当前位置: 仪器信息网 > 行业主题 > >

流体信号

仪器信息网流体信号专题为您整合流体信号相关的最新文章,在流体信号专题,您不仅可以免费浏览流体信号的资讯, 同时您还可以浏览流体信号的相关资料、解决方案,参与社区流体信号话题讨论。

流体信号相关的论坛

  • 软管夹管阀在流体介质高精度压力和流量控制中的应用

    软管夹管阀在流体介质高精度压力和流量控制中的应用

    [align=center][b][img=采用夹管阀实现无菌流体系统中的高精度压力和流量控制解决方案,690,450]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181658154269_9598_3221506_3.jpg!w690x450.jpg[/img][/b][/align][size=16px][b][color=#000066][/color][color=#339999]摘要:针对卫生和无菌流体系统中柔性管路内的压力和流量控制,本文介绍了采用电控夹管阀的高精度控制解决方案。解决方案基于反馈控制原理,采用压力传感器或流量传感器进行测量并反馈给程序控制器,控制器驱动夹管阀来改变柔性管路的内径从而实现高精度控制。尽管解决方案只介绍了最基本的夹管阀闭环控制回路,但这种简单控制可以进行多种组合以适用于多种流体介质的压力流量控制。本文同时也介绍了夹管阀应用的局限性和改进方法。[/color][/b][/size][align=center][size=16px][color=#339999][b]=======================[/b][/color][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 夹管阀是一种打开或关闭流体路径,而阀体不会与流动介质接触的阀门,也就是流体管路内径的控制依赖于弹性管路外部的挤压压力。夹管阀主体内部不会接触到流体,仅有管路内部会接触流经的液体或气体,可确保流体不会受到污染,且能保持夹管阀的清洁,因此适合做为生物加工、食品工业、饮料工业、剂量系统、自动贩卖机、血液处理/分析、实验室分析、冲洗程序需无菌的生物制药等设备的阀门。与其他闸阀或活塞阀相比,使用夹管阀的主要优点是让阀体不会与腐蚀性流动介质接触,因此无论在使用寿命或卫生方面都更持久、干净。[/size][size=16px] 在夹管阀的实际应用中,往往是通过改变夹管阀挤压压力来调节软管的开度,以控制管路内[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]介质的输送流量与流速,同时也相应的改变了软管内部的背压压力。夹管阀只是作为一个调节流量和压力的执行器件,还无法进行管路内部压力和流量的闭环自动控制。[/size][size=16px] 为了采用夹管阀实现无菌流体系统中的压力和流量控制,特别是实现高精度的自动控制,本文将介绍一种闭环控制解决方案及其一些具体应用案例。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了高精度的控制流体介质管路中的压力和流量,本解决方案提出的控制系统如图1所示。解决方案设计的控制系统是一种最基本的控制结构,可以根据实际应用情况进行各种组合。[/size][size=16px] 图1所示的控制系统主要由泵、压力传感器、流量传感器、夹管阀、程序控制器和柔性管材组成,其各组件的功能如下:[/size][size=16px] (1)泵:主要用来驱动流体在柔性管路内流动,相当于一个进液源。[/size][size=16px] (2)压力传感器:测量柔性管路内流动液体的压力,并输出相应的压力测量信号。[/size][size=16px] (3)流量传感器:测量柔性管路内流动液体的流量,并输出相应的流量测量信号。[/size][size=16px] (4)夹管阀:夹管阀采用的是电控式夹管阀,可灵活调节挤压压力,对应最大可夹软管外径7mm,软管壁厚范围0.5~2mm,夹紧留隙调节为0.5~2mm。夹管阀可方便地调节运动滑块的初始位置,灵活适用不同壁厚尺寸的软管。24V直流供电,控制信号为0~5V或0-20mA。[/size][size=16px] (5)程序控制器:程序控制器采用的是VPC2021系列多功能超高精度PID真空压力程序调节器,可接入真空、压力、流量、温度和张力等47种传感器信号,具有串级控制、分程控制、比值控制等高级控制功能,具有控制程序功能和外部设定点功能,具有24位AD、16位DA和0.01%最小输出百分比。控制器自动计算机软件,可由计算机进行远程参数设置和运行操作。[/size][align=center][size=16px][color=#339999][b][img=夹管阀流体压力和流量闭环控制系统结构示意图,600,296]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181700229428_1520_3221506_3.jpg!w690x341.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 夹管阀流体压力和流量精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 解决方案中的压力和流量控制系统的工作过程是进液通过泵的驱动使流体介质在柔性管道内流动,压力或流量传感器采集相应的压力或流量信号并传输给程序控制器,控制器根据设定值进行比较后输出控制信号驱动夹管阀动作,使管路内的压力或流量准确达到设定值。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 尽管上述夹管阀具有高精度的压力和流量的控制能力和响应速度快的特点,但由于夹管阀会改变柔性管路的内径大小,使得管路内部的背压增大,而这种压力的增大必须要在软管的可承受范围之内,否则很容易造成软管的爆裂或接口爆开。因此,更安全可靠的压力和流量控制方式是不使用夹管阀,而是直接控制进液压力,通过改变进液压力来调节管路内的介质压力和流量。这种进液压力调节有以下三种控制方式:[/size][size=16px] (1)采用转速可调节式泵来改变进液压压力。[/size][size=16px] (2)采用注射泵来改变进液压力和流速。[/size][size=16px] (3)采用进液容器顶部气压控制方式的压力控制器,同时连接外部压力或流量传感器形成闭环控制回路,以改变液池顶部加载压力实现压力和流量的自动控制。[/size][size=16px] 上述的三种控制方式中,顶部气压控制方式的技术优势最为明显,同样可以实现高精度的压力和流量控制,特别是可以应用到微小流量的快速和超高精度控制。[/size][size=16px] 另外,对于微流控芯片技术中所用的微小流量控制,往往会使用到小于1mm的很细软管,这些微细软管内的压力和流量控制则可能不太适合采用夹管阀,这时更适合采用注射泵或压力控制器形式。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 流体的粘度

