当前位置: 仪器信息网 > 行业主题 > >

硫化过程热分析

仪器信息网硫化过程热分析专题为您整合硫化过程热分析相关的最新文章,在硫化过程热分析专题,您不仅可以免费浏览硫化过程热分析的资讯, 同时您还可以浏览硫化过程热分析的相关资料、解决方案,参与社区硫化过程热分析话题讨论。

硫化过程热分析相关的论坛

  • 热分析技术在橡胶行业的应用~~~

    热分析技术是表征材料的性质与温度关系的一组技术,它在定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛地应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。常见的热分析方法包括以下几项: * DSC是在程序控制温度下,测量样品的热流随温度或时间变化而变化的技术。因此,利用此技术,可以对样品的热效应,如熔融、固-固转变、化学反应等,进行研究。 * TGA是在一定的气氛中,测量样品的质量随温度或时间变化而变化的技术,利用此技术可以研究诸如挥发或降解等伴随有质量变化的过程。如果采用TGA-MS或TGA-FTIR的联用技术,还可以对挥发出的气体进行分析,从而得到更加全面和准确的信息。 * TMA可以测量样品在一定应力下的位移变化。利用DMA,则可以在很宽的频率范围内,对材料的粘弹性进行研究,从而得到材料的机械模量和阻尼行为。 目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。热分析技术对于橡胶材料可提供如下性能指标的测试:DSCTGATMADMA玻璃化转变组成分析热稳定性,氧化稳定性,降解粘弹性能,弹性模量阻尼行为填充剂含量,炭黑含量蒸发,汽化,吸附,解吸软化温度膨胀,收缩,溶剂中的溶化硫化熔融,结晶反应焓添加剂的表征本文简单介绍了不同热分析技术,在从不同角度评估材料性能上的应用的可能性。  应用介绍利用TGA进行组成分析TGA经常用来进行组成分析,利用它,可以观察样品由于蒸发、高温分解、燃烧等引起的重量变化。失重台阶的大小与挥发组分(如增塑剂、溶剂等)和分解产物的含量直接相关。在对橡胶进行分析时,当聚合物高温分解后,把气氛从惰性气氛变化为氧化气氛,炭黑就会燃烧,在残渣中就剩余了无机物和灰烬。对于高聚物的混合物,如果各组分的分解温度范围不同的话,则可以利用TGA来确定各个组分的含量。下图所示为几种的包含有天然橡胶的弹性体,第二聚合物组分分别为EPDM(A),BR(B)或SBR(C)。从TGA曲线的失重台阶上,可以清楚的看到各组分的含量,其中(1)为挥发性组分,(2)为天然橡胶(NR),(3)为相应的第二聚合物组分,(4)为炭黑。残渣中为无机化合物。由此曲线分析得到的结果与理论值非常吻合。利用DSC进行聚合物的鉴别如果在高聚物的混合物中,各个组分的高温分解温度相近,那么用TGA进行分析时,就只能得到总的聚合物的含量而不能将各个组分区分开了。但是,借助DSC,就可以根据它们玻璃化转变的不同而对各组分加以区分。玻璃化转变温度Tg表征了聚合物的类型,而玻璃化转变台阶的高度△Cp则反映了聚合物的含量。例如,对于NBR/CR混合物,CR和NBR的玻璃化转变可以清楚的分离开来。台阶高度的比例约为1:1,这与方程式中24.4%含量的NBR和24.4%含量的CR的理论结果相当一致。从结果分析中可以看出,对于其他弹性体的结果分析不是很精确,这是因为第二个玻璃化转变峰与焓松弛峰或熔融峰重叠的缘故。利用DMA进行机械性能分析DMA可以为我们提供材料的宏观粘弹行为和微观性能。这可以用下面的不同硫化度的SBR来进行说明。在玻璃化转变过程中,贮存模量G’下降约3个数量级,而损耗模量G’’则呈现出一个峰。随着硫化度的增加,玻璃化转变移向较高的温度。在材料处于橡胶态时,G’依赖于硫化度的大小。由于粘性流动,随着温度的升高,硫化度比较小的SBR1的贮存模量G’减小。在交联密度比较高时,G’随着温度线性增大。由此,我们就可以根据材料在橡胶态时的模量来确定它的交联密度,其交联密度k可以根据等式k=G/(2RTρ)进行估算。经计算得到,SBR3的交联密度为1.07×10-4mol/g,SBR4的交联密度为2.03×10-4mol/g。这两个数值的比值与二种材料中硫含量的比值一致。利用真空条件下的TGA测试来进行峰的分离有时候,增塑剂的蒸发与聚合物的分解会彼此重叠。在这种情况下,在较低的压力(真空)下进行TGA测试,往往可以使两个过程得到较好的分离,这当然就相应的增加了结果分析的准确性。在下面的例子中,NR/SBR弹性体在常压下进行测试,挥发组分的含量经测定约为6.3%。在压力为10mbar时,我们重复这个实验,可以测得挥发组分的含量约为9.2%,这个值与组分中油的9.1%的实际含量比较吻合。利用TMDSC增加测试准确度利用温度调制DSC(TMDSC)技术可以得到更加准确的结果。使用此技术后,焓的松弛效应以及熔融过程对测得的热容曲线的影响明显减小。利用TMDSC方法对NR/SBR和EPDM/SBR混合物进行了测试,通过对所得曲线的分析,可以看出△Cp的比值与组分中的实际值一致。DSC测得比值TMDSC测得比值组分中的实际值NBR/CR1:0:1-1:0:1NR/SBR4:0:13:6:13:5:1EPDM/SBR1:3:12:0:12:0:1利用DMA进行蠕变性能测试利用DMA测试,可以了解聚合物与添加剂之间的相互作用,并且可以看出材料的应力与应变之间保持线性关系的范围。我们对不同炭黑添加量的EPDM弹性体在橡胶态时的性能进行了测试。结果发现,未用炭黑填充的EPDM的贮存模量为0.5Mpa,并且这个值不随着位移振幅的变化而变化。而随着炭黑含量增大,其模量也增大。但是,对于同一炭黑含量的样品来说,当剪切位移的振幅增大时,其模量减小,因此其应力与应变曲线之间就呈现出非线性的关系,这是由于炭黑簇的可逆性破坏造成的。结论热分析技术能为表征材料的性能提供十分全面 、有用的信息:对于日常的质量控制和保证,单独的质量技术指标的控制可以选择单独的热分析技术就可以完成;而对于材料的研究开发则需要综合运用多种热分析技术,对材料的性能进行全面的研究和评估。

