当前位置: 仪器信息网 > 行业主题 > >

蔓荆子

仪器信息网蔓荆子专题为您整合蔓荆子相关的最新文章,在蔓荆子专题,您不仅可以免费浏览蔓荆子的资讯, 同时您还可以浏览蔓荆子的相关资料、解决方案,参与社区蔓荆子话题讨论。

蔓荆子相关的资讯

  • 布鲁克收购拉曼显微镜企业 Nanophoton 增强分子显微镜产品解决方案
    布鲁克公司近日宣布收购纳米光子公司(Nanophoton Corporation)。Nanophoton 公司总部位于大阪,提供广泛的先进拉曼显微镜产品组合,主要服务于日本的学术和工业研究客户。此次收购填补了布鲁克公司分子显微镜产品组合的空白,布鲁克公司期待在全球范围内为生命科学、生物制药、先进材料、半导体和聚合物领域的研究与开发提供快速、灵活和灵敏的 Nanophoton 拉曼显微镜系统。Nanophoton 提供各种先进的拉曼显微镜系统,这些系统具有超高的速度、灵敏度和空间分辨率,并结合用户友好的工作流程设计,可为用户带来卓越的使用体验,从而增强了布鲁克光学部门的分子显微镜产品组合。其应用包括检测先进的半导体和纳米材料、电池、有机和液晶显示器、纳米碳材料、识别有机成分、绘制片剂中活性药物成分和辅料的分布图以及组织中疾病模式的临床研究。Nanophoton RAMANtouch™ 高速拉曼显微镜可同时测量 400 个高质量拉曼光谱,实现高分辨率光谱成像(图片:Business Wire)纳米光子公司创始人、首席执行官 Satoshi Kawata 教授评论说: "我们最近刚刚庆祝了 Nanophoton 成立 20 周年,很高兴能与布鲁克公司一起翻开我们历史的新篇章。布鲁克公司是 Nanophoton 理想的合作伙伴,它将加速我们的发展,将我们独特的拉曼系统带给全球客户,并共同开发无与伦比的拉曼成像技术。布鲁克光学部总裁 Andreas Kamlowski 博士补充说:"我们热烈欢迎 Nanophoton 团队加入布鲁克公司,并对他们在拉曼显微镜创新方面的杰出业绩和专业知识表示认可。我们期待着这一新的机遇,在全球支持下为我们的全球研究客户带来与众不同的 Nanophoton 拉曼成像系统。交易的财务条款没有披露。2023 年,Nanophoton 公司的收入约为 500 万美元,接近盈亏平衡。关于纳米光子Nanophoton 公司成立于 2003 年,是全球唯一一家拉曼显微镜专业制造商。Nanophoton 公司开发、制造并销售了独特的激光扫描拉曼显微镜,包括可将测量时间缩短数百倍的线照共焦拉曼显微镜,以及采用基于随机过程和信息理论的独特光束扫描方法的拉曼显微镜。Nanophoton 已实现商业化的其他产品包括深紫外拉曼显微镜、30 厘米晶片拉曼显微镜和长焦距成像拉曼显微镜。公司还销售独特的光学元件,如斑点减弱器和径向/方位偏振器。Nanophoton 公司得到了许多客户的大力支持,尤其是日本和韩国客户。关于布鲁克公司布鲁克公司帮助科学家们取得突破性发现,并开发出提高人类生活质量的新应用。布鲁克公司的高性能科学仪器和高价值分析诊断解决方案使科学家们能够在分子、细胞和微观层面探索生命和材料。通过与客户的密切合作,布鲁克公司在生命科学分子和细胞生物学研究、应用和制药、显微镜和纳米分析以及工业应用等领域实现了创新,提高了生产力,并帮助客户取得了成功。布鲁克公司在临床前成像、临床表型组学研究、蛋白质组学和多组学、空间和单细胞生物学、功能结构和凝集生物学以及临床微生物学和分子诊断等领域提供差异化、高价值的生命科学和诊断系统及解决方案。延伸阅读:Nanophoton开启全球化进程中国拉曼阵营再添一员——访Nanophoton总裁兼CEO Michael B. Verst先生
  • 紫外拉曼光谱:破解催化剂技术瓶颈
    新材料作为高新技术的基础和先导,应用范围非常广泛,是21世纪最重要和最具有发展潜力的领域。而新材料的研制与催化剂的使用是分不开的。大连化物所凝聚科学技术研究团队十几年的智慧和心血,研究的催化材料紫外拉曼光谱技术,破解了催化材料的若干关键技术难题,为突破国家建设急需、引领未来发展的关键材料和技术提供了重要技术支持。该成果也因此获得了2011年度国家自然科学二等奖。  催化材料紫外拉曼光谱技术研究的带头人李灿院士告诉记者,作为化学反应中不可替代的催化剂,贵金属在诸多领域发挥着重要的作用。但是稀缺资源的价格都很昂贵,这无疑是横亘在催化剂制造的一道难题。而紫外拉曼光谱技术正是破解这一难题的金钥匙。紫外拉曼光谱是一种无损伤、高灵敏度的测量技术,在物理、化学、生物学、矿物学、材料学、考古学和工业产品质量控制等领域中有着广泛的应用,是研究分子结构和组态、物质成分鉴定、结构分析的有力工具。  紫外拉曼光谱技术破解了世界催化材料发展瓶颈,解决了催化材料关键科学难题,实现了四大突破。一是利用紫外共振拉曼光谱技术解决了一系列重要分子筛材料中有关骨架金属活性中心的结构鉴定难题。建立了微孔和介孔分子筛骨架过渡金属杂原子活性中心鉴定的表征新方法,不仅可以大幅节约贵金属用量,而且单原子相对均一的催化环境有望实现化学反应的高选择性,减少副产物的出现,从而实现真正的绿色催化。  二是紫外拉曼光谱研究了金属氧化物催化材料表面物相结构问题,发现金属氧化物的表面与体相常常具有不同相结构,物相形成过程中表面和体相的相变表现不同步。在太阳能光催化材料研究中,发现表面物相结构和光催化活性有直接关联,提出了“表面异相结和异质结增强光催化活性”的概念。  三是发展了水热催化材料合成中的原位紫外拉曼光谱技术,观察到分子筛合成初期的分子碎片以及模板剂与分子碎片的相互作用形成的微孔结构,提出了分子筛初期形成的重要中间体决定最终分子筛结构的机理。他们的研究发展了表征催化材料的新方法,发现了催化材料合成的重要转化过程和活性中心中间物种,提出了催化材料合成的机理。  四是获得了具有与均相不对称催化相媲美的多相手性催化剂。该催化剂是一大类化合物——手性化合物的一种,而手性药物则是手性化合物中非常重要的一个分支。手性药物是指具有左旋或右旋对映体化学结构的单一对映体化合物,包括光学纯药品、光学纯农业化学品及其他光学纯产品与中间体。利用“手性”技术,人们可以有效地将药物中不起作用或有毒副作用的成分剔除,生产出具有单一定向结构的纯手性药物,从而让药物成分更纯,在治疗疾病时疗效更快、疗程更短。手性药物的研究目前已成为国际新药研究的新方向之一。在国际制药界,手性技术已被广泛应用到消化系统疾病、心血管疾病、癌症等领域新药研发中。  李灿院士告诉记者,1998年他们成功研制出我国第一台具有自主知识产权的紫外拉曼光谱仪,解决了国际拉曼光谱领域长期存在的荧光干扰问题,在国际上最早将其应用于催化及材料科学的研究。到2004年研究组研制成功紫外—可见全波段共振拉曼光谱议,使我国在拉曼光谱的催化表征研究走在世界前面。2008年,研究组与卓立汉光仪器公司合作,开始将紫外拉曼光谱仪产业化。2010年完成国家重大装备研制项目“深紫外拉曼光谱仪的研制”,获得世界上第一张激发波长低至177纳米的深紫外拉曼光谱。  李灿院士骄傲地告诉记者,在过去的10年间,紫外拉曼光谱已经在化学、物理和生命科学等诸多领域显示出巨大的优越性,成为一项重要的分子光谱技术。我国紫外拉曼光谱研究在国际上的领先地位,极大地促进了中国在这个领域的国际合作研究,大化所与国内外十余个研究机构实现技术合作。今后,紫外拉曼光谱仪技术在多家研究机构的推广应用,一定会有力推动我国新能源、节能环保、电动汽车、新材料等七大战略性新兴产业健康快速发展,一定会让更多的新材料、精细化工产业受益。
  • 强强联合—“贝克曼与德泉兴业”粒子分析和细胞计数交流会,在京举办
    德泉与贝克曼联手于2019年9月27日在北京经济技术开发区康定街1号1号楼一块垒会议室举办“粒度分析和细胞计数计数交流培训会”,此次培训我们将共同探讨如何对样品颗粒进行精确分析?如何攻克nm颗粒准确性分析存在的技术难点和挑战。用理论结合实操把握,为您提供完美的颗粒表征与颗粒分析解决方案!谨此,我们诚挚地希望各位合作伙伴届时能百忙之中抽出时间出席会议。赠小猪公仔活动微信二维码扫码报名“”,参加北京德泉与贝克曼粒度分析和细胞技术交流会,即可有机会获取您钟情的小猪猪,本次活动赠送共30个,赶紧行动啦!
  • "环保专家"董良杰涉寻衅被拘 师从薛蛮子
    知名“环保专家”董良杰因涉嫌寻衅滋事罪被依法刑事拘留  “自来水里的避孕药”“舟山人头发里汞超标”“南京猪肉含铅超标”“惠州猪肝铜超标”……北京市公安局28日公布,上述耸人听闻的虚假信息编造者、知名“环保专家”董良杰因涉嫌寻衅滋事罪被依法刑事拘留。  这是公安机关集中打击网络有组织制造传播谣言等违法犯罪专项行动的又一进展。经过缜密侦查以及根据犯罪嫌疑人自己讲述,北京警方发现,董发布的诸多不实微博背后,牵出的是一个“环保专家”与网络大V相互“合作”,借“科普”之名、行编造传播虚假信息之实,从而扩大人气影响、为自己的净水产品打开市场的恐慌营销骗局。  值得注意的是,在董良杰追寻创业发财梦的道路上,那位对其“点拨指导”、转发微博助其积攒网络人气并实际投资的网络大V,正是目前同样身陷囹圄的“薛蛮子”。  师从“薛蛮子”,网络人气急速增长  董良杰,47岁,山东人,微博认证为“微鼻砷和重金属过滤技术、生物陶技术发明人,微陶环保联合创始人”。他本科就读于某农业大学,后考入北京某知名高校就读新闻专业双学士。1999年,他以陪读家属的身份到了美国夏威夷。董良杰自称,他在美期间攻读了美国某大学硕士学位,主修环境专业。  “我希望能做中国净水行业的乔布斯。”董良杰说。2008年12月,董良杰回国。他拥有一项净水器专利,与他人联合创办一家环保企业。由于缺乏资金,董良杰频频参加研讨会推荐专利,但无人关注,也无人为其投资。  “2011年,我开始接触微博。”董良杰发现,微博是一个能快速积累人气、扩大影响力、不用花钱就能宣传自己的平台。  时值日本发生核污染事故,公众对环境污染的关注度不断升温。董良杰便注册微博账号“环保董良杰”,自称“环保专家”“海归学者”,发表关于环境污染方面的话题和评论,并通过微博向媒体爆料,粉丝从最开始的寥寥无几涨到了3万。  “到2011年11月,我的粉丝数有了8万。”但这与董的目标相距甚远,他希望得到网络大V们的支持,快速提升影响力,推广自己的产品。  机会很快来了。当年11月,董良杰看到网络大V“薛蛮子”在微博中晒出一张阳台大雾的照片,还附言“我们家就像梦幻仙境一样”。  “这个人是大V,影响力大,别人在他的微博上能看到我的评论,提高我的影响力。”于是,董良杰从专业角度评论称,“这是雾霾,对健康极为不利,不宜在室外活动。”  评论果真引起了“薛蛮子”的注意。两人开始通过微博联系,频频评论、私信讨论。2012年初,董良杰赴北京登门拜访“薛蛮子”。  “我们一见如故,聊得不错。他说自己是做环保的,已经办了个工厂,问我是不是愿意投资。”“薛蛮子”说,当时他认为董的企业规模太小,“得达到一定规模,才能达到我们的投资标准。”  “薛蛮子”虽然拒绝了董的要求,但仍然提出与他合作,同时也“点拨”了一条捷径——薛帮董转发科普微博,支持他积累人气,以后再谈投资或者介绍基金的事。  “借这种方式,以科普为包装,提升知名度和话语权,为净水器的推广做好铺垫。网上有了名气,在今后公司发展中,也可以省下大量的广告费和代言费。”董良杰说。  结识“薛蛮子”后,董良杰开始利用人们对生存环境的担忧,发布环境污染等方面的博文。“薛蛮子”还将自己的心得悉数传授。“不能太专业,要通俗化,现在流行标题党,容易吸引眼球。”  “薛蛮子”举例说,“中国军团进军巴黎,点进去一看是兵马俑进去(展览)了,要不然兵马俑在巴黎开展肯定没人看,说中国兵团进军巴黎、进了罗浮宫,这事儿就有人看。”  在这一启发下,董良杰的微博变得“语出惊人”。“比如,鱼刺含汞高,会造成脑损伤,就说成‘吃鱼刺会导致脑残’ 涉及不孕不育,说成‘断子绝孙’ 畸形儿高发,说成‘生了小孩没屁眼’。”董良杰说。  “刚开始董良杰的粉丝量很少,因为他是研究人员,写的文章没有可读性,经过我和其他大V的共同推荐后,他的粉丝量大增。”“薛蛮子”说,董的一些科普微博迅速成为网络热点,同时董良杰也逐渐成为网络名人。  办案民警介绍,“薛蛮子”也通过转发董关于环保等热点问题的微博大赚人气。2012年初两人相识至2013年9月11日董良杰被警方带走,董的粉丝量增长了20余万 这期间,“薛蛮子”也完成了从“百万级”大V向“千万级”大V的关键性飞跃。  以谣博名,恐慌营销共赚真金白银  “我发现网上没人管,胆子越来越大,发错了大不了删除。”董良杰说。他在网上搜到一些学术论文,将其中一些未定论观点“嫁接”编造后发布。“环保专家”的名头加上大V转发,不实言论迅速在网上扩散发酵,对环境污染疑虑、恐慌的情绪在网民中蔓延。  2012年4月,董良杰在美国某网站搜索到多篇关于各国饮用水问题的文章,他拼凑整合后写了一条微博,名为“自来水里的避孕药”——“中国是避孕药的消费大国,人吃、动物、水产养殖都在使用,通过排放进入环境、水体,中国自来水中药物含量水平在高端,未来影响后果难料。”最后附上一句,“普通净化器是净化不了的”。  “薛蛮子”立即转发,随后短短几小时内,这条微博被转发六七千次,多家媒体据此报道。然而,论文的第一作者公开表示,该微博完全曲解了结论,环境中的雌激素干扰物含量很低,目前净水工艺对这类物质有很好的处理能力。  自来水检测专家、北京市自来水集团水质检测中心主任林爱武介绍,从北京市自来水检测结果看,并未检出上述物质。  虽然被证实为谣言,董、薛二人也很快删除了微博,但“自来水里的避孕药”引发了人们的恐慌,成为净水器企业的商机。“宁信其有、不信其无”,不少网民抱着这样的心态或购买净水器,或长期食用纯净水。  为追求轰动效应,董良杰又炮制出一条不实微博“舟山人头发里汞超标”,称舟山人头发里的汞指标最高,当地人“世世代代的安全食品面临着新的污染挑战,尤其是金枪鱼、带鱼等高端鱼中含量更高”。“薛蛮子”在转发时,特意加上了“舟山人吃鱼小心了”的评论。  “我觉得董良杰是这方面的专家,我自然相信也转发了。当地很快就辟谣,董良杰也给我打来电话,说没有核实过,赶紧删了吧。”“薛蛮子”回忆说。后来,“薛蛮子”还带着粉丝去舟山旅游,也吃了当地的鱼,并得知这条微博给当地的企业和渔民造成很大损失。  董良杰供述,“南京猪肉含铅超标”“惠州猪肝铜超标”等微博,也是未经核实,断章取义编写出来的。“薛蛮子”从最初的简单核实,到后来照单全收,只要是董的微博,不管对错、直接转发。  警方还发现,虽然董良杰自称“环保专家”,但就其微博中引用的若干数据资料进一步询问,董却表示“其实我自己也看不懂”。  2013年1月,“薛蛮子”扶持董良杰在网上逐渐成了气候,认为董的净水器有市场潜力,于是介绍上海一家公司给董投资200万元,薛也成为董良杰公司的股东之一。  办案民警介绍,获得这笔投资后,董的产品投入量产,网上销售额每月超过10万元。  悔过致歉:大V更应承担社会责任坚守底线  看守所内的董良杰情绪低落,反思“微博出了问题”的原因:一是不应该把还处于学术研讨、未有定论的敏感内容发到网上 二是不应该受标题党坏风气的影响,一味博眼球,“语不惊人誓不休” 三是为了个人私利编发微博传递虚假信息,造成社会恐慌,最终害人害己。  “当时要是核实一下就好了……我很诚挚地向大家道歉,这是迟来的道歉,希望尽可能消除影响。”董良杰低头反省。  “很多的事是可以避免的,例如舟山汞超标的事,影响到当地的经济和渔民的生计,还可能导致公众对生活的不安全感和对政府部门的不信任……我要向舟山渔民道歉。”“薛蛮子”也表达了深深的歉意。  “薛蛮子”说,一开始转发董的微博时,他会查阅相关材料,从网上把原文下载打印出来,读一遍、核实一下,至少要知道有这个事。时间一长,交了朋友之后,特别觉得自己是大V了,有些飘飘然,不再做核实。“董良杰在网上的态度也比以前牛多了,也飘飘然了,觉得自己可以指点江山,(发微博)也不那么认真了。”  在看守所里,“薛蛮子”反复研究关于网络诽谤的司法解释,他对此一再表示支持。与民警谈话中,“薛蛮子”提到最多的就是“每个人都要坚守自己的底线”。  他坦言,自己也曾被造谣、被人身攻击,深知其害。“没有规矩不能成方圆。网络社会也照样需要规矩。我作为一名大V,不经核实、不负责任地转发微博是完全错误的,忽视了大V应有的社会责任。希望我的教训能警示别人,尤其是我的那些大V朋友,发表、转发微博要深思,要考虑到社会责任。不管大V小V,粉丝越多,责任越大。每一个微博上活跃的人都要引以为戒。”  “如果还有机会使用微博的话,我要严守职业道德,是什么就是什么,提供真实、全面、客观的信息给公众。”带着手铐、身穿号服的董良杰感慨,如今才深切感受到,“自由和尊严比名声和财富更重要”。  目前,警方正在对董良杰、“薛蛮子”涉嫌违法犯罪问题做进一步调查。
