当前位置: 仪器信息网 > 行业主题 > >

氯唑青霉素

仪器信息网氯唑青霉素专题为您整合氯唑青霉素相关的最新文章,在氯唑青霉素专题,您不仅可以免费浏览氯唑青霉素的资讯, 同时您还可以浏览氯唑青霉素的相关资料、解决方案,参与社区氯唑青霉素话题讨论。

氯唑青霉素相关的资讯

  • 从“红曲风波”认识软毛青霉酸、桔青霉素和红曲色素
    软毛青霉素及相关青霉菌毒素近期,日本著名药企小林制药被推上了风口浪尖,部分消费者在服用该公司含有红曲成分的保健品后,出现肾脏等方面的健康问题,导致小林制药已撤回8种红曲保健品作为功能性标识食品的备案,其中3种商品已经召回。图片图片来源:财经网一般情况下,红曲类保健食品会检测是否含有已知的真菌毒素—桔青霉素。小林制药表示,他们选择的红曲菌不携带能产生桔青霉素的基因,在原材料测试报告中也的确没有检测到桔青霉素。3月29日,小林制药公司向日本厚生劳动省报告,其红曲产品中导致问题的成分可能为“软毛青霉酸(Puberulic acid)”。软毛青霉酸是在发酵过程中由青霉菌产生的天然毒素。据文献报道,从青霉菌发酵液中已分离出软毛青霉酸(Puberulic acid)、密挤青霉酸(Stipitatic acid)及其三种类似物Viticolins A–C等环庚三烯酚酮类(Tropolone)毒素。青霉菌毒素具有耐高温和侵害实质器官的特性,加热烹调也很难使其毒性减弱。目前,有关软毛青霉酸等青霉菌毒素导致的肾脏毒性报道较少,仍需进行相关研究。由于红曲菌在发酵过程中并不能产生软毛青霉素,有专家推测小林制药的红曲产品可能因为原料受到了青霉菌的污染而产生了软毛青霉酸,但具体原因还需后续的调查确认。相信该事件的发生将进一步促进红曲类食品检测的加强,相关检测标准将在不远的将来应运而生。红曲及其用途图片来源:财经网红曲也叫红曲红、红曲霉、红曲米,其作为一种天然发酵产物,成分复杂,包括多种具有生物活性的物质。红曲可应用于制药、酿酒、食品着色等方面,具有悠久的历史和公认的保健价值,特别是在降血脂、降胆固醇方面具有积极效果。目前,国内生产的红曲主要有三类,分别是酿酒红曲、色素红曲和功能红曲。▶ 酿酒红曲的糖化力高、酯化力强、有独特的曲香,广泛用于各种黄酒、白酒、醋、酱的酿造;▶ 色素红曲的色价很高,是纯天然的食品着色剂,通常用于肉制品、腐乳等食品的着色。▶ 功能红曲是指以大米为原料,用纯培养的红曲菌发酵生成的莫纳可林K(又称洛伐他汀,结构式见下图)等生物活性物质的红曲,常被用作防治心血管疾病的保健品和药品的原材料。各大厂商包括小林制药已将红曲米类食品开发为具有降血脂、降胆固醇功能的保健食品。我国对红曲类产品的使用要求红曲色素,属于复合色素,常用红曲添加剂为大米的红曲酶发酵产物或其提取物,为多种天然色素的混合物。目前, 已确定出化学结构的红曲色素主要有6种,包括黄色素、橙色素和红色素,结构如下:随着科学认识的不断深入和对食品安全要求的提高,我国对红曲及其制品的应用和管理日趋严格。国家食品药品监督管理局在《关于以红曲等为原料保健食品产品申报与审评有关事项的通知》中规定,红曲推荐量每日暂定不超过2g,产品中洛伐他汀应当来源于红曲,总洛伐他汀推荐量每日暂定不超过10mg,且不适宜在少年儿童、孕妇、哺乳人群使用等;《GB 2760-2024食品安全国家标准 食品添加剂使用标准》红曲米及红曲红作为着色剂可用于腐乳、碳酸饮料、果冻、糕点、配制酒等多种食品中,其中风味发酵乳中的最大使用量不得超过0.8g/kg,糕点中的使用量不得超过0.9g/kg,焙烤食品馅料及表面用挂浆不得超过1.0g/kg;另外,《GB 5009.150-2016食品安全国家标准 食品中红曲色素的测定》规定了对风味发酵乳、果酱、腐乳、干杏仁、糖果、方便面制品等食品中红曲红素、红曲素、红曲红胺3种红曲色素的测定方法。值得注意的是,红曲色素(又称红曲红)是发酵产生的多种天然色素的混合物,由于发酵工艺的不同,市售红曲色素所含的色素成分及其含量不尽相同,也并非上述所有常见成分均可检出。另外,GB 5009.150-2016和SN/T 3843-2014标准中将红曲红胺的CAS号3627-51-8写为126631-93-4,而后者对应的名称为N-芴甲氧羰基-8-氨基辛酸(N-Fmoc-8-Aminooctanoic acid),对应的结构式见下图。尽管该化合物的分子式和分子量与红曲红胺完全相同,导致二者在一级质谱的分子离子峰完全相同(均为[M+H]+ = 382, [M-H]- = 380),然而二者的化学结构却差别巨大,因此其核磁谱图和二级质谱上的碎片离子峰有显著差别,在HPLC上的出峰时间和UV吸收也有明显的区别。检测人员在标准物质选择、采购和使用中应多加注意,避免产生错误的检测结果。红曲在发酵过程中可能因菌株变异或污染产生桔青霉素,其有很强的肾脏毒性,摄入过量会导致肾损害,因此桔青霉素是红曲类产品必检项。《GB 1886.181-2016食品安全国家标准 食品添加剂 红曲红》中规定红曲红中桔青霉素的限量为0.04 mg/kg。《GB 1886.66-2015食品安全国家标准 食品添加剂 红曲黄色素》中规定红曲黄色素中桔青霉素的限量为1.0 mg/kg。阿尔塔科技作为被CNAS认可的食品安全检测有机标准物质生产制造商,根据科研单位检测热点,快速响应,积极研发软毛青霉酸、桔青霉素、红曲色素及其相关产品,助力食品安全检测,为守护广大消费者的身体健康保驾护航。 红曲发酵过程可能产生的相关毒素标准品:了解更多产品或需要定制服务,请联系我们
  • 兽药分析大讲堂丨青霉素类新标实施,一起解锁分析难点!
    导读兽药残留是影响动物性食品安全的主要化学因素之一,尤其是兽用抗生素残留会进一步加速细菌耐药性进程。青霉素类作为最早应用的抗生素,历经九十余年,已发展三代,曾为增进人类健康做出过巨大贡献。青霉素价格低廉、抗菌性强,在水产养殖上被广泛用于鱼、虾细菌感染的防疗。然而,此类抗生素的不合理使用,会给食品安全带来隐患,其产生的耐药性问题或将导致人类进入无药可用的后抗生素时代或可怕的“耐药时代”。近期,农业农村部发布实施《GB 31656.12-2021 食品安全国家标准 水产品中青霉素类药物多残留的测定 液相色谱-串联质谱法》,青霉素类含有β-内酰胺环,是一类化学性质非常活泼的物质,容易在高温、水或酸碱条件下发生降解,一度给分析检测带来挑战。针对该难点项目,我们推出了岛津最新的应用解决方案,来一起看看!水产品中青霉素类分析相关法规GB 31650-2019 《食品安全国家标准 食品中兽药最大残留限量》中规定,在鱼虾中青霉素G、阿莫西林、氨苄西林残留限量(MRLs)为50 μg/kg,氯唑西林、苯唑西林MRLs为300 μg/kg。近期,农业农村部发布的《GB 31656.12-2021 食品安全国家标准 水产品中青霉素类药物多残留的测定 液相色谱-串联质谱法》,对《GB/T 22952-2008 河豚鱼和鳗鱼中阿莫西林、氨苄西林、哌拉西林、青霉素G、青霉素V、苯唑西林、氯唑西林、萘夫西林、双氯西林残留量的测定 液相色谱-串联质谱法》标准进行了更新,增加了阿洛西林和甲氧西林,并增加了固相萃取和超滤管离心的净化步骤,修改了方法的检出限和定量限。青霉素类分析难点β-内酰胺类抗生素的基本结构如下图,β-内酰胺环易光解,或与水、醇发生反应。β-内酰胺类抗生素的基本结构(左:青霉素类、右:头孢菌类)[1]因此,实验过程中需注意:• 宜采用粉末标品,现配现用,前处理避光,配制后尽快分析;• 考虑到溶解性和溶剂效应,标准品母液推荐30%乙腈水配制,-18℃避光存储,保质期5d,工作液则现配现用,尽快上机分析;• 有机相为甲醇时,青霉素G与甲醇生成了青霉酸甲酯,如下图所示,青霉素甲酯MRM通道有色谱响应,且响应强度比青霉素G更高。为了保证定量准确,流动相、前处理试剂应该避免接触醇类试剂。岛津解决方案• 分析仪器岛津三重四极杆液质联用仪• 目标物青霉素类抗生素药物的化合物信息11种青霉素类抗生素在2~300 ng/mL范围内,线性良好,相关系数R均大于0.999。部分代表性青霉素类抗生素的校准曲线• 样品加标分析结果对市售南美白虾进行分析,未检出青霉素成分,并且在出峰区域无杂峰干扰。以下是在南美白虾样品中添加5 μg/kg青霉素得到的加标样品MRM色谱图。青霉素加标样品MRM色谱图(5 μg/kg)结语看了本期的难点项目经验分享,相信大家都有所了解,β-内酰胺类化合物稳定性差,分析测试过程尤其注意光照、pH等的影响。除此之外,岛津应用云后续还将发布兽药分析大讲堂系列,聚焦难点项目,陆续发布检测关键点小贴士及解决方案,帮助大家共克食品安全难关。“兽药分析大讲堂系列”后续预告四环素分析篇多肽类抗生素分析篇硝基呋喃分析篇… … 参考文献[1] .刘创基.动物性食品中β-内酰胺类药物及其代谢物检测方法的研究[D].北京化工大学,2010.本文内容非商业广告,仅供专业人士参考。
  • 赛默飞方案:TSQ Quantis 测定9 种 青霉素类药物残留
    本文参考GB/T 20755-2006、GB/T 21315-2007 等国标,在赛默飞全新三重四极杆TSQ Quantis 上建立了青霉素类抗生素的液质检测方法。9 种化合物在其相应的浓度范围内线性关系良好(r20.998),完全满足国标对青霉素类抗生素残留的检测要求。引言青霉素(Penicillins)是属于β- 内酰胺类药物的一类广谱抗生素,一直广泛应用于人类、畜禽业及水产养殖中的各种细菌感染的防治。随着产量和用量的不断增加,加之药品的盲目使用,食品、水体等抗生素残留问题日益突出。抗生素的残留可增强细菌耐药性,破坏人体和动物胃肠道及环境微生态平衡,可能对人体健康产生严重影响。本文建立了基于Thermo Fisher TSQ Quantis 三重四极杆串联质谱仪检测9 种青霉素类抗生素的方法。本方法灵敏度高,稳定性好,满足GB/T 20755-2006 畜禽肉中九种青霉素类药物残留量的测定以及GB/T 21315-2007 动物源性食品中青霉素抗生素残留量检测方法,适用于食品安全监控中有关青霉素类抗生素的残留检测。结论本文建立了三重四极杆液质联用仪(TSQ Quantis)分析9 种青霉素类抗生素的检测方法。由实验结果可以看出,基于Thermo Fisher TSQ Quantis 建立的检测方法具有优异的灵敏度和线性范围,可用于青霉素类抗生素的日常分析检测。点击 TSQ Quantis 测定9 种 青霉素类药物残留 查看详细实验方案。
  • 岛津推出牛奶中青霉素分解剂—β-内酰胺酶检测方法
    随着国家对食品安全问题的关注和部分乳制品企业无抗奶目标的提出,抗生素残留问题成为影响乳制品安全的重要因素之一。目前,青霉素作为&beta ‐内酰胺类药物是治疗牛乳腺炎的首选药物,是牛奶中最常见的残留抗生素。由于国内多数乳品企业对抗生素残留超标的牛乳采取降价收购的原则,出于经济利益的驱动,一些不法奶站为了谋求自己的经济利益,人为的使用解抗剂去降解牛乳中残留的抗生素,生产人造&ldquo 无抗奶&rdquo 。目前市售解抗剂的主要成分是&beta ‐内酰胺酶,它是由革兰氏阳性细菌产生和分泌的,可选择性分解牛奶中残留的&beta ‐内酰胺类抗生素。&beta ‐内酰胺酶为我国不允许使用的食品添加剂,该酶的使用掩盖了牛奶中实际含有的抗生素。&beta ‐内酰胺酶能够使青霉素内酰胺结构破坏而失去活性,导致青霉素、头孢菌素等抗生素类药物耐药性增高,从而大大降低了人们抵抗传染病的能力,给消费者的身体健康带来危害。为此,长期关注中国&ldquo 食品安全&rdquo 的岛津公司发挥技术优势,推出了基于岛津超快速液相UFLCXR的&beta ‐内酰胺酶的检测方法。 本方法通过检测牛奶中的青霉噻唑酸钾,间接检测牛奶中是否添加了&beta ‐内酰胺酶,供相关检测人员参考。在本方法中,使用岛津超快速液相UFLCXR,配合岛津shim pack XR‐ODS II 75 mm L.× 3.0 mm I.D.,2.2 &mu m 快速分析色谱柱,测定了市售牛奶中青霉噻唑酸钾的含量,标准曲线线性良好,重现性良好,1#样品中青霉噻唑酸钾为31.2&mu g/mL , 2# 样品中青霉噻唑酸钾为5.4&mu g/mL,说明牛奶中添加过&beta ‐内酰胺酶。 有关本方法的详细内容请参见http://www.instrument.com.cn/netshow/SH100277/down_171132.htm。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 诺奖得主手中的那株青霉菌被首次测序
