当前位置: 仪器信息网 > 行业主题 > >

硫化过程热分析

仪器信息网硫化过程热分析专题为您整合硫化过程热分析相关的最新文章,在硫化过程热分析专题,您不仅可以免费浏览硫化过程热分析的资讯, 同时您还可以浏览硫化过程热分析的相关资料、解决方案,参与社区硫化过程热分析话题讨论。

硫化过程热分析相关的资讯

  • 专家约稿|硫化橡胶逆向设计中成分测试方法研究
    硫化橡胶逆向设计中成分测试方法研究苍飞飞1,2,3(1.北京橡院橡胶轮胎技术服务有限公司,北京,100143;2.北京橡胶工业研究设计院有限公司,北京,100143;国家橡胶轮胎质量检验检测中心,北京,100143)摘要:轮胎作为汽车行业重要的组成部分,一直在不断的向着新的目标迈进,轮胎胶料成分分析主要包括五个部分:高聚物定性、高聚物含量和炭黑含量、有机物定性、无机物定性定量、硫化体系的定性定量。高聚物定性可以使用裂解气相色谱法、裂解气相色谱质谱法、红外光谱法;高聚物和炭黑的含量采用热重分析仪;有机物定性可以采用裂解气相色谱质谱法、气相色谱质谱法、红外光谱法;无机填料定性、定量采用化学法、原子吸收光谱法、等离子发射光谱法;硫化体系的定性、定量采用化学法。大型仪器的使用,可以测试更准确可靠的实验数据,为轮胎行业的进一步成长,提供有力的依据。关键词:轮胎、成分分析、测试轮胎作为车辆唯一与地面接触的部位,承担着承受载荷、改变方向、缓冲与减震、驱动与制动四个方面的重要作用[1]。轮胎的制备过程中配方和结构都是非常重要的因素。目前在人类社会实现“碳中和”的伟大事业中,百岁老产品与时俱进,在社会可持续性发展的征程上续写着传奇、再立新功,助力人类社会达成“双碳”目标[2]。为了达到这个目标,国产轮胎还要不断努力,缩小与一线品牌轮胎的差异,从北京橡胶工业研究设计院有限公司第一次组织行业轮胎剖析会议到现在已经有40多年的历史了,轮胎行业的配方工程师一直都没有停下脚步,追寻着寻找合理的配方组成,因此开展轮胎成分测试工作是一项非常有意义的工作。在新时代、新环境下,轮胎肩负的责任发生了变化,目前气候变化已经成为世界各国政府关注的焦点,尤其近10年来各种自然灾害给人民生活贺财产造成了巨大损失[3]。为此,巴黎协定以后,各国政府在节能环保方面相继制定了严格的法律,并出台了相关措施,尽量减少碳排放。各个行业纷纷开展相应的政策,并且纷纷表示将于2040年实现“零”排放。因此轮胎的配方研制非常重要。目前欧盟REACH法规、轮胎标签法及美国的SMARTWAY等,轮胎企业针对目前的状况投入大量的人力、物力,开发设计新产品,尤其是新能源汽车轮胎,利用新技术、新材料和新工艺生产制造出高性能的子午线轮胎,进一步提高了汽车的环保、节能和安全性能。 轮胎是一个比较复杂的复合体,它大约有十几个部位组成,如:胎面胶、胎侧胶、基部胶、带束层胶、胎肩垫胶、胎体胶、胎圈胶、子口护胶、三角胶、内衬层胶等。目前针对整条轮胎成分检测有两个权威的检测机构,一个是美国的斯密斯公司,另一个是国家橡胶轮胎质量监督检验检测中心。两者在成分分析检测方面有一些差异,国家橡胶轮胎质量监督检验检测中心检测项目更完整、更全面,从胶型、胶比、橡胶含量、炭黑含量到有机填料、无机填料的定性定量检测;斯密斯公司擅长选择相同规格不同厂商的产品,分别测试,然后对比分析,并且在物理性能方面测试的项目比较完整,两者各有优缺点,剖析配方所呈现出来的结果要通过配方工程师的研究、调整、完善,才能转化为剖析配方。因此剖析配方是基础,是新配方研究得核心和关键。目前轮胎胶料成分分析方法的研究正在逐步的成熟,大量关于轮胎胶料配方组分研究的国家标准[4]-[10]已经发布或正在制定或修订过程中,方法标准的统一,让测试结果更加可靠,为配方的研究提供可靠、准确的实验数据。但方法和方法之间以及标准的应用方面还有一些问题,本研究就是基于相同试验项目采用不同的仪器设备所存在的问题的讨论与研究工作,希望大家能够理解测试工程师的工作,如果人员和设备不存在问题,得出的结果您有异议,可能是方法问题导致的结果,希望大家能够理解,能够正确的分析测试数据,解析出合理的结果,为新配方的研发提供有力的支持。胶料成分分析的方案胶料成分分析方案是根据样品配方设计的特点来确定的,不同的部位由于作用不一样,承受的条件也有差异,因此配方设计过程中是要对每个部位的特点来设计配方,例如[11]胎面胶是轮胎与地面接触的部分,那就需要提高轮胎胎面的胶料的拉伸性能和耐撕裂性能,使用特殊炭黑可以增加轮胎的耐磨性和导电性,并且要注意轮胎的生热,增强轮胎的寿命。轮胎作为橡胶工业的主导产品,其设计及生产制造过程的经济性直接影响企业的内生动力即盈利能力[12],因此在配方设计的过程中,也要考虑成本的计算,其中的配方成本是其中非常重要的一项考虑因素。如果可以实现通过材料替代以节约成本和提高硫化效率的操作实例,其直接影响企业产品效益的最大化[13]。1.高聚物定性高聚物的定性轮胎成分分析非常重要的一个测试环节,胎面胶选择合适的橡胶品种可以改善胎面胶的耐磨性能和降低滚动阻力[14]。高聚物的鉴定目前常采用的方法有:裂解气相色谱法[4]~[5]、裂解气相色谱质谱法[10]、红外光谱法[15]、核磁共振波谱仪。裂解气相色谱法和裂解气相色谱质谱法都是基于裂解器的前处理装置,后面的气相为分离装置,用火焰离子检测器(FID)和质谱检测器(MS)测试高聚物样品的一种方式。裂解器在惰性气体中被快速热解而生成具有高聚物表征的裂解产物(小分子碎片混合物),并随着载气导入分离装置(气相色谱)中的一种前处理方式。此方法的特点是仪器灵敏度高,样品用量少,不受填料的干扰等优点,其缺点是需要建立实验室内部的谱库、本方法属于相对方法[16]。红外光谱法是经典的物质化学结构分析与鉴定方法之一[17],广泛应用于科研领域。红外光谱可以给出物质所包含的官能团、结晶态等化学结构信息;而且,化学结构不同的物质、对应的红外光谱谱图具有指纹特征性[18],在标准中明确说明针对生胶、硫化胶、未硫化胶以及热塑性弹性体进行鉴定的方法,一共有两种分析方法,透射分析法和反射分析法。在轮胎胶料成分分析过程中有两点需要注意,其一是钢丝圈夹胶由于硫黄含量过高,影响特征谱图,对结果的分析有影响;其二顺丁胶和丁苯橡胶混合时,区分有一定的困难。傅里叶变换红外光谱法在高分子鉴定过程中需要注意以上问题,避免存疑数据的存在。核磁共振波谱仪可以有效的表征高聚物的支化度,核磁共振波谱仪目前主要是H谱和C谱两类原子核谱图,H-NMR简便快捷能够通过不同级数C原子上H的积分面积,定量表征高聚物的短链支化度;而对于长链支化,需要利用C-NMR检测支化度C原子、支化点附件C原子的峰来确定支链类型和支化度[19]。2.高聚物及炭黑含量热重分析技术(thermogravimetry,TG)是指 在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程。 基于 TG 法,可对物质进行定性分析、 组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域[20]-[21]。目前用的最多的方法有三个,其中轮胎常用的方法是,GB/T 14837.1-2014《橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第1部分:丁二烯、乙烯-丙烯二元和三元共聚物、异丁烯-异戊二烯橡胶、异戊二烯橡胶、苯乙烯-丁二烯橡胶》,这个标准涵盖了轮胎常用的高聚物:天然橡胶、丁苯橡胶、顺丁橡胶。热重分析仪可以准确的表征胶料配方中高聚物的含量、炭黑含量。在二十世纪初期,热重分析仪主要来自于美国、欧洲以及日本厂商,国内的仪器产品稳定性差,但在最近几年,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.。未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破,同时,我国相关仪器 厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地[20]。3.有机物定性、定量轮胎配方中需要加入有机配合剂,在配方的调整过程中,才能呈现出优异的性能,常加入的有机配合剂有:防老剂、防焦剂、促进剂、增粘剂、增塑剂、粘合剂、加工助剂等等,并且在硫化过程中,这些有机配合剂有的会发生化学反应,给配合剂的定性工作带来一定的难度。轮胎配方定性、定量常用的仪器设备是气相色谱质谱仪、裂解-气相色谱质谱仪、红外光谱仪、液相色谱仪、液相色谱质谱联用仪等。在长期的使用过程中,发现色谱方式由于色谱柱的分离作用,可以将混合物进行分离,可以提升检测的效率和检定结果的准确性。4.无机物定性、定量轮胎是一种常见的高分子复合材料,发展高耐磨、高抗湿滑、低滚阻的新一代轮胎是目前轮胎行业的重要挑战,在轮胎的制备过程中,填料的用量仅次于聚合物。填料的加入能提高聚合物复合材料的性能,改善轮胎的抗湿滑性、耐疲劳性以及耐低温耐高温能力等[22]。二氧化硅是轮胎中常用的填料,由于二氧化硅自身的特点,强吸附性、大比表面积,可以实现对有机分子的多层吸附,提高轮胎的抗撕裂性能[23]。二氧化硅的检测目前采用的化学法,将样品灼烧后,加入氢氟酸,剩余的二氧化硅与氢氟酸反应,生成四氟化硅,以气体的形式挥发掉,通过质量的变化来确定样品中加入的二氧化硅的含量。轮胎胶料中还有一些金属氧化物,如:氧化锌等,可以通过原子吸收光谱法和等离子发射光谱法进行测试。原子吸收光谱仪原理为处理后的液体样品吸入火焰中,火焰中形成的原子蒸汽对光源发射的特征电磁辐射产生吸收。将测定的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量[24]。电感耦合等离子体发射光谱仪原理为过滤或消解处理过的样品在等离子体火炬的高温下被原子化、电离、激发[25]。不同元素的原子在激发或电离时可发射出特征光谱,特征光谱的强弱与样品中原子浓度有关,即可测定样品中各元素的含量[26]。电感耦合等离子体发射光谱仪具有检出限低,准确度高、精密度高的优点, 并且可同时测定多种元素,时效快。但是在测定组分复杂的样品时,容易产生基体效应,从而影响检测结果的准确性。而火焰原子吸收光谱仪检出限较高,准确度、精密度相对较低,但在抗基体干扰能力方面的优势大于电感耦合等离子体发射光谱仪[27]。因此,在测试轮胎胶料样品时,要根据情况选择合适的仪器设备。5.硫化体系的定性、定量轮胎胶料的硫化体系主要是指加入的硫磺、促进剂、以及活化剂,其中硫磺含量的检测是依据国家标准GB/T 4497.1-2010《橡胶 全硫含量的测定 第1部分:氧瓶燃烧法》,将橡胶样品在通氧气条件下,燃烧,用双氧水吸收燃烧后气体,然后滴定生成的硫酸根,反推出胶料中硫含量。本方法测试的是胶料中所有的硫,包括促进剂中的硫、炭黑中的硫。因此对数据的解读需要进行修正。小结本文对轮胎胶料的成分分析进行了全面的介绍,高聚物定性可以使用裂解气相色谱法、裂解气相色谱质谱法、红外光谱法;高聚物和炭黑的定量采用热重分析仪;有机物定性可以采用裂解气相色谱质谱法、气相色谱质谱法、红外光谱法、无机填料定性、定量采用化学法、原子吸收光谱法、等离子发射光谱法、硫化体系的定性、定量采用化学法。合理的使用方法,可以为进一步解析数据提供有力的支持,为轮胎配方胶料的研制提供有力的数据支持。作者简介苍飞飞, 北京橡院橡胶轮胎检测技术服务有限公司(国家轮胎质量检验检测中心)/北京橡胶工业研究设计院有限公司副总工程师、技术负责人、高级工程师,从事橡胶检测工作22年,主要工作之一为开展轮胎橡胶制品类产品得剖析检测工作,使进口产品国产化提供有力的数据。社会兼职:全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会专家委员;全国橡胶与橡胶制品标准化技术委员会通用试验方法分会专家委员;北京市热分析学会委员;公安部检测中心专家库成员;教育装备协会理事会理事等。主持或参加纵向及横向项目30余项;完成学术论文30余篇;参加国家标准制修订工作11项,其中“橡胶制品化学分析方法研究与制定”作为主要起草人获得中国石油和化学工业联合会科学进步二等奖;参加国际标准修订比对工作3项;发明专利13项;实用新型专利3项。参考文献:[1]朱华健,牛金坡,李凡珠,何红,王润国,卢咏来,张立群.新型轮胎结构的现状与发展[J].高分子通报,2019(11):1-14.DOI:10.14028/j.cnki.1003-3726.2019.11.001.[2]许叔亮.百年轮胎续写传奇:轮胎的性能设计与社会可持续性发展(上)[J].中国橡胶,2022,38(01):16-19.[3]吴桂忠.高性能子午线轮胎研发、生产和试验研究概况及发展趋势[J].中国橡胶,2022,38(02):17-26.[4] GB/T 29613.1-2013.橡胶裂解气相色谱分析法 第1部分:聚合物(单一及并用)的鉴定[S].北京:中国标准出版社,2013.[5] GB/T 29613.2-2014.橡胶裂解气相色谱分析法 第2部分:苯乙烯/丁二烯/异戊二烯比率的测定[S].北京:中国标准出版社,2014.[6] GB/T 14837.1-2014. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第1部分:丁二烯、乙烯-丙烯二元和三元共聚物、异丁烯-异戊二烯橡胶、异戊二烯橡胶、苯乙烯-丁二烯橡胶[S].北京:中国标准出版社,2014.[7] GB/T 14837.2-2014. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第2部分:丙烯腈-丁二烯橡胶和卤化丁基橡胶[S].北京:中国标准出版社,2014.[8] GB/T 33078-2016. 橡胶 防老剂的测定 气相色谱-质谱法[S].北京:中国标准出版社,2016.[9] GB/T 14837.3-2018. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第3部分:抽提的烃橡胶、卤化橡胶、聚硅氧烷橡胶[S].北京:中国标准出版社,2016.[10] GB/T 39699-2020. 橡胶 聚合物的鉴定 裂解气相色谱-质谱法[S].北京:中国标准出版社,2020.[11]王静,褚文强.航空子午线轮胎胶料配方设计[J].橡塑技术与装备,2022,48(06):39-43.DOI:10.13520/j.cnki.rpte.2022.06.008.[12]李萍.塑料企业的风险控制与经济管理——评《企业风险管理》[J].塑料科技,2021,49(12):124-125.[13]万达淳,郑闻运,陈弩.基于橡胶配方和工艺的轮胎产品经济性分析[J].橡胶科技,2022,20(05):247-249.[14] Kwag G,Kim P,Han S,et al. High Performance Elastomer Composites Containing Ultra High Cis Polybutadiene with High Abrasion and Low Rolling Resistances[J]. Journal of Applied Polymer Science,2010,105(2):477-485.[15]GB/T 7764-2017.橡胶鉴定 红外光谱法[S].北京:中国标准出版社,2018.[16]周乃东.橡胶聚合物的鉴定 裂解气相色谱法[J].中国石油和化工标准与质量,2007(01):33-38.[17]白云,胡光辉,李琴梅,陈新启,髙峡,刘伟丽.傅里叶变换红外光谱法在高分子材料研究中的应用[J].分析仪器,2018(05):26-29.[18] 翁诗甫.傅里叶变换红外光谱仪[M].北 京:化学工业出版社,2005:161.[19]罗俊杰,卜少华,黄铃.核磁共振波谱表征弹性体支化结构方法的研究进展[J].合成树脂及塑料,2017,34(05):92-97.[20]谢启源,陈丹丹,丁延伟.热重分析技术及其在高分子表征中的应用[J].高分子学报,2022,53(02):193-210.[21]Ding Yanwei(丁延伟). Fundamentals of Thermal Analysis(热分析基础). Hefei(合肥): University of Science and Technology of China Press(中国科学技术大学出版社), 2020[22]黄伟,杨凯,张乾,刘建伟,郝泽光,栾春晖.橡胶补强填料中煤矸石活化改性的研究进展[J].洁净煤技术,2022,28(01):166-174.DOI:10.13226/j.issn.1006-6772.Q21110501.[23]李鹏举,吴晓辉,卢咏来,张立群.氧化石墨烯/白炭黑纳米杂化填料在绿色轮胎胎面中的应用[J].合成橡胶工业,2019,42(04):294-299.[24]方琦,罗德伟,洪林.火焰原子吸收光谱仪影响因素与应对措施[J].绿色科技,2010(10):170-173. [25]邓晓庆.电感耦合等离子体发射光谱法测定土壤铜锌锰镍铬钒全钾 [J].环境科学导刊,2010,29(6):90-92.[26]邓晓庆.电感耦合等离子体发射光谱法(ICP-AES)与火焰原子吸收法 (AAS)测定水中铁、锰方法比对[J].环境监控与预警,2013,5(1):26-29.[27] 罗丽霞.火焰原子吸收光谱仪和电感耦合等离子体发射光谱仪在水质检测中的比较分析[J].广东化工,2021,48(23):171-173.
