当前位置: 仪器信息网 > 行业主题 > >

榴辉岩

仪器信息网榴辉岩专题为您整合榴辉岩相关的最新文章,在榴辉岩专题,您不仅可以免费浏览榴辉岩的资讯, 同时您还可以浏览榴辉岩的相关资料、解决方案,参与社区榴辉岩话题讨论。

榴辉岩相关的论坛

  • 挥发性盐基氮蒸馏终点

    我用GB 5009.228―2016测鱼肉中挥发性盐基氮,采用自动凯氏定氮仪法。试样绞碎均匀后取样10克于蒸馏管内,加入75ml水,振摇后浸渍30分钟。后加入1g氧化镁进行蒸馏,吸收液为加了甲基红和溴甲酚绿混合指示剂的硼酸溶液。方法上说蒸馏出来的体积200毫升即可,可是我发现我蒸馏到500毫升了里面还是有氨,氨蒸不完全,请问是什么原因?该实验有什么注意事项?

  • 【求助】急急急!!!丁 酰 肼 残 留 量 检 验 方 法回收率

    丁 酰 肼 残 留 量 检 验 方 法一、原理:在碱性条件下,试样中丁酰肼水解成1.1—二甲基联氨,经水蒸气蒸馏出,用10%草酸溶液接收馏出液,加入浓度为20mg/ml的2—硝基苯甲醛甲醇溶液进行衍生化,用正已烷提取后,供[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定。二、试剂和材料:(除另有规定外,试剂均为分析纯,水为蒸馏水)1、50%的氢氧化钠溶液:称取50g氢氧化钠,用少量水在不断搅拌下溶解,溶解稀释至100ml ;2、10%的草酸溶液:称取10g草酸,加水溶解到100ml;a)20mg/ml硝基苯甲醛甲醇溶液:称取1g2-硝基苯甲醛,用50ml甲醇溶解 ;b)二甲基联氨标准品:≥97%i.二甲基联氨标准储备液:准确称取二甲基联氨0.25g于盛有少量10%草酸溶液的小烧杯中,用水稀释后转移至250ml棕色容量瓶中,稀释至刻度(1mg/ml=1000μg/ml);ii.二甲基联氨标准工作液:准确移取标准储备液2ml,于1000ml容量瓶中,加水稀释至刻度,浓度为2μg/ml ; 5.甲基硅油:化学纯;3、测定步骤:a)蒸馏提取:称取粉碎混匀的试样约20g(精确到0.1g)于250ml具塞锥形瓶中,加入蒸馏水约100ml,振荡30分钟,全部转移于蒸馏瓶中,加入甲基硅油5ml,50%的氢氧化钠溶液50ml,用少量水冲洗瓶壁,连接好水蒸气蒸馏装置,确保各接头不漏气,用事先加入5ml10%草酸溶液的25ml刻度试管接收馏出液,收集约20ml ; 2.衍生化反应:在上述接收管中加入浓度为20mg/ml的2-硝基苯甲醛甲醇溶液50ml,充分振摇混匀后,在50℃密闭的条件下衍生化60分钟,加入3.0g的氯化钠,定量加入5ml正已烷,充分振摇1分钟,放置约10分钟(离心或放置于冰箱中过夜),取上层正已烷供[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]测定。3.上机测定:①[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件:a色谱柱:DB-1 0.25mmX0.25μmX30m毛细管柱b检测器:FTDc载气:氮气,纯度≥99.9% ,30ml/mind进样口温度:250℃e检测器温度:280℃ 12℃/minf色谱柱温度:70℃〔2min-----------210℃(15min)〕g 进样量:2μl②色谱测定: 根据试样中被测定农药的含量情况,按外标法进行定量,吸取适当浓度的二甲基联氨溶液,按上述衍生化学反应步骤进行操作,将样品蒸馏接收液在相同条件下同时操作,响应值均在仪器检测的线性范围内,对衍生化后的标准工作液和样品溶液进行体积参插进样测定。4.结果计算: 丁酰肼残留的含量: X=a/m×2.67X:丁酰肼残留的含量,mg/kg ;a—按外标法求得的二甲基联氨的量,μg ;m—最终样液所相当的试样量,g ;2.67——丁酰肼与二甲基联氨分子比(160:60.1) 5.测定低限、回收率①本方法的测定低限为0.03mg/kg②回收率:丁酰肼添加浓度为0.03mg/kg时,回收率为96.67% ;丁酰肼添加浓度为0.05mg/kg时,回收率为101.01% ;丁酰肼添加浓度为1.00mg/kg时,回收率为98.[em53] 好心的朋友,请帮帮忙吧!丁酰肼添加浓度为1.00mg/kg时,回收率为98.这一步我该怎样去做.具体一下,如加入多少浓度的二甲基联氨标准品,多少ML.最终怎样计算.标准品的衍生化反应是否从衍生化反应步骤开始进行?测丁酰肼的浓度为30PPB,我该取多少ML400PPB二甲基联氨进行衍生化?

  • 润滑油灰分和硫酸灰分

    [color=#333333]灰分是指在规定条件下,灼烧后剩下的不燃烧物质。灰分的组成一般认为是一些金属元素及其盐类。灰分对不同的油品具有不同的概念,对基础油或不加添加剂的油品来说,灰分可用于判断油品的精制深度。对于加有金属盐类添加剂的油品(新油),灰分就成为定量控制添加剂加入量的手段。国外采用硫酸灰分代替灰分。其方法是:在油样燃烧后灼烧灰化之前加入少量浓硫酸,使添加剂的金属元素转化为硫酸盐。[/color][color=#333333][/color]

  • 【求助】水中硫酸盐测定的问题

    有一份井水,我们用热法铬酸钡分光光度法测定硫酸盐,怎么硫酸盐一点也没有啊,做不出来。样品加标后测定也没有含量,回收率为零,不知是么回事?标准系列是用纯水配的,作出来了。做了这么多年水样,还是第一次碰到过这种事。有一个现象是,水样在酸性条件下加铬酸钡时颜色没有变化,正常时会有一点变红,重铬酸根离子的颜色。样品测定时氯离子含量很高,达4万多,钙离子含量也很高,500多,单位mg/L。

  • 欧洲药典硫酸盐灰分检测到底恒重还是不恒重

    [color=#333333]看了欧洲药典关于硫酸盐灰分的描述,我认为坩埚以及样品是不需要恒重的,只有当供试品硫酸盐灰分超标时才会要求恒重处理。我认为欧洲药典在起草通则时考虑了坩埚以及样品在600度条件下灼烧后恒重的可能性很高。[img]https://www.ouryao.com/data/attachment/forum/201904/23/162930aa0eqpahofz6af04.jpg.thumb.jpg[/img][/color][color=#444444][color=#333333][/color][/color]

  • 硫酸盐曲线的制作

    想问下饮用水的硫酸盐做曲线的时候应该注意一些什么,我做出来的硫酸盐不成曲线,试剂和标准溶液都是从新配置的,求回复

  • 【求助】急!急!急!食品中二氧化硫的测定!收集瓶中溶液有灰褐色颜色!

