当前位置: 仪器信息网 > 行业主题 > >

流动分离

仪器信息网流动分离专题为您整合流动分离相关的最新文章,在流动分离专题,您不仅可以免费浏览流动分离的资讯, 同时您还可以浏览流动分离的相关资料、解决方案,参与社区流动分离话题讨论。

流动分离相关的资讯

  • 聚焦新技术 | AIS puriFlash® 制备纯化系统与流动化学集成,搭建连续分离纯化平台!
    流动化学创新地将传统独立分开的合成操作过程整合起来,在连续流动的系统中完成化学反应,加快了合成的速度,对于绿色化学和实验室自动化领域具有非常重要的意义。此前,我们与爱丁堡赫利瓦特大学 VilelaLAB 和流动化学实验室进行合作,借助 Advion Interchim Scientific puriFlash5.250 纯化制备系统,搭建了全新的连续分离纯化平台,进一步加快实验流程。AIS puriFlash5.250 纯化制备系统ONE平台搭建 平台大致上分为三部分:流动反应池部分、在线输送部分以及AIS puriFlash 5.250 制备纯化部分。实验平台搭建示意图ONE基本思路step 1:流动反应池系统用于进行合成并将粗反应混合物直接或通过在线萃取器输送到 AIS puriFlash 5.250 色谱仪的进样口处。step 2:puriFlash 5.250 通过仪器的 10 通阀,将原料交替切换注入到其中一个样品环中。step 3:两根相同的色谱柱:一个加载反应混合物,另一个用于平衡和执行色谱方法,确保样品环中的样品不损失。 step 4:使用 UV+ELSD 检测器监测并进行馏分收集。 ONE 实验关键点1、优化流动反应池的设置,以获得产品的最大产率;2、优化纯化方法,尽量减少离线实验中粗反应混合物纯化所需的时间;3、色谱方法与流动反应池的进料流速同步,以实现成功的耦合。ONE应用实例(A) 乙二醇和苯甲酰氯酯化反应的在线快速纯化流程示意图。 (B) 40 个连续分离的酯产物的色谱堆叠图。DMAP:4-(二甲氨基)吡啶,FBR:固定床反应器。 实验体系证明了流动化学集成 puriFlash 5.250 从粗反应混合物中同时分离两种产品(以克/小时为单位,纯度 99%)的潜力。在乙二醇和苯甲酰氯的连续流动酯化中,两种酯的产率分别为 9.9 和 7.6 mmol/h。ONE讨论 使用测试混合物(4-甲氧基苯酚和2,5-二溴对二甲苯,正己烷/乙酸乙酯体系)成功进行了原理验证研究,证明了流动化学-puriFlash5.250集成的可行性,并确认了 Advion Interchim Scientific Flash 柱的耐用性。 受到该方法成功的启发,另外几种不同的反应也得到了验证,连续分离出纯度为 97-99% 的产品。 除此之外,puriFlash 5.250 纯化制备系统还可以提供重要的辅助功能。 • 以4,7-二苯基-2,1,3-苯并噻二唑为均相光敏剂,催化 fmoc-l-蛋氨酸生成相应的亚砜为例,证明了均相催化剂在线回收的可能性。 • 可以实现 AIS puriFlash 纯化制备色谱系统与您的流动化学无缝集成,这种联合能够满足实验需求,有助于加速化学新反应的发现。
  • 流动分析技术在《生活饮用水标准检验方法》中的应用
    流动分析技术是20世纪50年代开发的一种湿化学分析技术,该技术自动化程度高,可批量检测样品,解放了劳动力,提高了工作效率,且具有检出限低、重现性好、分析速度快等特点,已广泛应用于环保、水质、烟草、质检及医学检验等行业,测试项目包括总氰化物、氰化物、挥发酚、阴离子表面活性剂、磷酸盐、总磷、总氮、氨氮、硫化物、六价铬、硝酸盐、亚硝酸盐、COD(Mn)、尿素等。目前主流的流动分析技术有两种,即连续流动分析技术(CFA)和流动注射分析技术(FIA)。2023年10月即将实施的生活饮用水标准检验方法GB/T 5750.4-2023中把感官性状和物理指标中的挥发酚类、阴离子合成洗涤剂指标规定了连续流动分析法和流动注射分析法;GB/T 5750.5-2023中无机非金属指标中的氰化物和氨(以N计)规定了连续流动和流动注射分析法。下面小编整理了生活饮用水标准检验方法中涉及到流动分析技术的标准,供大家参考。GB/T 5750.4-2023挥发酚-流动注射法原理:样品通过流动注射分析仪被带入连续流动的载液流中,与磷酸混合后进行在线蒸馏;含有挥发酚类的蒸馏液与连续流动的4-氨基安替比林及铁氰化钾混合,挥发酚类被铁氰化物氧化生成醌物质,在与4-氨基安替比林反应生成红色物质,于波长500nm处进行比色实验。仪器设备:流动注射分析仪:挥发酚反应单元和模块、500nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳加热温度稳定于150℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。 仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023阴离子洗涤剂-流动注射法原理:通过注人阀将样品注人到一个连续流动载流、无空气间隔的封闭反应模块中,载流携带样品中的阴离子合成洗涤剂与碱性亚甲基蓝溶液混合反应成离子络合物,该离子络合物可被三氯甲烷萃取,通过萃取模块分离有机相和水相。包含离子络合物的三氯甲烷再与酸性亚甲基蓝溶液混合,反萃取洗涤三氯甲烷,再次通过萃取模块分离有机相和水相。于波长 650 m 处对包含离子络合物的三氯甲烷进行比色分析,有机相的蓝色强度与阴离子合成洗涤剂的质量浓度成正比。仪器设备:流动注射分析仪:阴离子合成洗涤剂反应单元和模块、10mm比色池、650nm滤光片、自动进样器、多通道蠕动泵、数据处理系统。仪器参考测试参数:周期时间洗针时间注射时间进样时间出峰时间进载时间到阀时间峰宽200s50s50s80s100s80s80s180s注:不同品牌或型号仪器的测试参数有所不同,可根据实际情况进行调整。GB/T 5750.4-2023阴离子洗涤剂-连续流动法原理:在水溶液中,阴离子合成洗涤剂和亚甲基蓝反应生成蓝色络合物,统称为亚甲基蓝活性物质,该化合物被取到三氯甲烷中并由相分离器分离,三氯甲烷相被酸性亚甲基蓝洗涤以除去干扰物质并在第二个相分离器中被再次分离。其色度与浓度成正比,在650/660 nm处用 10 mm比色池测量其信号值。仪器设备:连续流动分析仪:自动进样器、阴离子合成洗涤剂分析单元(即化学反应模块,由相分离器、多道蠕动泵、歧管、泵管、混合反应圈等组成)、检测单元(检测单元可配备 10 mm 比色池、阴离子合成涤剂检测配备 650/660 nm 滤光片)数据处单元及相应附件。GB/T 5750.5-2023氰化物-流动注射法原理: 在pH为4左右的弱酸条件下,水中氰化物经流动注射分析仪进行在线蒸馏,通过膜分离器分离,然后用连续流动的氢氧化钠溶液吸收;含有乙酸锌的酒石酸作为蒸馏试剂,使氰化铁沉淀,去除铁氰化物或亚铁氰化物的干扰,非化合态的氰在pH8的条件下与氯胺T反应,转化成氯化氰(CNCD);氯化氰与异烟酸巴比妥酸试剂反应,形成紫蓝色化合物,于波长600 nm处进行比色测定。仪器设备:流动注射分析仪:氰化物反应单元及在线加热膜分离器、600nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳蒸馏部分稳定于120℃±1℃显色部分稳定于60℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.5-2023氰化物-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸性条件下,样品通过在线蒸馏,释放出的氰化氢被碱性缓冲液吸收变成氰离子,然后与氯胺-T反应转化成氯化氰,再与异烟酸-吡唑啉酮反应生成蓝色络合物,最后进入比色池于630 nm波长下比色测定。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、氰化物反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于125℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.5-2023氨(以N计)-流动注射法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在50℃~60℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:流动注射分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。GB/T 5750.5-2023氨(以N计)-连续流动法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在37℃~40℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:连续流动分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。
  • Postnova场流分离系统应用举例:蛋白质聚集体分离的理想解决方案
    Postnova场流分离系统应用举例——蛋白质聚集体分离的理想解决方案 蛋白质聚集体已经成为药学发展和质检上一个重要的问题。其活性,生物利用度和可能的消极免疫响应等性能直接与不同程度的聚集态的存在有关。因此不仅FDA, 更多的官方和私人研究机构都对聚集态结构产生越来越大的兴趣。他们研究的目标是确定精确的聚集情况,即药物中的蛋白质中某个时间有多少聚集态结构形成以及如何避免这种情况。 场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。当样品注射到场流分离通道时,分离应力作用于聚合物或粒子强迫它们向通道底层移动,通道底层就被称为聚集壁。样品不能透过聚集壁,所以它们再次扩散到通道中心。扩散应力被分离应力抵消,在很短的时间(一般是30~120秒)内两种力之间就建立起一个稳定的动态平衡。大小不同的颗粒有着不同的扩散系数,所以它们在通道内由于速度梯度而被分离。注射后的粒子/聚合物由于“垂直场力”的存在,受迫向垂直于流动相流动的方向移动。小粒子由于具有较大的扩散系数将会比大粒子在通道内扩散的更深远。结果就是,小粒子在通道内被“层流”更快的定位,并因此而被洗脱出来;而大粒子则定位较慢,后洗脱出来。上图是使用AF4非对称场流分离单克隆抗体的结果。在20分钟内,不同程度的聚集态被分开,整个分离过程由于没有固定相存在,因此蛋白质的空间结构不会被破坏。样品不需要前处理,更可以通过联用多种在线检测器(LS, UV, RI, SEM, DLS),方便迅速得到需要的数据。 场流分离技术具有以下优点:• 快速、温和的分离,可以兼容任何溶剂和缓冲液• 超高的分辨率(±1nm)• 没有任何固定相的分离通道• 宽分离范围:粒径1nm~100mm /分子量1000Da~1012Da• 无需前处理及过滤,直接进样复杂基质样品• 可收集所需要的样品,方便升级至制备级• 能够连接各种检测器,如在线串联紫外、光散射、荧光、质谱等检测器• 可同时测定分子的分子量及粒子的粒径。这些优点使场流分离技术在蛋白质及其聚集体分离方面可以发挥巨大的作用。更多产品详情,敬请登陆:www.tegent.com.cn德祥热线:4008 822 822info@tegent.com.cn
  • 艾塔CFA连续流动分析仪,全自动专利技术更安全
    艾塔连续流动分析仪的运用领域较广,其中运用最多的是连续流动分析仪在水文系统检测,它是一款用于检测包括总氮、挥发酚、硫化物、阴离子洗涤剂和六价铬在内的专业实验室分析仪器。 江苏艾塔科仪有限公司生产的CFA系列连续流动分析仪,由自动进样器、蠕动泵、化学反应模块、检测器四个部分组成。主要通过多通道蠕动泵和三维全自动进样器将待测样品及试剂泵入密闭管路中,同时通过气泡注入装置向管路中均匀注入气泡,采用吹脱蒸馏、紫外消解、膜透析、相分离等一系列在线前处理技术将脏样品转变为干净样品后自行进行比色、计算。 艾塔连续流动分析语FIA相比,具有明显技术优势,由于FIA受技术限制,管路非常细,所有待检样品和试剂均需进行繁琐的前处理工作,否则经常发生堵塞而无法使用;FIA管路较短,器浓度检测范围小,无法检测高含量的样品,存在检测精度低、稳定差、自动化程度低等缺陷。 而艾塔CFA连续流动分析仪可用于大批量样品的快速准确分析检测,专利的气泡注入及分离技术,避免样品干扰;专利的在线蒸馏技术,可快速完成蒸馏工作;全自动在线完成消解、加热、蒸馏、膜过滤等操作;多路通道独立,满足不同项目任意搭配;多通道同时检测,提高工作效率;全中文工作站,功能强大。 艾塔连续流动分析仪可应用于地表水、生活污水、工业废水、海水及饮料中测定氨氮、总氮、总磷、硫化物、活性剂、氰化物、挥发酚、六价铬的含量。
  • 王建华:"流动注射"20年的坚持与守望——访东北大学王建华教授
    日前,在第19届国际流动注射分析及相关技术大会上,因在流动分析方法学及样品预处理等方面的突出成就,东北大学理学院王建华教授获得了&ldquo 流动注射分析科学奖&rdquo 。  其实,在90年代后期的时候,中国做流动注射分析(FIA)研究的人已经明显减少了,中国的FIA全国性学术会议也在1996年之后停办,种种迹象表明,FIA 已经不再是科研的热点领域,目前研究人员多是将FIA作为一种工具进行相关的科学研究。那么,王建华教授是如何与FIA结缘、并且20多年来一直坚持、如今取得了哪些让自己自豪的成果、以及是如何看待FIA的发展呢?  &ldquo 好容易学会了一种东西,舍不得扔。并且一直研究下来,越发觉得FIA挺有意思,用处多、也挺重要,&rdquo 王建华笑到。&ldquo 我有幸成为今年的两名获奖人之一,并参加了在日本福冈举行的第19届国际流动注射分析及相关技术大会和颁奖仪式。这应该感谢国际同行对我本人所作的一点贡献的认可和肯定,&rdquo 王建华介绍,&ldquo 我个人觉得这不能算是多大的成功,我们只是在流动注射分析领域中进行了一些个人或课题组成员感兴趣的研究,我一直认为,在流动系统中进行样品预处理的尝试是十分有意义的。&rdquo 东北大学王建华教授  结缘&ldquo 流动注射&rdquo   王建华教授与FIA结缘可以说是件意料之外又顺理成章的事情,&ldquo 本科和硕士研究生期间,我学的是无机合成,后来才转行到分析化学领域的。&rdquo 王建华教授谈到如何进入FIA领域时说到,&ldquo 我在1990年开始接触FIA时,有一个梦想&mdash &mdash 到流动注射的发祥地跟FIA的创始人学习。做过了一些FIA研究之后,机缘巧合,居然&lsquo 梦想成真&rsquo ,不仅到FIA发祥地学习,而且还直接师从FIA创始人 Elo Harald Hansen教授。&rdquo Hansen教授对中国十分友好,王建华在他的系统指导下完成了自己的博士论文,并跟随他进入了国际流动注射分析研究的前沿领域,也因此与国际同领域中的顶尖学者有了接触和交流,包括流动注射分析的创始人Jarda Ruzicka教授等。  方肇伦先生是我国流动注射分析研究领域的主要开创人,在1992年的全国FIA学术会议上,王建华认识了方肇伦先生; 2003年,在Hansen教授的推荐、方肇伦先生的&ldquo 感召&rdquo 下,王建华&ldquo 一激动&rdquo 就留在了东北大学。&ldquo 自从我来到东北大学分析科学研究中心,就一直得到方先生的关怀,我学到了方先生宽厚待人的为人之道,更领略了他严谨的治学态度。这对于我后来的科学研究和指导研究生极为重要。&rdquo 谈起方先生,王建华就滔滔不绝起来,&ldquo 方先生做人做事非常低调,科学研究耐得住寂寞。他从90年代初开始研究微流控分析技术,经过了长时间的探索奠定了研究基础,直到五六年之后才发表了第一篇微流控分析的文章。&rdquo   虽然在90年代后期,国内对流动注射分析的关注已经减弱,但是王建华认为,流动注射尤其是顺序注射和阀上实验室作为一种进样技术具有独到的优点,是在线分析的理想手段。在过去的20多年间,王建华一直将在线分析技术和在线样品预处理作为主要研究方向之一。并且,坚持了20多年,如今王建华教授和他的课题组在FIA研究领域取得了一系列成果。  其中让王建华自己满意、认为比较有意义的研究也有不少,如建立了一些在线样品预处理方法,包括对生命样品中DNA和蛋白质的分离富集,以及对环境样品中金属及其形态的分离分析 还建立了一些专用于特定组分分析的顺序注射在线检测系统,仪器公司在他们研究的基础上将其产业化后在环境检测领域有较好的推广应用 另外,实现了在阀上实验室中进行微珠注射及微填充柱的在线表面更新,并用于固相萃取,这对于后来阀上实验室技术的发展具有积极的意义 与方肇伦先生一起提出了&lsquo 介观流控&rsquo 分析系统的概念,即介于微流控和常规流动系统之间的流动分析模式,可成为常规样品引入与微流控系统进样的桥梁。  不过遗憾的是,尽管目前FIA的相关理论已经相对成熟,但由于在实际应用中还存在稳定性不足等局限,使得FIA在常规检测和生产实践中的应用还远远没有达到理想的程度。