  • 【拉曼学院最前线】分子会跳舞?科研分析也能很有趣
    在外人看来,从事科研分析相当枯燥,但如果你听过今天的报告,或许会对这个看法有所改观。SERS已成为高效的低浓度检测技术 在拉曼的众多应用领域中,化学的地位不言而喻。苏州大学姚建林、南京大学陆云、上海师范大学杨海峰教授均是这领域的翘楚,他们为大家联袂献上了一出“拉曼在化学领域中的应用大戏”。 姚教授率先总结了其所有可能涉及的应用,如:电化学反应、高分子、环境与食品方面的安全等。接着他又向大家展示了如何通过重金属离子与“羧酸根”的配位反应测定重金属离子的拉曼信号,由于使用了SERS检测方法,它可以检测到低浓度的重金属离子。 陆教授带来的是如何用拉曼光谱表征高分子聚合物的结晶度、有序性等。同样采用表面增强方法,杨海峰教授则与大家分享了他在食品安全与环境研究过程中的很多趣事,并着重介绍了如何用拉曼光谱对其进行鉴定与分析,涉及社会热点罗丹明、三聚氰胺、农药残留等食品添加剂。未来,拉曼或许真的会成为我们“餐桌上的一个工具”。 法国国家科研中心催化剂和固态化学实验室主任Edmond PAYEN教授已有40多年的研究经验,目前仍活跃在科研线,他详细地介绍了拉曼在催化中的发展过程,以及其中的热点。跨领域里过把瘾 如果你觉得以上的报告不过瘾,那我们还准备了两个有趣的领域:地质与刑侦。 南京大学的倪培教授已有20多年的地质研究经验,此次他介绍了高分辨拉曼光谱仪在矿物研究中的应用,和大家深入探讨了流体包裹体、盐度估测、矿物相变以及常见矿物的拉曼光谱分析。 如果大家觉得地质领域离我们稍显遥远,那接下来的应用就触手可及了,你知道怎么对假币鉴定并溯源?怎么鉴定伪造文件、毒品、炸药等样品吗?相信公安部物证鉴定中心的这个刑侦报告一定让你很过瘾。 原来拉曼可以应用在那么多和日常生活息息相关的领域,其中不乏有趣之事,也难怪有的教授会把新奇有趣的谱图视作“会跳舞的分子”。更多活动信息,请关注我们的官方平台:邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 2014分子光谱看点:便携拉曼依然“热”
    p  strong仪器信息网讯/strong 2015年1月6日,2014年北京光谱年会在北京召开,本次会议聚焦分子光谱现场快速检测仪器的发展动态以及光谱仪器新产品和新技术两个方面。/pp  仪器信息网编辑在参会中发现,本次会议中有一半以上的报告内容都涉及到了span style="TEXT-DECORATION: underline"a href="http://www.instrument.com.cn/zc/34.html?SidStr=383& AgentSortId=& IMCityID=& IMShowBCharacter=& IMShowBigMode="span style="COLOR: #0000cd"拉曼光谱/span/a/span,特别是便携/手持式拉曼光谱仪的技术进展及应用依然是2014年拉曼光谱领域的一大看点。其中,清华大学孙素琴教授在《分子光谱现场快速检测仪器的发展动态》的报告中特别介绍了手持式/便携式拉曼光谱仪在药品、毒品等中的分析应用 北京化工大学的袁洪福教授也介绍了拉曼光谱在过程分析中的应用 中国检验检疫科学研究院的齐小花博士介绍了拉曼光谱技术应用及在食品安全快检方面的应用。/pp  拉曼光谱以其无损检测、样品无需前处理、现场快速检测等优势在刑侦、仿制及掺假产品等各领域有着越来越广泛的应用。同时,拉曼光谱法作为检测方法的一个分支,近年来愈来愈多地被广大的分析测试工作人员所接受和录用。从仪器方面来说,拉曼光谱已经从高端科研产品向分析型仪器方向发展了,价格也有所降低 从应用方面来分析,拉曼光谱仪现在的应用市场和以前的也不一样了,5年之前,拉曼光谱仪只应用在材料科学领域,而现在,拉曼光谱仪的应用已经涉及到化学、催化、刑侦、地质领域、艺术、生命科学、材料科学等各个领域,甚至有一些QC领域也已经开始使用拉曼光谱仪了。/pp  同时,拉曼光谱法也逐步走出实验室,成为一种现场常用的筛检方法,特别是一系列的便携式拉曼光谱仪器也赢得了用户的喜爱。为研究制定我国便携式激光拉曼光谱仪性能测试方法的标准,2014年8月,中国分析测试协会成立激光拉曼光谱仪性能测试方法标准研制工作组。/pp  鉴于对小型拉曼光谱仪广阔市场前景的看好,很多研究机构开展了表面增强拉曼光谱及相关快检仪器的研究工作。2009年,中国检验检疫科学研究院就利用激光拉曼技术,自主研发了用于现场快速检测三聚氰胺的激光拉曼光谱仪以及配套试剂。2011年起,为了促进等离激元增强拉曼光谱(PERS)的应用,田中群院士领衔的仪器研发及应用项目所研发的壳层隔离纳米粒子增强拉曼光谱(SHINERS)粒子也取得了系列进展。在过去的一年中,中国科学院重庆绿色智能技术研究中心以及四川大学生命科学学院分析仪器研究中心等在拉曼光谱方面的研究取得了一系列的进展:/pp  中国科学院重庆绿色智能技术研究院智能装备与仪器仪表研究中心成功研制出了光谱分辨率可达10cmsup-1/sup的小型拉曼光谱仪样机,样机通过了可靠性测试,可应用在工农业生产、食品安全和生物医药等领域的现场监测和样品快速检测。/pp  span style="COLOR: #ffa07a"strong相关新闻:/strong/spanstronga href="http://www.instrument.com.cn/news/20141104/145294.shtml"span style="COLOR: #ffa07a"重庆研究院小型拉曼光谱仪样机研制成功/span/a/strong/pp  由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为激光诱导击穿-拉曼光谱分析仪LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。据悉该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 300px" title="20141224112337.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201509/noimg/624c9103-e8bd-4e2c-a9a4-66174622ff41.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"激光诱导击穿-拉曼光谱分析仪LIBRAS/pp strongspan style="COLOR: #add8e6" /spanspan style="COLOR: #ffa07a"相关新闻:/spana href="http://www.instrument.com.cn/news/20141224/149360.shtml"span style="COLOR: #ffa07a"世界首款激光诱导击穿-拉曼一体化光谱分析仪面世/span/a/strong/pp  向小型化方向发展是分析仪器的发展潮流之一,现在很多厂商非常看好便携、现场检测仪器市场的前景,这一点在拉曼领域表现的尤其活跃,如海洋光学、必达泰克、赛默飞等很多厂商都已经推出了便携/手持式的拉曼光谱仪。2014年,TSI、万通等一些厂商也开始涉足便携/手持式拉曼产品。/pp  2014年2月25日,TSI收购了美国便携拉曼光谱仪制造商恩威(Enwave)的全部业务资产,从此进入便携拉曼光谱仪的市场。/pp  span style="COLOR: #ffa07a"strong相关新闻:/strong/spanstronga href="http://www.instrument.com.cn/news/20140228/123405.shtml"span style="COLOR: #ffa07a"TSI收购便携式拉曼光谱仪厂商恩威(Enwave)/span/a/strong/pp  2014年年底瑞士万通Metrohm 和Snowy Range Instruments (SnRI)结成了战略联盟。根据协议,SnRI将专门为瑞士万通开发和制造新的手持式拉曼光谱仪,而新的手持式拉曼光谱仪产品将纳入瑞士万通NIRSystems品牌之下,进一步完善和补充瑞士万通的近红外光谱产品解决方案。与此同时,瑞士万通也推出了Mira M型新一代手持式拉曼光谱仪。/pp style="TEXT-ALIGN: center"img style="WIDTH: 351px HEIGHT: 335px" alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/20151715436.jpg" width="351" height="335"//pp style="TEXT-ALIGN: center"Mira M-1型手持式拉曼光谱仪/pp  span style="COLOR: #ffa07a"strong相关新闻:/strong/spanstronga href="http://www.instrument.com.cn/news/20141209/148231.shtml"span style="COLOR: #ffa07a"瑞士万通与SnRI结成战略联盟 推出手持拉曼光谱/span/a/strong/pp  此外,日本理学在去年也推出了Progeny手持拉曼光谱仪,该款仪器还获得了2014 IBO工业设计大奖 作为英国Cobalt公司RapID产品在中国区的指定代理商,上海凯来实验设备有限公司也在仪器信息网上展出了新的Cobalt RapID空间位移拉曼光谱。/pp style="TEXT-ALIGN: center"img style="WIDTH: 345px HEIGHT: 233px" alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201517154322.jpg" width="542" height="370"//pp style="TEXT-ALIGN: center"Progeny手持拉曼光谱仪/pp style="TEXT-ALIGN: center"img style="WIDTH: 280px HEIGHT: 280px" alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201517154334.jpg" width="280" height="280"//pp style="TEXT-ALIGN: center"Cobalt RapID空间位移拉曼光谱。/pp  另在2014北京光谱年会上获悉,岛津也将于2015年推出便携式的拉曼光谱仪。/pp  此外,还有一些厂商对手持式拉曼产品持观望态度,比如,虽然HORIBA没有直接介入手持式拉曼的市场,但已经通过OEM的方式参与其中,为一些便携式拉曼光谱仪的厂商提供光栅和光谱模块等。据悉,该公司已经在进行手持式拉曼光谱仪的市场调查。/pp strong 相关学术会议介绍/strong/pp  目前,国内外都有一些重要的学术会议为拉曼领域的研究人员提供了重要的交流平台。比如两年一次的全国光散射学术会议和国际拉曼光谱大会等,据悉四川大学将主办2015年的全国光散射学术会议。/pp  第24届国际拉曼光谱学大会 (The International Conference on Raman Spectroscopy,24th ICORS)已经于2014年8月10日-15日在德国耶拿召开,规模达到900多人,而且本次大会首次设立了拉曼大奖终身成就奖、创新技术发展奖、最佳初级研究员奖,以表彰在拉曼光谱领域做出突出贡献的杰出科学家。/pp  此外,由HORIBA科学仪器事业部主办,厦门大学协办的第三届国际拉曼前沿技术高端论坛将于2015年5月6-8日在厦门举行,聚焦SERS/TERS新技术及拉曼光谱在生命科学、材料科学中的热点应用。/pp /p
  • 上海交大团队用拉曼光谱助力分子定量检测
    )4月17日,国际顶级期刊Nature(《自然》)在线发表了题为“Digital colloid-enhanced Raman spectroscopy by single-molecule counting”(通过单分子计数进行数字胶体增强拉曼光谱定量检测)的研究论文。该研究针对表面增强拉曼光谱领域内定量的挑战,系统阐述了基于数字胶体增强拉曼光谱(digital colloid-enhanced Raman spectroscopy, dCERS)的定量技术。基于单分子计数,dCERS成功实现了超低浓度目标分子的可靠定量检测,为表面增强拉曼光谱技术的普遍应用奠定了重要基础。本文的第一作者为上海交通大学生物医学工程学院致远荣誉计划博士研究生毕心缘,通讯作者为叶坚教授。作为资深作者,邵志峰教授在基本概念、数据解析以及文章的凝练、修改等方面做出了关键贡献。Daniel M. Czajkowsky教授也对数据的物理原理与文章修改做出了重要贡献。上海交通大学是论文的唯一完成单位和通讯单位。图为论文发表截图。本文图片均由受访团队提供拉曼散射(Raman scattering)是Chandrasekhara Venkata Raman于1928年发现的一种指纹式的、具有分子结构特异性的非弹性散射光谱,并获得了1930年颁发的诺贝尔物理学奖。通过拉曼谱峰可以直接判断对应的分子结构,进而识别具体的分子的类型。该技术具有无需标记的优势,使其在物理、化学、生物、地质、医学、国防和公共安全等各个领域均具有重要的应用价值。拉曼信号通常比较弱,因此增强其信号就变得非常有必要。表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)源于1974年英国南安普敦大学化学系Martin Fleischmann等人的一个重要实验。1997年SERS迎来了里程碑的事件——单分子SERS检测的实现。自此,SERS技术被认为有希望使得拉曼光谱第二次获得诺贝尔奖。屏幕截图 2024-04-18 112443但是,随着SERS研究的不断深入,人们发现在低浓度检测时,拉曼信号强度存在极大的不可重复性。因此,具有单分子检测的灵敏度并不意味着超灵敏定量的实现。换言之,获得更高的增强因子只是实现SERS高灵敏定量检测的必要条件,而只有实现了具有可重复性的测量,SERS技术才具有实际应用与大规模推广的能力。这一困扰拉曼领域几十年的难题,难以在现有的技术框架中得到圆满解决。上海交通大学生物医学工程学院叶坚教授和邵志峰教授团队发明了数字胶体增强拉曼光谱(dCERS),利用胶体纳米颗粒,可以实现较高效率的单分子检测。通过该单分子计数的方式可以实现对多种分子(如染料分子、代谢小分子、核酸、蛋白)的定量检测。其中,dCERS技术所采用的胶体颗粒的合成步骤简单,易于放大生产,在应用中,可以方便地取出每个批次的少量颗粒来针对具体的目标分子预先建立标准曲线,从而可以可靠地用于后续未知浓度样本的定量。为了确立dCERS在实际测量中的潜力,该团队选取了百草枯和福美双作为展示实例。百草枯是一种高效、剧毒的除草剂,可以诱导帕金森氏病的发生,目前已有32个国家严格禁止其使用。福美双是一种含硫剧毒杀真菌剂,被欧盟归为二类致癌物。因此,超高灵敏度的、准确可靠的定量检测技术对于这些分子的检测非常重要,尤其是致癌物,原则上不存在安全剂量。选取普通的湖水作为背景并混入微量的百草枯,该团队成功实现了低于欧盟最大残留量规定三个数量级的检测灵敏度。对于福美双,该团队选取了实验室培养的豆芽提取液,达到了优于质谱五个数量级的检测灵敏度。他们证明了,通过系列稀释的方法,检测中的背景干扰可以得到完美的抑制,从而实现准确的靶分子浓度的测量。而dCERS的超高灵敏度和可靠的统计分布是实现这些定量测量的关键基础。图为研究团队成员。这项研究展示了dCERS技术基于单分子计数实现了超低浓度目标分子在未知复杂背景中的可重复性定量,无需使用任何目标分子的特定标记。由于不同的目标分子大多具有独特的SERS光谱,dCERS可以实现多种不同分子的同时定量检测,因此具有很好的应用前景。另外,本工作使用的胶体纳米颗粒可以方便地进行大规模生产和制备,而检测方法相对简单,因此,dCERS有望进一步推动高灵敏检测技术的变革和进步。今年刚好是发现SERS技术的50周年,随着dCERS技术的进一步成熟,dCERS在生命科学、临床医学、环境保护、食品检测、国防与公共安全以及基础研究等领域有望得到广泛应用。