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 西柚油硫化物分析

    西柚油硫化物分析,分别采用了MS和FPD检测器,现在对照两个图,正构烷烃校正过MS和FPD时间,出峰时间差异很小,大家从中可以找出哪些硫化物呢?

  • 硫化物取样分析

    各位大师及老师,我厂精脱硫后气体中有硫化氢、羰基硫、硫醇等硫化物,该用什么样的取样袋取样分析,要求气体在10个小时内不变化!已应用铝箔气袋送样,发现吸附很厉害!请大家给支个招??

  • 硫化钴精矿化学分析方法

    YS/T 349.1-2009 硫化钴精矿化学分析方法 第1部分:钴量的测定 电位滴定法YS/T 349.2-2010 硫化钴精矿化学分析方法 第2部分 铜量的测定 火焰原子吸收光谱法YS/T 349.3-2010 硫化钴精矿化学分析方法 第3部分 锰量的测定 火焰原子吸收光谱法YS/T 349.4-2010 硫化钴精矿化学分析方法 第4部分 二氧化硅量的测定 氟硅酸钾容量法镉化学分析方法

  • 润滑油或机油中硫化物分析

    请问大家有关润滑油或机油中硫化物分析方法。1)基质为润滑油或机油;2)硫化物含量为ppb级别;如硫化氢,硫醇化合物查看了一些资料,是用分流/不分流进样口,SCD检测器,加甲基硅氧烷柱做的。但总觉得这种含硫基质要使用惰性化处理管线等等,请问大家的经验?或谁知道可以参照的相关标准?谢谢大家!

  • 【求助】请教关于流动分析仪分析硫化物的问题!

    我们单位最近购置了一批流动分析仪,主要用流动分析仪来分析硫化物、氰化物、挥发酚、总磷、总氮、阴离子表面活性剂等项目。但是由于是非标准方法,需要做非标方法的验证、确认等很烦琐的工作。于是想直接引用相关国际或外国标准。请问有没有用流动分析方法分析硫化物的国际标准或者美国的EPA标准(或者其他国家标准)?由于水平有限,实在查找不到相关标准及编号等内容,烦请告知!

  • 网络讲堂:9月11日 热分析过程中的逸出气体分析

    网络讲堂:9月11日  热分析过程中的逸出气体分析

    http://bbs.instrument.com.cn/shtml/20140801/5404018/http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647490_2507958_3.gif热分析过程中的逸出气体分析时间:2014-09-11 14:30讲师:唐远旺梅特勒-托利多中国公司热分析技术应用主管,热分析专家,长期从事热分析仪器的应用研究工作,《热分析应用手册丛书》之《热塑性聚合物》、《逸出气体分析》等的译者,中科院研究生教材《热分析简明教程》编者之一,熟悉DMA、DSC、TGA、TMA等热分析仪器在各行业的应用。讲座内容: 热重分析(TGA)为我们提供了测试样品的质量随温度或时间变化而改变的信息。但是TGA技术无法识别或表征测试过程中逸出气体产物的性质。TGA与质谱仪(MS)或傅里叶变换红外光谱仪(FTIR)的结合可以对热重分析中产生的气体进行在线分析。本次研讨会中,我们将会讨论TGA-MS或TGA-FTIR联用技术的优势,并介绍一些大家感兴趣的应用。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年09月11日 14:004、报名参会:http://ng1.17img.cn/bbsfiles/images/2014/08/201408011630_508801_2507958_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647490_2507958_3.gif

