实验样品与仪器聚乙烯是半结晶热塑性弹性体,是工业中较常用的聚合物,实验采用HDPE(高密度聚乙烯)和LDPE(低密度乙烯)。HDPE的分子量超过300.000 g/mol,主要由无支链聚合物链组成,导致紧密堆积,因此在固态下具有高度结晶性。然而,LDPE却表现出长度不均匀的大分支。聚合物结晶度会影响其对形变的响应能力,这对于聚合物加工过程中的流动特性等非常重要。通过将拉曼光谱与流变学结合,可以用于监测熔融和结晶过程中黏弹性参数的变化,从而了解本体材料的物理特性,同时还可将其与化学结构和微观分子环境关联起来。图1:流变和拉曼联用设备示意图将安东帕的Cora 5001拉曼光谱仪通过特殊高温探头与安东帕的基于空气轴承的模块化紧凑型流变仪(MCR)结合起来(图1),用于实验测量。流变仪配置了帕尔帖温控系统(PTD)和测量平板(直径25mm)。为了防止热降解,在实验过程中采用连续氮气氛围。对于HDPE的测量,可以使用刻痕转子防止样品滑动。拉曼测量则使用785 nm的激发波长。实验过程首先分别将HDPE和LDPE颗粒加热至150℃和130℃,以获得均匀样品。随后,仪器以1K/min的速率降温,分别降至100℃和80℃,样品在降温过程中发生结晶。之后以相同的加热速率重新加热至最 高温度。每30s记录一个流变测量点,同时采集一条拉曼光谱,拉曼光谱的积分时间为10s。实验结果流变实验结果图2:HDPE和LDPE在温度扫描测量中的黏弹性行为比较HDPE和LDPE的流变数据如图2。在升温过程中,聚合物的无定形区域分子链活动性增强,发生软化,从而导致储能模量G‘和损耗模量G˝降低;当温度升至G˝大于G‘的交点之后,则表明熔融状态中主要表现的是黏性流动行为。对比LDPE和HDPE的黏弹性,可以看出HDPE比LDPE表现出更高的刚度,这是由于二者结晶性能不同。HDPE由于其支化度较低,其结晶度较高。G‘描述了材料的弹性行为,而G˝提供了有关材料行为的黏性贡献的信息,该黏性行为是由聚合物分子之间发生相对运动所损失的形变能决定的。拉曼实验结果图3:HDPE和LDPE的液体和固体的拉曼光谱拉曼光谱可以反映固液态的相变,如图2所示:对于HDPE和LDPE,固相中的1064cm-1特征峰,在液相中移向更高波数,且峰强变弱,半峰宽变宽;固相中1128cm-1和1169cm-1特征峰在液相中完全消失。这3个特征峰谱带与聚合物链内连续反式构象C-C伸缩振动有关。在固态中,由于反式构象有更好的填充能力,因此该构象数量非常多;而在液态中存在很多种不同构象的低序结构,且连续反式构象的占比非常低,因此在液相中与连续反式构象相关的拉曼谱带消失。1250cm-1-1450cm-1之间的光谱区域也出现了类似现象。拉曼特征峰向更高波数的移动表明分子内键能更强,这可能是由于液相中分子间相互作用弱于固相,从而有助于分子内相关化学键的振动导致的。图4:由MCR-ALS算法分解得到的成分1和成分2分别与液体和固体的拉曼光谱吻合根据样品的先验知识使用MCR-ALS算法将混合光谱分解为成分1和成分2,并同时得到各成分的载荷。MCR-ALS比手动摘选特征峰更有优势,因为它是将整个光谱视为目标组分来进行分析的。图4为HDPE的拉曼光谱分解结果:通过MCR-ALS得到的成分1和成分2的谱图分别与非晶态和晶态的拉曼光谱相吻合,表明该方法可以完全重构非晶态和结晶态的组分信息。流变-拉曼结合的实验结果图5:80℃-150℃温度区间内HDPE和LDPE各自的成分2的载荷与G’变化的比对图样品从80℃升温至150℃的过程中由结晶态转变至非晶态。