当前位置: 仪器信息网 > 行业主题 > >

流体图像

仪器信息网流体图像专题为您整合流体图像相关的最新文章,在流体图像专题,您不仅可以免费浏览流体图像的资讯, 同时您还可以浏览流体图像的相关资料、解决方案,参与社区流体图像话题讨论。

流体图像相关的论坛

  • 流体的粘度

    粘度是表示流体的内磨擦的物理量,是一层流体对另一层流体作相对运动的阻力。流体的粘度随温度而变,温度升高,液体粘度减小,而气体粘度增大。压力对液体粘度基本上无影响,而对气体粘度的影响只有在极高或极低压力下才比较明显,因此不注明温度条件的粘度是没有意义的。 对于流体,我们通常可以把它们分为两大类.1.牛顿流体,也就是理想流体,符合牛顿定律即两相邻流体层之间的单位面积上的内摩擦力(实际上是表面力中的切应力,又称剪应力,)与两流体层间的速度梯度dv/dy成正比,所有的气体和大部分低分子量(非聚合的)液体或溶液均属于牛顿型流体。.2.非牛顿流体,凡是不符合牛顿流体公式的流体,统称为非牛顿流体.其中,流变行为与时间无关的有:假塑性流体,胀塑性流体和宾汉(Bingham)流体.而流变行为跟时间有关的,又分为触变性流体和震凝性(即反触变性)流体粘度值的表示方法:a.绝对粘度:分为动力粘度和运动粘度。液体中有两层面积各为1平方厘米和相距1厘米的油液,相对移动速度为1厘米/秒时所产生的阻力,叫动力粘度。单位原是"泊"(P),实用单位是"厘泊"(CP)。换算成现行的法定计量单位用下式:1泊(P)= 0.1帕*秒(Pa*S)1厘泊(CP)= 0.01泊(P)= 1毫帕*秒(mPa*S)在同一温度下液体的动力粘度与其密度的比值即为运动粘度。单位原是"斯"(St),实用单位是"厘斯"(cSt)。换算成先现行的法定计量单位可用下式:1斯(St)= 10-4m2/s1厘斯(cSt)= 1mm2/sb.相对粘度:在工业生产中用各种特定仪器计量的粘度,例如恩氏的条件度,开口杯的时间。这些数值一般可通过公式转为绝对粘度。以上为收集资料

  • 【求助】请问怎么测管内流体的温度

    请问高手,我想测内径为2mm的管路中的实际流体温度,流体大概温度为600多度,压力为4MPa。请问怎么测管内流体的温度啊?现在只能测管壁的温度。 谢谢。

  • 【转帖】流体力学相关问题

    带着对科学存有怀疑的态度,我对伯努利方程产生了质疑,于是便自己总结了一些理论与其相对比。流体在未受到外力作用的情况下是相对静止的,压力为常量。称为静压力。当流体要流动时,必须受到外力的作用。这个外力只能是大于常量压力的压力,称为动压力,或小于常量压力的吸力,称为动吸力。流体不论是静止还是流动,静压力保持不变。当静止的流体一面受到大于常压的压力时,流体开始向另一面流动,在不受到任何阻力的情况下,始终向一个方向流动。当前方受到阻力时,流体向四周扩散,扩散的速度受压阻比影响,压力不变,阻力越大扩散越快,阻力越小扩散越慢。阻力不变,压力越大扩散越慢,压力越小扩散越快。流体受到的压力称为总动压力,它的力一部分压缩流体,一部分摩擦损耗,其余的推动流体流动,各部分的力的总和等于总动压力,称为动量守恒。总动压力加上静压力称为流体流动时的总压力。当静止的流体受到小于常压的吸力时,流体开始向吸力方向流动。在无任何阻挡的情况下,吸力向前方的各个角度作用,并逐步扩大吸力范围,使无阻挡的各处流体流向吸力。流体流动的速度与流体的运动横截面积和吸力大小相联系。吸力不变,横截面积越大流速越慢,横截面积越小流速越快。横截面积不变,吸力越大流速越快,吸力越小流速越慢。流体受到的吸力称为总动吸力,它的一部分稀薄流体,一部分摩擦损耗,其余的吸动流体流动,各部分的力的总和等于总动吸力,称为动量守恒。静压力减去总动吸力等于流体流动时的总压力。管道中的流体在受到压力做定常流动时,流体的动压力,流速,单位时间内的流量,管道的横截面积,流体扩散的速度之间的关系。1.流体在受到压力做定常流动时,同一管道内的各横截面流量相同。2.压力一定,流速一定,横截面积越大流量越大,横截面积一定,压力越大流量越大,流速越大。3.压力一定,流量一定,横截面积越大,流速越慢,横截面积越小流速越快。4.流体流经最小横截面以前,各处压力基本相同。流经最小横截面以后,压力减小,减小的比例为此最小横截面与下一最小横截面的比。此最小横截面与下一最小横截面之间的各处压力基本相同。5.压力一定,流速一定,流量越大流体扩散越快,压力一定,流量一定,流速越快扩散越慢。流体受到吸力时,各量的关系。1.流体在受到吸力做定常流动时,各横截面处流量相同。2.吸力一定,流量一定,横截面积越大流速越小。横截面积越小流速越大。3.吸力一定,流速一定,横截面积越大,流量越大。水流自上而下自然流动时,是一种吸力做功,吸力的做功点是随处而在。当水流的方向受到阻挡时,阻挡面以上的吸力便转变为压力。由此看来,流体的流速大小并不能决定压力的大小,更不能起到吸引其它物体的作用。因此,升力的形成并不是流速差引起的,而是另一种力的作用。这种作用是流体流经弧形表面时,做绕弧运动,从而产生了离心力,流体受离心力作用向外运动产生吸力做功,并从而形成了升力。流体做绕弧运动的原因是流体在翼片前端受阻向上压缩,过凸点后向下逐步扩散便顺着弧行面流动。空气的离心力究竟有多大呢,用扇子扇一下就知道了。当扇子直线运动时,没有离心力,感觉气流很小,当扇子弧形扇动时,气流受到离心力作用向外流动,会感觉到气流很强。我只是业余科学爱好者,由于时间关系,有许多细节没有讲清楚,以后有时间在补充。希望能有科学爱好者能对此进行实际验证。