    粘度是表示流体的内磨擦的物理量,是一层流体对另一层流体作相对运动的阻力。流体的粘度随温度而变,温度升高,液体粘度减小,而气体粘度增大。压力对液体粘度基本上无影响,而对气体粘度的影响只有在极高或极低压力下才比较明显,因此不注明温度条件的粘度是没有意义的。 对于流体,我们通常可以把它们分为两大类.1.牛顿流体,也就是理想流体,符合牛顿定律即两相邻流体层之间的单位面积上的内摩擦力(实际上是表面力中的切应力,又称剪应力,)与两流体层间的速度梯度dv/dy成正比,所有的气体和大部分低分子量(非聚合的)液体或溶液均属于牛顿型流体。.2.非牛顿流体,凡是不符合牛顿流体公式的流体,统称为非牛顿流体.其中,流变行为与时间无关的有:假塑性流体,胀塑性流体和宾汉(Bingham)流体.而流变行为跟时间有关的,又分为触变性流体和震凝性(即反触变性)流体粘度值的表示方法:a.绝对粘度:分为动力粘度和运动粘度。液体中有两层面积各为1平方厘米和相距1厘米的油液,相对移动速度为1厘米/秒时所产生的阻力,叫动力粘度。单位原是"泊"(P),实用单位是"厘泊"(CP)。换算成现行的法定计量单位用下式:1泊(P)= 0.1帕*秒(Pa*S)1厘泊(CP)= 0.01泊(P)= 1毫帕*秒(mPa*S)在同一温度下液体的动力粘度与其密度的比值即为运动粘度。单位原是"斯"(St),实用单位是"厘斯"(cSt)。换算成先现行的法定计量单位可用下式:1斯(St)= 10-4m2/s1厘斯(cSt)= 1mm2/sb.相对粘度:在工业生产中用各种特定仪器计量的粘度,例如恩氏的条件度,开口杯的时间。这些数值一般可通过公式转为绝对粘度。以上为收集资料