    我们采用GB/5009 34-2003蒸馏法,测定萝卜干中的二氧化硫,在蒸馏收集的瓶中,颜色为灰褐色,平时我们做口香糖,干辣椒等样品一般都是无色的,滴定前当加入盐酸的时候,灰褐色颜色消失,但浑浊,用碘滴定最终也会变蓝,这次滴定结果,比往常的样品值大很多,以前的样品一般都是在10到30ppm左右,这次做到240ppm,我觉的是这个颜色有干扰!谁能帮忙找出原因,解决问题啊!

  • 盐类碳硫分析

    盐类碳硫分析会腐蚀高频红外碳硫仪吗?我需要做含有无机盐的样品,其中包括氯化钾、氯化钠、氯化铝大家都是用什么仪器做呢?

  • 辽宁辉山乳业被检出硫氰酸钠超标

    据新华社电 河北省食品药品监督管理局25日发布《食品销售安全警示》称,辽宁辉山乳业高钙奶被检测出硫氰酸钠超标。对此,辽宁省食品药品监督管理局表示,已立即对涉事产品进行进一步检测,检测人员已于26日赶赴产品生产地锦州市抽样检验。  掺入可有效抑菌  河北省食品药品监督管理局的警示称,近期,秦皇岛市食品和市场监督管理局对销售环节乳制品质量安全进行抽检,在辽宁辉山乳业集团生产的高钙牛奶检出硫氰酸钠,数值达15.20mg/kg(最高限定值 10.0mg/kg)。这份《食品销售安全警示》称,原料乳或奶粉中掺入硫氰酸钠可有效抑菌,硫氰酸钠是毒害品,少量食入就会对人体造成极大伤害,国家禁止在牛奶中人为添加硫氰酸钠。  获悉管辖内产品出现问题后,辽宁省食品药品监督管理局表示,已立即对涉事产品进行进一步检测,检测人员已于26日赶赴产品生产地锦州市抽样检验。  涉事产品被下架  在产品问题被河北省食品药品监督管理局发布后,辉山乳业相关负责人表示,被河北省食药监局检测出硫氰酸钠超标的是2015年7月10日出产的辉山高钙牛奶(240ml)利乐枕装产品。  据悉,在9月18日获悉企业产品被河北方面检测出问题后,辉山已将保质期内生产的奶制品送往两家第三方检测机构,北京谱尼测试科技股份有限公司和沈阳食品检验所。  记者在沈阳食品检验所出具的检测报告上看到,送检的9月16日生产的高钙牛奶样品,硫氰酸钠检测结果为6.5mg/kg。北京谱尼测试科技股份有限公司检测报告显示,送检的9月10日生产的高钙牛奶样品,硫氰酸钠检测结果为1.88mg/L。  目前,河北省食品药品监督管理局已对市场销售的辽宁辉山乳业集团生产的高钙奶采取了停止销售措施。同时对河北省销售的该企业7种产品进行了应急抽检并展开调查。

  • 【求助】工业硫酸盐的测定

    国标分析中,工业用合成盐酸里硫酸盐含量测定采取的是硫酸钡比浊法,其中需要将试样加热蒸发至分解,只留下少许的残渣,然后再加入盐酸标准溶液溶解残渣。现在想问:加热分解试样的目的是什么?是不是为了去除盐酸,使之挥发?(因为其酸度较高)还有有其他的因素?

