当前位置: 仪器信息网 > 行业主题 > >

门冬氨酸鸟氨酸

仪器信息网门冬氨酸鸟氨酸专题为您整合门冬氨酸鸟氨酸相关的最新文章,在门冬氨酸鸟氨酸专题,您不仅可以免费浏览门冬氨酸鸟氨酸的资讯, 同时您还可以浏览门冬氨酸鸟氨酸的相关资料、解决方案,参与社区门冬氨酸鸟氨酸话题讨论。

门冬氨酸鸟氨酸相关的论坛

  • 【求助】HPLC分离鸟氨酸

    在用15mmol/L PH4.6的磷酸盐柱前衍生化分离鸟氨酸时发现:鸟氨酸有两个峰,一个是另一个的一半大,已做过走空针,和衍生剂等空白实验,确定是由鸟氨酸衍生后带来的,那位大虾知道这是什么原因?急啊!

  • 请问哪里能检聚天门冬氨酸钾呢?

    我这里有两个样品,主成分为聚天门冬氨酸钾,想找一家外检单位(有资质的),检一下聚天门冬氨酸钾的含量,请问哪里可以检呢?如果是四川的最好,其他地方的也可以。

  • 关于谷氨酸和焦谷氨酸

    最近在做一个课题,夏天测谷氨酸的标线还是好好的,这俩天就不行了,我想问下谷氨酸的液相测定方法是如何测定的,我用的流动相是磷酸水溶液,因为谷氨酸是微溶于水的,所以配的浓度最高是25 mmoL/L,想问下大神们液相测定谷氨酸和焦谷氨酸的方法~ 谢谢~