  • 【资料】超临界流体色谱法分析大豆磷脂

    [size=5]超临界流体色谱法分析大豆磷脂[/size] 来源: 作者:王学军, 赵锁奇, 王仁安 摘要:采用以CO2为流动相的超临界流体色谱方法,以含0.05%(体积分数)三乙胺的乙醇作为改性剂,对具有重要生物功能的大豆磷脂组成进行分析,获得了大豆磷脂提取物中6个重要组分的定性结果,并讨论了流动相组成、操作温度和压力对分离的影响。对其中有代表意义的磷脂酰胆碱(PC)进行了外标法定量分析,在PC质量浓度为0.020 g/L-0.075 g/L时具有较好的线性关系,PC加样回收率为96.7%( =5),重现性好。此方法可用于实际样品的分析。关键词:超临界流体色谱;磷脂酰胆碱;大豆磷脂2 实验部分2.1 仪器与试剂 所用SFC装置由本实验室设计组装而成。Rheadyne进样器配有lOμL的定量管,Spectra 100可变波长紫外检测器为美国TSP公司产品,色谱信号由色谱工作站记录。无水乙醇、三乙胺均为国产分析纯试剂。PC,PE,PI标准品购自Sigma公司大豆磷脂分别为本实验室超临界流体抽提萃取物和北京化学试剂公司产品。2.2 色谱条件 参考文献[2,7,8]所报道的内容,本实验所用色谱柱选择Sphefisorb C18 10μm(中科院大连化学物理研究所),250 mm×4.6mm i.d.不锈钢柱;流动相为超临界CO2和改性剂(体积比为10:1),其中改性剂为含0.05%(体积分数)三乙胺的乙醇溶液;流动相流速为1.1mL /min~1.3 mL/min;柱温为3O℃~60℃ ;压力为20MPa~30MPa;进样体积为10μL;经紫外扫描,选择检测波长为214nm。2.3 混合标准溶液和样品溶液的制备 称取各磷脂标准品适量,加人同一容量瓶中,加乙醇至刻度,配成标准品的混合溶液,其中每一标准品的质量浓度均在0.2 g/L到10.0 g/L之问;分别称取两种大豆磷脂样品1.0 g,并各自配成质量浓度约为50 g/L的乙醇溶液。

  • 【转帖】流体力学相关问题

    带着对科学存有怀疑的态度,我对伯努利方程产生了质疑,于是便自己总结了一些理论与其相对比。流体在未受到外力作用的情况下是相对静止的,压力为常量。称为静压力。当流体要流动时,必须受到外力的作用。这个外力只能是大于常量压力的压力,称为动压力,或小于常量压力的吸力,称为动吸力。流体不论是静止还是流动,静压力保持不变。当静止的流体一面受到大于常压的压力时,流体开始向另一面流动,在不受到任何阻力的情况下,始终向一个方向流动。当前方受到阻力时,流体向四周扩散,扩散的速度受压阻比影响,压力不变,阻力越大扩散越快,阻力越小扩散越慢。阻力不变,压力越大扩散越慢,压力越小扩散越快。流体受到的压力称为总动压力,它的力一部分压缩流体,一部分摩擦损耗,其余的推动流体流动,各部分的力的总和等于总动压力,称为动量守恒。总动压力加上静压力称为流体流动时的总压力。当静止的流体受到小于常压的吸力时,流体开始向吸力方向流动。在无任何阻挡的情况下,吸力向前方的各个角度作用,并逐步扩大吸力范围,使无阻挡的各处流体流向吸力。流体流动的速度与流体的运动横截面积和吸力大小相联系。吸力不变,横截面积越大流速越慢,横截面积越小流速越快。横截面积不变,吸力越大流速越快,吸力越小流速越慢。流体受到的吸力称为总动吸力,它的一部分稀薄流体,一部分摩擦损耗,其余的吸动流体流动,各部分的力的总和等于总动吸力,称为动量守恒。静压力减去总动吸力等于流体流动时的总压力。管道中的流体在受到压力做定常流动时,流体的动压力,流速,单位时间内的流量,管道的横截面积,流体扩散的速度之间的关系。1.流体在受到压力做定常流动时,同一管道内的各横截面流量相同。2.压力一定,流速一定,横截面积越大流量越大,横截面积一定,压力越大流量越大,流速越大。3.压力一定,流量一定,横截面积越大,流速越慢,横截面积越小流速越快。4.流体流经最小横截面以前,各处压力基本相同。流经最小横截面以后,压力减小,减小的比例为此最小横截面与下一最小横截面的比。此最小横截面与下一最小横截面之间的各处压力基本相同。5.压力一定,流速一定,流量越大流体扩散越快,压力一定,流量一定,流速越快扩散越慢。流体受到吸力时,各量的关系。1.流体在受到吸力做定常流动时,各横截面处流量相同。2.吸力一定,流量一定,横截面积越大流速越小。横截面积越小流速越大。3.吸力一定,流速一定,横截面积越大,流量越大。水流自上而下自然流动时,是一种吸力做功,吸力的做功点是随处而在。当水流的方向受到阻挡时,阻挡面以上的吸力便转变为压力。由此看来,流体的流速大小并不能决定压力的大小,更不能起到吸引其它物体的作用。因此,升力的形成并不是流速差引起的,而是另一种力的作用。这种作用是流体流经弧形表面时,做绕弧运动,从而产生了离心力,流体受离心力作用向外运动产生吸力做功,并从而形成了升力。流体做绕弧运动的原因是流体在翼片前端受阻向上压缩,过凸点后向下逐步扩散便顺着弧行面流动。空气的离心力究竟有多大呢,用扇子扇一下就知道了。当扇子直线运动时,没有离心力,感觉气流很小,当扇子弧形扇动时,气流受到离心力作用向外流动,会感觉到气流很强。我只是业余科学爱好者,由于时间关系,有许多细节没有讲清楚,以后有时间在补充。希望能有科学爱好者能对此进行实际验证。