    1928年,亚历山大?弗莱明(Alexander Fleming)在伦敦圣玛丽医院的医学院工作时发现了第一种抗生素——青霉素(penicillin)。这种抗生素是由青霉属中的霉菌产生的,能够抑制葡萄球菌的生长。凭借此项发现,弗莱明在1945年被授予诺贝尔生理学或医学奖。之后,弗莱明所发现的青霉菌菌种被交给牛津大学的研究小组保存。如今,来自伦敦帝国理工学院、牛津大学和国际应用生物科学中心(CABI)的研究人员利用五十多年前冷冻保存的样本,对这个原始青霉菌菌株开展了基因组测序。这项成果于9月24日发表在《Scientific Reports》杂志上。研究小组还将弗莱明的青霉菌菌株和美国现在大规模生产抗生素所用的菌株进行比较。他们发现,英国菌株和美国菌株生产青霉素的方式略有不同,这可能对抗生素的工业生产有意义。帝国理工学院生命科学系和牛津大学动物学系的Timothy Barraclough教授说:“我们原本打算将亚历山大?弗莱明的青霉菌用于一些其他实验,但让我们惊讶的是,没有人对这个原始的青霉菌基因组进行测序,尽管它在生物界具有历史意义。”尽管弗莱明霉菌因青霉素的发现而闻名,但后来美国研究人员却选择发霉哈密瓜上的霉菌来生产抗生素。他们从发霉的哈密瓜上分离出原始的野生霉菌分离株,经过多轮X射线、化学和紫外线诱变以及人工选择,最终获得青霉素产量高的分离株。在这项研究中,研究团队获得了保存在CABI菌种保藏库中的冷冻样本,并重新培养了弗莱明的原始青霉菌(Penicillium rubens)。他们提取出DNA,利用Illumina MiSeq测序平台开展基因组测序,并将此基因组与先前发表的两种青霉属工业菌株的基因组进行比较。研究人员特别关注两类基因:一类是编码各种酶的基因(pcbAB、pcbC和penDE),青霉菌利用这些酶来产生青霉素;另一类是调控基因,这些基因能够控制酶的产量。他们发现,对于英国和美国的菌株,调控基因有着相同的遗传密码,但美国菌株拥有更多的拷贝,使得菌株产生更多的青霉素。不过,青霉素生产酶的编码基因却不相同。这表明,英国和美国的野生青霉菌经过自然进化,产生了略有不同的版本。像青霉菌这样的霉菌会产生抗生素来对付微生物,而微生物也会不断进化以躲避这些攻击,如此这般,“军备竞赛”不断升级。英国菌株和美国菌株的进化方式可能不同,以适当其当地的微生物。就目前而言,微生物进化已成为一个大问题,因为许多细菌已对我们的抗生素产生了耐药性。研究人员表示,尽管他们尚不清楚英国和美国菌株中不同酶的序列对抗生素有何影响,但这有望带来青霉素生产的新方法。文章的第1作者、帝国理工学院生命科学系的Ayush Pathak表示:“我们的研究有望激发对抗耐药性的新解决方案。青霉素的工业生产主要关注产量,而人为提高产量的步骤导致基因数量的改变。”
  • 标准解读|化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法
    液相色谱-串联质谱法是一种集高效分离和多组分定性、定量于一体的方法,对高沸点、不挥发和热不稳定化合物的分离和鉴定具有独特优势,成为近年来化学分析中一种重要的检测技术。与高效液相色谱法、气相色谱法相比,高效液相色谱一中联质谱法前处理方法相对简单,基质干扰小,方法灵敏度高,定量和定性(分子结构信息)于一体,因而特别适用化妆品成分测定。 液相色谱-串联质谱法在化妆品行业中测定方法的汇总标准编号标准名称1GB/T 30926-2014化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法2GB/T 30939-2014化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法3GB/T 30937-2014化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法4GB/T 32986-2016化妆品中多西拉敏等9种抗过敏药物的测定 液相色谱-串联质谱法5GB/T 30930-2014化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法6GB/T 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法7GB/T 41710-2022化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法8GB/T 32121-2015牙膏中4-氨甲基环己甲酸(凝血酸)的测定 高效液相色谱-串联质谱法9GB/T 34918-2017化妆品中七种性激素的测定 超高效液相色谱-串联质谱法10GB/T 35956-2018化妆品中N-亚硝基二乙醇胺(NDELA)的测定 高效液相色谱-串联质谱法11GB/T 35951-2018化妆品中螺旋霉素等8种大环内酯类抗生素的测定 液相色谱-串联质谱法12GB/T 40900-2021化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法13GB/T 40901-2021化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法14GB/T 37626-2019化妆品中阿莫西林等9种禁用青霉素类抗生素的测定 液相色谱-串联质谱法 GB/T 41710-2022《化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法》标准规定了化妆品中林可霉素和克林霉素的液相色谱-串联质谱测定方法的原理、试剂和材料、仪器设备、试验步骤、试验数据处理、回收率、精密度等内容。 本文件适用于水剂类、非蜡基膏霜类、乳液类化妆品中林可霉素和克林霉素的测定。 本文件中林可霉素和克林霉素的方法检出限和定量限:检出限均为0.1mg/kg,定量限均为0.3 mg/kg。 制定背景 林可霉素和克林霉素属于大环内酯类抗生素,由于其抗菌活性高,临床应用相当广泛。国家对化妆品中的林可霉素和克林霉素也做了详细规定,林可霉素和克林霉素禁止在化妆品中检出,部分不法商家为了追求产品短期功效,非法添加抗生素,导致抗生素滥用产生耐药性。 本标准中的林可霉素和克林霉素是我国《化妆品安全技术规范(2015年版)》规定的禁用物质。规范中规定:若技术上无法避免禁用物质作为杂质带入化妆品时,应进行安全性风险评估,确保在正常、合理及可预见性的使用条件下不得对人体健康产生危害。 现状分析标准编号分析方法应用范围1SN/T 3585-2013液相色谱、液相色谱串联质谱海产品2GB 29685-2013气相色谱-质谱法动物性食品3GB/T 22946-2008液相色谱-串联质谱法蜂王浆和蜂王浆冻干粉4GB/T 20762-2006液相色谱-串联质谱法畜禽肉5GB/T 22941-2008液相色谱-串联质谱法蜂蜜 在现行的标准中,林可霉素和克林霉素的分析方法有液相色谱、液相色谱串联质谱和气相色谱-质谱法,液相色谱-串联质谱法前处理方法相对简单,基质干扰小,因而特别适用于基质成分复杂物质的测定。
  • 饮料中棒曲霉素(展青霉素)的测定(SPE-LC/MS)
    了解详情请进入安谱公司网站:http://www.anpel.com.cn/
  • 专家:预防“超级细菌”的关键是抵制滥用抗生素
    在印度、巴基斯坦等国出现的对大部分抗菌药物耐药的超级病菌在我国出现了。10月26日,中国疾控中心报告称我国检出3例超级细菌病例。3个病例来自宁夏和福建,其中一例因肺癌死亡。“超级细菌”的露面,引起了人们的关注。这是怎样一个病菌?为什么耐药?什么人容易感染?老百姓如何应对、预防“超级细菌”?昨日,记者就此采访了疾控、医疗专家。  超级细菌能自由复制移动  广西临床检验中心主任周向阳称,这次,人们将在印度首先发现耐药病菌称为“超级细菌”,主要是因为此类细菌对绝大多数现有的抗菌药物耐药,并根据发现地命名为(NDM-1)新型超级病菌。  面对这种超级病菌,我国卫生部门高度重视,专门组织专家制定了相关诊疗指南。据指南介绍,此类细菌能够产生可水解β-内酰胺类抗菌药物的酶,对青霉素类、头孢菌素类和碳青霉烯类药物广泛耐药。  实际上60%—70%的细菌都有耐药性,但不会对全部的抗菌药物耐药,而超级病菌则对绝大多数抗菌药物耐药。而细菌虽小,但很聪明,耐药的方式有多种机制。周向阳说,有的细菌耐药是能分解抗生素,使药物失效 有的细菌则是采用抽水的方式,将到来的抗生素泵出细胞,从而不受危害。超级病菌的这种耐药性是以DNA 的结构出现的,带有耐药基因的质粒在细菌细胞里,它可以在细菌中自由复制和移动,从而使这种病菌有传播变异的惊人潜能。  滥用抗生素催生超级细菌  滥用抗生素是出现超级细菌的原因。据介绍,所有的“超级细菌”都是由普通细菌变异而成的。也正是由于滥用抗生素,导致细菌基因突变,从而产生了“超级细菌”。  除了人在治病中不合理使用抗生素外,养殖鸡、鸭、鱼等农产品时,养殖户也使用抗生素给鸡、鸭、鱼等防病治病。这种情况下,自然环境中的一些抗生素敏感的细菌会死亡,对抗生素不敏感的细菌会生存下来,从而产生耐药细菌。不知不觉的循环,变异细菌越来越多,人类费大力气研制出的新药,寿命越来越短。这些都会威胁到人的健康。  住院病人易感染超级细菌  超级细菌的传播途径和普通细菌一样。  “由于医院的病人集中,经常进行手术、器械操作,也就成了超级病菌传播的高危地带。”周向阳说,易感人群包括疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等患者。感染超级病菌后,并不会马上发病,当人的免疫力降低时才会发病,发病后才会发现对大多数抗菌药物耐药。  据卫生部制定的诊疗指南介绍,超级病菌的传播方式尚无研究报道,但根据患者感染情况以及细菌本身特点,可能主要通过密切接触,如污染的手和物品等方式感染。感染类型包括泌尿道感染、伤口感染、医院获得性肺炎、呼吸机相关肺炎、血流感染、导管相关感染等。感染患者抗菌治疗无效,特别是碳青霉烯类治疗无效,需要考虑产NDM-1细菌感染可能,及时采集临床样本进行细菌检测。  提高自身免疫力预防超级细菌  今年9月底,国家卫生部召集各省有关人员,专门就超级病菌的出现,举办了一个培训会。会上介绍了超级病菌的最新情况,及预防和控制。  参加培训的周向阳告诉记者,超级病菌的传播途径和普通细菌一样,主要通过接触传染。开放的腔道、溃烂的伤口都易粘染细菌。因此预防超级病菌,首先是医院,在易感染病菌的环节做好消毒。如公共场所中的门把手。医务人员和去过医院的人,要勤洗手。尤其是医务人员在接触病人前后、进行侵入性操作前、接触病人使用的物品或处理其分泌物、排泄物后,必须洗手或用含醇类速干手消毒剂擦手。  普通人如何预防超级病菌呢?专家呼吁,预防更多的细菌突变成超级细菌,关键是整个社会要在各个环节上合理使用抗生素,普通人要做到勤洗手,培养良好的生活习惯,提高自身的免疫力。自身免疫力是对付超级细菌的最好武器。  区医院临床药学中心危华玲主任医师告诉记者,90%以上的初期感冒是病毒引起,不需要服用抗菌药物,更没有必要服用抗菌药物来防病。抗菌药物一定要在医生的指导下服用,不要自行购买。本来你的病只需要使用二代青霉素就可治愈的,你使用了最新的青霉素治病,病好了,但下次生病时,病菌会对所有青霉素耐药。作为不知道专业知识的普通人,平时小病,能不用抗菌药物就不用 只在有病症的情况下,经医生指导服用抗菌药物,同时不要自行去药店买抗菌药物。出入医疗场所,一定要记得消毒、洗手,做好最基本的个人卫生防护,以免细菌持续扩散。
  • 惠泽实验室提供抗生素类药物及其杂质的HPLC-CoulArray电化学检测方法
    抗生素可以根据他们的化学结构进行分类,包括β-酰胺类抗生素(青霉素和头孢菌素),氨基糖苷类抗生素,四环素,氟喹诺酮抗菌素和大环内酯类抗生素(包含林可胺类抗生素和链阳霉素)。在这些种类的抗生素中,青霉素(例如,阿莫西林)和大环内酯类抗生素(例如,红霉素和阿齐霉素)可以利用HPLC直流电化学检测模式进行分析。但是,很少有相关文献报道同时检测多种抗生素。氨基糖苷类抗生素也具有电化学活性,但是他们通常是用HPLC脉冲电化学(PAD)模式进行检测。具体的可以参考ESA应用文献,利用HPLC-PAD分析氨基糖苷类抗生素本实验室提供了一种梯度HPLC-CoulArray方法,在50min的时间内分析几种不同的青霉素和大环内酯类抗生素。此方法的灵敏度可以达到低pg水平,动态检测范围宽,具有极好的线性回归。此方法可以分析人血浆中提取的阿齐霉素,氯洁霉素,红霉素和竹桃霉素,同时也可以检测此类药物生产中0.1%含量的杂质和降解物。
  • 【食品安全小课堂】兽药残留检测技术难点——如何做好β -内酰胺类抗生素的检测
    【导语】检测的日常总是充满了各种挑战,为了更好地服务食品检测行业相关用户,岛津科技资讯通现推出“食品安全小课堂”专栏。内容涵盖——食品检测技术难点、方法验证、实验室管理、法规解读等相关内容,我们会不定期更新,敬请期待! 你是否发现有一些兽药无论你怎么用心做,结果都不尽理想?不是峰型差,就是回收率太低。其实很多情况下,这可能不是你的问题,而是兽药本身的化学结构决定的。 今天我们先分析【β-内酰胺类】抗生素图片说到β-内酰胺类抗生素,大家可能没那么快反应过来,但如果我说青霉素类,是不是就秒懂啦。这可是兽残检测界响当当的“黑名单”!β-内酰胺类检测经常出现回收率低、甚至无法出峰的情况,到底是什么原因呢?其实最主要的原因是β-内酰胺类物质的不稳定性导致的。 图1 β-内酰胺类抗生素的基本结构(左:青霉素类、右:头孢菌类)[1] 图1是β-内酰胺类抗生素的基本结构。含有自然界中罕见的β-内酰胺基母核,母核结构中两个稠合环不在一个平面上,β-内酰胺环中羰基和N原子上的未共用电子对不能共轭,既容易受到亲电试剂的攻击,又容易被亲核试剂攻击[1]。因此,该类物质不稳定。有研究表明,β-内酰胺类抗生素对温度、pH、水分都较敏感[2],高温、水分、酸/碱条件都会加速该类物质的降解。 面对如此不安分的β-内酰胺类抗生素,我们该怎么办呢?下面小编给大家支支招。 1、标准品配置和存放▶ 不建议采用纯水、甲醇溶液配置标准品,建议采用50%左右的乙腈/水(V/V)溶液。▶ 配置好的标准储备液(如1000mg/L),放置在棕色瓶中于-18℃保存。建议用小瓶分装,不可反复冻融。▶ 注意一级浓标(1000mg/L)的有效期,推荐有效期为1个月。但具体可以存放多久,需要实验室应进行标准品期间核查后确定。▶ 稀释后的二级标准品储备液及线性用过后不要保存,只使用一次就好。 2、前处理注意事项▶ 麻利——尽可能缩短前处理的时间。▶ 尽量做到避光。▶ 可将耗材提前放置于低温处,必要时也可冰浴,尽量降低前处理过程的温度。 3、上机注意事项▶ 优先该项目上机。▶ 注意设置液相样品盘的温度,可设置为10℃。 以上建议基于小编的检验经验,欢迎大家在评论处讨论和补充哦~ 【食品安全小课堂】下期预告农残检测技术难点——谈谈农残基质效应那些事儿 参考文献[1].刘创基.动物性食品中β-内酰胺类药物及其代谢物检测方法的研究[D].北京化工大学,2010.[2].姜力群,嵇元欣,刘晶锦等.青霉素类抗生素稳定性的影响因素及有关物质测定方法[J].药学进展,2008,32(2).
