当前位置: 仪器信息网 > 行业主题 > >

流场结构

仪器信息网流场结构专题为您整合流场结构相关的最新文章,在流场结构专题,您不仅可以免费浏览流场结构的资讯, 同时您还可以浏览流场结构的相关资料、解决方案,参与社区流场结构话题讨论。

流场结构相关的论坛

  • 煤储层微小孔孔隙结构的低场核磁共振研究

    煤层气主要以吸附状态存在于煤孔隙中,正确认识煤的孔隙结构及分布特征,是研究煤储层孔隙性、空间结构、渗流特征以及煤层气可采性的重要依据。目前,岩石孔隙结构和孔径分布特征主要通过压汞法分析获得的毛细管压力曲线和低温 氮吸附脱附实验得到吸附脱附曲线来进行评价和分析。鉴于,煤储层与常规储层相比,具有易碎、易压缩、孔隙结构复杂性和高度非均质性等特 征,这使得两种方法在煤储层应用方面存在较多不足。如低温氮吸附脱附实验方法对样品孔径的测试范围在1. 7 ~ 300 nm,能较好地反映微小孔 及中孔的分布情况,而无法反映大孔及裂隙的分布情况,测试范围具有局限性; 压汞法对样品有损坏,且无法重复利用低场核磁共振技术测试原理与上述两种方法不同,主要通过测量煤岩孔隙中流体的T2弛豫时间来获取煤样孔隙系统中微小孔、中孔、大孔及裂隙的分 布情况、连通性以及煤岩的各种物性参数。该方法具有快速、无损、信息量丰富等优点低场核磁共振实验结果通过低场核磁共振实验,得到煤样的T2弛豫时间谱( 图3)。根据样品T2谱的形态特征可得,样品按照孔隙大小主要分为两类: 一类微小孔为主,中孔、大孔及裂隙对不发育,如高煤阶 样品; 另一类样品微小孔、大孔或裂隙发育为主,中孔相对不发育,如中煤阶样品。http://pic.yupoo.com/niumagqw1/FIyv44f0/uwWAO.png煤样液氮吸/脱附曲线特征与表面弛豫率关系http://pic.yupoo.com/niumagqw1/FIyv4a8R/13IJuA.png高煤阶煤表面弛豫率明显低于 中煤阶煤,其主要原因为: 高煤阶煤的微孔比例相对较高,孔隙结构较复杂,且多以“细颈瓶”型毛细孔为主。因此,表面弛豫率的大小,与样品孔隙结构的复杂性及孔隙类型具有较好的对应关系。