  • 【求助】请问怎么测管内流体的温度

    请问高手,我想测内径为2mm的管路中的实际流体温度,流体大概温度为600多度,压力为4MPa。请问怎么测管内流体的温度啊?现在只能测管壁的温度。 谢谢。

  • 锂离子电池集流体

    请教,锂离子电池中使用铜箔作为负极的集流体,铝箔作为正极的集流体,能反着使用吗?如果负极使用铝箔作为集流体,正极使用铜箔作为集流体,会怎样?

  • 【资料】-超临界流体的共溶剂效应和混合流体研究进展

    [b]超临界流体的共溶剂效应和混合流体研究进展[/b][i]牟天成,韩布兴[/i]摘 要:共溶剂的出现极大地拓展了超临界流体的应用范围,推动了超临界流体科学与技术的发展。本文从相行为和分子间相互作用热力学的角度,对相行为测定、量热技术、光谱技术和分子模拟等在超临界流体中共溶剂效应的研究作了综述,主要介绍超临界流体中共溶剂的作用机理和混合流体在临界点附近热力学性质研究,并对其未来发展方向进行了展望。关键词:超临界流体 共溶剂 分子间相互作用 混合流体1 引 言最近20年以来,超临界流体科学和技术得到了快速发展,其理论和应用研究正处于快速增长阶段。随着人们对超临界流体本性认识的提高,超临界流体在萃取、化学反应、材料制备、分析技术、胶体和表面科学、生物技术等领域得到了广泛应用,其应用范围和领域还在不断扩大之中,而且必将有更为广阔的应用前景。超临界流体得到人们广泛关注,是因为它具有一些特殊性质:(1)超临界流体的密度可以从气态密度连续变化到液态密度,尤其是临界点附近,压力和温度的微小变化可导致密度成倍变化;(2)由于粘度、介电常数、扩散系数和溶解能力都与密度有关,可以通过调节温度和压力来控制超临界流体的物理化学性质。在超临界流体中,CO2的使用最普遍,原因如下:CO2溶解能力强;临界温度和临界压力适中;无毒无害,便宜易得;化学惰性,易分离等,是环境友好的绿色溶剂。[color=red]下面有全文的Word文档,需要的可以下载。[/color]