  • 是时候来了解硫化物在线分析了
    硫成分广泛存在于许多用于烃加工的原料中。含硫成分危害很大,有强烈的气味。而且会引起酸雨,导致催化剂(昂贵)中毒,降低聚合物产量。最麻烦的硫气体是硫化氢(H 2S)、羰基硫(COS)和甲基硫醇、乙基硫醇。根据国内的标准要求,这些化合物是要在ppb水平测定。 硫气体的检测困难在于是挥发性的,也非常活泼的。痕量硫分析系统必须是非常惰性的采样设备、GC设置才能实现ppb级可重复的检测结果。 在线监测流程和原理概况: 气体样品定量被采集到在线的低温冷肼吸附填料内,两级冷肼,一级除水,一级将气体样品中的待测组分冷凝到吸附填料上。然后快速升温加热块将装有吸附填料的吸附管迅速升温,待测组分解析后由载气携带进入分析柱内,进行分离,随后进入检测器得出分析结果。 鉴于此,硫化物在线监测体系需要满足如下条件:1 样品的采集、富集、解析、分离和分析,整个过程要自动运行。2 所有样品流经途径接触到的表面都要经过惰性处理,确保美誉任何吸附。3 加热块的迅速升温。4 电子流量控制技术精准控制载气流量。 分离体系是整个体系很重要的一环,由于是在线分析体系,所以选择更加耐用、更加结实的MXT金属柱就是最好的解决方案。1987年RESTEK第一个开发了金属表面进行硅烷化惰性处理的专利技术,对不锈钢的表面进行惰性处理后,其惰性表面甚至比石英毛细柱的表面的惰性还要好。 针对硫化物分析,一个是最常使用的MXT专用填充柱Rt - XLSulfur 分析化合物:中文名称CAS分子式1 硫化氢7783-06-4H2S2 羰基硫463-58-1COS3 甲硫74-93-1CH4S4 乙硫75-08-1C2H6S5 二甲硫75-18-3C2H6S6二甲基二硫624-92-0C2H6S2 分析谱图:分析条件: 色谱柱Rt-XLSulfur, 1 m, 0.75 mm ID (cat.# 19806)浓度1 mL,50 ppbv进样六通阀切换程序升温:60 C - 230 C ,15 C/min载气He, 恒流量流速:9 mL/min检测器FID
  • 地质地球所提出硫化物颗粒的高精度硫同位素分析方法
    硫化物是自然界中常见的一类矿物,其形成往往与地质运动或生命活动相关。硫化物中的硫同位素组成是示踪生命活动,厘定地质过程的重要依据。传统离子探针硫同位素分析精度虽然可以达到0.1-0.2 &permil ,但其束斑一般为10-30 &mu m,不适用于微生物活动相关的微细硫化物颗粒(5 mm)和硫化物复杂环带等样品的硫同位素分析。纳米离子探针具有高空间分辨的特点,但通常其分析精度较传统离子探针逊色,前人在~2 mm空间分辨下,硫化物硫同位素分析的精度仅为2-4&permil ,制约了其在地球科学中的应用。  为获得更高的空间分辨和分析精度,中国科学院地质与地球物理研究所地球与行星物理院重点实验室张建超工程师与其合作者以纳米离子探针为平台,开展了超高空间分辨与高精度的硫同位素分析方法研究。QSA效应(电子倍增器无法记录几乎同时到达的两个离子而造成的测量误差)是制约高精度同位素分析的关键因素,该研究创新性地提出了精确校正QSA效应方法,并成功研发了不同空间尺度内硫同位素高精度分析的实验方法,其空间分辨和外部分析精度分别为:~5 mm尺度内分析精度0.3&permil 、 ~2 mm尺度内分析精度0.5&permil 、 ~1 mm尺度内分析精度1&permil 。这一结果是同等空间分辨下最优的分析精度,处于国际领先水平层次,能够满足微米-亚微米尺度的硫化物颗粒(如草莓状黄铁矿)及复杂环带的高精度硫同位素分析的需求。  该研究成果近期发表在国际分析技术刊物Journal of Analytical Atomic Spectrometry 上(Zhang et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. Journal of Analytical Atomic Spectrometry, 2014, 29(10) : 1934-1943)。  地质地球所提出硫化物颗粒的高精度硫同位素分析方法
  • 热分析技术在橡胶行业的应用
    热分析技术是表征材料的性质与温度关系的一组技术,它在定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛地应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。一、常见的热分析方法包括以下几项:  1、DSC是在程序控制温度下,测量样品的热流随温度或时间变化而变化的技术。因此,利用此技术,可以对样品的热效应,如熔融、固-固转变、化学反应等,进行研究。  2、TGA是在一定的气氛中,测量样品的质量随温度或时间变化而变化的技术,利用此技术可以研究诸如挥发或降解等伴随有质量变化的过程。如果采用TGA-MS或TGA-FTIR的联用技术,还可以对挥发出的气体进行分析,从而得到更加全面和准确的信息。  3、TMA可以测量样品在一定应力下的位移变化。利用DMA,则可以在很宽的频率范围内,对材料的粘弹性进行研究,从而得到材料的机械模量和阻尼行为。  目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。二、热分析技术对于橡胶材料可提供如下性能指标的测试:DSCTGATMADMA玻璃化转变组成分析热稳定性,氧化稳定性,降解粘弹性能,弹性模量阻尼行为填充剂含量,炭黑含量蒸发,汽化,吸附,解吸软化温度膨胀,收缩,溶剂中的溶化硫化熔融,结晶反应焓添加剂的表征三、应用介绍:1、利用TGA进行组成分析  TGA经常用来进行组成分析,利用它,可以观察样品由于蒸发、高温分解、燃烧等引起的重量变化。失重台阶的大小与挥发组分(如增塑剂、溶剂等)和分解产物的含量直接相关。在对橡胶进行分析时,当聚合物高温分解后,把气氛从惰性气氛变化为氧化气氛,炭黑就会燃烧,在残渣中就剩余了无机物和灰烬。对于高聚物的混合物,如果各组分的分解温度范围不同的话,则可以利用TGA来确定各个组分的含量。下图所示为几种的包含有天然橡胶的弹性体,第二聚合物组分分别为EPDM(A),BR(B)或SBR(C)。从TGA曲线的失重台阶上,可以清楚的看到各组分的含量,其中(1)为挥发性组分,(2)为天然橡胶(NR),(3)为相应的第二聚合物组分,(4)为炭黑。残渣中为无机化合物。由此曲线分析得到的结果与理论值非常吻合。2、利用DSC进行聚合物的鉴别  如果在高聚物的混合物中,各个组分的高温分解温度相近,那么用TGA进行分析时,就只能得到总的聚合物的含量而不能将各个组分区分开了。但是,借助DSC,就可以根据它们玻璃化转变的不同而对各组分加以区分。玻璃化转变温度Tg表征了聚合物的类型,而玻璃化转变台阶的高度△Cp则反映了聚合物的含量。例如,对于NBR/CR混合物,CR和NBR的玻璃化转变可以清楚的分离开来。台阶高度的比例约为1:1,这与方程式中24.4%含量的NBR和24.4%含量的CR的理论结果相当一致。从结果分析中可以看出,对于其他弹性体的结果分析不是很,这是因为第二个玻璃化转变峰与焓松弛峰或熔融峰重叠的缘故。3、利用DMA进行机械性能分析  DMA可以为我们提供材料的宏观粘弹行为和微观性能。这可以用下面的不同硫化度的SBR来进行说明。在玻璃化转变过程中,贮存模量G’下降约3个数量级,而损耗模量G’’则呈现出一个峰。随着硫化度的增加,玻璃化转变移向较高的温度。在材料处于橡胶态时,G’依赖于硫化度的大小。由于粘性流动,随着温度的升高,硫化度比较小的SBR1的贮存模量G’减小。在交联密度比较高时,G’随着温度线性增大。由此,我们就可以根据材料在橡胶态时的模量来确定它的交联密度,其交联密度k可以根据等式k=G/(2RTρ)进行估算。经计算得到,SBR3的交联密度为1.07×10-4mol/g,SBR4的交联密度为2.03×10-4mol/g。这两个数值的比值与二种材料中硫含量的比值一致。4、利用真空条件下的TGA测试来进行峰的分离  有时候,增塑剂的蒸发与聚合物的分解会彼此重叠。在这种情况下,在较低的压力(真空)下进行TGA测试,往往可以使两个过程得到较好的分离,这当然就相应的增加了结果分析的准确性。5、利用TMDSC增加测试准确度  利用温度调制DSC(TMDSC)技术可以得到更加准确的结果。使用此技术后,焓的松弛效应以及熔融过程对测得的热容曲线的影响明显减小。  利用TMDSC方法对NR/SBR和EPDM/SBR混合物进行了测试,通过对所得曲线的分析,可以看出△Cp的比值与组分中的实际值一致。6、利用DMA进行蠕变性能测试  利用DMA测试,可以了解聚合物与添加剂之间的相互作用,并且可以看出材料的应力与应变之间保持线性关系的范围。  我们对不同炭黑添加量的EPDM弹性体在橡胶态时的性能进行了测试。结果发现,未用炭黑填充的EPDM的贮存模量为0.5Mpa,并且这个值不随着位移振幅的变化而变化。而随着炭黑含量增大,其模量也增大。但是,对于同一炭黑含量的样品来说,当剪切位移的振幅增大时,其模量减小,因此其应力与应变曲线之间就呈现出非线性的关系,这是由于炭黑簇的可逆性破坏造成的。四、结论:  热分析技术能为表征材料的性能提供十分全面 、有用的信息:对于日常的质量控制和保证,单独的质量技术指标的控制可以选择单独的热分析技术就可以完成;而对于材料的研究开发则需要综合运用多种热分析技术,对材料的性能进行全面的研究和评估。
  • LA-ICPMS和SIMS硫化物微量元素和硫同位素原位分析
    p style="text-align: justify "  硫化物(特别是黄铁矿)可形成于各类地质环境中,在金属矿床的成矿早期一直延续到成矿后期。在观察原生硫化物及其在成岩后的变质作用、热液交代作用下生成的增生边、重结晶的次生硫化物时,通过光学显微镜和背散射图像,根据矿化、蚀变期次及矿物共生组合,可将不同结构的硫化物划分为不同期次的产物,再与LA-ICPMS硫化物原位微量元素点分析数据和面扫描图像相对应,就可知悉不同期次的硫化物各自的地球化学特征,即硫化物的地球化学分带性,这对研究沉积作用、变质作用、岩浆作用、热液交代作用如何影响硫化物中微量元素(例如Au元素)的富集行为至关重要。/pp style="text-align: justify "  对于金矿床来说,通过研究硫化物中不同微量元素与Au富集行为的耦合程度,有助于探讨Au在硫化物中的赋存形式及Au在硫化物晶体中的置换反应。藉由LA-ICPMS点分析的时间分辨(time-resolved)信号谱图,还可以获得硫化物样品在同一位置不同深度上的元素丰度分布,进一步讨论Au在硫化物中的赋存状态。/pp style="text-align: justify "  微量元素在硫化物中主要有三种赋存形式:/pp style="text-align: justify "  (1)以固溶体的形式赋存在硫化物晶格中,不可见 /pp style="text-align: justify "  (2)纳米级的矿物包裹体(包裹体直径 0-1μm,如自然金或硫化物Fe-As-Sb-Pb-Ni-Au-S),不可见 /pp style="text-align: justify "  (3)微米级的矿物包裹体,可见。/pp style="text-align: justify "  值得注意的是,这里的“可见”与“不可见”是相对于1930年的显微镜观测水平界定的,“不可见金”/pp style="text-align: justify "  这一表述最早是由Bü rg在1930年使用的。通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和高分辨率透射电子显微镜(HR-TEM),直径数十纳米级的矿物包裹体现在已经可以被直接观测。若微量元素以固溶体形式赋存在硫化物晶格中,原来硫化物的晶格将被扭曲变形,通过特定区域的电子衍射谱图(SAED)可以直接观测晶格是否发生扭曲。/pp style="text-align: center "img title="640.webp.jpg" alt="640.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/d7a67cbc-2c52-40d4-805a-59ef459693bd.jpg"//pp style="text-align: center "  俄罗斯某金矿 层状黄铁矿-石英脉中赋存的黄铁矿核部LA-ICPMS时间分辨输出信号谱图/pp style="text-align: justify "  在LA-ICPMS的时间分辨信号谱图上,若某微量元素的信号强度随剥蚀时间的增加而保持平缓或近似平缓,显示束斑剥蚀的纵深线上成分保持均匀性,一般认为该元素可能以固溶体的形式赋存在晶格中 抑或以微米级的硫化物包裹体存在,包裹体中该元素总量少于LA-ICPMS的检测限,信号也不会随时间发生大的波动。/pp style="text-align: justify "  若某微量元素的信号强度随剥蚀时间的增加而出现峰值,则指示着富含该元素的微米级矿物包裹体的存在。Large et al. (2007)采用这种方法确定了微米级的富含Bi-Ag-Au-Te的方铅矿包裹体(图)和富含Au-Te-Ag矿物包裹体(图4b)的存在。这种方法的缺点是不能区分微量元素在硫化物中上述第(1)和第(2)种赋存方式。尽管如此,该方法现被广泛应用于Au在硫化物中的赋存形式的判断。/pp style="text-align: justify "  节选自:范宏瑞等. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496/pp style="text-align: justify " 附件:/pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf" style="color: rgb(0, 102, 204) font-size: 12px " href="https://img1.17img.cn/17img/files/201901/attachment/c92b9c13-20c7-4160-b0e4-a9dd0b888c02.pdf"www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf/a/pp /p
  • 橡胶硫化特性的测试 (包括门尼焦烧和硫化曲线)
    硫化是橡胶制品制造工艺中最重要的工艺过程之一。 就是使橡胶大分子链由线性变为网状的交联过程,从而获得良好物理机械性能和化学性能。 橡胶的硫化性能是反映橡胶在硫化过程中各种表现或者现象的指标,对进行科研、指导生产具有很大的实用价值,硫化性能主要包括焦烧性能、正硫化时间、硫化历程等,测定橡胶的硫化性能方法很多。其中以硫化仪和气泡点分析仪最佳。 ⑴ 门尼粘度计法 门尼粘度计法不但能测定生胶门尼粘度或混炼胶门尼粘度,表征胶料流变特性,而且能测定胶料的触变效应,弹性恢复、焦烧特性及硫化指数等性能,因此它是最早用于测定胶料硫化曲线的工具。虽然门尼粘度计不能直接读出正硫化时间,但可以用它来推算出硫化时间。 ⑵ 硫化仪法 硫化仪是近年出现的专用于测试橡胶硫化特性的试验仪器, 类型有多种。按作用原理有二大类。第一类在胶料硫化中施加一定振幅的力,测定相应变形量如流变仪;第二类是目前通用的一类。这一类流变仪在胶料硫化中施加一定振幅变形,测定相应剪切应力,如振动圆盘式流变仪。 3.1 橡胶门尼焦烧试验 胶料的焦烧是胶料在加工过程中出现的早期硫化现象,每个胶料配方都有它的焦烧时间(包括操作焦烧时间和剩余焦烧时间)。在生产中应控制此段时间的长短。如果太短,则在操作过程中易发生焦烧现象或者硫化时胶料不能充分流动,而使花纹不清而影响制品质量甚至出现废品,如果焦烧时间太长,导致硫化周期增长,从而降低生产效率。当前测定焦烧时间广泛使用的方法是门尼焦烧粘度计(测定的焦烧时间称为门尼焦烧时间),此外也可以用硫化仪测其胶料初期时间(t10)。 3.1.1 门尼焦烧的试验原理 用门尼粘度计测定胶料焦烧是在特定的条件下, 根据未硫化胶料门尼粘度的变化,测定橡胶开始出现硫化现象的时间。 3.2 橡胶硫化特性测定 为了测定橡胶硫化程度及橡胶硫化过程过去采用方法有化学法(结合硫法、溶胀法),物理机械性能法(定伸应力法、拉伸强度法、永久变形法等),这些方法存在的主要缺点是不能连续测定硫化过程的全貌。硫化仪的出现解决了这个问题,并把测定硫化程度的方法向前推进了一步。 硫化仪是上世纪六十年代发展起来的一种较好的橡胶测试仪器。广泛的应用于测定胶料的硫化特性。硫化仪能连续、直观地描绘出整个硫化过程的曲线,从而获得胶料硫化过程中的某些主要参数。 上岛 硫化试验仪(无转子) 型号:VR-3110 在规定的温度下,混合橡胶放在上下平板膜腔之间并施以正弦波扭矩振动时,随着橡胶的硫化测定其扭矩的变化。可根据最大扭矩、最小扭矩、焦烧时间、硫化时间、粘弹性等其它因素的变化求出硫化特性的试验机。 上岛 气泡点分析仪型号:VR-9110 气泡点分析仪是能在需要的最小限度抑制橡胶的硫化时间的测试机,而对车胎、皮带、防振橡胶等产品的硫化工程控制有效。对生产性提高、能源消减、摩耗特性或者耐久性等产品特性的提高有益。 橡胶硫化不够时看到的内部气泡在硫化工程中控制 ,知道每种材料的最佳硫化时间。
  • 梅特勒托利多热分析用户会暨技术研讨会报告
    报告名称:新版国标GB/T 6425—2008《热分析术语》的制订与指要 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 新版国标主要变化和各点说明  - 新版热分析定义及改变原因  - 两种类型DSC及其所测物理量  - 关于温度调制式差示扫描量热法(modulated-temperature differential scanning calorimetry)的简称  - 同时与串接联用技术的符号表示  - 关于sample (样品), specimen (试样) 和specimens (试样和参比物)  - 试样质量  - 热分析曲线TA curve  - 玻璃化glass transition  - 关于“热流”和 “热流量”(heat flow)  - 动力学三参量(kinetic triplet) * 新版国标特征(创新点)  - 具有一定的原创性  - 充分反映热分析的新进展  - 对热分析的新技术给出了科学定义  - 叫法严谨  - 对某些热分析术语定义及其表达做了重新表述  - 新版国标是制订我国各种热分析标准的最基本的文件和基础 报告名称:热固性树脂固化反应的表征 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 固化反应的两个重要效应  - 玻璃化温度提高  - 放热反应 * Tg * 固化反应的量热测量  - 基本表达式  - 等温固化度与升温后固化  - 固化反应动力学 * 固化反应举例:以环氧树脂为例  - 影响固化反应的因素  - 影响玻璃化的因素  - 贮存效应  - 固化因子(cure factor, CF) 报告名称:氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的测定 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - STARe系统仪器  - 气体切换器  - 参考标准  - 国内外标准比较  - 标准内容  - OIT典型的温度程序  - 聚乙烯:氧化稳定性  - PE-PP共聚物:空气中测定氧化稳定性(OIT)  - PP的OIT测试  - 聚乙烯OIT的TMA测量  - HP DSC827e: 应用 报告名称:比热容的DSC测量 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容: * 比热容的介绍及测试标准 * 比热容的测试方法  - 直接法(Direct method)  - 稳态ADSC法  - 蓝宝石法  1. ISO标准中蓝宝石法细节  2. ASTM标准中蓝宝石法细节  3. DIN标准中蓝宝石法细节  - 步进扫描  - 正弦温度调制方法  1. 计算原理  2. PET的ADSC测量  3. 如何进行ADSC测量  - 多频温度调制(TOPEM)方法  1. TOPEN的原理  2. TOPEN的计算  3. TOPEN的优点 * 比热容测试注意事项 * 比热容测试方法比较 报告名称:Tg测量的不同标准(ASTM/DIN/Richardson)和不同技术(DSC/TMA/DMA)及其比较 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容:  - Tg测量方法概述  - DSC标准方法  - TMA标准方法  - DMA标准方法  - 聚苯乙烯的Tg测试  1. DSC、TMA、DMA三种方法测试、  2. 三种方法结果比较、  - 三种测试计算方法的影响  - 循环测试  - Tg的影响因素  - DSC、调制DSC、TMA、DLTMA、DMA方法优、缺点汇总、灵敏度比较  - Tg和相应的Dcp 报告名称:DSC在聚合物结晶动力学方面的应用 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - 差示扫描量热仪DSC 1  - 两种PP产品的结晶参数对比  - 非等温结晶动力学方程  - PPF401的非等温结晶DSC曲线  - PPS2040的非等温结晶DSC曲线  - 两种PP非等温结晶过程参数对比  - PPF401的相对结晶度X(T)-T曲线  - PPS2040的相对结晶度X(T)-T曲线  - 根据Ozawa方法获得的两种PP非等温结晶动力学参数  - Kissinger 的活化能公式  - PP的活化能结果  - PET 的非等温结晶动力学  - 聚合物的等温结晶动力学  - PP的等温结晶曲线  - 两种PP的等温结晶动力学参数对比 报告名称:热分析在弹性体行业的应用 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容:  - 热分析在弹性体材料领域的应用  - 差示扫描量热法(DSC)  - 热重分析法(TGA)  - 热机械分析(TMA)  - 动态热机械分析(DMA)  - 玻璃化转变的计算方法  - 软化的针入TMA测量  - 硫化度对玻璃化转变的影响  - 增塑剂对玻璃化转变的影响  - 相容性聚合物共混物的玻璃化转变  - 不相容聚合物共混物的玻璃化转变  - 不相容聚合物共混物的DMA测试  - 密封圈适用温度范围的DSC测定  - 结晶对氯丁橡胶(CR)玻璃化转变的影响  - 氯丁橡胶(CR)结晶和熔融的测量  - 氯丁橡胶(CR)的DMA测量  - 结晶对硅橡胶玻璃化转变的影响  - 硅橡胶的DMA测量  - 预处理对EPDM熔融的影响  - 不同种类EPDM的DSC比较  - 顺丁橡胶(BR)的冷结晶与熔融  - 玻璃化转变的影响因素  - 聚氨酯DSC与DMA测量的比较  - 天然橡胶(NR)的TGA  - 丁苯橡胶(SBR)的TGA  - 丁腈橡胶(NBR)的TGA  - 三元乙丙橡胶(EPDM)的TGA  - 氯丁橡胶(CR)的TGA  - 乳聚SBR和溶聚SBR的热分解区别  - 橡胶中炭黑和无机填料含量测试  - 弹性体中碳黑的TGA分析  - 含一种聚合物橡胶的组分分析  - 氯丁橡胶弹性体中碳黑的分析  - 橡胶含量分析  - 多种橡胶比较  - 含多种聚合物的橡胶的组分分析  - 组分分析方法  - Delta cp在组分分析中的作用  - EPDM/SBR共混物的TGA和DSC联合分析  - 氯醚橡胶和卤化丁基橡胶的TGA  - 含不同种类碳黑的弹性体的分析  - 不同种类碳黑的TGA比较测量  - 氟橡胶(FPR)的TGA  - 硅橡胶的TGA  - 含其它聚合物的NR共混物的TGA  - 含SBR组分的弹性体的TGA  - CR/NBR共混物的TGA分析  - 油含量的TGA测定  - 含油与不含油SBR的减压(真空)TGA  - 压力对NR/SBR共混物TGA的影响  - BR和NBR的TGA-FTIR联用鉴别  - BR/NR弹性体的TGA/FTIR分析  - 弹性体热分析参数  - 硫化反应  - 硫化动力学  - 等温硫化动力学的测量  - NBR硫化的TGA测量  - 硫化过程的TGA-MS联用气体分析  - 填料影响  - 振动阻尼  - SBR 的频率扫描测试  - 振动阻尼-交联密度的影响  - 松弛谱的温度依赖性  - 等温蠕变和回复  - 交联对蠕变和回复的影响  - 不同炭黑含量的EPDM  - 蠕变和松弛  - 热致蠕变  - 典型的TSC曲线  - TSC测试-不同硫化度的SBR  - TSC测试-不同炭黑含量的EPDM  - 橡胶在甲苯中的溶胀  - 溶胀模式  - 阻燃剂三水合铝和氢氧化镁的TGA  - 阻燃剂物质的DSC测量  - EVA中阻燃剂的TGA  - 增塑剂矿物油的DSC测量  - 弹性体的DSC测量  - CIIR弹性体的DSC测量  - SBR低分子量成分的转变  - 借助ADSC用于曲线解析 报告名称:MP超越熔点仪系列 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容: * 超越熔点仪系列 * 特点和优点  - 简单  - 高效  - 视频记录、回放  - 符合标准  - 设计优势  - 结果可靠  - 彩色触摸屏  - 文件安全 * 技术  - 光源  - 图象  - 测量方法  - 终点测定  - 炉体  - 升温速率 * MP50 – 满足基本要求 * MP70 – 最大灵活性的最佳选择 * MP90 – 最高水准的熔点测定 * MP技术指标 * MP熔点仪的应用  - 熔融  - 通过混合物熔点鉴定  - 熔融和分解  - 液晶  - 无机物熔点  - 热致变色物质  - 聚合物熔融 报告名称:热分析仪器维修保养介绍 演讲嘉宾:唐幸初 梅特勒托利多热分析仪器部服务主管、安调与维修专家 主要内容:  - DSC外壳拆卸,传感器的测量  - DSC传感器的更换  - TGA搬运的准备工作  - TGA搬运结束后的恢复  - TGA的毛细管的安装  - DSC和TGA的校准
  • 【报名倒计时】第六届热分析与联用技术网络会议 年度盛宴不容错过