  • 热分析仪器在部分行业的应用汇总

    热分析技术是指在温度程序控制下研究材料的各种转变和反应,如脱水,[url=https://baike.baidu.com/item/%E7%BB%93%E6%99%B6][color=black]结晶[/color][/url]-[url=https://baike.baidu.com/item/%E7%86%94%E8%9E%8D][color=black]熔融[/color][/url],[url=https://baike.baidu.com/item/%E8%92%B8%E5%8F%91/12648926][color=black]蒸发[/color][/url],相变等以及各种无机和有机材料的热分解过程和反应动力学问题等,是一种十分重要的分析测试方法。热分析技术主要包括[color=#333333]差示扫描量热(DSC),差热分析(DTA),热重分析(TGA)以及热机械分析(DMA)。[/color]热分析技术作为一种科学的实验方法,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用。它的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。以下简单介绍热分析技术在一些行业的应用。[b]一、DSC 方法在热固性树脂固化度测试方面的应用[/b][color=#333333]热固性树脂 ,是指树脂加热后产生[/color][url=https://baike.baidu.com/item/%E5%8C%96%E5%AD%A6%E5%8F%98%E5%8C%96][color=#333333]化学变化[/color][/url][color=#333333],逐渐硬化成型,再受热也不软化,也不能溶解的一种树脂。常见的热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。其中环氧粉末涂料是热固性聚合物材料重要的一类,由于它具有良好的粘接性能,介电性能和化学稳定性,所以被广泛应用各个领域。[/color][color=#333333]固化反应是指在适当 的温度下环氧官能基与硬化剂作用产生链结反应。 固化度是热固性聚合物材料一个很重要[/color]的参数,固化反应一般都是放热反应.放热的多少与树脂官能度的类型、参加反应的官能团的数量、固化剂的种类及其用量等有关.但是对于一个配方确定的树脂体系,固化反应热是一定的,因此用DSC可以很方便地进行固化度的测定。[b]二、DSC方法对塑料行业热稳定性(氧化诱导期)的测定[/b]塑料是中国四大基础建材之一。我国是塑料制品的生产和消费大国。塑料在国民经济和日常生活中得到了广泛应用,市场空间十分广阔,尤其是电子电器、交通运输及建筑业的发展对塑料零部件和各种制品提出越来越高的要求,迫使塑料的产业升级和产品的更新换代,塑料实现高价比、节能、环保及使用安全。因此,塑料行业作为朝阳产业,仍有很大的发展空间。 需要特别关注的是,塑料材料在贮存、加工和日常使用中受光、热和氧气等的作用,极易引起高分子材料的老化反应,使材料的物理机械性能变坏,缩短使用寿命。因此在塑料的新产品开发和性能测试中正确评价抗氧剂添加的效果具有重要的意义。而氧化诱导时间和氧化诱导温度本身可作为高聚物热氧化稳定性的一种度量,近年来广泛被采用。随着测试技术和测试仪器的发展,采用差示扫描量热法(DSC)测定材料氧化诱导时间和氧化诱导温度已成为评价塑料热稳定性的重要方法。 热分析测定聚合物的氧化诱导时间和氧化诱导温度是加速老化实验之一。采用差示扫描量热法(DSC)可以方便快捷地测量塑料原料的氧化诱导时间和温度。将塑料试样与惰性参比物置于差热分析仪中,在氧气或空气气氛中,在规定的温度下恒温或以恒定的速率升温时,测定试样中的抗氧化稳定体系抑制其氧化所需的时间或温度。氧化诱导时间或温度是评价被测材料热稳定性的一种手段。[b]三、DTA法(DSC)法在非晶体高分子领域玻璃化转变温度的测试[/b] 随着人们对高分子材料结构与性能研究的不断深入,材料的质量控制技术也日益受到重视。在产品开发和生产的过程中,大量实践证明采用热分析方法控制产品质量是一种非常有效的手段。而DSC是应用最广泛的热分析技术之一,其具有测量操作快捷、简便、可靠的特点,在高分子材料领域的研究中发挥着巨大的作用。DSC可用于研究高分子材料的玻璃化转变温度、熔融温度、熔化热、结晶温度、比热容以及用于聚合物共混物的成分检测。玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。 DTA法(DSC) 测定 Tg 是基于高聚物在转变时,热容增加这一性质来进行的,玻璃化转变温度取决于聚合物结构,同时还与聚合物中相邻分子之间的作用力、增塑剂的用量、高聚物或共混物组分的比例、交链度的多少有关。影响玻璃化转变的因素很多,因为玻璃化温度是高分子的链段从冻结到运动的一个转变过程,而链段运动是通过主链的单键内旋转来实现的,所以凡是影响高分子链柔性的因素,都会对 Tg 产生影响。玻璃化温度,也会随着测定方法和条件(如升温速率等)而改变,应予注明测定方法和条件。[b]四、热重分析(TGA)在聚烯烃管材炭黑含量测试上的应用[/b] 聚烯烃材料是指以由一种或几种烯烃聚合或共聚制得的聚合物为基材的材料。聚烯烃塑料即烯烃的聚合物, 是一类产量最大、应用最多的高分子材料;其中以聚乙烯、聚丙烯最为重要。由于原料丰富、价格低廉、容易加工成型、综合性能优良等特点,在现实生活中应用最为广泛。  近年来,聚乙烯管材已成为继PVC之后,世界消费量第二大的塑料管道品种,广泛应用于给水、农业灌溉、燃气输送、排污、油田、化工、通讯等领域。无添加剂的聚乙烯耐气候老化和日光曝晒性能很差,因而实际使用时都会添加炭黑。炭黑能使材料具有足够的抗紫外老化能力,当炭黑含量为2.0%~3.0%时可确保有效地防止紫外线的影响。由于炭黑含量大小对聚乙烯管材具有重要的影响,许多标准都对聚乙烯中的炭黑含量作了规定,为了研发生产和销售的目的,炭黑含量是聚乙烯管材必须进行检测的指标。目前管道用塑料中炭黑含量的测试方法,以热重分析仪测试为现在常用的热分析方法,用来测量高聚物的成分极为方便、准确、高效,热重分析仪也可以用于测定硫化橡胶中的炭黑含量。需要注意的是,热重分析法操作方便、快捷,结果直观,但是由于所用样品量小,测试结果标准偏差较大,测试中容易出现异常值,应该从多个颗粒上取样,尽可能增加样品量,测试次数至少2次,当出现两次偏差较大时,增加测试次数。[b]五、热分析技术在药物领域的应用[/b] 在药品检验中,最常用的热分析方法是差示扫描量热法(DSC)与热重分析法(TGA)。目前,发达国家已把热分析方法作为控制药品质量的主要方法。热分析技术具有用量少、方法灵敏、快速,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息等特点,在药品检验中有着广泛的应用。热分析技术的各种优点使其在药学领域中的应用越来越受注目。在药物的含量测定;药物含水量的测定及表面吸附水、结晶水、结构水的判断;药物热降解及稳定性研究;药物熔点的测试;药物的纯度测试等方面,热分析技术都扮演着至关重要的角色。[b]六、热分析在淀粉类食品行业的应用[/b] 淀粉类食品包括小米、黑米、荞麦、燕麦、薏仁米、高粱、土豆、山药、薯类等。淀粉是葡萄糖的高聚体,水解到二糖阶段为麦芽糖,完全水解后得到葡萄糖。天然淀粉有直链淀粉和支链淀粉两类构成,直链淀粉含几百个葡萄糖单元,支链淀粉含几千个葡萄糖单元。为了深入了解淀粉类食品的化学性能,热分析技术在其研究、探讨过程中被广泛使用。 DSC法可用于研究淀粉结构和性质,特别是热力学性质的测定。可结合物化方法分析淀粉、淀粉混合物体系的熔融性和预测结构,利用DSC是测定淀粉糊化和回生的经典方法。采用标准曲线法测定一定糊化程度的淀粉与DSC峰面积的关系,再根据未知样品的峰面积计算糊化度;根据淀粉重结晶分子大小与DSC峰面积大小的关系,可确定淀粉的回生程度。而且在糊化和老化相变的过程中,伴随着能量的变化,可以利用DSC法进行测量。

  • 天然乳胶与硫化胶红外光谱分析

    天然乳胶与硫化胶红外光谱分析

    [color=#444444]原胶和和硫化胶和红外图谱分析,制样方法如下:[/color][color=#444444]1.将原胶/硫化胶水溶液稀释后滴入KBr盐中,待溶液干燥后,将结晶的KBr晶体颗粒研磨成粉,一定压力压片后测定其红外光谱。[/color][color=#444444]但是我发现制样时KBr片不够透亮,另外麻烦帮忙分析一下该图谱[/color][color=#444444][img=,616,445]https://ng1.17img.cn/bbsfiles/images/2019/06/201906251042322820_9655_1823055_3.png!w616x445.jpg[/img][/color]

  • 【讨论】分析硫化物时峰面积处理办法!