基于拉曼光谱,通过MCR-ALS算法得到了在该温度范围内HDPE和LDPE的成分2及其对应的载荷,并与样品的储能模量G’进行对比,结果如图5。成分2(即C2)以及储能模量G’均与聚合物的结晶态有关。对于HDPE,在冷却曲线中C2约在113℃时开始大幅增加。在加热曲线中,C2在125℃之后开始降低,表明HDPE经历了从半晶态到完全非晶态的转变,并且化学成分与力学性质的变化趋势基本吻合。然而对于LDPE,分解出的成分2的光谱与HDPE的不同,而且在冷却及加热曲线中C2的变化斜率非常小,这表明LDPE的结晶似乎受到了阻碍,且C2变化曲线参数与力学性质相差很大,这点与HDPE有很大差异性。HDPE和LDPE的流变-拉曼实验可以充分说明流体所表现出来的流变性质与其组成、分子结构有密切关系。结论安东帕的流变仪与Cora 5001拉曼光谱仪的结合可实现原位监测,即在同一时间尺度上洞察宏观力学行为和微观分子的变化。当聚合物的物理化学特性强烈依赖于它经历的应力、应变、应变率、环境温度时,可以通过流变-拉曼的组合获取聚合物的较为真实的参数,为聚合物制造和加工提供更加全面科学的分析。
  • 安东帕十分钟流变学:旋转流变仪夹具制作标准
    旋转流变仪夹具制作标准为了更好的了解流变,使用流变仪;安东帕流变应用团队为广大流变仪使用者、流变学研究者、流变学习者,制作了一系列相关的视频,包含流变学基础知识、流变测量基本原理、流变测量方法及其应用等内容;更加直观的了解流变学。安东帕十分钟流变学:旋转流变仪夹具制作标准本视频主要内容:旋转流变仪在设计和制造中采用的测试标准解读,如各种测量夹具的设计规范,适用情况等内容,参考标准ISO3219、DIN53019、ISO6721等后续相关视频,陆续更新,敬请期待… …
  • 安东帕十分钟流变学:What' s Rheology ?
    What' s Rheology为了更好的了解流变,使用流变仪;安东帕流变应用团队为广大流变仪使用者、流变学研究者、流变学习者,制作了一系列相关的视频,包含流变学基础知识、流变测量基本原理、流变测量方法及其应用等内容;更加直观的了解流变学。安东帕十分钟流变学:What' s Rheology ?本视频主要内容:流变学在生活、生产,以及自然界中的常见应用及现象;流变学的定义、主要研究对象和研究方法;流变测量的整体思路-流变学思维,理解流变测量中宏观现象与微观结构的关系,理解时间尺度的意义;理解流变测量的三角形模型和应用;了解流变测量的主要应用领域、行业,了解流变测量的手段,各种常用的流变测量仪器。后续相关视频,陆续更新,敬请期待… …
  • 安东帕十分钟流变学:黏度和黏度计
    黏度和黏度计为了更好的了解流变,使用流变仪;安东帕流变应用团队为广大流变仪使用者、流变学研究者、流变学习者,制作了一系列相关的视频,包含流变学基础知识、流变测量基本原理、流变测量方法及其应用等内容;更加直观的了解流变学。安东帕十分钟流变学:黏度和黏度计本视频主要内容:黏度的基本概念、物理意义、黏度测量的方法、常用仪器。后续相关视频,陆续更新,敬请期待… …
  • 复杂流体流变学研修班八月份在上海举行