  • 【Detelogy应用方案】中药及饮片真菌毒素测定
    中药材霉变现象中药材生产、储存、运输、流通过程中,若管理不当,在外界条件(温度、湿度、车间环境、虫害等)和药材自身因素(含水量>15%、含糖量高等)的综合作用下,易出现霉变现象。真菌滋生对中药材进行分解和消耗,药材中所含的糖类和脂类物质渗出,从而导致粘连、泛油、异味、变色等现象,其有效药用成分含量降低。轻度霉变的药材经二次加工处理后入药,也会造成气味变淡、色泽转暗、品质降低、影响疗效的后果。常见真菌毒素及其危害真菌毒素(mycotoxin)是真菌产生的次级代谢产物,易产生于中药种植、储存环节中。绝大多数的产毒真菌为曲霉属、镰刀菌属和青霉属。曲霉属:黄曲霉毒素、赭曲霉毒素A 等镰刀菌属:玉米赤霉烯酮、T- 2毒素 、呕吐毒素(脱氧雪腐镰刀菌烯醇)和伏马毒素等青霉属:青霉素、桔青霉素等真菌毒素检测方法分类药典2351通则对比相较于2015版药典黄曲霉毒素测定法,2020版药典2351通则中新增赭曲霉毒素A、玉米赤霉烯酮测、呕吐毒素、展青霉素对应的样品前处理和分析方法,并增添了多种真菌毒素测定法。1、由于各类真菌毒素毒理不同,容易受污染药材品种也不同。2、处方中含有易污染的药材以及生粉投料的中成药品种应注意相关真菌毒素的检测。3、黄曲霉毒素:粮谷类、种子类、油性成分多的药材品种4、赭曲霉毒素、呕吐毒素、玉米赤霉烯酮:与粮谷类基质类似的药材,如淡豆豉、薏苡仁、白扁豆等5、展青霉素:酸性果实类药材,如枸杞子、乌梅、酸枣仁等新增第六法[多种真菌毒素测定]样品前处理流程1. 量取供试品粉末约 5g (过二号筛)2. 加入70 %甲醇溶液 50ml, 超声30min3. 离心后取上清液10ml,用水稀释至20ml,MultiVortex混匀4. 3ml甲醇和水依次预处理HLB小柱(规格:3ml,60mg)5. 准确量取3ml样品液过柱,直至有适量空气通过,收集洗脱液6. 再次用3ml甲醇洗脱,收集洗脱液。合并两次洗脱液7. 通过FV64或FV64UP缓氮吹至近干(水温40℃)8. 50%乙腈溶液定容至1ml, 用经0.22μm滤膜过滤,即得分析设备(LC-MS/MS)液相色谱:十八烷基硅烷键合硅胶为填充剂,0.01%甲酸为流动相 A 相 ,乙腈-甲醇(1 : 1)为流动相B相,0.3ml/min流速下进行梯度洗脱。三重四极杆质谱仪:电喷雾离子源ESI)黄曲霉毒素(B1、B2、G1、G2)、伏马毒素(B1、B2)、T-2毒素选正离子采集方式,赭曲霉毒素A 、呕吐毒素、玉米赤霉烯酮则为负离子采集模式。Detelogy优选智能实验室设备轻松应对药典2351真菌毒素测定法MHS-60多样品均质系统多刀头并联,同时快速均质6位样品兼容5-180ml样品管,转速1800-25000rpm2351通则内,1-5法前处理流程均适用MultiVortex多样品涡旋混合器标配26位&12位试管架,兼容100ml以内的样品转速范围200-3000rpm,触屏可存12个涡旋方法每个方法可设多达6段变速,样品混匀更充分QSE系列固相萃取装置12/24位,每通道配优质独立阀门控制特制加厚真空腔体,可耐80Kpa负压MFV智能氮吹仪通用型圆盘氮吹仪,可选12/24/36位可分组控制启停,每通道配数字刻度微调阀兼容1-150ml样品管,具备观察窗和排水口FV64全自动智能氮吹仪氮吹针自动下降,最多容纳64个样品每氮吹通道多路供气设计,平行性良好延时增压功能,同时自动近干氮吹所有样品FV64UP全自动智能双模式氮吹仪兼容双模式:针追随式或涡旋式氮吹三面透视水浴设计,样品观察更方便DTLabs微信小程序异地远程监控Tip 残留有黄曲霉毒素的废液或废渣的玻璃器皿,应置于专用贮存容器内浸泡 24小时以上(10%次氯酸钠溶液),再用清水冲洗干净。下期Detelogy应用方案再见
  • 专家称抗生素研发跑不赢耐药菌 减弱研发动力
    研究人员检查菌种 四川抗菌素工业研究所所长易八贤  国内现存唯一一家国家级抗生素工业研究所位于成都  因为“超级细菌”带来的风暴,45岁的易八贤最近颇受关注。易八贤任所长的四川抗菌素工业研究所(以下简称研究所)与他本人同龄,45年来先后研发了100余种抗生素,是目前国内现存唯一的国家级抗生素工业研究所。研究所位于成都龙潭工业区,上个世纪90年代之前曾辉煌一时。  然而,耐药菌加速出现,抗生素的研发周期漫长且需巨额资金投入,目前仅凭抗生素研发已不能完全支撑研究所的发展。与此同时,为应对越来越多的“超级细菌”,研究所也在努力研发抗生素的替代品,“即便距离新药上市还需要漫长的周期,但作为央企要履行社会责任,这种研究就是为全民健康安全做技术性储备。”研究所生物部副部长王辂说。  耐药菌在加速出现正是跟抗生素滥用有关  研究所位于成都龙潭工业区,上个世纪90年代之前该所实行国家计划全额拨款。“那个时候国内一大半的抗生素都是我们所研发的,像青霉素、庆大霉素等,现在在用的也还有很多。”易八贤略带骄傲地说,研究所全球首创的抗结核利福霉素系列,创新药物利福喷丁还得到了世界卫生组织的高度评价。  上世纪90年代以后,国内外研发的抗生素都少了。“国内外有不少企业都把抗生素这块卖出去了。”易八贤说,虽然技术的革新提高了效率,但由于药物审批越来越严格,尤其是临床数据要求越来越全面,必须保证足够的临床试验时间,新药的研发周期仍然漫长,“少说也要一二十年。”相对而言,耐药菌出现的速度却越来越快。“以前是几年才会出现耐药菌,现在一两年就不管用了,快的还有几个月的。”  易八贤认为,除了气候、环境等因素的影响,耐药菌加速出现与抗生素滥用不无关联。“明明一代抗生素就可以治好的,偏偏要用二代,这就像用炮弹打蚊子。”他举例说,在北欧一些国家,现在青霉素依然有效,而在国内已经更新换代好几轮了。  抗生素研发跟不上应像免疫规划一样重视  漫长的研发周期与加速出现的耐药菌像一场拉锯战,减弱了企业研发抗生素的动力。  “2000年以前大学还有抗生素专业,现在已经没有专门的研究学科了。”易八贤说,抗生素的临床应用越来越广,但国家的重视程度并没有跟上。过去是国家全额拨款,现在研究所直接面向市场,“企业需要什么研究所搞什么,不能创收的研发方面自然力不从心,所以我们研究所才渐渐成为唯一一个还在坚持研发的抗生素工业研究所”。  易八贤说,去年以前国家每年给该研究所的拨款只有几十万元,这些连给离退休职工和老专家们的保险、医疗费都不够。因为实施国家重大新药创制专项计划,明年起研究所每年可以得到上千万的拨款,但即便如此,“相对于研发需要投入的巨额资金,也只是杯水车薪。”  为了弥补缺口,研究所目前主要通过为企业提供技术服务“创收”。“不过都还是抗生素领域内的事。”针对这种状况,易八贤呼吁,希望国家能引导科研单位、企业对抗生素研发领域的重视,增加投入,“要是能像重视免疫规划一样重视抗生素研发,研发格局肯定不是现在这样。”  □探秘抗生素研发  抗生素有替代品我国研究刚开始  研究所的300多人里,王辂所在的生物部是最大的一个团队。这里不仅承担着改良制药工艺的任务,还肩负着研发抗生素替代品的重任。  王辂介绍,目前抗生素的替代品有4个领域,经比较后认为比较可行的是噬菌体和噬菌体酶。“噬菌体不是病原体,它干的是攻击细菌的活。”人们可以通过噬菌体去攻击引起疾病的细菌,来治疗细菌感染。而传统的抗生素会不分青红皂白,杀死所有它遇到的细菌,好的细菌也难逃一劫。但噬菌体不会破坏人的微生物平衡,一种噬菌体只攻击一类致病细菌,所以病毒对噬菌体产生抗药性的几率也被降低了。  “这个理念已经存在很久了,只是我们国家最近几年才开始研究。”王辂说,二战后就有国家开始研究了,并进行了临床使用。从研发到新药上市同样需要漫长的周期,“开始研究”,就是在做一种技术性储备。  国内最全菌种库最冷只有-196℃  为研发抗生素,研究所位于成都龙潭工业区的总部有着国内最全的菌种库。这个最大的“宝库”存放着5万5千株,55万份微生物菌种。  三个冻库从4℃到-196℃  “宝库”名为微生物菌种资源保藏管理中心,核心地区是3个看似普通的房间。厚厚的铁门一打开,寒气扑面而来。第一间温度维持在0-4℃,第二间温度降到了零下80℃,第三间更加寒冷,用于保存菌株的液氮温度为-196℃,皮肤一接触就会冻伤。  每个铁柜,都有专人保存钥匙。一个柜子10层,拉开一层,满满都是5厘米长的玻璃瓶,每种菌株至少保存有10瓶。  全国刨土只台湾香港没去  这个菌库在研究所成立之初建立,随着几代人的积累,已经成为全国品种最齐全的菌种资源保藏管理中心。每一种新菌种的发现,都是这里的工作人员身体力行的结果。王辂说:“我们也许是全国唯一一家进行‘地毯式’搜集、发掘的中心了。”  “地毯式”搜集,是指工作人员刨遍了全国各个深山老林里的土,只为提取出土壤中的菌株。每年,中心都会固定进行4次采样,每次半个月到一个月,专门到远离人类生活区的地方采集土壤、枯枝树叶、植物等。  中心主管郭义东今年33岁,上山下乡已经是他的常态。为了寻找生物多样性丰富的地方,不同经纬度、海拔的地方都得去。全国大江南北,除了台湾、香港,哪里的土他都刨过。川西高原海拔四五千米的高山,上下也就一天。“菌种离开原生的环境久了会衰减、死亡,所以我们必须将它们迅速进行处理。”  新的菌种越来越难以发现  这些常人不屑一顾的泥土,其中都埋藏着宝贝。经过低温烘干、研细、稀释后,泥土中的菌株就会在培养皿中开始生长。再经过分类和鉴定,就能判断是什么菌种。随着时间推移,新的菌种已经越来越难以发现,不过中心工作人员仍在坚持每年进行采样,只为了找到新的菌种。  对菌种进行筛选,提取活性物质,然后再进行药效学研究、临床试验等一系列程序,才有可能研发出一种新的抗生素。“人类发现的抗生素鼻祖青霉素,就是从一种叫做青霉菌的菌株培养液中提取的药物。”郭义东说。
  • 感染病科专家解析超级细菌:中国买抗生素太随便
    叶晓光教授在小谷围论坛上为读者揭秘超级细菌  南方都市报10月18日报道 超级细菌的出现并不是人类的末日,但人类对抗生素这种抵御细菌感染药物的不合理使用,却加速了超级细菌出现的速度,增加了致病细菌对人体健康的影响。昨日,广州医学院第二附属医院感染病科主任叶晓光教授,出席在广东科学中心举行的第三十二期“小谷围科学讲坛”。在讲座中,叶晓光表示,超级细菌也不是无药可救的“终极杀手”。对它的防控,一做好个人卫生护理,二在全国规范对抗生素的使用。  超级细菌早就有了  尽管“超级细菌”NDM-1(新德里金属β内酰胺酶-1)在近两个月成为全球媒体关注的焦点,但超级细菌并不是一个新生事物。叶晓光介绍,即使是NDM-1,香港卫生署早在去年10月就在一名66岁的印度裔男病人的尿液样本中发现了含有NDM-1的大肠杆菌,所幸的是该病人痊愈了。  叶晓光说,所谓“超级细菌”其实并不是一个细菌,而是一类细菌的名称。这一类的细菌的共性是对几乎所有的抗生素都有很强大的耐药性,也就是说,这一类的细菌对几乎所有的抗菌药物都有强劲的抵抗力,即专业上面的泛耐药。  超级细菌并不是一个新生事物,早在1987年,英国研究人员就分离出了第一个超级细菌VRE(耐万古霉素肠球菌),随后传播至全球,迄今仍是医院感染的主要病原菌之一。而第一个为全世界公认的超级细菌是MRSA (耐甲氧西林金黄色葡萄球菌),它和VRE都可引起肺部感染导致死亡。  更严重的是,VRE本身还在进化,VRSA (耐万古霉素金黄色葡萄球菌)就是衍生于V R E的新的超级细菌。MRSA还剩下万古霉素类抗生素可以对付,而V RSA,万古霉素也无可奈何。叶晓光说,随着时间的推移,“超级细菌”的名单会越来越长。人类与超级细菌之间的“战争”,也许刚刚开始。  超级细菌感染在医院  目前,大多数超级细菌都是在医院治疗中发现的,超级细菌也成为医院的“常客”之一。以MRSA为例,据叶晓光介绍,在部分医院,MRSA占金黄色葡萄球菌总数已达80%以上,“非常高的比例,一旦感染,很难治疗”。而据流行病学统计结果表明,MRSA导致肺部感染的死亡率达40%左右。  叶晓光说,超级细菌易感人群多是危重病人、长期住院患者、长期使用抗菌药物患者和接受侵袭性操作治疗的患者。因此,在医院发生超级细菌感染的可能性较高。  超级细菌感染也有向社区扩散的趋势。比如,一个被超级细菌感染的肺炎患者,在诸如电影院、商场、课堂等地方,打了个喷嚏,而刚好在他1m—1.5m范围内有一个免疫力较低的人,这个人就有可能被感染。尽管社区感染目前不是超级细菌的主要感染途径,但这个趋势值得注意。“目前全球报告170例N D M -1感染病例,但按流行病学专家的统计,总数在这个基础上可能要乘5-10倍”。  新药赶不上细菌耐药性进化  从事医疗工作近20年的叶晓光,对细菌耐药性的感触非常深刻。“刚刚从事医疗工作时,80万单位的青霉素就可以达到治疗效果,而现在要1000万单位青霉素才行”。更为严重的是,细菌耐药性的进化速度非常快,叶晓光说,不少新的抗菌特效药使用不到2年就失去特效,而研制新的抗生素大约要10年,新药研发速度明显跟不上细菌耐药性的进化。  叶晓光说,“抗生素可以杀灭的细菌被淘汰,而存活下来的,则产生了耐药性”。因此,对抗生素的使用一定要谨慎,滥用或者乱用,会加速细菌耐药性的产生,乃至出现超级细菌。  遗憾的是,我国是世界上最滥用抗生素的国家之一。据统计,我国每年的抗菌药物的用量是美国的600倍左右,“在美国买枪容易,买抗生素难 在我国,抗生素几乎随处可买”。叶晓光介绍,在西方国家,抗菌药物的使用量、使用率是30%不到,比如美国是20%。虽然我国规定是50%以下,但实际上,据媒体统计,一级的医院使用率达90%,三级医院也有70%的使用率。  除医院以外,其他行业也滥用抗生素。“我国生产约700吨喹诺酮类,一半以上被养殖业用掉”。  叶晓光说建议能尽快出台有关抗生素使用的法规,限制市民随意使用,也规范医院和其他行业对抗生素的使用。  超级细菌仍可以防控  尽管多种原因导致超级细菌感染的可能性增加,但超级细菌仍是可以防控的。叶晓光说,不少细菌都是通过接触传染的,因此,到医院探病后及时更换衣服和洗手都是防止感染的有效措施。  同时,细菌感染也与个人体质相关,医院治疗除了使用仍然有效的少数抗生素外,还可以通过改善病人免疫系统,调解病人体内有益细菌的微生态环境,治疗合并症等方面着手。同时,要规范医疗操作,避免滥用万古霉素等抗生素。  叶晓光说,由于超级细菌感染发病的主要是抵抗力低的人群,对普通人群不会产生大的危害。应注意个人卫生,加强身体锻炼,合理膳食,提高机体的抵抗力,“不用谈菌色变”。  “在美国买枪容易,买抗生素难 在我国,抗生素几乎随处可买”。  “不少新的抗菌特效药,使用不到2年就失去了特效,而研制新抗生素的时间大约要10年,新药研发速度明显跟不上细菌耐药性的进化。”  “由于超级细菌感染发病的主要是抵抗力低的人群,对普通人群不会产生大的危害。
  • 岛津推出β-内酰胺类抗生素的LCMSMS检测方案