  • 研究提出利用拉曼光谱区分不同手性虾青素分子的新方法
    来源: 合肥物质科学研究院近期,中国科学院合肥物质科学研究院研究员黄青课题组与中科院海洋研究所合作,提供了一种利用拉曼光谱区分虾青素这种具有多晶型的手性生物大分子的简便方法。相关研究成果以《全反式虾青素光学异构体的DFT和拉曼研究》为题,发表在Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。  有研究表明,不同手性的虾青素具有不同的生物活性和功能。例如,左旋虾青素比右旋和内消旋虾青素具有更高的抗氧化性和抗衰老活性,可见识别虾青素的手性十分重要。目前,区分手性的技术较少,一般采用高效液相色谱来识别,但其分析耗时长,所需样品量较多。因此,探索识别虾青素手性的新技术十分必要。不同手性虾青素分子的结构和拉曼光谱  科研人员利用拉曼光谱技术,提出一种区分左旋、右旋和内消旋的全反式虾青素的方法。研究发现,利用拉曼光谱观察到不同手性虾青素在1190cm-1和1215 cm-1谱带的相对强度有区别,对此强度分析可以快速鉴别三种手性同分异构体的虾青素。结合计算分析,研究推测这三种手性虾青素由于分子间相互作用不同处于不同的晶型,由于三种分子的构象之间不再保持镜面对称,从而导致拉曼光谱有所区别。  研究工作得到国家自然科学基金和安徽省自然科学基金的资助。国家标准《拉曼光谱仪》起草单位——奥谱天成提供最全的拉曼光谱仪系列,无论是从小到火柴盒的“掌上拉曼”到大至4激发波长的“共聚焦显微拉曼”,还是从应用于毒 品、药品检测的“手持拉曼”到实验室100个样品全自动检测的“高通量拉曼”,都能实现用国产拉曼技术满足您的应用定制需求!
  • 我国率先实现紧邻不同分子的拉曼光谱识别
    p  纳米尺度上的化学识别对于微观结构的设计与功能调控至关重要,而实现相邻不同分子的化学识别则代表着识别技术的一种极限挑战。中国科技大学微尺度物质科学国家实验室单分子科学团队董振超研究组,在国际上首次实现紧邻的不同分子的a href="http://www.instrument.com.cn/zc/34.html" target="_self" title=""拉曼光谱/a识别。该成果7月27日在线发表在《自然· 纳米技术》上。/pp  董振超介绍说,由于拉曼散射光中包含了丰富的分子振动结构的信息,不同分子具有不同“指纹”特征的拉曼光谱,因此拉曼光谱技术已成为物理、化学、材料、生物等领域研究物质组成和结构的重要手段。但常规拉曼技术无法在分子水平上识别微观物质的组成与结构,而新兴的针尖增强拉曼(TERS)技术则结合了拉曼光谱技术高化学灵敏度和扫描探针显微术高空间分辨的双重优势。此前,董振超小组将非线性过程融入到TERS中,在单个分子体系实现了亚纳米分辨的化学识别。/pp  实际的微观体系常由不同分子组成,识别相邻的不同分子具有更为重要的实际应用价值。董振超小组选取了两种结构相似的卟啉衍生物分子,研究结果表明,既便二者同属卟啉分子家族,利用超高分辨的非线性TERS技术,仍然可以对距离在约0.3纳米的不同卟啉分子进行清晰的化学识别,所测得的拉曼光谱具有各自特征的振动“指纹”,能够明显区分分子的“身份”和结构。/pp  董振超表示,该成果对于任何需要在分子尺度上对材料的成分和结构进行识别的领域,都具有重要的科学意义和实用价值,有望在未来的表面反应、催化、分子器件、甚至包括蛋白质测序在内的生物分子高分辨识别等研究中得到广泛应用。/ppbr//p
  • 中科大实现世界最高分辨率单分子拉曼成像
    在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。  记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作&ldquo 打破了所有的纪录,是该领域创建以来的最大进展&rdquo ,&ldquo 是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地&rdquo ,&ldquo 是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作&rdquo 。  这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。  光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。  上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。&ldquo 迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。&rdquo 董振超说。  微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元&ldquo 天线&rdquo 的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。  &ldquo 可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。&rdquo 董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。
  • 扬子石化上线拉曼光谱分析系统
    图为员工检查拉曼光谱分析系统的数据收集情况  近日,扬子石化芳烃厂与杭州派析光电科技有限公司共同研发的在线拉曼光谱分析系统在扬子石化2号重整装置成功应用。该系统能够快速、实时和高精度地检测原料的组成情况,进而优化操作,大大提高苯、甲苯和二甲苯等芳烃产品的含量与辛烷值的检测精度。  近年来,随着流程工业对先进控制要求的不断提高,在线分析仪越来越广泛地被应用于各类生产装置。为实时优化2号重整装置工艺参数,提高目标产品收率以及经济效益,扬子石化与科研单位、专业公司合作,共同开发了拉曼光谱分析系统。  “传统人工分析通常是一周三次,频次低、成本高,而拉曼光谱分析系统能够实现在线实时分析、动态分析,并且可以利用分析数据,针对性地优化调整重整装置,进而提高芳烃收率。”重整联合装置车间主任黄子超说。  该系统的成功应用,对于重整产品中芳烃与苯含量的分析至关重要。该分析系统不需大量收集已知组成与属性的分析油样,其分析模型具有较强的外推性,能够自动适应过程特性与原料的变化,具有检测周期短、样品无需预处理、现场维护工作量小等优势。  根据拉曼光谱分析系统收集的数据,扬子石化目前已建立芳烃产率最大化、辛烷值收率最大化、效益最大化、能耗实时计算4个模型。通过建立的模型,操作人员根据原料动态变化对装置进行优化操作,使目标产品的收率以及装置运行经济效益最大化。该系统应用后,2号重整芳烃产率提高0.25%以上,年经济效益超600万元。
  • 分子光谱学学术会议:表面增强拉曼四十年
    仪器信息网讯 2014年10月31日-11月3日,第十八届全国分子光谱学学术会议在苏州召开。本次会议中,拉曼,特别是拉曼增强的研究依然是大家看好的领域。在大会报告中就有很多专家及老师介绍了拉曼光谱及表面增强拉曼光谱的技术以及应用进展。田中群院士 厦门大学 表面增强拉曼四十年:从基础到应用  其中田中群院士作了以《表面增强拉曼四十年:从基础到应用》为题的报告。在报告中,田中群介绍到,由于对复杂体系痕量分析的需求越来越多,科学研究亟待发展基于新原理和新方法的科学仪器,这也是分析化学发展的主要驱动力。而拉曼光谱具有高识别性,特别是拉曼增强效应能够使拉曼光谱的灵敏度提高百万倍甚至更好,具有很好的发展和应用前景。  从1974年,有关拉曼增强的第一篇文章发表到现在整整40年,在这40年中,前半段时间发展的相对缓慢,后半段比较迅速,原因在于表面增强拉曼光谱的发展是基于纳米科技的发展才得以快速的发展,而我国的纳米科技是在1990年之后才发展起来的。  由于有了纳米技术的发展,我们才可以看到并调控纳米粒子,进而达到拉曼增强的效果。我们应该清晰的认识到,表面增强拉曼散射效应就是一种基于纳米结构而发展起来的技术。所以,要发展拉曼技术,就要抓住关键点,研究怎样的纳米结构才可以最大限度的增强拉曼光谱的信号。  田中群介绍到,目前拉曼增强方面的研究有两个“短板”:一个是可以达到增强效果的材料比较少 二是表面形貌,目前只能在纳米结构或者粗糙的表面上来得到增强的效果。  “纳米科学的发展使得我们有越来越多的技术和能力可以设计和制造各种纳米结构。”田中群说,“不要再用一些简单的纳米粒子来做研究,这已经用了几十年了,老一辈用是合理的,年轻人应该更大胆的去创新,去思考有没有更好的纳米结构可以进一步增加灵敏度。”  在大会报告中,来自国内外的多位专家也介绍了拉曼增强方面的研究工作。蒋朝阳 University of South DakotaImprovement of SERS Activity of Silver Nanowires via Surface Modification and Nanoscale Self-Assembly龙亿涛华 东理工大学印刷SERS基底在生物和环境分析中的应用Yukihiro Ozaki Kwansei Gakuin UniversityTip-enhanced Raman Scattering Spectroscopy  除此之外,第二天拉曼光谱分会场的报告也非常精彩,湖南大学的胡家文教授、厦门大学的吴德印教授、上海师范大学的杨海峰教授等30位老师在拉曼增强光谱的理论、技术及应用方面给出报告并展开讨论。拉曼光谱分会场
  • Nature子刊:原位拉曼光谱用于电解质演化捕捉
    在目前的电池研究工作中迫切需要改进的分析工具来识别锂离子电池的退化和失效机制。然而,了解并最终避免这些有害机制需要持续跟踪不同电池组件中的复杂电化学过程。为了达到这样的目的,剑桥大学Tijmen G. Euser教授团队报导了一种原位光谱方法,该方法能够在具有石墨阳极和LiNi0.8Mn0.1Co0.1O2阴极的锂离子电池的电化学循环过程中监测碳酸盐基液体电解质的化学性质。通过在实验室级别的软包电池内嵌入空心光纤探针,我们通过无背景拉曼光谱证明了液体电解质物质的演化。光谱测量的分析揭示了碳酸盐溶剂和电解质添加剂的比例随电池电压的变化,并在跟踪锂离子溶剂化动力学方面表现出极大的潜力。原位电解质监测可以促进研究复杂的化学途径和实际电池中化学物质之间的串扰现象。一个关键的例子是在没有初始碳酸亚乙烯酯(VC)的样品中出现了亚乙烯基拉曼谱带,这表明虽然亚乙烯基物质在阳极被消耗,但它们也在循环过程中通过碳酸亚乙酯(EC)氧化产生。本工作所提出的操作方法有助于更好地理解当前锂离子电池的局限性,并为研究不同电化学储能系统中的降解机制拓展了前景。原位拉曼如何表征电解质演化过程测试装置:图1. 具有空心光纤耦合拉曼分析设备的锂离子软包电池在拉曼装置中(图 1a),10-15 厘米长的空芯光纤的近端被封装在一个定制的微流体单元中,允许光线和流体进入光纤(图 1b, c)。纤维的远端安装并密封在软包电池的电极之间。使用两层单层PE聚合物隔膜(MTI)来避免纤维和电极之间的直接接触(图1d)。简化的空芯光纤(图 1c)经过优化,可在充满电解质时引导拉曼泵浦光和信号波长范围内的光。光纤的 36 µm 宽纤芯区域既可用作波导通道,又可用作微流体通道,其内部体积低至 30 nL/cm。自动注射泵用于根据需要从软包电池中取样和注入电解液。使用底部填充的 10x 0.3 NA 显微镜物镜将拉曼泵浦激光(785 nm 连续波,图 1a)发射到填充电解质的光纤芯中。拉曼信号沿光纤的长度产生,一部分以反向传播的光纤模式被捕获,并被引导回邻近的光纤端面。产生的拉曼光的 CCD 图像(图 1c 中的右侧图像)显示大部分拉曼光是在中空光纤芯内产生和引导的。每次光学测量后,电解质样品被注入回软包电池中。由于需要避免任何电池扰动,需要 22 分钟的单次采样间隔(在 C/10 C 速率下大约是完全放电时间的 4%)。定期重复采样以达到在较长时间内监测电解质的目的(典型的充电-放电形成周期需要超过 10 小时)。测试结果分析:图2. 空心光纤中的在线拉曼测量。(a) 从光纤端面发出的拉曼光(左,图像比例尺为 50 µm)和光谱色散图像(右) (b) 在连续样品渗透期间跟踪的拉曼光谱。红色虚线表示泵何时开启;t1-a表示样品流体到达纤芯的时间。 白色虚线表示泵何时关闭,然后是样品注射器的开关。水平实线表示获取 c 中所示光谱的时间 (c) 得到不同溶剂混合物的光谱。与电池化学相关的突出显示的拉曼谱带是 893 cm-1处的碳酸亚乙酯呼吸模式(深红色虚线)、740 cm-1处的 PF6 阴离子模式(绿色虚线)和以 1628 cm-1为中心的碳酸亚乙烯酯 -HC = CH- 谱带(不存在于这些溶液和光谱中)。阴影区域表示与锂溶剂化机制相关的 1700-1850 cm-1处的 EC 和 EMC 带, 插图 i 展示了由 IPA 的拉曼强度(819 cm-1)监测的样品交换时间和 EMC 骨架(~900 cm-1)模式(c中的箭头)。插图 ii 显示了 1700-1850 cm-1处的 EC 和 EMC 波段。纤维芯内的动态交换和拉曼光谱首先在没有软包电池的情况下针对一系列电解质成分和典型溶剂进行了非原位测试(图 2)。光谱仪 CCD 记录近端面图像和光谱分散的光纤图像(图 2a)。在整个实验过程中,以每个光谱 20 秒的积分时间连续记录光谱。为了能够同时监测多个拉曼波段,我们在光谱范围、分辨率和信号强度之间进行了最佳权衡(图 2b)。最初,纤维填充有异丙醇 (IPA),其拉曼光谱如图 2b-c 所示。更换注射器以交换样品,泵流速设置为 5 µL/min (0.083 µL/s) 以渗入纤维芯。一旦拉曼信号稳定,注射泵就会关闭。 样品交换后系统的流体稳定时间目前约为 400 秒(对应于约 33 µL 的流量,图 2c)。此处依次渗透到纤维中的样品是 IPA、碳酸甲乙酯 (EMC)、碳酸亚乙酯 (EC) 和 EMC 的 3:7 混合物,以及商用电池级液体电解质溶液 LP57(即 EC 中的 1.0 M LiPF:EMC 3:7 v/v)。对于每个样品,在 410 和 2182 cm-1 之间获取相对宽带的拉曼光谱(图 2c)。拉曼光谱清晰显示了各种电解质成分特征。 首先,在 LP57 电解质中可以清楚地看到 PF6- 阴离子拉曼谱带在 740 cm-1 处的光谱位置。PF6- 峰在 ~720 cm-1 处与 EC 骨架模式部分重叠。检测 PF6- 很有意义,因为它的分解是基于一种发生在 NMC811 等富镍正极的表面的降解机制。此外,PF6- 很容易与电解质分解反应中产生的水发生反应。 其次,893 cm-1 处的 EC 呼吸模式与分子的环结构完整性有关。最后,1700-1850 cm-1 之间的阴影(宽紫色)带对应于 EMC 和 EC/VC 中羰基(C = O)键的拉曼峰,其光谱位置随锂离子溶剂化动力学而变化。此外,还标记了(弱)光谱带在 1628 cm-1(灰色虚线)处的预期位置,这是由于亚乙烯基 –HC = CH 添加剂 VC 的振动。因此,通过在装置中使用低密度衍射光栅,我们可以同时监测许多重要的电解质成分。图3. 循环过程中的电池电解质拉曼光谱演变。(a) 在 LiNi0.8Co0.1Mn0.1O2(NMC811) - 石墨锂离子软包电池的形成周期期间操作拉曼光谱,其电解质包含 LP57 + 2 wt.% VC。