    p  热分析技术是在程序温度控制下研究材料的各种转变和反应,广泛应用于能源、环境、药物、材料等多个热门领域的研究和应用。热分析技术对于诸多行业、各类物质的研究工作至关重要,仪器信息网特此邀请13位热分析领域的专家,于2020年9月15-16日举办第六届“热分析与联用技术”网络研讨会,为广大研究人员介绍热分析及联用技术最新应用和前沿动态。/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/thermalanalysis2020/" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 1834px " src="https://img1.17img.cn/17img/images/202009/uepic/46ca1291-3250-4c0d-ae0e-7a10a61e5b10.jpg" title="任务标题---第六届热分析与联用技术网络会议edm(1).png" alt="任务标题---第六届热分析与联用技术网络会议edm(1).png" width="600" height="1834" border="0" vspace="0"//a  /pp  strong报告专家阵容(排名不分先后):/strong/ppstrongbr//strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/6912977f-0586-42c2-b2a2-45c2d8ee63c7.jpg" title="dc64b974-3f8a-4762-8154-ecf147efea05.jpg" alt="dc64b974-3f8a-4762-8154-ecf147efea05.jpg"//pp style="text-align: center "strong中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师 丁延伟/strong/pp  丁延伟,博士、中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,中国化学会化学热力学与热分析专业委员会委员、中国分析测试协会青年学术委员会委员、全国高校分析测试研究会青年部秘书长。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2019),以主要作者发表SCI论文30余篇,编著《热分析基础》(2020年3月,512千字,中国科学技术大学出版社)、《热分析实验方案设计与曲线解析概论》(2020年8月,387千字,化学工业出版社)。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/318e036d-cb40-4028-a1c0-6ec346a7a79a.jpg" title="韩婷.jpg" alt="韩婷.jpg"//pp style="text-align: center "strong梅特勒-托利多中国区热分析仪器部技术经理 韩婷/strong/pp  韩婷,梅特勒-托利多中国区热分析仪器部技术经理。华东理工大学材料化学工程博士,研究方向为各类添加剂对多种工程塑料理化性能的影响。从事热分析相关应用近十年,具有丰富的仪器使用和材料热物性分析经验,对于各新兴行业热分析的前沿应用有独到见解。致力于推动和完善特色的联用系统在各行业的解决方案,并取得一定的研究进展。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/f14bb229-7728-4443-bbed-53bf9874fc69.jpg" title="夏红德.jpg" alt="夏红德.jpg"//pp style="text-align: center "strong中国科学院工程热物理研究所研究员 夏红德/strong/pp  夏红德,博士,现工作于中国科学院工程热物理研究所,目前主要研究质谱定量解析技术、反应过程机理的分析与研究,重点研究热反应过程控制机理与工艺流程改进。在国际上首次提出了基于质谱工作原理的反应过程定量分析理论——等效特征图谱法(ECSA?),实现了复杂反应过程逸出气体中不同组分质量流量的精准测量,为深度解析基元反应过程及其动力学特性提供了坚实的技术基础。该技术已获得日本、德国、美国等全球领先设备供应商的高度认可,目前获得日本理学公司的支持,研发国际领先的质谱解析方法,与德国耐驰公司建立长期数据分析合作伙伴关系。相关测试分析技术已经广泛成熟的应用于能源、药物、环境、化工、材料、地质、半导体、文物等领域,推动国内诸多领域检测标准的技术创新并促进其在国际上形成技术领先地位。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/547af3fa-c245-437c-af9c-2f542a43579d.jpg" title="曾洪宇.jpg" alt="曾洪宇.jpg"//pp style="text-align: center "strong法国凯璞科技集团塞塔拉姆仪器技术总监 曾洪宇/strong/pp  曾洪宇,博士,担任塞塔拉姆技仪器中国区技术和应用中心负责人,毕业于中科院硅酸盐研究所,主攻材料专业,师从施剑林院士。曾博士曾派驻法国里昂塞塔拉姆总部参与热分析和量热仪器的技术研发工作,从事热分析研究工作近15年,是最早一批将塞塔拉姆理论与操作融会贯通的实践者。作为塞塔拉姆中国区最资深的技术专家,曾博士对塞塔拉姆独有的EYRAUD天平和卡尔维三维量热技术具有独到见解。曾博士在热分析及量热方面的建树,已成为塞塔拉姆中国,以及亚太区域技术与应用的中流砥柱。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/d9ba1251-c72b-442d-88da-a65937fc4a77.jpg" title="徐颖.jpg" alt="徐颖.jpg"//pp style="text-align: center "strong苏州大学分析测试中心高级实验师 徐颖/strong/pp  徐颖,苏州大学分析测试中心,负责热分析仪器。主要从事各种材料的热性能的研究,熟悉高分子、材料、药物、有机、无机等各类样品的热分析表征,论著1本(《热分析实验》,学苑出版社,2011年出版),发表论文20余篇。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/5218b70a-4f9f-4828-86b5-b236fdfaa33d.jpg" title="于惠梅.jpg" alt="于惠梅.jpg"//pp style="text-align: center "strong华东理工大学副研究员 于惠梅/strong/pp  于惠梅,博士,华东理工大学材料科学与工程学院副研究员,中国化学会热力学和热分析专业委员会委员,上海市科技翻译学会理事 报告人长期从事热分析研究工作,开展了联用技术以及脉冲热分析方法研究,建立了热分析-质谱联用技术中逸出气体的定量新方法,申请实用新型和国家发明专利共7项。2012~2013年赴美Pennsylvania State University,开展了温室气体CO2的捕获和转化利用研究工作。起草制定了多项国家标准方法、行业标准和上海市企业标准,完成了国家自然科学基金、国家科技支撑(攻关)计划课题、中国科学院仪器研制等项目,在国内外核心期刊和会议上发表论文共40余篇。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/4a59881b-99ab-4cc9-9037-8195c6b5f11c.jpg" title="刘文广.jpg" alt="刘文广.jpg"//pp style="text-align: center "strong珀金埃尔默技术专家 刘文广/strong/pp  刘文广,珀金埃尔默公司材料表征产品线技术支持,主要负责分子光谱,热分析仪器及联用分析设备的应用支持工作。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/ce07ce8e-c7a2-4f52-990b-c18a0b44e88c.jpg" title="王晓红.jpg" alt="王晓红.jpg"//pp style="text-align: center "strong西安近代化学研究所副研究员 王晓红/strong/pp  王晓红,女,1976年8月生,中共党员,1999年7月大学毕业入西安近代化学研究所工作至今,副研究员职称。从事含能材料热分析,动力学,构效关系及计量学研究,发表各类科技论文四十余篇,2014年~2015年在加州大学圣克鲁兹分校生物与化学系物理化学专业访学。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/d043531d-057b-4474-af80-9a9f358b1a10.jpg" title="李忠红.jpg" alt="李忠红.jpg"//pp style="text-align: center "strong江苏省食品药品监督检验研究院检验技术研究中心副主任 李忠红/strong/pp  李忠红,博士,江苏省食品药品监督检验研究院检验技术研究中心副主任,主任药师。江苏省分析测试协会热分析专业委员会委员。从事药品检验工作已有30年,一直未脱离实验工作,具有丰富的药品质量控制所用仪器的操作经验。近年来主要致力于药品质量标准提高以及新仪器、新方法在药品质量控制中的应用工作。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/70fbaa5f-ce82-44a4-871d-b5738210860e.jpg" title="李琴梅.jpg" alt="李琴梅.jpg"//pp style="text-align: center "strong北京市理化分析测试中心副研究员 李琴梅/strong/pp  李琴梅,北京市理化分析测试中心,博士,副研究员,2013年博士毕业于中国科学院化学研究所高分子化学与物理专业。主要从事新材料制备与性能研究以及测试方法开发等研究工作,包括生物医用材料的制备及其应用研究、高分子材料以及复合材料检测方法研究等。主持参与国家重点研发计划1项,国家自然基金4项,省市级科研项目及财政专项13项,横向课题近30项。科研成果发表学术论文32篇,其中SCI收录8篇。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/b4450d85-ff06-4526-affb-a4a9d083197a.jpg" title="曾智强.jpg" alt="曾智强.jpg"//pp style="text-align: center "strong德国耐驰仪器制造有限公司市场与应用总监 曾智强/strong/pp  曾智强,博士毕业于清华大学材料科学与工程学院,获博士学位。此后赴新加坡南洋理工大学、英国 Surry 大学任研究员,从事陶瓷基复合薄膜方向的研发与应用研究,发表有二十多篇论文并获得3项发明专利。2003年曾智强博士加入德国耐驰,担任市场与应用总监,致力于拓展德国耐驰热分析、热物性测量系统的应用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/29f8dd68-3b6d-4ee5-b432-e2283f1edfea.jpg" title="李照磊.jpg" alt="李照磊.jpg"//pp style="text-align: center "strong江苏科技大学高分子材料系副系主任 李照磊/strong/pp  李照磊,1984年1月生,理学博士,副教授。中国化学会会员,江苏省热分析专业委员会委员。2012年8月至2016年6月,南京大学化学化工学院攻读博士学位,导师为胡文兵教授。目前担任江苏科技大学高分子材料系副系主任,入选镇江市第二批“金山青年创新英才”。主要从事生物可降解高分子材料凝聚态结构转变的热分析研究。主持国家自然科学青年基金项目、江苏省高校自然科学基金面上项目,以及多项校企合作横向课题项目。在ACS Macro Letters、Electrochimica Acta、Journal of Polymer Science, Part B: Polymer Physics、Polymer、Thermochimica Acta、Polymer Testing、Polymer International、Journal of Thermal Analysis and Calorimetry等刊物上发表学术论文30余篇,获授权专利10项。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/226bccd1-5e75-41e6-baca-d402c6ec1d57.jpg" title="苍飞飞.jpg" alt="苍飞飞.jpg"//pp style="text-align: center "strong国家轮胎质量监督检验中心副总工程师 苍飞飞/strong/pp  苍飞飞,副总工程师、技术负责人、高级工程师。目前就职于北京橡院橡胶轮胎检测技术服务有限公司(国家轮胎质量监督检验中心)、北京橡胶工业研究设计院有限公司。/pp  2000年8月-至今 北京橡胶工业研究设计院试验检测中心从事橡胶检测工作20年,工作主要分为几个部分:第一项日常检测工作,主要完成硫化橡胶、混炼胶及原材料的检测工作 其中包括标准、非标准方法。第二项认可实验室工作,从2005年物化室申请国家认可实验室开始就从事着相关的任务及工作,目前担当实验室化学部分技术负责人、内审员、化学组组长的工作。第三部分是项目工作,曾多次参加院/中心组织的项目。第四部分:负责第二实验区的管理工作及药品库的管理工作。/pp  主持或参加纵向及横向项目30余项 目前在研项目2020年主持典型轮胎厂家轮胎胎面特征技术研究工作,与中国刑事警察学院合作 2019年~2020年参予掘进机主轴承密封的国产化项目 2019年~2021年参予粘合树脂AN220应用评价项目 完成学术论文30余篇,其中参加中国化工科学研究院第一届科技论坛论文“轮胎中各部位多环芳烃含量检测方法的研究”获得鼓励奖,还有3篇论文轮胎参加2014年国际橡胶会议,2篇论文参加2018年Rubbercon会议 参加国家制修订工作11项,其中“橡胶制品化学分析方法研究与制定”作为主要起草人获得中国石油和化学工业联合会科学进步二等奖 参加国际标准修订比对工作3项 “自主研发改造仪器项目”获得中国化工集团,中国化工“五小”活动获得二等奖 发明专利2项 实用新型专利3项。/ppbr//ppa href="https://www.instrument.com.cn/webinar/meetings/thermalanalysis2020/" target="_self"strong报名链接:/stronghttps://www.instrument.com.cn/webinar/meetings/thermalanalysis2020/  /a/ppbr//p
  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限0.5 ppb,是一种非常可靠的解决方案。同时结合PLSV嵌入式密封阀技术(对整个系统性能有着重要作用),和我们先进创新的信号处理以及先进的GC平台,大大提高了整体技术,成为现市场中强大而简单的解决方案。未来几个月,将有更多类似的系统投入全球使用。案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 0.5ppb 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质1ppb):纯化5N氦气方案应用详情请联系:fzhu@asdevices.cn
  • 北京博赛德直播课程分享丨硫化物的分析应用和便携气质的技术应用分享
    3月4日-6日,我们积极响应当前“停工停课不停学”的号召,举办了三场在线直播课程。课程得到了老师们的积极响应和一致好评,甚BCT有些老师还表示意犹未尽,咨询针对硫化物的分析有无分享,问何时再直播?为响应各位老师的号召,我们又安排了两场精品直播课程,分享给大家:一 硫化物的分析应用分享时间:3月13日 上午10:00—12:00讲师:可贵秋内容概述:1 现有硫化物标准方法解读;2 BCT硫化物分析方案;3 硫化物采样分析常见问题、解决方案及注 意事项二 便携气质的技术应用分享时间:3月17日 上午10:00—12:00讲师:张国振内容概述:1、为什么需要便携式气质?便携式气质和实验室气质的区别;2、便携式气质必须具备的特性及核心技术介绍;3、便携式气质的应用和实际案例。对此课程有需要和感兴趣的专业人士都可以联系我们,参加课程直播。前期三场在线直播课程,从大气VOCs在线监测的难点、常见问题及解决方案,到各类前处理设备:顶空、吹扫捕集、苏玛罐、热解析、热裂解等的技术应用、使用注意事项,再到以苏玛罐系统为主的实验室采样、分析、质控、数据审核的一些实用经验分享,满满的全是干货。前 期 回 放
  • 热分析技术之热讨——2017年度北京热分析学术研讨会召开
    p  strong仪器信息网讯/strong 2018年1月16日,首届“2017年度北京热分析学术研讨会”在北京天文馆4D科普剧场召开。120余位热分析领域技术/应用专家、分析工作者、厂商代表等参加了本次年末热分析学术交流会。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/f0004ae2-65e6-4a73-92de-7ce67186f5ed.jpg" style="" title="IMG_4049.jpg"//pp style="text-align: center "strong大会现场/strong/pp  年会由北京理化分析测试技术学会热分析专业委员会主办,旨在加强学术交流,促进合作,了解热分析技术和交叉学科的最新进展,推进热分析技术在分析科学中的发展与应用。/pp  作为首届举办,研讨会邀请多位热分析领域专家做了热分析技术的最新进展、最新相关应用动态等报告,同时也请部分知名热分析仪器生产商代表,分别介绍了最新的热分析仪器设备及相关热门仪器技术。/pp  作为北京理化分析测试技术学会热分析专业委员会理事长,潘伟首先向与会人员表示了感谢及2018的新年祝福。接着,为大家分享了本次研讨会的首个报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/bfaa87f0-e656-43a4-815d-cff0b188d673.jpg" title="IMG_3993.jpg"//pp style="text-align: center "strong报告人:清华大学 潘伟 教授/strong/pp style="text-align: center "strong报告题目:激光共聚焦拉曼光谱仪测量固体电解质中氧扩散系数/strong/pp  目前,测量材料中离子扩散的方法主要为同位素法和电导率测试法。而同位素法测试不方便,电导率测试法由于受其他载流电子及电场驱动力的影响,难以精确测量氧等其他离子的扩散系数。潘伟团队近几年研究了一种采用激光共聚焦拉曼光谱显微技术测量固体电解质中氧等其他离子扩散系数的方法。报告中,潘伟详细介绍了该方法的理论基础、测量操作步骤等,结果表明该方法测量氧离子的扩散系数是有效的,并认为,此法或能拓展到材料中离子迁移的原位研究中。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/5ce0274a-82d5-49d8-985e-12dac1e329cf.jpg" title="IMG_4020.jpg"//pp style="text-align: center "strong报告人:中国科学院化学研究所 张建玲 研究员/strong/pp style="text-align: center "strong报告题目:绿色溶剂体系热力学性质及其应用研究/strong/pp  与传统先污染后治理的理念不同,绿色化学是从源头上消除污染的化学,其中一项内容就是使用无毒、无害的绿色溶剂。张建玲的研究领域正是绿色溶剂体系性质及其应用研究,在报告中,简要介绍了其团队设计的一系列绿色溶剂体系,并详细列举了相关的应用研究,包括:超临界CO2/水/MOF乳液体系提供MOF高级组装新途径、超临界CO2/水/金属配合物胶束体系提供CO2光催化转化新途径、离子液体促进MOF室温合成等。最后,对于热分析,张建玲认为原位动态跟踪、表征不同性质的仪器的联用、极限条件环境研究等技术将是时下技术的热点或趋势。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c6614413-c9f3-42ae-a33a-6b6ad52008e7.jpg" title="IMG_4062.jpg"//pp style="text-align: center "strong报告人:中国科学院物理研究所 吴光恒 研究员/strong/pp style="text-align: center "strong报告题目:DSC测量和歼-15/strong/pp  吴光恒在报告中,以富有风趣的形式介绍了新型磁性功能材料的概念及对于国家发展的重要性。接着讲解了材料的制备及测量方法,测量手段包括量热、磁测量、X射线结构分析、显微观察等。其中DSC设备就可以用来测量居里温度,接着分享了一个相关的测试实例:作为辽宁舰的舰载机,J-15的磁性材料肩负动力控制系统中迅速切断动力等重要功能,该磁性材料曾出现故障报警相关问题,之后吴光恒团队通过DSC测量居里温度的方法使问题成功解决。这也表明了,理化测试可以对国家重大需求做出直接的贡献。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/d839eddd-98a9-4c96-aff9-fc2ad8cc5cfa.jpg" title="IMG_4079.jpg"//pp style="text-align: center "strong报告人:北京大学 分析测试中心 章斐/strong/pp style="text-align: center "strong报告题目:TG/FTIR /MS检测中逸出气二次反应问题探讨/strong/pp  热重分析是一种唯象形的表观技术,可获知质量变化的温度区间和变化量,却不能获知失去的是什么物质。报告中研究的则是根据样品结构,结合失重率推算,对分解剩余物进行红外检测或元素分析。章斐首先介绍了逸出气二次反应定义及分类,接着讲解了该反应研究的意义:合理解析热重曲线(如通过铌酸铵草酸盐的TG/FTIR测试发现了其分解过程存在逸出气二次反应,部分CO发生了气化反应)、避免残氧影响、机理研究等。最后对热分析方法小结时,概括到:所见即所得,所得何所源(是否有逸出气二次反应衍生气体?是否与残氧二次反应?是否有仪器污染带来的干扰峰?),测样如勘案,探索无止境。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/0f20c10d-e411-4e6a-b47e-3363478e02d9.jpg" title="IMG_4129.jpg"//pp style="text-align: center "strong报告人:PerkinElmer公司 杨富/strong/pp style="text-align: center "strong报告题目:PerkinElmer公司热分析多联机技术及应用/strong/pp  仪器检测的未来特点,杨富认为是大通量、更全面数据,实时过程监测,无需极强的专业知识。在这种趋势下,PerkinElmer公司可提供综合型检测解决方案,与热分析相关的多机联用平台就包括盯控/热脱附模块、气质联用模块、显微/成像模块、红外光谱模块、热重/同步模块等。多机联用平台可以克服诸多弊端,如TGA/FTIR灵敏度较低、多组分检测时较困难,TGA/MS成本较高、谱图库有限、TGA/GCMS没有实时分析等。而多联机技术则可实现成分分析、质量监控、过程控制、异物分析等多领域应用的应用环。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/28549224-2cac-4503-a7d4-2cc789b4874b.jpg" title="IMG_4182.jpg"//pp style="text-align: center "strong报告人:中国科学院化学研究所 张武寿 研究员/strong/pp style="text-align: center "strong报告题目:等温量热计新进展/strong/pp  张武寿在报告中分三部分介绍了其团队关于等温量热计研究的最新进展,首先介绍了大体积、高功率量热计,其应用包括电池充放电研究、大体积样品热容量测量、反应热测量等。接着介绍了高温、高压量热计,该设备设计背景主要是用于油砂氧化过程的研究。最后介绍了等温滴定微量热-光谱联用仪,接着以视频的形式向大家展示了该设备的原理及实际应用情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/ad0aa6b0-cca4-4772-a27d-82b8f4f7ad1e.jpg" title="IMG_4210.jpg"//pp style="text-align: center "strong报告人:中国人民大学 牟天成 教授/strong/pp style="text-align: center "strong报告题目:低共熔溶剂的热稳定性研究/strong/pp  在报告中,牟天成首先讲到,热稳定性和分解温度是相对的概念,接着提出了长期稳定性的概念和计算方法,以及定量离子液体分解和蒸发的方法。通过热稳定性的研究表明,低共熔溶剂和离子液体不同,前者先分解成两个独立的组分,然后一组分分解或蒸发,后者的阴离子或阳离子先分解,然后另一个离子分解。另外,热重分析还可以用于其它方面,如应用其“重”(如作为碳化炉使用制备碳材料等)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/7091c7d7-f4b8-47fd-aa34-0908e0caf1a3.jpg" title="IMG_4284.jpg"//pp style="text-align: center "strong报告人:北京工业大学 吴玉庭 研究员/strong/pp style="text-align: center "strong报告题目:低熔点混合熔盐的配制与性能提升/strong/pp  目前,储热已成为第二大储能技术,由于熔盐具有传热无相变、传热均匀稳定、传热性能好、安全可靠等优点,熔盐储热成为前景广阔的大规模储能技术。吴玉庭介绍了一系列低熔点混合熔盐的制备,检测方法包括DSC检测、XRD等,同时,还讲解了为提高储热性能,制备过程中采取的一些措施,如亚硝酸钠代硝酸锂、某种添加剂替代硝酸钠等,最终使得三元碳酸盐的熔点显著降低77摄氏度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/e55463cb-58d0-4c66-8605-3a4763641999.jpg" title="IMG_4300.jpg"//pp style="text-align: center "strong报告人:中国计量科学研究院 王海峰 副研究员/strong/pp style="text-align: center "strong报告题目:热分析仪器校准的研究进展/strong/pp  王海峰首先以熔点的测量为例,讲解了计量的作用。其作用即检定和校准,检定是为评定计量器具的计量性能,确定其是否合格所进行的全部工作 校准时在规定条件下,为确定计量器具示值误差的一组操作。DSC的校准包括温度、热流等,DSC的性能评价包括分辨率、时间常数、信噪比、基线噪音、漂移、升温速率、炉温误差等。热重分析仪的校准包括质量校准、温度校准等。热重分析仪的性能评价包括温度重复性、温度示察误差、升温速率等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/7c322e43-9cf6-4ce2-a91c-bd7cb0dfc7a3.jpg" title="IMG_4335.jpg"//pp style="text-align: center "strong报告人:梅特勒-托利多国际贸易(上海)有限公司 陆立明/strong/pp style="text-align: center "strong报告题目:升降温最快的商品化DSC梅特勒-托利多Flash DSC/strong/pp  陆立明首先通过PET的DSC曲线实例对比了常规DSC技术和超快速DSC技术测试结果的不同:超快速DSC由于速度足够快使得PET测试过程没有明显机构重组发生。接着介绍了最新产品Flash DSC 2+,其超快升温速度可达3000000K/min。Flash DSC的应用包括等温实验、iPP升温速率变化测试、PET微晶结构变化与升温速率的关系、糖精的熔融和分解、工艺模拟测试(如添加剂的作用)等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/e919626f-1ccc-447b-a300-e6ca1b364156.jpg" title="IMG_4376.jpg"//pp style="text-align: center "strong报告人:德国耐驰仪器制造有限公司 曾智强/strong/pp style="text-align: center "strong报告题目:热分析谱图识别与检索-Identity方法与案例/strong/pp  曾智强认为,热分析谱图的鉴别不同于一些分析仪器图谱的“指纹图谱”性质,由于诸多变量因素影响,“相似谱图”往往对其更实用。耐驰Identity数据库就是在此基础上建立的,将测量曲线与数据库中的参考曲线逐一比较,得到相似度列表,考虑到材料的背景信息,可以对材料进行判别。目前,Identity数据库将包括DSC、TGA、DIL/TMA等图谱,涵盖聚合物、有机物、食品、药品、元素单质等领域材料,目前约含有谱图1100个,且可由使用者自行扩展,多个用户可通过网络共享数据库。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/640a92a7-12b9-4401-ac20-63e491e345d2.jpg" title="IMG_4399.jpg"//pp style="text-align: center "strong报告人:中国科学院工程热物理所 夏红德/strong/pp style="text-align: center "strong报告题目:反应过程逸出气体的质谱定量分析方法及应用/strong/pp  反应过程逸出气体的质谱定量传统分析方法包括两种:一是PTA法,该方法在线标定,精度可保证,可解决温度依赖效应,但气体成分需已知,仅适合单一气体逸出 二是归一化法,该方法可以离线标定,精确无法保证,气体成分需已知,无法解决温度依赖效应。夏红德提出了新的定量方法:ECSA等效特征图谱法,该方法避免了温度依赖效应,保证了时间连续性,原则上可测任何气体,机理上适合任何反应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/409bc387-f2cf-4289-a674-1ead7fa50ab4.jpg" title="IMG_4414.jpg"//pp style="text-align: center "strong报告人:北京橡胶工业研究设计院 苍飞飞 高级工程师/strong/pp style="text-align: center "strong报告题目:热分析技术在轮胎剖析工作中的应用/strong/pp  苍飞飞首先介绍了轮胎剖析的流程,包括物理性能检测、胶料组分分析、成品性能检测等。接着介绍了热分析技术在轮胎剖析工作中的应用情况,相关标准方法包括橡胶和橡胶制品热重分析法成硫化胶和未硫化胶的成分、橡胶总烃含量的测定热解发等。具体案例及问题中表示橡胶烃含量测试过程中干扰因素有很多,如:胶料中结合硫或酚醛树脂类等不被溶剂抽出的有机物,对定量检测都有不同程度影响。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/dcb5ab46-4f77-43d4-9785-8152a11a4840.jpg" title="IMG_4428.jpg"//pp style="text-align: center "strong报告人:北京市理化分析测试中心 李琴梅/strong/pp style="text-align: center "strong报告题目:热联用技术在材料分析测试中的应用/strong/pp  李琴梅主要介绍了四种热联用技术在材料分析测试中的应用:热裂解/气相色谱-质谱联用技术主要用于定性分析、组分分析、结构分析、降解分析等 高压DSC及联用技术常见应用领域包括催化剂研究、化学反应的微尺度模拟等 热分析-红外/质谱联用技术可用于同步热分析特殊测量、聚乳酸高分子材料热降解过程等 热分析-X射线衍射联用技术可应用于苯乙烯晶型转变研究等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/bf548082-274f-4d4e-b04b-8e559b477e64.jpg" title="IMG_3965.jpg"//pp style="text-align: center "strong德国耐驰仪器制造有限公司/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/fc0b4ad7-1df5-4490-8d8c-578f9de9725e.jpg" title="IMG_3966.jpg"//pp style="text-align: center "strong梅特勒-托利多国际贸易(上海)有限公司/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/7bca51ed-d2c2-4a57-ac0e-ba6b8fa563d4.jpg" title="IMG_3961.jpg"//pp style="text-align: center "strong珀金埃尔默仪器有限公司/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/d397e322-832a-4744-a114-346fe05f5f58.jpg" title="IMG_4117.jpg"//pp style="text-align: center "strong日立高新技术公司/strongbr//p