  • 【转帖】超临界流体定义、特点

    超临界流体定义、特点㈠定义超临界流体(supercritical fluid,简称SCF)可用临界温度和临界压力的形式来定义。气、液两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气、液两相性质非常接近。超临界流体(supercritical fluid),又称为稠密气体(dense gas)或高压气体(high compressed gas),它不同于一般的气体,也有别于一般液体,兼有液体和气体的双重特性,密度接近于液体,粘度和扩散系数接近于气体,渗透性好,与液体溶剂萃取相比,可以更快地完成传导,达到平衡,促进高效分离过程的实现。㈡特点超临界流体的溶解能力取决于它的温度和压力,通常和流体的密度呈正相关,随流体的密度增加而增加。在临界点附近,压力、温度的微小变化会引起流体密度及其对物质溶解能力的较为显著的变化。被用作超临界流体的溶剂有乙烷、乙烯、丙烷、丙烯、甲醇、乙醇、水、二氧化碳等多种物质,超临界二氧化碳是首选的萃取剂。这是因为二氧化碳的临界条件易达到(Tc=304.1 K,Pc=7.347 MPa),且无毒、无味、不燃、价廉、易精制,这些特性对热敏性和易氧化的产物更具有吸引力。超临界流体的特性① 无毒性、不燃性和无腐蚀性。超临界CO2流体无毒和不可燃,有利于安全生产,而且来源丰富,价格低廉有利于推广应用,降低成本。② 容易达到超临界条件。CO2临界温度为Tc=31.1℃ ,临界压力为Pc=7.3MPa,CO2的超临界条件与水相比(水的临界温度为374℃,临界压力为22MPa)更容易达到。

  • 加压流体萃取仪的五大优势体现

    加压流体萃取仪是一种用于提取样品中目标成分的高效、快速、环保的分析仪器。采用高压流体作为提取溶剂,通过高速离心力将目标成分从样品中分离出来,从而实现对目标成分的快速、准确、高纯度的提取。工作原理是先将样品和提取溶剂加入萃取池中,然后通过高压泵将高压流体注入萃取池,使样品充分与提取溶剂接触,目标成分溶解在提取溶剂中。接着,通过高速离心机将提取溶剂中的固体颗粒分离出来,得到含有目标成分的提取液。最后,通过控制系统对提取液进行收集、处理和分析,从而得到目标成分的含量。广泛应用于环境监测、食品安全、药物分析、石油化工等领域,是实验室分析的重要工具。 加压流体萃取仪具有的优点:      1.高效:由于采用高压流体作为提取溶剂,使得样品与提取溶剂的接触更加充分,从而提高了提取效率。同时,高速离心分离技术使得目标成分的提取速度更快,大大缩短了分析时间。      2.快速:整个操作过程自动化程度高,操作简便,大大提高了分析速度。此外,由于采用了高压流体和高速离心分离技术,使得目标成分的提取和分离过程更加迅速。      3.环保:采用非有机溶剂作为提取溶剂,避免了有机溶剂对环境和人体的危害。同时,高压流体的使用减少了溶剂的使用量,降低了对环境的污染。      4.高纯度:由于采用了高压流体和高速离心分离技术,使得目标成分的提取和分离过程更加干净,从而保证了提取液的高纯度。      5.广泛的应用范围:适用于各种类型的样品,如固体、液体、气体等,可以满足不同领域的分析需求。

  • 超临界流体萃取

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理(一). 超临界流体定义  任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取本文摘自:www.wolsen.com.cn

  • 有卖加压流体萃取(PLE)的吗?

    《土壤和沉积物 有机物的提取 加压流体萃取法》标准的征求意见稿中用到加压流体萃取(PLE),有这个仪器吗?要是有相关的用户,有什么好的建议,那就更好了。我们只需跟此标准匹配的仪器(即加压流体萃取(PLE)仪),[b]不匹配的勿联系[/b]。有相关的信息麻烦发我邮箱:[email]yzhlai@163.com[/email]最好提供仪器型号、规格、具体参数、标准配置及价格,越详细越好!同时留下联系方式。