    第四届泛太平洋地区流变学会议(PRCR4)将于2005年8月7-11日在上海举行,届时众多国际流变界学术带头人将参与这一盛会。利用这一宝贵的机会,复旦大学高分子科学系与美国TA仪器公司联合筹备, 在国家自然科学基金委的大力支持下,力邀国际知名流变学家,在PRCR4这一国际会议召开之前举办高级流变学讲习班,旨在提高国内外从事流变学研究有关科技人员和青年教师的科研教学水平。课程面向从事高聚物、石化、橡胶、塑料、涂料、油墨、粘合剂、食品和日用化妆品等课题研究开发人员。 讲习班由美国明尼苏达州立大学化工系教授,美国工程院院士,2004年流变学会最高奖宾汉奖获得者Chris Macosko和复旦大学高分子科学系许元泽教授共同主持,邀请国际、国内流变学领域的知名专家、教授授课。各国教员均积累了为青年教师和工业界举办速成讲习班的丰富经验。其中Macosko教授在美国每年举行流变测量讲座,反响极为热烈;Winter教授的流变方程与应用讲座也深受欢迎;许元泽教授于2003年应德国马普高分子所邀请为国际高分子研究生举办流变学讲座;美国TA仪器公司姚明龙博士则针对流变测量在工业中的广泛应用进行了大量讲座,等等。本讲习班将集各家之所长,精心策划,形象举例,师生交流,中文答疑,现场仪器演示和培训,以期事半功倍地使代表在短时间内掌握基础理论与实验技术,了解学科前沿,并应用于各自的教学和科研工作,也便于部分代表在随后举行的PRCR4会上得到更大收获。第二轮通知.rar
  • 创新科技,引领未来——安东帕(中国)先进流变学测量研讨会圆满举行
    近日,安东帕中国分公司特邀安东帕首席流变科学家Jorg Lauger博士共襄盛举,在上海举办了“创新科技,引领未来”为主题的流变测量学研讨会,会议得到近100位企业和高校代表的热烈响应,共同展望了流变学的前沿技术和未来发展趋势,深入探讨了流变学测量实践中的行业应用以及与不同技术的组合应用,与会代表对这些话题表示出了浓厚的兴趣,现场交流气氛热烈。在活动现场,安东帕中国区流变仪经理陈飞跃先生首先做了主题演讲,阐述了动态流变测量方法、应用探讨、非线性流变测量方法等热门话题,为整场会议奠定了理论基础,激发了参会代表对话的强烈意愿。随后,安东帕首席流变科学家Jorg Lauger博士出场发表主题演讲-组合流变测量之额外参数(温度、湿度、UV等)与流变的同步测量,下午又做了主题报告-组合流变测量之结构分析(显微成像、偏光成像、共聚焦成像、拉曼光谱、介电谱等)与流变的同步测量。在报告进行中,参会代表与Jorg Lauger博士进行了互动,对他目前进行的工作表示十分关切,尤其是对处于国际前沿水平的工作感兴趣,力图在多个方面将自己的工作与国际接轨 ,提问得到了Jorg Lauger博士详尽的解答。作为流变仪行业的技术和市场领导者,安东帕公司推出的第三代MCR系列流变仪在仪器性能上有着卓越的表现,积累了丰富的行业应用实践经验,其应用范围之广首屈一指。在企业界帮助研发者节省大量的时间和成本,为企业研发提供了个性化的指导和协助,缩短了研发流程。在生产过程中,受益于安东帕行业准则的指导,为品控和生产者提供了参照和指南,帮助企业的生产实现一致性,为高质量的生产水平保驾护航。在高校领域,安东帕为高校教师的课题研究提供了有力支持,和一些学校建立了联合实验室,为中国的科研事业达到国际领先水平做出了积极贡献。作为发展最快的单一市场,MCR流变仪在中国取得了很大的成功,借助本次研讨会的顺利进行,安东帕期望中国的科研工作者能够更加了解安东帕流变学产品的发展情况,能够更多的为中国科研事业的创新发展提供助力。Jorg Lauger博士表示:“我们十分重视中国市场,每年都会从总部来中国与广大用户近距离交流,了解中国用户的需求,带来国外最新的趋势动态。我们将继续以客户的需求为源泉,不断完善和满足客户的需求,提供完善的本地化的服务和技术。为帮助中国科研事业的发展做出更多的努力。”
  • 流变学应用 | 马和骆驼的血液有何不同?