  • 对话欧洲石油巨头TOTAL | 岛津新一代硫化学发光检测器 SCD-2030助力石油化工中硫化物可靠性分析
    内容概要 Nexis™ SCD-2030是岛津为解决实验室需求而开发出的新一代硫化学发光检测系统。其卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,显著提升实验室工作效率。 欧洲石油巨头道达尔公司(以下简称:TOTAL)与岛津欧洲公司(以下简称:SHIMADZU)目前在石油化工领域开展深度合作,其研发部门Giusti博士和Piparo博士使用硫化学发光检测器Nexis™ SCD-2030开展油品中硫化物的痕量分析研究并取得不错的成果。 岛津欧洲创新中心采访了道达尔研发部门的Giusti博士和Piparo博士,针对在使用Nexis™ SCD-2030期间:硫化学发光检测器解决了哪些问题?生物燃料未来将面临哪些挑战?双方未来将在哪些方面开展深入合作等话题进行了专访… … SHIMADZU:Giusti博士,感谢百忙之中接受这次采访。首先,请您介绍下您团队的研究方向及目前已取得的成果。道尔达研发部门的Pierre Giusti博士(左)和Marco Piparo博士(右) TOTAL:谢谢岛津公司提供这次交流机会。Piparo博士和我所属道达尔公司研发&分析部门,工作最大的聚焦点在提供最新分析工具,主要是仪器和方法。部门始终的要求是不断寻找和评价具有实用性的分析技术,适用于日程或未来的工作需求。关于实用性这点,对我们而言,最真实的需求是将研发部门建立的稳定可靠的分析方法,成功地转移到质控部门,无论分析人员的技术是否熟练,均可获得稳定的检测结果。我们部门也会提供技术指导和支持对于公司其他部门。我们时刻面临诸多挑战,例如:生物燃料的开发及使用,塑料制品的回收与再生利用等问题。 SHIMADZU:为何考虑在这方面开展研究工作? TOTAL:能源市场由于全球气候问题,技术发展以及社会因素在不断变化,能源行业正处于巨变前沿。我们的研究工作主要改善并提升石油传统分析方法,同时建立全新油品、石油燃料、聚合物的分子指纹图谱,成为全球能源市场的重要参与者。最终实现2050年二氧化碳的净零排放量这一社会目标,普及低二氧化碳排放量燃料的使用,减少对石油燃料的依赖。 SHIMADZU:关于目前开展的合作项目,为什么考虑岛津公司作为合作伙伴呢? TOTAL:我们研发部门通常会开展多个项目,而每个项目需要创新和好的想法,这需要有合作伙伴共同实现。不仅如此,仪器厂商还需要愿意倾听我们用户的真实需求和问题,持续不断地从客户角度出发,关注开发用户所需求的产品和技术,岛津公司符合以上预期和要求。在此情况下,双方开展项目合作,以及计划共同开发含氧化合物的专属分析系统并申请专利。 道达尔公司研发人员与岛津应用专家交流探讨 SHIMADZU:岛津仪器在项目中解决了哪些问题? TOTAL:岛津公司一直提供多种先进的仪器和分析方法,对我们日常研发工作起到很大的帮助。其中硫化学发光检测器(SCD),采用全新技术开发的产品,使我们可以在复杂基质中,准确地检测到痕量硫化物。同时岛津质谱仪在使用高速扫描模式采集数据时,没有发生质谱歧视或灵敏度大幅下降的情况发生,以上仪器特点对我们日常工作非常重要。此外,这么多年使用岛津仪器的感受,产品非常皮实耐用,稳定性也非常好,确保日常分析结果的准确、可靠。 岛津全新硫化学发光检测器Nexis™ SCD-2030 Piparo博士提到之前使用SCD-2030检测器分析柴油中硫化物的应用案例。为了考察检测器的选择性、重现性和等摩尔浓度,采用脱硫柴油基质,加入七种与柴油相关的不同含硫化合物(分别为硫化物、硫醇和噻吩),目标硫化物的S添加浓度为下表。 通过实验结果发现在S的最低浓度点,所有加标样品的面积重现性均低于4%(n=6);回收率为92%~106%(n=3)。“SCD-2030能够有效避免油品中复杂基质的干扰,实现硫化物的高灵敏和高选择性检测,可获得良好的重现性和回收率。” Giusti博士补充道。 最低浓度点Level1的七种硫化物的色谱图(S: 1 to 4mg/L) SHIMADZU:最后,谈谈未来的合作方式及合作方向? TOTAL:基于iC2MC实验室,希望未来双方可以建立一个项目推进讨论平台,与岛津研发人员定期进行项目探讨,开展头脑风暴等,交流最前沿的元素分析,质谱分析技术,色谱分离等不同分析技术。此外,计划两年内,开发出用于生物燃料研究的专属含氧化合物的分析系统。该系统将结合岛津的气相色谱技术以及道达尔公司的技术,以及法国波城大学和西班牙奥维耶多大学的联合研究成果,为推动生物燃料的开发、生产改善做出贡献。 *iC2MC(https://ic2mc.cnrs.fr/) 道达尔研发人员与岛津欧洲创新中心经理平冈合影 参考文献:(1) R. L. Tanner, J. Forrest, L. Newman, “Determination of atmospheric gaseous and particulate sulfur compounds. [Atmospheric SO2 sampling, calibration, and data processing],” Brookhaven National Laboratory, Upton, NY, USA, Tech. Rep. BNL-23103. Jan. 1977.(2) X. Yan, “Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors,” J. Sep. Sci., vol. 29, pp. 1931-1945, Jun. 2006.(3) Y. Nagao, ”Reliable Sulfur Compounds Analysis in Diesel using Sulfur Chemiluminescence Detector Nexis SCD-2030,” Shimadzu Application News.
  • 氢风徐来-岛津Nexis SCD-2030助力燃料电池用氢气中硫化物在线分析
    我国 “双碳”目标的提出彰显负责任的大国形象,亦是可持续高质量发展的内在需求。在此宏观愿景下,“零碳排放”的氢能产业方兴未艾,燃料电池汽车作为氢能应用的重要场景,其能量供应体氢气质量的优劣至关重要。近期,中国测试技术研究院技术人员通过长期、深入、系统的研究,开发出一整套燃料电池用氢气中痕量硫化物的低温富集-GC-SCD在线分析系统,研发成果文章发表于Chinese Chemical Letters, 作为分析系统检测部分的核心,岛津的Nexis SCD-2030硫化学发光检测器大显身手。 氢燃料电池是很有前途的能源之一,它可以实现能源的循环生产,避免温室气体或污染副产品的排放。然而,即使在痕量水平(nmol/mol)的硫化物(SCs)也会导致催化剂不可逆的毒化作用,损伤并缩短燃料电池的寿命。此外,高反应活性的SCs可能会在复杂的环境中导致反应产生不同种类和浓度的SCs,为了更好地实时动态的监控SCs含量,在线分析系统至关重要。 在此背景下,研究人员开发了基于不同来源的氢气中9种典型SCs的低温富集与GC-SCD相结合的在线分析系统,结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析。图1. 低温富集-GC-SCD在线分析系统示意图 该系统由基准参考混合气体(PRGM)在线稀释、低温富集和GC-SCD三个主要部分组成,模块编号为1至14,分别代表1:压力传感器、2:开关阀门、3:临界流锐孔、4:H2纯化器、5:质量流量计MFC1、6:三通管、7:质量流量计MFC2、8:气泵、9:六通阀、10:低温捕集阱、11:GC、12:总硫分析用非保留色谱柱、13:形态硫分析用毛细管色谱柱、14:SCD检测器。 图2. 低温富集-GC-SCD在线分析系统数据示意图 混合气体标准物质的GC-SCD色谱图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5),浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol(从内到外)(左)并放大0.1、0.2,0.5和1 nmol/mol(右)。 表1. 某实际样品的数据分析结果表 实验结果表明,该在线分析系统可以实现快速在线、高灵敏度、精密度和准确度测定H2中SCs混合物。如上表实际样品分析案例所示,测定实际样品中的SCs,分析结果可低至0.09 nmol/mol,样品分析时间小于30分钟,证明该在线分析系统是快速、高效测定实际H2样品中痕量硫化物的理想解决方案。岛津新一代Nexis SCD-2030硫化学发光检测器
  • 水中硫化物的测定 你要注意这些“东西”
    试剂的影响1实验用水将蒸馏水新煮沸并加盖冷却,所有实验用水均为无二氧化碳水。2硫酸铁铵溶液的配制配制硫酸铁铵溶液,常常出现不溶物或混浊现象,应过滤后使用。3显色剂的使用显色剂质量的好坏是整个分析过程的关键。对氨基二甲基苯胺盐酸盐为白色粉末,酸性溶液为无色透明液体,冰箱保存时间较长。存放时间过长的对氨基二甲基苯胺盐酸盐因被空气氧化,为黑色,配制出的溶液为褐色,空白值偏高,且很快变为蓝色失效。失效的蓝色显色剂不和硫离子作用生成亚甲蓝,用失效的蓝色显色剂测定硫化物会导致严重错误监测结果。4硫化钠标准溶液用于配制标准溶液的硫化钠,其结晶表面常含亚硫酸盐,从而造成测定误差,所以用水淋洗要称量的硫化钠其除去亚硫酸盐。5硫化钠标准使用溶液在配制使用液以及标准样品时,在容量瓶中加入乙酸锌-乙酸钠后,容量瓶内会出现较大絮状悬浊液。在取用已经稀释的标准样品前,必须将容量瓶摇晃使样品均匀,否则由于样品不均匀产生测定误差。水样保存过程中的影响由于硫离子很容易氧化,硫化氢易从水样中逸出。采样时每100 mL水样加0.3 mL1 mol/L的乙酸锌,摇匀,放置3~5 min,使水样中游离的S2-与Zn2+充分反应,生成ZnS悬浮物。再滴加0.6 mL1 mol/L的氢氧化钠溶液,使水样的pH值在10~12之间。加氢氧化钠一是使水样中的H2S、HS-转化成S2-,二是生成Zn(OH)2絮状沉淀,这种絮状物有吸附作用,在沉淀过程中吸附ZnS共沉淀,达到现场固定目的。不要加过多氢氧化钠,否则生成沉淀,取样时不易摇匀造成误差。进行预处理取样时,一定充分摇匀已固定的样品,使预处理样品均匀,真实代表水样。样品预处理过程中的影响水样中的还原性物质都能阻止氨基二甲基苯胺与硫离子的显色反应而干扰测定;悬浮物、色度等也对硫化物的测定产生干扰。所以需对样品进行预处理。最常用的是酸化吹气法。吹气时,氮气纯度应大于99.99%,否则,空白值增大;整个吹气装置密封性必须好,接口处应用标准磨口,否则漏气影响测定结果的准确度;水浴锅温度要保持60~70 ℃,水温过高而室温较凉时,反应瓶内上部壁上沾有水雾将吸收少量硫化氢气体,影响测定结果准确度;注意磷酸的质量,当磷酸中含有氧化性物质时,可使测定结果偏低。样品分析过程中的影响预处理过的含硫离子的水样与对氨基二甲基苯胺的酸性溶液混合,加入Fe3+后,溶液先变成红色,生成中间体化合物,继而生成蓝色的亚甲基兰染料。酸度影响亚甲基兰染料的生成,所以水样的测定必须与校准曲线相同;显色时,加入的两种试剂(对氨基二甲基苯胺溶液与硫酸铁铵溶液)均含有硫酸,应沿管壁徐徐加入,并加塞混匀,避免硫化氢逸出而损失;文献报道亚甲基蓝分光光度法测定硫化物标准样品时,实验的温度选择在18~22 ℃为宜,随着显色温度的增高或降低,亚甲基兰的吸光度均降低;试剂加入顺序不能颠倒,否则,显色度明显降低。
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p span style="color: rgb(112, 48, 160) "(本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)  /span/pp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title="" style="width: 450px height: 503px " height="503" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong钱义祥老先生某次出差夜晚其学生拍摄/strong/pp  strong1.1 " 选择" 的哲理/strong/pp  人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。/pp  从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。/pp  1.1.1研究方法是一个不断发展的动态过程。/pp  科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。/pp  前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。/pp  1.1.2热分析方法选择的主体是人/pp  选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。/pp  热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。/pp  在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。/pp  热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。/pp  选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。/pp  选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。/pp  1.1.3高分子物理近代研究方法/pp  选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。/pp  “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。/pp  strong1.2热分析方法选择/strong/pp  “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。/pp  “热分析方法选择”有二层意思:/pp  第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。/pp  第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。/pp  1.2.1科学研究与方法的关系:/pp  每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。/pp  科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。/pp  方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。/pp  方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。/pp  1.2.2热分析仪器(方法)选择/pp  热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。/pp  在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。/pp  热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title="1.png"//pp  上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类/pp  方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一/pp  步细分,并选择相应的热分析方法。/pp  物理转变:/pp  涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。/pp  化学反应:/pp  涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。/pp  物质特性参数:/pp  比定压热容、纯度、膨胀系数、热导率等。/pp  热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。/pp  列举几个实例:/pp  1. 玻璃化转变测量方法的选择/pp  高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。/pp  DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表:/pp  DSC:检测的物理量是比热容 Cp 比热容变化约30%/pp  TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300%/pp  DMA:检测的物理量是模量 E 模量变化高达3个数量级/pp  由上表可知:仪器灵敏度DSC TMA DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。/pp  2. 高聚物次级转变的热分析方法选择/pp  为什么要选择DMA方法来研究次级转变呢?/pp  从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。/pp  用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。/pp  DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。/pp  高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。/pp  高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。/pp  DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的/pp  DMA曲线如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title="2.jpg"//pp style="text-align: center "strong均相非晶态高聚物的DMA曲线/strong/pp  3. 物理老化和化学老化研究的热分析方法选择/pp  高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。/pp  化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。/pp  物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。/pp  膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title="3.jpg"//pp style="text-align: center "strong分子链残留内应力和热焓松弛的MDSC曲线/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title="4.jpg"//pp style="text-align: center "strong  膜的物理老化涂层的应力-温度曲线/strong/pp style="text-align: center "strong  未物理老化涂层A/strong/pp style="text-align: center "strong  物理老化涂层B/strong/pp  涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。/pp  光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title="5 (2).jpg"//pp style="text-align: center "  strongPDC的结构示意图 光化学反应量热仪PDC/strong/pp  光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。/pp  4. 选用多种热分析方法,全面表征高聚物的热性能。/pp  为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。/pp  成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。/pp  5. 绝热材料的热分析方法选择/pp  温石棉是导热性极差的绝热材料。/pp  温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下:/pp style="text-align: center "  Mg(OH)2 → MgO + H2O↑-△H/pp  由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。/pp  由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH)sub2/sub的含量,数据准确,重复性好。/pp  6. 标准试验方法/pp  鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流/pp  和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。/pp  研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。/pp  借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。/pp  开发新的热分析方法和实验方法,适应研究的需要。/pp  7. 改造已有的方法以适应解决实际问题的需要/pp  外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。/pp  外加电场的DMA实验/pp  外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title="6.jpg"//pp style="text-align: center "strong拱形铜片的应变—应力曲线测试/strong/pp  选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。/pp  采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title="7.jpg"//pp style="text-align: center "strong夹具组合 —“蹦床夹具”实验/strong/pp  标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。/pp  用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。/pp  循环加载/下载应力,进行应力—应变循环实验。/pp  测定试样蹦床落点的力学性能。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title="8.jpg"//pp style="text-align: center "strongDMA模拟蹦床实验示图/strong/pp  8. 移植方法/pp  移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方/pp  法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。/pp  固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。/pp  1.2.3选择实验条件,建立实验方法/pp  热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。strong见下图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title="9.jpg"//pp  列举几个实例:/pp  1. 含能材料的热分析方法和试验方法的选择/pp  热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。/pp  含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title="10.jpg"//pp style="text-align: center "  strong含能材料的TG/DTA曲线 含能材料的DSC曲线/strong/pp  含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。/pp  2. 聚丙烯玻璃化温度测定/pp  选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显strong,/strong如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title="11.png"//pp  3. 选择真空或加压条件解决热分析峰的分离问题/pp  热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。/pp  如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。/pp  4. 选择“强化影响因素”的实验条件/pp  有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。/pp  1.2.4热分析方法的取代和重新选择/pp  热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。/pp  批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。/pp  “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。/pp  实例1:选择热分析方法测定药物熔点/pp  热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。/pp  在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。/pp  选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。/pp  实例2:热分析方法自身在发展,方法选择也在演变。/pp  热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。/pp  TG方法的演变,促使高聚物热分解的研究不断深化,如下表:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title="12.jpg"//pp  表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分/pp  析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同/pp  步进行解析,追溯热变化的物理-化学过程。/pp  1.2.5方法选择中的创造性思维和批判性思维/pp  创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。/pp  热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思/pp  维和批判性思维将推动热分析方法和仪器的发展。/pp  实例1:骤冷PET初始结晶度测定/pp  选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。/pp  温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例/pp  创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title="13.jpg"//pp  温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。/pp  实例2:油品氧化诱导期测定/pp  常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。/pp  strong1.3“热分析方法选择”的编辑/strong/pp  全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。/pp  “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。/pp  1.3.1实验室编辑“热分析方法选用”/pp  热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。/pp  “热分析方法选用实例”示意如表1:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title="14.jpg"//pp  每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。/pp  某实验室绘制的“热分析方法选用”实例的表格,如表2示例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title="15.jpg"//pp  “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。/pp style="text-align: center "  strong表三 热分析应用的文本格式/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title="16.jpg"//pp  每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。/pp  1.3.2“热分析方法选择”的检索系统建立/pp  热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。/pp  以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。/pp  文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。/pp style="text-align: center "  strong表四 研究报告的文本转换/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title="17.jpg"//pp  “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。/pp  “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。/pp  1.3.3选择云端中“热分析”那朵云/pp  在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。/pp  耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美!/p