王建华教授说到,&ldquo 总的来说,流动注射及相关技术在我国的产业化还不太广泛,我们课题组在这方面也只是进行了一点探索,离真正的实际应用还有差距。&rdquo   谈到下一步研究工作,王建华说,&ldquo 在流动注射分析方面,我们课题组在今后一段时间内仍将持续目前的研究,即加强在流动系统样品预处理方面的探索,特别是对生命样品的预处理。同时继续进行基于流动系统的微型化仪器研究。&rdquo   流动注射与原子光谱&ldquo 微型化&rdquo   王建华教授在不断研究流动系统中样品预处理技术的同时,也探索了基于第三代FIA技术&mdash &mdash 阀上实验室技术的微型化原子光谱系统。如建立了介观流控-分离富集-原子荧光微型集成系统、报道了基于阀上实验室的微型化原子荧光光谱分析系统、利用介质阻挡放电技术(DBD)发展了微型化原子荧光光谱及原子发射光谱分析系统&hellip &hellip   这里所说的&ldquo 微型&rdquo 比微流控系统中的&ldquo 微型&rdquo 装置要大,但又显著小于常规的分析系统,且在样品消耗、废液排放等方面也位于二者之间。王建华教授课题组在阀上实验室-介观流控系统中集成了样品预处理单元和检测装置,建立了小型化仪器装置,包括原子光谱系统。  &ldquo 这种微型化仪器系统与大型仪器的原理一样,只是利用了阀上实验室技术,在阀上加工了一些模块,包括流路、微型填充柱、光学检测系统等。不过,这些研究成果后续并没有产业化,只是在原理上论证了在那样小的系统中可以做原子光谱分析。在产业化之前还有很多技术问题需要解决。&rdquo   王建华指出,&ldquo 目前这种微型化原子光谱的应用还受到一些限制,比如样品通常需要以蒸汽状态引入,而液相直接进样尚有待研究&hellip &hellip .。总之,基于这些原理的微型化原子光谱仪器在实现真正的产业化之前还需要深入系统的研究。目前国内有数个课题组和仪器公司也正在进行相关瓶颈问题的攻关。&rdquo   在采访的最后,王建华教授说到,&ldquo 我本人认为,基于流动注射的进样技术今后在中国仪器分析领域仍有较大的潜力,在未来的一段时间内,它仍将是一种有效的进样技术,与此相关的在线分析仪器的应用也将不断扩大。&rdquo   采访编辑:刘丰秋  附录1:王建华教授简历  王建华本科毕业于南开大学,于吉林大学获硕士学位,导师为徐如人院士和冯守华院士,获丹麦科技大学博士学位。  现为东北大学理学院院长,教授,博士生导师。  担任TALANTA(ELSEVIER)副主编(2005年起),英国皇家化学会《Journal of Analytical Atomic Spectrometry》编委(2007-2010)、《分析化学》、《光谱学与光谱分析》、《分析试验室》、《分析科学学报》等编委,还担任中国仪器仪表学会分析仪器分会原子光谱专业委员会副主任委员。  在Angew Chem、Anal Chem、Chem Commun、Chem-Eur. J、Lab Chip等期刊上发表SCI论文150余篇。近年主持过国家杰出青年科学基金、国家自然科学基金重点项目2项、重大国际合作项目1项、面上项目3项等。2005年被评为全国化工优秀科技工作者,2006被评为沈阳市优秀科技工作者、2008年被评为辽宁省优秀科技工作者,并获教育部自然科学一等奖,2009年获中国化学会分析化学基础研究梁树权奖,并被评为辽宁省优秀教师,2014年被评为沈阳市劳动模范。  附录2:流动注射分析科学奖  流动注射分析(Flow Injection Analysis,简写为FIA)是1974年丹麦化学家茹奇卡(Ruzicka J)和汉森(Hansen E H)提出的一种新型的连续流动分析技术,其发展经历了三代,即第一代流动注射分析,第二代顺序注射分析,第三代阀上实验室。国际流动注射分析及相关技术大会(ICFIA)是FIA领域内的系列国际学术会议,迄今已成功举办了19届。&ldquo 流动注射分析科学奖&rdquo 是用来奖励在国际FIA及相关技术研究领域中做出过相应贡献的学者的专有奖项,流动注射分析技术的创始人--美国华盛顿大学Jarda Ruzicka和丹麦科技大学Elo Harald Hansen教授均获得过此奖。
  • 稳定高效的纳升二维分离技术-在线双反相色谱
    贾伟沃特世科技(上海)有限公司实验中心对于微量而且复杂的样品,如蛋白质组学样品、蛋白药物中的残留宿主细胞蛋白(HCP)等,不但需要高灵敏的纳升级液相,而且需要更为充分的分离。在线二维纳升分离技术(on-line 2D NanoLC)应运而生,并已成为微量复杂样品液质分析所必不可少的分离手段。 传统的纳升在线二维技术,一般采用强阳离子交换(SCX)作为第一维,反相色谱(RP)作为第二维的分离手段。这种方法是根据样品在盐溶液中的离子特性与疏水性,这两种属性间的正交关系实现的。但是SCX-RP技术在纳升级分离中却困难重重。困难主要来自SCX分离维度。在SCX分离中需要使用浓度较高的盐溶液作为流动相,但含盐流动相易发生盐析或导致样品在管路内沉淀,而纳升液相的管路内径又非常小(25-100微米)。因此,在实际运用SCX-RP分离时,经常出现管路阻塞而导致实验失败。 为此,除提供传统的SCX-RP分离技术外,沃特世创造性地开发了双反相二维分离方法。(RP-RP)。这种RP-RP技术不必使用高浓度盐溶液作为流动相,避免了离子交换分离易造成的管路阻塞问题,从而大大提高了纳升二维液相的系统稳定性和实用性。更令人兴奋的是,经过哈佛医学院的Jarrod A. Marto全面的实验对比发现,较SCX-RP方法, 运用RP-RP分离技术得到的液质分析结果更好(图1)[1] RP-RP双反相二维方法可以帮助科学家得到更多的蛋白质分析结果.这是因为:1、SCX方法使用的盐缓冲液易产生离子噪音背景,从而影响质谱数据质量;2、SCX分离效果取决于多肽所携带的电荷数,而多肽携带电荷数量类别有限,因此第一维SCX分离度较差,造成液质数据信息质量不高。图一R P-R P双反相分离技术在第一、第二维都使用了反相色谱,那么它是如何实现二维分离所必须的分离性质的正交呢?原来,经过研究发现,在不同pH值环境下,多肽的反相保留行为是不一样的(图2)[2]。根据这个性质,沃特世的科学家开发出了独有的RP-RP纳升在线二维系统——nanoACQUITY UPLC System with 2D-LC。这个系统的分离柱,使用了UPLC一贯的亚二微米颗粒填料,因此具有了UPLC的超高分离度等优点。此外,它还不需要分流就可以实现精准的纳升流速,可为实验室节省巨大的高纯度流动相购买费用及废液处理费用,而且更加环保。nanoACQUITY UPLC System with 2D-LC双反相二维系统优点总结如下:■ 较SCX-RP技术,使用RP-RP系统可得到更多的蛋白鉴定结果。■ RP-RP系统较SCX-RP系统更稳定、耐用。■ 与nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分离效果。■ 不分流实现精准的纳图二nanoACQUITY UPLC System with 2D-LC双反相在线二维系统结构及分析流程如图3,其中包括三根色谱柱:高pH反相柱、捕获柱、低pH反相柱。在此系统中,第一维色谱柱为高pH色谱柱。样品进入第一维色谱柱后,第一维梯度泵可按使用者要求,自动地阶梯式提高有机相比例,以将样品中不同疏水性肽段分批洗脱下来。从高pH反相柱上洗脱下的多肽会被富集柱捕获。每批次被富集的多肽,将在第二维泵的线性梯度模式下进入低pH反相分析柱,在这里经过充分分离后,样品将到达离子源,进入质谱分析器。 其中左下图为结构示意图。步骤①:样品被自动进样器采集后,在第一维梯度泵的推动下进入高pH色谱柱。步骤②:样品在第一维泵阶梯式梯度作用下,将一部分多肽冲出,后被捕获柱富集。其中第二维梯度泵通过施加9倍于第一维泵的水相流动相,将溶剂稀释为适合捕获柱富集的体系。步骤③:在六通阀切换后,第二维泵通过线性梯度,将多肽样品进行充分分离并送至质谱分析。在执行完步骤①后,步骤②与步骤③交替进行直到完成所需分析。双反相在线二维系统nanoACQUIT Y UP LC System with2D-LC已经在多肽的液质分析方面被广泛应用,帮助研究人员取得了众多极具价值的研究成果。图3. nanoACQUITY UPLC System with 2D-LC系统结构及分析流程图。参考文献(1) Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online Nanoflow RP-RP-MS Reveals Dynamics of Multicomponent Ku Complex in Response to DNA Damage. J Proteome Res. 2010, 9, 6242-6255.(2) Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensionalseparation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005, 28, 1694–1703. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 流动合成仪搭配反应器合成“肽”Easy了!
    近日(1月26日),中国国家药监局(NMPA)官网公示,诺和诺德(Novo Nordisk)司美格鲁肽片的新药上市申请已获得批准,用于成人2型糖尿病治疗。司美格鲁肽片是一款口服GLP-1受体激动剂药物(GLP-1RA),它的出现打破了2型糖尿病患者每天或每周需要接受GLP-1RA注射的格局,为他们控制血糖提供了侵入性更小的便捷治疗选择。 图片来源:中国国家药监局官网多肽药物的发展现状与合成什么是多肽药物?多肽药物作为一种特殊的蛋白质,由多个氨基酸通过肽键连接而成,通常由10~100个氨基酸组成,具有独特的空间结构。相对于小分子和蛋白质药物,多肽药物具有更强的生物活性和特异性,广泛应用于抗肿瘤、内分泌和代谢领域。多肽药物备受医药行业关注全球已有80多种多肽药物上市。GLP-1目前在医药行业可谓备受瞩目,犹如当下备受欢迎的“炸子鸡”。一方面,GLP-1受体激动剂已经取得了显著的市场认可,甚至在2023年超越了胰岛素,成为全球范围内广泛应用于2型糖尿病治疗的主流药物;另一方面,GLP-1受体激动剂在减肥市场上展现出巨大的潜力,使其成为全球范围内备受瞩目的焦点。多肽药物的合成方法尽管技术进步推动了多肽药物的发展,但人工合成的复杂性逐年增加。多肽合成主要采用生物合成法和化学合成法。● 生物合成法包括天然提取法、酶解法、发酵法和基因重组法。然而,工艺开发大多周期长,粗产品收率低;● 肽还可以通过不同的化学途径合成,液相和固相均可,可以批量生产也可以流动合成。流动合成相对于批量方法的优势在于在线光谱监测、高效混合以及对物理参数的精确控制,从而限制副反应的发生。 资料来源:Chemical Reviews,平安证券研究所Vapourtec固相肽合成方案自2017年以来,Vapourtec一直致力于开发受控可变床流动反应器(VBFR),可容纳树脂生长,减少机械损伤,提高偶联和去保护效率。该反应器实时生成内联数据,支持即时调整合成过程,如通过双重偶联提升肽质量和产量。实时监测密度并自动调整填充床,0.5ul分辨率监测体积变化。目前,VBFR反应器在肽和寡糖合成研究中已取得成功! Vapourtec R系列流动合成仪搭配VBFR[1]本文展示了Vapourtec R系列流动合成仪的能力,该系统配备了一种新型流动反应器——可变床流动反应器,用于进行连续流动的固相肽合成。通过选择治疗糖尿病的30氨基酸的类胰高血糖素样肽(GLP-1)作为研究对象,我们通过优化树脂活性位点与泵送的试剂之间的接触表面,保持固体介质的持续填充,实现了更高效的合成。可变床流动反应器的应用不仅减少了溶剂用量,还确保了更高的合成效率。整体方案下,GLP-1 30氨基酸的粗品纯度在不到5小时内达到了82%。方案详情与结论GLP-1是一种30个氨基酸的激素,对糖尿病治疗具有重要意义。在合成中,ChemMatrix树脂被广泛用于保持肽溶解,有助于试剂扩散。该树脂适用于复杂肽合成,因仅由聚乙二醇(PEG)链组成。其相对两亲性使其在化学和机械上稳定,提供比聚苯乙烯树脂更好的性能。SPPS协议已适应两种树脂,确保合成挑战性肽(如GLP-1)具有高粗品纯度和产量。 用于GLP-1的R-Series示意图主要的R2C+泵用于自动加载样品环的自动进样器,传递偶联试剂。次要的R2C+泵传递去保护溶液。VBFR在R4加热模块中设置。双核反应器将去保护和偶联反应器放在一个反应器芯片中。氨基酸在1.6ml反应器体积中活化,哌嗪在0.8ml反应器体积中预热。两个输出连接到VBFR反应器底部。使用SF-10泵作为主动BPR,系统压力保持不变。聚四氟乙烯过滤器确保树脂在VBFR中保持。Vapourtec的扩散板确保试剂均匀流过过滤器。Vapourtec 采用CF-SPPS反应协议,适用于0.08-0.11 mmol规模。VBFR-SPPS使用Dual-CoreTM PFA管反应器和VBFR反应器,装载200 mg树脂。通过流动DMF,使树脂膨胀到1.4ml/min,加热至80℃。系统压力为2.5bar。CF-SPPS方案A和B包括去保护和偶联步骤,采用不同参数。最后,通过DMF、DCM、MeOH洗涤,TFA裂解,分离肽,使用HPLC和质谱分析。典型循环中,VBFR体积在去保护和偶联过程中相应调整。结论流动化学在手工操作、反应速率和转化率方面相对于传统的批量SPPS(固相合成)路径具有多重优势。使用流动化学,GLP-1已经成功在不到5小时的时间内合成,只需少于1升的DMF(二甲基甲酰胺),通过HOBt和DIC激活。最终产物的原始纯度超过82%,产率为71%。总结在整个合成过程中,控制树脂的填充密度至关重要。可见,VBFR在合成困难序列时非常有优势,获得的宝贵数据将为工艺科学家提供指导,对于合成工艺的改进和优化提供了有益的数据。VBFR反应器特点玻璃、聚四氟乙烯(PTFE)、氟聚合物(PFA)和卡尔莱兹(Kalrez)材质与强酸碱有抗腐蚀性;全自动体积变化;可加热和冷却,温度范围:-20℃~150℃;工作体积范围从0.3ml到20ml;有三种规格可选:6.6mm、10mm和15mm孔径的反应器;体积变化测量分辨率为0.5微升(6.6mm孔径反应器);最大工作压力为20bar(6.6mm孔径反应器);VBFR可以与Vapourtec的R-Series软件接口,体积变化可被记录和图表化。Vapourtec VBFR应用领域 在连续流中使用异质试剂(例如有机金属试剂的形成);在易于膨胀的支持体上使用固定的异质催化剂(例如聚苯乙烯树脂);固相合成;捕获和释放的纯化;肽合成(本文中已展示);寡核苷酸合成;糖基组装。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696或点击在线咨询。[1]SLETTEN E T, NUNO M, GUTHRIE D, et al. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor [J]. Chemical Communications, 2019, 55(97): 14598-601.Vapourtec英国Vapourtec是德祥集团资深合作伙伴之一。Vapourtec成立于 2003年,已有20年生产经验。Vapourtec 作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前已经Vapourtec流动合成仪证明有效的反应包括:硝化、氧化、还原、偶合、重排、酰胺化、溴化、加氢等。广泛适用于医药,农药,染料,香料,有机光电材料,有机磁性材料,纳米材料,表面活性剂等精细化工中间体和其它特种助剂。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(三)——流动相在线除盐技术