将电池恒流充电至 4.3 V,恒电位保持在 4.3 V,然后放电 (b) 拉曼光谱演化显示电池电解质的一系列拉曼模式中空纤维嵌入由 LiNi0.8Co0.1Mn0.1O2 (NMC811) 阴极和石墨阳极组成的软包电池中,以监测其在循环期间电解质的化学变化。每个圆形电极的有效面积为 1.54 cm2(直径 14 mm),并被一层聚合物隔膜覆盖。HC 纤维放置在两个分隔层之间,以保护电极表面免受纤维的机械损伤(图 1d)。将电池密封并填充 100 µL LP57,并添加 2 wt.% VC。尽管 HC 纤维在两个隔膜之间产生了微小的间距,但总电极表面与电解质的体积比 (~15 cm2/mL) 仍然非常接近于研究环境中常规组装的软包电池。将电池恒流充电至 4.3 V,在 4.3 V 下恒电位保持 1 小时,最后以 C/10 (18.5 mA g-1NMC) 的循环速率放电至 3.5 V。为确保在纤维芯中进行完全的样品交换,每 22 分钟从电池中提取 24 µL 体积的微量样品(大约是内部纤维体积的 50 倍),通过纤维内拉曼光谱进行分析,然后重新注入软包电池。我们从EC分子从正极到负极的穿过隔膜的扩散时间(td)来监测电极过程。假设聚合物隔膜的曲折度为 2.5,液体扩散系数为 10-6 cm2/s,这导致分子从一个电极到另一个电极的扩散时间为 td = 445 s(~7 分钟)。与之前的实验一样,我们使用宽光谱窗口(640-2340 cm-1,粗光栅)同时跟踪一系列化学物质。在第一个电化学循环期间,拉曼光谱的演变被测量为电池电压(红色曲线)的函数,在此期间预计会由于 EEI 形成而发生许多化学变化(图 3a)。在 PF6-、EC 呼吸模式和 EMC 和 EC/VC 中的羰基 (C = O) 键的谱线中观察到清晰的特征,如图 2b 所示。此外,在~1628 cm-1 处检测到(弱)亚乙烯基-HC = CH-拉曼谱带。在整个循环过程中收集完整的拉曼光谱可以对电解质盐和溶剂及其相互作用进行详细分析。总结:循环过程中碳酸酯溶剂的C=O拉伸模式相关的拉曼光谱变化,以及亚乙烯基-(C=C)双键浓度的变化等信号都可以由原位拉曼装置检测得到。对这些信号的获取和分析有助于研究电解质中的溶剂和盐成分在电池循环中的变化,揭示电池性能降解的机理,对开发长寿命的电池系统具有非常重要的意义。参考文献:Ermanno Miele et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 2022.DOI: 10.1038/s41467-022-29330-4
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p  曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。br//pp  作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。/pp  其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增!/pp  作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。/pp  其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。/pp  高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。/pp  为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 150px height: 206px " src="https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title="微信图片_20200331114509.jpg" alt="微信图片_20200331114509.jpg" width="150" height="206" border="0" vspace="0"//pp style="text-align: center "strong报告人:中科院物理所 刘玉龙研究员/strong/pp style="text-align: center "strong报告题目:拉曼散射原理与光谱分析应用/strong/pp  在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title="微信图片_20200331114518.png" alt="微信图片_20200331114518.png"//pp style="text-align: center "strong报告人:德国耶拿公司的拉曼产品经理王兰芬博士/strong/pp style="text-align: center "strong报告题目:在线拉曼光谱在高分子化学化工中的应用/strong/pp  王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。/p
  • 越来越深入的拉曼光谱研究——第21届全国分子光谱学学术会议之拉曼光谱新技术及应用分会场
    p style="text-align: justify "  strong仪器信息网讯/strong 2020年10月31日,第21届全国分子光谱学学术会议暨 2020年光谱年会在成都召开,虽然因为疫情一度延期,但是丝毫没有影响大家的参会积极性,500余位来自全国各地的老师和同学们齐聚一堂,共同探讨光谱技术的前沿研究和长远发展。/pp style="text-align: justify "  第一天的大会报告和主旨报告之后,组委会安排了不同主题的分会场报告,包括原子光谱新技术及应用、拉曼光谱新技术及应用、红外光谱新技术及应用、荧光光谱新技术及应、光谱新技术及应用等5个分会场。特别值得一提的是,拉曼光谱的蓬勃发展依旧是大家目光的聚焦点,这一点在本次会议上表现的也尤为突出。从会议出席的人数来说,拉曼光谱新技术及应用分会场从始至终都几乎座无虚席,甚至有不少代表站着听会,与上一届分子光谱会相比,拉曼研究的热潮有增无减。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202011/uepic/88eb0ea7-0c4e-4c49-b2ed-512a013ed647.jpg" title="会场.JPG" alt="会场.JPG" width="450" height="300" border="0" vspace="0"//pp style="text-align: center "strong拉曼光谱新技术及应用分会场现场/strong/pp style="text-align: justify "  本次拉曼光谱新技术及应用分会场共安排了31个报告,从内容层面来看,拉曼光谱的相关研究越来越深入,融入了科研工作者更多的思考和探究:既有二维材料等的拉曼光谱表征,也有相关机理探究;既有热度一直在线的SERS基底制备及应用,也有相关探针分子的设计;既有复杂体系的SERS快检新技术,也有拉曼光谱的原位监测、表界面研究等。/pp style="text-align: justify "  作为科研级拉曼光谱仪的使用大户,物理材料领域的研究一直代表着拉曼光谱研究和应用的前沿。本次会议中,北京大学童廉明教授介绍了其课题组开展的关于二维材料的圆偏振拉曼散射研究工作,包括MoSsub2/sub的螺旋度分辨拉曼散射效应,ReSsub2/sub的手性拉曼散射效应等;中国科学院半导体研究所谭平恒研究员分享了其课题组关于转角双层MoSsub2/sub、MoSsub2/sub/Gr vdWHs、WSsub2/sub/hBN vdWHs的拉曼光谱研究。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/34edaea4-4eea-409f-959b-5def66872d1c.jpg" title="d9e38650-c7a7-4d9a-9803-05b5f2683884.jpg" alt="d9e38650-c7a7-4d9a-9803-05b5f2683884.jpg"//pp style="text-align: center "strong style="text-align: center "报告人:北京大学 童廉明教授/strong/pp style="text-align: center "strong报告题目:二维材料的圆偏振拉曼散射效应/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/220c07a5-d136-47ff-84dc-b22f6780b38e.jpg" title="谭平恒-1.jpg" alt="谭平恒-1.jpg"//pp style="text-align: center "strong报告人:中国科学院半导体研究所 谭平恒研究员/strong/pp style="text-align: center "strong报告题目:Raman spectra from two-dimensional van der Waals Heterostructures/strong/pp style="text-align: justify "  延续了历届会议SERS研究“火爆”的场面,拉曼光谱新技术及应用分会场安排的报告中超过一半涉及了SERS的相关研究,包括SERS基底的制备、SERS探针的构建、SERS分析方法的开发及其在生物分析、材料等多领域的应用。特别值得注意的是,本次会议中大家分享报告的同时,还特别提出并讨论了SERS目前存在的挑战,并针对相关问题给出了相应的研究思路,比如SERS基底的工业化发展,拉曼光谱分析的前处理问题,便携拉曼仪器的发展等方面。/pp style="text-align: justify "  吉林大学徐抒平教授介绍了其课题组开发的基于微液滴技术的SERS分析方法,以及基于光谱成像技术的单细胞分选技术;武汉大学沈爱国教授介绍了复杂体系中多分析物的SERS快检新技术,还特别介绍了多光谱呈现的包装防伪新技术;西安交通大学方吉祥教授详细解析了当前单分子SERS实用中的瓶颈问题,并分享了其课题组研究的基于避雷针效应多刺结构SERS新机制等研究成果;上海师范大学杨海峰教授分享了其课题组构建的一系列特异性拉曼探针以及多种物质的检测案例,其特别指出,未来SERS的发展要和小型仪器结合起来;西南交通大学范美坤教授介绍了其课题组在SERS的快速定性筛选和定量分析方面开展的一系列工作。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/0274a393-78be-4479-818d-63192c894fee.jpg" title="徐抒平-1.jpg" alt="徐抒平-1.jpg"//pp style="text-align: center "strong报告人:吉林大学 徐抒平教授/strong/pp style="text-align: center "strong报告题目:基于微液滴技术的SERS分析方法/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/1409b863-0038-4e77-8ede-9b87f1f763bf.jpg" title="沈爱国-1.jpg" alt="沈爱国-1.jpg"//pp style="text-align: center "strong报告人:武汉大学 沈爱国教授/strong/pp style="text-align: center "strong报告题目:复杂体系中多分析物的SERS快检新技术—从生化分析到智能包装/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/ac80ab66-5cf9-4d47-812b-01c9b5fe88e8.jpg" title="方吉祥-1.jpg" alt="方吉祥-1.jpg"//pp style="text-align: center "strong报告人:西安交通大学 方吉祥教授/strong/pp style="text-align: center "strong报告题目:浓缩富集与分子定位型SERS关键技术及分子传感/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/5b15b297-0c91-47e8-a293-c5bf5f549dbd.jpg" title="杨海峰-2.jpg" alt="杨海峰-2.jpg"//pp style="text-align: center "strong报告人:上海师范大学 杨海峰教授/strongbr//pp style="text-align: center "strong报告题目:特异性拉曼探针构建及其应用/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/9b37d91c-b421-41e1-8c63-0eb8104fc451.jpg" title="范美坤-1.jpg" alt="范美坤-1.jpg"//pp style="text-align: center "strong报告人:西南交通大学 范美坤教授/strongbr//pp style="text-align: center "strong报告题目:On-site SERS analysis: from fast qualitative screening to convenient quantitative detection/strong/pp style="text-align: justify "  吉林大学宋薇教授介绍了其课题组开展的SERS纳米材料催化体系机制研究以及SERS催化体系在环境医学中的应用,探索了材料独特的催化与SERS响应性;苏州大学姚建林教授介绍了纳米阵列材料的光谱增强、催化剂传感性能等,详细介绍了SERS“热点”调控及制备,表面SPR催化脱氢反应及机理、指纹识别等应用案例。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/6f09edc3-14ad-40d7-a6a5-b612cf4737f1.jpg" title="宋薇-1.jpg" alt="宋薇-1.jpg"//pp style="text-align: center "strong报告人:吉林大学 宋薇教授/strongbr//pp style="text-align: center "strong报告题目:表面增强拉曼光谱在纳米材料催化体系中的应用/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/693a9e51-70a2-49a5-8ba2-c08d18caa304.jpg" title="姚建林-1.jpg" alt="姚建林-1.jpg"//pp style="text-align: center "strong报告人:苏州大学 姚建林教授/strongbr//pp style="text-align: center "strong报告题目:纳米阵列材料的光谱增强、催化剂传感性能/strong/pp style="text-align: justify "  来自厦门大学的任斌教授一直从事拉曼技术的研究,他在SERS和TERS技术方面有着很深的见解。本次会议中,王翔副教授代为报告,详细介绍针尖制备方法、TERS可靠性验证、TERS在表界面研究中的应用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/42d94b3a-7314-496a-86d9-d28141ef1ba6.jpg" title="王翔-1.jpg" alt="王翔-1.jpg"//pp style="text-align: center "strong报告人:厦门大学王翔副教授/strongbr//pp style="text-align: center "strong报告题目:纳米分辨针尖增强拉曼光谱技术及其在表界面研究中的应用/strong/pp style="text-align: justify "  随着科研及工业需求的发展,原位分析越来越吸引大家的关注,本次会议中,多位老师的报告涉及了拉曼光谱的原位研究。