  • 起底各大进口厂商热分析仪产品家族:或出身“豪门”,或归属“新贵”(上篇)
    热分析是材料研究中最常用的表征手段之一,通常是指在程序控温和一定气氛下,测量物质物理性质随温度或时间变化关系的一类仪器。本文将介绍各大进口热分析仪厂商产品家族,带领大家了解知名进口热分析厂商产品家族及其代表产品。德国耐驰 NETZSCH 公司介绍:德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。 在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。 耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。 耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃-2000℃,导热率范围为0.005-1500W/(m*k)。 作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。 耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。 耐驰产品家族: 其它燃烧测定锥形量热仪氧指数测定仪火焰蔓延性能测定仪烟密度箱/烟密度测试箱阻燃性能测定仪燃烧试验箱流变仪其它热分析仪同步热分析仪(STA)热分析联用仪热膨胀仪动态热机械分析仪(DMA/TMA/DMTA)导热仪、热导仪差示扫描量热仪(DSC/DTA)热重分析仪/热天平(TGA)量热仪代表仪器:耐驰 STA449F3 同步热分析仪(第十四届中国科学仪器发展年会获年度最受用户青睐仪器奖)仪器介绍:STA449F3同步热分析仪系统将DSC和TGA结合,可以在完全相同的测试条件下,研究样品的热量变化和质量变化。由于配备多种不同温度范围的加热炉,耐驰同步热分析仪的应用领域涵盖绝大多数材料,包括塑料、橡胶、合成树脂、纤维、涂料、油脂、陶瓷、玻璃、水泥、耐火材料、金属及合金、燃料、炸药、医药、食品等。STA449F3包含了高性能的TG与DSC测试系统。其天平系统具有漂移小、范围广等特点。该系统可配备不同量程的天平,并可在全量程范围内实现高灵敏度;配备不同的炉体,STA449F3的温度范围可达-150°C … 2400°C;通过真空系统和流量控制系统,用户可以进行任意气氛控制下的测试;双炉体提升装置和自动进样器(ASC)对于高性能的热分析仪器是非常有利的,可以大大改善样品的处理量,从而提高测试的效率;在宽广温度范围内,各种TG-DSC传感器可以提供真正的DSC测试。TG、TG-DTA传感器则可满足特殊要求下的测试;坚固耐用的硬件、界面友好的软件、灵活多样的设计配以丰富的选项使得STA449F3成为您实验室中质量控制和材料研究的理想工具;STA449F3可以与QMS或者FTIR联用,亦可同时与二者联用。即使配以自动进样器,所有测试也可同步进行。美国TA仪器 TA Instruments公司介绍:TA仪器的历史见证了为满足客户对高技术产品、高质量的生产和强大售后服务能力需求的不断努力,也正是高品质的产品、高时效的交货、优异的客户培训和强大的售后服务支持,为TA赢得了全球热分析、流变和微量热技术的全球地位。领先意味着持续的创新。TA最近推出了一系列革新性产品,扩大了硬件设施和支持队伍。全新的公司标志强调了TA面向全球的战略,也将落实到公司的每一个角落和产品的每一个细节。公司在美国New Castle DE的总部扩大了40%,以迎接对新产品持续增长的需求。另外还扩大了在美国、欧洲、澳大利亚、中国、日本、印度、巴西和韩国的办事机构,并在其它国家组建了强大的分销网络。 创新深深根植于TA的设计人员心中,从而使其在热分析和流变仪拥有众多领先的技术。TA所有的产品都产自美国New Castle和英国Leatherhead的生产基地,并拥有ISO 9002质量体系认证证书。 TA仪器公司特别专注于客户的需要,其培训和应用支持队伍多年来被第三方评估机构评价为最好的售后服务。TA引以为荣并以此为激励,专注于客户的每一项需求,并以最节约和最有效的方式去满足。所以,TA作为全球热分析和流变仪的领先供应商,才能得到广大用户的真正认可。 TA仪器产品家族:硬度计密度计橡胶加工分析仪硫化分析仪、硫化仪其它表面测试高压吸附仪化学吸附仪、高压化学吸附仪蒸汽吸附仪/蒸气吸附仪流变仪同步热分析仪(STA)热分析联用仪热膨胀仪动态热机械分析仪(DMA/TMA/DMTA)导热仪、热导仪差示扫描量热仪(DSC/DTA)热重分析仪/热天平(TGA)代表产品:差示扫描量热仪Discovery X3 DSC产品简介:TA仪器Discovery X3采用多样品炉体,可以同时提供多达三个样品的高质量热流数据。Discovery X3 DSC将行业领先的性能与工具相结合,以提高材料研究各个层面的生产率。融合量热单元FusionCell™ 采用专利技术,在基线平直度、灵敏度、分辨率和重现性方面具备无与伦比的性能。其卓越的技术支持检测最微弱的热转换,提供最精确的热焓和比热容测量结果;X3 的增强型 Tzero 热流技术可同时保障三个样品的温度和热焓准确度不受影响;具有三个样品量热仪的高端性能提供了无与伦比的灵活性,从用于统计分析的重复测试到对照样品的验证/确认,均可确保最高确定性;Modulated DSC™ (MDSC™ )可实现复杂热现象的有效分离;One-Touch-Away™ 用户界面有效提升了易用性和对仪器数据的访问;稳定可靠的54位线性自动进样器,可通过编程设定托盘位置,实现全天候无忧运行,实验的编程控制具有极高的灵活性,提供自动化校准和验证例程;宽温度范围的机械制冷附件选项,消除了液氮的消耗,确保在扩展自动进样器实验过程中实现不间断的低温运行;Tzero 压样器和样品盘,实现快速、简单和可重复的样品制备;功能强大的软件,包含仪器控制、数据分析和生成报告的组合软件包提供卓越的用户体验。自动校准程序和实时测试方法编辑等功能提供了优异的灵活性,一键分析和自定义报告则将生产率提升到新的水平;量热单元和加热炉享有的五年质保,为产品保驾护航,恪守质量承诺。瑞士梅特勒-托利多 METTLER TOLEDO 公司简介:梅特勒-托利多是历史悠久的精密仪器及衡器制造商与服务提供商,产品应用于实验室、制造商和零售服务业。梅特勒-托利多提供贯穿客户价值链的称重、分析和产品检测解决方案,帮助客户简化流程、提高生产率、确保产品符合法律法规要求以及优化成本。梅特勒-托利多在全球范围内拥有40家分公司和销售机构,并在瑞士、德国、美国和中国等国家拥有生产基地。梅特勒-托利多在中国的上海、常州和成都都设有运营中心、制造基地及研发中心,并拥有遍布全国的销售及服务网络。梅特勒-托利多产品家族:实验室——天平实验室——pH/电导/溶氧/离子实验室——电位滴定仪实验室——密度计/折光仪/熔点仪实验室——自动化化学仪器实验室——快速水份测定仪实验室——卡尔费休水分仪实验室——紫外可见分光光度计实验室——热分析系列(TGA/DSC/DMA/TMA)实验室——移液器与吸头工业称重——汽车衡和灌装秤工业称重——台秤/平台秤/吊钩秤工业称重——仪表显示器工业称重——传感器与模块生产过程——产品检测设备生产过程——气体/液体在线检测食品零售——条码秤/收银秤/计价秤代表仪器:梅特勒-托利多 Flash DSC 2+产品介绍:Flash DSC 2+ 为快速扫描 DSC 带来了不小的变化, 该仪器可对以前无法测试的结构重组过程进行分析。 Flash DSC 2+ 是对传统 DSC 的完美补充。 现在,升温和降温速率范围已覆盖超过 7 个数量级。它是研究 –95 °C到 1000 °C 温度范围内快速结晶和重组过程的完美选择。 它的升温与降温速率高,为研究热致物理转变和化学过程(如聚合物、金属和其他材料的结晶与结构重组)提供全新的视角。美国珀金埃尔默 PerkinElmer公司介绍:PerkinElmer股份有限公司是一家全球性的业界著名技术领先公司,其业务集中在三个领域——生命科学、光电子学和分析仪器。PerkinElmer是分析仪器行业无可争议的技术领先和主导者之一。珀金理查德和埃尔默查理斯于1937年4月19日创立PerkinElmer公司,1944年,PerkinElmer公司进入分析仪器的全新领域,并成功推出世界上第一台商用红外分光光度计-12型。这项新技术就是现代化学分析手段的鼻祖。并使PerkinElmer公司占据了世界化学分析仪器供应商的领先地位。1955年5月,在英国人A.J.马丁研究开发的技术基础上,PerkinElmer公司推出世界上第一台商用气相色谱仪-154型。1957年匹兹堡会议上,公司又推出世界首台双光束红外光谱仪137型,新产品的推出标志着以低成本进行红外分析的开端,对当时分析仪器行业具有极为重大的意义。50年代后期和60年代,公司先后研究开发出先进的气相色谱技术和原子吸收分析技术。在这一时期,PerkinElmer公司以其创制出的第一台原子吸收分析仪-AA303型占据了世界分析仪器行业领先地位。1972年,公司进入液相色谱市场,成功推出最早的带梯度泵的液相色谱仪-1220型。1975年,公司将微机技术引入460型原子吸收光谱仪,使原子吸收分析的进行更轻松更有效。自80年代起,PerkinElmer公司开始涉足电感耦合等离子体光谱仪(ICP)和电感耦合等离子体质谱仪(ICP-MS)领域,发展至今已成功地在这一领域占据世界领先地位。领先的技术,精湛的工艺,全面的客户服务,让PerkinElmer成为分析仪器界新技术和完善产品的代名词,并赢得了分析仪器客户的衷心信赖和支持,成为在原子光谱(原子吸收、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪)、分子光谱(傅里叶变换红外/近红外、紫外/可见近红外光谱仪、荧光、旋光)、气相色谱和气相色谱-质谱联用仪、液相色谱仪以及热分析系统(差热分析、热重、动态/静态热机械分析仪、同步热分析仪)等化学分析仪器领域最著名的供应商之一。随着PerkinElmer在中国业务的迅速增长,PerkinElmer总部加大了对中国的投资力度。2006年2月PerkinElmer在上海张江高科技园区正式成立了中国技术中心。新的技术中心大楼集中了公司的销售、物流、维修、技术支持、客户服务等各个部门。同时还将进一步发展成为全球物流和研发的基地。在技术中心里建立了亚太区最大的示范实验室,并且专门投资装备了将服务于全球半导体行业分析应用的1000级超净实验室。在示范实验室里可以看到PerkinElmer公司生命科学与化学分析仪器几乎所有最新型号的仪器,每个月都会举办多期用户培训班,并为客户提供方法开发、优化等多项增值服务。中国技术中心的建成将成为珀金埃尔默公司提高对整个中国地区,乃至整个亚太区域的客户的服务水平打下坚实的基础。珀金埃尔默产品家族:核酸纯化系统/核酸提取仪微波消解热分析联用仪液质联用(LC-MS)气相色谱(GC)液相色谱(LC)顶空进样器热解析仪、热解吸仪红外光谱(IR、傅立叶)紫外、紫外分光光度计、紫外可见分光光度计、UV原子吸收光谱(AAS)ICP-AES/ICP-OES荧光分光光度计(分子荧光)气质联用(GC-MS)红外显微镜等离子体质谱(ICP-MS)热重分析仪/热天平(TGA)差示扫描量热仪(DSC/DTA)同步热分析仪动态热机械分析仪(DMA/TMA/DMTA)有机元素分析仪酶标仪实验室信息管理系统(LIMS)实验室搬迁活体成像系统液体闪烁谱仪(液闪仪)细胞分析(细胞成像、流式细胞、能量代谢)生化耗材高内涵细胞成像分析系统常用生化试剂消耗品/配件近红外光谱(NIR)代表仪器:热重红外气相色谱质谱联用TG-IR-GC/MS仪器简介: 实验室经常需要分析未知混合物确定其主要成分、鉴别其中的添加剂或污染物种类以及含量等信息。这些信息在某些应用场合是至关重要的,例如,剖析竞争对手产品配方或者评价产品的指标是否遵循行业规范等等。光谱分析技术在研究预分离纯组分的样品方面已经建立了大量较为成熟的方法,分离和离析过程可以借助热重分析仪、傅立叶变换红外光谱仪和气相色谱仪等完成。而对于复杂混合物样品体系,将这些常规技术进行联用则是更为有效的检测分析手段。珀金埃尔默公司可提供全套成熟的联用解决方案,在本案例中,通过使用TL-9000型传输管线有效的将热重-红外-气相色谱/质谱分析仪器进行联用,可用于分析复杂样品体系。在热重分析仪的热分离过程中,样品所释放的气体被实时输送到傅立叶变换红外光谱仪中进行红外数据采集。热重-红外数据包含了每间隔约8秒采集一次所得到的一系列的谱图。标准的红外数据显示格式为吸收率对波数曲线,样品逸出气体的红外光谱图采集密度大约为每升温2度采集一组谱图。热重-红外联用的Time-Base软件还可以辅助绘制三维坐标图谱,可同时显示叠加的红外曲线随时间或者温度以及波数的关系,用户可以非常直观的了解样品在整个温度平台中的热重-红外数据变化情况,这有助于阐述样品分解过程的动力学,确定选取哪个温度区间展开精细分析。此外,分析人员还可以查看任何特定波长对应的吸收与时间的谱图,以跟踪所关心的分解产物浓度对时间,乃至温度的关系。将多套分离分析仪器联机进行测试的“联用技术”,如热重-红外和热重-气相色谱-质谱联用技术,配合强大的搜索软件以及完善的谱图数据库,赋予分析人员能够对未知水性混合物进行有效全面的分析,其中添加的各种组分得以鉴别。日本日立分析仪器(上海)有限公司 HITACHI公司介绍:日立分析仪器专注于高科技分析解决方案,帮助数以千计的企业降低成本,降低风险,提高生产效率。日立分析仪器实验室级和强大高性能现场检测设备如光电直读光谱仪、X射线荧光光谱(XRF)、X荧光测厚仪(镀层测厚仪)、激光诱导击穿光谱仪(LIBS)、油品分析仪、土壤分析仪等为客户提供材料和涂镀层分析,在整个生产周期中增加价值,包括从原材料勘探到来料检验、生产和质量控制到再循环。日立分析产品家族:X射线荧光测厚仪X荧光光谱、XRF(波长色散型X荧光光谱仪)X荧光光谱、XRF(能量色散型X荧光光谱仪)同步热分析仪(STA)动态热机械分析仪(DMA/TMA/DMTA)差示扫描量热仪(DSC/DTA)气质联用(GC-MS)光电直读光谱仪激光诱导击穿光谱仪(LIBS)日立New STA系列TG-DSC热分析仪(上市时间:2020年3月)仪器介绍:New STA系列新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10µg以下。此外,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升。法国凯璞科技集团旗下塞塔拉姆仪器 KEP Technologies-SETARAM公司介绍:SETARAM公司全球顶级热分析及量热仪的制造商,公司位于热分析和量热仪技术的发源地-法国。在高温和超高温热分析领域以其独特的光电天平技术和模块化设计一直处于行业领先地位。以C80,SENSYS为代表的卡尔维微量热仪和高压DSC产品更是行业内的标准,特别是高压DSC技术稳定性和灵敏度无与伦比。2008年,新EVO 系列仪器诞生,其中LABSYS EVO综合热分析仪技术指标逼近SETSYS,性能及灵活性超过其他同类进口产品。同年收购美国HY能源技术公司,全面进军储氢领域。在四十多年的发展过程中,塞塔拉姆公司不断研发生产客户定制的分析仪器,保证客户应用的最大利益,其产品在高温,如航空航天、核工业、陶瓷、冶金、食品等领域,生命科学和制药研究方面,过程安全如预测逃生时间,能源开发利用如燃气水合物和钻井泥浆的应用上一直处于世界最领先的地位。除了品种齐全的标准仪器之外 (DTA, DSC, TGA, simultaneous TGA-DTA/DSC, TGA-EGA coupling, TMA, TSC, calorimeter),塞塔拉姆公司还不断推出为客户量身定制的分析仪器.法国塞塔拉姆仪器公司目前在中国有上海/北京/广州三个办事处,有专职的技术人员和售后工程师为广大客户服务。KEP Technologies产品家族:热重分析仪/热天平(TGA)同步热分析仪差示扫描量热仪(DSC/DTA)量热仪热分析联用仪物理/化学吸附仪动态热机械分析仪(DMA/TMA/DMTA)其它热分析仪代表仪器:C80 微量热仪仪器简介:C80微量热仪是法国塞塔拉姆(Setaram)公司研发,享誉业界的经典微量热仪。借助卡尔维(CALVET) 量热原理的三维传感器(3D-sensor),全方位探测样品热效应。全面突破普通平板DSC量热效率低、样品量小且形态单一、无法原位混合等技术瓶颈,完全真实反映样品的物理化学性质,并提供无与伦比的测试精度。C80集等温与扫描功能于一身,配备多种样品池,具有混合、搅拌、定量加样等功能。另外C80拥有超大样品量(可达12.5ml)的反应釜,并可实时监控压力最 大为 1000bar。特别适用于催化反应、水泥水化、润湿和吸附反应、CO2捕获与封存、储氢材料、过程安全的评价及火炸药、推进剂等含能材料的研究。基于卓越的性能和可靠的表现,C80以用户最多,应用面广和工作方式灵活等赢得全球广大用户的信任与依赖。德国林赛斯 LINSEIS公司介绍:自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。林赛斯公司以高标准、高精度和严要求来研发热分析仪器。针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。产品家族:热膨胀仪差示扫描量热仪差热分析仪热机械分析仪热重分析仪同步热分析仪热扩散/导热系数测定仪赛贝克系数/热电阻测定仪薄膜导热测试仪霍尔效应测量系统其他热分析仪代表仪器:德国LINSESI 差示扫描量热仪Chip-DSC-10仪器简介:全芯片DSC传感器将DSC、炉体、传感器和电子器件的所有基本部件集成在一个小型化的外壳中。芯片布置包括加热器和温度传感器,其在具有金属加热器和温度传感器的化学惰性陶瓷装置中;这种布置允许更高的再现性,并且由于低质量的出色的温度控制和加热速率高达300C/min。集成传感器易于用户可交换并且可用于低成本;芯片传感器的集成设计提供了优良的原始数据,这使得能够在没有热流数据的预处理或后处理的情况下进行直接分析;紧凑的结构,大大降低了生产成本。低能耗和优越的的动态响应导致了变革性的DSC概念的优越的性能。 更多进口热分析仪器厂商盘点,敬请期待。
  • 三会场交相辉映,热分析大放异彩——2018年热分析技术及应用研讨会分会报告摘录
    p  strong仪器信息网讯/strong 由北京理化分析测试技术学会热分析专业委员会和江苏省分析测试协会热分析专业委员会主办,江苏省分析测试协会协办的strong2018年热分析技术及应用研讨会/strong于2018年10月13-14日在无锡举办。大会共设置span style="color: rgb(255, 0, 0) "strong材料、溶液、仪器/strong/span三个主题的分会场,分会报告围绕热分析方法在对应主题研究领域的应用展开了讨论。诸位专家各显神通,精彩内容层出叠现,请随仪器信息网编辑走进会场,一同领略报告学者的卓越风采吧!br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/6639c63b-3ce4-4edb-989c-0da0f4b1402a.jpg" title="分会场.png" alt="分会场.png" width="500" height="686" border="0" vspace="0" style="width: 500px height: 686px "//pp style="text-align: center "strong分会现场/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/6d67c514-36ac-4e18-a73d-2792e19a1442.jpg" title="张建军.jpg" alt="张建军.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong河北师范大学教授 张建军br//strong/pp style="text-align: center "strong报告题目:《稀土功能配合物的晶体结构、荧光及热化学性质的研究》/strong/pp  材料的使用寿命和产品的保质稳定期,可以通过研究物质的热分解反应动力学,进而得到配合物反应进度与时间、温度间的关系来进行预测。摩尔热容的测量可用于研究物质的微观结构和机理,在合成工艺设计、热量计算和燃烧机理的研究中具有重要意义。课题组合成了两种稀土芳香羧酸配合物[Eu(3,4-DMBA)sub3/sub(3,4-DMHBA)(5,5’-DM-2,2’-bipy)]sub2/sub与[Tbsub2/sub(3,4-DMBA)sub6/sub(5,5’-DM-2,2’-bipy)sub2/sub(Hsub2/subO)],并采用荧光光谱、TG-DTG/DSC及其与红外联用的方法,对合成的19种配合物进行了分析表征,表明:其共显示出四种不同类型的晶体结构 配合物具有良好的热稳定性,在升温过程中,中性配体倾向于首先失去,配体分解为脂肪族有机物和COsub2/sub、Hsub2/subO等气态小分子,最终产物生成金属氧化物 摩尔热容测量结果显示配合物热力学性质稳定、没有相变或其它任何热异常现象发生,比较了两种配合物1[Pr(III)]和7[Dy(III)]的摩尔热容,发现结构相同的两种配合物的热容值相近,故具有相近的分子间振动能。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/436a5760-26c7-4559-bd65-f48e1dfc01d2.jpg" title="李晓萌.jpg" alt="李晓萌.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京理工大学教授 李晓萌/strong/pp style="text-align: center "strong报告题目:《非等温DSC法研究三唑交联体系固化动力学》/strong/pp  固体推进剂体系常见的为端羟基聚丁二烯(HTPB),其具有力学性能好、粘度低、固含高、成本低等优点。粘合剂采用羟基(-OH)与异氰酸酯基(-NCO)发生反应生成氨基甲酸酯键,-NCO反应活性高,对水敏感,与水反应会生成脲键,并放出COsub2/sub,易产生气泡,氨基甲酸酯键的耐水性也有限,且新型高能氧化剂二硝酰胺铵(ADN)、硝仿肼(HNF)与异氰酸酯基相容性差。叠氮(-Nsub3/sub)和炔基(-C≡CH)的反应在很多领域应用很广,在推进剂领域具有不受水分影响,可提高固化产物弹性体中的氮含量,并有望在室温下固化的优势。首先将HTPB进行修饰得到PTPB,再合成两种叠氮固化剂,Nsub3/sub-III(三官能度)和=Nsub3/sub-II(二官能度),通过一价铜的催化来实现固化反应。之后以力学性能为判据确定了一款合成配方,并使用非等温DSC法研究了该体系的固化动力学机理。由基辛格(Kissinger)方程结合阿仑尼乌斯(Arrenius)方程,求得表观活化能Ea和指前因子A 由DSC曲线峰形指数得到n,即可预测任意温度条件下的等温固化曲线。最后得到结论PTE-0.1体系在30℃条件下,30h内即可达到98%的固化度。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/77001e80-e236-43f5-9c96-0e13f8a2ca49.jpg" title="章斐.jpg" alt="章斐.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京大学高级工程师 章斐/strong/pp style="text-align: center "strong报告题目:《热分析测试结果(TG、DSC)的研究性分析方法—从测试人员角度》/strong/pp  热分析测试结果是否能反馈待测样品性质的真实信息?这是一个常被人忽略的问题。受到源自仪器、环境、样品、检测原理等因素的影响,常常出现测试数据不能反映真正实验结果的现象。如何获得准确、真实的测试结果?这需要在状态合格的仪器设备上,排除与样品及非样品相关因素的干扰。热重实验中样品质量W与仪器升温速率间不具有函数关系,升温程序的改变不会使热重曲线发生变动,这是由热重分析仪中热天平和升温炉体单独测量物理量的特性所决定。测试环境中的外力震动、气路波动、天平失稳等因素,以及测试样品发生晶粒跳溅、飞离坩埚、剧烈分解、试样熔融、露出坩埚、试样膨胀等行为对样品台压力产生的变化,均会导致测试结果的失真,实验者应当从热分析曲线中识别这种现象,并重新进行测试。DSC测试中随升降温速率的设置不同会对实验结果产生不同程度的影响,这其中可能存在电源干扰、静电释放以及其它高频干扰源的影响 试样在坩埚内的气泡产生、出离坩埚等情况也是影响因素之一,因此样品制备过程显得十分重要。这些都是实验中应该辨别和避免的现象。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/4b0e6935-0d3a-4375-a2c3-7dce7bc4f20d.jpg" title="邹涛.jpg" alt="邹涛.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京市理化分析测试中心副研究员 邹涛/strong/pp style="text-align: center "strong报告题目:《热分析检测中的质量控制》/strong/pp  检测机构实验室质量控制,涵盖人机料法环五大要素,设备状态在整个环节中起到十分关键的作用。对设备应怎样做好质量控制工作?仪器设备通过验收后,处于整个控制流程的起步阶段,仪器经过检定或自检,就可以进行日常的检测活动。一次检定显然不能终身能用,因此会通过仪器的期间核查,来不断考察仪器的工作状态。核查的方式有:实验室内部人员比对、不同仪器比对、标物核查以及留样再测,但最好的方式还是进行实验室间比对,例如组织数家实验室进行实验数据的考核,以及参加能力验证。仪器设备验收主要是对关键测试指进行考核,如对热膨胀仪进行验收,通过采用标样对相对伸长量,平均膨胀系数等关键指标的偏差,与文献值还有实验数据进行比对,以确保仪器的可用性。仪器设备优先进行检定,条件不足的须要溯源到标准物质,再次之则要求检验检测机构保留与原检测结果相关性或准确性的凭证,即参加验证。在仪器检定、自检程序完成之后,需要对仪器设备的性能指标、检定完毕的仪器状态,同国标、ASTM、IOS等标准对仪器设备的要求是否匹配进行确认,也是必须做的工作内容。所有确认工作完成之后,方可对外进行一般性的检测服务。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/25d0aa22-21bd-4e74-ab4f-331a8c6626fd.jpg" title="苍飞飞.jpg" alt="苍飞飞.