  • 六灯位原子荧光结构

    北京吉天有提到他们的仪器是六灯位的,本人很想知道六灯位的工作原理,仪器结构,六个灯是如何摆放的,希望有专业人员解答。

  • 直通式调节阀内部流场分析

    0.前言调节阀是一种起控制作用的阀门,由控制机构和增减流量的阀体够成。调节阀一般情况下为直通式的,分为2种:单座式和双座式调节阀,双座式的最大流通量大,在运行过程做更为稳定,故所能使用的场合更多。如今,在流体机械和工程领域,调节阀在诸多问题中起到重要作用。调节阀的基本工作原理是:通过感知动作信号,然后更具信号做出相应动作,即机械位移(如直线、转角等),由此改变阀门开度,达到控制相关参数的目的。现今我国对调节阀的性能研究工作比较少,由于起步晚,目前可用的理论知识和科技手段比较匮乏,而且进入科技人员和经费的投入也很少,主要依赖经验设计,参考国外的一些理论资料和样品进行产品开发,而自主产品研发工作很少。随着计算机技术和硬件设备的日新月异,流体力学研究也越来越多的基于这一优势,逐步形成计算流体力学,计算机数值模拟已成为研究流体力学的三大方法之一,它不仅不受人力和实际工程环境制约,更重要的是可以得到整个负荷变化范围内的流动信息。基于计算机技术和计算流体力学,几十年来,也衍生了很多流体流动前后处理的适用软件,如techplot,grapher,gambit,ansys以及cfx等除了功能齐全经济适用的专业软甲开发,在数值算法方面,进展也越来越显著,除了传统的TVD差分算法和SIMPLE算法,很多研究者也正专注于一些新观点以及新概念,计算机数值模拟的优势必将更加突。相比于从传统的机械角度出发,数值模拟更大程度上提高了调节阀的技术含量与产品质量,对于调节阀的不断优化和使用性能有深远意义。1.数值模拟控制方程湍流流动的瞬时控制方程如下:http://www.klevalve.com/up_files/month_1509/201509010016418139.jpg标准k-ε两方程模型中湍动耗散率ε表示为:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.81.jpg(5)湍动黏度μt是k和ε的函数:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.82.jpg(6)在标准k-ε模型中,常数C1ε、C2ε、Cμ、σk、σε为经验值,可通过试验得到:1ε=1.44,C2ε=1.92,Cμ=0.09,σk=1.0,σε=1.3当流动为不可压,且不考虑用户自定义的源项时,Gb=0,TM=0,Sk=0,Sε=0,这时,标准k-ε模型为:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.83.jpg(7)http://www.klevalve.com/up_files/image/article/2015/09/01/166263.84.jpg(8)方程(7)及(8)中的Gk展开式为:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.85.jpg(9)2.直通式调节阀计算模型图1为某一型号的直通式调节阀结构图,本文的主要工作是应用AutoCAD软件对该调节阀的不同开度建立模型,然后导入fluent软件的gambit模块划分网格,通过设置合适的计算方程,边界条件等进行网格节点上的数值迭代计算,最后得出该直通式调节阀25%,5%两种开度下的速度云图,压力云图,速度矢量图,并对图进行分析,以便对后续的流道优化做准备。其中边界条件为:阀前(密封面处)介质压力约为4.85MPa,温度260℃;阀后管道压力为0.5MPa,温度为260℃。http://www.klevalve.com/up_files/month_1509/201509010018015127.jpg图1 直通式调节阀结构图2.1 流道几何模型的建立本文利用autoCAD建模软件,对图1所示的直通式调节阀内部流道建立不同开度下的模型,经验证本模型在三维模拟和二维模拟下得出的结论对计算结果影响不大,故简化为二维模型。图2是调节阀开度25%时流道模型的二维图,图2中对阀芯和阀杆进行了简化,计入2种不同开度对流态影响的范围之内。http://www.klevalve.com/up_files/month_1509/201509010018289915.jpg图2 25%开度下的流道二维简化模型2.2 网格划分本算例的流道模型简化为二维模型,所以直接使用gambit一体化生成四边形非结构化网格。图3是25%开度下调节阀流道模型的网格结构图,总共有90531个网格。其中,通过网格无关性验证发现当网格个数达到9万多时网格疏密对技术结果影响不大,数值模拟计算结果已满足要求。http://www.klevalve.com/up_files/month_1509/201509010018583377.jpg图3 25%开度下流道模型的网格结构图3.流场可视化分析当残差曲线收敛后,进行流场可视化分析,主要是流道压力分布云图,速度分布云图及速度矢量图的分析。3.1 25%开度下流场可视化分析该调节阀25%开度下的压力分布云图和速度分布云图如图4、图5所示。由图可知,整个流场主要在水流通过节流处(即阀瓣处流通截面很小处,通过改变此处截面大小控制流量)时,压力和速度梯度发生剧烈变化,这是由于流通面积突然减小,根据伯努利方程可知速度迅速增大,并且从图中可知阀前后压力变化极大,变化梯度集中在节流处;在阀门管道进出口处,压力和速度又趋向均匀。由于进出口高度差相对很小,且进出口截面积相同,故流道的压降主要用于克服调节阀前后的阻力。http://www.klevalve.com/up_files/month_1509/201509010019248490.jpg图4 25%开度下压强分布云图(单位:Pa)http://www.klevalve.com/up_files/month_1509/201509010019489761.jpg图5 25%开度下速度分布云图(单位:m/s)在25%开度下的速度矢量图、局部放大图如图6和图7所示。阀门进口处流速大小变化很小,且不出现径向的脉动现象。当水流经过节流处时,速度值变化很大,随着流通面积的减小,速度随之增大;水流通过节流处后,出现一段喷射现象,然后流束慢慢扩大,靠近出口处管径又逐渐均匀,流动状态也随之平稳。水流从节流处喷射进入阀腔中时,产生明显的涡旋现象,同时在出口处也同样生成漩涡,结合压力云图和总流方程可知,漩涡处能量损失很大。其中如图7,靠近出口处的漩涡,最为强烈,对比图4可知,此处也是流道中压强最低的区域。http://www.klevalve.com/up_files/month_1509/201509010020409291.jpg图6 25%开度下速度矢量图(单位:m/s)http://www.klevalve.com/up_files/month_1509/201509010021014477.jpg图7 25%开度下靠近出口漩涡区速度矢量放大图(单位:m/s)3.2 5%开度下流场可视化分析如图8、图9分别是5%开度下该直通式调节阀的压力云图和速度云图。从图中可看出,由于开度很小,阀芯与阀座间的节流段过流