厦门大学李剑锋教授介绍了综述了电极/溶液界面水的各种研究方法,详细介绍了界面水的原位拉曼光谱研究;中科院青岛生物能源与过程研究所黄长水研究员分享了拉曼光谱原位监测新型碳纳米材料器件过程,包括拉曼用于偶极分子与石墨烯相互作用表征,以及拉曼光谱用于偶极分子石墨烯半导体器件原位监测等;中山大学陈建教授介绍了电催化还原反应中的表面吸附调控及其原位拉曼研究,包括COsub2/sub电催化还原中间体监测及调控,电解水析氢反应中间体检测及调控等;上海大学尤静林教授介绍了二元Bisub2/subOsub3/sub-Bsub2/subOsub3/sub晶体及其熔体结构的原位拉曼光谱研究,其间特别介绍了高温拉曼光谱原位分析技术。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/37601b84-2bb6-4d0d-ac83-f3ac1b757c90.jpg" title="李剑锋-1.jpg" alt="李剑锋-1.jpg"//pp style="text-align: center "strong报告人:厦门大学 李剑锋教授/strong/pp style="text-align: center "strong报告题目:界面水的原位拉曼光谱研究/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 250px height: 350px " src="https://img1.17img.cn/17img/images/202011/uepic/fc449755-bbdd-4f8f-a425-75b12432fd10.jpg" title="90136f69-40c1-40ca-8358-286e7cdfb646.jpg" alt="90136f69-40c1-40ca-8358-286e7cdfb646.jpg" width="250" height="350" border="0" vspace="0"//pp style="text-align: center "strong报告人:中科院青岛生物能源与过程研究所 黄长水研究员/strongbr//pp style="text-align: center "strong报告题目:拉曼光谱原位监测新型碳纳米材料器件过程/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/63e52585-4dc0-4c93-bbcb-afa12ff2c055.jpg" title="陈建-1.jpg" alt="陈建-1.jpg"//pp style="text-align: center "strong报告人:中山大学 陈建教授/strongbr//pp style="text-align: center "strong报告题目:电催化还原反应中的表面吸附调控及其原位拉曼研究/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/feb982da-a044-4bea-8d99-f2cca6b7d617.jpg" title="尤静林 (2)-1.jpg" alt="尤静林 (2)-1.jpg"//pp style="text-align: center "strong报告人:上海大学 尤静林教授/strongbr//pp style="text-align: center "strong报告题目:二元Bisub2/subOsub3/sub-Bsub2/subOsub3/sub晶体及其熔体结构的原位拉曼光谱研究/strong/pp style="text-align: justify "  除了各位专家的报告之外,雷尼绍、天美仪拓、布鲁克等仪器公司的代表也分享了最新的仪器技术,鉴知技术还在中午的时间进行了产品宣介。不仅如此,在第一天的主旨报告中,赛默飞、HORIBA也分享了拉曼相关产品的最新进展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/f82644cd-3502-4b37-9879-79bc6c12af3c.jpg" title="徐媛-1.jpg" alt="徐媛-1.jpg"//pp style="text-align: center "strong报告人:雷尼绍(上海)贸易有限公司 徐媛博士/strongbr//pp style="text-align: center "strong报告题目:雷尼绍拉曼光谱成像技术的发展/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/90ba1a7d-9765-45a8-ab17-e7dcb2f7aefa.jpg" title="徐涛涛-1.jpg" alt="徐涛涛-1.jpg"//pp style="text-align: center "strong报告人:天美仪拓实验室设备(上海)有限公司 徐涛涛博士/strongbr//pp style="text-align: center "strong报告题目:爱丁堡仪器全新科研级显微共聚焦拉曼光谱/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/86b61237-35e6-4546-a51e-836b3b34e4e6.jpg" title="陈贵平-1.jpg" alt="陈贵平-1.jpg"//pp style="text-align: center "strong报告人:布鲁克(北京)科技有限公司 陈贵平经理/strongbr//pp style="text-align: center "strong报告题目:布鲁克全自动显微共聚焦拉曼光谱仪SENTERRA II介绍/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/1b478823-82b1-4280-95d9-7d9ae51808e4.jpg" title="李兆芬-1.jpg" alt="李兆芬-1.jpg"//pp style="text-align: center "strong报告人:雷尼绍(上海)贸易有限公司 李兆芬博士/strongbr//pp style="text-align: center "strong报告题目:Renishaw Raman 光谱产品最近进展/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/3a0ecdd4-1db8-4e6d-8336-d4dfe3b80211.jpg" title="IMG_6088 (1).jpg" alt="IMG_6088 (1).jpg"//pp style="text-align: center "strong北京鉴知技术有限公司总经理 王红球/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/81d228c3-820d-4ec4-bf22-a776e345c6f7.jpg" title="IMG_6093 (1).jpg" alt="IMG_6093 (1).jpg"//pp style="text-align: center "strong北京鉴知技术有限公司 算法工程师 王健年/strong/ppstrong  /strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "备注:除了文中的报告嘉宾外,还有十余位报告老师也在本分会场中分享了精彩的报告,但是由于篇幅有限,不能展现全部老师的报告内容,还请见谅!/span/ppstrong/strong/p
  • 上海交大叶坚教授团队Nature发文:拉曼光谱助力分子定量检测
    2024年4月17日国际顶级期刊Nature(《自然》)在线发表了题为“Digital colloid-enhanced Raman spectroscopy by single-molecule counting”的研究论文。该研究针对表面增强拉曼光谱领域内定量的挑战,系统阐述了基于数字胶体增强拉曼光谱(digital colloid-enhanced Raman spectroscopy, dCERS)的定量技术。基于单分子计数,dCERS成功实现了超低浓度目标分子的可靠定量检测,为表面增强拉曼光谱技术的普遍应用奠定了重要基础。 本文的第一作者为上海交通大学生物医学工程学院致远荣誉计划博士研究生毕心缘,通讯作者为叶坚教授。作为资深作者,邵志峰教授在基本概念、数据解析以及文章的凝练、修改等方面做出了关键贡献。Daniel M. Czajkowsky教授也对数据的物理原理与文章修改做出了重要贡献。上海交通大学是论文的唯一完成单位和通讯单位。该工作得到了上海交通大学古宏晨教授、徐宏教授和沈峰教授的帮助,得到了国家自然科学基金委、国家重点研发计划、上海市科学技术委员会、上海市妇科肿瘤重点实验室、上海交通大学、王宽诚教育基金会的资助。该成果成员:(从左往右)邵志峰、叶坚、毕心缘、Daniel M. Czajkowsky拉曼散射(Raman scattering)是Chandrasekhara Venkata Raman于1928年发现的一种指纹式的、具有分子结构特异性的非弹性散射光谱,并获得了1930年颁发的诺贝尔物理学奖。通过拉曼谱峰可以直接判断对应的分子结构,进而识别具体的分子的类型。该技术具有无需标记的优势,使其在物理、化学、生物、地质、医学、国防和公共安全等各个领域均具有重要的应用价值。拉曼信号通常比较弱,因此信号增强就变得非常有必要。表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)源于1974年英国南安普敦大学化学系Martin Fleischmann等人的一个重要实验。他们发现,在粗糙的银电极表面所附着的吡啶分子所产生的拉曼散射信号会被极大地增强,其物理原理在1977年分别由美国西北大学化学系David L. Jeanmaire和Richard P. Van Duyne以及英国肯特大学化学实验室M. Grant Albrecht和J. Alan Creighton从电磁场效应和电荷转移效应做出了解释。1997年SERS迎来了里程碑的事件——单分子SERS检测的实现。自此,SERS技术被认为有希望使得拉曼光谱第二次获得诺贝尔奖。迄今为止,研究人员开发了各种不同的纳米增强基底,如纳米星、纳米海胆、纳米花、纳米森林等,通过采用不同的湿化学合成方案与芯片制造工艺,使得基底表面具有更为丰富的尖端、缝隙结构,形成更强的热点区域为其中的分子提供更高的增强能力,实现超低浓度的分子检测。 但是,随着SERS研究的不断深入,人们发现在低浓度检测时,拉曼信号强度存在极大的不可重复性。因此,具有单分子检测的灵敏度并不意味着超灵敏定量的实现。换言之,获得更高的增强因子只是实现SERS高灵敏定量检测的必要条件,而只有实现了具有可重复性的测量,SERS技术才具有实际应用与大规模推广的能力。很显然,这一困扰拉曼领域几十年的难题,难以在现有的技术框架中得到圆满解决。本工作展示了dCERS技术基于单分子计数实现了超低浓度目标分子在未知复杂背景中的可重复性定量,无需使用任何目标分子的特定标记。由于不同的目标分子大多具有独特的SERS光谱,dCERS可以实现多种不同分子的同时定量检测,因此具有很好的应用前景。dCERS成功实现具有普适意义的1fM水平定量灵敏度。另外,本工作使用的胶体纳米颗粒可以方便地进行大规模生产和制备,而检测方法相对简单,因此,dCERS有望进一步推动高灵敏检测技术的变革和进步,验证了在环境保护、食品安全等领域的实用性。 今年刚好是发现SERS技术的50周年,可以预见,随着dCERS技术的进一步成熟,dCERS在生命科学、临床医学、环境保护、食品检测、国防与公共安全以及基础研究等领域都会得到广泛的应用。
  • 2022全球分子光谱市场68.5亿美元 拉曼增长最快
    p  日前,MARKETSANDMARKETS发布关于分子光谱的市场研究报告。报告内容显示,2016年,全球分子光谱学市场46.8亿美元,预计到2022年该市场将达到68.5亿美元,复合年增长率为6.6%。/pp  报告分析称,整个分子光谱学市场的增长可以归因于食品安全问题的日益加剧,医药和生物技术产业的发展,分子光谱学在环境检测中的应用,以及分子光谱技术的更新等。未来几年,预计北美将占据全球分子光谱学市场的最大份额。然而,高成本的设备也可能会抑制市场在预测期间的增长。/pp  在环境保护方面的资金投入以及科研经费的增长,比如美国和加拿大等国家,将为市场参与者提供新的机会。例如,2016年,美国年度绩效计划和预算为82.67亿美元,比前一年增加了1.27亿美元(81.39亿美元),增加的经费用于购买检测高危样品的新仪器。此外,2016年3月,加拿大国家科学技术部部长宣布投资2300万美元,支持加拿大26所大学的95个研究项目。/pp  根据技术原理,该市场可以细分为NMR、紫外可见光谱、红外光谱、近红外光谱、色度测量光谱、拉曼光谱等。由于有机化合物结构检测方面的应用越来越多,预计NMR将在2017年的分子光谱市场中占有最大的份额。而从下图我们也可以看出,预测期间拉曼光谱的复合年增长率最高。/pp style="text-align: center "img width="500" height="427" title="molecular-spectroscopy-market2.jpg" style="width: 500px height: 427px " src="http://img1.17img.cn/17img/images/201708/insimg/3b45d479-89aa-4c64-88e1-0ff24d2104fc.jpg" border="0" vspace="0" hspace="0"//pp  根据应用,该市场细分为制药领域的应用、环境检测、食品和饮料检测、生物技术和生物制药应用、学术研究等。2017年,预计制药领域的应用将占分子光谱市场的最大份额,而且预计预测期间的复合年增长率也将最高。/pp  从地域上来看,北美占据全球市场最大份额,其次是欧洲。美国在环境检测方面越来越多的资金投入,以及对食品安全问题日益增长的关注等都是推动市场增长的主要因素。加拿大在研发和基础设施发展方面的资金投入增加也将推动市场在预测期内的增长。/pp  2016年,全球分子光谱学市场由Bruker、Thermo Fisher、PerkinElmer和Agilent主导。2016年,这些公司占据了全球分子光谱学市场的大部分份额。这个市场的其他参与者包括Shimadzu、Danaher 、ABB、Merck、JEOL、FOSS、JASCO和HORIBA等。/ppbr//p
  • 第19届全国分子光谱学术报告会圆满结束
    第19届全国分子光谱学术报告会圆满结束 2016年10月27-30日,第十九届全国分子光谱学学术会议暨2016年光谱年会在福州召开,会议由中国光学学会和中国化学会主办,中国科学院福建物质结构研究所、福州大学和闽江学院联合承办。经过充分的交流和学习,10月30日,大会迎来了闭幕式。Avantes China很荣幸参与了这次分子光谱学的盛会,本次会议是举办这么多届以来,人数多的一次,也是仪器商来得多的一次。Avantes China在本次会议上向各位参会人员隆重介绍了我们的以下产品:红外光谱仪、拉曼、微区拉曼、DOAS大气环境监测,主要面向制药,食品,环境 ,能源,农业,工业在线等。我们的产品也可以提供多种其他方面的应用,欢迎您前来指导,我们会为您提供全面的光学体验!