    血液测试–哪种动物更具耐力,为什么呢?一个研究小组使用MCR 302流变仪研究了这个问题。几个世纪以来,马和骆驼一直被用于类似目的:运输货物、骑马和比赛。但是,尽管对它们的能力要求可能相似,但物理限制却有所不同。在摄氏50度的沙漠中,一匹马几乎不会动弹。同样,在速度比赛中,把钱花在骆驼上并不是一个好主意。这两种动物具有不同的身体极限和耐力的原因不仅是解剖上的。乌苏拉温德伯格(Ursula Windberger)是维也纳医科大学的实验外科教授,确切地说在血液方面有深入研究。她与她的研究小组一起,使用安东帕(Anton Paar)的MCR 302流变仪,研究了迪拜骆驼繁殖场的十只单峰骆驼和维也纳的十匹纯种马的血液。她取得了惊人的结果,并发现了有趣的差异。MCR 302在压力下会发生什么?在与我们类似的哺乳动物(如马)中,当运动量加剧时,红细胞的数量就会增加,因为这些细胞可以满足肌肉细胞对氧气的需求。尽管骆驼也是哺乳动物,但结果却有所不同:红细胞的数量在运动增强时不会改变,但在恢复阶段会逐渐减少。研究人员解释说:“这与骆驼红细胞的椭圆形形状、细胞膜硬度高和细胞内粘度高有关。”骆驼的红细胞无法像马(或人类)的红细胞那样使自己与血管中血液流动方向平行。相反,它们进行不受控制的运动,并来回滚动。由于这些红细胞无法控制自身,因此在流动过程中骆驼血液的粘度高于马血的粘度。宁静中有力量研究人员认为红细胞数量的减少是防止血管连接处前血细胞充血的一种保护机制。为了防止这种情况,身体会减少血细胞的数量。尽管如此,由于红细胞呈卵形,使其更容易流过直径较小的血管,因此氧气的供应得到了保证。细胞不必适应,因为它们已经变形(卵形)。然而,它们必须以一定的方向流入毛细血管,即沿着其长度方向。这是无法保证的,因为在它前面的更大的血管中来回翻滚,这就是为什么骆驼是一种更持久和缓慢的动物。它需要处理困难的情况(高温、干旱),在这种情况下,快速运行会适得其反。公骆驼在交配季节每年只快跑一次。并非所有的血液都一样研究结果显示了血液是如何不同的,即使每个物种的血液任务是相同的。大自然中存在许多变化,但仍然没有任何解释。骆驼是为了节省资源而设计的,他们的新陈代谢较慢(新陈代谢产生热量),血液在快速流动时没有降低粘度的机制。因此,通过补充血液和铁元素将骆驼作为商业赛跑动物,与它们的自然进化结果是背道而驰的。流变学研究MCR 302是这项研究的主要仪器,只有通过使用技术文献中已知数据进行的流动曲线和振荡测试,研究人员才能预测以后在微流体测试中可以观察到的情况。 “我曾认为流变仪主要用于质量控制,而很少用于研究。但是,使用简单易用的仪器,您可以预测很多本来需要复杂得多的方法才能做的事情,” Ursula Windberger兴奋地谈到了该仪器。此外,流变仪还将用于该研究所的其他研究,例如用于确定生物纤维材料(血凝块、胶原蛋白网络)的强度。通过安东帕流变仪对马血和骆驼血进行分析获得的经验,可用于研究优化人类使用的药物。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • Webinar | 6月22日安东帕材料表征仪器在制药行业中的应用
    材料性能表征在药物制剂、药物辅料的生产和使用中是必不可少的内容,如粉体流动性、液体/胶体/膏体制剂的流变学特性、粉体和多孔材料的比表面积、粉体和胶体材料的微观颗粒特性、药物晶体的物理结构、手性药物的旋光特性等等,安东帕材料表征仪器可为您解决以上各种特性的分析测量,并提供专业的技术支持方案。本次研讨会主要议题包括粉体流变学、流体和胶体流变学、比表面分析、纳米粒度/Zeta电位分析方面的测量原理,以及在药物制剂和原材料中的应用方法和实例。报名方式 ————————»»»»扫描上方二维码参加主题:安东帕材料表征仪器在制药行业中的应用时间:2022.06.22 13:30-17:00日程 ————————»»»»13:30-14:20 粉体流变学原理及制药应用14:20-15:10 安东帕康塔药业解决方案15:20-16:10 颗粒粒度及表面电位的表征16:10-17:00 流变学原理及制药应用粉体流变学原理及制药应用主讲人郑经理,长期从事流变测量学、流变仪的应用工作,有非常丰富的流变学应用经验。主要内容药物制剂中所使用的一些辅料,以及很多药物制剂本身都是以粉体状态存在和使用的,粉体的流动性是辅料质量和制药工艺中非常重要的一项技术要求,在《药典》中也规定了对于粉体材料的流动性需要进行表征。粉体流变仪是目前粉体流动性测量方法中最先进的测试设备,对粉体输送、储存、给料、制片等工艺过程有很好的指导作用。