    &beta -内酰胺类抗生素(&beta -lactams)是历史最悠久的抗微生物药物,同时也是最大和最重要的一类抗生素,自1941年青霉素首次应用以来,至今已研制出了近百种&beta -内酰胺类抗生素。主要用于治疗革兰氏菌,如葡萄球菌、肺炎球菌、链球菌、大肠杆菌、嗜血杆菌、沙门氏菌等引起的各种感染。&beta -内酰胺类抗生素作为兽药用量非常大,使用后会在动物体内有一定的残留,食用含有&beta -内酰胺类抗生素残留的食品后会危害人们身体健康,已有人食用牛奶后引起青霉素过敏,而且长期使用会产生抗药性。为了避免受到食品中抗生素残留的危害,保护人民的身体健康,各国都对各种抗生素制定了严格的最高残留限量,并且随着人们对健康问题的重视和新的具有更高灵敏度仪器的出现,对残留限量的规定有越来越严格、取消限量、甚至不得检出的趋势。 本方法使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用,建立了一种快速准确测定&beta -内酰胺类抗生素的方法。6种&beta -内酰胺类抗生素在3分钟内得到快速分离和检测。所有样品在0.5 ~ 1000 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.9999以上;对0.5 &mu g/L、2 &mu g/L和5 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.728%和3.581%以下,系统精密度良好。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定&beta -内酰胺类抗生素&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 医生指抗生素滥用造就超级细菌及耐药宝宝
    2010年9月,余立娅一个月大的女儿被诊断出肺炎。医生给开了三代头孢。身为一名工作在重庆的药剂师,余力娅了解三代头孢及其副作用(恶心和腹泻)。虽然不情愿,但是由于害怕病情恶化,她还是让孩子服用了这个抗生素。  “医生说他们不确定孩子的肺炎是不是由于细菌感染引起的,”她回忆说。而一个星期以后,孩子的细菌报告出来了。这个27岁的妈妈不知道该高兴还是该生气。因为在她女儿的痰里没有检测到任何细菌感染。“我女儿根本就不必使用抗生素的,”她抱怨道。  抗生素在中国医院的使用率平均在70%左右,这个数字是世界卫生组织建议抗生素使用率的两倍多。抗生素在中国已经滥用成瘾。健康专家指出,抗生素的过度使用不但增加了产生了诸如上个月在国内检测到的NDM-1超级细菌的风险,而且导致更多的新生婴儿对药物产生耐药性。  在余立娅工作的重庆西南医院,儿科医生们已经接收过多名“耐药宝宝”。  “我上医科大学的时候,教科书上说引起肺炎的肺炎链球菌对青霉素敏感,”儿科医生汪洋说。“但是这种细菌早就已经对青霉素耐药了。现在我们不得不给孩子开更高级的抗生素。”  重庆大坪医院的儿科主任医师史源指出,如果母亲在怀孕期间滥用抗生素,一旦发生宫内感染,孩子生下来就会具有耐药性。他就遇到过好几例这样的新生儿。年幼的孩子就已经对抗生素产生耐药性的情况已经在全国蔓延。本来很容易医治的小病,如今都变得麻烦起来。  “我知道美国的儿科医生一般都会避免给儿童使用抗生素。那是因为人家的环境本来就干净,”中日友好医院儿科的主任医治周忠蜀说。“我们给孩子用抗生素,甚至是高级的抗生素,也是不得已啊。因为我们的环境里已经存在耐药细菌了。”  专家称目前中国的抗生素耐药状况已经相当严重,很多致病细菌都能够成功对付抗菌类药物。  甘晓协是重庆肿瘤医院检验科的一名研究员,已经从事临床检验工作25年。她所在的科室专门负责对病人的痰和血液等样本作药物敏感试验。她说,导致皮肤感染的耐甲氧西林金黄色葡萄球菌对青霉素敏感已经是15年前的事了,“如今我们要联合使用利福平和万古酶素这样最高级的抗生素才能管用”。  药理学专家,广州暨南大学第一附属医院的汤泰秦教授说:“曾经有效降低了肺炎死亡率的大环内酯类抗生素,30年前是很多医院的一线用药,但是现在这个药的效果已经比较差了。”  中国医院对抗生素的使用是如何“上瘾”的呢?这个问题,病人要负一部分责任。多家医院的医生告诉中国日报,来自患者的“快速治愈”的要求给他们的工作造成很大压力。  “如今到医院就医的病人越来越没有耐心了,”广东肇庆市端州区红十字会医院的门诊医生吴帅说。“好多人一进来就直接跟你要抗生素,还要输液。他们希望在最短时间内看到疗效。”他说在这样的压力下,很多医生就容易去迎合病人的心理,开出不必要的抗生素。  肇庆市离香港只有两小时车程。吴帅说由于习惯了生病用抗生素,还要输液,好多在香港上班的大陆人都跑回大陆这边的医院看病。因为抗生素在香港的医疗系统是受严格控制的,很难买到,一般的诊所也不能提供输液治疗。  一味贪图方便快捷的治疗态度终究是会带来恶果。刘建民就是个例子。这个来自黑龙江萝北县的58岁农民说他被诊断出肺癌之前,从来没有进过医院。“每次我生病了就是去药店随便买点儿药,反正售货员建议我买什么抗生素我就买,”刘建民说。如今在北京就诊的他,正在等待手术。但是由于药敏试验显示他对多种抗生素耐药,医生把他的手术推迟了。但是完全责怪不懂医的患者未免不公平,对于抗生素滥用问题,医生应该担负更多的责任。  “多一个治疗手段,科室就多一份收入,自然医生也就多点奖金了,”重庆市第一人民医院的医生万锐杰指出某些医生滥开抗生素的原因。但是钱还不是唯一的问题,大量的医生还普遍欠缺抗生素使用的相关知识。“在中国,只要你是个医生就能开抗生素,”暨南大学第一附属医院的汤泰秦教授说。“但是很多医生都不知道改如何准确地使用抗生素,而且也不注重学习。”如今国内唯一官方的抗生素使用指南是2004年卫生部颁布的《抗菌药物临床应用指导原则》。但是汤教授指出这个指导原则过于粗略。“国家需要制定一个更加细致的指导,开抗生素的权利也要严格分级,”他说。  从农民刘建民的例子可以看到,抗生素在国内的药店和私人诊所可以随意买到。虽然国家规定如果没有医生的处方,禁止销售抗生素。然而大多数的药店对这个规定都置若罔闻。  在抗生素的使用上,国内的医院与一些国际医院有着巨大的差别。以北京和睦家医院为例,这家主要服务与在京外国人的中美合资医院多年来一直把抗生素的使用率控制在12%到15%之间。  “一般的感冒我们是不会给病人开抗生素的,”华裔美国医生Andy Wang说。他在来中国从医之前,在美国西雅图已经做了五年的医生。“只有我们发现病人有白细胞升高的情况时,才会使用抗生素。”  细菌耐药性的上升很早以前就已经引起了卫生部的重视。卫生部在2005年与国家中医药管理局,总后卫生部联合建立了“细菌耐药监测网”,目前全国已经有170多家三级甲等医院都加入了这个监测网。上个月出现的3例NDM-1超级细菌就是通过这个监测网发现的。  一些医院也采取措施,主动控制医疗人员的抗生素使用。“每个月我们医院都要开展500例抽样检查,”中日友好医院感染疾病科主任医师徐潜说。“一旦发现有不合理用药的情况,那么这个医生的奖金就会受到影响。”这项措施的开展使医院的抗生素使用率从70%左右降到了50%和60%之间。她补充道:“我们医院正在组建一个可以检测药物使用,特别是抗生素使用的电脑网络。”  为了减少广东省小医院和乡村诊所抗生素滥用的情况,广东省药品不良反应监测中心下属的药理协会正在组织用药的培训,提供平台让大医院有经验的医生指导地方以及社区医院的医生。  但是光靠医院自我监督以及社会组织的力量还远不足以解决问题。“首先,政府必须制定相关的法律,”浙江大学第一附属医院的肖永红医生指出目前我国在抗生素使用方面存在立法漏洞。“其次,医院必须阻止制药商对医生用药的影响。”  作为传染病诊治国家重点实验室的教授,肖永红表示在药品使用方面,目前国内的医生有着过多的选择,尤其是名目众多的抗生素。而在这样的情况下,医药代表的宣传就有可能在药品选择上对医生造成影响。“我不明白为什么国家食品药品监督管理局要给同一种药批上百个生产许可,”肖教授说。  中国在大约60年前开始自主生产抗生素。抗生素的品种在90年代之前都很少。那时国内医院的用药大量依靠进口。如今,据去年“中国抗生素60年高峰论坛”的数据显示,中国目前是世界头号抗生素生产国,能产出181个抗生素原料药品种。在中国每年生产的14.7万吨抗生素里,83%都在国内市场消耗。  令人感叹的是,曾经帮助我们战胜细菌的抗生素如今却让细菌变得更加强大。“很难想象如果细菌对抗生素的耐药性无限增强会怎样,”中日友好医院的徐潜医生说。“那将如同回到了发明抗生素之前年代。”
  • 中国河流抗生素地图发布
    中国抗生素污染总体情况到底如何?终于有了研究成果。近日,中国科学院广州地球化学研究所应光国课题组获取首份中国抗生素使用量和排放量清单,预测得出全国58个流域的&ldquo 抗生素环境浓度地图&rdquo 。这一报告于6月初发表在国际学术期刊《环境科学与技术》。  近年多地河流水体被检出抗生素,已经引起人们的广泛关注。去年12月,央视曝光全国主要河流部分点位都检出抗生素,甚至南京居民家中自来水也有检出。其中珠江广州段受到抗生素药物的污染非常严重,脱水红霉素等抗生素含量远远高出欧美发达国家河流的水平。应光国课题组的研究则量化预测了珠江流域抗生素的污染程度,报告显示,预测珠江流域抗生素排放密度全国最高,预测抗生素环境浓度仅次于海河。  珠江流域 排放量不大但密度最高  珠江流域抗生素污染究竟有多严重?&ldquo 在北方海河流域最严重,在南方珠江流域最严重。&rdquo 广州地球化学研究所研究员、博士应光国说。  从报告的&ldquo 全国抗生素排放地图&rdquo 中可以看到,与洞庭湖、淮河、长江等流域相比,珠三角的抗生素排放总量虽然低于以上几个流域,在全国只属于中等水平,但单位面积排放密度在全国58个流域中属于最高等级,达到70 .3-109千克/平方公里· 年。而论文中明确表示,包括珠三角和东江流域在内的珠江流域,其抗生素排放密度为全国最高,但课题组没有透露该密度具体数值。  西江流域 排放量高密度中等  去年央视新闻报道称,珠江广州段受到抗生素药物污染非常严重,当时广州市自来水公司明确表示,广州自来水并不是从珠江广州段取水,而是来自水质较好的东江、北江、西江。  应光国团队的研究显示,就抗生素排放总量而言,西江流域达到最高等级,与松花江、黄河、淮河、长江、洞庭湖等流域一样,每年排放量在2190-3560吨 东江流域的抗生素排放总量为237-378吨/年,在和广东相关的几个流域中最低,在全国58个流域中也属于排放量较少的 北江流域则为378-587吨/年,属排放量居中的等级。  至于排放密度,除了最高的珠江流域,西江流域密度中等,北江流域则仅有7.15-13.3千克/平方公里· 年,在涉及广东的几大流域中排放密度最低,与国内部分西部流域抗生素排放密度相当。  报告指出,以地理学上著名的&ldquo 胡焕庸线&rdquo (中国地理学家胡焕庸1935年提出的划分我国人口密度的对比线,也称为&ldquo 黑河-腾冲一线&rdquo )为划分,人口较密集的中国东部,其抗生素排放量密度是西部流域的6倍以上,可见人类活动对抗生素排放的巨大影响。  36种常见抗生素中 阿莫西林浓度最高  进入环境后的各类抗生素,由于物理化学性质不同,有的容易降解,有的较稳定,在水、土、沉积物等不同环境的相中分配不同,因此环境浓度也不一样。报告预测了36种常见抗生素在各流域的环境浓度。珠江三角洲的抗生素环境浓度在全国排第二,仅次于海河。阿莫西林等7种抗生素在流域水环境中的浓度高于1000纳克/升。  应光国介绍,海河和珠江是环境抗生素污染最严重的两条河流,但由于海河水量少,其抗生素环境浓度比珠江更高。事实上,北方地区的各河流流域抗生素浓度明显高于南方河流。  珠江流域中,浓度最高的抗生素是阿莫西林,达到3384纳克/升,其次为氟洛芬(2867纳克/升)。诺氟沙星、青霉素等另外5种抗生素浓度也较高,均高于1000纳克/升。应光国解释,我国目前没有关于环境里抗生素浓度的标准,但1000纳克/升以上的浓度已经属于非常高的水平。  而今年初,广州市环保局曾表示要探索抗生素监测办法,争取在珠江广州段展开抗生素监测,目前进展如何?昨日,广州市环境监测中心站相关负责人表示,对珠江抗生素的监测方法研究正按计划进行,目前还在实验阶段。由于国家层面还没有相关标准和规范,因此正和中国科学院广州地球化学研究所等多个单位密切沟通和合作,最终要建立广州市环境监测中心站自己的一套科学监测方法。  释疑  水中抗生素从哪里来?  2013年16 .2万吨抗生素52%为兽用  环境中抗生素的来源主要包括生活污水、医疗废水以及动物饲料和水产养殖废水排放等。环境中的抗生素残留又会通过各种方式可能重新进入人体,最主要的就是喝了含有抗生素的水、吃了存在抗生素残留的肉类和蔬菜,另外还可以通过生态循环的方式回到人体。  应光国介绍,珠江流域人口密度高,广东人又是养殖大省,鸡、猪的消费量在全国范围内算很高的,水产养殖发达,广东鱼塘在全国最多,因此珠江流域抗生素使用量、排放量大,排放密度高。另外,我国的污水处理水平也较低,农村地区几乎直接排放污水。  由于我国对抗生素的使用缺乏监管,抗生素滥用的现象非常普遍,广东也不例外。应光国介绍,目前对大医院中抗生素使用的控制相对较好,但中小医院、药店以及畜牧养殖业则基本没有控制,政府监管缺位。实地调查中,养鸡场、养猪场的动物粪便和饲料里都检测出抗生素。  应光国介绍,一头猪的平均污水排放相当于10个人的排放量,并且养殖厂排放污水中的抗生素将随污水进入受纳水体和土壤环境,也有可能渗入地下水。本次报告显示,2013年中国使用抗生素达16.2万吨,其中52%为兽用抗生素 在36种常见抗生素中,兽用抗生素的比例更是高达84.3%。  危害到底有多大?通过饮食  进入人体非常微量但会加剧细菌耐药  环境抗生素污染对人体健康有什么影响?饮用有抗生素残留的水有没有危害?被检出抗生素的肉类安全吗?应光国解释,通过饮食进入人体的抗生素非常微量,相比医用治疗中使用的抗生素少得多,吃抗生素药品都没事,微量的抗生素残留进入人体并没有直接危害。抗生素滥用、环境抗生素污染的真正危害在于加剧细菌耐药性的情况。  从药学领域而言,广谱(能针对绝大多数细菌)抗生素大致分为青霉素类、碳青酶烯类、&beta -内酰胺类、氨基糖苷类、四环素类、大环内酯类、磺胺类、喹诺酮类等。&ldquo 不同的药物,在人体或动物体内不同的半衰期(药物衰变为其他物质)不同,以喹诺酮类药物(如诺氟沙星等)为例,其半衰期较长,在自然界化学稳定性很好。它需要足够长的时间降解成其他物质,如果人类长期低量摄入含有喹诺酮类的水、肉食,其直接的结果就是产生耐药。&rdquo 中国药理学会教学与科普专委会委员、南方医科大学药学院徐江平教授表示。  &ldquo 喹诺酮类药物的人体耐药性问题是较为普遍的现象了。比如第一代喹诺酮氟哌酸,已经基本治疗不了细菌感染性腹泻,再如诺氟沙星、氧氟沙星,其对于呼吸系统、泌尿系统感染的治疗效果也在渐渐降低,这就是耐药的表现。&rdquo   广州地化所这次研究报告显示,喹诺酮类药物的用量仍然很大,以诺氟沙星为例,2013年全国用了5440吨,其中人用了1013吨。徐江平表示,他最新掌握的信息显示,农业部已经意识到喹诺酮在畜牧业滥用的危害,即将决定停止4类喹诺酮类药物在畜牧业的使用。&ldquo 其他还有一些小分子的抗生素,其半衰期也很长,在自然界化学稳定性很好,长期微量摄入也有类似的导致耐药结论。&rdquo   怎么预测出来?  10年流域调查购买了237家药企数据  &ldquo 我国长期缺乏对抗生素使用的监管,每一种抗生素具体用到哪些地方、用了多少、有多少进入环境,做研究的人都不知道。&rdquo 应光国说,这次课题的初衷就是搞清楚上述情况。  课题组选择了市场调查+数据分析+模型模拟的方法。课题组对我国主要河流做了10年的流域调查,在数据积累的基础上,这次选择了36种最常被检出的抗生素作为研究对象。  2014年开始,课题组从国家食药监总局等部门提供的药厂登记信息中,分别选择了各种抗生素销售量最大的5-10家企业作为代表,总共237家。课题组向这些企业购买了2013年的市场份额、销售量等数据,从而计算出各类抗生素在不同区域的使用量和用途。  