    探讨下:听说[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析硫化氢时采用归一法计算浓度,需要先将峰面积开根号再计算,不知道有没有什么理论根据?大家都是采用什么办法啊?还有是所有的硫化物都要用开根号的办法吗?

  • 实验室气相色谱法分析硫磺加收过程

    1900mV。mL/mL。  4。2正确度  表2列出了实验所测得的正确度的具体数据。  4。3最低检测浓度  在实验条件下实测最低检测浓度见表3  5结论  (1)硫化物分析可采用气固和气液色谱法,但在工艺控制分析中采用气固色谱法具有无固定相流失、柱寿命长等特点,同时,也不会因柱室超温而损坏柱子,可用于高灵敏度检测器。实验证实GDX-301是分析硫化物的理想柱子;  (2)由于硫化氢、二氧化硫、二硫化碳和硫氧碳都是极性物质,在分析过程中轻易发生吸附现象而影响分析结果。因此,应尽量缩短采样时间,确保分析结果的正确性;  3在分析低含量氧时,应采取有效的密封措施,防止空气中氧的渗透。  该方法是为硫磺回收过程气的分析而开发的,方法快速、正确、灵敏,分析误差为±1。4%,试验证实满足硫回收过程气的工艺分析。

  • 【求购】五硫化二磷的分析方法

    五硫化二磷原来测定方法比较耗时,需要测定硫和磷的质量分数,比较麻烦,不好控制它的质量。我们也进行了用熔点仪(WS-2B)测定熔点,但是只出现初融点,没有终熔点。发现样品熔融后变色,不透光,因此也不能准确测定。不知各位大侠有好的分析方法没?多谢啦!

  • 有转子硫化仪和无转子硫化仪有什么区别?