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京橡胶工业研究设计院 国家橡胶轮胎质量监督检验中心 北京橡院橡胶轮胎检测技术服务有限公司高级工程师 苍飞飞/strong/pp style="text-align: center "strong报告题目:《热分析技术在橡胶测试中的应用研究》/strong/pp  天然橡胶是从三叶橡胶树中收集到白色胶体,再加入固化剂经过烘干所制成 合成橡胶是人工合成的橡胶,具有线性高分子、支链高分子、体型高分子几类分子结构。它们的分子量均较大,天然橡胶分子量可达到百万级,合成橡胶也在十几万量级以上。天然橡胶在其分子链段方向具有弹性,在链段垂直方向不具有弹性,因此不可直接使用 通过在其中混入硫磺,经过高温高压加工工艺可形成C-S-C键的网络结构,即可制备出像轮胎、橡胶圈、奶嘴、密封胶条等橡胶制品。天然橡胶制成硫化胶以后,想要再制成再生胶,需要将橡胶链段进行解段,形成一些小的自由基体,其中最难解段的是C-C链段,也是制备再生胶最为困难的部分。当前我国对资源再利用十分关切,并不断加大这一领域的利用度。我国废旧轮胎产量居世界首位,并以每年8%~10%的速度急剧增加,至2020年可达2000万吨,这为再生胶的生产提供了充足的原料。再生胶可用于汽车部件、飞机跑道、枕木、塑胶跑道等产品的制造。氟醚橡胶因其耐热、耐油、耐氧化、耐化学品等优异性能,被广泛应用汽车、电子、航天、船舶等领域高精度、耐高温、高耐磨、条件苛刻的工业环境中。醚键支链的存在进一步破坏了碳主链结构的规整度,降低了其结晶能力、增大了分子链链段活动能力,同时随着柔性支链取代基的增大,使分子堆更加松散,其链段活动能力进一步增强。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/de78ab66-4bce-490f-bab9-793815fd66a2.jpg" title="张武寿.jpg" alt="张武寿.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong中国科学院化学研究所副研究员 张武寿br//strong/pp style="text-align: center "strong报告题目:《高灵敏大体积塞贝克型量热计的研制及其应用》/strong/pp  传统的Calvet型微量热仪的代表型号有TA仪器的TAM和塞塔拉姆(SETARAM)的C-80 大体积量热计目前在二次电池领域有一定需求,代表型号有热安(THT)的IAC与耐驰(NETZSCH)的IBC 284 SETARAM的LVC-1380-3W可应用于核废料的量热中 应用于化工中试的大体积量热计有SETARAM的DRC和梅特勒(METLLER)的RC1 此外大体积量热计还可应用于相变储能材料、大型样品的热容量,大型工件的热含量,冷聚变,以及人体新陈代谢热量的测定。报告中还介绍了课题组开发的Seebeck型大体积量热计的原理、结构、样机参数以及应用。大体积、高功率热量计可用于动力电池、相变建筑材料等任意大体积样品的热容量测量,有机反应热量测量,冷聚变能量测量等。大体积Seebeck型量热计仍存在热噪声、温度噪声、热分布误差(HDE)、测量时间长等问题,但已开发出了对应的降噪方法,与Calvet法相比在设计原理、降噪方法、参考池、浴槽温度、卷积核等方面具有一定特色。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/55ab44f5-d4ff-46d3-ba72-a648255a9ec0.jpg" title="解凤霞.jpg" alt="解凤霞.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong西安工程大学副教授 解凤霞/strong/pp style="text-align: center "strong报告题目:《原位微量热法研究[Cusub2/sub(Csub21/subHsub9/subOsub4/subN)sub2/subHsub2/subO]subn/sub单晶的生长过程》/strong/pp  报告从四个方面对[Cusub2/sub(Csub21/subHsub9/subOsub4/subN)sub2/subHsub2/subO]subn/subMOF单晶进行了研究:从MOF单晶生长过程的热谱图进行热动力学方法分析,计算出活化能与指前因子 通过MOF单晶的TG曲线及XRD衍射图谱,得出其具有三维孔洞网络结构 吸附试验结果表明MOF对Nsub2/sub、COsub2/sub、CHsub4/sub气体的吸附程度不同,具有选择性差异,且室温下表现的更为明显,并利用理想溶液吸附理论(IAST-Ideal Adsorbed Solution Theory)预测了多组分气体的吸附行为,较高的选择吸附比归因于MOF结构中出去配位水分子所生成的裸露金属位点,其与COsub2/sub具有强作用力 MOF对气体的吸附热力学分析利用virial II方程对等温吸附曲线的计算结果,表明MOF与COsub2/sub分子间也存在较强作用力。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/af09ec8f-aa5d-44a8-8401-fd9ce6b98fd0.jpg" title="张箭.jpg" alt="张箭.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong中国科学院大连化学物理研究所副研究员 张箭/strong/pp style="text-align: center "strong报告题目:《新型氧化剂二硝酰胺铵ADN的热行为研究》/strong/pp  固体推进剂作为战略、战术等固体发动机的动力源,一直以来都是航天航空技术的核心内容之一,我国主要采用肼催化分解技术来进行研究。复合固体推进剂由氧化剂(高氯酸铵)、粘合剂、金属燃料等组成,其中氧化剂约占推进剂总质量的60~85%。为了克服高氯酸铵(AP,NHsub4/subClOsub4/sub)能量低、特征信号强、污染环境等问题,固体推进剂的研究和开发方向正朝着高能、低特征信号、洁净、钝感而发展。而新型氧化剂二硝酰胺铵ADN被视作最有希望替代已广泛使用的AP氧化剂。国内外在ADN的研究进度有一定差距,我国的ADN仍未达到应用水准,还存在许多瓶颈问题。通过固体ADN球形化改性可改善其加工性能、降低表面缺陷。常见的几种稳定剂由于能量偏低,会降低推进剂的能量,因此通过氨基保护、硝化、脱保护三步骤合成二硝基苯二胺稳定剂,加入后使ADN的分解温度显著提高。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/c1c0b095-3bb4-49f4-a757-dc534fcf9e58.jpg" title="史学星.jpg" alt="史学星.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong首钢集团有限公司技术研究院高级工程师 史学星/strong/pp style="text-align: center "strong报告题目:《热分析在钢铁材料研究中的应用》/strong/pp  同步热分析仪和热膨胀仪在钢铁材料的研究中应用广泛,可测定钢铁的多项物理性能指标。钢的固、液相线温度是连铸生产中确定浇注温度以及研究钢液凝固过程的重要的工艺参数。浇注温度过高会导致铸坯坯壳薄并进而引起开浇溢钢或冻结。因此,须根据各钢种的凝固特点,执行相应的浇注温度控制制度。准确获得钢的固、液相线温度可提供一种最佳的低过热度的浇注操作,从而保证得到细晶粒组织以及高质量连铸坯。测定钢的固、液相线温度方法较少,仅有的YS/T533-2006方法标准已不适用于其测定,传统的计算模型或公式也已不能满足Ni系低温钢、中高锰钢和电工钢等特殊新钢种的实际生产指导需要,开发快速准确测定钢固液相线温度测量方法迫在眉睫。氧化脱碳是钢铁材料在热加工过程中的常见问题,其控制对弹簧钢、钢帘线、冷镦钢等线棒材的生产十分重要。目前气氛加热炉模拟法操作复杂、效率低、成本高,也迫切需要开发一种快捷的模拟方法。通过对现有同步热分析仪设备的气路改造,以不同的实验气氛条件模拟不同工艺,并全程采集热分析曲线及测量铁皮厚度和脱碳层深度,成功开发出一种新的钢材氧化脱碳模拟方法,拓宽了同步热分析仪的应用范围。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/1c99acc0-962b-4bdc-9132-b3376798bb10.jpg" title="李照磊.jpg" alt="李照磊.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong江苏科技大学讲师 李照磊/strong/pp style="text-align: center "strong报告题目:《聚乳酸外消旋共混物结晶行为的热分析研究》/strong/pp  聚乳酸PLA具有左旋与右旋两种构象,聚乳酸外消旋共混物由二者混合所得。立构复合晶相比均质晶具有更高的熔点和更优异的力学性能,这吸引越来越多的学者对其进行研究。使用常规DSC手段分析平衡熔点在立构复合晶与均质晶熔点差异来源中的作用,表明平衡熔点的差异仅为导致二者熔点差异的部分原因。并使用Flash DSC结合显微红外技术,研究不同温度条件下PLA外消旋共混物中氢键的形成对SC/HC竞争生长行为的影响,PLA外消旋共混物中形成的氢键可能是立构复合晶的成因。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/c6254e91-861b-4141-a812-9c69e19823fe.jpg" title="白云.jpg" alt="白云.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京市理化分析测试中心副研究员 白云/strong/pp style="text-align: center "strong报告题目:《热重-红外-质谱联用系统在气凝胶隔热板中的应用》/strong/pp  溶胶或溶液中的胶体粒子或高分子在一定条件下互相连接,形成空间网状结构,结构空隙中充满了作为分散介质的液体,这样一种特殊的分散体系称作凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,即分散介质为气体的凝胶材料成为气凝胶,这是由胶体粒子或高聚物分子相互聚集构成的一种具有网络结构的纳米多孔性固体材料,其固体相和孔隙结构均为纳米量级。SiOsub2/sub气凝胶具有极低的热导率、超轻质、高热稳定性等特性,使其在工业、民用、建筑、航天及军事等领域具有非常广泛的应用。对气凝胶隔热板的热重分析结果可用于判定产品质量 与质谱联用实验观测到明显的水分子离子峰,表明气凝胶中硅羟基缩合生成水 与红外光谱仪联用实验谱图中峰,表明有机化合物气体的逸出。该检测技术已被航天系统采用,并作为气凝胶隔热材料产品的质量控制方法。/ppbr//ppspan style="color: rgb(38, 38, 38) "a href="https://www.instrument.com.cn/news/20181014/472856.shtml" target="_blank" style="white-space: normal "相关资讯:《金秋十月,太湖之滨,群英荟萃,共襄盛举—2018年热分析技术及应用研讨会隆重召开》/a/span/ppa href="https://www.instrument.com.cn/news/20181016/473063.shtml" target="_blank" style="white-space: normal "相关资讯:《戊戌深秋意难忘 己亥季夏再相会——2018年热分析技术及应用研讨会圆满落幕》/a/ppa href="https://www.instrument.com.cn/news/20181019/473349.shtml" target="_blank"相关资讯:《热分析群雄聚首论道——仪器厂商助力热分析研究领域高质量发展》/abr/br//p
  • 关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定硫化学发光气相色谱法》标准宣贯及研讨会的通知
    p style="text-align: center "strong  全国气体标准化专业技术委员会气体分析分技术委员会/strong/pp style="text-align: center "strong  分析秘字〔2017〕 8号/strong/pp /pp style="text-align: center "  关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定硫化学发光气相色谱法》标准宣贯及研讨会的通知/pp  各有关单位:/pp  由全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)归口的国家推荐性方法标准GB/T 33318-2016《气体分析硫化物的测定 硫化学发光气相色谱法》已于2016年12月13日由中华人民共和国质量监督检验检疫总局、中国国家标准化管理委员会批准发布,并于2017年7月1日起正式实施。该项标准为首次制定实施,与其它现行相关标准存在较大的技术差异。/pp  为了满足标准使用相关方的实际需求,加深对标准的理解,减少标准使用过程中的偏差,保证标准的有效实施,全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)决定于近期联合标准制定单位中国测试技术研究院和安捷伦科技(中国)有限公司共同举办该项标准的宣贯及相关技术研讨会,由标准主要起草人进行系统的标准宣讲,并开展气体分析领域相关技术研讨。/pp  因会议时间按国标委要求临时提前,报名截止时间延迟到8月20日,欢迎参会。现将有关事项通知如下:/ppstrong  一、参会对象/strong/pp  与气体分析相关的企业(石化行业)、环境监测、质检部门、第三方检验检测机构、仪器厂家等标准使用相关方的专业技术人员、管理人员等。/ppstrong  二、宣贯内容/strong/pp  1、GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准制定概况及条款释义 /pp  2、分析检测实验过程的试验技巧、重点及注意事项 /pp  3、其他相关硫化物分析技术介绍 /pp  4、石油化工、环境监测领域气体检测技术与行业发展方向交流研讨。/pp  5、交流与答疑 /pp  6、标准项目承担单位(中国测试技术研究院)气体分析实验室考察。/ppstrong  三、宣贯时间、地点及费用/strong/pp  1、会议时间:2017年8月31日到9月2号(8月31号报到)。/pp  2、会议地点:瑞升· 芭富丽大酒店(成都市成华区玉双路7号) /pp  会务组不负责接送,请各位代表自行前往酒店,可参考以下路线:/pp  (1) 乘坐机场专线1号线至地铁省体育馆站下车,乘坐地铁三号线,至市二医院站转地铁四号线,至玉双路站A出口出站,步行400米可到达。/pp  (2) 乘坐机场专线3号线,火车南站东站下车,步行174米,至天和西二街中环路口站乘坐74路,水碾河站下车,步行600米可到达。/pp  (3) 双流国际机场打车至瑞升· 芭富丽大酒店,约23公里,出租车费约70元。/pp  3、会议费:800元/人(含资料、餐费等费用)。/pp  4、会议住宿费(费用自理):360元/间(标间或大床房)。/pp strong 四、会务承办单位:/strong成都思创睿智科技有限公司 /pp  strong五、注意事项/strong/pp  1、请各位代表于8月20日前将会议所有回执(见附件1)反馈至六中联系方式中所示电子邮箱。/pp  2、会务组只收取会务费、开具会务费发票 住宿费由酒店收取、酒店开具发票。请各位代表提前将开票信息、发票邮寄信息登记表(见附件1)反馈至六中联系方式中所示电子邮箱。/ppstrong  六、报名参会联系方式/strong/pp  秘书处联系人:潘 义(13880777735),(028)84403610 /pp  王维康(18980409695),(028)84403036 /pp  黄慎敏(18111280301),(028)84403036 /pp  秘书处电子邮箱:TC206SC1@126.com /pp  会务承办单位联系人:金慧琳 (13096377829),13806895@qq.com。/pp style="text-align: right "  全国气体标准化专业技术委员会/pp style="text-align: right "  气体分析分技术委员会秘书处/pp style="text-align: right "  2017年7月4日/pp  附件:标准宣贯报名回执表/pp  表1 参会代表回执登记表/ptable width="568" border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 35px "td width="88" height="35" style="padding: 0px 7px border: 1px solid windowtext background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "姓名/span/strong/p/tdtd width="149" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//tdtd width="58" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "性别/span/strong/p/tdtd width="81" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//tdtd width="85" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "职称/span/strong/p/tdtd width="107" height="35" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 30px "td width="88" height="30" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "单位名称/span/strong/p/tdtd width="480" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="5"br//td/trtr style="height: 30px "td width="88" height="30" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "邮寄地址/span/strong/p/tdtd width="288" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="3"br//tdtd width="85" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: justify text-justify: distribute-all-lines "strongspan style="font-family: 楷体 "邮编/span/strong/p/tdtd width="107" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 34px "td width="88" height="34" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "电子邮箱/span/strong/p/tdtd width="288" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="3"br//tdtd width="85" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: justify text-justify: distribute-all-lines "strongspan style="font-family: 楷体 "手机/span/strong/p/tdtd width="107" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 30px "td width="88" height="30" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " rowspan="2"p style="text-align: center "strongspan style="font-family: 楷体 "住宿预订/span/strong/p/tdtd width="207" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"p style="text-align: center "strongspan style="font-family: 楷体 "普标(/span/strongstrongspan style="font-family: Times New Roman "360/span/strongstrongspan style="font-family: 楷体 "元/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "间/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "天)/span/strong/p/tdtd width="81" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//tdtd width="85" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "是否合住/span/strong/p/tdtd width="107" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 30px "td width="207" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"p style="text-align: center "strongspan style="font-family: 楷体 "普单(/span/strongstrongspan style="font-family: Times New Roman "360/span/strongstrongspan style="font-family: 楷体 "元/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "间/span/strongstrongspan style="font-family: Times New Roman "//span/strongstrongspan style="font-family: 楷体 "天)/span/strong/p/tdtd width="273" height="30" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="3"br//td/trtr style="height: 28px "td width="88" height="28" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "入住日期/span/strong/p/tdtd width="207" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//tdtd width="81" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "离会日期/span/strong/p/tdtd width="192" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//td/trtr style="height: 28px "td width="88" height="28" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "是否参加交流考察/span/strong/p/tdtd width="207" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//tdtd width="81" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "身份证号/span/strong/p/tdtd width="192" height="28" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan="2"br//td/trtr style="height: 35px "td width="568" height="35" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " colspan="6"p style="text-align: center "strongspan style="font-family: 楷体 "请正确填写通讯信息,以便邮寄发票/span/strong/p/td/trtr style="height: 45px "td width="568" height="45" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " colspan="6"p style="text-align: center "strongspan style="font-family: 楷体 "请于/span/strongstrongspan style="font-family: Times New Roman "8/span/strongstrongspan style="font-family: 楷体 "月/span/strongstrongspan style="font-family: Times New Roman "20/span/strongstrongspan style="font-family: 楷体 "日前将电子版的注册回执(/span/strongstrongspan style="font-family: Times New Roman "word/span/strongstrongspan style="font-family: 楷体 "文档)发至:/span/strong/pp style="text-align: center "strongspan style="font-family: Times New Roman "TC206SC1@126.com 13806895@qq.com/spana name="_GoBack"/a/strong/p/td/tr/tbody/tablep  *如不参加考察交流则不用填身份证号码/pp  *如同一单位多人参会,请复制上表,重新填写,谢谢!/pp  表2 参会单位开票资料/pp  如需要增值税专用发票请填写下表:/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 13px "td width="130" height="13" valign="top" style="padding: 0px 7px border: 1px solid windowtext background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "单位名称/span/strong/p/tdtd width="438" height="13" valign="top" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 13px "td width="130" height="13" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "纳税人识别号/span/strong/p/tdtd width="438" height="13" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 15px "td width="130" height="15" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "地址、电话/span/strong/p/tdtd width="438" height="15" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtrtd width="130" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="font-family: 楷体 "开户行及账号/span/strong/p/tdtd width="438" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/tr/tbody/tablep  如不需要增值税专用发票请填写下表:/ptable width="559" border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 34px "td width="143" height="34" style="padding: 0px 7px border: 1px solid windowtext background-color: transparent "p style="text-align: center "strongspan style="color: black font-family: 楷体 "开票单位名称/span/strong/p/tdtd width="416" height="34" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/trtr style="height: 34px "td width="143" height="34" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent "p style="text-align: center "strongspan style="color: black font-family: 楷体 "纳税人识别号/span/strong/p/tdtd width="416" height="34" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "br//td/tr/tbody/tablep  *同一单位多人参会,发票是否合并开具? (请填写是或否)/pp /pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201707/ueattachment/9344811b-8070-466c-b357-0400af407fd1.pdf"20170704-GC-SCD国家标准宣贯通知.pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201707/ueattachment/d79b2f98-ff39-4321-b598-c33c4d03cf09.pdf"GBT 33318-2016 气体分析 硫化物的测定 硫化学发光气相色谱法.pdf/a/ppbr//p