然后,参考代谢率、污水处理率等因素,进而计算出抗生素排放量。根据各流域的行政区划组成,将各市、县的数据相加,得到流域尺度的抗生素排放量和排放密度。最后,在排放量基础上,再使用三级逸度模型,模拟预测了各抗生素在全国各流域的环境浓度。应光国课题组从2013年开始启动本次课题,历时两年完成,&ldquo 这也是建立在此前课题组大量研究获得的基础数据之上&rdquo 。  预测是否靠谱?  肯定有误差但&ldquo 结论比较可靠&rdquo   中科院南海海洋研究所副研究员徐维海指出,数据分析和模型模拟的结果肯定与真实环境有误差,即便是实地监测,也会有枯水季与丰水季、不同河段点位的区别。不过他认为,应光国课题组研究所得的抗生素模拟浓度50%以上与监测结果在一个数量级以内,说明研究结论比较可靠。&ldquo 能拿到这么多数据,反映出全国抗生素浓度的分布情况,这是没有人做过的。&rdquo   广州地化所研究员张干表示,这一研究更重要的意义在于,反映了抗生素污染的时空规律。他介绍,这次研究建立了一个抗生素排放清单的平台,以后就可以代入数据做情景模拟,往前、往后都可以预测。&ldquo 这次的研究成果倾向于静态,下一步应该还会倾向于做抗生素污染的动态预测。&rdquo   徐维海介绍,现在对抗生素环境浓度的监测研究已经不是国内外学术界的重点。&ldquo 抗生素残留在环境中的暴露是确定的,现在的研究转向对耐药性,尤其是耐药性基因的研究。&rdquo   链接  &ldquo 超级细菌&rdquo   演变史  近30年,人类在广谱抗生素研发方面基本没有突破性发现,能做的都是小修小改,但同时出现了多种&ldquo 超级细菌&rdquo 。2013年前后还发现&ldquo 产N D M -1耐药细菌&rdquo ,它与传统&ldquo 超级细菌&rdquo 相比,其耐药性已经不再是仅仅针对数种抗生素具有&ldquo 多重耐药性&rdquo ,而是对绝大多数抗生素均不敏感,这被称为&ldquo 泛耐药性&rdquo 。  1920年 医院感染的主要病原菌是链球菌。  1960年 产生了耐甲氧西林的金黄色葡萄球菌(M R SA),M R SA取代链球菌成为医院感染的主要菌种。耐青霉素的肺炎链球菌同时出现。  1990年 耐万古霉素的肠球菌、耐链霉素的&ldquo 食肉链球菌&rdquo 被发现。  2000年至2014年 出现绿脓杆菌,对阿莫西林等8种抗生素耐药性达100% 肺炎克雷伯氏菌,对西力欣、复达欣等16种高档抗生素的耐药性高达52%-100%。
  • 牛奶中抗生素的检测方法汇总
    一、 牛奶中抗生素的种类β-内酰胺类属于此类的抗生素的有青霉素类和头孢霉素类,常用于奶牛等家畜的个体临床治疗,残留在牛乳中。四环素类常见种类有四环素、金霉素、土霉素、强力霉素等,是一类广谱抗生素。氨基糖苷类常见种类有庆大霉素、链霉素、二氢链霉素、新霉素、壮观霉素等,是常用于家畜的氨基糖苷类抗生素。氯霉素类包括以下三种化合物:氯霉素,甲砜霉素,氟甲砜霉素。这类药物都是严格限制使用的兽药,有些国家禁止使用。大环内酯类常见种类有红霉素、秦乐霉素、林可霉素、螺旋霉素和盐霉素等。磺胺类常见种类有磺胺二甲嘧啶、磺胺二甲氧嘧啶、磺胺甲嘧啶、磺胺嘧啶等,甲氧苄啶是磺胺增效剂,不单独使用。二、抗生素残留的危害抗生素的残留对人体的健康、生态平衡、奶制品价格及奶制品的国际贸易均有不同程度的危害。三、牛奶中抗生素检测方法1.传统的微生物检测法微生物检测法出现较早,从出现至今,大大改善了我国抗生素检测手段的发展,其测定原理是基于抗生素对微生物的生理机能、代谢具有一定的抑制效果,与临床应用保持一致,相对而言,其耗费的时间久,且存在着较大的误差,目前最常应用的是TTC法、戴尔沃检测(Delvotest SP)法、BY法等。2.国际通用的检测法相对而言,其是国际上应用较早的通用测定方法,也是我国制定的监测方法,其原理是:如果牛奶中含有抗生素,则加入菌种(嗜热链球菌)经培育2.5-3h后,加入TTC指示剂(三苯基四氮唑)不发生还原反应,所以样品呈无色状态。如果牛奶中不含抗生素,则样品呈红色。相对而言,这一方法费用较低,但是耗时,因此应用不算太广,发展受到一定的限制。3.蓝黄检测法该方法是一种广谱的微生物抑制法,相对而言,耗时短,可以在短时间内检查出抗生素的残留情况,只要通过颜色对比既可以得出结论,通过这一检测方法得到的检测结果存在着一定的误差,容易造成误检,但是耗时短,费用低。4.现代仪器分析法这一方法主要是借助现代仪器进行检测,测定其残留的抗生素种类,最常用的是色谱法、荧光法、毛细管电泳、色谱质谱联用技术等。运用不同的理论,采用不同的手段进行检测,提高检测的标准,加强检测的质量。相对而言,该方法分离速度快,高效,实现自动化控制,可以检测出抗生素的具体含量,其结果更加准确,但待检样品需经一系列的预处理,繁琐费时,还必须有相应的价格昂贵的仪器设备。一般在大型实验室使用,适合于精确测定。5.生化免疫法这是近年来随着新科技的发展而逐渐发展起来的,其是以抗原与抗体的特异性与可逆性进行结合,是一种分析就技术。基本原理家就是抗原体的竞争性结合,可分为酶联免疫测定法(ELISA)、荧光免疫测定法(FIA)、免疫分析技术与常规理化分析技术联用的方法等。几种方法各有优缺点,必须注重其综合使用,提高检测的质量与准确度。从其实践的结果来看,其对抗生素的残留现状检测效果良好,灵敏度极高,达到ng级水平 检测快速、专一性强。相对而言,此法具有高度的专一性,每检测一种抗生素就要制备或购买相应的抗原或抗体,导致检测费用较高。因此生化免疫检测法不可能取代色谱或光谱等常规分析方法,只能作为其重要的补充。6.专一试剂盒法所谓的专一试剂盒法就是根据含有芽孢杆菌的琼脂培养基和PH指示剂在一定的温度下进行培养,一般维持在65℃左右,孢子发育生长,降低培养基pH值,在pH指示剂的作用下,蓝(紫)色变为绿-黄色。生鲜牛乳中的抗生素残留使微生物生长和酸的产生受到抑制,由于没有酸生成,颜色将不会改变。天津兰博现 诚征省市分销商招商电话:022-23592982  24小时服务热线:13920418181、400-616-1607
  • 我国仿制药与国外原研药有差距 准入门槛待提高
    p  众所周知,我国是仿制药大国,但与庞大的制药企业数量形成鲜明对比的是,仿制药质量普遍不高。近日,国家食品药品监管总局副局长吴浈在相关国务院新闻发布会答记者问时直言,目前我国仿制药整体水平不高,准入门槛不高,企业快速发展的同时,产业基础又比较薄弱,药品低水平重复现象比较严重。br//pp  记者从临床一线了解到,不少医生反映,市面上现有的仿制药与原研药虽然化学成分一样,但在疗效,甚至安全性上仍有距离,这种差距对重症监护室(ICU)里的危重症病人来说,负面影响尤其明显。/pp strong 仿制药临床数据存在造假问题/strong/pp  今年以来,国家药监总局接连重拳出击,推动新药审批制度改革,以提高制药水平、药品质量。8月28日下午,被业界认为是史上最严的国家食药监总局《关于开展药物临床试验数据自查核查工作的公告》(2015年第117号)(下称《自查公告》)自查结果终于出炉:两成注册申请被主动撤回。其中暴露出一些企业临床实验数据造假的问题。吴浈指出,“药物临床试验中的问题是比较严重的,不可靠、不真实、弄虚作假的问题确实存在,已经严重影响了药品审评审批的正常进行,严重干扰了上市药品有效安全的科学评价。”/pp  吴浈谈到,目前药品注册申请的审评积压问题严重,国家药品审评中心现有21000件申请待批,其中90%是化药仿制药,化学药品里绝大部分,80%以上是仿制药。造成此局面的一个原因是:现在企业申报质量不太高,大家普遍求快,药品申报资料,不完整、不规范情况比较普遍,甚至还有的资料弄虚作假。《自查公告》目的就是打击和查出在临床实验当中的弄虚作假,“不真实、不完整的药品申报材料,就不能证明这个药品的有效性和安全性!”吴浈说。/pp strong 急重症感染救命仍依赖疗原研药/strong/pp  7月18日凌晨,广州某大型三甲医院发生了这样一个案例:一患者出现高热,并用上抗感染药仿制药。然而,高热出现三次,没能控制住,7月19日凌晨,患者转入ICU,家属收到病危通知书。同时,主治医生建议使用原研产品。由于在广东省招标中,同化学名商品以价低取胜,原研药落标,因此在绝大多数医院已经断货 虽然中山大学附属肿瘤医院有备案采购注射用亚胺培南西司他丁钠的原研药,但是需要额外的审批流程,而事件发生在周末,而且是深夜,所以审批流程没能顺利进行。家属和朋友事出无奈,在朋友微信圈中求救,7月19日上午,在社会帮助下,患者获得了该原研药三天的用药量 当天下午,患者使用原研药之后,病情在晚上趋于稳定。/pp  中山大学附属第六医院呼吸科主任陈正贤教授指出,从临床看,ICU的患者对药物的疗效要求更高,对其治疗,通常医生首选使用原研药。不首选仿制药的一个原因就是医生对于仿制药的信心还没有建立起来。广州军区广州总医院MICU科主任郭振辉教授同样表示,与低价的仿制药相比,原研药的稳定性和有效率更高,尤其在急重症感染领域是不可替代的,医院有必要储备足够的原研药用于急重症的救治。/pp  陈正贤还表示,原研药从研究到生产,历时长达10-20年,仿制药虽然是根据原研药的配方来制作,时间也就短短一两年,有的临床试验数据都缺乏,虽然与原研药的生物等效性是一样的,但工艺不同,临床效果不等同,甚至安全性也不完全等同。目前可以估计,原研药的地位可能在短期内难以被仿制药替代,至少在ICU这种关键地方如此。/pp  strong提高仿制药质量从辅料工艺着手/strong/pp  “要想提高我国仿制药的质量,需要做到‘三个一致性’,即生产体系一致性、药学的一致性、临床药效一致性。”郭振辉认为,首先,仿制药与原研药的生产体系和工艺、监控质量标准应一致,尽量缩小辅料带来的差异 二是目前国内普遍忽视仿制药与原研药药物溶解度的一致性,应加大对产品报告真实性的追查力度 三是生物利用度的对照标准应提高。美国药监局规定仿制药只能模仿原研药,而我国则允许模仿其他已上市的国产仿制药,且相差不超过30%即可认为合格,导致生物利用度越仿越低,药品效果越仿越差,国内药企陷入了标准低——研发投入少——只能仿制国外药”的恶性循环。/pp  专家还提到,我们国内患者注射青霉素之前需做皮试,就是仿制药质量低的一个表现。2014年国家药品不良反应监测年度报告中关于青霉素类药物的不良反应事件中,在化学药品的不良反应/事件和严重不良反应/事件中,青霉素类药物占的比例分别为9.7%和11.6%,青霉素的所有剂型使用前必须皮试,但即使剔除了皮试阳性者,青霉素的不良反应事件仍屡见不鲜。专家分析,国产青霉素不良反应问题突出,跟国产青霉素提纯工艺不高有很大关系,很大一部分过敏的患者并不是对青霉素过敏,而是对“杂质”过敏,而这杂质往往来源于辅料。造成原研药与目前国内仿制药的疗效、安全性较大差距一个原因,就在于辅料工艺的差距。/pp  “当然我们看到近几年,药监部门对药品质量加大监管,一些仿制药企业也开始重视自身生产水平,期待仿制药质量提高,发挥与原研药一样的积极作用。”陈正贤教授如是说。/ppbr//p
  • 前沿合作 | 2D-LCMS-QTOF法对注射用头孢美唑钠的未知杂质进行结构解析
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司和中国食品药品检验研究院合作,采用岛津二维高效液相色谱串联四极杆飞行时间质谱法(2D-LC-QTOF),对头孢美唑钠热降解的未知杂质进行了定性鉴定。 背景介绍β-内酰胺类抗生素,主要包括头孢菌素类、青霉素类和碳青霉烯类。头孢美唑是第二代半合成的头孢类抗生素。2020版《中国药典》,美国药典(USP43)和日本药典(JP17)都收录了注射用头孢美唑钠。在注射用头孢美唑钠的质量研究中,发现其对热比较敏感,头孢美唑内酯(cefmetazole lactone)和1-甲基-5-巯基四氮唑(1-methyl-5-mercaptotetrazolium)在高温条件下均有明显增加,主峰后出现3个明显的未知杂质。 某仿制药和参比制剂样品中实际检出的未知杂质含量超过了ICH Q3B规定的鉴定阈值(头孢美唑日用最大剂量为4g,对应的杂质鉴定阈值为0.10%;部分样品中如图1所示杂质3的量超过0.10%),故尝试对注射用头孢美唑钠检出的未知杂质进行结构分析。图1给出了注射用头孢美唑钠热解样品的一维(图1A)和3种目标杂质(杂质1-3)的二维(图1B)紫外色谱图。图1 注射用头孢美唑钠热解样品的一维(1A)和3种目标杂质(杂质1-3)的二维(1B)色谱图 解决方案岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 基于二维液相色谱-高分辨质谱系统,采用中心切割技术将在一维中采用含非挥发性盐的流动相中分离得到的目标未知物导入二维色谱,在二维色谱中采用质谱兼容的挥发性流动相,进而采用高分辨质谱对未知物进行定性鉴定。一维色谱采用《中国药典》中注射用头孢美唑钠的有关物质检查方法,流动相中含不挥发的磷酸盐和离子对试剂(四丁基氢氧化铵,TBAH)。二维色谱采用C18色谱柱,利用磷酸盐在色谱柱上不保留,TBAH在高比例水相下不易洗脱等性质,通过阀切换技术和改变流动向比例等方法洗脱导入废液,避免质谱污染。 表1 头孢美唑钠中杂质的分子式、加和离子和误差 在结构解析中,通过比较头孢美唑钠和未知降解杂质的母离子及特征碎片离子的相关性,结合文献报道的头孢类抗生素及杂质的裂解规律,对头孢美唑钠中的三种未知杂质进行科学合理的定性分析。表1列出了三种未知杂质的分子结构和误差。以杂质2为例,在正模式下的一级质谱图(见图2A):主要离子为m/z 488.0320,m/z 372.0160,m/z 505.0586。m/z 488.0320与m/z 505.0586相差17,可推断m/z 505.0586为m/z 488.0320的[M+NH4]+峰。m/z 488.0320的二级产物离子质谱图(见图2B)。推测杂质2的结构和裂解规律(见图3),杂质2可能为7-甲巯基头孢美唑。同时,7-甲巯基头孢美唑也是一种常见的头孢美唑杂质。 图2 杂质2在正模式下的扫描离子(2A)和m/z 488.0320的产物离子质谱图(2B) 图3 杂质2可能的结构和质谱裂解规律 结论本研究对头孢美唑中的3种未知杂质进行了科学合理的定性分析,对于头孢美唑的质量控制及安全性评价具有重要意义。本分析方法适用于β-内酰胺类抗生素中未知杂质的分离和定性,具有很强的通用性,同时可对化学药物、天然产物、多组分生化药等复杂组成体系进行定性鉴别,从而提供可靠的质量控制分析方法。 本工作基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台(2D-LC-QTOF)和开发的《抗生素杂质数字化标准品数据库》,该数据库收录了β-内酰胺类抗生素的一般杂质和聚合物杂质的色谱和高分辨质谱数据,还登录了抗生素相关杂质的液相色谱-三重四极杆质谱分析方法。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。 参考文献:《采用二维高效色谱-串联四级杆飞行时间质谱法对注射用头孢美唑钠的未知杂质进行结构解析》《中国药学杂志》中图分类号:R917 文献标识码:A 文章编号:1001-2494(2022) 08-0645-06 doi: 10.11669/cpj.2022.08.009
  • 鲍曼不动杆菌的治疗和研究进展!