    药物中的杂质是指除药物化学体以外的任何成分,是反映药品质量和安全性的重要指标。在制药工业中,关于药物杂质的研究主要是聚焦在使用液相色谱对其进行分离、鉴别和定量上。ICH规定当药物中的杂质含量大于0.1%时,应进行定性。传统的方法是先将杂质进行分离制备,得到纯品后再通过NMR、IR及MS等仪器进行结构鉴别。此方法,一是周期长;二是分离制备成本高;三是一些含量较少且不稳定的杂质难于制备。而近年发展迅速的LC-MS联用技术,根据杂质的来源,产生条件,推测药物中可能含有的杂质,并结合药物母核的质谱裂解规律和杂质的产生原理推断杂质的结构,可以很好地解决这些缺点,已成为杂质研究的一种新理念,且该技术已被广泛应用于药物发现、开发、制造以及质量控制等各个阶段。 LC-MS联用技术中,液相色谱分离是进行质谱结构鉴别的基础,然而现有的很多液相色谱分离方法为改善分离或检测经常会使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液或离子对试剂),这显然与质谱的ESI(APCI)-MS不兼容。因此当采用LC-MS联用技术时,必须将流动相转换为适合于ESI(APCI)-MS的挥发性流动相。而摸索新的适合于LC-MS联用技术的流动相体系往往很难对杂质进行有效分离,且又耗时费力。赛默飞UltiMate 3000双三元液相色谱(DGLC)可实现在线去除流动相中的非挥发性缓冲盐,让您无需改变现有的分析方法就可轻松使用LC-MS联用技术对药物杂质进行更深入的研究。 仪器系统连接双三元梯度泵的右泵保持原来的分析流动相条件不变,各杂质成分在一维分析柱中实现分离,通过2位置六通阀将已被常规检测器检测的目标杂质峰储存至loop环中;左泵采用与MS兼容的挥发性流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,利用质谱上固有的六通阀,将流动相中的非挥发性盐除去,再调整左泵流动相比例将目标待测物洗脱至MS中,通过子离子扫描等方式,得到杂质的裂解碎片,结合物质的裂解规律,对药物中的杂质进行逐一鉴别。系统流路连接见图1.。图1 系统流路连接示意图 最适合质谱前端使用的在线脱盐技术应用阿莫西林(Amoxicillin),是一种最常用的青霉素类广谱&beta -内酰胺类抗生素,在2010版《药典》二部中,有关物质分析采用HPLC-UV法,流动相为0.05mol/L磷酸二氢钾溶液(用2mol/L氢氧化钾溶液调节pH值至5.0) 和乙腈,梯度洗脱。样品溶液在经过碱破坏后,其分离谱图见图2.。采用双三元液相色谱的在线脱盐技术,在一维色谱保持原有分析条件并经过UV检测后,可将其中的未知杂质成分(包括降解产物)切换并储存至loop环中;二维色谱分离系统采用与MS兼容的流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,在线去除一维流动相中的磷酸二氢钾等非挥发性缓冲盐后,利用MS进行多级碎片离子扫描,结合&beta -内酰胺类抗生素的裂解规律,推断未知杂质成分的结构。整个过程在密闭系统内自动并连续地完成,而且可对其中的多个杂质同时进行结构鉴别。图2 阿莫西林碱破坏后的样品分离谱图(UV 230nm)图3 4号杂质TIC谱图(上图为负离子模式,下图为正离子模式)图4 4号杂质特征离子谱图(左图为负离子模式[M-H]-=338.1,右图为正离子模式[M+H]+=340.1,初步推断杂质分子量=339.1) 头孢地尼(cefdinir) 也属&beta -内酰胺类抗生素,用于对头孢地尼敏感的葡萄球菌属、链球菌属等菌株所引起的感染。原标准分析方法中使用了0.25%四甲基氢氧化铵溶液(用磷酸调节pH=5.5)+0.1mol/L乙二胺四醋酸二钠溶液的非挥发性流动相,样品经过热破坏后分离谱图见图5. 在不改变原流动相条件的情况下,采用DGLC的流动相在线除盐技术,使用LC-MS联用技术对原料药中的杂质(包括降解杂质)成功进行了定性研究。且该方法可以将杂质逐一进行分析,结合已知文献,共鉴别了其中的6种杂质。 图5 样品经过热破坏后一维分离谱图(UV254 nm)图6 其中15号杂质的特征离子谱图(左图为负离子模式[M-H]-=367.9,右图为正离子模式[M+H]+=369.6,初步推断杂质分子量368.8) 药典中收载的关于杂质的分析方法很多都含有非挥发性盐类。赛默飞UltiMate 3000双三元液相色谱(DGLC)采用独特的双泵设计,每个泵可作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,可以将流动相中的非挥发性缓冲盐在线去除。当您需要使用LC-MS联用技术对杂质进行进一步的深入研究时,赛默飞UltiMate 3000双三元液相色谱(DGLC)的流动相在线除盐技术,可让您永远不再为流动相中的非挥发性缓冲盐而烦恼。且该系统可同时实现在线富集、在线浓缩、在线净化等,可谓是最适合质谱使用的液相色谱仪。参考文献1、采用二维柱切换液质联用法对流动相进行在线除盐分析阿莫西林中有关物质2、采用二维柱切换液质联用流动相在线除盐分析头孢地尼中有关物质3、双三元液相色谱应用文集赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果结果:分离度,峰型都满足要求,完美。当然还是需要重现方法的。三根新色谱柱重现结果:zui终色谱条件:色谱柱:月旭Xtimate C18(4.6*250mm,5μm)。流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20检测波长:220nm;柱温:30℃;流速:1mL/min;进样体积:10μL。搞定交差!04 实验小结在液相应用方法开发过程中,首先需结合需要分离的目的,确定思路,一个方法zui初的思路,是决定这个方法开发的效果,效率的zui根本因素;其次是细节,任何细节都有可能导致你实验的成功与否;zui后是运气,牛顿发现万有引力还有运气成分呢,说不定你是下一个。同时,在一个方法确定好之后,一定需要使用一根新的色谱柱来验证,因为在方法开发过程中,我们会使用到各种流动相条件,会对色谱柱一个改性,特别是使用离子对试剂的方法,否则后续的重现性问题会是一个非常头痛的事情。
  • 用流动注射-质谱自动分析可疑样品——具有自动光谱库搜索的快速FIA-MS
    •Ryan De Vooght Johnson美国宾夕法尼亚马毒理学和研究实验室的分析师使用特殊的LC-MS设置开发的自动FIA-MS分析方法可以快速准确地识别没收样品中的药物。在为执法和兴奋剂控制或毒理学调查分析可疑样本时,速度和准确性至关重要。海关、警察或反兴奋剂机构没收的样本可能含有兴奋剂、特制药物或街头毒品,因此快速识别对药物和兴奋剂控制都很重要。质谱法是鉴定未知化合物的常用技术,可以直接进行,也可以通过GC或LC分离进行,但有一些局限性。例如,LC和GC分离可能非常耗时,需要分析专家,而且它们不包括所有潜在的没收化合物。具有电离界面的质谱法,如解吸大气压光电离(DAPPI)或解吸电喷雾电离(DESI),可以在不需要样品预处理的情况下给出快速结果,但不适用于分析注射用注射器中的液体样品。在宾夕法尼亚马毒理学和研究实验室,为了克服这些缺点,他们采用了注射器注入(SI)-质谱,这是一种用于生物样品代谢组学和脂质组学分析的方法。没收的样品直接注入ESI-MS源进行分析。SI将整个样品引入ESI源,因此可以检测样品中的所有物质,并且每天可以比LC-MS运行更多的样品。在SI-MS检测不到任何东西的情况下,可以使用GC-MS。整个SI-MS过程目前是手动进行的,从收集全扫描MS光谱开始。强度超过20%的离子注入CID以给出MS/MS光谱,然后将其与光谱库进行比较,以确定样品中的物质。由于需要获取大量的MS/MS光谱和手动库搜索,手动过程相当耗时。自动化这一过程将显著增加整个样本量,并降低劳动强度,因此马毒理学和研究实验室的关富宇(Fuyu Guan)和同事们开始这样做。为了实现该过程的自动化,作者使用了Vanquish UHPLC和Thermo Fisher公司的高分辨率QE+MS检测器,并将其用于流动注射分析。不寻常的是,该系统没有LC柱进行分离,因此流动注射分析是通过流动相从LC的自动进样器直接流向ESI源实现的。通常,由于低压,LC泵会在没有柱的情况下关闭,因此通过使用窄直径Viper管将自动取样器连接到检测器上的样品入口来产生背压。在注入20µL样品后,使用水:乙腈(50:50)(正电离模式和负电离模式分别使用或不使用甲酸)以50µL/min的速度进行2min等度运行,以将样品的所有成分从自动取样器带到检测器,尽管没有色谱分离。QE Plus探测器每周校准一次,并以正或负模式运行。进行了完整的MS和数据相关的MS/MS扫描,数据由Thermo Fisher的Compound Discover软件自动处理,允许通过各种数据库识别未知物。使用这种LC- MS类型设置的自动FIA仅需15min,明显快于手动SI-MS(secondary ion-mass spectroscopy, 二次离子质谱)过程所需的小时或更长时间。化合物发现者自动处理数据,并在一小时内识别样本中的成分,与SI-MS使用的手动库搜索相比,覆盖了更多的化合物。作者们对这种自动化方法的前景感到非常兴奋,认为它“有可能改变没收样本在多个领域的分析方式,包括运动兴奋剂控制和执法药物检测。”未来,他们希望增加更多的MS/MS数据库和搜索引擎,以扩大所涵盖的化合物数量。注释:LC- MS:液相色谱-质谱法GC- MS:气相色谱-质谱法FIA-MS:流动注射-质谱法ESI-MS:电喷雾-质谱法SI-MS:注射器注入-质谱法CID:电荷注入检测器(charge injection device)。原载:Automated analysis of suspicious samples with flow-injection MS, Wiley Analytical Science, 31 January 2023——Fast FIA-MS with automatic spectral library searching相关链接Guan F, Fay S, Adreance MA, et al. Automated identification of unknown doping agents in confiscation samples by flow-injection mass spectrometry and mass spectral library searches. Drug Testing and Analysis. 2023. https://doi.org/10.1002/dta.3445 De Vooght-Johnson R. Drug doping detected by data digging. Wiley Analytical Science. 7 August 2019 (https://analyticalscience.wiley.com/do/10.1002/sepspec.16c666e7b5b accessed 30 January 2023).De Vooght-Johnson R. MetAlign for retrospective doping data dive. Wiley Analytical Science. 8 July 2021 (https://analyticalscience.wiley.com/do/10.1002/was.0090126 accessed 30 January 2023).About the authors• Ryan De Vooght-JohnsonRyan是一名自由科学作家和编辑。在仪器和分析方法硕士毕业后,他曾在制药行业担任过各种分析开发角色,后来进入编辑岗位。作为一名委托编辑,他创办了两本与分析化学和药物相关的期刊,《生物分析和治疗传递》,并管理了许多其他期刊。他现在是一名自由撰稿人和编辑,让他有更多的时间陪伴家人、骑自行车和分配食物。供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 开发用于分离和纯化的聚焦梯度
    Jo-Ann M. Jablonski、Thomas E. Wheat and Diane M. Diehl;Waters Corporation, Milford, MA, U.S.引言用于进行分离和纯化的色谱分离方法与分析型分离方法受到相同物理和化学原理的制约。然而,在制备型试验中,科学家通常在大型柱上和高质量负载下分离化合物,并需要更高的分离度以提高所收集组分的纯度和回收率。虽然设计更缓的梯度是提高分离度的一种较好的首选方法,但改变整个分离过程的梯度斜率可导致峰宽加大和总运行时间增加。可替代普通更缓梯度的聚焦梯度仅对需要增加分离度的色谱图部分减小梯度斜率,从而可在不增加总运行时间的情况下提高对洗脱时间接近的色谱峰的分离度。聚焦梯度可根据搜索运行或者直接从第一次制备运行进行定义。试验方法梯度开发步骤■ 确定制备规模的系统体积■ 运行搜索梯度■ 设计聚焦梯度■ 在制备柱上运行聚焦梯度试验条件仪器液相色谱系统: 沃特世 2525型二元梯度模块、2767型样品管理系统、系统流路组织器、2996型光电二极管阵列检测器、AutoPurification&trade 流通池色谱柱: XBridge&trade 制备型OBD&trade C18柱19 x 50 mm、5&mu m(货号186002977)流速: 25mL/分钟流动相A: 0.1%的甲酸水溶液流动相B: 0.1%甲酸-乙腈溶液波长: 260 nm样品混合物磺胺: 10 mg/mL磺胺噻唑: 10 mg/mL磺胺二甲嘧啶: 20 mg/mL*磺胺甲二唑: 10 mg/mL磺胺甲唑: 10 mg/mL磺胺二甲异唑: 4 mg/mL总浓度: 64 mg/mL(溶于二甲基亚砜)*选定用于聚焦梯度的色谱峰结果和讨论确定制备规模的系统体积■ 取下色谱柱并更换成两通。■ 流动相A使用乙腈,流动相B使用包含0.05 mg/mL尿嘧啶的乙腈(解决了非加成性混合和粘滞问题)。■ 在254 nm下进行监测。■ 采集100% A的基线数据5分钟。■ 在5.01分钟时,将梯度设置为100% B并再采集5分钟数据。■ 测定100% A和100% B之间的吸光度差异。■ 计算存在50%吸光度差异时的时间。■ 计算步骤开始时(5.01分钟)和50%时间点之间的时间差异。■ 将时间差异乘以流速。 系统体积被定义为从梯度形成点到色谱柱前端的体积。系统体积用于聚焦梯度的设计。如图1所示,本试验所用仪器配置下的系统体积是3.0 mL。设计聚焦梯度第1步在2.47分钟洗脱3号色谱峰的溶剂浓度在较早的时间点上形成。如图3所示,检测器和梯度形成点之间的偏移量等于系统体积加上柱体积。用于这台特定系统的偏移量等于早期确定的3 mL系统体积再加上19 x 50 mm制备柱的体积(11.9 mL),即14.9 mL。在25 mL/分钟的流速下,溶剂浓度到达检测器需要0.59分钟。2.47分钟的洗脱时间减去0.59分钟的偏移时间等于1.88分钟。由于初始大规模梯度有0.39分钟的保留时间,因此形成洗脱色谱峰的乙腈百分比的时间是1.88分钟减去0.39分钟,即1.49分钟。 第2步计算在2.47分钟洗脱色谱峰的乙腈百分比。原始大规模梯度在5分钟内洗脱 5-50% B,最初梯度的驻留时间为0.39分钟。根据在2.47分钟洗脱出色谱峰的梯度计算得到的乙腈百分比是13.4%,但由于梯度开始于5%乙腈,因此洗脱该峰的乙腈实际浓度是13.4% + 5%,或者说18.4%乙腈。第3步旨在分离梯度中部洗脱时间接近的色谱峰的聚焦梯度应开始于原始小规模试验条件,通常为0-5% B。进样开始后立即将梯度快速增加至比能洗脱目标峰的预期乙腈百分比浓度低5%的乙腈百分比。在搜索梯度中所用的1/5斜率下继续进行缓的聚焦梯度部分。预计一个五倍的更缓梯度可为洗脱时间接近的色谱峰提供更高的分离度。终止高出可洗脱目标峰的预期乙腈百分比浓度5%的聚焦梯度部分。原始梯度在5分钟内洗脱5-50% B,或者说在5分钟内梯度变化45%。这样,乙腈浓度每分钟变化9%(从9%-10%左右简化得到)。然后,新的梯度斜率应为10%的1/5,或者说每分钟变化2%。10%的乙腈浓度改变通过每分钟变化2%而达到,说明用于分离3号和4号峰的聚焦梯度时间片段应持续5分钟。一旦梯度的聚焦部分完成,乙腈百分比快速增加至95% B,以清洗色谱柱。平衡色谱柱后,终止初始条件下的梯度。5-45% B = 每分钟9%(舍入至每分钟10%)梯度斜率每分钟变化2%。 聚焦梯度可明显提高图4所示色谱图中3号峰和4号峰的分离度。5号峰和6号峰因受到梯度聚焦部分的影响而出现移位,梯度部分继续在较缓的斜率下洗脱化合物,直至设定用于进行柱清洗的较高百分比的乙腈进入色谱柱。较缓的聚焦梯度能在不增加运行时间的情况下对天然混合组分提供更高的分离度,因而使色谱分析师能够获得更纯的产物和更好的回收率。结论当科学家为后续试验进行产物纯化时,需要在高质量负载下分离化合物。聚焦梯度可在不增加运行时间的情况下提高对洗脱时间接近色谱峰的分离度,从而改善分离效果。系统体积信息可以对制备型梯度进行直接优化。使用聚焦梯度可提高产物产率和纯度,同时不会增加溶剂消耗量和废液生成量。聚焦梯度方法可实现分离,因而有助于控制纯化成本。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 溶剂系统对RP-HPLC分离性能的影响
    反相高效液相色谱(RP-HPLC)是液相色谱中最常用的模式,广泛应用于化工制药生物工程等领域。RP-HPLC中溶剂系统的选择和优化一直是液相色谱领域的热门研究课题,对于多组分目标物的分析与分离,有效选择并优化色谱溶剂系统仍存在很多问题,本研究考察了溶剂系统的强度,极性等参数对RP-HPLC分离性能的影响。示例色谱柱:UItimate ODS-3 4.6mm×150mm,5μm;柱温:25℃;检测器:UV225nm;流速:1.0mL/min;进样量:10μL。流动相A :0.1%磷酸 B:ACN,A:B=3:7,色谱柱:Xtimate 4.6mm×150mm,5μm。流动相A :0.1%磷酸 B:ACN,A:B=3:7,色谱柱 :UItimate ODS-3 4.6mm×150mm,5μm。由图谱判断8.6min峰内夹杂小峰未分开,UItimate ODS-3 4.6mm×150mm,5μm更适合分离。考虑不同溶剂洗脱强度不同,有机相中加入甲醇,流动相A :0.1%磷酸 B:ACN:甲醇=8:2,A:B=3:7。由图谱判断8.6min峰内夹杂小峰未分开,UItimate ODS-3 4.6mm×150mm,5μm更适合分离。考虑不同溶剂洗脱强度不同,有机相中加入甲醇,流动相A :0.1%磷酸 B:ACN:甲醇=8:2,A:B=3:7。调整有机溶剂比例后可以得出10.7min和11.9min分离度增加到3.0。优化方法,流动相A :0.1%磷酸 B:ACN:甲醇=7:3,A:B=4:6。从图谱中可以看出将峰分开,分离度增大,适当的调整有机相种类及比例可以提高分离性能。
