当前位置: 仪器信息网 > 行业主题 > >

脉冲激光应用

仪器信息网脉冲激光应用专题为您整合脉冲激光应用相关的最新文章,在脉冲激光应用专题,您不仅可以免费浏览脉冲激光应用的资讯, 同时您还可以浏览脉冲激光应用的相关资料、解决方案,参与社区脉冲激光应用话题讨论。

脉冲激光应用相关的资讯

  • 我国飞秒脉冲激光参数准确度国际领先
    中国计量科学研究院超短脉冲激光测量研究取得突破性进展  我国飞秒脉冲激光参数准确度国际领先  日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题“飞秒脉冲激光参数测量新技术研究”通过专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在一飞秒内,光只能走0.3微米,相当于一根头发丝的1%。飞秒脉冲是人类目前在实验室条件下所能获得的在可见光至近红外波段的最短脉冲。它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。  该课题成功解决了这一技术难题,实现了超短脉冲时域参数的精确测量,对于超短脉冲的更深一步的研究和应用具有重要意义。多家国际同行研究单位引用课题组提出的新技术成功解决了超短脉冲研究和应用中存在的技术问题,极大地提升了我国在超短脉冲激光参数测量领域的国际地位。  据课题负责人邓玉强博士介绍,课题组在成功解决飞秒级超短脉冲参数测量的基础上,又展开了皮秒级超短脉冲测量的研究。皮秒脉冲处于纳秒脉冲和飞秒脉冲之间的带隙(1皮秒=10-12秒),它的光谱相对较窄,难以使用测量飞秒脉冲的光谱干涉技术,而传统的自相关仪器又存在量程范围小,需要标定校准,测量准确度不高等诸多问题。为解决这些问题,课题团队又自主研发了一种新技术和装置,实现了亚十飞秒(10-14秒)至数百皮秒(10-10秒)宽度范围内超短脉冲的精确测量,能得到强度自相关和条纹分辨自相关两种结果。该装置可实现测量的自校准,不仅提高了皮秒级激光脉冲宽度的测量准确度,而且扩大了超短脉冲参数测量的量程,进一步提高了我国超短脉冲激光时域参数的测量能力。
  • 我国超短脉冲激光技术始终走在世界前列——访中国科学院物理研究所魏志义研究员
    仪器信息网讯 7月26-28日,2023世界光子大会暨第十四届光电子产业博览会在北京国际会议中心顺利召开!本届大会由中国光学工程学会(CSOE)、国际光学工程学会(SPIE)、俄罗斯工程院、德国工程院、美国工程院等各国学会机构主办。大会以“光领制造,智创未来”为主题,聚焦光电子行业新市场、新产品、新技术,近20余场学术会议,八大主题展览,以及第12届国际应用光学与光子学技术交流大会(AOPC2023)同期举办,近百位大咖专家聚焦光电子领域的学术与技术的创新碰撞。大会期间,仪器信息网特别采访了中国科学院物理研究所魏志义研究员。据了解,魏志义主要从事超短脉冲激光(即超快激光)研究。采访中,魏志义向我们介绍,激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。此外,科研人员关心的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中对高频功率非常关注和感兴趣。以下为现场采访视频:
  • 每秒256万亿帧拍照帧率,华科团队造出全球最快的光场摄像机之一,可用于超大能量脉冲激光装置
    近日,华中科技大学光学与电子信息学院教授和团队, 通过获取光场相位信息,实现了 256 万亿帧/秒的拍照帧率,借此造出目前世界上最快的光场摄像机之一。图 | 李政言(来源“”)在评审相关论文时,一位激光脉冲时空测量领域的专家表示,该课题组制作的超快光场摄像机是领域内多年来极度渴望的仪器和技术。在应用前景上,表示:“我们期待超快光场摄像机在两方面取得应用,一方面是服务大型激光装置,另一方面是服务工业应用。”就大型激光装置来说,面向高能量密度物理、强场物理等前沿科学和能源、以及国防安全等战略应用的需求,中国、欧洲、和美国都已建设了一批超大能量脉冲激光装置。然而,这类装置重复频率极低。并且,巨大的光束口径导致激光脉冲光场存在复杂的时空耦合。因此,需要先进的光场时空诊断设备,引导激光装置进行优化,并为物理实验的理论分析和数值仿真,提供初始输入激光信息。就工业应用来说,激光精密加工有两个趋势,一是超快化甚至飞秒化,即使用飞秒激光作为光源,借此实现冷加工并提高精度;二是智能化,即以在线方式观测材料的特性,并对激光参数做出调整。所以,通过安装超快光场摄像机模块,有望让激光精密加工设备长出一只“眼睛”,也即通过实时采集探针光信号、以及观测材料超快时间尺度相应,来对加工工艺做出动态优化。(来源:Light: Science & Applications)以较低成本实现极高的时间分辨率尽管成果很新,但是背景很“旧”,这要从 144 年前说起。1878 年,美国摄影师埃德沃德迈布里奇(Eadweard Muybridge)使用安置在赛道上的 12 台照相机,来拍摄奔跑的赛马。借此证明马在奔跑时会四个蹄子同时离地,解决了几个世纪以来画家和艺术家的困惑,并给电影发明带来了灵感。时隔一百多年,2018 年诺贝尔物理学奖部分授予杰哈莫罗()和唐娜斯特里克兰()这两位科学家,以对他们发明的高功率超快激光的啁啾脉冲放大技术(Chirped Pulse Amplification, CPA)做出表彰。在激光精密加工、近视的激光视力矫正、惯性约束核聚变等高功率超快激光的应用中,每一个超快激光脉冲仿佛一匹光速奔跑的“赛马”,在各类物质的“赛道”上穿行时。对于激光脉冲和物质特性在极短时间内的演化现象,人们同样充满好奇,希望像迈布里奇那样为激光与物质相互作用的过程“拍摄电影”。(来源:Light: Science & Applications)基于此,制作了这台超快光场摄像机 。在超快光学领域中,它能为激光脉冲和激光照射的物质“拍摄电影”,并同时具有空间分辨和时间分辨的单发测量能力。几十年来,尽管在超快光学领域出现了大量时间分辨测量技术,但多数方法主要测量不同时刻下某个物理量的演化,普遍缺少空间分辨能力;要么得让激光脉冲的“赛马”多次跑过物质“赛道”进行重复测量。而超快光场摄像机只需激光脉冲一次性地作用于物质,它记录的是光速飞行的激光脉冲通过某个特定位置时,位于这一位置光场的二维空间分布。这样,人们就能一次性得到激光脉冲三维时空分布的“电影”。而实现单发光场摄像的难点在于,如何使用常规照相机的等二维阵列式探测器,来一次性地记录三维数据。研究中,该团队借鉴了压缩感知概念,在前人光学压缩成像技术的基础上,将待测光场的三维信息“压缩”到二维探测器上并进行一次性采集,从而实现了摄像机的功能。此外,不同于一般摄像机或探测器记录的是光强度信息,超快光场摄像机的记录包括振幅和相位信息在内的“光场”信息。对于表征超快激光脉冲来说,获取光场信息是非常重要的,它既决定着激光脉冲中各个颜色成分的时间先后关系,还决定着影响聚焦和成像质量的空间波前分布。另外,在对激光照射物质的探测过程中,获取探针光束的完整振幅和相位信息,可以帮助人们完整了解物质不同位置的光学性质,同时获取折射率、吸收率等重要参数的空间分布。该成果的另一亮点在于,超快光场摄像机以较低的成本,实现了极高的时间分辨率或“电影”帧率。日常生活中,我们观看的电影帧率一般为 24 帧/秒,最高可以达到 120 帧/秒,仅能满足人眼视觉暂留效应的要求。而团队的超快光场摄像机,记录的是光速飞行的超快激光脉冲的“赛马”过程,即在各类物质“赛道”上奔跑的过程,需要观测飞秒(10 -15 秒)时间尺度内发生的事件,所需的帧率在万亿帧/秒量级。近日,相关论文以《单次压缩光场形貌》()为题发表在 Light: Science & Applications 上,唐浩程和门庭为共同第一作者,担任通讯作者 [1]。图 | 相关论文(来源:Light: Science & Applications)为超快时间尺度内发生的任意事件拍摄电影据介绍,课题组的目标是为超快时间尺度内发生的任意事件“拍摄电影”。这项工作最早要追溯到十四年前读博期间。他说:“2008 年 8 月开始我到美国德克萨斯大学奥斯丁分校读博士,第一次见到导师 教授他就给我指派了博士论文课题:为超高强度超短激光脉冲在等离子体中激发的光速传播的尾波‘拍摄电影’,这样就可以对基于等离子体尾波的新一代桌面型电子加速器提供实时诊断。”这是一个挑战性极高的课题,经过六年的努力,只能部分地解决这一问题。例如,在测量技术方面,他和当时的所在团队发展了一种基于多束探针光和断层成像技术(tomography)的方法,可以为光速飞行的折射率结构拍摄“电影”[2],并被 Nat. Phot. 以 News & Views 文章的形式再次进行报道。后来,他还观测到了等离子体尾波纵向结构的演化规律 [3]。然而,为激光驱动的等离子体尾波“拍摄电影”的梦想一直没能实现,主要难点在于无法在单发条件下,用二维探测器记录三维数据信息。2014 年,的合作者 (现为加拿大魁北克大学应用计算成像实验室教授),发表了基于压缩感知概念的超快照相技术的论文 [4],对前者解决等离子体尾波电影拍摄中遇到的维度问题,带来了极大启发。然而,超快压缩照相技术获得的是光场的强度时空分布信息。另一方面,等离子体尾波主要调制探测激光的相位。那么,如何使用超快压缩照相技术来同时测量包含振幅和相位的光场信息,就成为亟待解决的问题。同时,这也是研究基于压缩感知的超快光场摄像机的问题来源。2017 年,回国入职华中科技大学,经过前期实验室建设和武汉疫情,他和团队终于在 2020 年秋季,开始了针对超快光场摄像机的研究。(来源:Light: Science & Applications)“研究早期充满了挣扎,一方面我们需要反复试错以完成实验系统光学设计和成像质量的不断优化,另一方面激光光场高光谱图像的压缩感知重构技术以及相关算法,对我们来说是新事物,需要不断积累经验。”他说。在这过程中,非常感谢负责具体实验和数据处理工作的研究生唐浩程和门庭,以及 教授和他的学生 Xianglei Liu。他继续说道:“唐浩程和门庭当时是刚刚入学的一年级研究生,面对陡峭的学习曲线虽然也曾抱怨这个课题‘就像要去五金店里翻找一些零件组装成一部汽车’,但凭借扎实的理论实验基础和顽强的毅力,以及合作者在压缩照相重构算法方面的有力支持,终于克服了种种困难。”到 2021 年秋,他们终于能以较好的可靠性,实现飞秒激光脉冲的超快光场摄像机,并利用它对光速飞行的激光等离子体电离前沿进行表征测量。(来源:Light: Science & Applications)然而,对于超快光场摄像机的探索并未结束。因为,为等离子体尾波“拍摄电影”的梦想并未实现。“也许我们已经找到更好的途径,离目标更近了一些,但仍需要朝着既定方向努力工作。进入 2022 年,我们继续进行超快光场摄像机相关的研究,并取得了一些进展,主要体现在进一步提高系统稳定性和可靠性、获取更全面的矢量光场信息、探索更多的超快光场摄像机应用等。”表示。如今,2022 年即将迎来尾声。对于更久之后的规划,他表示:其一,将进一步完善超快光场摄像机技术。目前的方法基于标量光场的假设,只测量了待测光场的振幅和相位信息。但是,实际的光场具有矢量形态的电 磁波,这时面对待测光场的偏振态以及矢量特征,就得做出完整的测量。其二,他计划完成一些基于超快光场摄像机的典型泵浦-探测实验。泵浦-探测实验,是探索物质超快时间尺度属性的有力工具。因此,他希望使用超快光场摄像机,来为探针光拍摄光场“电影”。其三,他也打算实现一些基于超快光场摄像机的应用。基于此,希望与领域内专家展开更多合作。尤其是在大型激光科学装置上,他期待能研发出一种实用的、小型化的超快激光光场时空表征仪器。而在工业应用方面,他将继续耕耘于为未来的超快激光加工设备配备一双“眼睛”,从而实现基于材料特性实时观测的智能加工。参考资料:1.Tang, H., Men, T., Liu, X. et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). https://doi.org/10.1038/s41377-022-00935-02.Z. Li, et al., Nat. Commun. (2014) 5, 30853.Z. Li et al., Phys. Rev. Lett.(2014) 113, 0850014.L. Gao, J. Liang et al., Nature (2014) 516, 74–77
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 西安光机所在超短激光脉冲光场测量研究方面取得重要进展
    近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。   超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。   而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。
  • 脉冲功率激光技术国家重点实验室顺利通过验收