    鲍曼不动杆菌的治疗和研究进展!鲍曼不动杆菌感染的治疗一直是临床上很大的难题,因为鲍曼不动杆菌极易对各种消毒剂和抗菌药物产生耐药性,对重症患者、ICU病房的患者等威胁很大。MDR-AB(多重耐药鲍曼不动杆菌)、PDR-AB(泛耐药鲍曼不动杆菌)、CRAB(耐碳青霉烯类鲍曼不动杆菌)等的广泛传播更是成了医生和患者的噩梦。 在院内感染中,不动杆菌属的感染占有较高的比例,而在院内提取到的不动杆菌属的菌株,绝大多数为鲍曼不动杆菌。鲍曼不动杆菌为革兰氏阴性菌,故对万古霉素等存在固有耐药,对青霉素G、氨苄西林、阿莫西林、氯霉素、四环素、diyi及第二代头孢菌素也保持着较高的耐药率。通常情况下,对鲍曼不动杆菌有较强作用的药物主要有抗绿脓杆菌的青霉素类、第三和第四代头孢菌素(主要是头孢他啶、头孢吡肟等)、碳青霉烯类、β-内酰胺类抗生素复合制剂(头孢哌酮/舒巴坦、哌拉西林/他唑巴坦等)、氟喹诺酮类、氨基糖苷类、替加环素、多粘菌素、舒巴坦等。但是因为近年来抗菌药物的滥用,鲍曼不动杆菌对以上药物的耐药率也在不断上升,氟喹诺酮类、氨基糖苷类等耐药率甚高,碳青霉烯类的耐药率也有上升。 考虑到鲍曼不动杆菌极易对抗菌药物耐药,故用药时应联合用药。常用的方案有β-内酰胺类+氟喹诺酮类、β-内酰胺类+氨基糖苷类等。我个人shouxuan的方案为头孢哌酮/舒巴坦+磷霉素(时间差攻击疗法),也可选择氨苄西林/舒巴坦+环丙沙星等)。 研究进展 随着医学技术的飞速发展,对疾病特别是危重病的救治水平不断提高,广谱抗生素的广泛使用是其重要手段之一。但是,临床治疗中滥用抗生素现象非常普遍,在抗生素的强大压力下,不可避免地产生大量耐药菌株,这些耐药菌株已成为当代医院感染的棘手问题,从本组资料结果显示,鲍曼不动杆菌对亚安培南、美罗培南的耐药率相对较低,原因是碳青霉烯类药物对青霉素结合蛋白(PBPS)亲和力强。  但仍有少部分鲍曼不动杆菌对其耐药,原因可能是其能产生一种能水解碳青霉烯类药物的β-内酰胺酶ARI-I,这无疑是一个可怕的信号。此外,与头孢哌酮/舒巴坦的化学结构不同或鲍曼不动杆菌的多重耐药性表达形式不同有关。而对喹诺酮类抗生素耐药率达60%以上,这可能是近年来喹诺酮类药物的广泛应用引起抗菌药物介导的耐药性基因突变,编码DNA旋转酶的gyra 或gyrb基因发生突变被认为是细菌产生耐药的主要原因。此外,氨基糖苷类抗生素的耐药率皆较高,这可能是本院普遍应用该类抗生素出现的耐药,给临床治疗带来了巨大的困难,因此,应注意各类抗生素的合理应用。 试验结果表明,临床上不动杆菌感染中,鲍曼不动杆菌占绝大多数(75.0%),其次为醋酸钙不动杆菌、洛菲不动杆菌、琼氏不动杆菌,与有关报道不一致,可能是由于不动杆菌属的命名较混乱,分类原则及鉴定系统不同所致。在4种不动杆菌的鉴定中,41℃培养时生长,苹果酸盐同化试验阳性,可初步鉴定为鲍曼不动杆菌与琼氏不动杆菌,两者的区别在于前者苯乙酸盐同化试验阳性,且氧化木糖,而后者不氧化木糖,且苯乙酸盐同化试验阴性。41℃培养时不生长,癸酸盐同化试验阳性,可初步鉴定为醋酸钙不动杆菌与洛菲不动杆菌,两者区别在于前者枸橼酸盐、苯乙酸盐同化试验均阳性,而后者均阴性。  从72株鲍曼不动杆菌的来源看,其感染部位分布广泛,如呼吸系统、泌尿系统、伤口、腹腔及神经系统等。其中以呼吸系统感染占多数(54.2%)。不动杆菌是近几年医院内感染出现率较高的菌属,其中鲍曼不动杆菌所引起的感染应引起重视。 2001~2005年对12种抗菌药物的药物敏感监测显示,12种药物对鲍曼不动杆菌的耐药率呈总体上升趋势,耐药率zuijin的IMP,其耐药率从2001年的6.5%上升至2005年的31.7%,头孢菌素类(CAZ、CFP、FEP)的耐药率从2001年的20.0%、38.6%、31.5%上升至2005年的66.7%、72.4%、67.7%;PIP、SXT、ATM、CIP、TZP、LEV耐药率也从2001年的19.6%~60.2%增加到2005年的52.2%~72.1%;耐药率下降的有TOB和GEN 2种药物,其耐药率分别从2001年的62.8%和63.6%下降到2005年的48.2%和45.2%,这可能与这类药物临床上现在不常使用有关。从表3可见,ICU 12种药物的耐药率明显高于非ICU,差异存在非常显著性(P0.01),在ICU耐药率较低的是IMP和TZP,耐药率分别为41.7%和53.3%,除此外其余抗生素的耐药率均在70.0%以上,由此可见,ICU鲍曼不动杆菌耐药现象已十分严重,且表现为多重耐药。这与鲍曼不动杆菌产生多种酶有关:对头孢菌素类的耐药,主要是产超广谱β-内酰胺酶;对亚胺培南耐药,主要与产金属β-内酰胺酶有关;喹诺酮类的耐药主要与gyrA和parC基因突变有关。 综上所述,鉴于近年鲍曼不动杆菌的耐药率有进一步上升的趋势,这应当引起临床医师及微生物界的高度重视。为减少该菌医院感染的发生及多重耐药菌株的出现,我们应对医疗器械进行严格彻底的消毒及对鲍曼不动杆菌进行规范的连续监测,弄清其耐药机制并及时监测其耐药情况。同时,临床医师应重视获得性鲍曼不动杆菌感染,与临床微生物实验室密切协作,加强耐药性的监测,有效预防和控制感染。欢迎访问中国微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 国家药典委员会发布关于9305中药中真菌毒素测定指导原则草案的公示
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。近期,国家药典委员会发布了一系列的修订草案,目的是将中药标准进一步完善,逐步完成新版《中国药典》编制工作。关于9305中药中真菌毒素测定指导原则草案的公示我委拟修订《中国药典》2020年版9305中药中真菌毒素测定指导原则。为确保标准的科学性、合理性和适用性,现将拟修订的标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:徐昕怡电话:010-67079522电子邮箱:xuxinyi@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061附件:1. 9305中药中真菌毒素测定指导原则公示稿.pdf2. 9305中药中真菌毒素测定指导原则修订说明.pdf国家药典委员会2023年04月24日9305中药中真菌毒素测定指导原则修订说明一、目的意义 2015 年版《中国药典》9305 中药中真菌毒素测定指导原则,涵盖了7类11种真菌毒素检测方法。但经过方法转化,7类11种真菌毒素的具体检测方法已经收录入 2020年版《中国药典》2351真菌毒素测定法。此外,随着近年来研究的深入,发现了中药材、饮片及中成药中真菌毒素感染的新现象和特点,新的毒性明确的真菌毒素种类不断在中药材和饮片中检出,中成药中也相继发现真菌毒素感染,高通量筛查方法的建立和验证等内容急需纳入指导原则。因此,国家药典委员会委托上海市食品药品检验研究院对《中国药 典》9305中药中真菌毒素测定指导原则进行修订。 二、总体思路与起草过程按照国家药典委员会标准提高课题任务要求,对真菌毒素种类、检测方法及应用策略、新的真菌毒素测定方法进行了研究,并探究了中药中真菌毒素感染规律,对监控品种提出建议。经过研究,起草了以下内容:(1)增订了真菌毒素种类,涵盖主要五大产毒菌属所产的毒性强、污染率大、关注度高的真菌毒素种类,并引入2 / 3了隐蔽型真菌毒素的概念。(2)系统介绍了真菌毒素的多种检测方法,并针对每种方法的特点与实际检验的需求与应用特点,详细表述了各种测定方法的应用策略。(3)增订了桔青霉素高效液相色谱法与液相色谱-串联质谱法两种定量检测方法。开发了通用样品前处理方法,建立了色谱质谱条件,考察了多个代表性中药基质,完成方法学验证,回收率为 80.7%~140.9%,精密度为 0.8%~7.1%。(4)增订了采用高效液相色谱-三重四极杆质谱技术同时对 33 种真菌毒素进行高通量快速筛查的检测方法,系统研究了提取和净化前处理技术,建立了色谱质谱条件,选取代表性中药基质进行了方法学验证,中药材和中成药中 33 种化合物的检出限为 0.5~200mg/kg。(5)建立了中药中 75 种真菌毒素污染数据库,采用了真菌毒素筛查技术对 40 余种药材、10 余种中成药共 2000 余批样品进行了筛查,分析了相关感染规律,对相关检测品种提出了指导意见。山东省食品药品检验研究院、天津市药品检验研究院、 浙江清华长三角研究院三家单位对指导原则中新增订的方法进行了复核。经复核,三家复核单位的复核结果均与标准起草单位基本一致,复核意见均认为:增订的33种真菌毒素快速筛查方法和桔青霉素的测定方法均具有较强的可操作性、灵敏、快速、高效、专属。课题组根据协作研究结果,参考国外药典收载的内容,起草了 9305 中药中真菌毒素测定指导原则修订草案,并于 2020 年报送国家药典委员会,药典委理化分析专委会对本草案进行了审议。起草小组按照审核意见,对增订的真菌毒素种类按照国内外法定限量标准和毒理学数据进行了调整,并对文字进行了多次修改规范描述,完成了《中国药典》“9305 中药中真菌毒素测定指导原则”修订草案。
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 卫生部近日将出抗生素使用标准
    2月224日,卫生部全国细菌耐药检测网负责人肖永红在做客城市管理广播时透露,卫生部近日将出台抗生素相关使用标准,用量超标严重的医院,甚至将从三级降为二级。  据统计资料显示,我国每年有8万人死于过度使用抗生素 7岁以下儿童因不合理使用抗生素造成耳聋的数量高达30万人 在住院的感染病患者中,耐药菌感染的病死率为11.7%,普通感染的病死率只有5.4%。  肖永红介绍,随着超级细菌横空出世,日益加剧的抗生素滥用现象越来越引起重视。卫生部2004年曾出台过一些技术法规,如《抗菌药物临床应用指导原则》,但作为技术指导,这些规定只要求医生在患者患有某种疾病时使用某种药物,而对于更多的管理规定并没有跟上。  "目前,卫生部正在制定抗生素相关使用标准,其中对于医院、医生有比较严格的限制。"肖永红透露,比如针对现在医院抗菌药使用比例过高的不合理现象,将对医生抗生素使用水平进行调查,总量不能超过一定标准。如果超标,医院在未来的评审中,质量管理方面不能达标,甚至还会与医院评级挂钩,如果一家三级医院滥用抗生素,就会被降到二级。"这对于我国公立医院来说,应该是比较有约束力的,对医院也可以形成压力。"  据了解,人们生活中常用的抗生素主要是青霉素、头孢、红霉素等,而医院门诊的抗生素大概有30种左右。在滥用抗生素现象中,最普遍的莫过于人们感冒发烧时自己吃的消炎药。对此,肖永红表示,这是非常不正确的。感冒更多是由病毒引起的,而抗生素的作用是抗菌,当没有细菌时,吃这些药一点效果都没有。一般来说,感冒完全没必要吃消炎药,最好的办法就是适当休息、多喝水。"是药三分毒,滥用抗生素不仅能导致耳聋、耐药性,还可能会引起人体菌群失调,对未来的影响更是难以估计的。
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。  一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。  二、各兽药残留基准实验室药物检测范围  (一)国家兽药残留基准实验室(中国兽医药品监察所)  1.一般兽药品种  (1)抗微生物药  四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙  星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。  (2)抗寄生虫药  二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。  2.禁用药物清单品种  β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。  (二)国家兽药残留基准实验室(中国农业大学)  酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、  一般兽药品种抗微生物药  磺胺类:磺胺二甲嘧啶、磺胺甲  磺胺间甲氧嘧啶、甲氧苄啶。  抗寄生虫药  阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西  磺胺类:磺胺喹  钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、  癸氧喹酯、氢氢溴酸常山酮。  具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种  氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。  3.禁用药物品种  洛硝达唑  (三)国家兽药残留基准实验室(华南农业大学)  β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄  一般兽药品种抗微生物药一般兽药品种抗微生物药  西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。  咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡  啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、  氟胺氰菊酯。  性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。  杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。  群勃龙、醋酸氟孕酮。  (四)国家兽药残留基准实验室(华中农业大学)  氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。  苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。  糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。  喹噁啉类:卡巴氧  硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋  喃妥因、呋喃西林。  硝基化合物:硝基酚钠、硝呋烯腙。  杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动  物)。  砜类抑菌剂:氨苯砜。  三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。  二0一一年七月二十九日
  • 岛津水产品中林可胺类抗生素残留的LCMSMS检测方案
    林可胺类抗生素(Lincomycin)又叫洁霉素,是由放线杆菌或小单孢菌产生的一类抗生素。主要对革兰阳性菌、某些厌氧菌和霉形体有较强抗菌作用,抗菌谱较红霉素窄。金黄色葡萄球菌、溶血性链球菌、肺炎球菌及猪肺炎霉形体、鸡败血霉形体对本品敏感,但肠球菌一般对本品耐药;厌氧菌如拟杆菌、破伤风杆菌、梭状芽孢杆菌、魏氏梭菌、消化球菌等对本品敏感。主要用治疗革兰阳性菌特别是耐青霉素的革兰阳性菌所引起的各种感染,霉形体引起的家禽慢性呼吸道病、猪喘气病,厌氧菌感染如鸡的坏死性肠炎等,也用于治疗猪密螺旋体痢疾、弓形体病和狗、猫的放线菌病。《GB/T2020762-2006.20畜禽肉中林可霉素竹桃霉素红霉素替米考星泰乐菌素克林霉素螺旋霉素吉它霉素交沙霉素残留量的测定 液相色谱-串联质谱法》规定,林可霉素的最大残留限量(MRL )为1.0 &mu g/kg;克林霉素的最大残留限量(MRL)为1.0 &mu g/kg。 本方案建立了使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定水产品中林可胺类抗生素的方法,供相关检测人员参考。水产品经处理后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行分析。盐酸林可霉素在1-100 µ g/L;盐酸克林霉素在1-100 µ g/L浓度范围内线性良好,标准曲线的相关系数均在0.9996以上;对1 µ g/L、5 µ g/L和10 µ g/L林可霉素、克林霉素混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.31%和3.95%以下,系统精密度良好。 岛津三重四极杆质谱仪系列 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中林可胺类抗生素残留》。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 抗生素“阻击战”勤邦显身手(一)