  • 赛黙飞世尔科技分子光谱技术交流会取得圆满成功
    为了使广大客户更清晰地了解赛黙飞世尔科技分子光谱最新技术与应用,赛黙飞世尔于6月3日在有着古老文明的城市西安举办了一场技术交流会,有来自高校、研究所、卫生防疫、公安、商检、食品药品、材料、环境等领域的客户到会, 会场上座无虚席。交流会现场分子光谱销售部经理吴秋波先生亲临会场,做了简要的公司介绍。北区销售经理王铮先生做了关于Nicolet iN10傅立叶变换显微红外光谱仪设计特点及应用的报告,南区销售经理黄文女士做了近红外光谱技术基本原理及产品系列及应用的介绍,来自美国工厂的拉曼产品专家Mark Wall博士和中国拉曼应用专家张衍亮博士分别介绍了拉曼光谱技术及其应用,客户对新技术及新应用兴趣浓厚,反响强烈,提出了不少很有意义的问题。临近尾声,举行了别开生面的有奖问答活动,妙趣横生的问题和回答使气氛异常热烈。踊跃提问现场展示的Nicolet iN10 MX显微成像系统结合iZ10 辅助光学台吸引了很多客户,大家争相观看、询问,并用带来的样品当场测试,均获得了满意的结果。演示做样此次交流会受到了大家的广泛称赞,达到了厂家与客户沟通、交流的目的。客户说希望多组织这样的技术交流,我们倍受鼓舞,客户的满意始终是我们的宗旨。 随后,于6月8日我们在美丽的海滨城市大连举办了拉曼光谱仪技术与应用专场交流会,来自大连化物所、大连理工大学等单位的老师和同学参加了这个交流会,大家对拉曼的原理、技术、应用有了较全面的了解,随着拉曼产品设计的智能化,操作简单,无需制样等特点,拉曼光谱仪越来越受到广大分析工作者的青睐。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100多亿美元,拥有员工35,000多人服务客户。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific像客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲了解更多信息,请浏览公司网站: www.thermofisher.com 或中文网站www.thermo.com.cn ;www.fishersci.com.cn 。
  • 侯建国领衔单分子尺度研究 实现亚纳米分辨拉曼成像
    目前,全球信息技术正跨入以量子效应为特征的&ldquo 后摩尔&rdquo 时代。单分子尺度体系具有丰富的功能结构和独特的量子性质,将成为量子计算和信息技术物质载体的最佳选择之一。  十余年来,中科院院士、中国科学技术大学教授侯建国领衔的&ldquo 单分子尺度的量子调控研究集体&rdquo 对单分子尺度体系进行不断的探索,取得了一批重要创新成果,并由此获得2014年度中科院杰出科技成就奖。  领先国际水平  单分子尺度量子调控研究是国家量子调控科学领域的重大科学问题和需求。近年来,该研究集体进一步发展和提升了单分子尺度量子态的探测、操纵及调控技术,率先实现了国际上最高水平的亚纳米分辨的单分子拉曼成像。  &ldquo 2013年,我们在单分子化学识别方面取得重大突破,实现了亚纳米分辨的单分子拉曼成像。该工作在《自然》杂志上发表后,立即引起国际科技界的广泛关注。&rdquo 中国科学技术大学教授杨金龙在接受《中国科学报》记者采访时表示。  &ldquo 我们通过技术上的创新和概念上的突破,将非线性效应融入到常规的针尖增强拉曼散射过程中,从而大大提高了拉曼信号的探测灵敏度和空间分辨能力,将光学光谱探测推进到前所未有的亚分子亚纳米水平,使单分子尺度的化学识别成为现实。&rdquo 中国科学技术大学教授董振超说。  团队成员之一、中国科学技术大学教授王兵表示,尽管科学发展进程非常快,但他们在拉曼成像方面取得的成绩迄今仍保持着世界纪录。  此外,该集体还利用单分子选键化学实现了单分子磁性自旋态控制 成功设计并实现具有多重功能集成的单分子器件 利用纳腔等离激元共振实现了单分子电致发光 揭示出氧化物表面光催化分解水的微观机制等。  团队建设尤为重要  &ldquo 我们能取得现在的成绩,离不开团队的长期密切合作。&rdquo 杨金龙表示,单分子尺度体系的研究并不是一项短平快的研究,这个&ldquo 硬骨头&rdquo 需要很多人一起慢慢地&ldquo 啃&rdquo 。  中国科学技术大学单分子尺度的量子调控研究集体由侯建国(实验)和杨金龙(理论)领衔,一共10位成员组成。&ldquo 团队合作对于整个研究获得新突破是非常重要的,协作是全方位的,贯穿了整个团队发展的始终。每一次新的发现,都是整个团队共同协作和努力的结果。&rdquo 王兵说。  其中一位团队成员告诉记者,每次新加入的成员都会带来新的思路,团队建设实际上也是一个逐渐积累和发展,然后不断提升创新研究能力的过程。  在董振超看来,团队的支持对自己的科研工作非常重要。&ldquo 在学术上,我们经常进行热烈的探讨和争辩,有时甚至争论得面红耳赤,大家都在试图攻击对方的弱点。待这些弱点被攻克后,课题研究自然也就往前迈进了一步。&rdquo   &ldquo 我们的团队研究有两个最鲜明的特色:一个是实验和理论紧密结合,因为量子里面有很多实验现象需要理论支撑 第二个是多学科交叉,包括物理、化学、电子、光学、生物等,这样才能有效促成技术的创新集成和知识的融会贯通。&rdquo 董振超说。  应用前景广阔  &ldquo 目前,我们的研究尚属于基础研究阶段。&rdquo 杨金龙表示,团队成员并不满足于现在的进步,会一直探究下去。  &ldquo 科学的魅力在于对未知的探索。&rdquo 董振超说,当你朝着某个方向努力,但作出来的结果与原来的想象和理论不一样时,就会出现新的信息,这样会反过来促进对一些现象新的理解,进而推动科研向前发展。  该团队一位研究人员表示,他们的目的是深刻理解和有效调控分子尺度上的量子行为。目前的研究离真正的应用还有一段距离,但是研究课题都是瞄准未来的能源、信息、生物等前沿领域,旨在为这些未来技术提供基本信息和科学依据。  &ldquo 比如单分子拉曼成像技术,其最主要的优点是能把微观世界里相邻分子的成分和结构&lsquo 看&rsquo 出来,这在材料科学、纳米催化、分子纳米技术、生物技术等领域可能都有很重要的应用前景。&rdquo 董振超介绍说。  &ldquo 在生命科学领域,拉曼成像的应用有可能提高疾病的早期检测技术水平。比如现有技术只能检测出已达到一定量的癌细胞,如果能事先对生命体作单分子检测,就能在癌变细胞极少的情况下将其检测出来,这对癌症早期治疗意义重大。&rdquo 杨金龙表示。  &ldquo 在研究过程中,我们一方面从科学角度出发,另一方面也从国家整体需求出发,在进行科学探索的同时,关注国家战略方向。&rdquo 王兵说。
  • 2013中国十大科技进展 世界最高分辨率单分子拉曼成像入选
    三中全会部署深化科技体制改革  11月9日至12日,党的十八届三中全会召开,会议把深化科技体制改革作为全面深化改革的重要内容进行系统部署。会议通过的《中共中央关于全面深化改革若干重大问题的决定》明确提出深化科技体制改革、加强知识产权运用和保护、整合科技规划和资源、改革院士遴选和管理体制等。  三中全会关于科技体制改革的部署,既体现了与以往改革思路的继承发展,对实践中先行先试的经验予以肯定,又结合经济领域改革的大方向,突出了今后一个时期改革的重点领域和环节,为实施创新驱动发展战略、建设创新型国家提供了重要的制度设计。  &ldquo 嫦娥三号&rdquo 实现月面软着陆  12月14日21时11分,&ldquo 嫦娥三号&rdquo 在月球正面的虹湾以东地区实现软着陆。这将开创人类月球探测史的多项&ldquo 首次&rdquo 。月面软着陆就位探测与月球车巡视勘察二者同时进行并有机结合,将获得比以前更有意义的探测成果 在国际上首次利用测月雷达实测月壤厚度和月壳岩石结构 首次在软着陆地点利用数据转发器精确测定地月间距离,进行月球动力学研究 首次开展日地空间和太阳系外天体的月基甚低频射电干涉观测,进行太阳射电爆发与空间粒子流、光千米波辐射&hellip &hellip   运-20大型运输机首飞成功  1月26日,我国自主发展的运-20大型运输机首次试飞取得圆满成功。运-20是中国研制的最大的飞机,其成功标志着中国跻身世界大飞机国家。  该型飞机是我国依靠自己的力量研制的一种大型、多用途运输机,可在复杂气象条件下执行各种物资和人员的长距离航空运输任务。运-20大型运输机的首飞成功,对于推进我国经济和国防现代化建设,应对抢险救灾、人道主义援助等紧急情况,具有重要意义。该型飞机首飞后将按计划继续开展相关试验和试飞工作。  &ldquo 天河&rdquo 超级计算机再夺冠  6月中旬,在德国莱比锡&ldquo 2013国际超级计算大会&rdquo 上,中国天河二号超级计算机跃居第41届世界超级计算机500强排名榜首。其峰值计算速度达每秒5.49亿亿次、持续计算速度达每秒3.39亿亿次。这是继2010年天河一号首次夺冠之后,中国超级计算机再次夺冠。  天河二号超级计算机系统内存总容量1400万亿字节,存储总容量12400万亿字节,最大运行功耗17.8兆瓦。据天河二号工程副总指挥李楠研究员介绍,天河二号运算1小时,相当于13亿人同时用计算器计算1000年,其存储总容量相当于存储每册10万字的图书600亿册。较之上届&ldquo 状元&rdquo 美国&ldquo 泰坦&rdquo 超级计算机,天河二号计算速度是它的2倍,计算密度是它的2.5倍,能效比相当。  神十进行载人航天应用性飞行  6月26日,神舟十号载人飞船返回舱在预定区域安全着陆,航天员健康出舱,天宫一号与神舟十号载人飞行任务取得圆满成功。神舟十号开创中国载人航天应用性飞行的先河。  此次任务的主要目的有4个:  一是发射神舟十号飞船,为天宫一号目标飞行器在轨运营提供人员和物资天地往返运输服务,进一步考核交会对接技术和载人天地往返运输系统的性能   二是进一步考核组合体对航天员生活、工作和健康的保障能力,以及航天员执行飞行任务的能力   三是进行航天员空间环境适应性和空间操作工效研究,开展空间科学实验和航天器在轨维修等试验,首次开展我国航天员太空授课活动   四是进一步考核工程各系统执行飞行任务的功能、性能和系统间协调性。  首次测到量子反常霍尔效应  由清华大学薛其坤院士领衔的团队从实验中首次观测到量子反常霍尔效应,这是物理学领域基础研究的一项重要科学发现。该成果于北京时间3月15日在《科学》杂志在线发表。  美国科学家霍尔曾发现霍尔效应和反常霍尔效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。而在磁性材料中不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。其美妙之处是不需要任何外加磁场,这将推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术进步的进程。  体细胞重编程技术重大突破  8月,北京大学研究团队,成功将体细胞制成多潜能性干细胞。此前,通过借助卵母细胞进行细胞核移植或使用导入外源基因的方法,哺乳动物体细胞被证明可以进行&ldquo 重编程&rdquo 获得&ldquo 多潜能性&rdquo 。邓宏魁团队的方法则更简单和安全。  该成果将为未来细胞治疗及器官移植提供理想的细胞来源,极大推动人类&ldquo 克隆&rdquo 组织和器官治疗疾病的医学研究。这一重大发现有助于人们更好地理解细胞命运决定和细胞命运转变的机制,使人类未来有可能通过使用小分子化合物的方法,直接在体内改变细胞命运。  制出人感染H7N9禽流感病毒疫苗株  10月26日,我国科学家宣布成功研发出人感染H7N9禽流感病毒疫苗株,改变了我国流感疫苗株需由外国提供的历史,为及时应对新型流感疫情提供了有力的技术支撑。  目前,该病毒疫苗种子株已通过中国医学科学院医学实验动物研究所新药安全评价研究中心的安全性雪貂评价实验。检测结果显示,该病毒疫苗株各项基数指标均符合流感病毒疫苗株的要求。  该成果的领衔者、中国工程院院士李兰娟介绍,课题组于4月3日收到H7N9病例咽拭子样本,并成功分离获得一株H7N9禽流感病毒。随后,联合课题组采用国际通行的流感疫苗种子株制备方法,通过反向遗传技术,以PR8质粒为病毒骨架,与自行分离的病毒株进行基因重排,并成功研制出H7N9流感疫苗种子株。  实现世界最高分辨率单分子拉曼成像  6月,中国科学家在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。  光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值。  4G牌照发放助力信息消费升级  12月, 工信部向中国移动、中国电信和中国联通颁发了4G牌照。此举预示我国进入到一个全新的通信时代,将对包括用户网速、语音通话、移动互联网、电子商务、智慧城市等带来深远影响。据预计,到2014年,4G手机在国内市场的销量会接近1亿部,并拉动15%的消费需求。  工信部向三大电信运营商颁发了LTE/第四代数字蜂窝移动通信业务(TD-LTE)经营许可。此次4G牌照的发放打破了电信和联通对于固网牌照的垄断,实现了三大运营商固网+移动的格局。
  • 用于表面增强拉曼散射检测的半包裹金纳米粒子