  • 锂离子电池集流体

    请教,锂离子电池中使用铜箔作为负极的集流体,铝箔作为正极的集流体,能反着使用吗?如果负极使用铝箔作为集流体,正极使用铜箔作为集流体,会怎样?

  • 【资料】-超临界流体的共溶剂效应和混合流体研究进展

    [b]超临界流体的共溶剂效应和混合流体研究进展[/b][i]牟天成,韩布兴[/i]摘 要:共溶剂的出现极大地拓展了超临界流体的应用范围,推动了超临界流体科学与技术的发展。本文从相行为和分子间相互作用热力学的角度,对相行为测定、量热技术、光谱技术和分子模拟等在超临界流体中共溶剂效应的研究作了综述,主要介绍超临界流体中共溶剂的作用机理和混合流体在临界点附近热力学性质研究,并对其未来发展方向进行了展望。关键词:超临界流体 共溶剂 分子间相互作用 混合流体1 引 言最近20年以来,超临界流体科学和技术得到了快速发展,其理论和应用研究正处于快速增长阶段。随着人们对超临界流体本性认识的提高,超临界流体在萃取、化学反应、材料制备、分析技术、胶体和表面科学、生物技术等领域得到了广泛应用,其应用范围和领域还在不断扩大之中,而且必将有更为广阔的应用前景。超临界流体得到人们广泛关注,是因为它具有一些特殊性质:(1)超临界流体的密度可以从气态密度连续变化到液态密度,尤其是临界点附近,压力和温度的微小变化可导致密度成倍变化;(2)由于粘度、介电常数、扩散系数和溶解能力都与密度有关,可以通过调节温度和压力来控制超临界流体的物理化学性质。在超临界流体中,CO2的使用最普遍,原因如下:CO2溶解能力强;临界温度和临界压力适中;无毒无害,便宜易得;化学惰性,易分离等,是环境友好的绿色溶剂。[color=red]下面有全文的Word文档,需要的可以下载。[/color]

  • 【转帖】超临界流体定义、特点

    超临界流体定义、特点㈠定义超临界流体(supercritical fluid,简称SCF)可用临界温度和临界压力的形式来定义。气、液两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气、液两相性质非常接近。超临界流体(supercritical fluid),又称为稠密气体(dense gas)或高压气体(high compressed gas),它不同于一般的气体,也有别于一般液体,兼有液体和气体的双重特性,密度接近于液体,粘度和扩散系数接近于气体,渗透性好,与液体溶剂萃取相比,可以更快地完成传导,达到平衡,促进高效分离过程的实现。㈡特点超临界流体的溶解能力取决于它的温度和压力,通常和流体的密度呈正相关,随流体的密度增加而增加。在临界点附近,压力、温度的微小变化会引起流体密度及其对物质溶解能力的较为显著的变化。被用作超临界流体的溶剂有乙烷、乙烯、丙烷、丙烯、甲醇、乙醇、水、二氧化碳等多种物质,超临界二氧化碳是首选的萃取剂。这是因为二氧化碳的临界条件易达到(Tc=304.1 K,Pc=7.347 MPa),且无毒、无味、不燃、价廉、易精制,这些特性对热敏性和易氧化的产物更具有吸引力。超临界流体的特性① 无毒性、不燃性和无腐蚀性。超临界CO2流体无毒和不可燃,有利于安全生产,而且来源丰富,价格低廉有利于推广应用,降低成本。② 容易达到超临界条件。CO2临界温度为Tc=31.1℃ ,临界压力为Pc=7.3MPa,CO2的超临界条件与水相比(水的临界温度为374℃,临界压力为22MPa)更容易达到。

  • 超临界流体萃取

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理(一). 超临界流体定义  任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取本文摘自:www.wolsen.com.cn

  • 有卖加压流体萃取(PLE)的吗?