    有转子硫化仪和无转子硫化仪哪个好? 无转子硫化仪有哪些优点最近有客户问有转子硫化仪和无转子硫化仪哪个好,它们的优点缺点在哪?下面为您解答:无转子硫化仪的试验精度和使用时的方便程度都高于有转子硫化仪,无转子硫化仪更先进一些。 http://www.shfarui.com/zyzmxyhuayuweb2011/UploadFile/20149395034564.jpg橡胶硫化仪用于分析、测定橡胶性能指标,是国家规定的用于橡胶产品研制新产品、胶料配方检测及检定产品质量的检测仪器。橡胶硫化测试仪(简称硫化仪)通过测定对胶料往复摆动的模体或转子的作用转矩的大小,得到胶料的硫化特性曲线和特性参数,如焦烧时间,正硫化时间、模量及硫化平坦性等。 硫化仪主要有两大方面的功用:一方面可以用于进行各种橡胶配方设计开发、配方优化或新产品开发;另一方面用于对生产过程质量稳定性的控制,即通过胶料抽样检查或在线检测来监督检测产品质量,保证生产稳定性。在实际应用中,硫化仪能及时反映试样中各组分配比变化或组分成分改变等对硫化过程的影响,广大橡胶配方技术人员不可缺少的帮手。对于生产橡胶制品的厂家来说,可以用它来进行橡胶均匀性、重现性、稳定性的测试,以及橡胶配方的设计和检测。有一些厂家还用硫化仪进行生产在线检测。主要方法是对每一批橡胶进行硫化测定,检测每一批,甚至是每一时刻橡胶的硫化特性。通过特性曲线的最大转矩、最小转矩、焦烧时间、正硫化时间等特性参数来判断胶料是否满足制品的要求。 目前,按照硫化仪基本结构可分为有转子和无转子两种型号的设备。有转子硫化仪是最早的用于硫化检测的仪器。无转子硫化仪是在有转子硫化仪基础上开发出来的新一代硫化测试仪器。从先进性上讲,无转子硫化仪的试验精度和使用时的方便程度都高于有转子硫化仪,无转子硫化仪更先进一些。 1.基本原理 可硫化胶料在一定压力和一定温度下会发生化学交联作用,交联作用的结果使得胶料由混炼胶变成了硫化胶,强度和韧性大大加强。。硫化仪的工作原理就是测量在特定压力和温度下,测试胶料一些特性的变化过程。得到胶料转矩一时间的变化盐线,即硫化特性曲线。 2.两种硫化仪的性能要求及优缺点 上海发瑞仪器科技有限公司提示 硫化仪作为具有上述功能的检测仪器,必须具备如下性能要求:首先是设备整机使用稳定,故障率低。要求仪器机械调试稳定、软件使用稳定、电气安全稳定;其次是试验中要求多条曲线的重现性好、单条曲线的平滑性好。作为检测仪器,重现性和平滑性非常重要,在这两方面都稳定的前提下才能准确体现胶料本身的特性。就目前硫化仪技术的发展水平,无论是有转子硫化仪还是无转子硫化仪都可以达到很好的重现性和稳定性。试验中,使用无转子硫化仪时需要较精确地称量胶样重量。而有转子硫化仪的胶样重量要求不严,一般不用称量。这是因为无转子硫化仪是密闭模腔结构,如果胶样过多会挤压在模腔外环,影响下模体摆动,从而影响测量的转矩。而有转子硫化仪上下模体是固定的,多余的胶料会在上模压下的过程中自动挤出,对试验数据影响不大。上海发瑞仪器科技有限公司提示:但有转子硫化仪因为结构本身的原因,存在一些缺点。1)操作复杂:使用有转子硫化仪做试验时,试验完成后,熟胶样是裹在转子上的,需要人工卸胶。在胶样硬度和强度很大的情况下,经常需要利用钳子等工具卸胶,操作复杂。2)不易加玻璃纸:做硫化试验时,为了防止胶样粘模腔或其他考虑因素,经常需要加耐高温的玻璃纸,尤其是很粘的混炼胶。有转子硫化仪加玻璃纸时,需要把下片玻璃纸打一个小洞,转子上下放胶,再放人模腔内试验。即使这样,转子的上下表面还是会粘上胶,很难清理。而无转子硫化仪可以很方便的在胶样上下各加一片耐高温的玻璃纸,试验完成,只需用镊子轻轻取下即可。3)容易漏胶,造成数据异常:有转子硫化仪的下模体上有一个插转子的小孔。在实际操作中,经常会不慎把碎胶掉人孔中。如果不能及时清理,就会因为转子位置被垫高,影响试验数据。严重的话转子还会顶破上模体,造成仪器损坏。4)存在硫化曲线温度滞后的现象,使用有转子硫化仪做检测实验时,有一个很规律的现象:第一条硫化曲线存在温度滞后的现象。这一现象在参考文献里有详细研究,这里不再赘述。 3.机械结构比较 两种硫化仪的机械结构不同,无转子硫化仪的无转子硫化仪是通过测定对裹胁胶料往复摆动的模体的作用力矩的大小,得到胶料的硫化特性。