  • 加压流体萃取仪的具体操作步骤

    加压流体萃取仪是一种用于提取和分离化合物的实验室设备。利用高压气体或液体对样品进行物理冲击,使目标化合物从固体或液体基质中释放出来,并通过进一步的分离步骤得到纯化的目标化合物。 加压流体萃取仪通常由以下主要部分组成: 1.压力控制系统:用于控制加压流体的压力,以实现对样品的物理冲击。常见的压力控制系统包括手动调压阀、电动调压阀和计算机控制的自动调压系统。   2.流体供应系统:用于提供加压流体,如气体或液体。常见的流体供应系统包括气瓶、液体储存罐和流体输送管道。 3.样品处理系统:用于接收样品并将其置于加压流体中进行处理。样品处理系统通常包括样品容器、阀门和连接器等部件。 4.分离系统:用于将目标化合物与基质分离。常见的分离系统包括过滤器、离心机和色谱柱等。 5.检测系统:用于检测和分析目标化合物的性质和纯度。常见的检测系统包括光谱仪、质谱仪和色谱仪等。 加压流体萃取仪的操作步骤一般如下: 1.准备样品:将待提取的样品研磨成粉末或悬浮在适当的溶剂中。 2.设置压力控制系统:根据需要调整压力控制系统,以实现对样品的适当物理冲击。 3.添加溶剂:将适当的溶剂添加到样品中,以帮助目标化合物的释放和分离。 4.启动流体供应系统:打开流体供应系统,使加压流体流入样品处理系统中。 5.进行提取:将样品置于加压流体中,使其受到物理冲击,从而释放出目标化合物。 6.分离目标化合物:通过分离系统将目标化合物与基质分离,得到纯化的目标化合物。 7.检测和分析:使用检测系统对目标化合物进行检测和分析,以确定其性质和纯度。

  • 超临界流体色谱SFC

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 流体培养基

    硫乙醇酸盐流体培养硫基在培养过程中会变红色,培养基会不会无效了

  • 超临界流体色谱

    超临界流体色谱

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 加压流体萃取仪的操作步骤

    加压流体萃取仪的工作原理是利用高压泵将溶剂或混合溶剂注入到样品中,通过高压作用下的流体流动,使目标物质从样品基质中溶解出来。然后,通过过滤、离心等步骤将目标物质与基质分离。这种方法可以有效地提高目标物质的浓度,减少后续分析过程中的干扰,提高分析的准确性和灵敏度。 加压流体萃取仪广泛应用于环境监测、食品安全、药物分析、生物化学等多个领域。在环境监测中,可以用来提取土壤、水样中的污染物:在食品安全领域,可以用来提取食品中的添加剂、农药等残留物:在药物分析中,可以用于提取药物中各种化合物:在生物化学中,可以用来提取蛋白质、核酸等生物大分子。 1.正确选择萃取液和萃取条件,可根据需要进行反复试验,以确定最佳的提取条件。 2.样品制备和样品处理应严格按照实验要求,以免影响提取效果和准确度。 3.安装和使用仪器时需注意相关安全事项,特别是在涉及高压液体的操作时要格外谨慎。 综上所述,加压流体萃取仪是一种高效、经济、高灵敏度的实验室工具,其工作原理和优势使其在多个领域得到广泛应用。随着科技的不断发展,加压流体萃取技术有望得到更进一步的优化和改进,为不同领域的提取分离技术提供更多可能性。

  • 加压流体萃取仪的组成部分及特点

    加压流体萃取仪(PressurizedFluidExtractionPFE)是一种利用高压流体作为萃取剂,对样品进行高效、快速、准确提取的仪器。以下是对加压流体萃取仪的详细介绍: 主要组成部分 加压流体萃取仪的主要组成部分包括高压泵、萃取容器、过滤器、离心机等。高压泵是设备的核心部件,负责提供足够的压力以驱动流体流动:萃取容器用于放置样品和溶剂:过滤器用于去除流体中的固体颗粒,保证萃取液的纯净度 离心机则用于将萃取液中的固体颗粒与液体分离,得到目标物质。 特点与优势 1.高效快速:相比传统的萃取方法,加压流体萃取仪可以在较短时间内完成提取过程,大大提高了工作效率。 2.提取效果好:高压和高温的条件可以增加物质的溶解度和扩散速率,使得目标物质更容易被提取出来,提高了提取效果。 3.绿色环保:使用的溶剂量相对较少,减少了化学废物的产生,符合绿色化学的理念。 4.自动化控制:配备了先进的自动化控制系统,可以对提取过程进行精确控制,保证提取的稳定性和可重复性。 5.多功能性:可以进行多种类型的提取,包括固相萃取、液液萃取、液相微萃取等,并可根据不同需求选择操作参数。