  • 沃特世发布超高效合相色谱 再次重新定义色谱分离科学
    沃特世超高效合相色谱(UltraPerformance Convergence Chromatography)再次重新定义色谱分离科学UPC2技术使用压缩CO2,搭建了LC和GC技术之间桥梁,为实验室应对难分离的和复杂化合物分析提供了新选择。 即时发布 佛罗里达州奥兰多市&mdash 2012年3月12日&mdash &mdash 今天,伴随着Waters ACQUITY UPC2&trade 系统的上市,沃特世公司(WAT:NYSE)再次重新定义了色谱分离科学。该技术拓展了反相色谱(LC)技术和气相色谱(GC)技术的局限,能完全替代正相色谱技术。沃特世新型ACQUITY UPC2&trade 系统采用超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,简称UPC2)原理,为分析实验室解决不同类型的分析难题包括如疏水化合物、手性化合物、脂类、热不稳定样品以及聚合物等提供了强有力的不可缺少的工具。 &ldquo 不管我们给ACQUITY UPC2出什么难题,它都解决了。我们尝试分析一个极具挑战性的样品,该样品包含18种化合物,有胺类、维生素异构体、甾体和抗菌剂&rdquo ,沃特世UPC2项目总监Harbaksh Sidhu说。&ldquo 分析结果令人震惊:在一个梯度条件下,不仅基线噪音极低,而且重复性好、峰形窄、峰宽一致。整体设计的UPC2系统(系统体积小、色谱柱颗粒小)为分析实验室开辟了全新的领域。我已经在色谱领域干了18年,从来没有见过这么高的分离性能,这在以前的压缩CO2系统上是不可能实现的。&rdquo 调控压缩CO2,拓宽分离技术的应用 压缩二氧化碳(CO2)是UPC2的主要流动相,它比LC所使用的液体流动相以及GC所使用的载气有更多突出的优点。其中一个优点是,CO2单独使用或与少量共溶剂共同使用作为流动相,流体粘度小,比HPLC中所使用的液体流动相扩散率更高、更有利于传质。另一个优点是,与GC相比,CO2单独作流动相可在更低的温度下实现分离。 科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。 沃特世ACQUITY UPC2系统,加上行业领先的亚2µ m色谱柱,科学家们能够精确地调节流动相强度、压力和温度获得所需要的系统分辨率和选择性,对待测物的保留和分离进行有效调控。这非常适合结构类似物、异构体以及对映体和非对映体的分离、检测和定量&mdash &mdash 而这类分析任务是其它方法不能或很难实现的。沃特世ACQUITY UPC2系统的一个重要优点是它以成本低且无毒的压缩CO2为主要流动相,将挥发性有毒溶剂的使用和废液处理降到最低水平,极大地节省了成本,同时保护了环境和实验人员健康。 ACQUITY UPC2系统是沃特世长期以来设计和开发的高品质分析仪器产品之一,它也同样带有沃特世的品牌特性:耐用、可靠并且容易使用。这套系统有以下重要特征: 10µ L固定进样环,进样体积范围0.5µ L~10µ L,节省样品且不需更换进样环。系统体积小,有利于缩短运行时间,优化梯度性能,减少谱带展宽,最大程度发挥小粒径色谱柱的性能。共溶剂选择和柱切换技术,流动相和色谱柱筛选过程更加快捷,方法开发更方便。梯度准确性和精密性保证了保留时间的重现性。同时兼容光学检测器和MS检测器,是定性和定量分析的理想选择。 沃特世ACQUITY UPC2系统溶剂加载量小、超高分离度、窄峰以及快速分离,因此是接入MS的最佳选择。 无论是分析天然产物、中药、药品、食品添加剂或污染物,还是分析农药、表面活性剂、聚合物添加剂或者生物燃料等,沃特世ACQUITY UPC2系统都能实现无法比拟的分离与峰形效果。 像所有沃特世ACQUITY产品一样,沃特世ACQUITY UPC2系统的卓越性能也包括充分发挥了如新型的ACQUITY UPC2色谱柱以及行业领先的信息学软件和应用支持。 作为LC和GC强有力的互补技术,沃特世ACQUITY UPC2系统必将成为色谱分离科学领域的重要成员,帮助众多实验室迎接越来越多的挑战。 更多信息见: http://www.waters.com/upc2 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。 联系方式: 叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com
  • ICH指南更新 | Vapourtec流动合成仪助力药物连续制造新策略
    7月27日,国际人用药品注册技术协调会(ICH)发布《药品及原料药连续制造指南》征求意见稿。 该指南旨在从现行GMP中获取适用于连续生产的技术及监管要素,协调药品制造商采用灵活方式开发、实施或整合连续生产小分子化药及蛋白类药物(多肽、抗体类等),为行业和监管机构在药品及原料药中应用连续生产技术的开发、实施和评估提供指导。从批制造到连续制造 众所周知,药物开发成本昂贵、耗时、技术上也很复杂,主要内容包括药物合成、药物传递和药物评价。一般来说,开发一种新药通常需要十多年的时间,而相应的成本可能从数亿美元到数十亿美元不等。 征求意见稿在附件中对不同类型药物的连续生产提供了具体要素及生产流程指导原则。该指南适用于化学实体和治疗性蛋白质原料药和制剂的连续制造;适用于新产品的连续制造以及现有产品从“批制造“转变为“连续制造”。 对于药物化合物的合成和传递,微通道反应可用于进行药物研发合成的不同基础步骤,包括样品制备、反应、分离和检测。微通道反应可以实现高度可控的混合和反应动力学,装置可直接用于药物输送,可以有效消除传质、传热的限制,适用于强放热反应的研究。为什么要选择Vapourtec流动合成仪?需要强大的动力系统和有效的防堵塞模式1)Vapourtec流动合成仪可在很宽泛的流速内实现简单、可靠、平稳的输送作用;2)能够泵取强酸、金属有机反应物以及悬浮物;3)V3泵可泵送浆料、可耐受微小气泡和固体颗粒 。需要不同类型的反应器确保实现更复杂的反应Vapourtec流动合成仪有多种不同类型反应器供选:双核双管低温反应器、高温反应器、标准线圈盘管式反应器、柱式反应器、光化学催化反应器。在高通量系统的构建中,需要更先进的自动化软件和硬件Vapourtec流动合成仪触摸屏操作,反应器有流速控制和温控装置,保证反应自动运行和精确的温度控制。R系列可以根据需要建立模块化系统。关于Vapourtec Vapourtec成立于2003年,已有17年生产经验。作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。 Vapourtec设计和生产流动化学合成系统持续在市场保持技术优势,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用技术发展提供的优势。目前已推出两个系列产品:1. R-Series 一个高度特定的模块化系统,能够独立操作或与其他设备的集成,提供多功能的自动化流动合成 R-Series2. E-Series 一个易于使用的入门级系统平台,适合新用户和学校实验室教学。 E-Series 当前,辉瑞、GSK、诺华等知名药企均已布局便携式、连续、微型和模块化(PCMM)工厂,致力于开发按需片剂所用的连续生产技术解决方案。可见,连续生产是制药行业未来发展的重要方向,FDA和ICH的指导原则也将促进药企在连续制造技术方向的探索,Vapourtec流动合成系统专注实验室级别的自动化连续流动管道反应,快速高效合成化学原料,也为药物连续制造助力新的策略和强大方法!
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 缅怀方肇伦院士:中国流动注射分析技术奠基人,为民族科学仪器事业殚精竭虑
    方肇伦(1934年8月16日—2007年11月12日),祖籍浙江定海。1957年毕业于北京大学化学系。中国流动注射分析技术研究的开拓者和奠基人,在流动注射在线分离浓集技术、流动注射与原子吸收光谱联用检测技术等领域的研究取得重要突破。中国微流控分析研究的先行者,为推动微流控分析技术在中国的发展做出重要贡献。先后在国内外期刊发表论文300余篇,出版英文专著2部、中文专著和译著6部。研究成果获国家自然科学奖三等奖、教育部自然科学奖一等奖、辽宁省自然科学奖一等奖、中国科学院自然科学奖二等奖、中国科学院科技成果奖二等奖、辽宁省科技成果奖二等奖等多项国家和省部级奖项。曾任中国科学院林业土壤研究所副所长。1996年调入东北大学,任理学院分析科学研究中心主任。1997年当选为中国科学院院士。1999年兼任浙江大学教授,建立了浙江大学微分析系统研究所并任首任所长。曾任中国科学院化学部常委、中国化学会理事等职,入选英国皇家化学会会士。曾担任10余种国内外分析化学期刊的编委或顾问编委。方肇伦是我国流动注射分析技术研究的开拓者,在流动注射在线预浓集技术研究、流动注射与原子吸收光谱联用检测技术的理论和实验技术研究方面取得重要突破,使中国在该领域的研究进入国际领先行列。方肇伦率先在国内开展了微流控分析系统的研究,为微流控分析技术在中国的发展做出了重要贡献。 胸怀理想踏上了科学研究路 20世纪50年代初期,我国的科学研究事业刚刚起步,百废待举。中国科学院林业土壤研究所成立,急需大批科学研究人才。方肇伦从北京大学化学系毕业后,怀着报效国家、献身科学的理想和激情,来到当时坐落于沈阳东南郊的中国科学院林业土壤研究所。研究所当时正承担着包括中苏黑龙江流域土壤考察、辽河流域和松花江流域规划中的土壤调查在内的我国东北地区的土壤资源调查任务,这是我国在东北地区首次进行的规模较大、系统全面的土壤学研究工作。手工操作的土壤理化分析难以满足工作需求,所里购进了当时比较先进的Q-24中型发射光谱仪器,急需科技人员操作,土壤中微量元素的光谱测定方法有待建立。方肇伦利用大学期间学到的分析化学知识、深厚的外语基础和文献检索能力,与研究室其他科技人员一起努力,建立了土壤和人类头发中14种微量元素含量的发射光谱分析新方法。他又对Q-24发射光谱仪手工摄谱操作进行了改进,建立了半自动摄谱法,克服了手工摄谱操作速度慢的缺陷,显著地提高了工作效率,圆满地完成了东北地区和内蒙古东部地区各类土壤中14种微量元素含量的测定,在此基础上还编制了上述地区1∶100万微量元素含量分布图。这些工作成果后来获得1978年辽宁省科学大会重大科学成果奖。为了使大多数科技人员掌握土壤仪器分析方法,方肇伦亲自担任教师,为全所理化分析人员系统讲授分析化学基础理论和仪器操作相关知识,显著地提高了分析人员的基础理论和实际操作能力。方肇伦时刻注意跟踪国际上分析测试技术的新进展、新趋势。20世纪70年代,他开展了原子吸收光谱(AAS)和电感耦合等离子体发射光谱(ICP)分析技术的研究,带领课题组研制和组装了原子吸收分光光度计和ICP光谱仪,建立了土壤、植物、水、粮食和人发中的微量元素含量以及土壤有效态元素含量的AAS和ICP光谱分析新方法,填补了我国在生物土壤仪器分析领域的空白。他们将其用于土壤普查的营养诊断研究,取得了良好的效果。在此期间他领导课题组承担了多项重大课题的研究和测试工作,他承担的环境污染物分析方法及其标样研制,以及主持的水土粮食中铍的原子吸收光谱法测定技术研究,分别获1985年国家科技进步奖三等奖和1979年中国科学院科技成果奖三等奖。1973年中国科学院林业土壤研究所分析测试技术研究室成立,方肇伦作为第一任室主任组建了无机分析、有机分析、生物化学分析、环境化学分析和电子显微技术实验室,开展了上述领域的研究测试工作,使测试技术研究室逐渐发展为以分析化学、环境化学、生物化学和电子显微技术为基础,以现代科学技术为手段,面向社会,研究与服务并重的综合性测试中心。1974年,方肇伦还参加了林业土壤研究所的科研小分队,与东北制药总厂的工人们共同完成了醋酸氢化泼尼松联合发酵新工艺项目,使该工艺达到国际先进水平。1975年,在沈阳市重金属镉的检测任务中,他和课题组人员首先发现该市于洪区张士灌区镉的含量超标及镉污染严重,引起了上级有关部门的高度重视,及时采取了有效的控制措施。在1977年11月召开的辽宁省科学技术大会上,他被授予辽宁省先进科技工作者荣誉称号。由于方肇伦在科学研究和科技服务工作中的突出贡献,同年破格晋升为副研究员。1980—1984年,在担任林业土壤研究所副所长期间,他发现研究所内课题组和研究室之间由于体制条块分割、重复购置仪器设备等原因,研究经费浪费现象时有发生。为了提高大型仪器使用效率,从全所战略出发,他提出了加强所内大型科学仪器管理工作的意见和措施,变分散管理为集中管理,大大提高了大型分析仪器的使用效率。这一科学管理方法后来被推广到中国科学院整个沈阳分院系统。在繁忙的工作之余,方肇伦于1983年出版了第一部学术专著《仪器分析在土壤学和生物学中的应用》。 开辟中国流动注射分析新领域 自1977年以来,方肇伦为流动注射分析技术在我国的发展进行了大量的开拓性工作,在理论上和实验技术上取得了多项重要成就。他在该领域先后发表论文150篇,出版英文专著2部、中文专著1部、译著2部,发表的论文被SCI(Science Citation Index)引用超过1000次。他在流动注射在线分离浓集及流动注射与原子吸收光谱联用分析等领域的研究达到国际领先水平。他在该领域的研究成果“流动分析联用新技术研究”获2008年教育部自然科学奖一等奖,“流动注射—石墨炉原子吸收联用系统的研究”获2001年辽宁省自然科学奖一等奖,“流动注射分离及联用新分析方法研究”获1995年国家自然科学奖三等奖,“流动注射分离浓集技术研究”“流动注射—原子吸收光谱联用系统研究”分别获1993年和1990年中国科学院自然科学奖二等奖,“高效流动注射仪研制”获1993年辽宁省科技进步奖三等奖,“流动注射分析技术的研究”获1982年中国科学院科技成果奖二等奖,“流动注射分析仪的研制”获1981年辽宁省科技成果奖二等奖。1980年开始,方肇伦开始研制我国早期的流动注射分析仪,并将研制成功的仪器用于土壤和水中氮、磷等元素的测定。1982 年,方肇伦赴瑞典隆德大学参加了第二届国际流动注射分析大会。报告的两篇论文《催化光度流动注射分析法测定μg/L级的钼元素》和《水及土壤浸出液中硝酸根和亚硝酸根的流动注射分光光度同时测定》获得广泛好评。在这次会议上,方肇伦结识了流动注射分析的创始人 J.Ruzicka 和 E.H.Hansen,以及国际原子光谱分析领域专家B.Welz等,与他们进行了广泛的学术交流,为后来的国际合作打下了良好基础。1983年10月,方肇伦来到流动注射分析的诞生地——丹麦技术大学化学系,在Ruzicka和Hansen的实验室进行合作研究,提出并建立了流动注射在线离子交换分离浓集系统,促进了流动注射与原子吸收光谱联用技术的发展。相关的技术进展在1985年首届北京分析测试学术报告会暨展览会(BCEIA)上得到广泛好评。随后,方肇伦多次参加相关领域的国际学术会议,并作大会报告或邀请报告,其中包括三届国际流动分析会议、三届国际光谱学会议及1995年在英国举行的国际分析化学会议(SAC95)和1997年在美国举行的 Pittcon 会议(匹兹堡分析化学和光谱应用会议暨展览会)。为了更快地促进流动注射分析技术在中国的发展,方肇伦率先在国内发起流动注射分析的学术交流,酝酿成立流动注射分析促进会,于1986年召开了首届全国流动注射分析促进会成立大会并进行了学术交流。流动注射分析技术的创始人之一、丹麦技术大学Hansen受方肇伦邀请参加了此次会议。在方肇伦的推动下,随后分别在沈阳(1987年5月)、沈阳(1989年10月)、北京(1991年8月)、武汉(1993年4月)、青岛(1996年5月)和西安(1999年9月)召开了第一至六届全国流动注射分析学术报告会,均取得了圆满成功。为进一步提高我国流动注射分析技术的研究水平,方肇伦多次邀请该领域国际著名学者参加上述会议,包括日本东京都立大学铃木繁桥、冈山理科大学桐荣恭二、Perkin Elmer仪器公司德国分部B.Welz、丹麦技术大学 E.H.Hansen、委内瑞拉光谱学家Burguera、英国赫尔大学 A.Townshend(Analytica Chimica Acta 主编)等。1986年,适逢国家自然科学基金委员会建立,方肇伦申请首批国家自然科学基金项目获得全额资助,随后,还陆续获得国家自然科学基金的资助,其中以中国科学院沈阳应用生态研究所为依托单位的基金项目有“流动注射—原子吸收光谱联用系统研究(1985—1988年)”“流动注射分离浓集技术研究(1990—1992年)”“流动注射石墨炉原子吸收联用系统的研究(1993—1995 年)”“智能化流动注射过程分析系统的研究(1994—1996年)”。