    11月2日,受科技部基础司委托,基础研究管理中心组织专家对依托中国人民解放军电子工程学院的脉冲功率激光技术国家重点实验室进行了验收。科技部基础研究司相关人员出席会议。  专家组听取了脉冲功率激光技术国家重点实验室主任的建设情况报告,并进行了实地考察。经过认真研究讨论,专家组认为脉冲功率激光技术国家重点实验室在科学研究、人才培养、平台建设和管理运行等方面基本完成了建设计划任务,同意其通过建设验收。  脉冲功率激光技术国家重点实验室是首个建设的军民共建国家重点实验,是军民共建科研体制的有益探索。该实验室以脉冲功率激光产生机理为主线,重点开展脉冲功率激光传输与控制和脉冲功率激光与物质作用等基础科学和军民应用技术的研究。
  • 南方科技大学550.00万元采购激光脉冲沉积
    详细信息 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 广东省-深圳市-南山区 状态:公告 更新时间: 2022-11-21 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 深圳市南科大资产经营管理有限公司(以下简称“采购代理机构”)受采购人委托,就物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)进行公开招标,欢迎符合资格条件的投标人前来投标。物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)的潜在投标人应登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载获取本项目的招标文件,并于2022年12月05日14时00分(北京时间)前递交投标文件。 一、项目基本情况 1.项目编号:AOMC-2022-096-C(SZDL2022002186) 2.项目名称:物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次) 3.预算金额:人民币5,500,000.00元 4.最高限价:人民币5,500,000.00元 5.所属行业:工业 6.采购需求: 标的名称 数量 单位 简要技术需求(服务需求) 脉冲激光沉积系统 1 套 详见招标文件 7.本项目不接受联合体投标。 二、申请人的资格要求 (1)具有独立法人资格或具有独立承担民事责任的能力的其他组织(提供营业执照或事业单位法人证书等法人证明扫描件,原件备查)。 (2)本项目不接受联合体投标,不接受投标人选用进口产品参与投标。 (3)参与本项目投标前三年内,在经营活动中没有重大违法记录(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (4)参与本项目政府采购活动时不存在被有关部门禁止参与政府采购活动且在有效期内的情况(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (5)具备《中华人民共和国政府采购法》第二十二条第一款的条件(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (6)未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(由供应商在《政府采购投标及履约承诺函》中作出声明)。 注:“信用中国”、“中国政府采购网”、“深圳信用网”以及“深圳市政府采购监管网”为供应商信用信息的查询渠道,相关信息以开标当日的查询结果为准。 (7)本项目的特定资格要求:无。 三、获取招标文件 时间:2022年11月22日00时01分 至2022年11月28日23时59分(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购的供应商,请访问深圳公共资源交易中心(http://www.szzfcg.cn/),先办理注册手续(注册咨询:83938966),后办理密钥(电子密钥咨询:83948165 4008301330 ),并前往深圳公共资源交易中心(深圳交易集团有限公司政府采购业务分公司)绑定深圳政府采购智慧平台用户(地址:深圳市福田区景田东路70号雅枫国际酒店北侧二楼市政府采购业务窗口服务大厅),再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。 四、提交投标文件截止时间、开标时间和地点 1.投标截止时间:所有投标文件应于2022年12月05日14时00分(北京时间)之前上传到深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)。具体操作为登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,用“【我的项目】→【项目流程】→【递交投标(应答)文件】”功能点上传投标文件。本项目电子投标文件最大容量为100MB,超过此容量的文件将被拒绝。 2.开标时间和地点:定于2022年12月05日14时00分(北京时间),在深圳政府采购智慧平台公开开标。供应商可以登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 3.在线解密:投标人须在开标当日14:00-14:30(北京时间)期间进行解密,逾期未解密的作无效处理。解密方法:登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,使用本单位制作电子投标文件同一个电子密钥,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件。 2.采购文件澄清/修改事项:2022年11月30日17时00分(北京时间)前,供应商如果认为采购文件存在不明确、不清晰和前后不一致等问题,可登录深圳公共资源交易中心网(http://zfcg.szggzy.com:8081/)→“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【提问】”功能点中填写需澄清内容。2022年12月02日17时00分(北京时间)前将采购文件澄清/修改情况在“【我的项目】→【项目流程】→【答疑澄清文件下载】”中公布,望投标人予以关注。 (重要提示:“提出采购文件澄清要求”不等同于“对采购文件质疑”,供应商提出的澄清要求内容如出现“质疑”字眼,将予以退回。供应商如认为采购文件存在限制性、倾向性、其权益受到损害,应在采购文件公布之日起七个工作日内以线下方式向我公司递交提出书面质疑函。根据《深圳经济特区政府采购条例》第四十二条“供应商投诉的事项应当是经过质疑的事项”的规定,未经正式质疑的,将影响供应商行使向财政部门提起投诉的权利。) 3.本招标公告及本项目招标文件所涉及的时间一律为北京时间。投标人有义务在招标活动期间浏览深圳公共资源交易网(www.szggzy.com),在深圳公共资源交易网上公布的与本次招标项目有关的信息视为已送达各投标人。 4.本项目不需要投标保证金。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南方科技大学 地 址:深圳市南山区西丽学苑大道1088号 联系方式:张老师 13910520071 2.采购代理机构信息 名 称:深圳市南科大资产经营管理有限公司 地 址:深圳市南山区学苑大道1001号南山智园A7栋11楼 联系方式:王老师 0755-88012180 3.项目联系方式 项目联系人:赵老师 电 话:0755-88012181 深圳市南科大资产经营管理有限公司 2022年11月21日 [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.pdf SZDL2022002186-A物理系激光-氧化-还原分子束外延联合系统采购项目采购公告.pdf [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.szczf 附录.中小企业及残疾人福利性单位相关文件.zip [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.docx × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光脉冲沉积 开标时间:2022-12-05 14:00 预算金额:550.00万元 采购单位:南方科技大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:深圳市南科大资产经营管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 广东省-深圳市-南山区 状态:公告 更新时间: 2022-11-21 [公开招标]物理系激光-氧化-还原分子束外延联合系统采购项目采购公告(重新采购第1次) 深圳市南科大资产经营管理有限公司(以下简称“采购代理机构”)受采购人委托,就物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)进行公开招标,欢迎符合资格条件的投标人前来投标。物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次)的潜在投标人应登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载获取本项目的招标文件,并于2022年12月05日14时00分(北京时间)前递交投标文件。 一、项目基本情况 1.项目编号:AOMC-2022-096-C(SZDL2022002186) 2.项目名称:物理系激光-氧化-还原分子束外延联合系统采购项目(重新采购第1次) 3.预算金额:人民币5,500,000.00元 4.最高限价:人民币5,500,000.00元 5.所属行业:工业 6.采购需求: 标的名称 数量 单位 简要技术需求(服务需求) 脉冲激光沉积系统 1 套 详见招标文件 7.本项目不接受联合体投标。 二、申请人的资格要求 (1)具有独立法人资格或具有独立承担民事责任的能力的其他组织(提供营业执照或事业单位法人证书等法人证明扫描件,原件备查)。 (2)本项目不接受联合体投标,不接受投标人选用进口产品参与投标。 (3)参与本项目投标前三年内,在经营活动中没有重大违法记录(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (4)参与本项目政府采购活动时不存在被有关部门禁止参与政府采购活动且在有效期内的情况(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (5)具备《中华人民共和国政府采购法》第二十二条第一款的条件(由供应商在《政府采购投标及履约承诺函》中作出声明)。 (6)未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(由供应商在《政府采购投标及履约承诺函》中作出声明)。 注:“信用中国”、“中国政府采购网”、“深圳信用网”以及“深圳市政府采购监管网”为供应商信用信息的查询渠道,相关信息以开标当日的查询结果为准。 (7)本项目的特定资格要求:无。 三、获取招标文件 时间:2022年11月22日00时01分 至2022年11月28日23时59分(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购的供应商,请访问深圳公共资源交易中心(http://www.szzfcg.cn/),先办理注册手续(注册咨询:83938966),后办理密钥(电子密钥咨询:83948165 4008301330 ),并前往深圳公共资源交易中心(深圳交易集团有限公司政府采购业务分公司)绑定深圳政府采购智慧平台用户(地址:深圳市福田区景田东路70号雅枫国际酒店北侧二楼市政府采购业务窗口服务大厅),再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。 四、提交投标文件截止时间、开标时间和地点 1.投标截止时间:所有投标文件应于2022年12月05日14时00分(北京时间)之前上传到深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)。具体操作为登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,用“【我的项目】→【项目流程】→【递交投标(应答)文件】”功能点上传投标文件。本项目电子投标文件最大容量为100MB,超过此容量的文件将被拒绝。 2.开标时间和地点:定于2022年12月05日14时00分(北京时间),在深圳政府采购智慧平台公开开标。供应商可以登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 3.在线解密:投标人须在开标当日14:00-14:30(北京时间)期间进行解密,逾期未解密的作无效处理。解密方法:登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,使用本单位制作电子投标文件同一个电子密钥,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件。 