    一、背景介绍 抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类物质。现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。抗生素残留是指给动物使用抗生素药物后积蓄或贮存在动物细胞、组织或器官中的药物原形、代谢产物和药物杂质。抗生素残留危害巨大,已经引起了世界各国政府的高度重视。 1929年英国细菌学家弗莱明发现青霉素,并在临床应用中取得惊人的效果,这标志着抗生素时代的到来,由此人类的平均寿命得以延长。可是由于抗生素的使用会导致耐药细菌的出现,短短几十年后,到20世纪末,过分依赖和滥用抗生素就使人类陷于将“无药可救”的噩梦。为此,许多国家都对抗生素使用实施严格限制措施。动物使用抗生素主要是在养殖业中将抗生素作为饲料添加剂,这不仅可以使动物生长速度更快,喂食量降低,动物抗病能力也会非常高,养殖户获利增加。但是,动物广泛使用抗菌素会导致“耐药菌株”的出现,使得原有的抗生素失去作用,导致动物细菌疾病难以控制。而且这些“耐药菌”极可能通过食物或动物与人的接触传播给人,进而使人产生耐药性。 1957年日本最早报道了病原菌耐药性问题,当年一些病原菌有一种抗生素以上的耐药性,到了1964年,40%的流行病株有四重或更多的耐药性。1972年墨西哥的抗氯霉素伤寒杆菌造成了1400多人死亡。据美国《新闻周刊》报道,仅1992年美国就有13300名患者死于抗生素耐药性细菌感染。1999年2月,路透社报道了美国科学家在肉鸡饲料中发现超级细菌,这种肠球菌对目前所有的抗生素具有耐药性。《发现》杂志称抗生素这种神奇的药物已走向穷途末路。 2002年初,欧盟从中国进口的虾、对虾中发现强力抗生素的药物残留,认为对人体健康构成潜在威胁,导致欧洲部分地区陷入食品恐慌。 2010年,据法新社和英国《卫报》8月11日综合报道,英国和印度研究人员发表报告称,一些赴印度接受手术等治疗的患者感染了一种新型超级细菌。这种几乎对所有抗生素具有抗药性的细菌正在从南亚传向英国,可能在全世界蔓延。 2011年,世界卫生组织将“控制抗菌素耐药性”作为2011年世界卫生日的主题,并提出“抵御耐药性:今天不采取行动,明天就无药可用”。二、 抗生素残留产生的原因 1. 抗生素饲料添加剂的使用 抗生素饲料添加剂的长期使用;一些添加抗生素的饲料不在标签上标识,或标识与实际不符而造成养殖企业重复用药;以治疗量当作预防量添加等因素都会造成抗生素的残留。 2. 不遵守休药期、停药期的规定 一些养殖企业不遵守休药期、停药期的规定,从而使药物残留量超过国家标准。如 《乳与乳制品卫生管理办法》第4条规定:应用抗生素期间和停药期内的乳汁不得供食用。 3. 未正确使用抗生素 给动物使用抗生素时,在给药剂量、给药途径、用药时间和用药部位等方面不符合用药规定, 造成抗生素残留在体内并使残留时间延长。如对泌乳牛用药不当或不注意安全时间给药是牛乳中抗生素残留的重要因素,尤其是使用乳房灌注法治疗乳腺炎时,更易造成牛乳中抗生素残留。 4. 作为保鲜剂使用 一些不法交奶户在夏季高温季节为防止牛奶的酸败,往往向牛奶中添加抗生素作为保鲜剂使用,造成牛奶中抗生素的残留。 5. 使用违禁药物或 国家标准规定不许使用的药物 一些养殖企业不遵守国家规定,在饲料或饮水中直接添加违禁药物或淘汰药物,导致畜产品中抗生素残留。 三、抗生素残留的危害 1. 产生毒性作用 人们长期食用含有抗生素残留的动物性食品,抗生素可在体内蓄积,危害人体健康。如四环素类(土霉素、金霉素、四环素)经口服可直接刺激机体引起人体不舒服,出现恶心、呕吐、腹部不适、食欲减退等症状,四环素类还能影响骨和牙齿的生长,抑制婴儿的骨髓生长。 2. 产生细菌耐药性 抗生素对不同病原微生物的抗菌效力并不一致,这主要是由于微生物在药物敏感性方面存在差异。根据这种差异,将不同菌种对同一抗生素的敏感性分为高度敏感、中度敏感、轻度敏感和耐药等4种情况。细菌是通过药物靶酶的改变、代谢途径的改变、通透性屏障和产生灭活酶或修饰酶等机制产生耐药性的。 3. 使菌群失调 正常条件下,人体肠道寄生着对人体有益的微生物菌群,它们与人体相互适应,维持着微生物菌群的平衡,某些菌群还能合成维生素供机体使用。长期食用有抗生素残留的动物性食品,会造成一些非致病菌的死亡,使菌群失调,同时使肠道内产生B族维生素和维生素K 的细菌受到抑制,从而引起维生素缺乏。由于抗生素抑制了有益菌的生长,为一些耐药的致病菌提供了生存空间,甚至造成“二重感染”,危害人体健康 。 4. 发生过敏反应 经常食用含有青霉素、四环素、磺胺类药物以及某些氨基糖昔类抗生素等残留的动物性食品,能引起易感个体出现过敏反应,严重者可引起皮疹、呼吸困难、休克等症状,甚至危及生命。 5. 产生致畸、致癌、致突变作用 某些抗生素具有致畸、致癌、致突变的作用,人通过摄食肉、奶等动物性食品而引起病变,如氯霉素可引起各种可逆性血细胞减少,极少数可引起不可逆的再生障碍性贫血,容易引起早产儿及新生儿的循环障碍,称为“灰婴综合症”。四、世界各国禁止抗生素的制度 面对耐药性这一全球性的难题,世界卫生组织向科学家们发出倡议,寻求对策。1981年,WHO专门成立了慎用抗生素联盟,成员国包括90多个国家,各成员国都承诺采取严厉措施限制抗生素使用。1986年,瑞典全面禁止在畜禽饲料中使用抗生素。1996年由美国FDA、疾病控制和预防中心、农业部协作成立了国家抗生素抗药性检控体系。一旦发现耐药菌产生,便启动相应法律,包括收回药物使用许可证。2010年6月28日,FDA公布一份抗生素限令草案,旨在降低“动物滥用抗生素对人类健康构成的明显风险”。2012年1月4日,美国FDA针对使用广泛的头孢类抗生素发布部门规定:从2012年4月5日开始,禁止给牛、猪、火鸡使用头孢类抗生素。1997年,在柏林召开的世界卫生组织会议倡议在动物饲料中谨慎使用抗生素,以减少病原菌抗药性的扩散。同年三月,国际粮农组织在巴黎召开会议,会议确定通过“风险分析、风险处理、慎用抗生素和抗药性检测”来控制饲料中使用抗生素对公众健康的威胁。1998年12月于哥本哈根召开的抗生素和生长促进剂的工作会议上,与会者的意见表明,在未来的10年里将逐渐淘汰抗生素添加剂。1998年底,欧盟委员会颁布了杆菌肽锌、螺旋霉素、维吉尼亚霉素和泰乐菌素4种抗生素在畜禽饲料中作为生长促进剂使用的禁令,禁令自1999年7月1日起生效。1998年2月,丹麦牛肉与鸡肉行业宣布,自愿停止使用一切抗生素饲料;4月,猪肉行业宣布35公斤以上生猪,自愿停止使用一切抗生素饲料;同年,丹麦政府开始对使用抗生素的猪肉收税(每头猪2美元)。2000年,丹麦政府下令,所有动物,不论大小,一律禁用一切抗生素饲料。2006年1月1日,欧盟就已全面禁止在饲料中使用生长素、抗生素作为饲料生长添加剂。韩国从1991年起对肉类产品进行抗生素残留检测,从2005年起就开始逐渐减少允许使用的抗生素药物数量与种类。2011年的7月1日起,韩国全面禁止动物饲料中添加抗生素。 早在2000年,我国国家质量监督检验检疫局就颁布了8项无公害农产品国家标准,出台了49项绿色食品标准,73项无公害食品行业标准等,其中部分标准对少数几种抗生素的残留做出了规定。1994年农业部还专门发布了《动物性食品中兽药最高残留限量》标准,此后又相继修订,但至今滥用抗生素造成残留超标事件仍时有发生。面对抗生素存在滥用风险的局面,中国农业部出台了一系列公告,农业部第168号公告——《饲料药物添加剂使用规范》 ,规定了部分兽用原料药可在制成预混剂后使用,包括土霉素钙预混剂、金霉素预混剂等抗生素预混剂在内的33种兽药预混剂名列其中;农业部第193号公告规定“氯霉素、及其盐、酯(包括琥珀氯霉素)及制剂,禁做所有用途,所有食品动物禁用”,“硝基咪唑类:甲硝唑、地美硝唑及其盐、酯及制剂,禁做促生长用,所有食品动物禁用”;农业部第560号公告也明确规定万古霉素及其盐、酯及制剂为禁用兽药。
  • 中检集团推出抗生素检测服务
    日前,中检集团福建公司福建华日食品安全检测有限公司推出抗生素四大类初筛项目。此举不仅能够有效控制成本,而且为企业提供了更加高效的检测方法。  据介绍,饲料中长期大量使用抗菌类药物,或其添加量超过亚剂量水平,可造成动物性食品中抗菌药物的残留,威胁人类健康。华日公司通过研发,成功地完成了动物肌体中大环内酯类抗生素和青霉素类抗生素类的LC-MS-MS方法的验证,这为抗生素四大类初筛提供了更准确的定性。华日公司表示,今后将继续密切关注行业动态,第一时间开发符合市场需求的检测项目。  目前,该项目已正式向企业推广,并得到企业的广泛好评。
  • 314万!西安交通大学第二附属医院发布微生物试剂采购项目
    近日,西安交通大学第二附属医院发布微生物组试剂采购项目,计划采购全自动细菌鉴定与药敏检测试剂、细菌质谱鉴定检测试剂、全自动染色仪检测试剂等一年使用量的耗材,总预算为314万元。以下为标讯详细信息:项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次预算金额:314.0000000 万元(人民币)采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片 AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片 AST-GN13VITEK 2革兰氏阴性细菌药敏卡片AST-GN16VITEK 2 革兰氏阴性细菌药敏卡片AST-XN04VITEK 2 革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK 2 革兰氏阴性细菌药敏卡片 AST-N334VITEK 2 革兰氏阴性细菌药敏卡片 AST-N335VITEK 2 革兰氏阳性细菌药敏卡片 AST-P639β-内酰胺酶快速检测试剂Genbag 厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEK MS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶 BacT/ALERT FA全自动血培养仪1厌氧微生物培养瓶 FN需氧微生物培养瓶 SA厌氧和兼性厌氧微生物培养瓶 SN需氧和兼性厌氧微生物培养瓶 PF厌氧和兼性厌氧微生物培养瓶BacT/ALERT FN Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT FA Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT PF Plus半自动鉴定及药敏检测试剂(进口)ID 32 GN 革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID 32 C 酵母菌鉴定试剂盒(比色法)RAPID ID 32 A 厌氧菌鉴定试剂盒(比色法)ID 32 E 肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID 32 STAPH 葡萄球菌鉴定试剂盒(比色法)RAPID ID 32 STREP 链球菌快速鉴定试剂盒(比色法)FUNGUS Ⅲ酵母样真菌药敏试剂盒(微量稀释法)ATB ENTEROC 5 肠球菌药敏试剂盒(比色法)ATB G-5 肠细菌药敏试剂盒(比色法)ATB STAPH 5 葡萄球菌药敏试剂盒(比色法)ATB PSE 5 假单胞菌和非发酵菌药敏试剂盒(比色法)ATB HAEMO 嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATB STREP 5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl 0.85#% 悬浮液悬浮液(3ml)(100支/盒)ATB Medium 肉汤培养基FB(坚固兰)(FAST BLUE BB)JAMES 吲哚试剂麦氏比浊管 McFarland StandardAPI MINERAL OIL 矿物油NIN 马尿酸NIT1 + NIT2 硝酸盐试剂丙酮酸反应检测液(VP1 + VP2)STERILE ATB 无菌加样吸头BCP 二甲苯试剂EHR 色氨酸试剂XYL 溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)--D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP 5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法) P 10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX 30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX 30ugCT0030B米诺环素药敏实验纸片(扩散法)MH 30ugCT0013B氯霉素药敏实验纸片(扩散法)C 30ugCT0064B克林霉素药敏实验纸片(扩散法)DA 2ugCT0020B红霉素药敏实验纸片(扩散法)E 15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK 30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM 20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD 30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法) FOT 20ugCT0058B万古霉素药敏实验纸片(扩散法)VA 30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM 30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP 10ugCT0054B四环素药敏实验纸片(扩散法)TE 30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM 30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO 30ugK6101 奥普托欣纸片 5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF 105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV 5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN 10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM 10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(8浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(8浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(8浓度)复方新诺明药敏试剂微量肉汤稀释法(8浓度)丁胺卡那药敏试剂微量肉汤稀释法(8浓度)呋喃妥因药敏试剂微量肉汤稀释法(8浓度)氨曲南药敏试剂微量肉汤稀释法(8浓度)美罗培南药敏试剂微量肉汤稀释法(8浓度) 妥布霉素药敏试剂微量肉汤稀释法(8浓度)替考拉宁药敏试剂微量肉汤稀释法(8浓度)头孢克罗药敏试剂微量肉汤稀释法(8浓度)头孢噻肟药敏试剂微量肉汤稀释法(12浓度)头孢曲松药敏试剂微量肉汤稀释法(12浓度)头孢哌酮药敏试剂微量肉汤稀释法(12浓度)头孢他啶药敏试剂微量肉汤稀释法(12浓度)头孢呋辛药敏试剂微量肉汤稀释法(12浓度)头孢唑啉药敏试剂微量肉汤稀释法(12浓度)头孢西丁药敏试剂微量肉汤稀释法(12浓度)头孢吡肟药敏试剂微量肉汤稀释法(12浓度)哌拉西林药敏试剂微量肉汤稀释法(12浓度)苯唑西林药敏试剂微量肉汤稀释法(12浓度)氨苄西林药敏试剂微量肉汤稀释法(12浓度)羧苄西林药敏试剂微量肉汤稀释法(12浓度)替卡西林药敏试剂微量肉汤稀释法(12浓度)左氧沙星药敏试剂微量肉汤稀释法(12浓度)环丙沙星药敏试剂微量肉汤稀释法(12浓度)氧氟沙星药敏试剂微量肉汤稀释法(12浓度)洛美沙星药敏试剂微量肉汤稀释法(12浓度)加替沙星药敏试剂微量肉汤稀释法(12浓度)氟罗沙星药敏试剂微量肉汤稀释法(12浓度)诺氟沙星药敏试剂微量肉汤稀释法(12浓度)庆大霉素药敏试剂微量肉汤稀释法(12浓度)司帕沙星药敏试剂微量肉汤稀释法(12浓度)多西环素药敏试剂微量肉汤稀释法(12浓度)米诺环素药敏试剂微量肉汤稀释法(12浓度)克拉霉素药敏试剂微量肉汤稀释法(12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)红霉素药敏试剂微量肉汤稀释法(12浓度)青霉素药敏试剂微量肉汤稀释法(12浓度)氯霉素药敏试剂微量肉汤稀释法(12浓度)利奈唑胺药敏试剂微量肉汤稀释法(12浓度)链霉素药敏试剂微量肉汤稀释法(12浓度)四环素药敏试剂微量肉汤稀释法(12浓度)利福平药敏试剂微量肉汤稀释法(12浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(12浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(12浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(12浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(12浓度)复方新诺明药敏试剂微量肉汤稀释法(12浓度)丁胺卡那药敏试剂微量肉汤稀释法(12浓度)呋喃妥因药敏试剂微量肉汤稀释法(12浓度)氨曲南药敏试剂微量肉汤稀释法(12浓度)亚胺培南药敏试剂微量肉汤稀释法(12浓度)美罗培南药敏试剂微量肉汤稀释法(12浓度)妥布霉素药敏试剂微量肉汤稀释法(12浓度)替考拉宁药敏试剂微量肉汤稀释法(12浓度)头孢克罗药敏试剂微量肉汤稀释法(12浓度)肠杆菌科细菌药敏试剂盒链球菌药敏试剂盒替加环素药敏试剂MIC多粘菌素B药敏试剂MIC嗜血杆菌药敏试剂盒MIC少见菌药敏试剂盒MIC葡萄球菌药敏试剂盒MIC肠球菌药敏试剂盒MIC万古霉素药敏MIC亚胺培南药敏MIC头孢他啶/阿维巴坦试条药敏接种培养液(CAMHB)真菌药敏试纸KBKB法真菌药敏试纸条ETESTETEST法真菌药敏试剂MIC微量肉汤稀释法非发酵菌药敏试剂盒MIC标准菌株/质控菌株干粉培养基(SS、XLD、麦康凯、MH、厌氧血、嗜血)嗜热芽孢杆菌菌片结核分枝杆菌特异性细胞因子(IFN-γ和IL-2)联合检测ELISA法药敏纸片+手工鉴定配套试剂(国产)细菌药敏纸片(各类抗菌素或抗真菌) KB法 国产微生物药敏试纸(扩散法)卡他莫拉菌检测细菌生化鉴别试剂(氧化酶纸片)呋喃唑酮纸片杆菌肽纸片奥扑拓新纸片多粘菌素BV因子鉴定X因子鉴定X+V因子鉴定氨苄西林(氨苄青霉素)纸片苯唑青霉素纸片哌拉西林纸片头孢呋辛(西力欣.头孢呋肟)纸片头孢唑啉纸片头孢哌酮(先锋必)纸片头孢曲松纸片头孢噻肟纸片头孢他啶纸片利福平纸片链霉素纸片庆大霉素纸片四环素纸片氯霉素纸片红霉素纸片复方新诺明 SMZ/TMP纸片万古霉素纸片环丙沙星纸片洛美沙星纸片克拉霉素纸片左氧氟沙星纸片磷霉素纸片氧氟沙星纸片克林霉素纸片阿莫西林/棒酸纸片丁胺卡那纸片头孢哌酮/舒巴坦纸片(舒普深)诺氟沙星纸片氟罗沙星纸片氨曲南纸片亚胺培南纸片多西环素纸片司帕沙星纸片氨苄西林/舒巴坦纸片阿奇霉素纸片米诺环素纸片美罗培南纸片头孢吡肟纸片头孢西丁纸片哌拉西林/他唑巴坦纸片替卡西林/棒酸纸片呋喃妥因纸片妥布霉素纸片替卡西林纸片替考拉宁纸片头孢唑肟纸片头孢噻吩纸片奈替米星纸片Optochin纸片杆菌肽纸片新生霉素纸片呋喃唑酮纸片多粘菌素B纸片林可霉素纸片阿莫西林纸片罗红霉素纸片头孢美唑纸片交沙霉素纸片头孢克罗纸片头孢克肟纸片美洛西林纸片利奈唑胺纸片莫西沙星纸片头孢硫脒纸片头孢拉定纸片头孢氨苄纸片头孢匹安纸片拉氧头孢纸片头孢匹罗纸片阿洛西林纸片壮观霉素纸片夫西地酸纸片萘啶酸纸片头孢布烯纸片替加环素纸片厄他培南纸片头孢孟多纸片头孢丙烯纸片麦迪霉素纸片X因子鉴定纸片头孢他啶/棒酸纸片头孢噻肟/棒酸纸片庆大霉素纸片羧苄青霉素(羧苄西林)纸片加替沙星纸片卡那霉素纸片甲氧苄啶纸片头孢替坦纸片新霉素纸片土霉素纸片恩诺沙星纸片氟苯尼考纸片氨苄西林/棒酸纸片呋喃唑酮(痢特灵)纸片通用药敏纸片ETEST药敏(国产)康泰通用药敏试剂条细菌药敏试条(E试验法)青霉素药敏试剂条头孢呋辛药敏试条庆大霉素药敏试条头孢吡肟药敏试条红霉素药敏试条头孢唑啉药敏试条左氟沙星药敏试条诺氟沙星药敏试条苯唑西林药敏试条利奈唑胺药敏试条克林霉素药敏试条阿莫西林/棒酸药敏试条头孢他啶药敏试条环丙沙星药敏试条头孢曲松药敏试条头孢噻肟药敏试条克拉霉素药敏试条头孢哌酮/舒巴坦药敏试条头孢哌酮药敏试条洛美沙星药敏试条氧氟沙星药敏试条万古霉素药敏试条亚胺培南药敏试条美罗培南药敏试条氯霉素药敏试条氨苄西林药敏试条丁胺卡那药敏试条氨曲南药敏试条哌拉西林药敏试条司帕沙星药敏试条头孢他啶/棒酸药敏试条利福平药敏试条羧苄西林药敏试条氟罗沙星药敏试条加替沙星药敏试条米诺环素药敏试条卡那霉素药敏试条多西环素药敏试条替卡西林药敏试条四环素药敏试条妥布霉素药敏试条替考拉宁药敏试条呋喃妥因药敏试条阿奇霉素药敏试条头孢西丁药敏试条复方新诺明药敏试条哌拉西林/他唑巴坦药敏试条头孢噻肟/棒酸药敏试条替卡西林/棒酸药敏试条氨苄西林/舒巴坦药敏试条两性霉素B伊曲康唑5-氟胞嘧啶酮康唑氟康唑伏立康唑米卡芬净泊沙康唑阿尼芬净急诊粪便常规检测样本采集管(包含稀释液、清洗液等)胶体金法粪便隐血(FOB)多水平非定值质控品便隐血(FOB)检测试剂6标段ETEST+染液+基础培养基ETEST药敏(国产)安图国产ETEST纸条(各类抗菌素)细菌药敏试条(E试验法)31家两性霉素B(E试验品)氟康唑(E试验品)伏立康唑(E试验品)阿米卡星药敏条阿莫西林药敏条氨苄西林药敏条氨曲南药药敏条苯唑西林药敏条红霉素药敏条(E试验法)环丙沙星药敏条(E试验法)卡泊芬净药敏条(E试验法)克林霉素药敏条(E试验法)利奈唑胺药敏条(E试验法)氯霉素药敏条(E试验法)美罗培南药敏条(E试验法)诺氟沙星药敏条(E试验法)青霉素药敏条(E试验法)庆大霉毒药敏条(E试验法)四环素药敏条(E试验法)头孢呋辛药敏条(E试验法)头孢哌酮舒巴坦药敏条(E试验法)头孢曲松药敏条(E试验法)头孢他啶药敏条(E试验法)头孢唑林药敏条(E试验法)万古霉素药敏条(E试验法)亚胺培南药敏条(E试验法)左氧氟沙星药敏条(E试验法)头孢吡肟药敏条(E试验法)头孢噻肟药敏条(E试验法)甲氧苄啶-磺胺甲恶唑药敏条(E试验法)米诺环素药敏条(E试验法)阿奇霉素药敏条(E试验法)微生物染液等革兰染色液(4×250ml)手工试剂革兰染色液(4×100ml)抗酸染色液(4×250ml)抗酸染色液(3×100ml)鞭毛染色液荚膜染色液芽孢染色液异染颗粒染色液瑞氏-吉姆萨染色液(瑞姬氏复合染色液) (2×250ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液) (2×100ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液) (4×20ml)瑞氏-吉姆萨染色液网织红细胞染色液(2×100ml)网织红细胞染色液(4×20ml)过氧化酶(POX)染色液铁染色液精子染色液精子稀释液妇科白带涂片染色液苏木素-伊红染色液I苏木素-伊红染色液II(H-E单一)巴氏染色液Ⅰ巴氏染色液Ⅱ巴氏染色液(巴氏试剂盒)快速革兰氏染色液革兰氏染液-快速法-碘溶液革兰氏染液-快速法-脱色液革兰氏染液-快速法-沙黄溶液革兰氏染液-快速法-龙胆紫液新型隐球菌染色液六胺银染色液乳酸酚棉兰染液真菌免疫荧光显色试剂(II型)微生物基础培养基等手工试剂梅毒螺旋体抗体检测试剂盒(凝集法)微生物基础培养基等手工试剂麦康凯琼脂平板乳酸棉酚蓝染液六胺银染液真菌荧光染液(一步法)抗酸荧光染色液(金胺O法)弱抗酸染色液无菌病毒运输液(用于甲流)志贺氏菌属诊断血清(50种)志贺氏菌属诊断血清(22种)沙门氏菌属诊断血清(60种)沙门氏菌属诊断血清(30种)出血性大肠埃希菌O157诊断血清(供科研用)触酶试剂氧化酶试验试剂MH干粉沙保罗培养基干粉XLD 培养基干粉营养肉汤干粉R2A培养基干粉变色硅胶含醛类消毒剂中和培养基(9ml)含酚、醇类消毒剂中和培养基(9ml)含氯、碘类消毒剂中和培养基(9ml)含表面活性剂类消毒剂中和培养基(9ml)含醛类消毒剂中和培养基(50ml)含酚、醇类消毒剂中和培养基(50ml)含氯、碘类消毒剂中和培养基(50ml)含表面活性剂类消毒剂中和培养基(50ml)苛养菌药敏琼脂平板血、肠道菌分隔琼脂平板沙保罗琼脂平板营养肉汤培养基(液体)营养琼脂培养基尿道菌显色平板伊红美兰琼脂平板中国蓝琼脂平板物表测试平板血嗜血杆菌肠道菌(麦康凯)分隔琼脂平板血嗜血杆菌肠道菌(伊红美兰)分隔琼脂平板血嗜血杆菌肠道菌(中国蓝)分隔琼脂平板血嗜血杆菌肠道菌(SS)分隔琼脂平板血嗜血杆菌分隔琼脂平板GBS运送培养基卵黄琼脂培养基环丝氨酸-头孢西丁-果糖琼脂培养基厌氧血琼脂平板/厌氧苯乙酸琼脂培养基厌氧琼脂培养基庖肉培养基巯基乙酸肉汤培养基耐碳青霉烯类肠杆菌科细菌检测70cm艰难梭菌显色平板70cm不动杆菌显色培养基支原体培养鉴定计数药敏试剂盒(30孔,12种药敏)葡萄糖肉汤培养基磷酸盐缓冲液(PBS pH7.2)SBG增菌液冷冻管冻存管盒液体菌种保存管复方中和增菌培养基(带棉签) 注:有名“物表采样管”含复方中和剂的0.04mol/L磷酸盐缓冲液R2A琼脂培养基(干粉)大豆酪蛋白琼脂培养基(干粉)TGE琼脂平板胰蛋白胨大豆培养基(卵磷脂吐温胰蛋白胨大豆培养基)碱性蛋白胨水培养基Amies 采样运送拭子(Amies 采样运送培养基含拭子)TSA接触平板样本稀释液中和洗脱液复合中和洗脱液(9ml)复合中和洗脱液(5ml)厌氧指示剂SS琼脂平板MH琼脂培养基哥伦比亚血琼脂平板巧克力琼脂培养基B族链球菌平板专用油镜油含珠菌种保存管(国产)(5颗)含珠菌种保存管(国产)(25颗)病毒采样管(无菌病毒运输液)植绒采样拭子磁珠菌种保存液营养肉汤培养基R2A琼脂培养基(平板)大豆酪蛋白琼脂培养基(平板)半固体琼脂Amies 采样运送拭子Cary-blair运送培养基stuart运送培养基弯曲杆菌显色培养基尿培养筛选显色平板沙门氏菌筛选显色平板大肠杆菌显色平板金黄色葡萄球菌显色平板李斯特菌显色平板弧菌显色平板霉菌显色平板O157培养基分枝杆菌菌种保存管含珠菌种保存管(进口)(25颗)脱脂奶粉血琼脂平板念珠菌显色平板耐药菌三联检显色平板真菌快速培养鉴定药敏试剂盒缓冲液(碳青霉烯酶)一次性封闭真菌形态学观察培养基多粘菌素B纸片霍乱弧菌诊断血清01群、0139脑心浸液琼脂GC琼脂平板乙腈甲酸头孢硝噻吩纸片
  • 液相色谱串联质谱法测定饮用水体中抗生素残留
    摘要: 采用固相萃取技术(solid phase extraction,SPE)对饮用水体样品中的7类30种抗生素药物残留(包括青霉素类1种、林可胺类1种、氯霉素类3种、喹诺酮类3种、四环素类4种、大环内酯类5种、磺胺类抗生素13种)进行富集,使用液相色谱/串联质谱仪(LC&mdash MS/MS)的多反应监测模式(multiple reaction monitor,MRM)进行定性定量分析。该方法的平均回收率为61.89%一152.66%,相对标准偏差为1.60%~14.97%,方法最低检出浓度为1.5 ng/L,表明该方法完全适用于饮用水体中抗生素残留的监测分析。 相关文献:液相色谱串联质谱法测定饮用水体中抗生素残留.pdf
  • 新型污染物的治理令人头大?Detelogy为你出谋划策!
    新型污染物从改善生态环境质量和环境风险管理的角度看,新污染物是指的那些具有生物毒性、环境持久性、生物累积性等特征的有毒有害化学物质。这些有毒有害化学物质进入环境后,对生态环境或者人体健康存在较大风险。现状部分新污染物具有较强的环境/生物持久性、明显的生物富集性、可以进行长距离全球迁移等特性,能够对人体健康和生态环境构成危害。目前生态环境部已将新污染物治理纳入生态环境保护相关考核,而近日全国各省、市陆续开始落实新型污染物的治理方案。目前的新型污染物主要有持久性有机污染物、内分泌干扰物、抗生素、微塑料等。抗生素类污染物抗生素不但被广泛用于人和动物的防病治病,还被添加于动物饲料中作为饲料添加剂以提高饲料利用率和促进动物生长。近年来,随着禽畜养殖业规模的不断扩大,抗生素使用量大增,抗生素滥用的问题越来越突出。进入动物体内的抗生素不能被完全吸收,部分会随着动物的排泄物排出体外,进入环境中,对生态环境和人体健康构成严重威胁。危害抗生素用于人和动物治疗后,通过排泄进入到环境中,再通过污泥农用化、有机肥施用以及灌溉水的形式进入农田土壤系统,造成土壤中抗生素污染,导致蔬菜吸收积累抗生素,进而通过食物链形成恶性循环链,造成环境污染,影响人类建康。青霉素钠青霉素作为广泛使用的抗生素,能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用,而青霉素钠(钾)作为青霉素的一种,对革兰阳性菌及某些革兰阴性菌有较强的抗菌作用。主要用于敏感菌引起的各种急性感染,如肺炎、支气管炎、脑膜炎等,抗生素的滥用导致的生物耐药性会使人们免疫力下降,重新面临感染性疾病的威胁。针对刻不容缓的新型污染物的治理。Detelogy马不停蹄,提供可行方案!实验室仪器分析仪器:高效液相色谱仪带PDA检测器前处理仪器:iQSE-06智能快速溶剂萃取仪、电子天平、iSPE-864全自动智能固相萃取仪、FV32Plus全自动高通量智能平行浓缩仪、超纯水系统、MultiVortex多样品涡旋混合器实验流程提取:称取样品放入10ml萃取池中,置于iQSE-06智能快速溶剂萃取仪中按以下条件进行快速溶剂萃取 :萃取完成后,收集提取液 ,将HLB 型净化小柱固定于iSPE-864全自动智能固相萃取仪,按以下条件进行净化:收集洗脱液于FV32Plus全自动高通量智能平行浓缩仪 40℃浓缩,用超纯水定容至2.0 mL,MultiVortex多样品涡旋混合器涡旋 10 min,过滤膜后进行 HPLC 检测。Detelogy推荐产品参考方法:马珊珊,刘燕,余冉,等.加速溶剂萃取( ASE) -固相萃取( SPE) -高效液相色谱法( HPLC) 测定土壤中青霉素钠[J].环境化学,2014,33 ( 11) : 1978-1985
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制