    《土壤和沉积物 有机物的提取 加压流体萃取法》标准的征求意见稿中用到加压流体萃取(PLE),有这个仪器吗?要是有相关的用户,有什么好的建议,那就更好了。我们只需跟此标准匹配的仪器(即加压流体萃取(PLE)仪),[b]不匹配的勿联系[/b]。有相关的信息麻烦发我邮箱:[email]yzhlai@163.com[/email]最好提供仪器型号、规格、具体参数、标准配置及价格,越详细越好!同时留下联系方式。

  • 流体培养基

    硫乙醇酸盐流体培养硫基在培养过程中会变红色,培养基会不会无效了

  • 超临界流体色谱SFC

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 超临界流体色谱

    超临界流体色谱

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 【资料】《超临界流体萃取技术研究与应用进展》

    超临界流体萃取技术研究与应用进展赵东胜, 刘桂敏, 吴兆亮( 河北工业大学化工学院, 天津300130)摘要: 综述了超临界流体萃取的基本原理, 以及提高超临界流体萃取效率的方法, 包括加入夹带剂、利用高压电场和超声波等。并对超临界流体萃取技术在生物化工、食品、医药和环保行业的最新应用情况作了介绍。关键词: 超临界流体萃取; 萃取效率; 夹带剂; 应用中图分类号: TQ 028.8 文献标识码: A 文章编号: 1008- 1267( 2007) 03- 0010- 03下载链接:http://www.instrument.com.cn/download/shtml/155631.shtml

  • 【资料】超临界流体色谱法

    [b]超临界流体色谱法[/b](Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法.所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间.超临界流体色谱技术是2O世纪80年代发展起来的一种崭新的色谱技术.由于它具有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相所没有的优点,并能分离和分析[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.

  • 【原创】上海阀门的流量系数,流体阻力系数,压力损失

    鸿丰知识吧:一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。1.流量系数的定义流量系数 表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。2.阀门流量系数的计算3.流量系数的典型数据及影响流量系数的因素公称通径DN50mm的各种型式阀门的典型流量系数见表。流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p表示。1. 阀门元件的流体阻力阀门的流阻系数 ! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统( 流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。(1)突然扩大会产生很大的压力损失。这时,流体部分速度消耗在形成涡流、流体的搅动和发热等方面。局部阻力系数与扩大前管路截面积A1和扩大后管路截面积A2之比的近似关系可用式(1-9)及式(1-10)表示;阻力系数见表(2)逐渐扩大 当θ<40℃时,逐渐扩大的圆管的阻力系数比突然扩大时小,但当θ=50-90℃时,阻力系数反而比突然扩大时增大15%- 20%。逐渐扩大的最佳扩张角θ:圆形管θ=5-6.5℃,方型管θ=7-8℃,矩形管10-12℃。(3)突然缩小(4)逐渐缩小(5)平滑均匀转弯(6)折角转弯 折角转弯主要产生在锻造阀门中,因为锻造阀门的介质通道是用钻孔方法加工的。在焊接阀门中也会产生急剧转弯。(7)对称的锥形接头 对称的锥形接头类似阀门缩口通道。2.阀门的流体阻力阀门的流阻系数随阀门的种类、型号、尺寸和结构的不同而不同。 三、阀门的压力损失 由于蝶阀在管路中的压力损失 比较大,大约是闸阀的三倍,因此在选择蝶阀时,应充分考虑管路系统受压力损失的影响。