2.采购文件澄清/修改事项:2022年11月30日17时00分(北京时间)前,供应商如果认为采购文件存在不明确、不清晰和前后不一致等问题,可登录深圳公共资源交易中心网(http://zfcg.szggzy.com:8081/)→“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【提问】”功能点中填写需澄清内容。2022年12月02日17时00分(北京时间)前将采购文件澄清/修改情况在“【我的项目】→【项目流程】→【答疑澄清文件下载】”中公布,望投标人予以关注。 (重要提示:“提出采购文件澄清要求”不等同于“对采购文件质疑”,供应商提出的澄清要求内容如出现“质疑”字眼,将予以退回。供应商如认为采购文件存在限制性、倾向性、其权益受到损害,应在采购文件公布之日起七个工作日内以线下方式向我公司递交提出书面质疑函。根据《深圳经济特区政府采购条例》第四十二条“供应商投诉的事项应当是经过质疑的事项”的规定,未经正式质疑的,将影响供应商行使向财政部门提起投诉的权利。) 3.本招标公告及本项目招标文件所涉及的时间一律为北京时间。投标人有义务在招标活动期间浏览深圳公共资源交易网(www.szggzy.com),在深圳公共资源交易网上公布的与本次招标项目有关的信息视为已送达各投标人。 4.本项目不需要投标保证金。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南方科技大学 地 址:深圳市南山区西丽学苑大道1088号 联系方式:张老师 13910520071 2.采购代理机构信息 名 称:深圳市南科大资产经营管理有限公司 地 址:深圳市南山区学苑大道1001号南山智园A7栋11楼 联系方式:王老师 0755-88012180 3.项目联系方式 项目联系人:赵老师 电 话:0755-88012181 深圳市南科大资产经营管理有限公司 2022年11月21日 [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.pdf SZDL2022002186-A物理系激光-氧化-还原分子束外延联合系统采购项目采购公告.pdf [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.szczf 附录.中小企业及残疾人福利性单位相关文件.zip [SZDL2022002186-A]物理物理系激光-氧化-还原分子束外延联合系统采购项目.docx
  • 瞬态吸收光谱法测量极紫外自由电子激光脉冲的频率啁啾
    【研究背景】快速发展的自由电子激光(FEL)技术在高光子能量下产生了飞秒甚至阿秒的脉冲,使得X射线能够用于状态选择性和相敏多维光谱分析和相干控制。直接和常规测量现有的极紫外(XUV)和X射线自由电子激光脉冲的光谱相位是充分实现这种非线性相干控制概念的关键,以便为它们与物质的相互作用找到和设置最佳的脉冲参数。自放大自发辐射XUV/X射线自由电子激光脉冲的直接时间诊断工具是线性和角度条纹法,它对脉冲的时间形状(包括啁啾)非常敏感。这些方法依赖于一个时间同步且足够强的外场的可用性。诊断SASE辐射脉冲的时间结构的一个补充途径是测量电子束中FEL激光诱导的能量损失(例如使用X波段射频横向偏转腔(XTCAV)),从中可以重建XUV/X射线发射的时间剖面。对于种子自由电子激光脉冲,两个几乎相同的自由电子激光脉冲的产生及其XUV干涉图的评估允许其光谱时间内容的完整表征。在这项工作中,科学家提出了一种直接测量XUV-FEL频率啁啾的技术,而不依赖于任何额外的外场或种子多脉冲方案。由于所报道的技术提供了对XUV辐射光谱时间分布的目标访问,它是对FEL激光性能敏感的用户实验的原位诊断的理想方法。例如,在这里,我们实验观察到频率啁啾对自由电子激光脉冲能量的系统依赖性(增加啁啾以减少脉冲能量)。【成果简介】由最先进的自由电子激光器(FELs)产生的极紫外(XUV)和X射线光子能量的高强度超短脉冲正在给超快光谱学领域带来革命性的变化。为了跨越下一个研究前沿,精确、可靠和实用的光子工具对脉冲的光谱-时间特性的描述变得越来越重要。科学家提出了一种基于基本非线性光学的极紫外自由电子激光脉冲频率啁啾的直接测量方法。它在XUV纯泵浦探针瞬态吸收几何结构中实现,提供了自由电子激光脉冲时能结构的原位信息。利用电离氖靶吸光度随时间变化的速率方程模型,给出了直接从测量数据中提取和量化频率啁啾的方法。由于该方法不依赖于额外的外场,我们期望通过对FEL脉冲特性的原位测量和优化,在FEL中得到广泛的应用,从而使多个科学领域受益。【图文导读】图1:频率分辨等离子体选通原理图2:等离子体选通效应的数值模拟图3:通过瞬态吸收光谱测量XUV-FEL频率啁啾图4:频率啁啾特性,自由电子激光脉冲能量依赖性分析图5:色散对部分相干自由电子激光场的影响原文链接:Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy | Nature Communications
  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 太赫兹脉冲时域反射计系统在半导体行业的开发与应用
    1、前言随着半导体封装变得更小、集成度更高,使用非破坏性、高分辨率技术定位故障的能力变得越来越重要。对失效分析手段提出了挑战,故障高分辨率定位能力的需求逐渐增大。为满足这些要求,Advantest开发了TS9001TDR方案,该系统分析通过利用专有的短脉冲信号处理技术进行高分辨率时域反射测量(Time Domain Reflectometry, TDR),对先进半导体封装、电子元件和印刷电路板中的导线故障区域进行快速、高精度和无损分析。 2、主要应用以3D集成电路为代表的高密度集成电路中存在着无限小的布线结构,布线故障在封装、印刷电路板封装过程中频繁出现。检测故障点需要几十微米分辨率。由于上升时间(约20ps)和抖动(约1ps)的限制,传统示波器TDR方法的故障距离分辨率仍保持数百微米的分辨率。使用TS9001TDR系统可以准确分析各种尖端半导体封装的布线质量,如倒装芯片BGA、晶圆级封装和2.5D/3D IC封装,能够直接连接客户的射频探测系统,针对其设备形状和故障分析环境,实现高速、高分辨率的测量,提供灵活的解决方案。(1) 高度集成的集成电路封装故障分析1) 封装引线故障分析:确定引线故障点位于Si Interposer内还是封装内,识别故障是由预处理还是后处理中的因素引起的2) C4 Bump故障分析:利用测试回路确定和分析安装Si Interposer的条件,对测试回路的菊花链结构进行故障点分析,并对安装条件进行反馈3) TSV、Micro-Bump故障分析:识别层压芯片的故障层4) 印刷电路板PCB故障分析:识别PCB板中通孔和信号线的故障点3、原理与优势(1)原理与技术太赫兹脉冲时域反射计的原理参见上图。其利用两个的飞秒激光器分别泵浦光电导电线,产生高频的太赫兹脉冲信号。飞秒激光器的中心波长1550nm,脉冲宽度50fs。其中,一个飞秒激光器的重复频率50MHz,另一个激光器的重复频率稍有区别。采用两个激光器的重复频率稍有差别的缘由在于,利用两个激光器的差频延迟,可以实现高频太赫兹信号的产生和探测。其工作是高频太赫兹信号通过探针接触芯片的管脚,高频太赫兹信号在芯片封装的引线中传播。当芯片封装没有开断路时,高频太赫兹沿着引线向前传播;当芯片封装的引线等出现开路时,将反射回正峰脉冲信号;当芯片封装引线出现短路时,将反射回负峰脉冲信号。(2)技术优势为了识别故障点,常用的封装无损检测方法包括光发射显微镜(emission microscope)和示波器时域反射计(Time domain Reflectometry, TDR)等,但是这些无损检测方法受到时域信号抖动的限制(信号抖动约1ps),导致分辨率不高,不能定位微米级的失效位置,无法以高分辨率检测开路、短路故障。故亟需高分辨率时域反射计,以提供快速且精准的失效定位。Advantest通过独有的光学采样和电短脉冲生成技术,借助飞秒激光技术,产生抖动小于30fs的超短采样脉冲。可以实现5μm的故障定位分辨率。通过使用自动探针的自动触地功能,进行精确的可重复测量,具有更高精度和效率的故障位置测量。TS9001TDR系统通过自动探针和与CAD设计联动,实例分析芯片封装的引线开路和短路故障定位,可以直观快速定位芯片封装的故障点,实现先进封装的失效分析。4、国内外发展现状Advantest的TS9001TDR系统中采用两个超短脉冲激光器异步采样,采取异步采样技术可以使系统不再需要机械式的光学延迟线,并且具有超高速的信号扫描速度。是目前全球独一的技术,目前国内外没有同类设备。5、发展趋势随着晶圆代工制程不断缩小,摩尔定律逼近极限,先进封装是后摩尔时代的必然选择,3D封装迅猛发展。作为一种全新的实现定位方法,在未来的几年里,太赫兹TDR技术将继续保持高速发展的势头。随着关键技术的不断发展,相关产品的种类将越来越丰富,行业应用和相关配套服务也将越来越广泛。搭载脉冲电磁波产生和高速采样的超短脉冲光纤激光器的太赫兹TDR设备,有助于半导体3D封装的故障分析。 6、总结与展望 在实际芯片测量过程中,太赫兹脉冲信号耦合至芯片内部衰减较为严重,对于太赫兹脉冲的信噪比提出了很高的要求。为了进一步提高测量精度和芯片内的传输路径,提高信噪比是亟需攻克的问题。另外芯片内部的引线存在阻抗不匹配又没有完全开路的情况,对于这类Soft Open的芯片检测,TDR波形分析需要结合信号模拟仿真,增强对信号的解读。对于材料的吸收系数、折射率、介电常数等光谱特性,可以用太赫兹时域光谱仪表征,这也是爱德万测试太赫兹技术的核心应用。目前爱德万测试已经有太赫兹时域光谱成像系统,通过发射和接收时域太赫兹信号至样品,可以实现生物医学样品、食品农产品、化学品、复合材料、通讯材料等的光谱特性表征。(爱德万测试(中国)管理有限公司 供稿)
  • 光谱学技术获最新突破,利用阿秒激光爆发作为泵浦和探测脉冲
    近日,柏林的Max Born研究所、伦敦大学学院和匈牙利的ELI-ALPS研究所在共同参与的一个项目中,展示了一种利用阿秒激光爆发作为泵浦和探测脉冲的新型光谱学技术。据介绍,在正常运行的光谱学平台上使用这种短脉冲有助于研究复杂的光学过程,而该项目则主要是利用它来研究原子的非线性多光子电离过程。近日,相关成果发表在光学和光子学专业期刊Optica上。飞秒(1飞秒= 10-15秒)泵浦探针光谱技术彻底改变了人们对极快过程的理解。例如,如果一个分子的解离是由飞秒泵脉冲引发的,它可以使用延时飞秒探针脉冲来实时进行观察,捕捉分子的演化状态,从而得到记录分子解离细节过程的动态图像。1999年,这项强大的技术甚至被授予了诺贝尔化学奖。然而,自然界中的一些过程甚至更快,并且发生在阿秒的时间尺度上(1阿秒= 10-18秒)。到目前为止,阿秒泵浦阿秒探针光谱学已经被证明用于涉及两个光子吸收的相对简单的过程。然而,由于全阿秒泵浦-探测光谱非常具有挑战性,目前大多数得到实际应用的方法只使用一个阿秒脉冲泵(或探针),而另一个步骤则会使用飞秒脉冲。而在最新进展中,研究人员成功演示了一个泵-探针实验。在这个实验中,复杂的多光子电离过程使用了两个阿秒脉冲序列。这个实验需要产生非常强的阿秒脉冲,为此需要使用一个大型激光系统。同时,两个阿秒脉冲必须与阿秒时间和纳米空间稳定性重叠。考虑到这样大的挑战性,研究人员选择在马克斯波恩研究所(Max Born Institute)最大的实验室进行了上述这项实验。“原子和分子中的多电子动力学经常在亚秒至几飞秒的时间尺度上发生,”发表在Optica杂志上的论文中指出,“以前极端紫外(XUV)光子阿秒脉冲的可用强度允许对双光子、双电子相互作用进行时间分辨的研究。而最新的进展中,我们研究了氩原子的双电离和三电离,包括了多达5个XUV光子的吸收。”在以往的场景中,产生所需的强阿秒脉冲通常需要使用大型和强大的激光系统,幸而每个项目合作伙伴都在这一方面颇具优势。其中,极光基础设施阿秒光脉冲源(ELI-ALPS)研究中心正在开发一种价值600万欧元的激光器,旨在以1千赫兹的重复频率提供超过15太瓦的峰值功率,脉冲持续时间小于8飞秒。在新的研究中,两个阿秒脉冲串(APTs)与一个氩原子相互作用,吸收了四个光子,从而从原子中去除三个电子。根据该项目,有许多可能的方式来发生这种多光子吸收,要详细地找出电子是如何从原子中去除的,则需要改变两个阿秒脉冲之间的时间延迟,并观察产生了多少离子。结果表明,多光子吸收是分三步进行的:在前两步中,每一步都吸收一个光子;而在第三步中,两个光子同时被吸收。这些结果已经被计算机模拟所证实,并证明了强APTs的应用能够更好地理解复杂的多光子电离途径。据介绍,这项已开发的实验技术未来不仅可以用于研究原子中的复杂过程,还可以用于研究分子、固体和纳米结构。该项目还希望能进一步回答有关几个电子如何相互作用的问题,这有助于在最短的时间内理解最基本的过程。
  • 中科院物理所成功研制高精度脉冲升温-纳秒时间分辨中红外瞬态光谱仪