  • 应用方案|安杰科技为您送来硫化物测试解决方案,请您查收
    -2价硫的化合物统称为硫化物。地表水以及饮用水中检测的硫化物通常为硫化氢以及可溶性硫化物,硫化物是水体污染的重要指标。硫化氢有强烈的臭鸡蛋味,水中只要含有零点零几mg/L的硫化氢,就会引起异味;硫化氢的毒性也很大,可危害细胞色素、氧化酶,造成细胞组织缺氧,甚至危及生命;另外,硫化氢在细菌作用下会氧化生成硫酸,从而腐蚀金属设备和管道。一、产品介绍安杰科技AJ-1000流动注射分析仪,在《HJ 824-2017 水质 硫化物的测定 流动注射-亚甲基蓝分光光度法》(HJ 824-2017)、《生活饮用水标准检验方法 第5部分:无机非金属指标-N,N-二乙基对苯二胺分光光度法》(GB T 5750.5-2023)等标准基础上进行开发的一款全自动快速分析仪器,该仪器从进样到测试全程采用自动化流程,可以实现无人值守测试,自动数据分析,自动保存报告等人性化功能,具有操作简单测试速度快,结果准确等优点。二、产品优势与传统检测方法对比,AJ-1000有显著的优势:试剂添加上:传统方法需要人工添加各种反应试剂,不仅操作繁琐,而且容易出错同时也存在一定的健康风险;AJ-1000采用蠕动泵自动添加样品以及试剂,全程不需要人工干预,简便快捷不会引入人为误差,同时也最大限度降低了健康风险。反应过程上:传统方法加入试剂后需要等待显色反应达到稳定后再进行检测,显色温度会随环境温度变化,而且样品量大时显色时间很难统一;AJ-1000精确控制反应管路长度并且内置恒温装置,温度、流速以及反应时间均由PC端精准控制,显色稳定,重现性好,大大提高了检测的准确度和稳定性。检测效率上:传统方法需要人工添加各种反应试剂,手动比色,费时费力;AJ-1000采用蠕动泵自动连续进样,所有反应均在毛细管中流动状态下完成,实现了非稳态检测,不需要等待反应完全,大大提高了检测速度。并且检测数据由软件自动处理,可以立即出具检测结果,效率远高于传统方法。准确度上:传统方法精密度10%;检出限0.020mg/L;AJ-1000精密度2%;检出限0.003mg/L。三、技术参数标准曲线的测定精密度的测定检出限的测定
  • 关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准宣贯及研讨会的通知(附日程安排 )
    p style="text-align: center "img title="1212212.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/174ded8a-e6eb-40a3-b70f-1384506ddb63.jpg"//pp  关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准宣贯及研讨会的通知/pp  各有关单位:/pp  由全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)归口的国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》已于2016年12月13日由中华人民共和国质量监督检验检疫总局、中国国家标准化管理委员会批准发布,并于2017年7月1日起正式实施。该项标准为首次制定实施,与其它现行相关标准存在较大的技术差异。/pp  为了满足标准使用相关方的实际需求,加深对标准的理解,减少标准使用过程中的偏差,保证标准的有效实施,全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)决定联合标准制定单位中国测试技术研究院和安捷伦科技(中国)有限公司于2017年8月31日至9月2日在四川成都共同举办该项标准的宣贯及相关技术研讨会,由标准主要起草人进行系统的标准宣讲,并开展气体分析领域相关技术研讨。现将有关事项通知如下:/ppstrong  一、参会对象/strong/pp  与气体分析相关的企业(石化行业)、环境监测、质检部门、第三方检验检测机构、仪器厂家等标准使用相关方的专业技术人员、管理人员等。/pp strong 二、宣贯及研讨内容/strong/ptable border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 28px "td width="617" height="28" style="padding: 0px 7px border: 1px solid windowtext " colspan="5"p style="text-align: center "strongspan style="font-family: 仿宋 font-size: 16px "会议报告日程/span/strong/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "日期/span/p/tdtd width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "时间/span/p/tdtd width="233" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "日程安排/span/p/tdtd width="196" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报告人/span/p/tdtd width="121" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报告人单位/span/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-size: 16px "8/spanspan style="font-family: 宋体 font-size: 16px "月/spanspan style="font-size: 16px "31/spanspan style="font-family: 宋体 font-size: 16px "日/span/p/tdtd width="107" height="28" style="border-style: none solid none none padding: 0px 7px border-right-color: windowtext border-right-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "全天/span/p/tdtd width="439" height="28" style="border-style: none solid none none padding: 0px 7px border-right-color: black border-right-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "报到/span/p/td/trtr style="height: 28px "td width="72" height="28" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px " rowspan="6"p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px "月/spanspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "日上午/span/p/tdtd width="107" height="28" style="border-style: solid solid solid none padding: 0px 7px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="439" height="28" style="border-style: solid solid solid none padding: 0px 7px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "欢迎致辞/span/p/td/trtr style="height: 69px "td width="107" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="180" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "GB/T 33318-2016/spanspan style="font-family: 仿宋 font-size: 16px "《气体分析/span span style="font-family: 仿宋 font-size: 16px "硫化物的测定硫化学发光气相色谱法》标准条款释义/span/p/tdtd width="88" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "李志昂/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="69" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "50/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "茶歇、合影/span/p/td/trtr style="height: 54px "td width="107" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "10/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "50-11/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30/span/p/tdtd width="180" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "安捷伦科技新型硫化学发光检测器提升硫化物分析灵敏度和便利性/span/p/tdtd width="97" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "张劲强/span span style="font-family: 仿宋 font-size: 16px "博士/spanspan style="font-size: 16px "//spanspan style="font-family: 仿宋 font-size: 16px "资深气相色谱应用工程师/span/p/tdtd width="180" height="54" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "安捷伦科技/spanspan style="font-size: 16px "(/spanspan style="font-family: 仿宋 font-size: 16px "中国/spanspan style="font-size: 16px ")/spanspan style="font-family: 仿宋 font-size: 16px "有限公司/span/p/td/trtr style="height: 43px "td width="107" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "11/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "30-12/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "10/span/p/tdtd width="180" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "石化行业油品以及气体中硫化物分析方法进展/span/p/tdtd width="103" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "王亚敏/span span style="font-family: 仿宋 font-size: 16px "教授级高级工程师/span/p/tdtd width="180" height="43" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "中国石化石油化工科学研究院(石科院)/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "12/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "10-14/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "午餐、休息/span/p/td/trtr style="height: 48px "td width="72" height="48" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px " rowspan="6"p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 仿宋 font-size: 16px "月/spanspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "日下午/span/p/tdtd width="107" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "14/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "20-15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="247" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "气质联用法分析聚合级乙烯丙烯中的微量砷化氢、磷化氢及硫化物/span/p/tdtd width="196" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "王春晓/span span style="font-family: 仿宋 font-size: 16px "解决方案开发中心经理/span/p/tdtd width="121" height="48" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "安捷伦科技/spanspan style="font-size: 16px "(/spanspan style="font-family: 仿宋 font-size: 16px "中国/spanspan style="font-size: 16px ")/spanspan style="font-family: 仿宋 font-size: 16px "有限公司/span/p/td/trtr style="height: 45px "td width="107" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40/span/p/tdtd width="180" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "石化行业相关气体标准物质的正确使用/span/p/tdtd width="104" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "邓凡锋/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="45" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "15/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40-16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "茶歇/span/p/td/trtr style="height: 46px "td width="107" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40/span/p/tdtd width="180" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "环境监测气体分析相关技术法规介绍/span/p/tdtd width="105" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "付强/span span style="font-family: 仿宋 font-size: 16px "科技处处长/spanspan style="font-size: 16px "//spanspan style="font-family: 仿宋 font-size: 16px "研究员/span/p/tdtd width="180" height="46" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "中国环境监测总站/span/p/td/trtr style="height: 40px "td width="107" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "16/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "40-17/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "20/span/p/tdtd width="180" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "VOCs/spanspan style="font-family: 仿宋 font-size: 16px "气体标准物质在环境污染物监测中的应用/span/p/tdtd width="105" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "周鑫/span span style="font-family: 仿宋 font-size: 16px "副研究员/span/p/tdtd width="180" height="40" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "pspan style="font-family: 仿宋 font-size: 16px "中国测试技术研究院/span/p/td/trtr style="height: 28px "td width="107" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-size: 16px "18/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00-20/spanspan style="font-family: 仿宋 font-size: 16px ":/spanspan style="font-size: 16px "00/span/p/tdtd width="439" height="28" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px " colspan="3"p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "晚餐/span/p/td/trtr style="height: 92px "td width="72" height="92" style="border-style: none solid solid padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px "p style="text-align: center "span style="font-size: 16px "9/spanspan style="font-family: 宋体 font-size: 16px "月/spanspan style="font-size: 16px "2/spanspan style="font-family: 宋体 font-size: 16px "日/span/p/tdtd width="107" height="92" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px "p style="text-align: center "span style="font-family: 仿宋 font-size: 16px "全天/span/p/tdtd width="439" height="92" style="border-style: none solid solid none padding: 0px 7px border-right-color: windowtext border-bottom-color: windowtext border-right-width: 1px border-bottom-width: 1px word-break: break-all " colspan="3"pspan style="font-size: 16px "1/spanspan style="font-family: 仿宋 font-size: 16px "、标准项目承担单位(中国测试技术研究院)气体分析实验室考察。br//spanspan style="font-size: 16px "2/spanspan style="font-family: 仿宋 font-size: 16px "、石油化工、环境监测领域气体检测技术与行业发展方向交流研讨。br//spanspan style="font-size: 16px "3/spanspan style="font-family: 仿宋 font-size: 16px "、交流与答疑;/span/p/td/tr/tbody/tablep strong 三、宣贯时间、地点及费用/strong/pp  1、会议时间:2017年8月31日到9月2号(8月31号报到)。/pp  2、会议地点:瑞升· 芭富丽大酒店(成都市成华区玉双路7号) /pp  会务组不负责接送,请各位代表自行前往酒店,可参考以下路线:/pp  (1) 乘坐机场专线1号线至地铁省体育馆站下车,乘坐地铁三号线,至市二医院站转地铁四号线,至玉双路站A出口出站,步行400米可到达。/pp  (2) 乘坐机场专线3号线,火车南站东站下车,步行174米,至天和西二街中环路口站乘坐74路,水碾河站下车,步行600米可到达。/pp  (3) 双流国际机场打车至瑞升· 芭富丽大酒店,约23公里,出租车费约70元。/pp  3、会议费:800元/人(含资料、餐费等费用)。/pp  4、会议住宿费(费用自理):360元/间(标间或大床房)。/pp strong 四、会务承办单位:/strong成都思创睿智科技有限公司 /pp strong 五、注意事项/strong/pp  1、请各位代表于8月20日前将会议所有回执(见附件1)反馈至六中联系方式中所示电子邮箱。/pp  2、会务组只收取会务费、开具会务费发票 住宿费由酒店收取、酒店开具发票。请各位代表提前将开票信息、发票邮寄信息登记表(见附件1)反馈至六中联系方式中所示电子邮箱。/ppstrong  六、报名参会联系方式/strong/pp  秘书处联系人:潘 义(13880777735),(028)84403610 /pp  王维康(18980409695),(028)84403036 /pp  黄慎敏(18111280301),(028)84403036 /pp  秘书处电子邮箱:TC206SC1@126.com /pp  会务承办单位联系人:金慧琳 (13096377829),13806895@qq.com。/pp  附件:宣贯会议回执。/pp style="text-align: right "  全国气体标准化专业技术委员会/pp style="text-align: right "  气体分析分技术委员会秘书处/pp style="text-align: right "  2017年8月7日/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201708/ueattachment/94828823-01ef-4fc1-bfbe-93a719fa7451.doc"附件 宣贯会会议回执.doc/a/ppbr//p
  • 超灵敏二硫化钼湿度传感器研究获进展
    p  现阶段对二硫化钼湿度传感器的研究主要受制于加工过程本身引入的残胶对材料表面的污染,影响了其对水分子的吸附,从而导致灵敏度不高或响应时间过长等问题。因而,如何得到具有高灵敏、快速响应时间的二硫化钼湿度传感器成为制约其应用的最主要因素。/pp  针对上述问题,日前,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)纳米物理与器件实验室利用一种新的金剥离方法,加工得到具有干净表面的二硫化钼场效应晶体管,从而实现了对水分子的灵敏响应。该项工作由实验室博士赵静在研究员张广宇的指导下完成。/pp  据悉,这种加工方法主要是利用二硫化钼与金之间的作用力远大于金与衬底间的作用力,从而可以将多余的二硫化钼样品从衬底上完整地剥离下来,同时保证了用于器件的二硫化钼表面的干净。利用这种方法一方面有效避免了加工过程中经过反应离子刻蚀后表面残胶对器件性能的影响,另一方面大大简化了加工过程,得到了具有超洁净表面的二硫化钼场效应晶体管,其光学、电学性能的显著提高也从另一个方面证明了这种加工方法得到的样品具有更好的性能。/pp  由于利用这种金剥离方法得到的二硫化钼场效应晶体管具有超洁净的表面,因此能够灵敏感知外界湿度变化,大大提高了二硫化钼湿度传感器的灵敏度。除了具有超高灵敏度外,由于二硫化钼表面没有悬挂键,对水分子的吸附是纯粹的物理吸附,因此器件可以很容易地进行脱吸附,有效缩短了响应时间和恢复时间。除此之外,得益于CVD生长的二硫化钼成膜均匀,可以加工得到一系列具有优异性能的二硫化钼湿度传感器阵列,从而对外界不同湿度的空间分布起到定位作用,用来实时监测外界湿度分布的变化。/pp  这种基于超洁净表面的二硫化钼样品加工得到的湿度传感器具有灵敏度高、响应时间和恢复时间短、使用寿命长、空间分辨率高等特性,可以广泛应用于未来无接触定位系统及二维材料多功能柔性传感器阵列领域。/pp/p
  • 苯系物分析用二硫化碳促销
    CNW二硫化碳的纯度大于等于99.9%,苯低含量低,能够满足水、空气、土壤以及室内空气质量监测中苯系物的萃取和含量测定。(&rho =1.26g/ml) 产品货号 产品名称 品牌 规格 报价(元) 促销价(元) 4-114001-0500# (低苯级)二硫化碳 CNW 500ml 1120.00 896.00 截止时间:2010年4月30日 售完为止!