  • 【分享】干式烟气脱硫技术进展及其应用前景分析

    燃煤锅炉烟气脱硫途径通常可分为三种:1,燃烧前脱硫,如机械浮选法、强磁分离法等;2,燃烧中脱硫,如炉内喷钙以及采用CFBC等;3,燃烧后脱硫,即烟气脱硫(FGD),这是当今世界上普遍采用的方法。而烟气脱硫按反应产物的物质形态(液态、固态)可分为湿式、半干式和干式三种,湿法烟气脱硫技术占85%左右,其中石灰石石膏法约占36.7%,其它湿法脱硫技术约占48.3%;喷雾干燥脱硫技术约占8.4%;吸收剂再生脱硫法约占3.4%;炉内喷射吸收剂及尾部增湿活化脱硫法约占1.9%;其它烟气脱硫形式有电子束脱硫、海水脱硫、循环流化床烟气脱硫等。由于对环境保护的日益重视和大气污染物排放量的更加严格控制,我国新建大型火电厂和现役电厂主力机组必须安装相应的烟气脱硫装置以达到国家环保排放标准。 就我国的烟气脱硫技术而言,西南电力设计院早在80年代就完成了旋转喷雾干燥法烟气脱硫技术的研究,并在四川白马电厂建立了处理烟气量为70000Nm3/h的旋转喷雾干燥法脱硫工业试验装置,1991年正式移交生产运行。“八五”期间电力部门在有关部门的支持下进行了华能珞璜电厂2台360MW机组石灰石-石膏法湿式烟气脱硫、山东黄岛电厂旋转喷雾干燥法烟气脱硫、山西太原第一热电厂高速水平流简易石灰石-石膏法湿式烟气脱硫、南京下关电厂2台125MW机组的炉内喷钙尾部增湿活化脱硫、四川成都热电厂电子束烟气脱硫、深圳西部电厂300MW机组海水脱硫等不同工艺的中外合作示范项目或商业化试点脱硫项目。国家经贸委在《“九五”国家重点技术开发指南》中确定了燃煤电厂脱硫主要技术开发内容有1,石灰/石灰石洗涤法脱硫技术;2,喷雾干燥法脱硫技术;3,炉内喷钙及尾部增湿活化脱硫技术;4,排烟循环流化床脱硫技术,这给我国烟气脱硫技术的研究与开发指明了方向。其中湿式石灰/石灰石洗涤法脱硫技术已经由国家电力公司引进国外技术消化吸收并形成国产化;喷雾干燥法脱硫技术我国通过多年的研究和试验已基本掌握设计、制造100MW机组烟气脱硫技术的实力。 纵观当今烟气脱硫技术的现状,目前世界上大机组脱硫以湿法脱硫占主导地位,选用湿法脱硫装置的机组容量占总数的85%,但湿法脱硫一次性投资昂贵、设备运行费用较高。随着经济的发展,发展中国家的环保形势越来越严重,为适应这些国家脱硫市场的需要,许多国家都在致力开发高效干法脱硫技术。本文简单介绍目前有广泛市场前景的几种干式烟气脱硫技术,结合这些脱硫方法的特点和我国特别是上海地区的实际情况,提出并着手研究开发高钙粉煤灰增湿活化脱硫和循环流化床烟气脱硫,并建立国内规模较大的多功能烟气脱硫试验台。1, 炉内喷钙及尾部增湿润活化脱硫技术 LIFAC(Limestone Injecyion into Furnace and Activation of Unreacted Calcium)烟气脱硫工艺即锅炉炉膛内喷射石灰石粉,并配合采用锅炉尾部烟道增活化反应器,使未反就的CaO通过雾化水进行增湿活化的烟气脱硫工艺。目前世界许多厂商研究开发的以石灰石喷射为基础的干法脱硫工艺中,芬兰Tampella和IVO公司开发的这种脱硫工艺最为典型,并于1986年首先投入商业性运行。LIFAC工艺主要包括以下几个子系统:(1) 石灰石粉系统 包括石灰石粉的制备、计量、运输、贮存、分配和喷射等设备。(2) 水利化反就器系统 包括水利化水雾化、烟气与水混合反应、下部碎渣与除渣、器壁防垢等设备。(3) 脱硫灰再循环系统 包括电除尘器下部集灰、贮存、输送等装置。(4) 烟气再热系统 包括烟气再热装置和主烟气混合用喷嘴等。LIFAC脱硫工艺的基本原理如下: 炉膛内喷钙脱硫的基本原理:石灰石粉借助气力喷入炉膛内850~1150度(摄氏)烟温区,石英钟灰石煅烧分解成CaO和CO2,部分CaO与烟气中的SO2。炉膛内喷入石灰石后的SO2。反应生成CaSO4,脱除烟气中一部分SO2。炉膛内喷入石灰石后的SO2脱除率随煤种、石灰石粉特性、炉型及其空气动力场和温度场特性等因素而改变,一般在20%~50%。 活化器内脱硫的基本原理:烟气增湿活化售硫反应的机理主要是由于脱硫剂颗粒和水滴相碰撞以后,在脱硫剂颗粒表面形成一层水膜,脱硫剂及SO2气体均向其中溶解,从而使脱硫反应由原来的气-固反应转化成水膜中的离子反应,烟气中大部分未及时在炉膛内参与反应的CaO与烟气中的SO2反应生成CaSO3和CaSO4。活化反应器内的脱硫效率通常在40%~60%,其高低取决于雾化水量、液滴粒径、水雾分布和烟气流速、出口烟温,最主要的控制因素是脱硫剂颗粒与水滴碰撞的概率。 由于活化反应器出口烟气中还有一部分可利用的钙化物,为了提高钙的利用率,可以将电除尘器收集下来的粉尘返回一部分到活化反应器中再利用,即脱硫灰再循环。活化器出口烟温因雾化水的蒸发而降低,为避免出现烟温低于露点温度的情况发生,可采用烟气再加热的方法,将烟气温度提高至露点以上10~15度(摄氏)加热工质可用蒸气或热空气,也可用未经活化器的烟气。 整个LIFAC工艺系统的脱硫效率η为炉膛脱硫效率η和活化器脱硫效率η之和,即η=η1+(1-η1)η2,一般为60%~85%。LIFAC脱硫方法适用于燃用含硫量为0.6%~2.5%的煤种、容量为50~300MW燃煤锅炉。与湿式烟气脱硫技术相比,投资少,占地面积小,适合于现有电厂的改造。2 新型一体化脱硫技术 NID技术是瑞典ABB公司80年代初开发的新颖脱硫技术,借鉴了旋转雾干燥法的脱硫原理又克服了使用制浆系统的种种弊端,既具有干法的廉价、简单等优点,又有湿法的高脱硫效率,且原料消耗和能耗都比喷雾干燥法有大幅度下降。1996年在波兰的2*125MW样板机上运行成功,进一步拓展了它在欧洲的垃圾焚烧、煤粉炉及其它工业炉中的脱硫市场份额,迄今已有10套装置在欧洲各国运行。 NID烟气脱硫系统,从锅炉或除尘器排出的未经处理的热烟气,经烟气分布器后进入NID掇应器,与增湿的可自由流动的灰和石灰混合粉接触,其中的活性组份立即被子混合粉中折碱性组份吸收,同时,水分蒸发使烟气达到有效吸收SO需要的温度。对烟气的分布、混合粉的供给速率及分布和增湿用水量进行有效控制,可以达到最佳期脱硫效率。经处理的烟气进入除尘器(布袋除满面春风器或静电除尘器)除去其中的粉尘,再经引风机排入烟囱。除尘器除掉的粉尘经增湿后进入NID反应器,灰斗的灰位计控制副产品的排出。 NID系统可以采用生石灰(CaO)或消石(Ca(OH)作为吸收剂。采用生石灰时,,生石灰要在一体式的消化器中消化。如果采用消石灰,则不需提供石灰消化器。加入NID系统的水量取决于进入和排出NID反应器的烟气温度差(即喷水降温量)。温差越大,需要蒸发的水量也越大。一般情况下,吸收效率和石灰石利用率与离开反应器的烟气的相对湿度有关。出口温度低限受最终产物的输送特性限制,最佳状态是将“接近温度”保持在15~20度(摄氏)。 增湿润搅拌机是NID工艺的主要部件之一,增湿搅拌机根据控制出口烟气温度和SO脱除效率的要求,按需要的比例混合石灰、循环飞灰和水。培湿搅拌机独特的设计,保证在搅拌时间很短的情况下能达到良好的搅拌效果。加入的水在粉料微粒表面上形成一层几μm的水膜,从而增大了酸性气体与碱性粉料的接触表面。大面积的密切接触保证了吸收剂和SO之间几乎是瞬间的高效反应,所以可以将反应器的体积保持在最小。二氧化硫与氢氧化钙反应生成容易处理的亚硫酸钙/硫酸钙。