    &ldquo 十年磨一剑,不敢试锋芒,再磨十年剑,泰山石敢挡&rdquo 。每一位从事实验研究的科研人员都梦想手中有一把利器,能够和侠客一样在科学的天地里纵横天下,快意恩仇。然而当看准一个研究方向后,手头不可能都有现成的设备,尤其是遇到国外设有技术壁垒的时候。  5月27日,Review of Scientific Instruments 发表了中科院物理研究所软物质物理重点实验室翁羽翔研究组的一篇题为A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity的仪器研制论文,便是一项磨剑之作。  蛋白质的动态结构信息是理解其生物学功能的基础。为此国际上发展多种蛋白质动态结构的测量方法,各有千秋。脉冲升温-纳秒时间分辨瞬态红外光谱便是其中的一种,相比较而言,该方法的特点时具有高的时间分辨率。其中涉及的关键设备之一为可调谐连续工作中红外激光源,用于蛋白质二级结构变化的红外指纹光谱指认。由于其在军事用途方面的敏感性,在2009年之前一直属于对华出口限制物资。  翁羽翔研究组长期致力于脉冲升温纳秒时间分辨红外光谱技术的发展及其在蛋白质动态结构方面的应用研究。该课题组与大连理工大学于清旭教授开展长期合作,于2005年建立了基于国内一氧化碳气体中红外激光技术的宽谱带脉冲升温-时间分辨瞬态光谱仪(测量精度为千分之一的吸光度差10-3&Delta OD ,Chin. Phys. 2005, 14, 2484),并用于蛋白质动态结构的研究,取得了系列成果(Biophysical Journal, 2007,93, 2756-2766  2009, 97, 2811-2819  Scientific Reports, 2014, 4,4834)。在前期大量工作的基础上,该课题组意识到只有将已有设备的测量精度再提高一个数量级,即到达万分之一的吸光度差(10-4&Delta OD)之后才能满足普适性要求,由此对脉冲升温光源和一氧化碳气体红外激光光源提出更高的要求。  为此该课题组在2008年申请了中科院科研装备研制项目,提出研制新一代具有国际先进水平的脉冲升温-纳秒时间分辨中红外吸收差光谱仪 包括研制高稳定连续输出可调谐一氧化碳中红外激光探测光源,以及研制新型的脉冲激光加热光源,即空间模式稳定、输出能量稳定的纳秒调Q的Ho:YAG脉冲近红外激光光源(2.1微米,与安徽光机所吴先友研究员合作)。该设备对蛋白质细胞色素c的脉冲升温-时间分辨中红外光谱测量结果表明,在蛋白质酰胺I' 光谱范围(1600-1700 cm-1)内达到的平均测量精度为2× 10-4&Delta OD 。该指标目前领先于国际上同类设备。论文第一作者为物理所博士研究生李得勇,署名单位为中科院物理所,安徽光机所和大连理工大学,并申请了国家发明专利。  该工作的意义在于,通过对高性能设备的自主研发,不仅能够满足基础研究的需求,同时还带动了国内特种激光技术的发展。  此项工作得到了中科院科研装备研制项目和国家自然科学基金委的资助。  图例. 脉冲升温诱导的细胞色素c在重水中温度由25℃阶跃到35℃、温度跳跃2微秒后在酰胺I' 内的瞬态吸收谱。作为比较,实线为35℃和25℃间测得的傅里叶红外吸收差谱。
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 操控片上飞秒光脉冲传播的新方法
    随着高度集成化的纳米光子器件的发展,人们开始追求在更小空间尺度(如纳米尺寸)、更快时间尺度(如飞秒尺度)上灵活操纵片上光信号的方法。通过在纳米空间尺度和飞秒时间尺度上对光信号的操纵,不仅能够为光与物质相互作用的超快动力学过程研究提供新方法、新思路,还能为超高时空分辨的光学探测和成像,以及片上超快光信号处理、传输、精密波前调控和光谱测量提供有效的研究平台,因此在光子芯片器件、量子信息处理、光子神经网络与人工智能、超快光学波前测量等领域具有广泛应用前景。在空间尺度方面,近年来人们通过研究超材料、超表面等人工微纳结构来精确调控光波前,已经能够在纳米空间尺度上自由控制光信号的传播特性,例如让光信号沿着艾里光束的抛物线轨迹进行传播,应用于显微成像、光镊、光通信等领域。在时间尺度方面,传统的动态调控设备(如空间光调制器SLM)和动态调控材料(如电光材料)受制于材料的响应速度,难以达到飞秒量级。而随着飞秒激光脉冲整形技术的发展,频域调控逐渐成为超快时域调控的主要手段。将飞秒脉冲频域调控方法与人工微纳结构相结合,就有望实现极小时空尺度(飞秒时间尺度、纳米空间尺度)下的光场产生和调控,创造出很多新颖的时空光场并拓展新应用。深圳大学的袁小聪、闵长俊教授团队将脉冲频域调控与纳米结构空间调控相结合,提出了基于时空傅里叶变换(FT)的片上光脉冲调控方法,可用来操纵片上光脉冲的时空传播轨迹,让脉冲在不同时刻展现出不同的传播特性,从而使得极小时空尺度下的光场时空特性操控成为可能。FT作为一种常用的数学工具,已经被广泛应用于光学相关的应用中,如白光的光谱测量、脉冲整形和全息等。该团队研究发现,通过片上纳米聚焦结构调控空间域FT,可实现光场空间分布的构建;再通过光的色散效应来调控时域FT,可实现飞秒脉冲时域上的波前整形;最后将时空FT结合就有望同步调控飞秒脉冲传播的时空特性。为了验证这个方法,该团队以金属表面传播的表面等离激元(SPP)作为例子,理论研究了时空FT方法对飞秒SPP脉冲时空传播轨迹的调控效果。SPP作为一种可以突破光学衍射极限的光学表面波,不仅可以提供纳米尺度的空间分辨,还能够极大增强局域电磁场,因此被广泛应用于片上光子器件、光存储、光学传感、光镊、拉曼增强等领域。而由飞秒激光激发的飞秒SPP脉冲,同时具备纳米尺度的空间分辨能力与飞秒尺度的时间分辨能力,在极小时空尺度下的光场调控,以及光与物质相互作用的研究中具有重要价值。该团队基于金属膜上时空FT纳米结构的设计和入射光色散的调制,成功展示了多种新颖的时空光学效应,包括:将传统SPP聚焦形成的单个焦点逐步弯曲,形成一个环形分布的时空焦点;产生SPP-Airy脉冲并灵活控制其在不同时刻的传播方向,形成S形的时空传播路径(图1)。图1 时空傅里叶变换结构激发和调控飞秒SPP脉冲传播的示意图与传统片上光学调控方法只能调控空间、时间其中一个维度相比,这种时空FT方法提升了光脉冲调控的自由度,尤其在时域方面提供了更加出色的调控效果,为超快片上光学信息处理提供了新思路,在超快光子调控器件等领域有重要应用价值。
  • 科普干货!脉冲EPR技术在量子传感中的应用
    自量子力学创立以来,科学家通过对量子行为的研究,研发出了核磁共振成像、激光、半导体等在内的众多技术产品,对人类生活产生了重大影响。随着技术进步,第二次量子ge命蓬勃发展,利用量子精密测量技术实现的精密仪器使物理量的测量达到了前所未有的分辨率和灵敏度。何为量子传感器?CIQTEK量子传感器利用量子力学的原理和技术来测量一系列物理量。与经典传感器不同,量子传感器利用量子态的特殊性质(例如叠加态和纠缠态)来实现高精度、高灵敏度、高分辨率的测量。其测量的物理量包括磁场、电场、温度、压力、pH值、时间和频率等。此外,量子传感器还可以用于探测微小的物理效应,例如引力波、暗物质等,为天体物理等领域提供了新的测量手段。量子精密测量技术脉冲EPR技术简介CIQTEK脉冲电子顺磁共振 (pulsed EPR)是一种涉及到在恒定磁场中测量电子自旋净磁化矢量的磁共振技术。在实验中,通常施加一个短的振荡场(比如微波脉冲)来对电子自旋磁化矢量的状态进行扰动,然后测量由样品磁化产生的微波发射信号,再将微波信号通过傅立叶变换在频域中产生 EPR 频谱,从而可以获得有关顺磁性化合物的结构和动力学信息,电子自旋回波包络调制(ESEEM)或脉冲电子-核双共振(ENDOR)等脉冲 EPR 技术还可以揭示电子自旋与其周围核自旋的相互作用。与传统的连续波EPR(CW EPR)相比,脉冲EPR在控制和测量样品中的自旋态方面具有更高的灵活性和精度。脉冲EPR技术在量子传感中的应用CIQTEK在量子传感中,我们可以以电子自旋为探针,来探测核自旋的相关信息。基于脉冲EPR的弛豫测量和超精细光谱法可以识别顺磁粒子并对其浓度进行测量。其测量的原理为在脉冲EPR中,由于核自旋会影响电子自旋的T1(纵向弛豫时间)和T2(横向弛豫时间),浓度会影响电子自旋与核自旋的平均相互作用强度,从而影响电子自旋的弛豫时间。因此通过监测电子自旋的T1和T2的变化可以推断核自旋的浓度。同时,核自旋会调制电子自旋的进动频率,从而可通过电子自旋来对核自旋进行表征。Sun Lei课题组以有机量子比特的MOF材料(MgHOTP)为探针,通过电子与核之间的超精细耦合作用实现了室温下溶液相中离子的量子传感,可用于检测环境中的化学分析物(Li+、Na+)并对其进行定量分析。研究人员将有机自由基嵌入MOF骨架中,在实现室温可操作性的同时还能使有机量子比特与分析物通过吸附作用密切接触。图1基于MOFs中的有机自由基的室温量子传感。(a)将具有有机量子比特的MOF颗粒悬浮在待测分析物的溶液中。(b)化学分析物被吸附到MOF中,并通过超精细耦合与嵌入的自由基相互作用。(c)基于超精细光谱可以识别与自由基量子比特相互作用的原子核,并进一步对化学分析物进行量化。(J. Am. Chem. Soc. 2022, 144, 19008&minus 19016)MgHOTP中的自由基表现为电子自旋量子比特,其量子态可以被外部磁场部分极化,使用微波脉冲操控,并通过电子自旋回波读出。利用脉冲弛豫方法以及CP-ESEEM方法可对Li+进行检测并定量,检测范围为5*10-3 mol/L-0.5 mol/L。图2 室温下MgHOTP定量检测THF溶液中的Li+。(a) 不同[Li+]的LiClO4 THF溶液中MgHOTP的T1和Tm。(b) [Li+] = 2.0 mol/L的LiClO4 THF溶液中MgHOTP的部分时间域CP-ESEEM谱图。(c) 不同τ值下CP-ESEEM的二维光谱。(d) MgHOTP在含不同[Li+] LiClO4的THF溶液中的频域CP-ESEEM谱。(e) 2ω(7Li)/ 2ω(1H) ESEEM峰值比与[Li+]的关系。(f) MgHOTP在含0.1 mol/L NaClO4和不同浓度LiClO4的THF溶液中的频域CP-ESEEM谱。(J. Am. Chem. Soc. 2022, 144, 19008&minus 19016)国仪量子X波段脉冲式电子顺磁共振谱仪CIQTEK国仪量子X波段脉冲式电子顺磁共振谱仪EPR100是一款集连续波EPR、脉冲EPR、瞬态EPR为一体的多功能EPR谱仪,在支持连续波EPR实验的同时,还可实现弛豫时间测量、电子-电子双共振、电子-核双共振等多类型脉冲实验测试。国仪量子X波段脉冲式电子顺磁共振谱仪EPR100随着研发能力与产品工程化能力不断提升,国仪量子目前已推出具有核心自主知识产权,商用化的X波段电子顺磁共振波谱仪全系列产品:X波段脉冲式电子顺磁共振波谱仪EPR100、X波段连续波电子顺磁共振波谱仪EPR200-Plus、台式电子顺磁共振波谱仪EPR200M;并向前沿高端技术的高频谱仪进军,研发出了W波段脉冲式电子顺磁共振波谱仪EPR-W900。
  • 脉向成功,冲出未来之脉冲氙灯介绍
    许多前沿技术都在以全新的方式使用光子。无论是在3D打印、印刷电子、光伏、碳纤维铺放、金属沉积退火等领域,通常来讲——光或热的使用在这些领域中都是关键的生产工具。激光或气体烘箱的生产系统体积大、难以使用、且很昂贵。脉冲氙灯工艺技术的出现,极好的替代传统的处理方法。脉冲氙灯系统相对于激光和传统烘箱体积更小、使用更方便,脉冲氙灯系统让生产具有较大的灵活性。现在正是技术革新的时候了。脉冲氙灯是利用贮存的电能或化学能,在极短时间内发生高强度闪光的氙灯。19世纪50年代,脉冲光源进入工业领域。脉冲氙灯一般由密封在玻璃或石英玻璃体内的两个电极组成,壳体中充以氙等惰性气体。脉冲氙灯选择优质滤紫外线石英管作为灯管材料,以高质密度电极为氙灯电极,具有负载能力强,泵浦效率高,激光光束质量好,寿命长等特点。贺利氏脉冲氙灯系统的功能: 紫外到红外光谱 高峰值功率脉冲 - 兆瓦/平方厘米 (MW) 短脉冲持续时间 - 微秒 (us) 快速重复率 - 千赫(kHz) 即时开/关循环 不升温 —— 在低温基板上进行高温处理 综合能源监测 轻松更换灯泡 集成 QRC© 反射器,以获得最佳的能量传递 高吞吐量 可堆叠的光模块允许更大的曝光区域 灵活的操作软件 易于集成到外部系统 无毒(无汞) 您要想改进工艺流程,贺利氏特种光源是您理想的合作伙伴。我们擅长于灯管设计、精确控制、波长优化、光路设计、以及智能化加热。这些都能为您量身定制系统解决方案。想要知道脉冲氙灯工艺技术如何为您的应用带来效益,欢迎联系我们的工程师,一起讨论贺利氏如何让您“脉”向成功、“冲”出未来。 应用: 快速热处理(RTP) 强脉冲光烧结 退火 分子活化 太阳光模拟 加热 杀菌等 贺利氏特种光源拥有最先进的全自动激光灯生产线,在2015年获得“英国女王企业创新奖",自动化生产流程不仅显著提高了生产率,让生产更加灵活便捷,而且还能有效改善灯管的稳定性,极大地延长了使用寿命。而且我们始终和广大客户及研究机构通力合作,不断探索提高产品性能的新方法。贺利氏特种光源携手贺利氏石英玻璃业务部闪亮登场慕尼黑上海光博会(LASER WORLD of PHOTONICS CHINA),为您带来从原材料到光源的众多惊喜!同时欢迎您来我们的展台与光博士合影,丰富的抽奖活动等着您的参与! 欢迎大家跟我们的专家当面沟通,我们在N1馆1700展位恭候您的光临!