模腔直径40士2mm,分离角为7。~18。,中心间距为0.5间隙值。有转子模腔直径42mm,模腔深度5.35mm。转子直径35.55mm,转子盘角度12.60(见图1)。 结构对转矩测试的影响:无转子硫化仪是通过测定对裹胁胶料往复摆动的下模体的作用转矩的大小,得到胶料的转矩特性。下模体的摆动对胶料产生剪切作用,剪切面为下模体表面。有转子依靠转子的摆动对胶料产生剪切作用,剪切面为转子的上下盘面。胶料在有转子硫化仪中受到两个面的剪切作用,产生的转矩应该大于无转子硫化仪的一个面的剪切作用,即无转子的转矩值会小于有转子的转矩值。 结构对吸热的影响:元转子硫化仪上下模体和加热片接触,作为热源对橡胶胶样加热。胶样的吸热面为整个无转子模腔内表面。有转子硫化仪除了有转子硫化仪是通过测定胶料对包复的往复摆动的转子的作用力矩的大小,得到胶料的硫化特性。模腔直径42mm,模腔深度5.35mm。转子直径35.55mm,转子盘角度12.6。依靠转子的摆动对胶料产生剪切作用,剪切面为转子的上下盘面。上下模体外,还有转子上下接触表面,但转子本身不产生热量,仅依靠空气和橡胶的热传导,一般温度比模腔低一些。所以有转子的吸热面为整个有转子模腔内表面以及温度稍低一些的转子上下表面。从模腔结构可以近似计算出胶料的吸热面积(见图2),无转子硫化仪的吸热面积约为S1—6744mm2,有转子硫化仪的吸热面积S2=5647mmz。无转子硫化仪的胶料重量约为4.89,有转子约为79。胶料单位重量对应的吸热面积可以用来反映吸热快慢。所以V1=sl/4.8,V2=s2/7。V1/V2=1.74,无转子的吸热速率大于有转予的,因此无转子的硫化时间一般要小于有转子的硫化时间。4.硫化特性数据 4.1最大转矩 试样充分硫化的剪切模量或刚度的测定值,包括平坦转矩、返原曲线的最大转矩,及在规定时间内没有出现平坦和返原曲线时的最大转矩。胶样硫化达到最大转矩时,胶料强度最大,从测力的角度来看,也表明胶料和模腔接触面的摩擦力达到最大。最大转矩越大,表明摩擦力越大。无转子硫化仪和有转子硫化仪的摩擦面构成是不同的。元转子的摩擦面积小于有转子的摩擦面积,所以无转子的最大转矩会小于有转子的最大转矩。 4.2最小转矩 未硫化试样粘度的测定值。该数值主要反映了胶料流动性的好坏和粘度的大小。流动性好ML小,粘度小ML小。一般而言,无转子硫化仪ML会比有转子的小。 4.3硫化时间 TS1:摆动角度为0.5(或1(时,转矩增加到ML+ldNm时所对应的时间,反映试件的焦烧时间。T10:转矩增加到ML+10(MH—ML)/100时所对应的时间,反映试件的焦烧时间。T50:转矩增加到ML+50(MH—ML)/100时所对应的时间。T90:转矩增加到ML+90(MH—ML)/100时所对应的时间,反映试件的正硫化时间。4个硫化时间所反映的是混炼胶开始吸热直到硫化基本完成的过程。吸热快的胶焦烧得就早,达到正硫化点的时间就越短。无转子硫化仪吸热快,对应的硫化时间比有转子的要短。 5.试验曲线及数据 由以上曲线及数据分析:有转子的ML、MH都大于无转子的;在正硫化点之前,有转子的硫化时间都比无转子长,验证了前面的分析结果。通过分析和实际数据可见,元转子和有转子测量的数据不能进行简单的比较,但二者有很好的相关性。例如一种配方的胶料在有转子中测量的硫化曲线和在无转子中测量的硫化曲线虽然不同,但硫化趋势相同。并且这两种曲线的对应关系不会改变。 从一定意义上来讲,硫化仪是用来作相对比较的设备。只有比较才能看出胶料配方的变化以及温度设定对硫化过程的影响等。用户可以把配料准确、操作工艺规范且混炼均匀的胶在任一种仪器上做实验,得到的特性曲线称为标准曲线。以后当配方发生变化或重新配置时,可用此标准曲线进行比较,判断配方的可行性。无转子有无转子的标准曲线,有转子有有转子的标准曲线,这样才能正确的分析胶料配方。 6.小结 目前,硫化仪在胶料配方研究领域的使用逐渐增强,并深入到助剂开发等其它开发领域。在实际应用中,两种硫化仪都占据着一定的市场。国内最早的无转子硫化仪生产厂家,大约98年才出现的,所以一些在线检测建立比较早的工厂,使用有转子硫化仪相对多一些。但近几年,随着无转子硫化仪技术的逐渐成熟和市场推广,已经有逐渐取代有转子硫化仪的趋势。,