在国家自然科学基金以及1989年以来国际合作项目“流动分析新技术研究”的资助下,方肇伦领导的研究组在流动注射分析技术研究方面取得显著进展,其主要研究成果“流动注射分离及联用新分析方法研究”获1995年国家自然科学奖三等奖。该成果是流动注射分析及联用技术发展的成功范例,是以流动注射分析的核心——热力学非平衡条件下的自动化分析观念为主导,从流动注射分析的根本优势出发进行的一系列代表分析化学前沿领域的开拓性研究。1996年5月,方肇伦调入东北大学工作。他在流动注射特别是顺序注射分析领域的研究逐步深入,将流动注射和顺序注射技术与毛细管电泳技术结合,又开辟了一个新的研究领域。他在国际上率先提出流动注射与毛细管电泳分析联用技术,使毛细管电泳技术实现了无干扰连续样品引入,在Analytica Chimica Acta杂志上发表相关系列论文9篇。在此期间,他出色地完成了国家自然科学基金面上项目“顺序注射分离及光学检测在过程分析中的应用”和仪器研制专项基金项目“微型流动分析仪器的研制”。1999年,他出版了专著《流动注射分析法》。全书理论、概念论述清晰,全面阐述了流动注射分析的理论和技术的发展过程,系统介绍了流动注射分光光度法、流动注射原子光谱法、流动注射电化学分析法、流动注射酶分析法、流动注射荧光及化学发光法、流动注射免疫分析法、流动注射在线分离浓集及在线消解等操作方法和技术关键。 推动我国微流控分析技术发展 20世纪90年代初,方肇伦敏锐地意识到国际上刚刚提出的微全分析系统概念,这将意味着一个全新研究领域的诞生。微全分析系统又称芯片实验室,它是通过化学分析设备的微型化与集成化,最大限度地把分析实验室的所有功能集成到便携的分析设备或微芯片中,实现分析系统的集成化和自动化,成百倍地提高分析效率,降低消耗和成本。自微全分析系统的概念提出以来,微流控芯片分析一直是其主要研究方向。1995年,方肇伦及课题组即开始尝试进行玻璃材质的微流控芯片加工技术的研究。1996年,他调入东北大学化学系工作后,开始着手正式组建从事微全分析系统研究的课题组,这是国内最早从事该领域研究工作的课题组之一。1997年,方肇伦第一次给出了“microfluidic chip”的中文译名“微流控芯片”。由于当时研究经费不足和国内微流控芯片加工技术尚处于起步阶段等原因,方肇伦课题组提出一种不需要光刻技术,制作方便、成本低廉的简易芯片加工方法,称为“H通道型微流控芯片”,并利用该芯片进行了大量的微流控基础研究工作,取得微流控分析自动进样、液芯波导荧光检测、生物样品自动分离分析等多项研究成果。为加速开展微流控芯片的研究,充分利用多学科交叉的优势,方肇伦在1999年底到浙江大学兼职,建立了我国第一个以微流控芯片分析系统为研究目标的研究所——微分析系统研究所。方肇伦亲自设计,为研究所的发展拟定了详细的路线图。研究所成立仅一年,即在玻璃芯片的加工、激光诱导荧光检测和多触点电泳高压电源等微流控芯片系统的平台技术研究方面取得了突破性的进展。在此基础上又全面开展了多项研究,包括微流控芯片加工,芯片试样的引入、前处理和反应,毛细管电泳分离,荧光、吸收光度和电化学检测系统,芯片系统在氨基酸和单细胞分析等方面的应用等。在我国微流控分析发展初期,包括芯片加工在内的各种基础技术平台严重制约了微流控分析技术在我国的快速发展,为此,方肇伦带领研究组成员进行了开拓性的基础研究工作,先后在国内率先研制出玻璃微流控芯片、有机玻璃芯片、程控多路芯片专用高压电源和微流控芯片专用激光诱导荧光检测器等,这些平台技术的推广应用,加快了微流控分析系统在我国的研究进展。他还创造性地提出应将微观芯片体系和宏观世界联系起来的新思想,在这一思想的指导下,他和研究组对芯片的自动进样系统进行了卓有成效的探索研究,提出多种连续样品引入技术,提高了样品引入效率和自动化程度,解决了微流控分析样品引入的瓶颈问题。2003年,方肇伦组织浙江大学课题组研究人员撰写并出版了国内首部微流控分析学术专著《微流控分析芯片》,在书中系统阐述了微流控芯片的加工方法、微流体控制技术和方法、微流控芯片毛细管电泳技术、微流控芯片试样引入和预处理、微流控芯片检测技术、微流控分析芯片的应用等内容。2005年又组织东北大学课题组研究人员出版了另一部学术著作《微流控分析芯片的制作与应用》。国家自然科学基金委员会重大项目以及其他相关项目的顺利实施,有力地促进了我国微流控芯片研究事业的发展,相关领域的研究工作突飞猛进,得到国际同行的高度关注。国际上规模最大的微全分析系统国际会议先后邀请方肇伦担任会议组织委员会委员和学术委员会委员。 为民族科学仪器事业殚精竭虑 现代科学仪器是知识创新和技术创新的前提,科学仪器事业对经济社会发展、国家安全及人民健康等将发挥战略性保障作用。面对我国的科学仪器与装备在研究和制造方面与发达国家的明显差距,以及长期以来在关键科学仪器装备上对发达国家过度依赖的状况,方肇伦曾多次向国家有关部门提交相关建议,呼吁重视科学仪器的创新和民族科学仪器事业的发展。2005年5月,他和陈洪渊受中国科学院化学部常委会委托,在杭州主持召开了科学仪器发展战略咨询专家会议,20余位工作在科学仪器研制和生产领域的专家学者和企业家参加了会议,共同研讨中国科学仪器的发展战略问题。根据会议讨论成果,由方肇伦、金钦汉和范世福等执笔撰写了“关于大力加强我国科学仪器的自主研发和产业化能力,实施‘张衡工程’的建议”。此后,中国科学院以正式文件定名为“张衡工程”的建议并上报国务院,建议国家尽快启动以“张衡工程”命名的重大科技专项工程,以振兴我国科学仪器事业,为加强我国科技原始创新能力、提升重大装备制造业能力提供强大支撑。同时,中国科学院还将此上报文件在一定的范围内分发各处。“张衡工程”的目标是在10~15 年,实现我国使用的关键科学仪器70%以上由本国生产,掌握核心知识产权,尽快改变我国长期以来在关键科学仪器装备上对发达国家过度依赖的状况,实现我国科学仪器科技和产业的振兴。此外,方肇伦还身体力行,自1980年以来主持或参加研制了6种不同型号的流动注射分析仪器,并与厂家合作,进行生产技术指导与组织协调工作,大大促进了流动注射分析技术在我国的普及推广及实验室分析工作的自动化。由于方肇伦和同事们的不懈努力,我国自行研制的流动注射分析仪器基本满足了国内科研、教学、生产检测的需要,使国外同类产品驻足国门之外,为国家节省了大量外汇。在微流控分析仪器研制方面,方肇伦积极促成东北大学课题组与北京吉天公司、浙江大学课题组与上海光谱公司的产学研合作,推动微流控分析仪器的产业化研究工作。方肇伦从事科学研究和高等教育工作 50 年来,孜孜不倦、勤奋耕耘,研究成果丰硕。在科学研究中,他善于准确把握学科前沿,勇于探索、不断创新;在人才培养中,他治学严谨、无私奉献,为国家培养造就了一大批优秀的分析化学人才。他为人正直,宽厚平和,用一生谱写爱国华章!参考文献[1] 赵彦.微全分析:我的第二次“激动”:中国科学院院士方肇伦自述[J].光谱学与光谱分析,2001(3):372-386.[2] 钱伟长,白春礼.20世纪中国知名科学家学术成就概览化学卷第二分册[M].北京:科学出版社,2012.
  • 关于流动注射仪器使用的“小秘密”,您知道吗? -----记宝德仪器2019年第一期流动注射、原子荧光培训班
    不觉间,广州的三月已是杂花生树,飞鸟穿林。随着这春色渐浓,北京宝德仪器有限公司“2019年第一期流动注射和原子荧光培训班”于2019年3月20日在广州长城宾馆拉开帷幕。 此次会议,宝德仪器邀请了来自全国各地共七十多位学员共同参与、沟通学习,由业界著名的专家及公司的技术工程师进行细致的讲解与陪练。培训分理论学习与仪器操作两个阶段。在理论学习环节,老师为学员们详细讲解了流动注射、原子荧光仪器的结构、原理和应用案例,以及相应的样品前处理方法;在仪器操作与技术交流环节,工程师们着重讲解了仪器使用过程中的注意事项、常见的故障现象及判断和排除方法,对仪器中的一些需定期更换和维护的部件进行拆装分解,并陪学员一起进行实操演练,耐心细致地回答学员们提出的各种问题,与学员们一起分享了仪器使用过程中的很多“小窍门”、“小秘密”,学员们听后纷纷表示“哦~原来是这样!” 此次培训会已圆满落幕。经过此次交流培训,宝德仪器的工程师们不仅为学员传递了更多关于流动注射、原子荧光仪器的使用经验,同时也从学员们身上了解到了很多实际的应用需求,为仪器进一步的改进与发展指明了方向您想了解、掌握更多的关于流动注射仪器的“小秘密”吗?那么,下期培训交流会我们不见不散!
  • DNA快速分离术让基因检测更快捷
    日本名古屋大学研究人员日前宣布,他们开发出了只需数秒就能分离 DNA 的新技术,这让超高速解析 DNA 信息成为可能,有望实现即时基因检测。这一成果已发表在《科学报告》杂志上,该研究团队并为此申请了技术专利。  DNA 是承载着生命信息的物质,在细胞内以双螺旋链的形式存在,对其进行分离、解析是一件非常繁琐耗时的工作。分离 DNA 需要根据 DNA 链的长短使用不同的材料,这使得现有的 DNA 分离、解析技术最短需要数十个小时。  研究人员开发出的新技术被称为&ldquo 纳米圣诞树&rdquo &mdash &mdash 在一个长2厘米、宽1厘米、厚1毫米的特殊玻璃板上,像树枝一样布设大量的氧化锡纳米材料。当采集的血样在玻璃板上流动时,纳米材料&ldquo 树枝&rdquo 的缝隙会捕获不同长短的 DNA 链,数秒内就能分离出不同的 DNA 。  快速分离 DNA 可以让超高速基因检测成为可能,而基因检测所得的信息将在疾病诊断和预防中发挥重要作用。
  • 流动化学平台实现从实验室级到万吨级规模药物生产——访康宁反应器技术有限公司总经理姜毅博士
    p style="line-height: 1.5em text-indent: 2em "在第十九届中国制药原料展会(CPhI)上,仪器信息网采访了康宁反应器技术有限公司总裁兼总经理姜毅。姜毅详细介绍了其公司从实验室到万吨级生产规模的流动化学实验平台。/pscript src="https://p.bokecc.com/player?vid=0AC6457814204F9A9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptp style="line-height: 1.5em text-indent: 2em "span style="font-family: 楷体,楷体_GB2312, SimKai font-size: 16px "姜毅 博士 康宁反应器技术有限公司总裁兼总经理/span/pp style="line-height: normal text-indent: 2em "span style="font-family: 楷体,楷体_GB2312, SimKai font-size: 16px "负责美国康宁公司反应器技术全球业务。曾任康宁欧洲技术中心(法国)全球反应器技术和应用工程总监以及康宁公司的研发总部(纽约州)研究部经理和项目经理。姜毅拥有华盛顿大学(圣路易斯) 化学工程博士学位,在美国化工工程师协会AIChE曾担任了多年的新型反应器技术年会分会主席。/span/pp style="line-height: normal text-indent: 2em "span style="font-family: 楷体,楷体_GB2312, SimKai font-size: 16px "姜博士曾担任康宁大中华创新官,为康宁公司创新成果在大中华市场的产业化作出了贡献,被中国石油和化学工业联合会和中国化工报授予 “2014年度杰出企业家称号”,2015年中国石油和化工行业“十二五”十佳人物,2017年度中国石油和化工行业最具影响力人物 (微化工行业)。 /span/pp style="line-height: 1.5em text-indent: 2em "span style="color: rgb(255, 0, 0) "strongspan style="font-family: 楷体,楷体_GB2312, SimKai font-size: 14px " /span实验室智能平台/strong/span/pp style="line-height: 1.5em text-indent: 2em "首先是流动化学实验室智能平台,该产品为化学合成提供了新方法。通常合成过程是传统的化学反应的方法,这款仪器能实现在流动的过程中进行化学合成。合成过程主要分几个方面——核心部分是反应器单元,跟传统反应器的不同之处是把原来的反应釜变成了一个多层结构的流体模块,使反应器既具备混合功能,也具备换热功能;此外,有一个进料的系统,用于控制化学品,确保反应按照化学计量方法进行;同时,在反应过程中,有专门的温度控制单元,为反应过程所需要的温度提供保障。/pp style="line-height: 1.5em text-indent: 2em "span style="color: rgb(255, 0, 0) "strong一体化合成平台/strong/span/pp style="line-height: 1.5em text-indent: 2em "第二款产品延续了一样的流动化学的原理,同样具有高效的混合和换热功能。不同的是,首先该产品的合成量,从实验室的公斤级变成几十公斤甚至十几吨的规模;其次是该产品具有两款材质,分别是玻璃材质,和高耐腐蚀性的碳化硅材质。反应过程与上一款产品相同——化学组成通过定量、稳定的系统传递到反应系统上。所不同的是,该产品增加了下游处理功能模块,如液-液分离器,可实现一个化学反应完成之后的瞬间分离,分离的原理是采用膜分离的方法。除了相分离之外,萃取的功能也叠加进去。最后一个部分是在线分析系统,这也是近期发展比较火的技术。因为流动化学反应的速度非常迅速,一天可进行大量的实验,瓶颈问题就是分析。本次带来的是一款核磁在线分析系统,经过几年的发展,核磁共振波谱仪的价位已经从较昂贵到大家可以接受的水平。/pp style="line-height: 1.5em text-indent: 2em "总体来讲,通过微通道、流动化学、下游的连续分离以及在线分析,最终打造成一体化合成平台。/pp style="line-height: 1.5em text-indent: 2em "span style="color: rgb(255, 0, 0) "strong高通量工艺化平台/strong/span/pp style="line-height: 1.5em text-indent: 2em "除了上面介绍的公斤级实验室智能平台和小生产的一体化的平台,康宁公司还带来了千吨甚至万吨级的高通量工艺化平台——G4/GP4平台。该平台仍然延续了流动化学核心原理,但其年通量可以达到2000-3500吨,如果想达到上万吨,只需要将设备进行平行的复制。目前,康宁公司在国内已经成功安装了多套万吨级年通量产能工艺化的过程。/pp br//pp style="text-align: center "span style="text-decoration: underline color: rgb(192, 0, 0) "strong扫码关注span style="text-decoration: underline color: rgb(0, 112, 192) "【3i生仪社】/span,解锁更多生命科学仪器资讯/strong/span/ppspan style="text-decoration: underline color: rgb(192, 0, 0) "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/415c5d94-f090-4afb-98bb-37882206ac14.jpg" title="小icon.jpg" alt="小icon.jpg"//pp style="line-height: 1.5em text-indent: 0em "br//p
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟.制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • 在匹兹堡会议上,沃特世公司的超高效合相色谱成为分离科学的新类别