  • 中智科仪逐光IsCMOS像增强相机用于纳秒脉冲DBD在空气消毒领域的应用机理研究
    清华大学电机工程与应用电子技术系付洋洋老师团队利用逐光IsCMOS像增强相机进行大气压介质阻挡放电等离子体在空气消毒方面的应用研究,相关成果近期以“Air disinfection by nanosecond pulsed DBD plasma”为题发表在“Journal of Hazardous Materials”期刊上。   1、研究背景   在公共场所的空气消毒应用中,大气压介质阻挡放电(dielectric barrier discharge,DBD)等离子体是一种新兴且有前景的技术。放电电源是其中的关键因素,但其对等离子体空气消毒性能的影响尚不清楚。   作者采用纳秒脉冲电源驱动一种新型光栅式DBD阵列,实现快速单次通过空气消毒。揭示了脉冲参数和环境因素对放电特性和单次细菌灭活效率的影响。为纳秒脉冲DBD的放电特性和空气消毒研究提供了基础认知。   文中给出了两个可能的评估参数:   1. 特定输入能量(Specific Input Energy,SIE),定义为单位体积的气体接受到的放电能量。   2. Z值,定义为使微生物存活率下降一个数量级所需的特定输入能量SIE。Z值越小,意味着消灭同样数量的微生物所需的能量越小。   2、实验装置和材料   实验装置部分是用于测试DBD等离子体对细菌气溶胶单次通过灭活效率的通风管道系统,以下为该系统各部分的说明。   1. 通风管道:在气溶胶入口前增加了一个可调节的管道加热器(0-1200 W),用以瞬间加热入口空气,探究在仅加热或“加热+等离子体”条件下气流温度对等离子体放电特性和细菌气溶胶存活特性的影响。   2. 温度和湿度监测:在加热器出口后安装了温度计,同时在等离子体反应器前后放置了两个温湿度计,用以监测气流的温度和相对湿度。   3. 气流速度:使用风速计测量反应器前的空气面速度(vin),在实验中固定为1米/秒,总流量为40立方米/小时。   4. DBD反应器:建立了一个垂直型光栅式DBD反应器,其电极被石英管包围,交替连接到高压和地线产生等离子体阵列。反应器内部空气通过尺寸为85×85平方毫米,有16个空气间隙。   5. 电源激发:DBD由单极纳秒脉冲源或交流电源激发,测量了电压和电流波形。   6. 放电功率和臭氧浓度:计算了脉冲DBD的平均放电功率,并使用臭氧分析仪测量了臭氧浓度。   7. 光学诊断:使用光谱仪(MX2500+, 海洋光学)记录等离子体的光发射光谱,并使用逐光IsCMOS像增强相机(TRC411-H20-U,中智科仪)和变焦镜头对等离子体进行了成像,以探测放电区域形成的激发的物质种类,确定放电均匀性。   图1 光栅式DBD反应器测试系统示意图   实验装置的设计允许研究者控制和监测影响DBD等离子体放电和细菌灭活效率的关键参数,如气流速度、温度、湿度和电源类型。   3、实验结果和讨论   为了比较由脉冲源驱动的DBD与交流(AC)源的电气参数和光发射信号,保持了气流速率、湿度和放电功率尽可能相同。脉冲电压的基本参数包括脉冲上升时间(tr)、宽度(tw)、下降时间(tf)、频率(f)和电压幅度(Vp),而交流电压包括电压频率(f)和幅度(Vp)。   将电压频率固定在5 kHz,vin为1 m/s,RH在15-17%。脉冲参数如下:tr = tf = 50 ns,tw = 100 ns,Vp约为14 kV。为了保持与脉冲源相当的放电功率34-35 W,将交流源的电压幅度调整为10.75 kV。   图2   图2 共对7个气隙进行了成像,并给出了第3个气隙的线发射密度。(a)脉冲源和(b)交流源的放电图像比较,交流源和脉冲源的线平均强度分别为135.6和175.5 a.u.(相对单位) 。注意:气隙旁边的光是由透明石英管的光折射和反射产生的。对于两种光源,曝光时间固定为200 μs(一个周期)。以上等离子体图像由中智科仪IsCMOS相机拍摄。   为了可视化放电的空间分布,应用了短曝光成像。曝光时间固定在200 μs,对应一个周期,成像区域为45 × 30.5 平方毫米,包括总共七个空气间隙。如图2(a)所示,对于交流DBD,放电丝非常明显,几乎均匀分布在空气间隙中,间隔约1 mm。与此同时,脉冲DBD的放电更加均匀,但整体发射强度似乎更弱(图2(b))。   以第三个间隙为例,图3显示了间隙中心线和线平均强度的发射强度。尽管单个放电丝的最大强度更高,但对于交流源,放电丝更稀疏。结果,平均发射强度比脉冲源低22.7%,这与光谱仪测量结果一致。   4、结论   研究发现,通过提高电压幅度、缩短脉冲上升时间以及增加气流湿度和温度,可以增强光栅式DBD的单脉冲放电能量。相反,提高频率则会降低放电能量。这些发现与先前关于脉冲放电的报告一致。比较了脉冲源和交流源消灭微生物的性能。脉冲源在低频率(1 kHz)下产生的Z值低于交流源,但在某些情况下略高。这表明脉冲源在特定条件下可能更优。建议将特定输入能量(SIE)作为基于等离子体的空气消毒的剂量参数,而Z值主要取决于湿度。该研究提供了纳秒脉冲DBD等离子体空气消毒特性的基础认识,为供暖、通风和空调系统中的高效节能空气消毒提供了理论和工程基础。      免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。   5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 中国科学院光电技术研究所800.00万元采购激光脉冲沉积
    详细信息 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2)公开招标公告 四川省-成都市-武侯区 状态:公告 更新时间: 2022-09-24 招标文件: 附件1 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2)公开招标公告 2022年09月23日 17:54 公告信息: 采购项目名称 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2) 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 中国科学院光电技术研究所 行政区域 成都市 公告时间 2022年09月23日 17:54 获取招标文件时间 2022年09月23日至2022年10月08日每日上午:9:00 至 12:00 下午:13:30 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 开标时间 2022年10月17日 14:00 开标地点 四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 预算金额 ¥800.000000万元(人民币) 联系人及联系方式: 项目联系人 万女士 项目联系电话 028-86623861转8038 采购单位 中国科学院光电技术研究所 采购单位地址 中国四川省成都双流西航港光电大道1号 采购单位联系方式 戴老师,028-85100314 代理机构名称 五矿国际招标有限责任公司 代理机构地址 北京市海淀区三里河路5号五矿大厦D座二层,四川分公司地址:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 代理机构联系方式 万女士,028-86623861转8038 附件: 附件1 采购需求包2.docx 项目概况 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2) 招标项目的潜在投标人应在四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室获取招标文件,并于2022年10月17日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0716-224SCC911581 项目名称:中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2) 预算金额:800.0000000 万元(人民币) 最高限价(如有):785.0000000 万元(人民币) 采购需求: 序号 设备名称 数量 买方名称 交货地点 交货期 1 分子束外延生长设备 1套 中国科学院光电技术研究所 中国四川省成都双流西航港光电大道1号 合同签订后12个月内 合同履行期限:合同签订后12个月内 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:1)如果投标人按照合同提供的货物不是投标人自己制造的,投标人应得到:A、货物制造商或货物制造商在中国地区合法授权机构同意其在本次投标中提供该货物的正式授权书原件(格式见《招标文件》第一册格式Ⅳ-9-4),或;B、中国区总代理同意其在本次投标中提供该货物的正式授权书原件(格式见《招标文件》第一册格式Ⅳ-9-4),同时还须提供货物制造商对中国区总代理的授权书复印件,或;C、项目所在区域代理同意其在本次投标中提供该货物的正式授权书原件(格式见《招标文件》第一册格式Ⅳ-9-4),同时还须提供货物制造商对项目所在区域代理的授权书复印件,或货物制造商对中国区总代理的授权书复印件及中国区总代理对项目所在区域代理的授权书复印件。2)国内的投标人需提供工商行政管理局认定的企业营业执照副本(复印件)。3)投标人应具备同类分子束外延生长设备在中国境内≥5台的销售业绩,并提供销售合同及验收报告,具备同类分子束外延生长设备在全球≥10台的销售业绩,并提供真实有效的客户清单,如后续验证业绩虚假,取消中标资格。4)投标人应当提供开标日前3个月内由其开立基本账户的银行开具的银行资信证明原件或复印件。5)其它资格证明文件:A.投标人自己具有能接收外币的银行账户,并提供承诺书,同时在承诺书中提供账户账号等信息。B.提供承诺书(详见附件2),承诺投标人、投标产品制造商与招标人不存在影响招标公正性的利害关系;投标人未参与项目前期咨询及招标文件编制工作;投标人与其他投标人单位负责人不为同一人、也不存在控股、管理关系。 三、获取招标文件 时间:2022年09月23日 至 2022年10月08日,每天上午9:00至12:00,下午13:30至17:00。(北京时间,法定节假日除外) 地点:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 方式:邮件报名(请将报名资料以扫描件的形式发送至电子邮箱:swtendering@126.com,并在邮件中注明联系方式)。获取招标文件时,投标人为法人或者其他组织的,只需提供单位介绍信、经办人身份证明、标书款付款凭证;投标人为自然人的,只需提供本人身份证明、标书款付款凭证。本项目标书款不收取现金,投标人须将标书款转账至我分公司账户,账户信息如下:公司名称:五矿国际招标有限责任公司四川分公司 账户:中国工商银行北京首都体育馆支行 账号:9558 8502 0000 0601 208。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年10月17日 14点00分(北京时间) 开标时间:2022年10月17日 14点00分(北京时间) 地点:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目采购产品为进口机电产品,采用国际招标的方式进行采购,公告内容以机电产品招标投标电子交易平台上的内容为准。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院光电技术研究所 地址:中国四川省成都双流西航港光电大道1号 联系方式:戴老师,028-85100314 2.采购代理机构信息 名 称:五矿国际招标有限责任公司 地 址:北京市海淀区三里河路5号五矿大厦D座二层,四川分公司地址:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 联系方式:万女士,028-86623861转8038 3.项目联系方式 项目联系人:万女士 电 话: 028-86623861转8038 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光脉冲沉积 开标时间:2022-10-17 14:00 预算金额:800.00万元 采购单位:中国科学院光电技术研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:五矿国际招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2)公开招标公告 四川省-成都市-武侯区 状态:公告 更新时间: 2022-09-24 招标文件: 附件1 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2)公开招标公告 2022年09月23日 17:54 公告信息: 采购项目名称 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2) 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 中国科学院光电技术研究所 行政区域 成都市 公告时间 2022年09月23日 17:54 获取招标文件时间 2022年09月23日至2022年10月08日每日上午:9:00 至 12:00 下午:13:30 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 开标时间 2022年10月17日 14:00 开标地点 四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 预算金额 ¥800.000000万元(人民币) 联系人及联系方式: 项目联系人 万女士 项目联系电话 028-86623861转8038 采购单位 中国科学院光电技术研究所 采购单位地址 中国四川省成都双流西航港光电大道1号 采购单位联系方式 戴老师,028-85100314 代理机构名称 五矿国际招标有限责任公司 代理机构地址 北京市海淀区三里河路5号五矿大厦D座二层,四川分公司地址:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 代理机构联系方式 万女士,028-86623861转8038 附件: 附件1 采购需求包2.docx 项目概况 中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2) 招标项目的潜在投标人应在四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室获取招标文件,并于2022年10月17日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0716-224SCC911581 项目名称:中国科学院光电技术研究所2022年度国家重点实验室专项采购项目(第一批)(包2) 预算金额:800.0000000 万元(人民币) 最高限价(如有):785.0000000 万元(人民币) 采购需求: 序号 设备名称 数量 买方名称 交货地点 交货期 1 分子束外延生长设备 1套 中国科学院光电技术研究所 中国四川省成都双流西航港光电大道1号 合同签订后12个月内 合同履行期限:合同签订后12个月内 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:1)如果投标人按照合同提供的货物不是投标人自己制造的,投标人应得到:A、货物制造商或货物制造商在中国地区合法授权机构同意其在本次投标中提供该货物的正式授权书原件(格式见《招标文件》第一册格式Ⅳ-9-4),或;B、中国区总代理同意其在本次投标中提供该货物的正式授权书原件(格式见《招标文件》第一册格式Ⅳ-9-4),同时还须提供货物制造商对中国区总代理的授权书复印件,或;C、项目所在区域代理同意其在本次投标中提供该货物的正式授权书原件(格式见《招标文件》第一册格式Ⅳ-9-4),同时还须提供货物制造商对项目所在区域代理的授权书复印件,或货物制造商对中国区总代理的授权书复印件及中国区总代理对项目所在区域代理的授权书复印件。