  • 改变发射针结构延长热场发射电子源的使用寿命

    大束科技发明并提供了一种发射针结构、热场发射电子源及电子显微镜,涉及电子显微镜技术领域,解决了氧化锆等低逸出功材料团易从发射针上脱落,影响电子源寿命的技术问题。该发射针结构位于电子源中发射电子,其包括针本体和低逸出功材料团,针本体的周壁上设置有容纳部,低逸出功材料团在烧结过程中形成有嵌入容纳部内的结合部位,且结合部位与容纳部的配合结构将低逸出功材料团夹固于针本体上。本发明的发射针结构能够将低逸出功材料团更为牢固的固定在针本体上,既能够增加储备氧化锆的数量,也能够增强低逸出功材料团与针本体结合的强度,防止低逸出功材料团脱落,延长了热场发射电子源的使用寿命。大束科技成立于2018年,是一家以自主技术驱动的电子显微镜核心配件研发制造商及配套服务商。 目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。大束科技致力于成为电子显微镜行业上游配件的研发制造供应商;未来将在满足本土市场的同时,进军国际高端电子显微镜市场。

  • 关于普通六方结构的标定

    关于普通六方结构的标定

    请老师指点,这是我分析的一种析出相(zr-fe-cr三元相)的衍射图。根据文献调查应该为六方结构,但是pdf卡中没有标准可以对照。对于这种没有参考标准的相来说,我只会标注立方和密排六方。这种普通六方结构不知道该怎么标,希望各位老师帮忙。http://ng1.17img.cn/bbsfiles/images/2013/06/201306191652_446497_2595093_3.jpg

  • 求此种六通阀结构原理图

    求此种六通阀结构原理图

    [img=,690,920]http://ng1.17img.cn/bbsfiles/images/2018/04/201804232107469926_3198_3397088_3.jpg!w690x920.jpg[/img]哪位大神有这种磐诺六通阀的结构原理图啊?(请问这是六通进样阀还是六通换向阀?这两种阀有没有本质的区别?还是只是叫法不一样而已!)

  • 【求助】硫酸氧钛铵的结构式

    哪位能够知道硫酸氧钛铵的结构式或者在什么文献上见到过的或者哪本书或者资料上有这个东西谢谢!硫酸氧钛铵(NH4)2TiO(SO4)2ammonium titanyl sulfate

  • 【原创】平面手动六通阀结构图解

    【原创】平面手动六通阀结构图解

    这是一个用于手动进样的色谱平面六通阀,我记得我以前发过自动的六通阀结构,有机会再拆个拉杆式的,就能凑个系列啦。其实结构都是大同小异。这个阀由于旋转不灵,有点卡,打开找下原因。1、正面:[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905071600_148795_1605035_3.jpg[/img]

  • 场流分离仪的来历

    “场流分离”(Field-Flow Fractionation)概念和场流分离技术是凯文.吉蒂斯教授(Prof. C. Giddings,两次获得诺贝尔奖提名)的发明,他也是“场流技术公司/POSTNOVA公司”的创始人之一,这家公司专注场流分离技术的研发和仪器设计生产,并且开发出世界上第一台商业化的场流分离仪,为全球的科学家们提供了非常独特的大分子物质分离技术和技术服务。

  • 【求助】标定电子衍射的超结构衍射点

    该图的强衍射点是对应六角密堆结构的[031]晶带轴,弱点分析是一种长周期结构,但我不知如何正确标定它们,从这幅图上能否看出此长周期结构是一维的,还是二维的?谢谢!!![~76956~]