    在匹兹堡会议上,沃特世公司的超高效合相色谱成为分离科学的新类别UPC2和新认证标准品与试剂,以及全面的数据管理/实验室执行技术奥兰多,福罗里达州2012年匹兹堡会议上,沃特世公司(WAT:NYSE)以几个重要的新技术和新创新,拉开了业界最重要的年度新产品发布会及展览会的序幕。沃特世 ACQUITY UPC2&trade 系统是沃特世公司的领先技术,成为分离科学仪器的一个新的类别,为实验室攻克分析挑战带来了前所未有的机遇。沃特世公司还推出了具备实验室执行(LE)技术的NuGenesis 8,这是一个全面的数据管理和工作流程解决方案,能更有效地把分析实验室数据系统和公司业务信息技术系统连接在一起。此外,沃特世公司还推出了一个分析标准品和试剂的新生产线,最初的套件包含了科学实验室需要的200多种的预置参比物和试剂。产品的推出反映了客户的需求,能够提高客户解决问题能力,提高效率,增加认证数据的质量。&ldquo 这是沃特世公司第53次参加匹兹堡会议,这是沃特世公司和我们整个行业今年的一件大事。就创新的规模、与客户的互动性,没有任何一个会议能够和匹兹堡会议相提并论,她培养了新一代的分析化学科学家。&rdquo 沃特世公司总裁Art Caputo说&ldquo 沃特世公司的UPC2, NuGenesis 8、及分析标准品和试剂新产品线的推出,也会使今年的匹兹堡会议成为我们最激动人心的一次。&rdquo 沃特世推出业内首款超高效合相色谱系统沃特世公司今天推出沃特世ACQUITY UPC2系统,该系统扩展了反相液相色谱LC和气相色谱GC的分离范围,为正相色谱应用提供了一种补充,开创了分离科学的一个新类别。运用超高效合相色谱(UPC2)概念,沃特世的ACQUITY UPC2系统成为一种新型的分析系统,为科研人员解决疏水性和手性化合物、脂类、热不稳定的样品和聚合物等难分析化合物提供了一种不可或缺的工具。沃特世公司UPC2项目总监Harbaksh Sidhu说&ldquo ACQUITY UPC2经受了每一个挑战。我们把胺、维生素的同分异构体、类固醇、抗菌剂等18种化合物混合在一起,得到的结果令人震惊。我们看到重复、狭窄、一致的峰宽,基线噪音极低,这些都在梯度模式下运行的。小粒径色谱柱减少了系统体积,这个整体设计增加了之前使用压缩二氧化碳时没有见过的优势。作为采用该技术工作18年多的人员,我之前从来没看到过这么高水平的分析性能。&rdquo 压缩二氧化碳是UPC2的主要流动相,比过去液相色谱的液体流动相和气相色谱的载气有很多突出优势。一方面,二氧化碳单独使用或与其他助溶剂混合,都是低粘度的流动相,和液相色谱的液体相比,能够获得较高的扩散率,并有利于传质。另一方面,和气相色谱相比,二氧化碳是一种可以在较低温度进行分离的流动相。科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。配以业界领先的亚2微米颗粒色谱柱,沃特世ACQUITY UPC2系统使得科学家能够更加精确地改变流动相的强度、压力和温度。从而调整出系统的分离度和选择性,科学家分离、检测和定量结构类似物、异构体、对映体和非对映异构体混合物时,能够更好的控制分析物的保留&mdash &mdash 这些化合物以任何一种方法分离都是一种挑战。沃特世的ACQUITY UPC2系统一个主要优势就是使用廉价、无毒的压缩二氧化碳作为主要流动相,代替了购买和处理昂贵的有毒、挥发性的有机溶剂。了解更多信息:www.waters.com/upc2分析标准品和试剂的新业务经过多年为其高效液相色谱和液质系统定制校准品和参比物之后,沃特世公司引入了一条分析标准品和试剂的新生产线,并于今年1月在Golden, Colorado投产。使用这些设备,沃特世目前向全球客户群提供超过200种的预包装、预测定,随时可用的标准品和试剂。&ldquo 通过调查,我们知道,90%进行LC或LC/MS分析的科学家每天都在使用标准品和试剂。科学家们从开始在众多供应商处购买材料,然后到制定自己的标准品、缓冲液和试剂,所花费的时间是惊人的,&rdquo 化学商业运营部高级总监Mike Yelle说。到目前为止,还没有一家独立来源供应商能够专门为LC和LC/MS系统提供预制备、经认证的标准品和试剂。沃特世希望成为这样一个独立来源供应商。&rdquo 现在科学家们只需从沃特世就可以订购需要的一切,从预配置、小分子、单一化合物标准品、多化合物混标、到蛋白酶切和多糖标品,品种繁多。为满足客户需求,沃特世今后还将推出更多新品。客户使用沃特世分析标准品和试剂,就意味着首先通过文档可追溯的完整链条,获得绝对可追溯性的原始资料信息,使实验室的管理人员及核数师可以评估化学测量的质量。其次,沃特世的分析标准品和试剂每一次都是精确的配方,这就大大降低了每次分析,仪器之间,实验室之间变异的来源。沃特世产品的分析标准品和试剂配件包体现了沃特世公司提供全面系统解决方案的承诺,最大化发挥了沃特世技术的价值。了解更多信息:www.waters.com/standards连接科学研究和业务的实验室管理技术沃特世公司还推出了具备实验室执行(LE)技术的NuGenesis 8,这是一个全面的数据管理和工作流程解决方案,能更有效地把分析实验室数据系统和公司业务信息技术系统连接在一起。沃特世公司系统营销高级主管Mary Ellen Goffredo说&ldquo 也许客户面临的最大信息挑战来自于太多的软件产品。&rdquo &ldquo 每台仪器都有一套软件,采集数据软件、办公应用软件、支持数据库、电子表格、文字处理文档,所有软件都是为了保证实验室有效运行。面对如此多的软件,管理层缺乏自如有效地收集、运行、巩固和分发实验室数据的能力。NuGenesis 8保证全球各大洲、跨国界、跨实验室间领导层能够消息畅通、标准化流程、执行最佳方法。这意味着更高的效率、更易执行和更加明智的业务决策。&rdquo NuGenesis 8的核心部分是其新开发的LE技术,它是一种可以通过常规标准操作规程指导实验室分析者的记录和工作流程解决方案。在其工作站中,为分析配备了电子表格,通过已设定的工作流程加强实验操作,确保完成每一步任务,并可验证所有的输入以符合既定标准。所采集的信息可以和QC部门、业务部门共享,就像LIMS和ERP一样。除了LE技术,NuGenesis 8还提供了一套信息管理技术功能,包括样品管理。使用NuGenesis 电子实验室记事本(ELN),可以跟踪、分配和管理样品、测试过程和结果。以用户为中心的设计围绕实验室管理者和分析人员,有助于管理人员寻求实验室工作量指标,分析人员在测试期间便于了解情况和测试过程的状态,从而达到高效运行实验室的目的。了解更多信息:www.waters.com/nugenesis8第一次参加匹兹堡会议的沃特世公司其他产品以下产品也将在奥兰多的匹兹堡会议上亮相:MV-10 ASFE 系统 - 首款超临界流体萃取(SFE)系统,可以通过半自动的方式,以超临界CO2作为主要萃取溶剂,最多从10个萃取容器中提取样品。BEH125 SEC色谱柱 - 新型UPLC SEC色谱柱,作为目前分子量为10,000至450,000之间的生物分子使用的ACQUITY UPLC BEH200, SEC 1.7mm系列产品的补充。与传统采用4mm或更大粒径SEC的HPLC分离相比,使用沃特世SEC色谱柱可以缩短时间,改善成份的分离度。TruView LCMS认证样品瓶 - TruView&trade LC/MS认证样品瓶为科研人员分析低浓度的分析物,这些分析物会因为被吸附而损失,他们需要使用干净的样品瓶来获得MS分析结果。与目前使用的标准样品瓶不同,TruView是唯一经过测试并认证的样品瓶,测试的吸附水平为1ng/mL。eXtended Performance [XP] 2.5mm 色谱柱 - XBridge&trade 、 XSelect&trade eXtended Performance [XP] 2.5mm色谱柱是高效、低反压的HPLC色谱柱,可以在所有HPLC、UHPLC和UPLC技术平台上方便使用。XP 2.5mm色谱柱填补了HPLC和UPLC之间的空白,它与表面多孔型HPLC色谱柱相比,可以提供平衡的反压和优越的性能。XP 2.5mm色谱柱提供了无与伦比的分离性,具有3种完全可伸缩的颗粒物质(高强度硅胶颗粒、亚乙基桥杂化颗粒、带电表面杂化颗粒),14种化学构成(C18, Phenyl-Hexyl, C8, Shield RP18, HILIC, Amide, Fluoro-Phenyl, Cyano和PFP),以及180余种色谱柱配置。SQ Detector 2 - SQ Detector 2是ACQUITY UPLC, UPC2, HPLC,GC,以及制备HPLC和SFC使用的质谱检测器。我们的Engineered Simplicity&trade (工程精简)设计,确保了在无需过多培训的前提下,每种分析物都能够生成高质量的数据。Xevo TQD - Xevo TQD是定量UPLC/MS/MS中使用的串联四极杆质谱仪。Xevo TQD采用了通用的离子源结构,在确保独立性的同时,构建适应于各种样品类型变化的灵活平台。SYNAPT G2-S - SYNAPT G2-S保证科研人员能够从最难以分析的样品中得到最高质量的信息。您可以开展其它方法不可能的科学探索。超越传统质谱分析法的束缚,开创出高效离子淌度分离的另一个天地。科学讲座每年与者都会有一个大型见面会,沃特世今年提供了18场研讨会和培训会,涵盖多种重要议题。包括:UPLC理论与实践,HPLC到UPLC方法转变,固相萃取原理,FDA认证,和基本故障排除。沃特世报告和研讨会日程请登录www.waters.com/pittcon.您可以到沃特世展台#2267,了解更多沃特世产品介绍和沃特世在2012年匹兹堡会议期间的培训班日程安排。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###Waters, UPC2, UltraPerformance Convergence Chromatography, ACQUITY, NuGenesis, UPLC, TruView, XSelect, XBridge, Synapt, Xevo 和 Engineered Simplicity是沃特世公司的商标。联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 【瑞士步琦】通过SFC-UV/MS分离西红花主要提取物
    通过 SFC-UV/MS 分离西红花主要提取物 西红花,又称藏红花,是世界上最昂贵的香料之一,其花朵呈现一种精致的紫色色调,内部的丝状红色柱头非常珍贵。在秋天,红色柱头通过手工采摘并分离,生产一磅(0.45公斤)的西红花柱头需要7万朵花。这些红色柱头可以用作香料、染料并且具有药用价值。▲ 图1:西红花花朵与柱头西红花内有非常多的提取物,主要成分为西红花苷、苦番红花素、西红花酸等。其中许多化合物有公认的药理活性, 比如西红花苷在治疗心血管疾病方面具有一定的作用。西红花苷存在于西红花及栀子属植物中,比较常见的分离法是采用高压液相色谱法(HPLC),C-18色谱柱,流动相为水/乙腈或水/甲醇体系。初始梯度为高含水量,有机溶剂含量随时间而增加,以洗脱非极性化合物,分离过程中也会加入甲酸以改善峰型。[2-6]栀子类药材中西红花苷类成分的定性定量分析:▲ 图2:A.混合对照品;B.栀子;C.水栀子的 HPLC 分离图西红花苷Ⅰ 5. 西红花苷Ⅱ 8. 西红花苷Ⅳ 17. 西红花苷ⅢAcchrom XCharge C18 色谱柱(4.6 mm×250 mm,5μm);流动相为乙腈(A)和0.1%甲酸水溶液(B),梯度洗脱,洗脱程序为:0~15min,22% A;15~30min,22%~25% A;30~35min,25%~28% A;35~50min,28% A;50~72min,28%~45% A;72~85min,45%~55% A;流速1mLmin-1,柱温30℃,检测波长440 nm,进样体积10μL。本文介绍了一种利用BUCHI Sepiatec SFC-50分离西红花柱头主要提取物的方法。SFC-50内置紫外检测器并与MS(质谱检测器)相连,从而判断峰物质。▲ 图3:Sepiatec SFC-UV/MS系统1实验条件设备Sepiatec SFC-50(UV/MS)色谱柱Nucleodur NH2 5μm 250 x 4 mm流动相种类A=CO2 B=甲醇流动相条件平衡色谱柱5分钟0-1 min: 14 % B1-18 min: 14-18 % B18-40 min: 18-50 % B40-44 min: 50 % B 流速7 mL/min紫外检测器440 nm MASS 检测器ESI (+/-)背压150 bar柱温40 ℃样品1000mg 西红花柱头 10mL 热甲醇提取物进样量100 uL2结果与讨论▲ 图4:西红花提取物在紫外波长440nm下的分离图用甲醇对西红花柱头的主要成分进行了提取后,得到的多数为极性化合物。图4为紫外波长 440nm 下的分离图。在前18分钟,由于流动相为弱极性(86- 82% CO2),紫外检测器下无化合物被洗脱下来。当流动相的极性通过梯度增加时,几种极性化合物被依次洗脱。其中的主要提取物西红花酸易与几种糖(葡萄糖、龙胆二糖和三氯蔗糖)结合形成西红花苷。因为西红花酸与糖分子的共价键导致极性的强烈增加,并使西红花苷具有亲水性,所以在氨基柱上的分离出峰时间比较晚[7-9]。在质谱检测上,我们使用电喷雾离子源(ESI),这是一种常压下的温和电离方法,可以在正离子(ESI+)或负离子(ESI-)下进行。在正离子模式下,通常会形成钠加合物([M+Na]+)或质子加合物([M+H]+)。在负离子模式下,([M-H]-)离子通常是由于失去一个质子而形成的。根据样品及其性质的不同,也可以形成多种带电产物。▲ 图5:(a) UV-440 nm (b) mass 999-999.5 (ESI+) (c) mass 836.9-837.4 (ESI+) (d) mass 674.8-675.3 (ESI+) (e) mass 975.5- 976 (ESI-) (f) mass 813.4-813.9 (ESI-) (g) mass 651.4-651.9 (ESI-) (h) mass 341.2-341.7 (ESI-)▲ 图6:西红花苷Ⅰ(a) ESI+ and (b) ESI-, 西红花苷Ⅱ(c) ESI+ and (d) ESI-, 西红花苷Ⅲ (e) ESI+ and (f) ESI- 以及西红花酸单甲酯(g)ESI-的质谱图图5与图6展示了西红花甲醇提取物通过 Sepiatec SFC-50 结合 MS 检测器后的分离图谱,信号基于不同的 m/z(质子数/电荷数)。根据质谱结果我们可以推断出表1的结构式结果。No.化合物名称结构式m/z1西红花苷Ⅰ976.4C44H64O242西红花苷Ⅱ814.8C38H54O193西红花苷Ⅲ652.7C32H44O144西红花酸单甲酯342.4C21H26O4▲ 表1:根据图5推断的西红花主要提取物的结构式和摩尔m/z西红花苷Ⅰ是由西红花酸和两个龙胆二糖分子组成。在图5中,该化合物 ESI+ 模式下的检测 m/z 为 999-999.5,其加合物由钠(m/z 23 g/mol)和样品分子(m/z 976.4 g/mol)组成。在 ESI- 模式下也可以检测到西红花苷Ⅰm/z 为975.5-976。其对应的图6质谱图为(a)与(b)。西红花苷Ⅱ由西红花酸、葡萄糖和龙胆二糖分子组成。在 ESI+ 模式(图5(c))和 ESI- 模式(图5(f))下,分别为(m/z 836.9-837.4[M+Na]+)和(m/z 813.4-813.9[M- H]-)。其对应的图6质谱图为(c)与(d)。西红花苷Ⅲ在 ESI+ 模式(图5(d))和 ESI- 模式(图5(g))下,分别为(m/z 674.8-675.3[M+Na]+)和(m/z 651.4-651.9[M-H]-)。其对应的图6质谱图为(e)与(f)。西红花酸单甲酯只能在 ESI- 模式(图5(h))下鉴别,m/z为341.2-341.7[M-H]-。其对应的图6质谱图为(g)。在 ESI 过程中,样品分子会被碎片化,特别是在 ESI- 模式中。例如,西红花苷Ⅰ和西红花苷Ⅱ上的葡萄糖基团在ESI-模式下的脱离,导致其在图5(g) m/z 651.4-651.9[M-H]- 中也被鉴定出来。3结论Sepiatec SFC-50 可以有效分离西红花柱头内结构相似的提取物,为了鉴别里面的未知成分,采用 SFC-UV/MS 结合的形式,适用于多数天然产物应用。相比 HPLC 的流动相,超临界二氧化碳具有高扩散系数和低粘度的特点,并且得益于二氧化碳的弱酸性,无需加入甲酸也能获得不错的峰型。在选择性上,由于 SFC 属于正相色谱,在出峰顺序和时间上与传统的 RP-LC 完全不同,这使得 SFC 在分离一些化合物组分时具备出峰时间上的优势。比如本次分离中的西红花苷Ⅲ,在图2的 RP-LC 中,出峰顺序靠后,时间在 60 分钟之后;而在图5的 SFC 中,其出峰顺序靠前,时间在 28-29 分钟。这在分离一些极性偏弱的化合物时可以节省很多时间。4参考DOI: 10.13140/RG.2.2.19634.40649http://dx.doi.org/10.1016/j.foodchem.2015.06.090DOI: 10.1081/FRI-100100281DOI: 10.1016/j.foodchem.2005.11.020https://doi.org/10.1016/j.jpba.2020.113094叶潇,张东,冯伟红,梁曜华,刘晓谦,李春,王智民.栀子类药材中西红花苷类成分的定性定量分析[J/OL].中国中药杂志.https://doi.org/10.19540/j.cnki.cjcmm.20220214.301https://doi.org/10.1021/acs.jafc.5b03194https://doi.org/10.1073/pnas.140462911DOI: 10.1007/s00425-004-1299-1
  • 【瑞士步琦】使用SFC分离手性反式-1,2-二苯乙烯氧化物