2)国内的投标人需提供工商行政管理局认定的企业营业执照副本(复印件)。3)投标人应具备同类分子束外延生长设备在中国境内≥5台的销售业绩,并提供销售合同及验收报告,具备同类分子束外延生长设备在全球≥10台的销售业绩,并提供真实有效的客户清单,如后续验证业绩虚假,取消中标资格。4)投标人应当提供开标日前3个月内由其开立基本账户的银行开具的银行资信证明原件或复印件。5)其它资格证明文件:A.投标人自己具有能接收外币的银行账户,并提供承诺书,同时在承诺书中提供账户账号等信息。B.提供承诺书(详见附件2),承诺投标人、投标产品制造商与招标人不存在影响招标公正性的利害关系;投标人未参与项目前期咨询及招标文件编制工作;投标人与其他投标人单位负责人不为同一人、也不存在控股、管理关系。 三、获取招标文件 时间:2022年09月23日 至 2022年10月08日,每天上午9:00至12:00,下午13:30至17:00。(北京时间,法定节假日除外) 地点:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 方式:邮件报名(请将报名资料以扫描件的形式发送至电子邮箱:swtendering@126.com,并在邮件中注明联系方式)。获取招标文件时,投标人为法人或者其他组织的,只需提供单位介绍信、经办人身份证明、标书款付款凭证;投标人为自然人的,只需提供本人身份证明、标书款付款凭证。本项目标书款不收取现金,投标人须将标书款转账至我分公司账户,账户信息如下:公司名称:五矿国际招标有限责任公司四川分公司 账户:中国工商银行北京首都体育馆支行 账号:9558 8502 0000 0601 208。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年10月17日 14点00分(北京时间) 开标时间:2022年10月17日 14点00分(北京时间) 地点:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目采购产品为进口机电产品,采用国际招标的方式进行采购,公告内容以机电产品招标投标电子交易平台上的内容为准。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院光电技术研究所 地址:中国四川省成都双流西航港光电大道1号 联系方式:戴老师,028-85100314 2.采购代理机构信息 名 称:五矿国际招标有限责任公司 地 址:北京市海淀区三里河路5号五矿大厦D座二层,四川分公司地址:四川省成都市武侯区武侯大道顺江段77号汇点广场(武侯吾悦广场)3号楼13楼1319-1328室 联系方式:万女士,028-86623861转8038 3.项目联系方式 项目联系人:万女士 电 话: 028-86623861转8038
  • 新型脉冲电源通过测试
    7月7日,国家重大科技基础设施强流重离子加速器(HIAF)增强器BRing二极铁首台电源暨国家重点研发计划“大科学装置前沿研究”非谐振快上升速率磁铁电源测试总结会在甘肃省天水市召开。由中国科学院近代物理研究所等单位研制的国际首台大型非谐振全储能快循环脉冲电源通过专家组现场测试。  强流重离子加速器装置是中国科学院近代物理研究所主持建造的国家重大科技基础设施,其中增强器BRing是HIAF装置最核心的组成部分。BRing要求电源输出3900安培的大电流、15兆伏安峰值功率、高达38000安培每秒电流上升速率,以及17—4800伏的极宽动态工作范围和小于200毫安的输出精度。BRing二极铁电源特殊的脉冲工作模式会在电流脉冲波形上升段和下降段产生极大能量吞吐,对电网产生巨大冲击,给电源系统设计提出了前所未有的挑战。  针对上述难点,中国科学院近代物理研究所加速器团队创新性地提出了一种非谐振变前励全储能解决方案。该团队经过4年半集中攻关,解决了41个技术问题,在4项核心技术难题上取得了突破,解决了大功率快循环脉冲电源对电网周期性强冲击和极宽电压范围下的高精度输出指标要求等问题。该电源进入批量生产阶段后,又不断迭代优化工艺方案,实现了电源的模块化、集成化和标准化设计,大幅度提升了电源的可靠性、可维护性和电磁兼容性。7月7日,该电源批量生产阶段的首台电源产品下线,并通过了专家组现场测试,标志着强流重离子加速器的建设又迈出了坚实一步。  大功率非谐振变前励全储能脉冲电源的研制成功,使得大型加速器绿色低碳运行成为可能,在重离子治癌装置及其他应用场合有广泛应用前景,为世界大型加速器特种脉冲电源提供了一种新的实现方案。
  • 我国科学家实现储存环单束团流强高于20mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。   上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。   快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。   此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 发布SURRC 脉冲光激发光辐照食品筛查系统新品
    北京冠远科技有限公司产品【SURRC 脉冲光激发光辐照食品筛查系统】与其它辐照食品检测方法相比,该方法有许多突出优点:  1、样品无需前处理——绝大多数样品(粉状和颗粒)取样后放入培养皿中即可测量。  2、操作简单——仅需15-60秒就可得到结果。  3、准确率高——以辐照过的草药和香料为例,一次检测正确率在95%以上。  4、适用面广——绝大多数的食品均可检测,是所有辐照食品检测方法中适用最广的一种。  5、清洁环保——无需任何化学试剂。  6、节省开支——由于无需样品前处理及试剂,日常检测费用很低。  7、携带方便——便于现场测量或不同实验室之间共用。 [主要技术参数](注:此为单机操作模式的预设参数,对于电脑操作模式可以自定义参数) 系统背景(20°C),典型值:50 cps 最大值:150 cps 脉冲开关周期:15 us 预载入计数:256 counts 中间值阈值:768 counts 阳性阈值:4096 counts 预设测试周期:15 s该仪器有两种操作模式可以选择: 筛查模式——根据设定好的阈值及时间参数,将样品放入样品室后只需轻轻按一下测试按钮,15秒即可给出结果。筛查模式无需连接电脑。非常适合对常规样品的例行快速检测。 与电脑连接使用——当与电脑连接使用时,可以通过软件自定义测量参数(例如测量时间、阈值标准和数据记录条件等等),可以获得样品具体的光子计数,可以测定暗计数(无光刺激时样品室的光子计数率)、空室计数(吴样品时的计数率,以了解样品室是否污染),以及光电倍增管灵敏度测试等等。并可以对筛查结果不确定的样品进行校正PSL测定等等。   北京冠远科技有限公司产品线有效覆盖石化、橡胶、炭黑、生命科学、化工工业、医药、政府、教育、环境、医药、食品、农业、钢铁、能源、电力等众多领域。 公司全面致力于为用户提供以技术应用为中心的解决方案,除为用户提供产品外,我们同时提供完善的售后服务和技术支持。创新点:该仪器有两种操作模式可以选择:筛查模式——根据设定好的阈值及时间参数,将样品放入样品室后只需轻轻按一下测试按钮,15秒即可给出结果。筛查模式无需连接电脑。非常适合对常规样品的例行快速检测。与电脑连接使用——当与电脑连接使用时,可以通过软件自定义测量参数(例如测量时间、阈值标准和数据记录条件等等),可以获得样品具体的光子计数,可以测定暗计数(无光刺激时样品室的光子计数率)、空室计数(吴样品时的计数率,以了解样品室是否污染),以及光电倍增管灵敏度测试等等。并可以对筛查结果不确定的样品进行校正PSL测定等等。 SURRC 脉冲光激发光辐照食品筛查系统
  • 上海光源实现储存环单束团流强高于20 mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20 mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。 图1. 超导三次谐波腔的安装、就位和带束调试图2. 单脉冲X射线超快成像在激光加载后不同时刻(15 μs、20 μs、30 μs、40 μs、50 μs)获得的水中气泡的瞬态图像并观测到气泡中的射流现象上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2 K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。图3. 快速X光成像线站实验站图4. 研制的单脉冲超快X射线成像探测器。(a)研制的大数值孔径三镜头双路光学转换系统,与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器;(b)研制的大数值孔径三镜头双路光学转换系统,与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器图5. 基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,两幅图像之间最短时间间隔为1.44 μs此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 上海瞬渺光电成功举办超短脉冲测量(FROG+GRENOUILLE)技术研讨会
    2014 年 7 月 18 日,超短脉冲测量技术研讨会在北京物科宾馆举办。本次研讨会聚集了来自北京的众多光学专家和研究者。会议期间,瞬渺光电公司相关产品应用工程师就产品性能及主要应用:如传统 FROG、新型标准化 GRENOUILLE、及其应用如 fs 脉冲测量、空间啁啾和前沿倾斜测量、双脉冲及其他复杂脉冲信号测量与紫外光,超弱荧光(aJ)等方面的应用做了重点介绍。共有约 20 名来自北大、清华、北工大和相关研究所的光学研究者参加了这次研讨会,大家就各自感兴趣的领域踊跃发言提问,相互交流,进一步认识了产品性能,深入了解产品应用,取得了很好的效果。与会者普遍反映,通过此次技术报告会,对超短脉冲测量仪 FROG 及 GRENOUILLE 的产品性能和应用有了更全面深入的了解, 对各自的研究应用很有帮助。图为上海瞬渺技术工程师讲解超短脉冲测量技术上海瞬渺光电技术有限公司成立于 2004 年,坐落于国家级航天科技城--上海莘庄工业园区.主要从事国际知名品牌激光、光电子、光机械、光学仪器和光纤通讯等光电产品的设计、 引进、咨询和经销。团队的核心成员具有 10 年以上的激光光电子领域工作经验,早在 2005年我们就开始立足为客户提供专业级光电实验室解决方案,公司有多名来自知名高校研究所的技术中坚, 加之具有多年丰富商务经验的销售,采购,财务人员.我们坚信我们的服务能让光电领域的科研人员满意.经过数年的勤奋创新,目前已经成为中国最大的光电产品一站式服务供应商之一.上海瞬渺光电技术有限公司Rayscience Optoelectronic Innovation地址: 上海市闵行区都会路 2338 号总部一号 21 号楼 5 楼邮编:201108电话:021-34635258/59/61/62传真:021-34635260邮件:saleschina@rayscience.com网址:www.rayscience.com
  • 中国科学院苏州纳米技术与纳米仿生研究所550.00万元采购激光脉冲沉积