  • 焦炉烟道气脱硫脱硝除尘技术应用

    炼焦行业中焦炉煤气燃烧给焦炉加热时会产生大量的大气污染物,包括二氧化硫(SO2)、氮氧化物(NOx)及烟尘等,此类污染物经焦炉烟囱呈有组织高架点源连续性排放至大气中,对环境造成严重污染,尤其是SO2和NOx这两类有害气体不仅会形成酸雨,破坏臭氧层,而且还是PM2.5的主要气态物质,严重危害人体健康。鉴于此,国家于2012年6月颁布了《炼焦化学工业污染物排放标准》(GB16171—2012),明确规定了现有焦化企业2015年1月1日后焦炉烟道气中污染物的排放限值和特别限值,部分地区更是提出了更为严格的要求,以临汾市为例,《临汾市大气污染防治2018年行动计划》里明确要求:焦化行业分步实施大气污染物特别排放限值改造,2018年10月1日前50%的焦化企业完成大气污染物特别排放限值改造,2019年10月1日前全市焦化企业全部完成大气污染物特别排放限值改造。  在此严苛的环保形势下,位于临汾市洪洞县的山西焦化股份有限公司新上了脱硫脱硝工艺装置,山西焦化股份有限公司2#、3#焦炉烟道气中前期NOx、SO2及颗粒物的排放量分别为1 200mg/m3、200mg/m3 和30mg/m3,不能满足炼焦化学工业污染物排放标准(GB16171-2012)的要求,因此山西焦化股份有限公司于2018年6月建成了焦炉烟道气脱硫脱硝及余热回收工艺装置,该工艺采用“SCR脱硝+余热回收+半干法脱硫”的路线,保证了出口NOx、SO2及颗粒物排放量分别低于150、30、15mg/m3。  1 工艺流程  脱硫脱硝与余热回收工艺流程示意图,如图1所示。焦烟道气自2#、3#焦炉原有地下烟道分别引出汇合经脱硝预处理后,进入脱硝系统,在脱硝反应器上游设置喷氨格栅,将氨气送入烟气中充分混合,混有氨气的烟气进入脱硝反应器中,在催化剂作用下进行还原反应生成N2和H2O,经过脱硝后的烟气继续进入热管式余热锅炉进行热量回收,产生的饱和低压蒸汽输送到公司热力管网,冬季供居民采暖使用,降温后的烟气则进入脱硫系统,脱硫系统采用半干法脱硫,脱硫后的烟气经除尘后通过引风机增压排放至原有烟囱,实现烟气的达标排放。image.png  1.1 烟气脱硝系统  本系统选择中低温SCR脱硝技术,还原剂采用NH3。其脱硝的原理是NOx在催化剂作用下,在一定温度条件(中低温230℃~300℃)下被氨气还原为无害的氮气和水,不产生二次污染,SCR 脱硝的化学反应式见式(1)~式(5):  4NO+4NH3+O2——4N2+6H2O(主反应)(1)  6NO2+8NH3——7N2+12H2O (2)  6NO+4NH3——5N2+6H2O (3)  NO+NO2+2NH3——2N2+3H2O (4)  2NO2+4NH3+O2——3N2+6H2O (5)  来自液氨站的氨气与稀释风机来的空气在氨/空气混合器内充分混合后与焦炉烟道气一起进入SCR脱硝反应器,反应器内混合烟气竖直向下流动,反应器入口设有气流均布装置和整流装置,确保混合烟气流场均匀;反应器内装有专用的中低温催化剂,催化剂的活性温度230℃~300℃,催化剂能够满足烟气最大量时脱硝效率达到87.5%以上的需求,同时SO2/SO3的转化率控制在1%以内。另外,催化剂采用“2+1”布置方式,具有较高的化学稳定性、热稳定性和机械稳定性,从而保证了SCR脱硝反应器出口氨逃逸不大于10×10-6。该SCR脱硝反应器适应焦炉50%~100%工况之间任何负荷运行。  1.2 余热回收系统  余热锅炉采用立式布置,自脱硝系统处理后的烟道气竖直进入锅炉蒸发器、省煤器后进入后续脱硫系统。来自供气的除氧水进入省煤器,预热后送入锅筒。在锅筒内部汽水通过上升、回流管路参与蒸发器换热面的吸热循环,产生压力0.8MPa饱和蒸汽,经气液分离后输出,输出饱和蒸汽外送至蒸汽管网。锅筒、蒸发器、省煤器设有排污口,可定期清除内部残留污物及水垢。锅炉系统中共设置两个安全阀,在系统超压0.85MPa时,安全阀自动依次起跳,泄放压力,保证锅炉系统安全,当系统压力恢复正常时,安全阀回座。  1.3 脱硫除尘系统  烟道气从底部进入脱硫塔,与再循环灰和添加的碳酸钠溶液进行反应,反应除去烟道气中的SO2和其他酸性物质后烟道气到达脱硫塔顶部,供应的碳酸钠通过真空上料机送进碳酸钠粉仓,碳酸钠粉通过粉仓底部的星型卸料阀送至碳酸钠溶液箱内,在溶液箱内与水搅拌制成一定浓度的碳酸钠溶液,碳酸钠溶液通过多级离心泵打入脱硫反应器,通过调节溶液输送管道上的调节阀改变进入脱硫塔的碳酸钠溶液量,以达到最佳的雾化效果。反应后的烟道气以混合物形式从脱硫塔顶部离开进入布袋除尘器,在布袋除尘器进行气体和固体进行分离,分离的固体大部分通过螺旋输送机回到脱硫塔继续脱硫,少部分通过螺旋输送机出口的分料阀送至灰仓,灰仓内物料达到一定高度后经散装机通过运输车外送。布袋除尘器出口的烟道气粉尘含量降低到15mg/m3,除尘后的烟道气经过引风机送入原有烟囱。净化烟道气的排气温度在140℃以上,不会在烟囱周围产生烟囱雨,并可以避免烟气温度低于酸露点而引起的烟囱腐蚀。  在脱硫塔内,碳酸钠浆液与脱硫塔内烟气接触迅速完成吸收SO2的反应,在低温降下具有极高的SO2脱除效率,由于喷入塔内的碳酸钠浆液是小雾滴,因此完成脱硫反应后的脱硫产物也为极细的颗粒,并且完成反应的同时也即迅速干燥。碳酸钠转化成亚硫酸钠和硫酸钠的反应方程式,见式(6)~式(7):  SO2+Na2CO3 →Na2SO3+CO2 (6)  2Na2SO3+O2 →2Na2SO4 (7)  2 技术特点  (1)直接利用焦炉烟道气原有温度进行脱硝,最大程度的保证了脱硝温度在较高的温度范围内,同时免去了对烟气进行加热产生的能源消耗,且烟气经过SCR反应器后,温度损失5℃~10℃,不影响后序余热回收系统运转,符合热能回收利用的要求;(2)余热回收系统可以对焦炉尾气显热高效回收利用,实现了按温度梯度进行热量梯级利用,符合国家对企业环保节能的要求;(3)脱硫系统脱硫效率高。  3 工艺运行指标  截止到2019年2月,装置已运行半年多,取得了良好的效果,焦炉烟气各项污染物如NOx、SO2和粉尘质量浓度均符合《炼焦化学工业污染物排放标准》排放限值规定,脱硫脱硝除尘工艺性能参数,如表1所示。image.png  4 结语  山西焦化股份有限公司焦炉烟道气脱硫脱硝及余热回收技术工艺流程设计简单,布置合理,占地面积小,能耗低,热能回收充分,运行成本低,烟道气治理效果好,可有效提升企业环保管理水平和治理能力,该套技术的成功投用,为焦化行业相关企业焦炉烟道气脱硫脱硝提供了经工业验证的技术选择。