  • 复原乳糠氨酸和乳果糖

    有谁做过高温杀菌乳糠氨酸,一般检测出来的值是多少,糠氨酸检测回收率范围是多少,乳果糖试剂盒谁懂

  • 【分享】谷氨酸发酵液除菌体提取谷氨酸研究进展

    谷氨酸发酵液除菌体提取谷氨酸研究进展作者:佚名 文章来源:本站原创点击数: 222 更新时间:2010-4-14 13:19:04 file:///C:/Users/%E9%83%AD%E9%9B%B7/AppData/Local/Temp/msohtml1/01/clip_image001.gif我国味精生产,从发酵液中提取谷氨酸大多采用带菌体冷冻等电加离交法,由于发酵液中存在大量的菌体蛋白、悬浮物及其它杂质,给谷氨酸提取操作、提取收率、谷氨酸质量带来显著影响,且废水含高C0D、高B0D等严重污染环境的物质,又给废水治理带来重重困难。 近几年来,国内一些味精生产企业、研究所,对谷氨酸发酵液除菌体及提取谷氨酸进行了大量研究,除菌体工艺有高速离心机分离,絮凝剂分离、膜分离等,都取得了明显成果。按除菌体不同工艺、除菌体率分别达到70%~96%,以膜分离法除菌率最高达95%以上,得到的发酵液澄清,0D低,谷氨酸提取操作方便,由于除去了影响谷氨酸结晶的大量杂质,因而谷氨酸结晶颗粒大,纯度高、质量好,易于沉降分离,提取收率明显提高。高纯度谷氨酸有利于味精精制,味精中和脱色过滤可降低活性碳或树脂用量,提高味精结晶质量,大大降低味精生产成本。除菌体后的发酵液及等电提取后的废液中C0D、BOD大大减少,减轻了环境污染,降低了废水治理负荷与难度。得到的菌体经干燥后可以综合利用,作高蛋白质饲料或作核苷酸的生产原料。 谷氨酸发酵液除菌体及多种新工艺提取谷氨酸的研究,是对我国味精工业清洁生产的有益探索。随着研究的不断深化,许多先进工艺技术将会被应用,味精生产终将进入一个新水平。 1 高速离心分离除菌体,浓缩等电提取 沈阳味精厂从瑞典引进4台ALFA—LAVA公司的FESX5l2S一3lC型蝶片式高速喷咀离心机,转速4650I1) 分,功率45kw,对玉米淀糖为碳源,尿素作氨源、玉米浆为生物素的T一6l3菌发酵液进行了工业性除菌体,进料量20m ,喷咀直径1.0mm,菌体分离率达70%以上,轻流占75% ,重流占25%左右,除菌体后发酵液中谷氨酸略增,还原糖下降,0D值明显降低,工业规模运转证明,该设备对分离谷氨酸发酵液性能可靠,比较适宜。 发酵液除菌体后采用浓缩等电点提取法。 除菌体后的发酵液,经减压蒸发到含谷氨酸12%~15% ,后与重液经水解浓缩制成的二次蒸发液进行等电中和(60℃、40l1)m搅拌),然后冷却、沉淀、离心分离,提取达83.14%~85.03%,比带菌体浓缩等电点提取收率77.24%显著增加。且谷氨酸含量高达96%(干),用于制造味精时脱色液过滤快,透光率高,味精质量好。 2 凝聚剂除菌体一次等电或浓缩等电提取 使用安全性高的壳聚糖作絮凝剂,其阳离子性能与发酵液中菌体(带负电荷)与蛋白凝聚使其沉淀而进行分离。壳聚糖对金属离子、蛋白质、氨基酸、核酸均有很强的吸附能力,特别对胶体微粒有甚大的絮凝作用,其官能基团主要是氨基。在最佳pH、搅拌速度、用量、温度条件下,菌体去除率可达9O%左右。 壳聚糖不易溶于水,而溶解于酸性溶液中。配成一定浓度后,于发酵液中慢慢加人,搅拌速度也以慢为好。过快易将凝絮物打碎,难过滤。菌体凝聚沉降后,抽取上清液,沉降物可加硅藻土或珍珠岩作助滤剂,尤以硅藻土作助滤剂好,不吸附谷氨酸。中试规模过滤可用板框压滤,小试规模实验室中,采用高速离心机分离。应用国产高速离心机分离除菌体凝絮物(包括菌体)至今未见报导,这也是用凝絮法除菌体不能很快推广的一个较大问题。凝聚法去除菌体后的谷氨酸发酵液的提取方法有: 2.1一次等电点法 谷氨酸发酵液经絮凝处理后,采用一次等电点法,(即用酸逐步调到pH3-2法)提取收率可达76.18% ,比对照收率71.3%提高6.2% ,谷氨酸结晶的透光率52.25% ,比对照l1.25%提高了4倍;谷氨酸提取后的母液,可减少谷氨酸0.06%~0.11%。这是提高谷氨酸收率的一个重要原因,即去除了干扰谷氨酸结晶因素。 2.2 浓缩等电点法 将除菌体经过滤的发酵液,真空浓缩一倍,用加热快速调pH的方法,一次性直接调到pH3.2。搅拌到常温,再搅拌2h~3h时,沉淀3h,离心分离谷氨酸,谷氨酸一次收率平均可达85%左右,纯度可达95%左右,且调节pH的酸用量比普通谷氨酸等电点法用量要少。 2.3 先等电提取后浓缩再提取法 谷氨酸发酵液除菌体后,先用一次等电点法(常温或冷冻)提取出谷氨酸的60%~75%,残母液中含1.2%~1.5%左右的残谷氨酸,再加以浓缩(通过多效蒸发器)3倍,再提出剩余谷氨酸,总收率可达85%以上。母液浓缩成浆状可作肥料,再根据当地的土质情况,适当添加磷、钾等肥效成分。这条工艺路线是既提高了谷氨酸的提取收率,又产生综合效益。从发酵液分离出

  • 【求助】质谱仪器 检测样品相关问题?

    各位前辈,用质谱也用了一年多时间,今天想问一个问题。用ESI-TOF正模式分析门冬鸟氨酸,准确测定分子量,门冬分子量是133,鸟氨酸是132,但结果去出现了116和133碎片,不解呀,有高手帮我分析一下不,难道门冬是脱水啦???也有资料中说天门冬氨酸质谱中质量数是115,可为何呢。