    详细信息 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目公开招标公告 江苏省-苏州市 状态:公告 更新时间: 2024-02-14 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目公开招标公告 2024年02月08日 12:18 公告信息: 采购项目名称 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目 品目 货物/设备/仪器仪表/其他仪器仪表 采购单位 中国科学院苏州纳米技术与纳米仿生研究所 行政区域 江苏省 公告时间 2024年02月08日 12:18 获取招标文件时间 2024年02月08日至2024年02月21日每日上午:9:00 至 12:00 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层 开标时间 2024年02月29日 13:30 开标地点 中国科学院苏州纳米技术与纳米仿生研究所A415会议室 预算金额 ¥550.000000万元(人民币) 联系人及联系方式: 项目联系人 郭宇涵、王军、李雯 项目联系电话 010-68290599 采购单位 中国科学院苏州纳米技术与纳米仿生研究所 采购单位地址 苏州工业园区若水路398号 采购单位联系方式 俞老师、赵老师;0512-62872525 代理机构名称 东方国际招标有限责任公司 代理机构地址 北京市海淀区丹棱街1号互联网金融中心20层 代理机构联系方式 郭宇涵、王军、李雯; 010-68290599, 010-68290530 附件: 附件1 1026.pdf 项目概况 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目 招标项目的潜在投标人应在www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层获取招标文件,并于2024年02月29日 13点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G240661026 项目名称:中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目 预算金额:550.000000 万元(人民币) 最高限价(如有):550.000000 万元(人民币) 采购需求: 包号 货物名称 数量 (套) 是否允许采购进口产品 采购预算 1 原位Mask器件级图案化分子束外延设备 1 否 550万元 合同履行期限:合同签订后6个月内交货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小微企业、监狱企业、残疾人福利性单位采购的项目 3.本项目的特定资格要求:1) 投标人须符合《中华人民共和国政府采购法》第二十二条的规定;(具体为供应商参加政府采购活动应当具备下列条件:(一)具有独立承担民事责任的能力;(二)具有良好的商业信誉和健全的财务会计制度;(三)具有履行合同所必需的设备和专业技术能力;(四)有依法缴纳税收和社会保障资金的良好记录;(五)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(六)法律、行政法规规定的其他条件。)2) 投标人须在中华人民共和国境内合法注册、有法人资格并符合工商局或相关行业主管部门核准的经营范围或经营许可;3) 投标人按照招标公告要求购买了招标文件;4) 投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。5) 为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;6) 投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;7)本项目不接受联合体投标 三、获取招标文件 时间:2024年02月08日 至 2024年02月21日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层 方式:登录“东方招标平台”http://www.oitccas.com注册并购买 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年02月29日 13点30分(北京时间) 开标时间:2024年02月29日 13点30分(北京时间) 地点:中国科学院苏州纳米技术与纳米仿生研究所A415会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交地点:中国科学院苏州纳米技术与纳米仿生研究所A415会议室 2、招标文件采用网上电子发售购买方式: 1)登陆 东方招标 平台(http://www.oitccas.com/),点击 获取采购文件 链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 2)投标人可以电汇的形式支付标书款、保证金(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 3)投标人应在平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在平台上登记的电子邮箱,投标人自行下载打印。 3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 4、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院苏州纳米技术与纳米仿生研究所 地址:苏州工业园区若水路398号 联系方式:俞老师、赵老师;0512-62872525 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区丹棱街1号互联网金融中心20层 联系方式:郭宇涵、王军、李雯; 010-68290599, 010-68290530 3.项目联系方式 项目联系人:郭宇涵、王军、李雯 电 话: 010-68290599 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光脉冲沉积 开标时间:2024-02-29 13:30 预算金额:550.00万元 采购单位:中国科学院苏州纳米技术与纳米仿生研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:东方国际招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目公开招标公告 江苏省-苏州市 状态:公告 更新时间: 2024-02-14 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目公开招标公告 2024年02月08日 12:18 公告信息: 采购项目名称 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目 品目 货物/设备/仪器仪表/其他仪器仪表 采购单位 中国科学院苏州纳米技术与纳米仿生研究所 行政区域 江苏省 公告时间 2024年02月08日 12:18 获取招标文件时间 2024年02月08日至2024年02月21日每日上午:9:00 至 12:00 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层 开标时间 2024年02月29日 13:30 开标地点 中国科学院苏州纳米技术与纳米仿生研究所A415会议室 预算金额 ¥550.000000万元(人民币) 联系人及联系方式: 项目联系人 郭宇涵、王军、李雯 项目联系电话 010-68290599 采购单位 中国科学院苏州纳米技术与纳米仿生研究所 采购单位地址 苏州工业园区若水路398号 采购单位联系方式 俞老师、赵老师;0512-62872525 代理机构名称 东方国际招标有限责任公司 代理机构地址 北京市海淀区丹棱街1号互联网金融中心20层 代理机构联系方式 郭宇涵、王军、李雯; 010-68290599, 010-68290530 附件: 附件1 1026.pdf 项目概况 中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目 招标项目的潜在投标人应在www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层获取招标文件,并于2024年02月29日 13点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G240661026 项目名称:中国科学院苏州纳米技术与纳米仿生研究所原位Mask器件级图案化分子束外延设备采购项目 预算金额:550.000000 万元(人民币) 最高限价(如有):550.000000 万元(人民币) 采购需求: 包号 货物名称 数量 (套) 是否允许采购进口产品 采购预算 1 原位Mask器件级图案化分子束外延设备 1 否 550万元 合同履行期限:合同签订后6个月内交货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小微企业、监狱企业、残疾人福利性单位采购的项目 3.本项目的特定资格要求:1) 投标人须符合《中华人民共和国政府采购法》第二十二条的规定;(具体为供应商参加政府采购活动应当具备下列条件:(一)具有独立承担民事责任的能力;(二)具有良好的商业信誉和健全的财务会计制度;(三)具有履行合同所必需的设备和专业技术能力;(四)有依法缴纳税收和社会保障资金的良好记录;(五)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(六)法律、行政法规规定的其他条件。)2) 投标人须在中华人民共和国境内合法注册、有法人资格并符合工商局或相关行业主管部门核准的经营范围或经营许可;3) 投标人按照招标公告要求购买了招标文件;4) 投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。5) 为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;6) 投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;7)本项目不接受联合体投标 三、获取招标文件 时间:2024年02月08日 至 2024年02月21日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层 方式:登录“东方招标平台”http://www.oitccas.com注册并购买 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年02月29日 13点30分(北京时间) 开标时间:2024年02月29日 13点30分(北京时间) 地点:中国科学院苏州纳米技术与纳米仿生研究所A415会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交地点:中国科学院苏州纳米技术与纳米仿生研究所A415会议室 2、招标文件采用网上电子发售购买方式: 1)登陆 东方招标 平台(http://www.oitccas.com/),点击 获取采购文件 链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 2)投标人可以电汇的形式支付标书款、保证金(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 3)投标人应在平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在平台上登记的电子邮箱,投标人自行下载打印。 3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 4、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院苏州纳米技术与纳米仿生研究所 地址:苏州工业园区若水路398号 联系方式:俞老师、赵老师;0512-62872525 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区丹棱街1号互联网金融中心20层 联系方式:郭宇涵、王军、李雯; 010-68290599, 010-68290530 3.项目联系方式 项目联系人:郭宇涵、王军、李雯 电 话: 010-68290599
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 填补空白!中智科仪发布数字脉冲延迟发生器“STC810”
    导读:中智科仪(北京)科技有限公司最近成功自主研发出STC810八通道数字延迟脉冲发生器,该产品以10ps延迟精度和35ps超低抖动性能脱颖而出,打破了国外技术垄断,为我国高端科研仪器自主创新树立了里程碑。STC810拥有8个独立高精度延时通道,采用了软件、触屏和旋钮操控模式相结合,同时配备多功能接口以适应多元化需求。这一技术突破填补了国内关键设备空白,极大提振了我国自主创新信心。STC810的成功为我国科技自主发展树立了榜样,鼓舞着更多企业积极从事科技创新,共同推动我国科研装备产业向更高层次迈进。正文:在当前信息化、智能化社会中,精准的时间和信号控制技术作为众多高科技领域发展的基石,在通信、雷达探测、医学成像等重要应用中发挥着不可或缺的作用。然而,在我国市场上,高端数字延时脉冲发生器这一关键设备长期以来被美国厂家的数字延迟脉冲发生器所主导。虽然国内部分企业也投入研发同类型产品,但在核心技术指标上,如延时精度与外触发抖动等方面仍难以达到与该厂家相媲美的水平。然而,为打破国际垄断局面,实现高端数字仪器设备国产化替代的目标,中智科仪(北京)科技有限公司的研发团队历经艰辛攻关,成功推出了自主研发的台式数字延迟脉冲发生器——STC810。这款专为科研工作者精心打造的产品,在性能和人机交互体验方面都取得了显著的进展。中智科仪自主研发的STC810八通道数字延迟脉冲发生器,内置八个独立可调延时输出通道,使用户能够轻松灵活地调节延迟时间、脉冲宽度以及频率等多种参数,以满足多元化应用场景需求。在核心性能方面,STC810以卓越的10ps延时精度挑战,同时将外触发抖动降低至35ps,达到了国际一流水准,充分体现了我国在该领域的自主研发实力和技术进步。STC810摒弃了传统的数码管显示模式,采用了先进的彩色触摸屏界面设计,大大提升了操作便捷性和直观性,使得实验过程中的参数设置更为高效、准确。通过自主研发的智能软件控制系统,STC810进一步简化了实验操作流程,无论是调整延迟、设置脉冲宽度还是频率,都能迅速响应,从而极大地提高了科研工作的效率。值得一提的是,STC810还具备分频处理功能,能在外部触发模式下实现70纳秒内的超短内置延迟,并支持低至0.25V的触发阈值,兼容上升沿和下降沿触发,同时适应高阻抗和低阻抗环境下的稳定运行。通过多功能输出端口的设计,确保了STC810能够在各种复杂的应用场景下发挥出色作用,真正实现了与国际标准比肩的精准同步延时能力。为了全面剖析“STC810”八通道数字延迟脉冲发生器的研发历程、技术创新及市场前景,我们特意与中智科仪(北京)科技有限公司的研发部负责人进行了一场深度对话,共同探讨了国产同类产品目前所遭遇的挑战以及蕴含的发展机遇。