    研究人员一直在努力开发高度可靠和灵敏的表面增强拉曼散射(SERS)基底,用于检测复杂系统中的化合物。在这项工作中,我们提出了一种用不完全包裹的普鲁士蓝(PB)构建Au核的策略,用于高可靠性和高灵敏度的SERS衬底。包裹的铅层可以提供内标(IS)来校准SERS信号浮动,而金岩心的暴露表面提供增强效应。信号自校准和增强之间的平衡(因此SERS可靠性和灵敏度之间的折衷)通过Au核上PB层的近似半包裹配置(即SW-Au@PB)来获得。提出的SW-Au@PB纳米粒子(NPs)表现出与原始Au NPs相似的增强因子,并有助于使用R6G作为探针分子的校准SERS信号的超低RSD (8.55%)。SW-Au@PB NPs同时实现的可靠性和灵敏度还可以检测草本植物中的有害农药残留,如百草枯和福美双,平均检测准确率高达92%。总的来说,这项工作主要为不完全包裹的纳米粒子提供了一种可控的合成策略,最重要的是,探索了在具有不同溶解度的危险物质的精确和灵敏的拉曼检测中的概念验证实际应用的潜力。a)IW-金@PB纳米颗粒的制造。b)IW-金@PB纳米粒子系统信号自校准能力的原理。c)模拟原始金纳米颗粒、IW-金@PB纳米颗粒和基于核壳的FW-金@PB纳米颗粒的局部电场分布。d)IW-金@PB纳米颗粒的拉曼光谱。e)具有不同铅包裹度的IW-金@PB纳米颗粒的典型TEM图像,包括LW-金@PB、SW-金@PB和NFW–金@PB纳米颗粒。f)原始金纳米颗粒、PB纳米颗粒和具有不同PB层包裹程度的IW-金@PB纳米颗粒的紫外/可见吸收光谱。g)关于IW-金@PB纳米颗粒红移的吸收光谱的放大图。R6G的典型SERS光谱,其中原始Au NPs、LW-Au@PB NPs、SW-Au@PB NPs和NFW–Au @ PB NPs作为SERS基底。b)当在硅片上蒸发SW-Au@PB NPs/R6G时,R6G特征峰(612cm-1)和IS峰(2155cm-1)的SERS强度以及它们在随机选择的15个点上的强度比。c)当在硅晶片上蒸发Au NPs/R6G时,R6G特征峰(612cm-1)的SERS强度穿过随机选择的15个点。d)硅晶片上SW-Au@PB NPs分布的典型SEM图像。e-f)硅晶片上蒸发的SW-Au@PB NPs/R6G (e)的校准SERS信号和Au NPs/R6G (f)的SERS信号的映射结果。g)疏水纸上SW-Au@PB NPs分布的典型SEM图像。h-I)SW-Au @ PB NPs/R6G(h)的校准SERS信号和Au NPs/R6G (i)的SERS信号在疏水纸上蒸发的映射结果。a-b)在硅片(a)和疏水纸(b)上具有不同R6G浓度的SW-Au@PB NPs/R6G的典型SERS光谱。c)R6G特征峰的校准SERS强度与R6G浓度的对数之间的对应关系。d)基于SW-Au@PB NPs和疏水纸,跨10个批次的R6G特征峰的相对SERS强度,在每个批次中随机选择5个点。e)长期储存SW-Au@PB NPs和疏水纸后R6G的典型SERS光谱。f)长期稳定性试验中R6G特征峰的相应相对SERS强度。a)基于SW-Au @ PB NPs/疏水纸系统的不同浓度百草枯的典型SERS光谱。b)百草枯特征峰的相对SERS强度与百草枯浓度对数的对应关系。c)基于SW-Au @ PB NPs/疏水纸系统的不同浓度的福美双的典型SERS光谱。d)福美双特征峰的相对SERS强度与福美双浓度的对数的对应关系。三种草本植物中百草枯(e)和福美双(f)的典型SERS光谱。相关成果以“Semi-wrapped gold nanoparticles for surface-enhanced Raman scattering detection”,发表在国际学术期刊“Biosensors and Bioelectronics”上。
  • 青岛能源所发明基于拉曼组的生物储碳含能分子单细胞定量技术
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  通过光合作用固定的二氧化碳与太阳能在生物体内有三种主要的存储形式:多糖、油脂和蛋白质,共同构成了生物碳存储与生物能源产业的物质基础。目前,对细胞中这三类高含能储碳分子的识别、表征和定量极为繁琐,通常难以在单个细胞精度测量,这限制了光合固碳细胞工厂的筛选与改造效率。中国科学院青岛生物能源与过程研究所单细胞中心发明了基于“拉曼组”的单细胞快检技术,能够在单个细胞精度同时测量淀粉、甘油三酯、蛋白质含量以及油脂不饱和度,为细胞工厂的性能测试平台增添了崭新的手段。11月19日,相关研究工作在线发表在emBiotechnology for Biofuels/em上。/pp  测定细胞中淀粉、甘油三酯和蛋白质的含量通常需要三个并行流程,每个流程都包括细胞培养以积累足够生物质、从生物质中提取并分离目标化合物、用特定方法定量目标组分等繁杂的步骤。这些传统方法遵循着“一个流程检测一种生物大分子”的模式,既耗时又耗力,而且难以分析生长缓慢或尚未培养的细胞。因此,发展一种快速、低成本、高通量、同时测定单个细胞中多种储碳分子的方法具有重要价值。/pp  “拉曼组”(Ramanome)是特定状态下,一个细胞群体之单细胞拉曼光谱的集合。研究人员以莱茵衣藻、微拟球藻等为模式,基于拉曼组技术,建立了同时定量单个细胞中淀粉、蛋白质、甘油三酯含量和脂质不饱和度的方法(如图)。由于拉曼组可直接跳过微藻细胞培养扩增,而且在不破坏细胞的前提下于秒级别完成测量,因此筛选速度提高了至少两个数量级。在此基础上,研究人员提出了累积多样性指数、累积含量和累积异质性、最小取样深度和最安全取样深度等新概念,建立了拉曼组取样深度与表型测量精度的关联,从理论上指导了拉曼组测量参数的选择与优化。该研究进一步提出,13个特定拉曼峰组合而成的“细胞储碳谱拉曼识别码”可灵敏、可靠、高通量地表征单个细胞中的淀粉、蛋白质、甘油三酯含量和油脂不饱和度等关键表型,并区分与揭示细胞中储碳组分及其相互转化的静态与动态特性。此外,在液体悬浮培养的活细胞、-80℃冷冻保存的湿藻泥和冷冻干燥藻粉等不同细胞保藏状态下,测量结果之间高度一致,因此拉曼组技术具有应用上的普适性。/pp  合成生物学领域的跨越式进展,在相当程度上取决于“基因型设计”、“基因型合成”、“细胞表型测试”这三大共性技术平台的突破。随着基因组测序与合成在通量与成本上的大幅度改进,“细胞表型测试”这一共性环节已成为人工细胞构建与生物元件表征的“限速步骤”之一。科研人员提出的拉曼组技术能够在单个细胞精度无需标记、非破坏性、快速地识别理论上近乎无限的细胞表型,结合前期发明的RADS、RAMS等一系列单细胞流式拉曼分选技术,能够实现单细胞功能识别、分选、测序与培养这一“细胞表型测试”完整流程的通量化、仪器化与自动化。因此,拉曼组有望成为具有普适性的新一代细胞功能测试仪器平台与单细胞表型大数据类型,服务于能源、环境、健康、海洋、生物安全等诸多应用领域的合成生物学研究与产业。/pp  研究工作获得了国家自然科学基金委、中科院含碳气体生物制造等的支持。/pp style="text-align:center "img alt="" oldsrc="W020171123403376764262.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/f3893125-4828-463f-99db-27fcc4d84b7a.jpg" uploadpic="W020171123403376764262.jpg"//pp style="text-align: center "拉曼组技术同时测定单个微藻细胞中淀粉、蛋白质和甘油三酯含量 /p
  • BioTools发布全球首创的便携显微拉曼分子光谱成像系统
    仪器信息网讯 2015年3月10日,在Pittcon 2015开幕第一天的新闻发布会上,美国BioTools公司推出了全球首创的u-Raman便携式显微拉曼分子光谱成像系统和u-BioRaman便携式生物分子显微拉曼分子光谱成像系统。该款产品由手性振动光谱先驱Prof. L.A. Nafie教授带领的专家团队研发而成。  该项新产品的推出构建了显微成像和分子光谱的桥梁,将显微拉曼分子成像系统从实验室带入更广阔,更多新视野下的现场应用。  该款系统比便携式缝纫机还要小,新型移动设计使得光路设计更短更有效率,集成的PTZ样品台设计极大地增加了扫描速度使得样品无需任何处理,采用SERS可轻松测量低至1微升或PPm量的细菌、血液以及代谢物等。其操作及其简便的设计,将使其成为工业、药物、法检、博物馆、医生办公室、输液诊室以及食品和水的测试领域里的强大的工具。  BioTools预计将于下半年向全球发货。  展位合影(右三为Prof. L.A. Nafie教授)
  • ValitaCell加入贝克曼生命科学 联动美谷分子相得益彰
    6月8日,贝克曼库尔特生命科学官方发文,ValitaCell Ltd.(“ValitaCell”)已经正式加入贝克曼库尔特生命科学。据悉,ValitaCell 于2022年9月13日被贝克曼库尔特生命科学收购。ValitaCell是一家生物技术公司,总部位于爱尔兰都柏林,致力于为生物制药行业创造开创性的分析产品和技术,旨在降低新疗法的成本和加快产品上市时间。ValitaCell技术在关键的国际市场都有获得专利,公司还获得多项奖项,包括2017年年度爱尔兰制药创业奖和爱尔兰国际贸易种子奖。ValitaCell还被公认为2020年度最成功的爱尔兰公司之一。优于ELISA和HPLC,Valita IgG定量试剂盒展现优势 目前,单克隆抗体已成为重要的生物制药治疗方式。建立强大的药物制造平台是将抗体药物发现工作无缝转化为临床和商业成功的关键。准确可靠地测定单克隆抗体( 如IgG) 滴度对于开发和后续生产至关重要。IgG定量怎能如此简单——ValitaCell产品ValitaTiter IgG定量试剂盒与业内其他的IgG定量分析技术相比,在速度和易用性等方面优于其他耗时繁琐的技术,如ELISA和HPLC。ValitaCell的联合创始人兼首席执行官Jerry Clifford博士表示:“ValitaCell在提供创新产品方面拥有良好的记录,我们很高兴能够与贝克曼库尔特生命科学成功合作。”“我们的进步能为患者做些什么同时减少实验室人员手工工作的负担是我们的目标。我们将与贝克曼库尔特生命科学一起,推进达成我们的共同目标,加速并实现创新生物药物的可持续制造,从而更快地将它们推向市场。”贝克曼库尔特生命科学生物技术业务部副总裁兼总经理Jason Lanie表示:“在我们与ValitaCell的合作中,我们一直钦佩他们的创新产品和行业专业知识。”“他们包括ValitaTiter, Quantum, CellAi和ChemStress Clone Robustness的产品组合,补充了贝克曼库尔特生命科学现有和未来的产品组合。这些产品的设计与我们的产品有着相同的目标——提供更快的细胞分析同时降低错误风险。我们很高兴欢迎他们的团队,并期待着不断发展爱尔兰生物制剂创新和发展中心,以帮助满足不断变化的客户需求。”随着ValitaCell被贝克曼库尔特生命科学的收购,同时基于ValitaTiter IgG定量试剂盒与Molecular Devices (美谷分子仪器)荧光偏振(FP) 功能的酶标仪相得益彰,其在中国的业务也即刻由贝克曼库尔特生命科学中国区和美谷分子中国共同运营,并将根据业务需求不断加大投入。关于贝克曼库尔特生命科学贝克曼库尔特有限公司成立于1935年,始于贝克曼博士发明的、可用于精确测量柠檬汁pH值的酸度计(pH meter)。从位于美国加州帕萨迪纳市的一家汽车修理厂内的小企业,到如今临床诊断和生命科学领域的世界巨头,贝克曼库尔特公司的成功主要归功于具有远见卓识的三位科学家:贝克曼博士和库尔特兄弟,正是他们为科技与医学带来了重要的的变化。1997年贝克曼公司和库尔特公司合并,成为今天的贝克曼库尔特有限公司,隶属全球科学与技术的创新者丹纳赫集团。贝克曼库尔特生命科学一直致力于改善全世界人类的健康。在过去的一百年里,“贝克曼”、“库尔特”品牌的各种仪器已被世界各地医务人员和科研工作者所普遍认可和接受。贝克曼库尔特生命科学为广大科研、商业实验室的生命科学研究工作者们提供优异的仪器系统、试剂和全球的技术服务与支持,不断促进生物学科研的新技术发展。我们的技术支持和售后服务网络遍及全球,营销至130多个国家。公司主要产品包括流式细胞仪、离心机、实验室自动化系统、颗粒与细胞分析仪器等,其产品主要用于前沿的重要研究领域,包括基因组学、蛋白质组学、细胞组学以及生物制药等。关于 ValitaCellValitaCell的使命是加快生产创新药物的步伐并降低成本。我们专注于使生物制药客户能够在短时间内将药物带给需要的患者。大多数进入临床试验的药物在上市前都会失败。这一失败增加了患者的成本并延误了挽救生命的治疗。我们的团队专注于创造分析技术,使科学家能够在药物发现和开发过程的早期获得丰富的细胞数据和见解。我们致力于在全球范围内推进人类医疗健康。关于美谷分子仪器Molecular Devices 始创于上世纪 80 年代美国硅谷,并在全球设有多个代表处和子公司。2005 年,Molecular Devices 在上海设立了中国代表处,2010 年加入全球科学与技术的创新者丹纳赫集团,2011 年正式成立商务公司:美谷分子仪器 (上海) 有限公司。Molecular Devices 以持续创新、快速高效、高性能的产品及完善的售后服务著称业内,我们一直致力于为客户提供在生命科学研究、制药及生物治疗开发等领域蛋白和细胞生物学的创新性生物分析解决方案。
  • 星赛生物完成战略融资,加速“拉曼组”工业端应用建设