  • CNS_12.006_L-丙氨酸

    [align=left][/align][align=left][/align][align=center][/align][align=center][font='黑体'][size=29px]食品添加剂 L[/size][/font][font='黑体'][size=29px]-[/size][/font][font='黑体'][size=29px]丙氨酸[/size][/font][/align][align=center][font='宋体'][size=18px]吴勇[/size][/font][/align][align=center][font='宋体'][size=18px]二〇二一年七月二十二日[/size][/font][/align]1. 概述L-丙氨酸通常指L-α-氨基丙酸,在营养学上属于非必需氨基酸,同时在人体血液氨基酸中含量最高,在食品、医药、化工等领域得到广泛应用。L-丙氨酸作为食品添加剂时属于增味剂或营养强化剂。2. 理化性质性状为白色结晶或结晶性粉末,属斜方晶系。可溶于水和乙醇,不溶于乙醚和丙酮,无臭无毒。密度为1.432gcm[font='等线'][size=13px]-3[/size][/font],熔点为314.5℃,相对分子质量为89.09。3. 制备方法L-丙氨酸的制备方法经历了蛋白水解提取法、发酵法和酶法的发展过程。其中蛋白水解提取法的成本较高,已不适合工业化生产。目前工业化生产的主要方法是酶法转化,即利用携带具有生物活性的L-天冬氨酸-β脱羧酶的微生物,通过生物催化的方式将L-天冬氨酸转化为L-丙氨酸。酶法转化通常可分为两类:固定化细胞法和游离细胞法。生产L-丙氨酸的菌种包括德阿昆哈假单孢菌、黄色短杆菌、产气荚膜梭菌、脱硫脱硫孤菌、小球诺卡氏菌等。[font='等线'][size=13px][1][/size][/font]3.1 固定化细胞法固定化细胞法生产L-丙氨酸的基本工艺流程为:菌体培养加入L-天冬氨酸进行酶转化抽滤L-丙氨酸粗品母液稀释脱色过滤真空浓缩干燥。[font='等线'][size=13px][2][/size][/font]可使用卡拉胶进行固定化,通过固定化德阿昆哈假单孢菌和固定化大肠杆菌装柱串联,可达到从富马酸铵经过转化为L-天冬氨酸的过程转化为L-丙氨酸,从而实现连续化生产。其中,大肠杆菌可实现富马酸到L-天冬氨酸的转化过程,德阿昆哈假单孢菌可实现L-天冬氨酸到L-丙氨酸的转化过程。此方法的关键在于防止固定化过程可能带来的酶失活和pH变化带来的酶失活,以及防止丙氨酸消旋酶对L-丙氨酸的外消旋化。3.2 游离细胞法游离细胞法生产L-丙氨酸的基本工艺流程为:菌体培养离心固定化加入L-天冬氨酸进行酶转化脱色、浓缩、结晶干燥。[font='等线'][size=13px][2][/size][/font]此方法的关键在于抑制丙氨酸消旋酶的活性,同时提高酶的活性和稳定性。4. 应用[font='等线'][size=13px][1][/size][/font]4.1 L-丙氨酸在食品工业的使用L-丙氨酸作为一种广泛存在于食品中的氨基酸,可用作食品的添加剂。4.1.1 防腐剂L-丙氨酸与二元羧酸(如乙酸钠、富马酸)、氧化性酸的混合物可用作保存面条的防腐剂,并且能在防腐的同时保持面条的鲜度。L-丙氨酸与辣椒油、山梨酸钾的混合物能够有效抑制酵母菌、大肠杆菌、黑曲霉等细菌的滋生,可适用于水产品、面条、腌制品、海产品、豆制品、畜产品以及饲料、化妆品、药品的保鲜。4.1.2 风味调味料[font='等线'][size=13px][3][/size][/font]L-丙氨酸具有改善风味的效果,属于重要的氨基酸类调味剂,能够与其它氨基酸配合使用加强食品与饮料的风味。L-丙氨酸与其它氨基酸和(如葡萄糖、阿拉伯糖、甘露糖、果糖、蔗糖、麦芽糖等)以任意比例混合后可显著改善食品、饲料的风味。目前,L-丙氨酸作为食品增味剂的应用已经有了比较大的发展,但仍需要进一步的开发。4.1.2.1 酱油酱油中L-谷氨酸钠等增味剂的添加量较大以及酱油的咸度太高等问题都限制了酱油的使用市场,如何减少味精等添加剂的用量以及降低酱油的咸味已经逐渐成为人们关注的焦点。在酱油中添加L-丙氨酸后,尤其是对于苦涩味特别严重的三级酱油,随着丙氨酸浓度的增大,酸味、苦味、涩味变得柔和,酱油整体风味得到改善。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和,尤其是对盐度高、不含L-谷氨酸钠、I+G和酵母抽提物等添加剂的酱油原油的调味效果最为明显。