  • 【原创大赛】COD自动回流消解装置

    【原创大赛】COD自动回流消解装置

    COD自动回流消解装置COD消解回流装置是根据《GB11914-89水质 化学需氧量的测定 重铬酸盐法》中对化学需氧量的消解要求而产生的实验辅助型消解回流工具。目前COD自动回流消解装置分为三类,分类主要是根据该装置的出现的时期和装置的优化程度来区分。第一类:传统回流消解装置(如下图所示)http://ng1.17img.cn/bbsfiles/images/2015/08/201508051349_559251_2820254_3.jpgCOD传统回流装置:该装置是传统国标法当中常用的消解回流装置,自COD国标法颁布至今,该装置一直沿用,用被称为COD经典法。另一方面《GB11914-89水质 化学需氧量的测定 重铬酸盐法》是目前国内外通用的COD检测方法。COD传统回流装置的组装方法:1、组成配件及装置 球形冷凝管、医用胶管、锥形瓶、铁架台、电炉、玻璃珠、水龙头、接水池2、组装方式用球形冷凝管两端接口接好医用胶管,再将冷凝管固定在铁架台上,然后将冷凝管底端与放好试剂和玻璃珠的锥形瓶连接,连好的锥形瓶放在电炉上,将冷凝管下端冷凝管接水龙头,上端一头胶管放在接水池中。回流装置组装完毕。第二类:COD传统回流消解仪COD传统回流消解仪主要由机身、回流管、风扇、电炉板等4大部分组成,采用微机技术进行定时控制加热电炉板和风扇,可对6个或以上锥形瓶回流装置同时进行加热。COD传统回流消解仪采用玻璃毛刺回流管代替球形回流管,并以风冷技术取代自来水冷却方式。冷却部分主要由毛刺冷凝管和风机完成,冷凝管上部分为球形,催化剂由此处加入,阻止了样品中轻组分的瞬间挥发,下部分为“毛刺”形,在一个平面上从冷凝管壁伸出的3个相向的“冷泡”比单纯的球形冷凝管更增大了冷却面积,并能阻挡挥发性物质和蒸气的通过,加上上部分球形回流管内冷却水和机内风机的双重作用,确保了样品的回流冷却。第三类:COD新型回流消解仪此款回流消解仪是目前国内外最新型的自动回流消解设备。该仪器适用于化学需氧量(COD)国标法(GB 11914-89),在完全遵循国标法的基础上具有节能环保的显著优点,仪器升温时间短、省水、省电,操作简单,可靠性高、批处理量大,该款产品采用金属加热组件,加热均匀,热膨胀系数小,耐腐蚀,经济实用、维护简单、性能可靠。该仪器有四大优点区别于其他消解仪器①消解加热板,采用金属加热组件,消解均匀,实验效率高。另一方面耐锈耐腐蚀,应用更加便利。②仪器上端的冷却管支架,可以节省实验空间,便于实验的操作。③后风扇+前风扇的设计,后风扇直接将风吹到加热板的锥形瓶上,加速样品冷却,侧风扇沿用传统回流消解仪的设计。④双消解模式和提示消解界面,仪器带两种消解模式,可自动可手动,方便智能。此款仪器的设计生产具有划时代的意义,体现了现代高科技与传统的完美结合。

  • 【求助】干灰化后残留的炭粒如何溶解?

    有时候用干灰化法(500℃~550℃)处理某些样品,在高温炉里面灼烧后,有时候会残留少量炭粒,即使延长灼烧时间也不能烧成灰白色。试过在坩埚里加入盐酸,浓硝酸,高氯酸,炭粒都无法溶解,结果回收率极低。请问各位:有没有办法在不升高灰化温度的前提下,避免干灰化之后残留炭粒?如果灼烧之后仍有炭粒,如何把它溶解?

  • 【讨论】请问用湿法回流消化样品测汞的温度

    [size=4]1、请问:我用湿法回流来消化食品样品来测汞,温度最高可以是多少度?因为是回流,所以我把电热板的温度调到300度,不知道有没有问题?2、湿法回流消化样品要多长时间才算消化完成?因为好像是说要冷凝管中气体的颜色由棕色变淡才算消化完成,但是我每次都要回流消化一个晚上+一个白天(下午主要是加水赶酸),冷凝管颜色才会是淡淡的黄色,这样太花时间了。另外,加水赶酸一般要多长时间呢?按照GB/T5009-2003中测汞的回流消解方法,只要两个小时就够了,但是我自己感觉两个小时样品并不能消解完全,冷凝管中还有很深的棕色。[/size]

  • 硫酸钡比浊法测生活饮用水硫酸盐

    各位大神。我用硫酸钡比浊法测生活饮用水硫酸盐(GB/T 5750.5-2006)用紫外测,加标回收老做不好 ,偏高。曲线也会有时候出不来,不知道咋回事!有哪位大神做过的可以传授一下经验么?有什么注意事项需要注意的!在线等!!!急!!!!!!!!