  • 【求助】流动注射在线分析硫化物

    大家好,我用LACHAT QC8500流动注射分析仪测定海水中的硫化物,在测完5个样品后插入一个25ug/L的标液,可检检测出来只有3.6ug/L,我想请各位帮我分析下到底哪里出错了,我用的标准工作曲线浓度分别为50、25、10、5、1、0(ug/L),前两次也插过标,是在空白和样品分析完后分别插入25ug/L的标液,所检测的结果是27.ug/L和27.8ug/L,这次咋就这么离谱。。。求助!

  • 榴莲中的硫化物分析

    最近分析一下榴莲中的硫化物,简单的分析了几个出来,如1-Propanethiol, Diethyl disulfide, 3-(Ethylthio)-1-propanol等,找了一下文献太强悍了,分析出来有1-(ethylsulfanyl)ethanethiol, 1-(ethyldisulfanyl)-1-(ethylsulfanyl)ethane, 1-(methylsulfanyl)-ethanethiol, 1-(ethylsulfanyl)propane-1-thiol, 1-(propylsulfanyl)ethanethiol, 1-ethanethiol, and 1-ethanethiol等成分,最令人佩服的是这些成分都是作者合成的做为标准物质。http://simg.instrument.com.cn/bbs/images/default/em09501.gif

  • 硫化物分析

    硫化物分析

    水质 硫化物的测定 亚甲基蓝分光光度法HJ1226—2021[img=,348,116]https://ng1.17img.cn/bbsfiles/images/2023/07/202307251507133088_9755_6067956_3.png!w348x116.jpg[/img]中V是取得200mL水样还是经过酸化-吹气-吸收后的60mL?????