    使用SFC分离手性反式-1,2-二苯乙烯氧化物SFC 应用”本应用描述了以反式二苯乙烯氧化物为手性分子的手性柱筛选和连续的制备方法,并用叠层进样方法进行制备分离。1简介手性分子是一种有机化合物,它具有一种独特的性质,即互为不可重叠的镜像。这意味着它们以两种形式存在,称为对映体,除了原子的三维排列外,它们在各方面都是相同的。虽然这些对映体具有相同的化学性质,但它们可能具有不同的生物活性和药理作用[1,2]。因此,手性分子在制药工业中变得越来越重要,它们被用于开发药物和其他治疗方法,因此分离对映体十分重要。超临界流体色谱法(SFC)在手性分子的分离纯化中,具有其他分离技术无法比拟的优点。SFC 使用超临界二氧化碳作为流动相,这是一种清洁和绿色的溶剂,很容易从最终产品中去除。此外,SFC 提供了高分辨率和快速的分离。预测哪种固定相能够有效分离 SFC 中特定的一组对映异构体,即使在现在看来也是十分困难,这使得我们需要选择合适的手性固定相来不断试错[2]。手性 SFC 多采用与手性高效液相色谱(HPLC)相同的色谱柱,其中最常用的是多糖手性固定相(CSPs),由于可以选择不同改性的多糖,因此具有很强的通用性[3]。多糖 CSPs 具有高负载能力,这使得它们在制备规模应用中非常有用。许多商业多糖手性固定相是可用的,主要是基于直链淀粉或纤维素和改性的卤化或非卤化芳香基团。改性后的多糖可以包被或固定在二氧化硅载体上,以增强其对强溶剂的抵抗力[3]。还有其他 CSPs 通常用于手性 SFC 应用,例如,Pirkle 型手性固定相[3]。本文介绍了使用 Sepmatix 8x SFC 对反式二苯乙烯氧化物(TSO)进行平行柱筛选,随后通过方法优化转移到制备的 Sepiatec SFC-50。▲反式 - 二苯乙烯氧化物 两种手性结构2设备Sepiatec SFC-50Sepmatix 8x SFCPrepPure cCDMPC, 5um, 250 x 4.6mmPrepPure cADMPC, 5um, 250 x 4.6mmPrepPure iADMPC, 5um, 250 x 4.6mmPrepPure iCDMPC, 5um, 250 x 4.6mmPrepPure iCDCPC, 5um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 10mm3试剂和耗材二氧化碳(99.9%)甲醇(≥99%)乙醇(99%)异丙醇(99%)乙腈(99%)反式二苯乙烯氧化物(99%)(为了安全操作,请注意所有相应的MSDS)4实验过程样品制备:在筛选和方法优化时,将 0.075g 反式二苯乙烯氧化物溶解在 5.0mL 甲醇中;在堆叠注射时,将 0.1909g 反式二苯乙烯氧化物溶解于 6.0mL 甲醇中。使用 Sepmatix 8x SFC 进行筛选:流动相A = 二氧化碳;B = 甲醇流速3 mL/min (每根色谱柱)流动相条件0 - 0.5min5% B0.5 - 8.0min5 - 50% B8.0 - 9.4min50% B9.4 - 9.5min50 - 5% B9.5 - 10min5% B检测200nm – 600nm 紫外扫描筛选完全是全自动运行,采用流量控制单元,将每通道内的流量设置为 3mL/min,并将流量平衡。样品自动进样(每根色谱柱 5μL),启动平行筛选(运行时长=10分钟)。背压调节器设置为 150bar,柱温箱设置为32℃。使用 Sepiatec SFC-50 进行制备:流动相A = 二氧化碳;B = 甲醇流动相条件等度运行检测229nm 紫外检测PrepPure iBT 色谱柱在设定的流速下预热 4 分钟,样品通过定量环自动进样并运行。背压调节器设置为 150bar,柱温箱设置为 40℃。5实验结果色谱柱筛选:为了确定手性化合物 TSO 的最佳分离条件,进行了不同手性色谱柱的筛选,使用 Sepmatix 8x SFC 允许同时进行 8 根不同色谱柱的平行筛选。本实验一共使用了 6 根不同色谱柱:Chiral iADMPC, Chiral iCDMPC, Chiral iCDCPC, Chiral iBT, Chiral cADMPC 和 Chiral cCDMPC。图1 为色谱柱筛选结果,其中 Chiral iADMPC 色谱柱不能很好地分离对应异构体 TSO(可见表1),而 Chiral iCDMPC,Chiral iCDCPC,Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC 色谱柱可以分离 TSO。▲ 图1. Sepmatix 8x SFC 筛选结果。从左上至右下依次是Chiral iADMPC,Chiral iCDMPC和Chiral iCDCPC;Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC。运行时长 =10min,紫外检测波段 =229nm在处理复杂的混合物时,分辨率 R 是一个特别重要的参数,因为它衡量了每一次分离的程度,并且可以被准确识别和量化。例如分辨率 R=1 表明了不理想的分离效果,两个峰本质上并没有分离,更高的分辨率数值代表了更好的分离效果。在实际运行过程中,分辨率 R 至少达到 1.5 才会被认为是分离的。表1 显示了不同色谱柱分离 TSO 时的分辨率 R。在转移至 SFC-50 制备时,选择 iBT 色谱柱,因为它有最佳的分离效果,最容易实现转移,进样量可大大提高。表1. 使用 Sepmatix 8x SFC 筛选时不同色谱柱的分辨率色谱柱RiADMPC1.23iCDMPC1.74iCDCPC4.68iBT14.47cADMPC6.20cCDMPC4.22使用 SFC-50 进行结果优化为了确定改性剂对 TSO 的影响,下列每一种改性剂都在等度条件下使用:PrepPure iBT, 8um, 250 x 10mm 色谱柱;甲醇,乙醇,异丙醇,乙腈 (见图2)。▲ 图2. 左上-甲醇,右上-乙醇,左下-异丙醇,右下-乙腈。流速 =20mL/min,改性剂含量 =25%,温度 =40℃,背压调节器 =150bar,进样量 =150μL甲醇(偶极矩参数= 5[4])在对映体有足够的峰距的情况下,仅在 3 分钟内分离 TSO。乙醇(偶极矩参数= 4[4])作为极性稍小的改性剂,分离所需时间略大于 3 min。异丙醇(偶极矩参数= 2.5[4])在不到 3.5 分钟的时间内分离 TSO,这是由于异丙醇的极性较小。乙腈(偶极矩参数= 8[4])在 2.25 分钟内最有效地分离 TSO。然而,甲醇被用作进一步实验的改性剂,因为它的窄峰宽和对称峰有望带来高进样量。此外,它比乙腈毒性更小,价格也更便宜。由于流动相中改性剂的含量会因极性变化而对分离产生影响,所以采用了不同的甲醇含量(见图3)。▲ 图3. 左上 20% 甲醇,右上 25% 甲醇,左下 30% 甲醇,右下 35% 甲醇。流速 = 20mL/min,,温度 =40℃,背压调节器 =150bar,进样量 =150μL流动相甲醇含量由 20% 连续增加到 35%,运行时间逐渐缩短。当改性剂含量为 35% 时,运行时间可以从大约 3.5 分钟缩短至约 2.5 分钟。不过分辨率有所降低,对映体的峰宽也降低了。因此,在进一步的实验中,改性剂的浓度被设定为 35%。每根色谱柱都有可达到最大效率或理论塔板数的固有最佳流速。如果流量减小或增大,则用非最佳分离塔板数进行分离。与液相色谱法相比,SFC 可以使用更高的流速,而分离塔板数不会大幅减少[5]。因此,图4显示了流速对分离效率的影响。▲ 图4. 左 20mL/min,右 30mL/min,改性剂 % = 35%,温度 = 40℃,背压调节器 =150bar,进样量 =150μL随着流量的增加,运行时间和峰宽进一步减小。运行时间从大约 2.5 分钟缩短至 2 分钟以内。根据样品的不同,温度和压力对组分的分离和保留的选择性有影响。因此,在 100 bar 和 150 bar 以及 40℃ 和 50℃ 范围内进行了 4 次实验(见图5)。可以看出,温度和压力的变化对各自的分离没有明显的影响。因此,叠层进样时,温度控制在 40℃,背压调节器控制在 150 bar。▲ 图5.左上 100bar 和 40℃,右上 150bar 和 40℃,左下100bar 和 50℃,右下 150bar 和 50℃。流速 = 30 mL/min,改进剂 %=35%,进样量 =150μL为了提高分离效率,增加 TSO 的浓度和进样量(150μL ~ 250 μL)(见图6左上)。在这些条件下,基线分离仍然是可行的。图6(右上和下)显示了在与单次进样图 6 左上相同的实验条件下,叠层进样时间为 0.97min,即每 0.97 分钟进样一次。在这种情况下,每次额外注入都节省了平衡时间,提高了产能。最终采用基于时间的方法收集馏分。每次进样的紫外信号都表明了该方法具有良好的再现性(图6右上)。垂直线表示收集相应馏分的时间窗口。▲ 图6. 左上 250μL (0.1909 g TSO 的 6mL 甲醇溶液),右上叠层进样 TSO 的紫外信号,下最后的色谱图。流速 = 30 mL/min,改进剂 %=35%,温度 =40℃,背压调节器=150bar,进样量 = 250μL,进样次数 = 10次6结论在文中,使用 Sepmatix 8x SFC 仪器进行以 TSO 为分析物的手性柱筛选,将最合适的手性色谱柱,转移到 Sepiatec SFC-50 仪器进行制备。每根手性柱对手性物质的反应都不同,这就是为什么在纯化过程之前必须进行筛选的原因,作为标准物质的 TSO 可以在许多不同的手性柱上分离。随后在 SFC-50 上放大,并利用制备柱对等度纯化的方法进行优化。结果表明,改性剂的选择、改性剂在流动相中的比例和流量对分离效果有较大影响。在这些特定条件下,温度和压力的变化对分离效果的影响不大。在一般情况下,这两个参数也可以改变以优化分离条件。7参考文献https://doi.org/10.1038/s41570-023-00476-zSUPERCRITICAL FLUID CHROMATOGRAPHY, Terry A. Berger, Agilent Technologies, Inc., 2015PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Laboratory Chromatography Guide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)http://dx.doi.org/10.1016/j.chroma.2012.10.005
  • Phenomenex推出全新Luna Omega HILIC色谱柱 提高糖类物质分离程度
    p style="line-height: 1.5em "span style="font-family: 宋体,SimSun " Phenomenex 公司7月19日宣布推出一种新的Luna Omega色谱柱,用于亲水作用色谱(HILIC)的糖分析。 Luna Omega SUGAR专门设计用于从食品,饮料和药物,例如牛奶,动物饲料,葡萄酒,苏打水,水果和片剂这些基质中分离和分析碳水化合物。新型的Luna Omega SUGAR固定相包含酰胺多元醇,带接头的氨基和极性封端,它们一起发挥作用,通过有效的相互作用机制共同促进更大的极性保留。通过将这种HILIC固定相粘合到热改性的全多孔颗粒平台上制成的全新色谱柱,与市场上现有产品相比,可以提供更好的分离能力,更高的稳定性,更高的重现性和更快的分析时间。/span/pp style="line-height: 1.5em "span style="font-family: 宋体,SimSun "span style="font-family: 宋体,SimSun " Phenomenex全球产品营销高级经理Simon Lomas解释说:“我们开发了Luna Omega SUGAR,以帮助那些在保留时间变化,柱寿命不足,运行时间长,特异性差和高极性化合物保留率低等方面苦苦挣扎的客户。”“使用这种新型HPLC / UHPLC HILIC色谱柱和简化的流动相系统,客户现在可以更轻松,更好地分离单糖,二糖和低聚糖。”/span/span/pp style="line-height: 1.5em "span style="font-family: 宋体,SimSun "span style="font-family: 宋体,SimSun " span style="font-family: 宋体,SimSun "为了确保高重复性,每个Luna Omega SUGAR色谱柱均通过以糖测试为中心的严格的质量控制流程认证。这确保了这种新介质适用于常用的检测类型,例如RI,ELSD和MS。除了选择性和颗粒性能优势外,Phenomenex针对Luna Omega SUGAR还开发了一套简化的运行条件。通过专注于仅利用乙腈和水作为流动相的HILIC分离,新的色谱柱可以克服缓冲强度不一致,高pH值,峰值抑制,长时间的缓冲液开发时间以及可能破坏糖分离的其他流动相的一系列问题。另一个好处是流动相中高含量的乙腈可用于减少干扰,它可以使非极性化合物和污染物在运行早期就被迫洗脱。/span/span/span/pp style="line-height: 1.5em "span style="font-family: 宋体,SimSun " /span/p
  • 【瑞士步琦】通过SFC(超临界流体色谱)分离三萜香树脂醇的方法
    分离三萜香树脂醇的方法香树脂醇属于三萜类的天然产物,它们有一个双键,结构为五环三萜醇。自然界中的香树脂醇通常以 α-香树脂醇和 β-香树脂醇形式存在,它们互为同分异构体。其中 β-香树脂醇,又称白桦酯醇,具有较高的药用价值,能抑制胆固醇和甘油三酯合成,有效预防肥胖症、动脉粥样硬化症和 2 型糖尿病。α-香树脂醇β-香树脂醇作为两个极性接近的同分异构体,如何利用色谱法有效分离和收集 α-香树脂醇和 β-香树脂醇一直是天然产物界的研究课题之一。由于香树脂醇的化学结构特性,在 HPLC-UV 上会采用 200nm 左右的吸收波长来检测,很容易受到溶剂或其他杂质的影响,而且分离时间也比较长。如图 1 采用 250×3mm I.D,3μm 的 C18 色谱柱分离一系列三萜化合物的混合物。 M. Martelanc et al. / J. Chromatogr. A 1216 (2009) 6662–6670图1、用 HPLC-UV 分离羽扇豆醇(L1),羽扇烯酮(L3),α-香树脂醇(αAm),β-香树脂醇(βAm),δ-香树脂醇(δAm),乙酸环阿屯酯(C2), β-谷甾醇(S2)以及豆甾醇(S1)混合物,流动相为 6.5%水/93.5% 乙腈。本文介绍了一种利用 BUCHI Sepiatec SFC 仪器分离 α-香树脂醇和 β-香树脂醇的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲ BUCHI Sepiatec SFC-50 1实验条件设备Sepiatec SFC-50色谱柱Reprosher C30 10um 100x10mm流动相种类A=CO2B=甲醇流动相条件A/B=85%/15%,等度 18min流速30 mL/min背压150 bar柱温40℃样品25 mg/mL 香树脂醇甲醇溶液进样量11 次叠层进样,每次 100uL▲ 图2、香树脂醇经过 11 次叠层进样,分离为 α-香树脂醇和 β-香树脂醇 2结果与讨论由于 α-香树脂醇和 β-香树脂醇之间没有基线分离,所以分为三组馏分收集,中间部分重新注入以提高回收率。在图 1 的 HPLC-UV 分离方法中,α-香树脂醇和 β-香树脂醇的出峰时间为 20-25 分钟,基线部分波动较大。在图 2 中,SFC-ELSD 采用 11 次叠层进样,总时长为 18 分钟,相比 HPLC 法效率更加高,基线也更加平稳。在馏分收集方面,得益于叠层进样和主要溶剂为 85% CO2,可以在收集大量样品的同时减少溶剂后处理的时间。 3结论α-香树脂醇和 β-香树脂醇可以用 Sepiatec SFC-50 有效分离,结合 ELSD 可实现高产率的检测和连续分馏。 4文献来源Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatographyMitja Martelanc, Irena Vovk, Breda SimonovskaNational Institute of Chemistry, Laboratory for Food Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
  • 液相方法开发案例 | 根据样品特性选择检测器和分离模式