  • 焦炉烟气脱硫脱硝技术进展与建议

    摘要:分析了我国焦化行业SO2、NOx排放现状及污染物浓度的主要影响因素,对比了以氨法、石灰/石灰石法、双碱法、氧化镁法、喷雾干燥法、循环流化床法等为代表的焦炉烟气脱硫技术,以低氮燃烧技术、低温选择性催化还原脱硝技术、氧化脱硝等为代表的焦炉烟气脱硝技术,以活性焦、液态催化氧化等为代表的焦炉烟气脱硫脱硝一体化技术的工艺原理、脱硫脱硝效率及各自优缺点;总结了焦炉烟气脱硫脱硝技术在工艺路线选择、烟气排放、次生污染等方面存在的问题。指出焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面,并不断加强焦炉操作管理水平及新技术的应用。  引言  燃煤烟气中的SO2和NOx所引起的酸雨、光化学烟雾和雾霾等环境污染已严重影响人类生存与发展。目前最有效且应用最广的燃煤烟气SO2和NOx污染治理措施是燃烧后烟气脱硫脱硝技术。作为国内第二大用煤领域,我国煤炭焦化年耗原煤约10亿t,占全国煤炭消耗总量的1/3左右。当前,燃煤发电领域气脱硫脱硝技术发展及应用相对成熟,大部分煤电企业SO2和NOx排放已达超净标12017年第6期洁净煤技术第23卷准;但作为传统煤化工行业,我国焦化领域发展相对粗放,污染物治理措施更是在近年来不断严苛的环保政策下迫以实行,多数焦化企业尚未实现焦炉烟气SO2和NOx排放有效防控,与GB16171—2012《炼焦化学工业污染物排放标准》中的规定有一定差距。由于焦炉烟气与燃煤电厂烟气在烟气温度、SO2和NOx含量等方面均存在差异,故二者的脱硫脱硝治理技术路线不能完全等同。研究与实践表明,我国焦炉烟气脱硫脱硝技术在工艺路线选取、关键催化剂国产化、系统稳定运行等方面存在一定问题,严重制约了焦化行业污染物达标排放。  1焦化行业SO2及NOx排放现状  据统计,2015年全国SO2排放总量为1859.1万t、NOx排放总量为1851.8万t。煤炭焦化是工业用煤领域主要污染源之一,焦炉烟气是焦化企业中最主要的废气污染源,约60%的SO2及90%的NOx来源于此。焦炉烟气中SO2浓度与燃料种类、燃料中硫元素形态、燃料氧含量、焦炉炭化室串漏程度等密切相关;NOx浓度则与燃烧温度、空气过剩系数、燃料气在高温火焰区停留时间等密切相关。以焦炉煤气为主要燃料的工艺,其烟气中的SO2直接排放浓度为160mg/m3左右、NOx直接排放浓度为600~900mg/m3(最高时可达1000mg/m3以上);以高炉煤气等低热值煤气(或混合煤气)为主要燃料的工艺,其烟气中的SO2直接排放浓度为40~150mg/m3、NOx直接排放浓度为300~600mg/m3。可见,无论以焦炉煤气或高炉煤气为主要燃料的工艺,如未经治理,其烟气中的SO2和NOx浓度均难以稳定达到标准限值排放要求。  随着国家对环境保护的日益重视,我国焦化领域烟气达标排放势在必行。2017年起,《排污许可证申请与核发技术规范-炼焦化学工业》将首次执行,该规范对焦化行业污染物排放提出了更高要求。如前所述,焦炉烟气中SO2和NOx达标排放的主要技术手段为末端脱硫脱硝治理,故本文将对比分析我国焦炉烟气现行脱硫脱硝技术工艺原理、硫硝脱除效率及各自技术优缺点,总结国内焦炉烟气脱硫脱硝技术应用存在的共性问题,以期为我国焦化行业脱硫脱硝技术的选择与优化提供参考。  2焦炉烟气脱硫脱硝技术  目前,我国焦炉烟气常用的末端脱硫脱硝的治理工艺路线可分为单独脱硫、单独脱硝、脱硫脱硝一体化等3类。  2.1脱硫技术  根据脱硫剂的类型及操作特点,烟气脱硫技术通常可分为湿法、半干法和干法脱硫。当前,焦炉烟气脱硫领域应用较多的为以氨法、石灰/石灰石法、双碱法、氧化镁法等为代表的湿法脱硫技术和以喷雾干燥法、循环流化床法等为代表的半干法脱硫技术,而干法脱硫技术的应用较为少见,故本文着重介绍湿法及半干法焦炉烟气脱硫技术。  2.1.1湿法脱硫技术  1)氨法  氨法脱硫的原理是焦炉烟气中的SO2与氨吸收剂接触后,发生化学反应生成NH4HSO3和(NH4)2SO3,(NH4)2SO3将与SO2发生化学反应生成NH4HSO3;吸收过程中,不断补充氨使对SO2不具有吸收能力的NH4HSO3转化为(NH4)2SO3,从而利用(NH4)2SO3与NH4HSO3的不断转换来吸收烟气中的SO2;(NH4)2SO3经氧化、结晶、过滤、干燥后得到副产品硫酸铵,从而脱除SO2。  焦炉烟气氨法脱硫效率可达95%~99%。吸收剂利用率高,脱硫效率高,SO2资源化利用,工艺流程结构简单,无废渣、废气排放是此法的主要优点;但该法仍存在系统需要防腐,氨逃逸、氨损,吸收剂价格昂贵、脱硫成本高、不能去除重金属、二噁英等缺点。  2)石灰/石灰石法  石灰/石灰石法脱硫工艺由于具有吸收剂资源丰富、成本低廉等优点而成为应用最多的一种烟气脱硫技术。该工艺主要应用氧化钙或碳酸钙浆液在湿式洗涤塔中吸收SO2,即烟气在吸收塔内与喷洒的吸收剂混合接触反应而生成CaSO3,CaSO3又与塔底部鼓入的空气发生氧化反应而生成石膏。焦炉烟气石灰/石灰石法脱硫效率一般可达95%以上。石灰/石灰石法脱硫的优点在于吸收剂利用率高,煤种适应性强,脱硫副产物便于综合利用,技术成熟,运行可靠;而系统复杂、设备庞大、一次性投资大、耗水量大、易结垢堵塞,烟气携带浆液造成“石膏雨”、脱硫废水处理难度大等是其主要不足。  3)双碱法  双碱法,即在SO2吸收和吸收液处理过程中使用了不同类型的碱,其主要工艺是先用碱金属钠盐清液作为吸收剂吸收SO2,生成Na2SO3盐类溶液,然后在反应池中用石灰(石灰石)和Na2SO3起化学反应,对吸收液进行再生,再生后的吸收液循环使用,SO2最终以石膏形式析出。双碱法焦炉烟气脱硫效率可达90%以上。双碱法脱硫系统一般不会产生沉淀物,且吸收塔不产生堵塞和磨损;但工艺流程复杂,投资较大,运行费用高,吸收过程中产生的Na2SO4不易除去而降低石膏质量,吸收液再生困难等均是该技术需要解决的问题。  4)氧化镁法  氧化镁法脱硫是一种较成熟的技术,但由于氧化镁资源储量有限且分布不均,因此该法在世界范围内未得到广泛应用;而我国氧化镁资源丰富,有发展氧化镁脱硫的独特条件。该工艺是以氧化镁浆液作为吸收剂吸收SO2而生成MgSO3结晶,然后对MgSO3结晶进行分离、干燥及焙烧分解等处理后,MgSO3分解再生的氧化镁返回吸收系统循环使用,释放出的SO2富集气体可加工成硫酸或硫磺等产品。该法脱硫效率可达95%以上。氧化镁法脱硫技术成熟可靠、适用范围广,副产品回收价值高,不发生结垢、磨损、管路堵塞等现象;但该法工艺流程复杂,能耗高,运行费用高,规模化应用受到氧化镁来源限制且废水中Mg2+处理困难。  2.1.2半干法脱硫技术  1)喷雾干燥法  喷雾干燥法脱硫是利用机械或气流的力量将吸收剂分散成极细小的雾状液滴,雾状液滴与烟气形成较大的接触表面积,在气液两相之间发生的一种热量交换、质量传递和化学反应的脱硫方法。该法所用吸收剂一般是碱液、石灰乳、石灰石浆液等,目前绝大多数装置都使用石灰乳作为吸收剂。一般情况下,喷雾干燥法焦炉烟气脱硫效可达85%左右。其优点在于脱硫是在气、液、固三相状态下进行,工艺设备简单,生成物为干态易处理的CaSO4、CaSO3,没有严重的设备腐蚀和堵塞情况,耗水也比较少;缺点是自动化要求比较高,吸收剂的用量难以控制,吸收效率有待提高。所以,选择开发合理的吸收剂是喷雾干燥法脱硫面临的新难题。  2)循环流化床法  该法以循环流化床原理为基础,通过对吸收剂的多次循环延长吸收剂与烟气的接触时间,通过床层的湍流加强吸收剂对SO2的吸收,从而极大地提高了吸收剂的利用率和脱硫效率。