    近日,星赛生物宣布完成战略融资,引进茅台科创(北京)投资基金合伙企业(有限合伙)(以下简称“茅台基金”)作为战略投资方。本轮融资将持续加深星赛生物在白酒酿造领域的产业合作,加速其“拉曼组”技术及系列产品在工业端的应用建设,重点发展星赛全球领先的单细胞拉曼分析-分选-测序-培养解决方案,进一步强化国际品牌建设和全球市场开发。星赛生物深耕生物技术多年,聚焦单细胞分析和分选领域,致力于以创新的“拉曼组”技术刻画单细胞代谢表型组信息,探测细胞代谢功能“异质性”,同时为单细胞多组学研究(基因组、转录组、蛋白组和代谢物组等)提供单细胞精度的关联“全景式”视角。原创“拉曼组装备平台”服务活体单细胞代谢功能探测与分选,成功研制全球领先的高通量拉曼流式分析/分选仪创新的“拉曼组”概念由星赛生物的联合创始人——徐健研究员(中国科学院青岛生物能源与过程研究所单细胞中心主任)、马波研究员(单细胞中心副主任)组建的单细胞中心团队最早提出。拉曼组是一种广谱适用、非侵入性、高时空分辨率的单细胞代谢表型组,旨在解决生命体系中活体单细胞代谢功能探测与利用的核心瓶颈:(1)非标记式、无损、快速的识别;(2)实时性、全景式的表征;(3)高通量、高精度的分选等。其一系列原创成果表明拉曼组能将胞内代谢物的分子光谱定量地翻译为细胞实时状态下的底物代谢、产物合成、抗逆性、环境应激、化合物相互转化网络、细胞间代谢互作以及细胞种类等信息。依托“拉曼组”技术,星赛生物自主研发了一系列单细胞拉曼分析/分选仪器,包括全球首创的高通量流式拉曼分选仪FlowRACS®(获得2022年度国家重点研发计划“基础科研条件与重大科学仪器设备研发”项目支持)、业界唯一能实现单细胞精度“表(代谢表型组)里(全基因组)兼得”的单细胞拉曼光镊分选仪RACS-Seq®、明场/荧光视野下“所见即所得”式的单细胞微液滴分选仪EasySort Compact等,并推出配套的微流控芯片耗材,搭建了新型的“功能靶向性活体单细胞分析和分选”平台,旨在为用户提供“高精度、高效能、高质量”的单细胞分析/分选解决方案。突破生物制造产业痛点,携手行业巨头共谋发展这一原创的拉曼组装备平台,无需进行荧光标记、可保留细胞活性从而与活细胞资源挖掘直接对接,而且广谱适用于各种人体、动植物和微生物细胞,因此实现了真正意义上的“细胞代谢功能随时可检可选”。在细胞资源挖掘方面,星赛生物仪器产品突破了传统“先养后筛”的研究范式限制,开辟了创新的无需荧光探针标记的“先筛后养”策略,大幅提升了目标代谢功能细胞检测和培养效率,为从环境样品出发、免培养、基于“原位”代谢功能的微生物资源挖掘、工业菌种选育、合成生物学大体系突变体库筛选等重大产业需求提供了全新的仪器工具。同时,利用拉曼光谱检测免荧光标记、代谢信息丰富、快速、高通量、低成本等特点,星赛生物产品可对传统发酵过程进行单细胞精度代谢功能实时监控,从而助力发酵过程的精细化管理,加速工业发酵过程的精密化、自动化与智能化进程。拉曼组有望成为生物制造和合成生物学产业的一种新型大数据。基于拉曼组系列仪器产品的强大功能,星赛生物正积极扩展其技术与产品在多个关键产业的应用,公司提供的新一代微生物代谢过程检测/细胞分选解决方案,目前已覆盖白酒酿造、食品、防腐剂、益生菌和发酵等多个目标领域。贵州茅台酒股份有限公司作为应用开发与示范课题的负责单位,参与了星赛生物主持的2022年度国家重点研发计划“基础科研条件与重大科学仪器设备研发”项目,共同推进固态发酵过程中单细胞拉曼技术的应用,为传统酿造工艺注入科技创新的活力。联合创始人马波研究员表示:“非常感谢茅台基金的信任,也非常感谢过往投资人的长期支持。本轮战略性融资是基于我们与产业伙伴之间建立的长期、深入合作关系。在十余年的学科交叉科研积累下,星赛生物逐步开启微生物组代谢过程检测、益生菌单细胞筛选与质检、人体与动植物单细胞代谢表型识别和分选等产业场景,为合作伙伴打造定制化、个性化的整体解决方案。星赛生物将在系统性解决方案、功能化应用场景、全自动化工业仪器等方向上持续发力,并聚焦生物智造行业、合成生物学、微生物组探测、生物医药和细胞治疗等领域,与行业龙头企业合作建立与推广基于原理与装备创新的先进技术标准,加速实现从科研领域到产业领域的全方位跨越。”
  • 曼森生物完成A轮融资,加速创新研发进程
    近日,实验室智能化领军企业上海曼森生物科技有限公司(以下简称“曼森生物”)宣布完成数千万A轮融资,本轮融资由南京高科新浚创信股权投资合伙企业(以下简称“高科新浚”)出资。本轮募集的资金主要用于曼森生物完全自主知识产权的实验室自动化系列和平行生物反应器系列各条产品线的量产和服务应用体系完善以及市场开拓。合成生物学产业化:从技术创新到市场拓展的全方位思考合成生物学作为21世纪生命科学领域的颠覆性技术,将工程科学的“设计—合成—测试—学习”(DBTL)理念引入生命科学,完成具有特定功能的人工生命系统的构建,推动了人类由解读生命到编写生命、创造生命的跨越。然而缺乏理性设计和优质仪器是目前合成生物学所面临的难题,传统的“手工作坊”式、“劳动密集”型研究难以满足海量实验和试错实验远远超出传统的人工操作实验范畴。同时,合成生物学产业化道路上的技术堵点有很多,发酵技术是其中一个卡脖子技术。因此,在放大生产前的菌种筛选及工艺开发环节,开发高通量、低成本、自动化的发酵工程技术迫在眉睫。曼森生物正是在此背景和趋势下成立,面向生物产业和合成生物学需求,帮助客户建立全栈式高通量自动化发酵工艺平台,真正做到帮助客户降本、增效和产业技术升级。国产仪器崛起:技术创新推动行业升级近年来, “国产化”与“自主可控”成为了我国科技行业发展的主旋律。从“跟跑”到“并跑”,国产仪器加速追赶国际先进水平。高端科学仪器作为科技创新的基础和重要成果,其应用边界正被不断拓展,释放出巨大的商业潜力也成了资本投资的热门焦点。一方面,随着国家对科技创新的重视和支持力度不断加强,国产仪器在技术研发和市场推广方面迎来了更为广阔的发展机遇;另一方面,国产仪器在性能和质量上不断提升,逐渐赢得了国内用户的认可和信赖。众所周知,高通量自动化发酵系统因其对平行性、控制系统精准度等要求很高,中国近90%市场被Applicon、Ependrof、Sartorius等海外巨头垄断。然而,随着国内需求不断增长,并且在国家“双创”政策的推进,越来越多的本土科技创新企业开始崭露头角,也为国产仪器提供了更多的市场机会。曼森生物通过其独有的核心软件、硬件和应用方法,实现了信号采集和指令发送的同步化,确保了操作的平行性和高通量发酵平台的稳定性,在高通量自动化发酵工艺领域开启了国产替代的步伐。可以预见,随着技术不断match创新和市场需求的不断拓展,国产仪器热潮将会持续升温,为国内科技创新和产业升级注入新的动力。关于曼森生物上海曼森生物科技有限公司成立于2017年,是一家以技术创新驱动产业发展和产业升级的科技型公司。经过6年的涤荡和打磨,自主研发了实验室自动化和平行生物反应器多个系列产品。公司创始人和技术团队来自中科院合成生物学重点实验室、华东理工大学生物反应器国家重点实验室、国家生化工程技术研究中心(上海)、制药企业和自动化领域。专注于生物产业领域的实验室自动化和产业数智化升级改造技术服务,提供一站式解决方案服务、配套自动化智能化设备仪器、智能化软件系统和标准化一次性试剂耗材。在上海设有研发中心、在浙江嘉兴设有智能化实验室创新中心。关于高科新浚高科新浚资本成立于2015年,在上海设有办公室,是由上市公司南京高科等作为有限合伙人出资设立的市场化股权投资机构,管理资金规模累计约35亿元人民币,主要关注医疗健康、工业软件、新能源新材料赛道,累计投资近50家科技企业,参投医疗健康产业项目包括百普塞斯、艾力斯、华兰股份、仁度生物、一脉阳光、正雅齿科等。高科新浚一直致力于通过国际化的投资视野与投资管理,发现一流的创业企业家与创新商业模式,帮助企业构筑成长的资源生态,把握中国经济转型和科技再造的机遇,造就中国科技行业新名片。曼森生物董事长郝玉有博士表示:“感谢高科新浚的鼎力支持,也感谢全体股东们的持续赋能与助力。在过去的几年间,曼森生物紧紧围绕国家和企业战略目标,扎实推进各项工作,并实现了新的跨越式发展,提升了企业品牌知名度和市场占有率。公司利用自动化、人工智能、大数据和工业互联网技术来为生物技术和生物产业赋能。公司愿景是成为生物智造和智能装备的技术引领者,通过机器人科学家解放人类科学家的双手,释放他们的创造力,提升脑力劳动者的时间价值和人生价值,通过智能化平行生物反应器缩短研发周期、节省实验室空间,降低研发成本。利用这些技术创新和产品创新,加快合成生物学产业的成果落地和产业化,助力我国科技领域的源头上创新,推动我国生物经济的繁荣昌盛。”高科新浚董事总经理刘传文表示:“我们非常荣幸能成功投资曼森生物,以郝博为首的团队是业内少有的既能深刻理解合成生物学深层需求又能熟练运用各类软硬件控制技术的复合型团队,突破了高通量发酵及检测自动化控制领域常见的“懂生物的不懂控制、懂控制的不懂生物”的怪圈,从而能平替国际同类产品。相信曼森团队基于融合了生物及控制的底层技术平台,将针对生物行业各类客户的高通量、自动化需求持续推出一系列自动化产品,赋能生物技术领域众多客户快速发展,为中国医疗健康产业的发展贡献一份力量。”
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 安东帕推出拉曼产品,强势进军分子光谱领域
    2016年12月,安东帕承购收购了BaySpec公司拉曼光谱产品线,该产品线包括了便携式拉曼光谱仪和台式拉曼光谱仪,及拉曼显微镜。作为安东帕家族的新成员——Cora 系列拉曼光谱仪,是一款快速质量控制,鉴定,定性和半定量的仪器。该产品广泛应用于各个行业,从药品到化学品,生命科学,材料分析和研究。 Cora 5X00 系列便携式拉曼光谱仪 结构紧凑,坚固耐用便携式设计,可自带集成电池强机械抗震设计,无可移动或拆卸部件三种波长可选:532nm,785nm,1064nm Cora 7x00系列拉曼光谱仪高准确度和良好的重复性采用深度制冷探测器,适用于微光检测VPG(分散体相位光栅),确保卓越的光学性能三种波长可选:532nm,785nm,1064nm Sara 拉曼显微镜单一波长或三个波长可选高质量的奥林巴斯共聚焦显微镜高制冷CCD 和InGaAs探测器具有灵活性和扩展功能
  • 拉曼报告看点:原位检测潜力可期——第22届全国分子光谱学学术会议暨2023年光谱年会报告集锦
    仪器信息网讯 2023年7月15日,第22届全国分子光谱学学术会议暨2023年光谱年会在昆明召开。本次会议由中国光学学会、中国光学学会光谱专业委员会、中国化学学会主办,云南师范大学承办。会议第二天,七大分会场同时进行,以拉曼光谱新技术及新方法、生物传感及光谱成像、红外光谱新技术及新方法、超快光谱新技术及新应用、拉曼光谱新技术及新材料、原子光谱新技术及新方法、青年论坛等为主题的精彩报告将一一呈现。会议现场特别值得一提的是,据不完全统计,会议日程202个报告中超过80个涉及拉曼光谱,占比达40%以上;69个墙报中超过30个与拉曼光谱相关,占比近50%。以上数据再一次彰显了拉曼光谱技术的魅力,以及极具前景的研究和应用价值。实时、原位检测对探讨体系的物理化学过程有重要意义。多位专家在本次会议的报告分享中涉及到了拉曼原位和现场检测,特别是在催化以及表界面体系的原位实时监测中显示了巨大的潜力。厦门大学李剑锋教授《核壳纳米结构增强谱学研究》苏州大学姚建林教授《实时现场 SERS 监测有机反应过程的研究》上海大学尤静林教授《非硅酸盐类氧化物晶体、玻璃和高温熔体结构研究》南开大学谢微教授《表面增强拉曼光谱催化原位检测研究》厦门大学李剑锋教授在报告中介绍了核壳纳米结构增强谱学研究,其课题组构建了多个体系用于原位反应过程的监测,比如二氧化碳还原反应等;鉴于SERS的特性,其可用于有机化学反应的实时检测,苏州大学姚建林教授采用SERS磁珠法、TLC-SERS联用、HPLC-SERS联用等策略对实时现场SERS监测有机反应过程开展了一系列的相关研究;上海大学尤静林教授分享了非硅酸盐类氧化物晶体、玻璃和高温熔体结构研究,其中特别采用了时间门控和高温原位光谱技术;南开大学谢微教授分享了表面增强拉曼光谱催化原位检测研究,其课题组借助纳米颗粒间范德华力驱动纳米自组装,合成了催化检测双功能纳米粒子,并开展了表面增强拉曼光谱催化原位检测研究,包括电催化水分解反应的SERS检测等。吉林大学徐抒平教授《多模态近场耦合光场激励 SERS——表面分析的新方法》吉林大学宋薇教授《表面增强拉曼与催化双功能材料研究与应用》中山大学石磊教授《一维碳材料的拉曼光谱研究》厦门大学王翔副教授《针尖增强拉曼光谱技术及其在表界面研究中的应用》中国科学院化学研究所黄长水研究员《碳材料用于金属电极保护的原位拉曼观测》表面增强拉曼光谱可以超灵敏监控催化剂表面反应分子的指纹结构变化。吉林大学徐抒平教授探索了一类用于表/界面拉曼光谱分析的多共振模式耦合的新型拉曼光谱激励和探测技术,并针对表面/界面体系表征的苛刻要求,建立了多模态近场耦合的新概念增强模式;吉林大学宋薇教授研究了SERS模拟酶催化体系机制,以及在环境监测与医学治疗中的应用。同时,她还构筑了多种具有SERS活性的催化材料,利用SERS技术研究了多种催化体系的反应机制,比如金属/半导体界面电催化CO2还原过程中间产物的SERS原位监测;中山大学石磊教授课题组基于碳纳米管限域空间实现精准合成性能可控的一维碳链和石墨烯纳米带,研究结果显示,共振拉曼光谱、近场拉曼光谱、正反斯托克斯拉曼光谱、原位拉曼光谱在研究碳链和石墨烯纳米带中起到重要作用;厦门大学王翔副教授发展了高灵敏高稳定的 TERS 仪器方法,能够原位探究固气、固液和电化学界面的电子性质和晶格结构,进而在纳米尺度和分子水平探究金属、二维材料等表界面(光、电)催化过程的微观机制,以揭示其中的构效关系;中国科学院化学研究所黄长水研究员介绍了碳材料用于金属电极保护的原位拉曼观测。特别需要说明的是,以上只是摘录了部分老师的报告。本次会议中,还有不少老师的报告以及墙报涉及拉曼原位监测的相关内容,鉴于篇幅内容,不能一一体现,还请见谅。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制