    液相色谱检测方法的建立需要针对不同的样品和分析目的,选用不同的分离模式和检测器,充分发挥仪器性能,高效地达到分析目标。通常使用单一检测器直接检测可达到目标,必要时可衍生化后再检测,或用多检测器组合检测。分离模式选择与检测器选择的原则基本统一,即根据分析物结构性质初步判断分离模式及流动相的选择:根据分析物结构性质、分离模式、样品处理方式、流动相的选择等进行检测器的配套选择。分离模式和检测器的选择是色谱方法开发中不可分割的相互统一的重要环节。关于分离模式和检测器的选择,以下案例或可说明一二01脂肪族生物胺检测分析脂肪族生物胺样品特性:此类物质紫外可见光区吸收极弱,衍生化程序繁琐效率低且易误差损失,是水溶性的极性物质。方法开发思路:根据这些基本条件,我们判断可以选择HILIC模式,ELSD检测器直接检测。检测效果见下图:月旭Ultimate HILIC Amphion II对四种脂肪族生物胺的分离02甘油酯检测分析甘油酯样品特性:此类物质为脂溶性大,不溶于水或难溶于甲醇的非极性物质。方法开发思路:这样的物质适用非水反相色谱法,案例见非水反相色谱法应用案例及注意事项。03氨基酸检测氨基酸样品特性:部分紫外吸收弱,大极性和水溶性。方法开发思路:可选择衍生化法和非衍生化法。两种方法的分离效果见下图:月旭Ultimate Amino Acid Plus对23种氨基酸的非衍生法分离月旭Ultimate Amino Acid对19种氨基酸的衍生化法分离04单糖寡糖类分析单糖寡糖类样品特性:水溶性的极性样品,弱紫外可见吸收。方法开发思路:这类物质常选择示差检测器。月旭Ultimate XB-NH2 分析乳果糖05蛋白、RNA,病毒等样品分析蛋白、RNA,病毒等样品特性:大分子。方法开发思路:选择体积排阻色谱法。月旭Xtimate SEC-120 分析RNA月旭Xtimate SEC-2000分析去致病基因的痘病毒月旭Xtimate SEC-300 分析IgG蛋白关于流动相的选择,请延申阅读高效液相色谱中溶剂与检测器的兼容性。
  • 美国康塔仪器公司推出第二代毛细管流动法孔径分析仪—— Porometer 3G 系列
    2013年12月,美国康塔仪器公司(Quantachrome Instruments)发布了第二代毛细管流动法薄膜孔径分析仪器&mdash &mdash Porometer 3G系列。  Porometer 3G系列是一款独特的全自动多功能分析仪系列,利用可浸润液体,如水,测定薄膜孔径及渗透率。与传统的压汞仪类似,Porometer 3G也是利用Washburn方程对孔径及渗透率进行计算。但是由于该仪器的测试原理为液体排驱法(泡压法或气体渗透法),使用的是浸润液,因此没有汞污染,无需实验室改造,更安全更便捷。同时该方法也是ASTM薄膜测定的标准方法 。  该方法同样以表面张力引起毛细孔中液体上升理论为依据.当毛细孔浸在某种液体中时,在表面张力的作用下,毛细孔中的液体将会上升到某一高度,当毛细孔中的表面张力与毛细孔中液柱重力达到力平衡,此时可按此计算薄膜孔径及渗透率( Washburn 方程)。  美国康塔仪器公司推出的第二代产品通过改进的固件提高了低压性能和可重复性,但最引人注目的是新3GWin2 Windows用户软件。第二代3GWin2软件具有全新的外观和感觉,并应用了许多新的Windows技术,给用户全新的先进的功能体验:新的&ldquo 运行模式&rdquo (&ldquo Run Modes&rdquo )提供了更加灵活的测量顺序 质量控制模式(QC)使日常使用的界面简化 用户主管(Supervisor or Advanced use)可以设定QC模式,并保存运行设置的SOP。新软件可以测量具有极高分辨率的数千个数据点,解决复杂的孔径分布问题(图1),也可以根据岩心类样品特性,测定少量数据点,并设置较长的平衡时间。  中空纤维和某些样品比较特殊,具有较宽的孔径分布,既有大孔也有很小的孔:大孔的存在对测小孔是不利的,因为气流都首先选择大孔通道导致压力上不去。以Richard Wenman博士为首的Porometer 3G技术团队采用新的方法和技术,改进了第二代仪器低压性能,不仅实现了中空纤维孔径宽峰分布的测量(图2),而且通过新一代浸润液Porofil plus在形状因子1的情况下,可以做到孔径分布下限到大约14nm。  美国康塔仪器公司 Porometer 3G系列毛细管流动法薄膜孔径分析仪包括四款型号,分别是3G Micro,3G Macro, 3Gz和3Gzh,其孔径分析适用范围如下:  Porometer 3G系列毛细管流动法薄膜孔径分析仪主要应用于以下领域的孔径分布和渗透率分析:  薄膜产品制造商和用户:如  片材和预切薄片材料  中空纤维  中空超滤膜管  电池隔膜  过滤应用,包括水过滤,水净化,汽车机油和燃油过滤和液体和所有类型的空气过滤。  非织造材料的应用:包括  婴儿尿布,湿巾,无水的组织和吸收垫和片材  防护服,包括医疗和化学防护服材料。  织造材料的应用:包括  专门织物,颗粒分离,预过滤器和筛分过程。  多孔塑料:包括  在医疗领域中聚四氟乙烯(PTFE),聚醚醚酮(PEEK)和其它的聚合物  多孔金属网  用于过滤和气体分离的陶瓷管。  如需了解该仪器详细信息及具体参数,欢迎垂询美国康塔仪器公司北京代表处800-810-0515  或访问康塔公司中文网站www.quantachrome.com.cn。  关键词:毛细管流动孔径分析仪,薄膜孔径分析仪,泡压法,液体排驱法,毛细管法,气体渗透法,Porometer,薄膜,膜,滤纸,中空纤维,隔膜,过滤,无纺布(不织布),纺织材料,多孔金属网,多孔陶瓷,烧结金属
  • 【抗疫药】羟氯喹连续合成和连续分离
    一、背景介绍新冠疫情蔓延全球,急需寻找有效药物。除了瑞德西韦,氯喹与羟氯喹同时被WHO和美国总统点名加入海外抗疫候选药物单用或组合应用的多国多中心临床试验(Solidarity Clinical Trial)。美国选用氯喹/羟氯喹作为新冠治疗候选药物的原因在于这是一种上市多年的老药,因此安全性有保障。如果选用一种全新的(未上市)的药物,其安全性是未知的,也需要花费更多的时间去验证。抛开羟氯喹是否能成为治疗新冠病毒的特效药,世界卫生组织已将羟氯喹(HCQ)确定为基本医疗保健系统的必需抗疟药,但API的高制造成本阻碍了HCQ的全球普及。因此,开发具有成本效益的合成工艺来增加该药物的普及显得至关重要。如今,采用先进技术,开发低成本广谱药物和小批量孤独药是FDA一直致力推动的目标。微反应连续流技术的兴起不光给低成本药物的合成带来可能,还可以快速应对市场的需求。2018年,弗吉尼亚联邦大学化学系和化学与生命科学工程系研究小组,在Beilstein J. Org. Chem. 期刊上发表了抗疟药羟氯喹的高效连续合成报告。小编就带大家来解读,连续流技术如何来助力这场没有硝烟的病毒战! 二、羟氯喹的逆合成分析从羟氯喹的逆合成分析中可以发现化合物(6)是关键中间体。在传统工艺中化合物(6)通常有以下两种合成路径(图2)。反应路径1a中,使用氯酮(3)进行保护-去保护反应是优化工艺的一个关键点。虽然改进路径1b去掉了此步骤,但它使用了一个复杂的过渡金属-催化剂系统 。考虑到这些问题,研究小组通过逆合成分析,发现可以通过α-乙酰基丁内酯(8)的脱羧开环一步生成(10),然后化合物(10)可以不经分离制备化合物(6)。 三、连续流合成研究研究小组首先开发并优化了一条快速连续合成化合物10的方法(表1)。该路线的收率显著高于之前报道的合成路线 。使用55%的氢碘酸,反应温度80°C,转化率可达98%,分离收率为89%。?四、Zaiput在线连续分离由于使用了过量的氢碘酸,在进行下一步反应之前,必须将过量的氢碘酸从反应流中除去。将含有粗品(10)的产物与甲基叔丁基醚(MTBE)和饱和NaHCO3在线混合,然后使用Zaiput连续流分离器进行在线分离。在有机相中,可以得到纯化后的化合物(10)。连续分离简化了后处理步骤,大大节省了人力和时间。Zaiput高效液液分离技术是由美国MIT孵化的一项新技术。以专利技术液液分离膜为基础,提供不互溶流体连续在线分离。分离器利用多孔膜与水相和有机相间润湿性的差异来分离油水两相,该设备设计有压力系统可以自动调节两相间的压力恒定,确保分离的稳定性,流线型的设计也提供了即插即用的快捷功能。 五、中间体(6)(11)的合成化合物(10)与化合物(7)反应可生成化合物(6),化合物(6)无需分离与羟胺反应,通过K2CO3的填充床生成肟(11)。从生成(11)的两步反应中可以看出,反应物的浓度对肟的形成有显著影响。使用1 M浓度的反应物,结果显示温度100°C,停留时间 20 min,转化率为85%,分离收率为78%。六、连续搅拌釜反应器(CSTR)工艺作者选择了连续搅拌釜反应器(CSTR)工艺进行化合物(11)的加氢还原合成化合物(12)。用HPLC泵输送至CSTR中,并通入氢气使其反应。作者优化了化合物(12)的各个步骤后,将各个步骤合为一个连续的反应过程。该过程将化合物(10)转化为化合物(6),再继续转化为化合物(12)(图4)。最终产物化合物(12)的收率达到68%。七、羟氯喹的连续釜式合成为了整个工艺流程的连续化,作者选择使用CSTR 研究最后一步羟氯喹的合成。作者考察了溶剂和碱对HCQ(1)收率的影响。实验总结:• 连续合成工艺大大缩短了反应时间• 减少了步骤并提高了单个反应的收率• 使用了更具成本效益的起始原料和试剂• 连续合成与连续分离技术的完美结合,促使了整个过程的连续化• 具有成本效益的合成工艺来增加该药物在未来的普及新工艺与目前传统的商业工艺相比,总收率提高了52%。连续方法采用连续流反应器、在线连续分离及连续搅拌釜反应器的组合,过程更加安全可靠。参考文献:Beilstein J. Org. Chem. 2018, 14, 583–592. doi:10.3762/bjoc.14.45康宁在中国独家代理:Zaiput 高效液液分离器以专利技术液液分离膜为基础,提供不互溶流体连续在线分离。分离器有一个混合流体入口和两个出口,分别为有机相出口和水相出口,分离器使用过程中不需要任何准备或校准。分离器利用多孔膜与水相和有机相间润湿性的差异来分离油水两相,该设备设计有压力系统可以自动调节两相间的压力恒定,确保分离的稳定性,流线型的设计也提供了即插即用的快捷功能。产品特性:• 分离液体不依赖密度差,可分离乳液• 在连续流动过程中,分离器可实现连续在线分离• 非常低的死体积,优异的化学耐受性,可在压力下运行• 可实现实验室规模放大至工业化生产规模• 高效分离降低萃取溶剂消耗• 非常适合活性或不稳定中间体的分离
  • 浆料流动合成怎么破?Vapourtec在连续泵送浆料实验中的优越性
    2021 年 9 月 14 日,《绿色化学》上发表了一篇题为“Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment”(“利用新型固体处理设备在水中连续泵送浆态Fe/ppm Pd纳米颗粒催化Suzuki–Miyaura偶联反应”)的论文。▲ 原文链接:https://pubs.rsc.org/en/content/articlelanding/2021/gc/d1gc02461b/unauth该论文中,Lipshutz 团队使用 Vapourtec E系列和V-3 泵的组合,描述了一种在流动中进行 Suzuki-Miyaura 反应的新颖且环保的方法。当应用该解决方案时,可以连续运行 1.5 小时,从而生产 20 克药物中间体。(点击可查看大图)将三个准备好的注射器插入交叉混合器中,将交叉混合器直接插入 2 mL 反应器盘管。然后将反应器盘管连接到 T 型混合器中,其中 2-甲基四氢呋喃通过止回阀垂直输送到该流中作为在线萃取器。交叉混合器、反应盘管和在线萃取装置在运行期间保持95°C温度稳定。将运行前的萃取混合物通过 Vapourtec E 系列蠕动泵输送,该蠕动泵作为保持 2.2 bar 的背压调节器。反应以 200 µL/min 的组合流速运行四个停留时间(40 分钟),达到稳定状态。在总共五个停留时间(50分钟)内收集反应物,同时使用 2-MeTHF 以 200 µL/分钟的速度进行在线萃取。分离合并的水相和有机相,减压蒸发溶剂。用200mL水处理残余有机物,导致固体沉淀。将该固体通过过滤回收,溶解在DCM中,并通过硅胶塞,得到灰白色固体产物(431mg,97%产率)。摘自原文,Lipshutz 团队说:“While other commercial systems were considered, the Vapourtec E-Series reactor system was chosen due to its inclusion of peristaltic pumps as the primary mode of delivering reagents together with an internalized, probe-monitored heating well for the reactor coil. This instrument has been reported to accommodate light slurries in suspension while our examination of this system found that the NPs suspended in an aqueous micellar medium could be easily pumped without clogging”[1] 译文:虽然考虑了其他商业系统,但选择了 Vapourtec E 系列反应器系统,因为它将蠕动泵作为输送试剂的主要模式,以及用于反应器线圈的内部化、探针监控的加热模块。据报道,该仪器可容纳悬浮的轻质浆液,而我们对该系统的检查发现,悬浮在水性胶束介质中的纳米颗粒可以轻松泵送而不会堵塞。论文报道了开发普及流动化学过程的初步努力,将异质纳米催化剂应用于水性胶束实现 Suzuki-Miyaura 偶联反应。悬浮在水性胶束介质中的多相催化剂在进入管式反应器之前被连续泵送和预混合。Lipshutz 的团队利用了Vapourtec多功能V-3 泵,不仅能够泵送浆料,而且还可以用作动态背压调节器而不会堵塞合成通道。该合成路线合成了超过 13 g/h 的 API 中间体。V-3泵解决Suzuki-Miyaura偶联反应的技术难点对于大多数合成化学家来说,Suzuki-Miyaura偶联可能是实验室中最常见的交叉偶联反应。这种有用的反应由 Pd(0)介导,在碱存在下在有机硼和卤化物化合物之间形成 C-C键。在连续流动中,多相催化通常是通过将催化剂填充在柱式反应器中来完成的。这种简单的方法使大多数研究团队在过去十年中探索了流动中的Suzuki反应。如果没有合适的系统,处理流动中的固体是一项挑战。对于大多数泵来说,几乎不可能泵送固体,而且当固体通过时,大多数背压调节器会堵塞。Vapourtec开发了V-3泵,旨在克服这些问题。这些蠕动泵能够在压力下工作,提供平稳的泵送流速,控制反应器的压力。Vapourtec提供更环保的合成途径全球环境问题意味着我们需要不断努力寻求比当前批处理过程更可持续的解决方案,例如连续流动,提供了更环保的途径。在这篇论文中,Lipshutz团队通过使用水溶液和使用可以在下游进一步回收的纳米粒子,将这种绿色方法提升到了一个新的水平。相比于传统釜式合成方式,该反应技术具有传质传热效率高、本质安全、过程重复性好、产品质量稳定、连续自动化操作和时空效率高等诸多优势,Vapourtec流动合成仪用于化学合成中的研究越来越多。流动化学系统专业厂家Vapourtec成立于2003年,已有17年生产经验。作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前推出两个系列产品:▲ R-Series 一个高度特定的模块化系统,能够独立操作或与其他设备的集成,提供多功能的自动化流动合成▲ E-Series 一个易于使用的入门级系统平台,适合新用户和学校实验室教学。参考文献[1] A. B. Wood et al., “Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment,” Green Chem., 2021, doi: 10.1039/D1GC02461B.[2] Vapourtec Ltd, “Application Note 51 – Palladium on Charcoal Slurries in Continuous Flow Hydrogenation,” 2017.[3] Vapourtec Ltd, “Application Note 54 – Selective hydrogenation of O-benzyl vanillin using hydrogen gas and a palladium on charcoal slurry,” 2017.
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的采用沃特世(Waters)ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。背景生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。解决方案联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。总结ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制