  • 热分析在药物质量研究中的应用

    热分析在药物质量研究中的应用近年来,热分析(Therma lanalysis,TA)广泛应用于药品、食品、化妆品、 陶瓷、纺织、航天等众多研究领域中,特别是在药品质量研究过程中有其独到之处。据统计,在药物研究领域中,热分析的使用占10%-13%。发达国家已经把热分析方法作为控制药品质量,从事新药研究及药物新剂型开发,不可缺少的检测手段之一。美国药典32版(2009年)、英国药典2010年版、欧洲药典与日本药局方第15改正版和我国的《中华人民共和国药典2010年版》均已经将其作为法定方法收载,并规定有关的新药申报资料中必须要有热分析的检验报告,因此热分析方法引起了业内人士的日益重视。各个国家在具体应用方面有所不同,如美国药典,采用热分析方法主要用于熔点,药物多晶体转化,药物的升华,玻璃体样转化,结晶水脱水,挥散物,降解产物等测量,并在药典中规定了若干品种,如硫酸长春碱有关水分的测量,在程序升温及温度控制范围有明确规定。中国药典则对具体品种未做规定,对大体应用范围作了阑述。热分析法逐步被推广到药物科学及其生产领域。热分析是指在程序控温下测量物质的物理化学性质与温度关系的一类技术。作为热分析三大方法:差热分析(DTA)、差示扫描量热法(DSC)、热重法(TG)在药物科学中应用最为广泛。DTA为最早的热分析方法之一,其原理基于样品的温度Ts与参比物温度Ti之差△T的测定。用DTA法可研究较短时间内样品的比热发生较大变化的反应,或是体系与环境有较大热交换的反应。DSC法为60年代初建立和发展的一种热分析法。DSC法在定量分析方面比DTA法具有更多优势,能直接测量物质在程序控温下所发生的热量变化,其定量和重现性都很好,故在各领域中受到普遍重视和应用。 TG法也是最常用的热分析法之一。TG法即是应用热天平在程序控温下测量物质质量与温度关系的一种热分析技术,主要特点为定量性强,能准确测定物质质量变化的速率。由于热分析法是研究物质在程序升、降温过程中所发生的各种物理和化学变化过程,且具有仪器操作简便、准确度高、灵敏快速、不须作预处理以及试样微量化等优点,将其与先进的检测仪器及计算机系统联用,可获得大量可靠和广泛的信息,因此它是一类多学科通用的分析测试技术。近年来热分析技术与生命科学越来越紧密的结合,在药学科学等领域中逐渐得到广泛应用。如热分析法在药学研究中的应用,制药技术中药物的配方设计和药物的研制、药物成分的分析和质量检验,热分析技术在研究药物的作用方面具有其创新和实用的科学意义。1 热分析法在药学研究中的应用1. 1热重法在药学研究中的应用1.1.1 考察药物和辅料的脱水过程药物原料或辅料所含水分,一般可分为吸附水和结晶水。通常情况下,热重法适用于药物结晶水的测定和贵重药物或空气中易氧化药物的水分测定。同干燥失重法一样,该方法也是利用加热使样品失重,只是利用程序控制温度,优点在于其测定时所需样品量较小,分析时间较短,数据处理更方便,获得信息量大。a.例如,硫酸长春新碱为昂贵的抗癌新药。《美国药典》24版采用热重法测定水分。试样只需10mg,温度范围从室温至200℃,升温速率为5℃/min,而《中国药典》2000年版采用105℃干燥2小时,试样用量大,约需lg,且费时。b.热重法用于测定l5种无机化合物和7种有机酸盐类药物的结晶水,并将实验结果与理论值相比较。称样量约10mg,升温速率为l0℃/min,氮气流量50m1/min。实验结果表明,热重法可用于测定无机化合物和有机酸盐类药物的

  • 热分析导论——刘振海主编

    本书1991年出版,虽然比较早,可是还是一本很经典的热分析基础书籍;其主要内容有:1、介绍了热重、差热、热机械等方法2、热分析动力学3、热分析仪器4、微机在热分析中的应用5、热分析在金属合金、地质、高聚物、生命科学、含能材料、催化研究、药学研究等方面的应用给个链接,欢迎下载,你对网站的支持就是对大家的支持,就请花这一个积分吧http://www.instrument.com.cn/download/shtml/023894.shtml

  • 典型热分析技术概述

    典型热分析技术DSC/TGA/STA三项技术以70%的应用占比,构成了热分析三大支柱。 一热重分析简称TGA为使样品处于一定的温度程序控制下(恒/降/升温),观察样品的重量随时间或者温度的变化过程,获取失重比例,失重温度(起始点/峰值/终止点),以及分解残留量等信息。二量热分析量热学是一门测量各种过程伴随热量变化的学科,相关实验通过量热仪进行。差式扫描量热法是在程序控制温度程序下,测量输入样品与参比物的功率差与温度关系的一种热分析方法三同步热分析具有以下特点1 一次实验可以同时获得TGA和DSC两种曲线,节省时间,节省样品。2 从不同侧面共同反映物质的变化过程,从而对样品的变化过程进行全面分析和判断。DSC只能反映焓变而不能反映质量变化,TGA可以反映质量变化却不能反映焓变,两者联用可以搞清楚焓和质量在控温过程中的变化情况。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制