  • 自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用一、 从静态图像仪到动态图像仪早期的颗粒图像仪都是静态颗粒图像仪,基本上是基于显微镜设备改装的观测设备,制作静态样品,虽然在一定程度上解决了颗粒样品的形貌分析统计问题,但是也表现出了其固有的弱点,即因其参与观测统计的颗粒数量少,导致数据的代表性差。人为误差较大。因此在上世纪90年代末国外就开始进行动态颗粒图像仪的研制,英、法德等国家均推出过动态颗粒图像测试设备。而在本世纪初,国内的上海理工、天津海洋研究所等机构也开始探索颗粒动态测试的有效方法。直到2007济南某厂家首次正式面向市场推出真正意义上国内第一台动态颗粒图像分析仪Winner100。中国才真正具有了动态颗粒图像分析能力。二、 动态图像技术分析对微小颗粒而言,成像光路系统放大倍率越大,其景深也就越小,这一点严重制约动态颗粒图像仪的发展,如何将流动中的颗粒约束到一个平面上,这是动态颗粒图像仪最关键部分。目前国外现有的比较成熟的方式借鉴了细胞测量中的流体聚焦技术----鞘流技术,即将待测颗粒样品流入鞘液中,鞘液对其进行约束,形成一个一个从而获得清晰的颗粒图像。这种技术能够解决颗粒聚焦问题,但是其制备鞘液比较复杂,成本也很高,测量时间也较长,而且鞘液中的颗粒数量仍然不能够太多,因此对于颗粒测试的代表性仍然不强。关键部件鞘流池如果有大的颗粒进入很容易发生堵塞现象,清理疏通也都很费时费力。以国外很多粒度仪厂家也多采取这种实用价值有限的测试技术。近年国内厂家推出一种新型技术,即以流体力学的原理,使用液流的压力将颗粒约束在样品窗表面,使其基本在一个焦平面上运动,使成像效果显著提高。但是问题随之而来,在样品窗表面运动时,经常有颗粒粘连在表面上,越积越多无法处理。因此,此方法的使用价值也大打折扣。2014年济南微纳颗粒推出了一款带超声波自清洗装置的样品窗,才真正解决了这种颗粒在样品窗上粘连的问题,使其实用化程度大大提高,现在在碳化硅、氧化铝等磨料相关等行业已经广泛开始使用,并得到了用户的高度认可。三、 自清洗样品窗技术在以往的动态图像仪中,样品窗污染就会造成测试结果的准确性差。因此样品窗必须每隔一至两周就必须拆卸下来清洗,去除附着在上面的颗粒残留,非常麻烦,而且有的样品自身带有粘性或者静电的,甚至在测试过程中就会粘连到样品窗上,严重影响测试结果。济南微纳推出的可以进行自清洗的样品窗,彻底解决了以上问题,大大减少了样品窗的清洗频次,增加了样品窗寿命,有的甚至可以终生不必拆洗。 自清洗样品窗技术已经应用在微纳的Winner100D动态图像仪、Winner219动静态双模式全自动图像仪上,并解决了样品窗清洗问题。并且自清洗样品窗技术还可以应用在湿法激光粒度仪上,微纳也将进一步自清洗样品窗技术广泛的推广应用,为推动中国颗粒测试事业的发展尽最大努力。 http://ng1.17img.cn/bbsfiles/images/2015/11/201511201552_574512_3049057_3.png

  • 微流体系统控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html]微流体系统控制器flowtest[/url][/b]是专业为[b]控制微流体器件[/b]设计,是用于micropump, microvalues等[b]微流体器件控制[/b]的进口[b]微流体控制器[/b]。[b]微流体系统控制器[/b]能够同时和独立地控制流体系统使用8个阀和8个泵,还可通过计算机编程控制微流动序列。此编程功能可以编辑新程序控制要求液体位移,取样和注射,并可以设置,存储和管理多个程序。用户可以毫不费力地检索和运行他们的程序。[img=微流体系统控制器]http://www.f-lab.cn/Upload/flow-test-controller.jpg[/img]在使用跨实验室和工业应用领域,需要精确液体转移。比如,微流体系统控制器FlowTest™ 将被证明是许多质量检测应用,流体系统发展或使用泵和阀门仪表的宝贵资产。微流体系统控制器还可以作为一个独立的仪器使用,无需电脑。在这种情况下,程序被加载在USB密钥上。通过位于控制盒的上方“运行/暂停”和“停”按钮,方便地操作控制器。微流体系统控制器:[url]http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html[/url]

  • 作微流体实验的管道

    我想做微流体实验,但不知现在那里可作微管道的代加工.刻10~20个宽为50到200μm,深为100~300μm,使用硅或铝的管材。不知高人能否指点一下。

  • 流体动力色谱HDC

    有没有人做过流体动力色谱,hydrodynamic chromatography(HDC)? 用的什么柱子?

  • 【求助】流体粘度对于流动性的影响

    问题1:对于粘度的高低如何分类?是否有一个大致的范围?问题2:不同粘度范围内有哪些常见的体系?问题3:不同粘度的流体在什么条件可以实现从小口径孔喷出?注意:不是挤出

  • 【分享】帮助大家了解超临界流体技术

    帮助大家了解超临界流体技术内容包括: 超临界流体技术的介绍超临界流体技术的物性超临界流体技术的应用希望大家用得上[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=49089]超临界流体介绍[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制