  • 数字化与工业4.0时代 热分析技术与大数据的结合
    p  作者:耐驰分析和测试业务部门数据科学家Michaela Lang和Jigyasa Sakhuja,/pp  strong介绍/strong/pp  在数字化和工业4.0时代,strong大数据/strong扮演着越来越重要的角色。无论是在工业公司、社交媒体还是在超市的个人购物中,每天都会产生和存储大量的数据。如此大的数据量(可以是结构化的或非结构化的)称为strong大数据/strong。目标是从收集的数据量中获取信息,以便根据实际的需要获得观点。大数据集通常是如此复杂和庞大,以至于无法再使用常规方法(如数据库系统)处理它们。为此,我们使用数学方法和程序来分析这些数据集。/pp  耐驰分析与测试业务部门与时俱进,在热分析领域承担着这些新课题。在这个关于大数据最重要主题的博客系列中,耐驰想向您介绍strong数据科学/strong和strong机器学习/strong等新术语,并更详细地解释它们的用法。/pp  strong系列1:大数据的影响/strong/ppstrong  大数据定义/strong/pp  大数据是当今快速增长的数据,能够帮助企业以强而有利的方式处理海量信息。一方面,它描述了大量复杂且变化迅速的数据,另一方面,它还包括用于分析大量数据的数字技术。/pp  strong使用大数据的好处/strong/pp  特别是在谈到非结构化数据时,许多公司创建了大量数据,但他们不知道如何使其作用于业务。在公司中,技术和经济数据通常以非结构化的形式和庞大的数量展现。为了快速高效地搜索和访问这些数据量,传统的方法(如数据库系统)面临巨大的挑战,甚至不再可能。这就是为什么开发了多种技术来处理和加工大量数据。从数据存储到数据分析都有不同的过程。找到适合各自公司的需求和流程结构的方法很重要。大数据的使用对公司格局产生了非常好的影响,因为大量的可用数据为公司提供了对其产品的全新见解,例如购买行为、材料性能甚至市场风险。/pp  无论是小公司还是大公司,如果知道如何使用大数据方法,都可以从中受益。所有新开发的技术的主要优点是,可以将技术数据与公司的业务数据相连接,并使各领域之间的关联变得可见。这将带来全新的机遇,并能创造新的商业模式。/pp  strong热分析和聚合物基复合材料行业的大数据/strong/pp  在聚合物领域开展业务的公司获得了额外的好处,因为在机器学习的帮助下发现了新的聚合物(Montalbano,2019)。同时也可以利用大数据对聚合物的材料行为进行预测和分类。对于热分析,特别是聚合物基复合材料行业,预测参数变化对材料性能的影响,可以优化工艺,使行业更加兴盛,从而提高生产效率,降低生产成本。/pp  strong如何使用大数据?/strong/pp  为了有效地处理大数据,必须实现清晰定义的数据存储结构和良好的数据加工。为了使数据强大,今天使用的关键词是数据科学。为了从收集的数据中提取有用的信息,必须对其进行分析。作为这方面的先决条件,必须认真准备数据。但与数据准备同样重要的是数据质量本身。不仅数据的数量是高度相关的,而且给定数据本身的信息在分析中也起着很大的作用。这使我们得出结论:你可以收集大量的数据,但没有任何数据质量,你就无法合理有效地使用它。数据中提取的信息越丰富,获得的数据质量就越高。通过使用复杂的数据分析,公司可以从这些有价值的数据信息中获得新的见解。/pp  strong预告/strong/pp  在下一篇博客文章中,耐驰想发布一个关于评估来自不同数据源的大量数据的可能性和方法的概述。耐驰想给你一个被称为数据科学的概述,并展示它的应用可以实现什么。/pp  所以请关注耐驰大数据系列的下一篇博客文章!/pp  文中引用的链接:https://www.designnews.com/materials-assembly/researchers-use-ai-discover-new-polymers/67744341261255/ppbr//p
  • 优肯2015年新品硫化仪
    优肯新品——无转子硫化仪亮相橡胶轮胎展导语:随着近几年汽车、铁路的快速发展,汽车零配件及铁路检测需求不断增加,为应对不同系统的测试,优肯推出了符合市场需求的检测产品。在2015年中国(广饶)国际橡胶轮胎展上,优肯科技股份有限公司研发部经理黄照洋先生接受了中国化工仪器网的采访,为我们揭开了这款新产品的神秘面纱。优肯科技股份有限公司1986年成立于台北市,唯一一家仪器制造厂,进驻台湾科学工业园区,专业生产硫变机、粘度仪等橡胶检测仪器。至1999年,客户已遍布台湾、东南亚、西班牙等地。致力提升技术,产品项目也为之扩增,成功地开发了欧美及中东等市场。为了满足不断变化的市场需求,2015年中国(广饶)国际橡胶轮胎展上,优肯公司展出了一款贴近用户的新产品【无转子硫化仪】,优肯公司研发部经理黄照洋先生在采访中为我们揭开了这款新产品的神秘面纱。新产品“惊艳"亮相据黄经理介绍,优肯所有的产品都是自主研发,公司设有专业研发团队,包含了机械设计、机电整合、软体编辑以及机构外观设计等。因此,这款无转子硫化仪在研发设计上有着很多的独特之处。据悉,这款产品在机台的刚性上做了大幅提高,能够减少测试的误差,可将结果准确的呈现给用户。在零配件方面(温度传感器以及加热片)选用了国外的零部件,保证了较高的精确度外,故障率也随之降低,从而减少了用户的使用成本。这款产品凭借优肯近三十年来的经验,结合用户的体验及反馈,针对软件也做了一系列的修改,以便满足用户的需求。“因为网络的不断发展,很多用户都会要求将测试资料存放在一个伺服务器上,优肯这款产品同时具备了连接伺服务器的功能,客户可以在不同的位置,随时随地获取最新的检测结果以及设定测试方法。"黄经理介绍道。除了硬件和软件的精进外,产品在机电部分也做了一些更动,使机台和电脑之间的连接更加简单,结果更加准确。此外,优肯为及时响应用户的需求,在国内设有4个分公司及2个办事处,在上海、广州、青岛、重庆、泉州及宁波都有据点,能够从华东、华南、华北为用户提供及时的服务。立足橡胶检测 向多领域发展优肯在橡胶检测领域已有近三十年的发展历程,除了一些传统的测试体系外,累积近三十年得的经验,结合当下的最新技术,不断地对现有产品进行改良。在采访中,黄经理向记者透露,除了橡胶领域外,优肯期望能够根据在橡胶领域的经验,朝着多领域发展。“近年来穿戴式装置很普及,这其中涉及到高分子复合材料。其实我们两年前已经接触了这个领域,并且开始研发符合市场的分析测试仪器,结果都还不错。希望在站稳橡胶领域的同时,可以跨足高分子复合材料领域。"
  • 2022年热分析仪新品年中回顾:国产新品节节高
    据调研机构数据,2021年全球热分析仪器市场规模为4.8343亿美元,且市场规模在2021-2028年间以4.6%的年复合增长率增长,全球热分析仪器市场规模预计将于2028年达到约6.6434亿美元。近年来,各大热分析厂商纷纷在新品研发上加大了投入,仅2021年就上市了3台进口新品和11台国产新品,其中包括进口热分析仪厂商日本日立分析和法国凯璞科技-塞塔拉姆;国产厂商则包括天美、绵阳菲纳理、上海众路、南京汇诚、上海和晟、杭州仰仪、厦门海恩迈。纵观国内热分析新品上市情况,近两年,国产热分析仪新品上市数量出现明显多于进口产品的趋势。2022年全球热分析仪器市场规模约为5.0567亿美元,2022年上半年国内仅上市1款新品(据不完全统计),上市热分析新品为北京恒久的差示扫描量热仪HSC-4。2021年热分析上市新品回顾厂商名称2021年上市新品(点击查看详情)日立分析日立分析差示扫描量热仪DSC600&DSC200(上市时间:2021年1月)法国凯璞科技-塞塔拉姆法国塞塔拉姆 热重分析仪Setline TGA(上市时间:2021年10月)天美(原精科/上平)天美(原精科/上平)智能差示扫描量热仪 DSC30(上市时间:2021年7月)绵阳菲纳理绵阳菲纳理Calvet式3D微量热仪 UT310上海众路上海众路差示扫描量热仪(10.1寸工控机操作)DSC-500DS(上市时间:2021年6月)上海众路热重分析仪TGA1150A/1450A(上市时间:2021年5月)南京汇诚南京汇诚导热系数测试仪(高导专用)HCDR-SP(上市时间:2021年11月)上海和晟上海和晟热重分析仪HS-TGA-101(上市时间:2021年5月)上海和晟差示扫描量热仪HS-DSC-101(2021年4月)上海和晟差示扫描量热仪(半导体制冷)HS-DSC-101A(上市时间:2021年4月)杭州仰仪杭州仰仪电池等温量热BIC-400A(上市时间:2021年6月)厦门海恩迈厦门海恩迈芯片式热重分析仪以上热分析新品介绍可参见:《2021年热分析厂商仪器新品盘点:3台进口,11台国产》北京恒久2022年上市新品介绍: 北京恒久差示扫描量热仪HSC-4(上市时间:2022年1月)北京恒久实验设备有限公司始建于2000年,是一家以生产销售热分析仪器(差热分析仪、综合热分析仪、同步热分析仪、微机差热天平、微机差热仪、热重分析仪、微机热天平、差示扫描量热仪、氧化诱导期分析仪、微机卧式膨胀分析仪、高温高压热天平、大剂量热天平)(物化类仪器、催化剂评价装置、固定床评价装置)为主导,定制各种高压耐腐蚀类化工设备、流化床设备、实验室物化设备为一体的综合性高科技生产厂家。仪器新品创新点:外接光固化控制系统,可实现对单体、多体溶液在一定强度光线照射下快速完成固化的曲线测量。光源使用温度范围-100°C-200°C ,光源波长范围(315-500 nm),可以方便地通过控制软件进行设置触发。仪器新品介绍:1.热流式差示扫描量热仪重复性好、准确度高 ,特别适合于比热的精确测量。2.自主研发的气相色谱、质谱连接头、恒温带、恒温控制器,可充分保证焦油及各种反应气体的二次检测。3.完善的两路气氛控制系统,采用质量流量控制器;测量过程中,可以选择二路进气方式,软件设置自动切换。4.仪器配有标准物质,用户可自行进行各温度段的校正,减少仪器的误差。全程自动绘图,软件可实现各种数据处理,如热焓的计算、玻璃化转变温度、氧化诱导期、物质的熔点及结晶等等。5.大屏幕液晶显示,实时显示仪器的状态和数据,两套测温电偶,一套显示工作时样品温度,另一套电偶实时显示炉温。热分析仪器主要厂商简介:差示扫描量热仪(DSC/DTA):塞塔拉姆、北京恒久、众路、汇诚仪器、梅特勒托利多、大展、和晟、耐驰、TA 仪器、日立、林赛斯、珀金埃尔默、贝讴仪器、马尔文帕纳科、京仪高科、久滨仪器、理学、岛津、佳航仪器、依阳、柯锐欧、盈诺、天美、正瑞泰邦、德国林赛斯。热重分析仪/热天平(TGA):耐驰、塞塔拉姆、北京恒久、梅特勒托利多、德国林赛斯、众路、大展、京仪高科、汇诚仪器、TA 仪器、和晟、盈诺、珀金埃尔默、久滨仪器、力可、迈可威、佳航仪器、埃尔特、天美。同步热分析仪(STA):耐驰、日立分析仪器、塞塔拉姆、理学、众路、汇诚仪器、日立、京仪高科、和晟、珀金埃尔默、德国林赛斯、新科、久滨仪器、梅特勒托利多、TA 仪器、北京恒久、佳航仪器、盈诺、大展、贝讴仪器动态热机械分析仪(DMA/TMA/DMTA):耐驰、IMCE、日立、梅特勒托利多、麦特韦伯、TA 仪器、塞塔拉姆、珀金埃尔默、岛津、日立分析仪器、安东帕、林赛斯、德国林赛斯热膨胀仪:TA 仪器、德国林赛斯、柯锐欧、耐驰、依阳、京仪高科、Orton、北京恒久、林赛斯热分析联用仪:珀金埃尔默、耐驰、理学、北京恒久导热仪、热导仪:TA 仪器、耐驰、夏溪电子、林赛斯、Hot Disk、依阳、德国林赛斯、汇诚仪器、和晟、柯锐欧、大展、众路、京都电子、SEO、蓝姆达熔点仪:仪电物光、卓光、佳航仪器、海能、盈诺、本昂仪器、步琦、Standford、梅特勒托利多、天光、楚柏、SRS、Stuart、精拓仪器量热仪:菲纳理、赫伊尔、仰仪科技、三德、金铠仪器、马尔文帕纳科、耐驰、PARR、梅特勒托利多、民生星、DDS、塞塔拉姆
  • 硫化物的分解代谢可改善缺氧性脑损伤
    硫化物的分解代谢可改善缺氧性脑损伤个硫化物的分解代谢可改善缺氧性脑损伤 -哺乳动物的大脑极易遭受缺氧影响- 大脑对缺氧敏感的机制尚不完全清楚。H2S是一种抑制线粒体呼吸的气体,缺氧可以诱导H2S的积累。Eizo Marutani等人研究发现,在小鼠、大鼠和自然耐缺氧的地松鼠中,大脑对缺氧的的敏感性与SQOR的水平及分解硫化物的能力成反比。硫醌氧化还原酶(sulfide: quinone oxidoreductase , SQOR)是一种谷胱甘肽还原酶家族的膜结合黄素蛋白,为硫化物氧化解毒的一种关键酶。沉默的SQOR增加了大脑对缺氧的敏感性,而神经元特异性的SQOR表达则阻止了缺氧诱导的硫化物积累、生物能量衰竭和缺血性脑损伤。降低线粒体中SQOR的表达,不仅增加了大脑对缺氧的敏感性,也增加了心脏和肝脏对缺氧的敏感性。硫化物的药理清除维持了缺氧神经元的线粒体呼吸,并使小鼠能够抵抗缺氧。相关研究于2021年5月发表在Nature子刊Nature communications上,题为《Sulfide catabolism ameliorates hypoxic brain injury》,该研究由美国马萨诸塞州总医院以及哈佛医学院共同完成。该研究团队一开始的研究方向并不是寻找可以治疗脑卒中的靶点,他们的研究方向是「人体冬眠」,就像以往科幻电影里的那种,得了某种不治之症,然后进行冷冻或者其他技术的冬眠,等待科技进步以后,再次复苏。一开始,他们是要寻找可以对小鼠进行催眠的物质,锁定在了H2S。期初,吸入H2S的小鼠进入了一种「冬眠」状态,体温下降,无法动弹。但是,令人惊讶的是,小鼠很快就对吸入H2S的影响产生了耐受性。到了第五天,他们行动正常,不再受到H2S的影响。更有趣的现象是,研究团队发现,对H2S耐受的小鼠,对缺氧也能非常好的耐受。因而研究团队提出了SQOR基因在耐缺氧中起发挥重要作用的假设。实验方法描述所有小鼠都被饲养在12小时的昼/夜循环中,温度在20-25°C之间,湿度在40%-60%之间。 -间歇性H2S吸入- 小鼠暴露于80 ppmH2S的空气中连续5天,每天4小时。实验过程中实时监测H2S浓度和FiO2。每天在H2S吸入前后测量直肠温度,以检查H2S对体温的影响。 -CO2产生量的测量- 最后一次的吸入空气或H2S24小时后,在对照组或硫化物预处理小鼠中测量二氧化碳的产生。将小鼠放置在全身体积描记系统内,并测量二氧化碳的产量。 -小鼠的缺氧和缺氧耐受性- 为了测量缺氧耐受性,在最后一次空气或H2S吸入24小时后,将小鼠放入透明的塑料室中。然后,用低氧气体混合物以1 L/min连续冲洗腔室,以达到所需的FiO2。在缺氧暴露期间连续观察小鼠最多60 min,当小鼠出现严重痛苦迹象(扭动或发作、呼吸频率低于6/分钟和尿失禁)时,将其取出,用5%异氟烷安乐死并视为死亡。 -组织采集- 将小鼠采用异氟醚麻醉,呼吸机机械通气。用空气或缺氧气体混合物通气3 min后,将小鼠进行安乐死,开始取材。实验数据a:对照组和硫化物预处理组(SPC)小鼠的体温b:二氧化碳产生率(VCO2) c:血浆中硫化物的浓度d:血浆中的硫代硫酸盐、脑组织中的硫化物浓度f:脑组织中的硫代硫酸盐、 g:存活率h:小鼠在5% O2低氧下的VCO2i:常氧和5%低氧下,脑组织中的硫化物j:per sulfide,k NADH/NAD+比l:乳酸水平。m脑组织中的SQOR相对表达量,n、o:脑组织和心脏组织中 SQOR蛋白水平p、q:离体脑线粒体的氧气消耗速率 (OCR)r:计算得到的 ATP转换率。地松鼠的缺氧耐受性和硫胺分解代谢增强研究团队用RNA沉默SQOR,发现可增加大脑对缺氧的敏感性,而神经元特异性SQOR的表达可阻止缺氧诱导的硫化物积聚、生物能衰竭和缺血性脑损伤。SQOR可改善神经元细胞的线粒体功能降低线粒体的SQOR基因的表达,不只是大脑,而且心脏、肝脏对缺氧的敏感性都增加了。硫化物清除剂的作用通过药物清除硫化物,可维持缺氧神经元的线粒体呼吸过程,使小鼠耐受缺氧。该研究阐明了硫化物分解代谢在缺氧时能量平衡中的关键作用,并确定了缺血性脑损伤的治疗靶点。 在自然界中很多强有力的证据可以证明该研究的结论。例如,已知雌性哺乳动物比雄性哺乳动物更能抵抗缺氧,而前者的SQOR水平更高。当女性的SQOR水平被人为降低时,她们就更容易缺氧(雌激素可能是观察到的SQOR增加的原因),例如更年期。此外,一些冬眠动物,如地松鼠,对缺氧有很强的耐受性,这使得它们能够在冬季身体新陈代谢减缓的情况下生存下来。一只地松鼠的大脑比同样大小的老鼠的SQOR高出100倍。该研究的主要研究者说:“人脑的SQOR水平非常低,这意味着即使是少量的H2S积累,就可以影响神经元的健康。我们希望有一天我们研发出像SQOR一样有效的药物,这些药物可以用来治疗缺血性中风,以及心脏骤停引起的缺氧。 -塔望科技-解决方案- 全身体积描记系统小鼠放置于体积描记器内,可以实时监测呼吸,也可进行低氧干预、H2S暴露。可进行低氧耐受实验,也可监测动物的 耗氧量、CO2产生量、呼吸代谢率等。全身暴露染毒系统可以进行长期H2S暴露染毒、低氧实验等。动物能量代谢系统可以综合评估动物不同处理后的各种表型变化:进食量、进水量、进食进水模式、活动量、耗氧量、CO2产生量、呼吸代谢率等。动物低氧高氧实验系统各种常压/低压/高压下的缺氧/高氧实验。可进行恒定低氧,也可进行间歇低氧。 -相关文献- Marutani E, Morita M, Hirai S et al. "Sulfide catabolism ameliorates hypoxic brain injury".[J]. Nat Commun 12, 3108 (2021). &bull end &bull
  • 中国科大在电催化界面过程成像分析上取得新进展
    近日,中国科大环境科学与工程系在电催化界面动态过程的原位成像分析方面取得进展,研究成果以“Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts”为题发表于Nature Communications上(Nature Communications 2022,13: 7869)。   污染物的电催化转化是水污染控制技术的重要方法。纳米催化剂的表界面是电催化反应发生的场所,因此在微观上理解电催化反应过程,建立纳米催化剂结构与催化转化性能的构效关系是提高催化剂活性的关键。传统电催化研究通过电极电流密度和催化产物,评估催化剂性能,难以在微纳尺寸上原位实时分析单个催化剂的活性分布或反应动态过程。 图1.单个二硫化钼纳米片的充电和催化过程成像分析示意图   针对上述问题,刘贤伟教授课题组博士生赵小娜和周晓丽博士通过表面化学调控,充分发挥了表面等离子体成像技术对电极表面电荷密度高度敏感的特性,原位成像分析了层状二维电催化材料的充电电荷密度分布和电催化界面电荷交换过程。该方法消除了电极表面充放电流的干扰,分别定量了催化剂表面的充电和氧化还原电流分布,结合课题组前期发展的表面等离子激元原位蚀刻技术(Chem, 2021, 7: 1626-1638),发现了二硫化钼催化性能和层数之间的依赖性,建立了催化剂导电性和电催化性能之间的关系。该研究对于设计新型高效污染控制电催化纳米材料具有重要的意义。 图2.单个二硫化钼纳米片随层数变化的电催化过程   该项工作得到了国家自然科学基金的资助,也获得了环境科学与工程系陈洁洁教授课题组在量化计算方面的支持。
  • 专注于化学反应动力学及热分析科学领域的设备研发与制造 | OMNICAL重磅亮相PDQC成都
    药物工艺开发及质量控制会议 公司介绍总部位于美国德克萨斯州休斯顿斯塔福市的OMNICAL公司。专注于化学反应动力学及热分析科学领域的设备研发与制造。是快速反应动力学与热分析及安全工学领域的技术领军企业。OMNICAL差示反应量热仪与全绝热量热仪已成为化学与制药工业催化反应动力学与失控反应动力学及安全工学研究的行业标准。 主推产品OMNICAL的快速反应差示量热及全绝热分析技术飞跃性地推动了催化反应动力学和失控反应动力学的研究与发展,从而响誉于世界各国小分子合成与失控反应动力学领域。其产品范围从多通平行反应微量量热仪到高精度微量量热仪、小型差示反应量热仪、全绝热式差示加速量热仪、全绝热式差示扫描量热仪及压力跟踪差示扫描量热仪,并应用于有机合成、手性催化、动力电池、药品及化学品稳定性、失控反应热动力学、危险化学品加工及贮藏及运输等各个环节,为精细化工及小分子制药行业提供过程反应动力学热力学及安全工学综合解决方案。 合作单位OMNICAL的高端量热分析仪受到全球众多顶尖学府顶级国家实验室一流化学与制药公司青睐,顶级用户包括诺奖得主Sharpless与Noyori教授,麻省理工、哈佛大学、伦敦帝国理工、东京大学、德国普朗克研究院、沈阳化工研究院、中科院有机所、日本原子能研究院、日本国立火灾消防研究所,以及陶氏 、杜邦 、通用三菱住友、辉瑞 、默克、礼莱、诺华、阿斯利康等几乎所有的全球五百强药企化企。产品已覆盖绝大部分发达国家和地区,为用户的合成及失控反应动力学问题提供优质的解决方案,为全球顶尖学府、国家实验室、全球五百强药化学和制药公司提供了强有力的技术支持。
  • Seeing is believing—Real View TA样品观察热分析将想象的世界可视化!
    郑重通知各位热分析实验室的实验猿们:2018余额已经不足,那些没有做完的实验,没有解析的数据,以及没有上交的报告,是时候该加班加点来完成它啦!但是,理想很feng满,现实却很骨感,许多实验看着容易,做起来却很困难。特别是一些复杂样品,经常会出现预料之外的结果;或者测定未知样品,数据已经得到,但是却不知怎么去解析,只能靠想象:是不是发生了这种现象?某某现象到底是什么?为什么会发生这种现象?......我是谁? 我在哪里?我要干什么?这个时候我们不禁要想,如果有一种方法来验证和帮助我们解析复杂图谱就好了 日立Real View TA样品观察热分析系统(RV),为您排忧解难,通过该系统可以对程序升温过程中的样品进行实时观测,可用连续的图像记录样品状态变化的情况,而且可以自动将图像与测定条件和结果进行对应,获得可信度更高的信息。下面我们来看一下RV样品观测系统的原理,我们在炉体上方加一个CCD摄像头,摄像头与坩埚之间都采用石英材料,这样通过摄像头,我们就能进行样品观测,并且我们将观测系统整合到热分析软件中,通过日立热分析软件就可同时实现热分析数据和实时观测数据的采集。目前日立Real View TA样品观察热分析系统可用于日立DSC、STA、DMA。 下面我们来展示两个RV的例子1. DSC_PET通过RV,我们可以很清晰的观测到样品在玻璃化转变,结晶,熔融各个过程中样品的状态2. STA_颜料对于一些在程序升温过程中有颜色变化的材料,更需要RV来验证。如图所示,样品经过第一个失重梯度由深绿色变成黑色,经过第二个失重梯度由黑色变成灰色,经过第三个失重梯度由灰色变成白色。 综上所述,日立Real View TA样品观察热分析系统将想象的世界可视化,使热分析解析更加简便,可靠。 关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注日立高新官方网站:http://www.hitachi-hightech.com/cn/
  • 明珠发布硅橡胶再生胶无转子硫化仪新品
    MZ-4010B3 无转子硫化仪 1. 特点及用途:本机符合GB/T 16584《橡胶无转子硫化仪测定硫化特性要求》、ISO 6502要求及意大利标准要求的T30、T60、T90数据。该机用于测定未硫化橡胶的特性,找出胶料的佳硫化时间。本机模腔部分采用新型耐高温高强度隔热材料,控温精度高,稳定性、重现性好。无转子硫化分析系统运用Windows 7操作系统平台,图形图像化的软件界面,灵活的数据处理方式,全面体现高度自动化特点。可用于科研部门、大中专院校和工矿企业对各种材料进行力学性能分析和生产质量检验。 2. 技术参数: 2.1温度范围: 室温~200℃ 升温时间: ≤10min2.2温度范围: 室温~300℃(根据客户要求定制)升温时间: ≤15min2.3温度分辨率: 0~200℃: 0.1℃ 0~300℃: 1℃(根据客户要求定制)2.4温度波动: ≤±0.3℃(加料稳定以后)2.5力矩量程: 0N.m~10N.m 0N.m~20N.m(根据客户要求定制)2.6力矩显示分辨率: 0.001N.m2.7最长试验时间: 120min(可在试验中途修改时间)2.8摆动角度: ±0.5°(总振幅为1°) 2.9模体摆动频率: 1.7Hz±0.1Hz(102r/min±6r/min)2.10电 源: AC220V±10% 50Hz2.11外型尺寸: 645mm×580mm×1300mm(L×W×H)2.12净 重: 210kg 3. 控制软件主要功能介绍3.1操作软件:中文软件、英文软件;3.2 单位选择:kgf-cm, lbf-in, N-m,dN-m ;3.3 可测试数据:ML(N.m)最小力矩;MH(N.m)大力矩;TS1(min)初始硫化时间;TS2(min)初 始硫化时间;T10、T30、T50、T60、T90硫化时间;Vc1、Vc2硫化速度指数;3.4 可测试曲线:硫化曲线、上下模温度曲线;3.5 试验中途可修改时间;3.6 试验数据可自动保存;3.7 多条试验数据及曲线可在一张纸上显示,并可用鼠标点选读取曲线上任意点的数值;3.8 可将历史数据添加在一起进行对比分析并可打印出来;3.9 软件有“温度手动设置”功能,即温控仪可以与计算机相连也可脱机独立操作;3.10 具有扭矩管制和时间管制;3.11 具有SPC管制功能,可进行X-R分析;3.12 具有原始数据导出功能,Excel表格形式;3.13 软件有声光报警功能,即测量结果与扭矩管制或时间管制中数据不符时,可由声光报警器进行报警(根据客户要求定制)。 4. 配置4.1 日本山武公司温控仪 2只;4.2 高精度永磁电机1台;4.3 高精度气缸1套;4.4 高精度传感器1只;4.5 联想品牌电脑及彩色喷墨打印机1套(不含电脑柜);4.6 标准制样裁刀1把;4.7 硫化仪测控软件1套;4.8 关键零部件均由日本小巨人LGMazak加工中心加工 创新点:温度波动由原来的± 0.5℃ 升至± 0.3℃;模腔保温性能改良硅橡胶再生胶无转子硫化仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制