  • 【资料】《超临界流体萃取技术研究与应用进展》

    超临界流体萃取技术研究与应用进展赵东胜, 刘桂敏, 吴兆亮( 河北工业大学化工学院, 天津300130)摘要: 综述了超临界流体萃取的基本原理, 以及提高超临界流体萃取效率的方法, 包括加入夹带剂、利用高压电场和超声波等。并对超临界流体萃取技术在生物化工、食品、医药和环保行业的最新应用情况作了介绍。关键词: 超临界流体萃取; 萃取效率; 夹带剂; 应用中图分类号: TQ 028.8 文献标识码: A 文章编号: 1008- 1267( 2007) 03- 0010- 03下载链接:http://www.instrument.com.cn/download/shtml/155631.shtml

  • 【原创】上海阀门的流量系数,流体阻力系数,压力损失

    鸿丰知识吧:一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。1.流量系数的定义流量系数 表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。2.阀门流量系数的计算3.流量系数的典型数据及影响流量系数的因素公称通径DN50mm的各种型式阀门的典型流量系数见表。流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p表示。1. 阀门元件的流体阻力阀门的流阻系数 ! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统( 流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。(1)突然扩大会产生很大的压力损失。这时,流体部分速度消耗在形成涡流、流体的搅动和发热等方面。局部阻力系数与扩大前管路截面积A1和扩大后管路截面积A2之比的近似关系可用式(1-9)及式(1-10)表示;阻力系数见表(2)逐渐扩大 当θ<40℃时,逐渐扩大的圆管的阻力系数比突然扩大时小,但当θ=50-90℃时,阻力系数反而比突然扩大时增大15%- 20%。逐渐扩大的最佳扩张角θ:圆形管θ=5-6.5℃,方型管θ=7-8℃,矩形管10-12℃。(3)突然缩小(4)逐渐缩小(5)平滑均匀转弯(6)折角转弯 折角转弯主要产生在锻造阀门中,因为锻造阀门的介质通道是用钻孔方法加工的。在焊接阀门中也会产生急剧转弯。(7)对称的锥形接头 对称的锥形接头类似阀门缩口通道。2.阀门的流体阻力阀门的流阻系数随阀门的种类、型号、尺寸和结构的不同而不同。 三、阀门的压力损失 由于蝶阀在管路中的压力损失 比较大,大约是闸阀的三倍,因此在选择蝶阀时,应充分考虑管路系统受压力损失的影响。

  • 【资料】超临界流体色谱法

    [b]超临界流体色谱法[/b](Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法.所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间.超临界流体色谱技术是2O世纪80年代发展起来的一种崭新的色谱技术.由于它具有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相所没有的优点,并能分离和分析[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.

  • 微流体系统控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html]微流体系统控制器flowtest[/url][/b]是专业为[b]控制微流体器件[/b]设计,是用于micropump, microvalues等[b]微流体器件控制[/b]的进口[b]微流体控制器[/b]。[b]微流体系统控制器[/b]能够同时和独立地控制流体系统使用8个阀和8个泵,还可通过计算机编程控制微流动序列。此编程功能可以编辑新程序控制要求液体位移,取样和注射,并可以设置,存储和管理多个程序。用户可以毫不费力地检索和运行他们的程序。[img=微流体系统控制器]http://www.f-lab.cn/Upload/flow-test-controller.jpg[/img]在使用跨实验室和工业应用领域,需要精确液体转移。比如,微流体系统控制器FlowTest™ 将被证明是许多质量检测应用,流体系统发展或使用泵和阀门仪表的宝贵资产。微流体系统控制器还可以作为一个独立的仪器使用,无需电脑。在这种情况下,程序被加载在USB密钥上。通过位于控制盒的上方“运行/暂停”和“停”按钮,方便地操作控制器。微流体系统控制器:[url]http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html[/url]

  • 作微流体实验的管道

    我想做微流体实验,但不知现在那里可作微管道的代加工.刻10~20个宽为50到200μm,深为100~300μm,使用硅或铝的管材。不知高人能否指点一下。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制