  • 场流与凝胶渗透色谱、激光散射和四毛细管粘度联用简介

    自场流分离仪诞生之时,聚合物、生物大分子材料等溶解型的样品就是场流仪的重要应用领域,并且与凝胶渗透色谱仪产生了一定的竞争关系。国外一些用户先后开发了场流仪FFF与凝胶渗透色谱仪GPC并联和串联使用的方法,取得了不错的效果。非对称流动场AF4、离心场CF3和热场TF3,均可与GPC并联使用,从而对同一样品分别进行FFF与GPC对比分析。通过增加两个或三个多通阀,实现并联流路。FFF与GPC串联,是更加独特的分析方法。例如:GPC与离心场CF3串联,配合激光散射检测器、粘度检测器,可以用GPC先分析样品是否含有支化样品,再将分离后的样品继续进入离心场,对含有支化样品的组分段,进行继续分离,可实现将流体力学体积相同的直链和支化的样品分离开来,并进一步检测绝对分子量、特性粘度等深度结构信息。随着GPC逐渐向多检测器型方向发展,场流仪也随之逐渐与激光散射检测器、四毛细管粘度检测器结合而成为多检测器型场流仪。postnova公司在2012年的德国慕尼黑生化分析仪器展览会上推出了全新的21角度激光散射检测器PN3621,该检测器拥有7度、12度和20度三个小角度,采用了立体取光等众多最先进技术,是目前市场上唯一的拥有7度小角的多角激光散射检测器!了解激光散射检测原理的人都知道,散射取光角度越小,则对大、超大分子量的样品,具有极佳的灵敏度和响应。而场流分离仪恰恰是在超大分子量样品测试方面具有更好的分离分析能力。因此,7度小角与多角外推共同组成了几近完美的在线激光散射检测器,成为了场流仪的“最佳搭档”。需要指出的是,由于一般的示差折光检测器RI样品池不能承受反压/背压,因此,如果在多检测器GPC/多检测器FFF仪器上简单地采用串联方式连接三、四个检测器,那么此时RI检测器需要放在最后的位置上以避免反压,这样就产生了一个问题:多个检测器的样品池的总的死体积已经接近了进样量——分析型仪器多数采用200微升的最大进样量,从而造成了在GPC柱子上/场流分离通道上已经被分离的样品组分,在检测器样品池内再次发生混合,延迟了流出并进入下一个样品池的时间,造成了RI检测器的分子量分布数据变宽,也就是说,分子量分布数据失真。在此情况下,正确方法是:1 采用能承受反压的RI检测器,这个有难度,于是一般采用第二种方法;2 采用多检测器并联技术:激光散射、粘度等定性的检测器单独走一路流路,而示差RI则走另一路流路。并且,从GPC柱子/FFF分离通道流出后的样品,被平均分成两路,平均分配是通过三通阀和相同长度的两根流路管来实现的——即:两路流路的长度相同,则压降相同,于是就被平均分配成两路了。再分别标定各个检测器以准确计算各个数据即可。目前市场上的多检测器GPC中,只有马尔文 VISCOTEK 公司的M270系列多检测器GPC采用了正确的并联方式、M302/305系列GPC采用了可承受反压的RI 检测器,从而实现三检测器按照:激光散射LS-示差RI-粘度IV 的顺序布置。这样做,就不会因为多检测器联用而影响分子量分布数据的真实性。postnova的场流仪在结合多检测器技术的时候,也可以采用并联技术以保证分子量分布数据的准确性,并且为客户提供最佳的技术服务。希望广大用户不要被一些厂家的片面宣传所迷惑,不论是GPC还是场流仪,还是要找一些专业书籍以深入学习相关分析知识,如:高分子物理教材、仪器分析教材等等。我们也会充分利用仪器信息网及论坛这个平台,为大家深入、详细地介绍FFF/GPC及多检测器技术的,也请大家畅所欲言,我们一定有问必答。

  • 是非对称场流分离仪吗?

    场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。场流分离技术可以提供快捷,温和以及高分辨率的分离,它可以分离任何液体介质中的从1纳米至100微米的颗粒物。积利公司生产的是哪一类场流分离仪呢?

  • postnova最新推出电场流与非对称流动场组合的场流仪EAF4

    近日,德国postnova分析仪器公司最新推出了EAF4仪器,即:电场流与非对称流动场组合的场流分离仪,既可以是一套新仪器,也可以在现有的AF2000AT/MT型仪器基础之上,升级PN2410电场流模块,同时还需要升级软件、新的电场流+非对称流动场的分离通道。电场流的应用,主要是在生物大分子领域的蛋白质类样品、聚电解质型的聚合物、聚合物纳米-微米颗粒等等。很快,我们这边还会有进一步的资料,我会第一时间发布出来,供大家参考。

  • 场流分离的原理介绍

    为了更好地向大家介绍我们的产品,我们的技术团队制做了一个简要介绍场流分离仪的原理的文件,请大家参考。简单地说,场流分离就是用一个没有固定相填料的、空心的分离通道盒,代替了HPLC/GPC/SEC的色谱柱,利用垂直于样品流动方向的分离力,对大尺寸/大分子量样品进行分离与分析,测试其尺寸分布与分子量分布。这种方法是有数学理论基础的,这个原理文件简要介绍了相关的数学模型。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制