通过深入挖掘“STC810”的研发故事及其关键技术突破,我们揭示了这款产品如何成功应对国际竞争压力,实现对高端市场的突破,并为我国科研领域的自主可控提供了强有力的支撑,同时也展示了国产科学仪器在追求卓越性能与便捷操控上的不懈努力与创新成果。以下视频链接是与研发负责人探讨STC810数字延迟发生器发展历程与背后故事的对话:在与中智科仪研发负责人的深度对话中,我们共同追溯和剖析了STC810数字延迟发生器的研发历程及其背后的创新故事。这次互动使我们全面回顾了产品从设计构想到实际应用的发展历史,并深入体悟到其中所经历的曲折过程和取得的重大成就,从而深刻认识到创新道路上的挑战与突破对于产品研发的重要性。中智科仪在长期深耕时间分辨成像系统领域的基础上,为应对市场和技术挑战,以及降低潜在的供应链风险,自主研发了一款台式数字延迟脉冲发生器——STC810。这款产品源自公司核心相机技术中的时序控制功能扩展,不仅实现了对延时和脉冲宽度的高精度调节,还能够与镜头耦合型sCMOS相机及EyeiTS高速像增强模组完美融合,成为时间分辨成像系统不可或缺的核心组件。研发过程历经近五年的时间,团队在面对国内同类型技术空白、基础理论研究与算法层面相对薄弱的挑战时,以及在高科技竞争日益激烈的国际环境下的担忧中,决定主动出击,攻克关键技术难题。经过数年的持续努力,去年终于取得了突破性进展,成功研发出性能媲美国际先进水平的STC810。产品的核心亮点在于其外触发抖动达到了35皮秒的极低水平,远超国内市场上最优产品的500至800皮秒表现。同时,设备采用了先进的彩色屏幕显示技术,提供丰富全面的信息展示和便捷的操作体验,极大地提升了人机交互效果。展望未来,STC810同步时序控制器有着广阔的应用前景,可广泛适用于医学成像、激光雷达、时间分辨成像、量子精密测量、仪器触发与同步等多个尖端科技领域。这款自主知识产权的产品不仅彰显了中智科仪在高端科学仪器领域的研发实力,更预示着公司在国际市场上的强大竞争力,有望为中国乃至全球科研事业的进步作出重要贡献。图1 优于35ps外触发抖动图2 10ps延时精度图3 彩色触摸屏显示图4 数字延迟脉冲发生器经典应用以下视频链接是STC810分别在PC端软件/触屏操作/面板旋钮操作下的视频演示:以下链接是华中科技大学强电磁工程与新技术国家重点实验室借助中智科仪STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制的应用分享的文章:STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制-中智科仪(北京)科技有限公司 (cis-systems.com) 以下链接是上海交通大学航空航天学院光学精细成像实验室借助中智科仪STC810数字延迟脉冲发生器用于测试激光器触发与火焰动态拍摄的应用分享的文章:STC810八通道数字延迟脉冲发生器用于激光同步触发与火焰动态拍摄-中智科仪(北京)科技有限公司 (cis-systems.com)结论:通过深入听取研发工程师对STC810数字延迟脉冲发生器从最初构思到最终实现的全程回顾,以及分享的产品在开发过程中所遭遇的各种技术难关及其克服经历,结合当前我国高端设备自主研发所面临的挑战与机遇,我们有充分理由认为,国产数字延迟脉冲发生器未来的发展路径将尤为强调核心技术的自主突破、市场疆域的有力拓展和应用领域的深层次挖掘,具体体现在以下几个核心层面:1. 核心技术自主可控: 持续投入研发,提升脉冲产生、精确延时等关键技术的自主研发能力,实现核心部件和整机系统的全面自主可控。2. 高性能产品持续创新: 瞄准国际先进水平,研制更高精度、更稳定、更具灵活性和智能化的新型数字延迟脉冲发生器产品,满足不同行业领域对精密时序控制的高端需求。3. 应用场景不断拓宽: 不断探索并进入新的应用场景,如量子计算、超快激光、高速通信、粒子加速器等领域,提供定制化解决方案和服务。4. 市场竞争力增强: 通过技术创新与品质升级,提高国产设备在国内外市场的份额和影响力,积极参与国际竞争,树立国产品牌形象。5. 产学研深度融合: 加强与高校、科研院所及产业界的协同合作,推动科技成果快速转化,共同构建完善的产业链条,支撑行业的长远健康发展。
  • 仅持续53阿秒!迄今最短电子脉冲创建
    英国《自然》杂志网站近日报道,德国科学家已创造出迄今最短的电子短脉冲,其持续时间仅为53阿秒,速度之快足以让显微镜捕捉到电子在原子间跳跃的图像。研究团队表示,最新突破有望催生更精确的电子显微镜,在原子尺度上捕捉清晰的图像,还可加快计算机芯片中数据的传输速度。电子脉冲用于表示计算机内部的数据或被电子显微镜用于捕捉图像,脉冲越短,信息被传输的速度越快,研究人员一直致力于尽可能缩短电子脉冲的持续时长。普通电路内的电场产生的电子脉冲受限于电子在物质内振荡的频率。一个电子脉冲至少需要持续半个振荡周期,因为正是这种振荡周期为电子产生了“推动力”。而光能以更高频率振荡,因此研究人员一直尝试使用短脉冲光来触发电子脉冲。2016年,研究团队创造了持续时间仅为380阿秒的可见光闪烁。借助同样的技术,该团队聚焦激光,从钨针尖端剥落电子并将其打到真空中,获得了持续时间仅53阿秒的电子脉冲。研究人员表示,他们探测到的53阿秒电子脉冲甚至比引发它的光脉冲还要短。根据玻尔的氢原子模型,这一持续时间仅为氢原子中电子绕其原子核运行一周所需时间的1/5。如此短的电子脉冲可使电子显微镜及时聚焦于较短的切片上,类似于降低相机的快门速度,从而更清晰地揭示粒子的运动。研究人员称,如果利用此次获得的阿秒电子脉冲创建电子显微镜,不仅有足够的分辨率来观察运动中的原子,甚至可看到电子在这些原子之间是如何跳跃的。
  • 海洋光学推出JAZ 光谱仪的高强度脉冲氙灯光源
    微型光谱仪领域的先行者海洋光学,又推出了一种可集成在 JAZ 光谱仪上的脉冲式氙灯光源。Jaz-PX 是一种高频、低弧的氙灯,尤其在吸光率、生物放射、荧光和磷光等紫外线-可见光范围内的应用中特别有用。这种灯的最大脉冲频率为500赫兹,光谱输出范围在 190nm-1000nm 之间。  海洋光学推出JAZ 光谱仪的高强度脉冲氙灯光源  JAZ 是由一组不同功能的模块叠加在一起构成光谱仪。其核心模块是微型线性 CCD 光谱仪,用户可以根据应用需要,自主选择最佳的光栅和狭缝,最多可以有8个光谱仪通道。每个 Jaz 光谱仪包括一个强大的微处理器和显示器模块,不需要电脑就可以独立工作。此外,JAZ 还有电池模块,以太网连接模块,以及各种光源模块。  Jaz-PX 可在自运行模式和和触发模式下使用。在外触发模式下,其脉冲可以用做与其它模块的同步信号。每次闪光输出的稳定性都在1%以内,闪光频率是500赫兹。Jaz-PX 有一个 SMA905 的接头,可与海洋光学的各种配件连接,这些配件包括光纤、试管支架、探针以及其它取样光学仪器。由于 Jaz-PX 产生的是脉冲信号,所以不会引起光纤的外层的老化(光纤外层长时间置于 260nm 以下的紫外光照射下,会产生老化现象)。  此外,Jaz 可以按照不同的场地、实验室和工艺情况来设置。Jaz-PX 非常适用于野外应用,比测量野外生物体的反射率,因为没有电源供应,就需要高强度,低功耗的光源。这种氙灯在实际使用时,它的电池大约能坚持3.5到4个小时。用户也可以选用能储存50瓦时电量的外接电池获得额外的电力供应。  关于海洋光学  总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团(http://www.halma.cn )。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有4000多名员工,近40家子公司,2008/09财年营业额超过4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。
  • 激光精密测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    德国“工业4.0”与”中国制造2025“发展战略,对高端装备中的超精密测量精度要求越来越高。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器。激光束通过分光镜后,分成两束激光(参考光束和测量),分别经两个角锥反射镜反射后平行于出射光返回,通过分光镜后进行叠加(两束激光频率相同、振动方向相同且相位差恒定,即满足干涉条件),产生相长或相消。反射镜每移动半个激光波长,将产生一次完整的明暗干涉现象,通过接收到的明暗条纹变化及电子细分,即可求得距离变化(距离=干涉条纹数*激光半波长)。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作。激光干涉仪原理构造激光测距仪是利用激光对目标的距离进行准确测定的仪器,根据测量原理分为脉冲法和相位法。脉冲激光测距法由于激光发散角小,激光脉冲持续时间极短,瞬时功率极大可达兆瓦以上,可以达到极远的测程,广泛应用在地形地貌测量、地质勘探、工程施工测量、飞行器高度测量、人造地球卫星相关测距、天体之间距离测量等方面。第二届精密测量技术与先进制造网络会议期间,清华大学与哈尔滨工业大学两位专家将分享激光精密测量技术、仪器及应用。部分报告预告如下,点击报名  》》》清华大学精密仪器系系副主任/副教授 谈宜东《激光干涉精密测量技术、仪器及应用》(点击报名)谈宜东,清华大学精密仪器系长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等多个项目。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表SCI论文100余篇,授权发明专利37项,在国际会议Keynote/Plenary/Invited报告60余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。【报告摘要】 以传统激光干涉为引,介绍清华大学激光精密测量及应用团队在双频激光器、干涉仪及在光刻机中的精密测量应用,并拓展到空间引力波测量。针对传统干涉测量需要配合靶镜的局限性,提出激光回馈测量原理,实现了无靶镜纳米测量,攻克了航空航天、先进制造和国防安全领域的无靶镜测量难题,并开展了多种应用研究,包括:位移测量、激光侦听、高精度激光测距及雷达技术等。哈尔滨工业大学副研究员 杨睿韬《短脉冲光频梳激光测距技术》(点击报名)杨睿韬,哈尔滨工业大学副研究员,博士生导师。研究方向为超精密激光干涉测量,重点攻关短脉冲/光频梳生成与稳频、光梳激光测距等关键技术,承担国家重点研发计划课题/子课题、国自然面上等项目,参与国家科技重大专项、欧盟计量联合研究计划等项目。获中国计量测试学会科技进步一等奖(序4/6)、全国优秀博士学位论文提名等奖项。担任国际SCI期刊Photonics客座编辑。发表学术论文20余篇,申请发明专利10余项,出版专著1部。指导哈工大优秀本科/硕士毕业论文共5人,指导大学生光电设计竞赛国赛一等奖等2项。【报告摘要】 激光测距技术是大范围、高精度空间几何量测量的核心技术基础。短脉冲光频梳的诞生极大的推动了该技术领域的发展,其独特的时域短脉冲序列、频域等间隔梳状多光谱特征,不仅大幅提高了经典的飞行时间、调制波测相、多波长干涉等测距方法的性能,更引领了一系列新型激光测距方法的发展。本报告分析了短脉冲光频梳激光测距方法及趋势,介绍了项目组在短脉冲光频梳激光测距领域的最新进展。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • 万亿分之一秒 红外脉冲拍摄高清“分子旋转电影”
    p style="text-align: justify text-indent: 2em "在动态过程中捕捉原子超快运动,对于分子物理学始终是一个梦想,因为通常需要波长为原子大小的高能辐射才能看到细节。然而近日,科学家竟然通过创新的红外激光脉冲技术,能以万亿分之一秒的超快速度,拍摄羰基硫化物分子旋转的动态高清影像。/pp style="text-align: center text-indent: 0em "script src="https://p.bokecc.com/player?vid=65A3956F859B68E49C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/script /pp style="text-align: center text-indent: 0em "strong羰基硫化物分子旋转电影实录/strong/pp style="text-align: justify text-indent: 2em "科学界常用电子显微镜来观测分子及分子的大小。现代电子显微镜最大放大倍率可超过300万倍,甚至能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。然而想要观测其动态影像则十分困难。/pp style="text-align: justify text-indent: 2em "相关负责人介绍了这项成果的原理:首先使用两个红外激光脉冲,它们彼此精确调谐并相隔38万亿分之一秒(皮秒),以使羰基硫化物分子一致快速旋转(即相干)。另外使用具有更长波长的另一个激光脉冲,以每个约0.2万亿分之一秒的间隔确定分子的位置。通过这样的方法,科学家拍摄了651张照片,按顺序组装,图片产生125皮秒的分子旋转胶片。羰基硫化物分子是由一个氧,一个碳和一个硫原子组成的棒状分子,需要大约82万亿分之一秒,才能完成一整圈,因此科学家的胶片覆盖了其分子旋转的一个半周期。/ppbr//pp style="text-align: justify text-indent: 2em "研究者还分享了羰基硫化物分子旋转周期确定的方法:分子级的位置和动量受量子力学支配,不能以最高精度同时确定;只能定义在特定时间点在特定位置找到分子的特定概率,即分子不是简单地指向一个方向,而是同时指向不同的方向——每个方向具有不同的概率。这正是我们在本研究中通过实验成像的那些方向和概率。而研究人员正是从大约82皮秒后这些单个图像开始重复的事实来推断出羰基硫化物分子的旋转周期的。据了解,这项技术也可以用于拍摄分子或手性化合物的内部扭曲等其他分子和过程的动力学指导电影。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制