该法的优点在于吸收塔及其下游设备不会产生黏结、堵塞和腐蚀等现象,脱硫效率高,运行费用低,脱硫副产物排放少等。但此法核心技术和关键设备依赖于进口,且造价昂贵,限制了其应用推广。因此因地制宜的研究开发具有自主知识产权,适合我国国情的循环流化床焦炉烟气脱硫技术成为研究者关注的重点;此外,该法副产物中亚硫酸钙含量大于硫酸钙含量,并且为了达到高的脱硫率而不得不在烟气露点附近操作,从而造成了吸收剂在反应器中的富集,这也是循环流化床脱硫工艺有待改进的方面。  2.1.3焦炉烟气常用脱硫技术对比  焦炉烟气常用脱硫技术对比见表1。  2.2脱硝技术  当前,焦炉烟气常用脱硝技术主要包括低氮燃烧技术、低温选择性催化还原(低温SCR)技术和氧化脱硝技术等3种。  1)低氮燃烧技术  低氮燃烧技术是指基于NOx生成机理,以改变燃烧条件的方法来降低NOx排放,从而实现燃烧过程中对NOx生成量的控制。焦炉加热低氮燃烧技术主要包括烟气再循环、焦炉分段加热、实际燃烧温度控制等技术。烟气再循环是焦化领域目前应用较普遍的低氮燃烧技术,我国现有焦炉大部分采用该技术。研究实践表明:烟气再循环的适宜控制量32017年第6期洁净煤技术第23卷为10%~20%,若超过30%,则会降低燃烧效率;该方法的控硝效果最高可达25%。焦炉分段加热一般是用空气、煤气分段供给加热来降低燃烧强度,从而实现热力型氮氧化物生成量减少的效果。实际燃烧温度控制技术是我国自主研发的焦炉温度控制系统,该技术可优化焦炉加热制度,调整焦炉横排温度,降低焦炉操作火道温度,避免出现高温点,降低焦炉空气过剩系数,从而减少NOx生成。理论计算表明,焦炉若采用烟气再循环与分段加热技术组合,可实现NOx排放量低于500mg/m3以下的目标;若采用烟气再循环与实际燃烧温度控制技术组合,NOx排放可控制在600mg/m3左右。  2)低温SCR脱硝  与火电厂烟[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]比,焦炉烟气温度相对较低,一般为170~280℃;针对该特性,我国相关机构开发出低温SCR焦炉烟气脱硝技术,该技术的脱硝效率可达70%以上。低温SCR焦炉烟气脱硝工艺是在一定温度的烟气中喷入氨或尿素等还原剂,混有还原剂的烟气流经专有催化剂反应器,在催化剂作用下,还原剂与烟气中的NOx发生还原反应而生成氮气和水,从而达到脱硝的效果。  低温SCR烟气脱硝技术是目前焦炉烟气脱硝技术中相对成熟和可靠的工艺,脱硝效率较高且易于控制,运行安全可靠,不会对大气造成二次污染;催化剂是制约低温SCR脱硝技术发展的核心问题,降低催化剂进口依赖程度、防止催化剂中毒、解决废弃催化剂所产生的二次污染问题是低温SCR焦炉烟气脱硝技术应努力攻关的方向。  3)氧化脱硝  氧化脱硝技术是利用强氧化剂将NO氧化成高价态的氮氧化物,然后利用碱液进行喷淋吸收的脱硝工艺;目前,在焦炉烟气脱硫脱硝措施中应用的氧化剂主要为臭氧和双氧水。该法设备占地面积小,能同时脱除汞等其他污染物;但该工艺存在氧化剂消耗量大,运行费用高,能耗高,对设备材质要求高,易产生臭氧二次污染等问题。  2.3脱硫脱硝一体化技术  烟气脱硫脱硝一体化技术在经济性、资源利用率等方面存在显著优势,成为近年来研究与利用的点。焦炉烟气脱硫脱硝一体化技术主要集中于活性焦脱硫脱硝一体化技术和液态催化氧化法脱硫脱硝2种。  1)活性焦脱硫脱硝一体化技术  活性焦脱硫脱硝一体化技术是利用活性焦的吸附特性和催化特性,同时脱除烟气中的SO2和NOx并回收硫资源的干法烟气处理技术。其脱硫原理是基于SO2在活性焦表面的吸附和催化作用,烟气中的SO2在110~180℃下,与烟气中氧气、水蒸气发生反应生成硫酸吸附在活性焦孔隙内;脱硝原理是利用活性焦的催化特性,采用低温选择性催化还原反应,在烟气中配入少量NH3,促使NO发生选择性催化还原反应生成无害的N2直接排放。  该法SO2和NOx脱除效率可达80%以上。不消耗工艺水、多种污染物联合脱除、硫资源化回收、节省投资等是焦炉烟气活性焦法脱硫脱硝技术的优点;而该工艺路线也存在活性焦损耗大、喷射氨造成管道堵塞、脱硫速率慢等缺点,一定程度上阻碍了其工业推广应用。  2)液态催化氧化法脱硫脱硝技术  液态催化氧化法(LCO)脱硫脱硝技术是指氧化剂在有机催化剂的作用下,将烟气中的SO2和NOx持续氧化成硫酸和硝酸,随后与加入的碱性物质(如氨水等)发生反应而快速生成硫酸铵和硝酸铵。焦炉烟气液态催化氧化法SO2、NOx脱除效率可分别达到90%及70%以上。硫硝脱除效率高、不产生二次污染、烟温适应范围广等优势使焦炉烟气液态催化氧化法脱硫脱硝技术具有较好的推广前景;但硫酸铵产品纯度、液氨的安全保障、有机催化剂损失控制、设备腐蚀等问题仍是液态催化氧化脱硫脱硝技术亟需解决的难点。  2.4当前焦炉烟气脱硫脱硝技术存在的问题  1)单独脱硫与单独脱硝组合顺序的选择  根据工艺条件要求,脱硝需在高温下进行,脱硫需在低温下进行。若选择先脱硫后脱硝,则经过脱硫后烟温降低,进入脱硝工序之前需将烟温由80℃提升至200℃以上,这将造成能源浪费并增加企业成本;若选择先脱硝后脱硫,在脱硝催化剂作用下,烟气中SO2被部分催化氧化成SO3,生成的SO3与逃逸的NH3和水蒸气反应生成硫酸氢铵,硫酸氢铵具有黏性和腐蚀性,会对脱硝催化剂和下游设备造成堵塞和腐蚀,从而影响脱硝效果及设备使用寿命。  2)焦炉烟气脱硫脱硝后烟气排放问题  焦炉烟气经脱硫脱硝后,可选择直接通过脱硫脱硝装置自带烟囱排放或由焦炉烟囱排放2种方式。若选择直接通过脱硫脱硝装置自带烟囱排放,则当发生停电事故时,烟气必须通过焦炉烟囱排放,而焦炉烟囱由于长时间不使用处于冷态,无法及时形成吸力而导致烟气不能排放,从而引发爆炸等安全事故;脱硫脱硝后的烟气若选择通过焦炉烟囱排放,由于当前很多脱硫脱硝工艺经净化后焦炉烟气温度低于130℃,这种低温将使烟囱吸力不够、排烟困难,从而引起系统阻力增大、烟囱腐蚀,不利于整个生产、净化系统稳定,甚至引起安全事故。  3)焦炉烟气脱硫脱硝后次生污染问题  焦炉烟气经脱硫脱硝后可能产生以下次生污染:①湿法脱硫外排烟气中的大量水汽与空气中漂浮的微生物作用形成气溶胶,最终导致雾霾天气的发生;②氨法脱硫工艺存在氨由于挥发而逃逸的问题;③当前,脱硫副产物的市场前景及销路不畅,会大量堆存污染环境;④当前的脱硫脱硝催化剂大多为钒系或钛系,更换后,用过的催化剂成为危废,若运输和处理过程中管理不当易产生污染。  3结语与建议  1)焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面;应重视污染物源头控制措施,如:有条件的企业应采用高炉煤气或高炉煤气与焦炉煤气的混合作为加热燃料,从源头控制污染物的产生,从而为后续净化系统降低处理难度;选择合理的焦炉煤气脱硫工艺,将焦炉煤气中的硫化氢、氰化氢等尽可能脱除,以减少焦炉煤气作为加热热源燃烧时产生的硫氧化物。  2)加强焦炉操作管理,对控制污染物排放具有积极促进作用,如:通过加强炉体维护可有效控制炉体串漏,从而避免未经净化的荒煤气进入燃烧室而引起焦炉烟气污染物排放超标;故焦化企业应重视并采取可靠手段加强焦炉操作与管理,以实现控制污染物排放、延长焦炉使用寿命、维护产品质量稳定的多重效益。  3)烟气燃烧温度对氮氧化物产生量具有重要影响,煤炭焦化领域可采取适用的低氮燃烧技术从源头控制污染物产生;如:可采取分段燃烧、烟气再循环等加热方式,控制燃烧室温度,从而抑制氮氧化物产生,以减少后续脱硝系统净化难度。