在本报告中,将对粉体流变仪的原理、方法学,以及在药物制剂中的应用进行介绍。安东帕康塔药业解决方案主讲人周博士,长期从事固体材料结构表征工作,有丰富的气体吸附、密度测定应用经验。主要内容比表面和密度是固体颗粒材料的重要性质,对于药物制剂及辅料等粉体材料有重要的参考意义。《中国药典》2020年版四部通则增补修订内容(第二批)与《中国药典》2015年版相比,新增了比表面积测定法、固体密度测定法等药品功能性指标测试方法的要求,安东帕康塔对此提供了全面的解决方案。本次报告从比表面原理、对药品研究、品控的重要性等方面进行介绍,以比表面测量为主,兼顾真密度和振实密度的介绍。颗粒粒度及表面电位的表征主讲人肖工,长期从事颗粒粒径及Zeta电位表征方面的应用工作,有着丰富的应用经验。主要内容对于药物颗粒的研究有助于了解制剂的稳定性。大小均一的颗粒不但有助于控制药粉剂量同时也能改善片剂压片过程中的流动性及均一性问题。对于更小的纳米级药物,如外泌体,脂质体等,更需要监控其颗粒的粒径以及溶液稳定性。本报告将对激光衍射法,动态光散射法以及电泳光散射法的原理,它们在药物开发中的应用,以及安东帕独有的PQP进行简单介绍流变学原理及制药应用主讲人顾博士,在制药、生物材料、水凝胶、聚合物等领域有丰富的流变学应用经验。主要内容在药物制剂及其原材料的研究和生产中,流变学特性的要求是越来越受到重视的一项内容,例如在《中国药典2020》、《欧洲药典》、《美国药典》都有相关的测试项目,在“皮肤外用化学仿制药研究技术指导原则(试行)”、“ 化学仿制药透皮贴剂药学研究技术指导原则(试行)”、“新注册分类的皮肤外用仿制药的技术评价要求”、“医用透明质酸钠凝胶行业标准”等规范性文件中都明确提出了流变学特性测量的要求。本报告将对流变学测量原理,制药规范中的流变学测量和应用方法进行简单介绍。
  • 美国TA仪器流变学进阶培训课程圆满完成
    为了让加深对流变技术的了解,加强流变学研究者和广大客户之间的交流,美国TA仪器的资深流变专家Aloyse Franck 博士2010年7月27日在北京,就在此次内容与大家分享和交流国内外先进的流变技术和应用。 Aloyse Franck 博士毕业于苏黎世联邦理工学院化学工程系。他的科研经历包括曾经负责建立New Jersey公司在欧洲的技术应用实验室,在New Jersey 公司曾担任流变科学产品经理,主要负责拓展流变产品线和开发ARES 流变仪。由于工作出色,后又负责New Jersey 公司包括流变仪、粘度测定仪和热分析仪的材料科学产品线的市场部经理,领导建立德国知名的流变技术和培训中心CER. 在TA公司,Aloyse Franck博士先后担任了流变的技术研发负责人和研发部门的AR和ARES系列流变仪的首席流变顾问。Aloyse Franck博士在流变领域具有超过20年的应用,产品研发和市场管理经验,是欧洲知名的流变专家,对流变仪在各个行业的应用有着非常深入和广泛的了解。 在这次的培训课程中聚集了众多对流变学感兴趣的国内同仁,并展开了学术讨论,反响热烈。
  • TA世界学苑—高聚物应用流变学高峰论坛(特邀流变宾汉奖得奖者等多位大师授课)
    screen.width-300)this.width=screen.width-300"授课专家:John Dealy教授加拿大麦吉尔大学化学工程学院荣誉教授,曾任工程学院院长。他在麦吉尔大学工作43年期间,从事熔体流变学,熔体流变学与分子结构的关系以及在塑料加工过程中的作用等课题研究,编著或合著有四本著作及80篇科学论文。目前的研究领域包括多分散性对长链支化模型聚合物流变行为的影响,以及高压对熔体粘度和流动诱导结晶的影响。Dealy教授是国际塑料工程师协会院士,加拿大工程学院院士和加拿大皇家学院院士。曾荣获流变学协会Bingham奖章和其他奖项。screen.width-300)this.width=screen.width-300"赖世燿 博士自1986年起服务于陶氏化学公司目前担任亚太区塑料研发部首席科学家职务。赖世燿博士为国际知名聚烯烃高分子材料学家。他在陶氏化学公司塑料研发部担任过多个不同的职务--从基础研究到产品应用开发到技术服务甚至到新市场开发等等都作出许多贡献。他的研发成果已经广泛应用到各个行业及领域并多次获得大奖其中包括1994全美发明人奖,拥有21项美国专利以及超过60项国际专利,也发表过30篇以上的专业论文。赖世燿博士1986年毕业于美国密西根大学高分子材料与工程系并获得博士学位。