  • 【求助】二氧化硫 加标回收率

    我做食品中二氧化硫的检测,盐酸副玫瑰苯胺法。但做豌豆苗和平菇的加标回收率只有60%和30%。请问二氧化硫的加标回收率应该怎样做?怎样才能提高加标回收率呢?

  • 【分享】我国火电厂烟气脱硫产业化现状及有关建议

    近年来,我国通过自主研发和引进、消化吸收、再创新,烟气脱硫产业化取得了重大进展,国产化能力基本可以满足“十一五”时期减排二氧化硫的需要。一、火电厂烟气脱硫产业化取得重大进展 2005年底,我国建成投产的烟气脱硫机组容量由2000年的500万千瓦上升到了5300万千瓦,增长了近10倍,约占火电装机容量的14%,正在建设的烟气脱硫机组容量超过1亿千瓦。目前,已有石灰石-石膏湿法、烟气循环流化床、海水脱硫法、脱硫除尘一体化、半干法、旋转喷雾干燥法、炉内喷钙尾部烟气增湿活化法、活性焦吸附法、电子束法等十多种烟气脱硫工艺技术得到应用。与国外情况一样,在诸多脱硫工艺技术中,石灰石-石膏湿法烟气脱硫仍是主流工艺技术。据统计,投运、在建和已经签订合同的火电厂烟气脱硫工艺技术中,石灰石-石膏湿法占90%以上。总体看,我国烟气脱硫产业已具备了年承担近亿千瓦装机脱硫工程设计、设备制造及总承包能力。 (一)脱硫设备国产化率已达90%以上。石灰石-石膏湿法烟气脱硫工艺中的关键设备,如浆液循环泵、真空皮带脱水机、增压风机、气气换热器、烟气挡板等,国内已具备研发和生产加工能力。如石家庄泵业有限公司生产的系列脱硫浆液循环泵已应用于96个脱硫工程;成都电力机械厂生产的脱硫增压风机已应用于100个脱硫工程;上海锅炉厂生产的气气换热器已应用于60个脱硫工程。从设备采购费用看,石灰石-石膏湿法脱硫工艺技术设备、材料国产化率达到90%左右,部分烟气脱硫工程国产化率超过了95%,其它工艺技术的设备国产化率大于90%。 (二)烟气脱硫主流工艺技术拥有自主知识产权。通过自主研发和引进、消化吸收再创新,我国已拥有了30万千瓦级火电机组自主知识产权的烟气脱硫主流工艺技术,并经过了一年以上的工程实践检验。如苏源环保工程股份有限公司研发的具有自主知识产权的石灰石-石膏湿法烟气脱硫技术,已成功应用于太仓港环保发电有限公司二期2×300MW烟气脱硫工程;北京国电龙源环保工程有限公司在引进德国技术基础上消化、吸收和再创新,拥有了自主知识产权的石灰石-石膏湿法烟气脱硫技术,并成功应用于江阴苏龙发电有限公司三期2×330MW烟气脱硫工程。以上两个工程项目经过一年多的实际运行检验,并通过了工程后评估,专家认为两公司拥有自主知识产权的烟气脱硫工艺技术都具有成熟、可靠、适用性强的特点,达到了国际先进水平。其它工艺技术我国大多也拥有自主知识产权,只是应用于机组容量20万千瓦及以下火电机组,有些刚刚投运或正在施工建设,有待实践检验。 (三)具备烟气脱硫工程总承包能力。截止2005年底,具备一定技术、资金、人员实力,且拥有10万千瓦及以上机组烟气脱硫工程总承包业绩的公司近50家;其中,合同容量超过200万千瓦装机的公司有17家,超过1000万千瓦装机的公司有7家。北京国电龙源环保工程有限公司总承包合同容量达到了2471万千瓦。 (四)脱硫工程造价大幅度降低。由于烟气脱硫设备国产化率大幅度提高及市场竞争等因素,烟气脱硫工程造价大幅降低,如30万千瓦及以上新建火电机组的烟气脱硫工程每千瓦造价已由最初的1000多元(人民币,下同)降到目前的200元左右。20万千瓦及以下现有火电机组的烟气脱硫工程每千瓦造价也降至250元以下。二、存在的主要问题 (一)烟气脱硫技术自主创新能力仍较低。截止目前,我国只有少数脱硫公司拥有30万千瓦及以上机组自主知识产权的烟气脱硫技术,大多数脱硫公司仍需采用国外技术,而且消化吸收、再创新能力较弱。采用国外技术,要向国外公司支付技术引进费和技术使用费。据初步测算,已向国外公司支付技术引进费约3.2亿元,技术使用费约3亿元。 (二)脱硫市场监管急需加强。近几年,由于脱硫市场急剧扩大,一批从事脱硫的环保公司如雨后春笋般诞生。但行业准入缺乏监管,对脱硫公司资质、人才、业绩、融资能力等方面无明确规定,脱硫公司良莠不齐,一些脱硫公司承建的烟气脱硫工程质量不过关。另外,对烟气脱硫工程招投标的监管不到位或监管不力,部分工程招投标存在走过场现象。 (三)部分脱硫设施难以高效稳定运行。据业内人士反映,目前已建成投产的烟气脱硫设施实际投运率不足60%,减排二氧化硫的作用没有完全发挥。主要原因:一是有些脱硫公司对国外技术和设备依赖度较高,没有完全掌握工艺技术,系统设计先天不足,个别设备出现故障后难以及时修复;二是部分老电厂的脱硫电价政策没及时到位;三是环保执法不严,对脱硫设施日常运行缺乏严格监管

  • 关于COD经典回流法中硫酸汞问题

    回流法COD,是指在强酸加热条件下,用重铬酸钾作为氧化剂处理水样时消耗氧化剂的量,以氧的mg/L来表示。由于重铬酸钾的氧化能力很强,当水质中有氯离子存在时,容易与重铬酸盐发生氧化还原反应,同时氯离子也容易与催化剂硫酸银发生沉淀反应,影响测定,所以实验中要加入硫酸汞以消除干扰。可是硫酸汞是剧毒物质,在购买、使用、贮存中都存在不少困难。现在有没有专门的将硫酸汞加入到试剂中供分析测试人员直接使用的经典回流法的试剂呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制