刘琛阳 博士,陶氏化学资深应用专家中科院化学研究所高分子科学博士毕业,并随后在比利时Université catholique de Louvain做博士后研究,现任美国陶氏化学上海研发中心资深材料专员。他的研究方向为高分子液体动力学研究和高分子合成物的流变学。周持兴 教授,上海交通大学高分子科学与工程系曾任两届国家自然科学基金委化学部评委与高分子物理和化学国家重点实验室(中国科学院)学术委员,现任上海交通大学高分子科学与工程系教授、博士生导师、上海交通大学流变学研究所所长,兼任中国力学会中国化学会流变学专业委员会委员、中国资源综合利用协会木塑复合材料专家委员会委员、中国机械工程学会材料分会高分子专业委员会委员、“功能高分子学报”编委等职。在聚合物加工和流变学领域有突出贡献。发表论文100多篇。俞炜 副教授,上海交通大学高分子科学与工程系上海交通大学流变学研究所常务副所长。在复杂流体流变学和聚合物加工CAE方面有深入研究,发表论文50余篇。许炎山 经理,TA仪器资深技术支持1985年毕业于台湾中央大学(即南京大学在台)化学工程硕士班,主修高分子科学。曾先后任职于台湾台塑集团的南亚塑料公司第六轻油裂解计划ABS厂研发专员, 与台湾化学纤维公司的ABS建厂专员共七年有余, 之后转任台湾立源兴业公司负责精密分析仪器部门之业务经理超过十三年, 累积丰富的流变学与热分析技术在产业界与学术界之相关应用经验, 并且也拥有犀利的仪器操作实做能力。2006年在美国TA仪器于台湾成立分公司时, 应邀担任业务技术与应用经理迄今。许经理由于长期与产业界有密切的合作关系, 因此对于工业技艺与仪器分析之间的连结能力特别专长, 颇为受到台湾各行各业用户的重视与欢迎。日程安排screen.width-300)this.width=screen.width-300"TA公司诚邀您参与此次活动,相信一定可以使您得到最为实用的收益!如贵公司有兴趣参加,请填妥以下回执,传真或E-MAIL至我司市场部专员王冬妮收,我们会尽快和您联系。如有疑问,请随时与王冬妮小姐联系,谢谢!电话:800 820 3812 / 021-54263957传真:021-64956366E-Mail: vwang@tainstruments.comscreen.width-300)this.width=screen.width-300"更多资讯,请登录www.tainstruments.com.cn获悉详情!
  • Thomas G.Mezger先生流变学Farewell Webinar
    Thomas G.Mezger先生流变学Farewell WebinarThomas G. Mezger先生毕业于德国斯图加特大学化学工程专业,他先后在流变仪制造商Contraves、Physica、安东帕德国分公司从事流变仪销售、产品管理和产品支持工作,在流变学应用领域积累了极其丰富的经验。Thomas G.Mezger自1988年以来,Mezger先生在世界各地举办了大量流变应用研讨会。这些研讨会提供了流变学和流变仪的基础知识,并有效指导了工业实践。自1993年以来,他作为多个DIN和ISO标准工作组的成员参加了相关标准的制定,如2021年发布的ISO 3219-1和3219-2标准)。Thomas G. Mezger先生将于2022年6月底从安东帕退休,特意为安东帕中国公司的朋友们举办这场告别研讨会。诚邀安东帕公司的广大流变仪用户、流变学界朋友们莅临!Thomas G. Mezger先生将其丰富的流变学经验凝结于两本专业书籍:《The Rheology Handbook》The Rheology Handbook, for users of rotational and oscillatory rheometers,Vincentz, Hannover, 2020 (第五版)《应用流变学——与Joe Flow一起探索流变之路》《应用流变学——与Joe Flow一起探索流变之路》:Anton Paar, Graz, 2021 (第九版),本书有中文版(2020年第三版),以及法语、德语、意大利语、日语、韩语、葡萄牙语、西班牙语等版本。主题:流变学基础时间:4月20日16:00 – 17:30(北京时间)语言:英语会议平台:Webex(需下载会议插件)报名方式点击上方“主题:流变学基础”,或点击下方“阅读原文”报名,在打开的页面中点击Register,会议链接将发送到您的邮箱中。扫描下方二维码,进入报名页面!注册:iphone手机需复制链接,浏览器打开
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制