4.1.2.2 鱼露在国外的鱼露的生产中,一般通过添加HVP(植物蛋白水解液,hydrolyzed vegetable protein)补充氨基酸,提高鱼露的鲜味,HVP中含有一种名为3-氯-1, 2-丙二醇(3-MCPD)的物质,这种物质对生殖器官、肾脏和神经均有毒性,同时还存在潜在的致癌和致突变作用,长期食用含有3-MCPD的食品会造成严重身体损伤。针对3-MCPD的安全性和出口限量标准等问题,一些酱油、鱼露生产商对其生产工艺进行了改善,将传统工艺中的HVP替换为丙氨酸、谷氨酸、甘氨酸等的混合溶液,所得鱼露的味道更加醇厚,而且改善后的生产工艺成本与改善前相差不大。4.1.2.3 食用盐国外推出的低钠盐,主要成分为60%~70%氯化钠和20%~30%氯化钾,10%左右的L-丙氨酸、酵母提取物以及I+G,可以实现减盐不减咸,帮助人体钠钾平衡,增加鲜味,尤其是可以减少味精的使用量,对预防及降低高血压均起到了积极的作用。4.1.2.4 鸡精为了提升鸡精的风味,除了增加鸡肉粉的添加量以外,一些生产厂家优选在其鸡精配方中添加丙氨酸,利用丙氨酸的鲜味以及诱发食物风味的作用来 提升鸡精调味料的口感,既起到了协调增鲜的作用,又降低了人体钠的摄入量。鸡精中添加L-丙氨酸后,其鸡肉风味更加醇厚,鲜味增强。4.1.2.5 复配甜味剂许多甜味剂单体都有各自的优点和缺陷,无论哪种甜味剂单体,用量过大时都会产生不良风味和后味,均不能同时满足安全、口感、工艺、成本四项要求。只有对单体甜味剂各自的优点进行利用和发挥,对其缺点进行弥补和改造,用科学合理的方法对多种甜味剂进行复配和改造,才能满足使用要求。在复配甜味剂中加入1%~10%的L-丙氨酸,能提高甜度、柔和甜 味,减少糖精钠等人工合成甜味剂的用量,是制作糖尿病人食品的潜在甜味剂,同时也能满足现代人“低糖”的饮食习惯。4.2 L-丙氨酸在医药上的应用L-丙氨酸作为一种蛋白质的合成原料,能够影响人体的生理活动。40年代起出现第一代氨基酸输液,由水解蛋白制成,含有较多杂质,在临床中出现不良反应;1965年日本出现第二代氨基酸输液,其中含有11种氨基酸,除人体必需氨基酸8种外还存在精氨酸、组氨酸和甘氨酸;1976年开始,多国出现第三代氨基酸输液,在第二代氨基酸输液的基础上加入了L-丙氨酸、脯氨酸和丝氨酸等多种非必需氨基酸。随着临床医学的发展,第四代氨基酸输液不再是营养型输液,而是治疗型输液,通过调整人体的氨基酸代谢水平对部分疾病进行治疗。L-丙氨酸在治疗如肝病引起的蛋白质合成紊乱、糖尿病、急慢性肾功能衰竭以及对维持危急病人的营养、抢救患者的生命方面起到了积极作用。L-丙氨酸可以有效减轻酒精对肝脏的损害。L-丙氨酸可以有效地减轻酒精对肝脏的损害。通过对腹腔注射170mmol/kg体重19%的乙醇的小鼠进行试验表明,投服L-丙氨酸的小鼠的生存率为67%,比不投的高出34%;而L-丙氨酸与鸟氨酸相结合, 则生存率提高到100%。所以可将L-丙氨酸与L-鸟氨酸的混合物按0.01%~10%添加量加到食品中,也可以将L-丙氨酸与谷氨酰胺以 1:0.05~0. 5(摩尔比)混合物制成片剂、胶囊、乳剂、口服液等,能够起到保护肝脏、降低酒精中毒的作用。L-丙氨酸还是血液保存剂的主要成分。目前输血用血液保存方法中除了全血保存外,还有红血球制剂保存。但血液制剂在保存过程中会发生老化,因而保存期有限。为了提高保存期 ,防止老化,采用了添加腺嘌呤、肌苷、蔗糖、乳糖等方法。但这类方法都有缺点,这些添加成分在输血前必须予以除去。例如,在添加蔗糖时,直接将含有蔗糖的血液注射到人体中时,血液中的糖浓度会急剧上升,必须在输液前预先用等渗透压生理盐水洗涤、渗透等方法降低糖浓度后才能输血。而氨基酸既可以降低渗透压又显示与蔗糖相同的抗溶血性,在输血时可 以不必除去,能直接使用,还具有优良的营养效果。5. 限量标准现行标准[font='等线'][size=13px][4][/size][/font]中对L-丙氨酸的功能划分为增味剂,仅用于调味品(食品分类号12.0)生产,对于最大使用量无明确界定,按生产需要适量使用。6. 理化指标及测定方法[font='等线'][size=13px][5][/size][/font]6.1 理化指标现行标准[font='等线'][size=13px][5][/size][/font]中L-丙氨酸的理化指标列于下表。[table][tr][td]项目[/td][td][/td][td]指标[/td][/tr][tr][td]L-丙氨酸(以干基计),w/%[/td][td][/td][td]98.5~101.5[/td][/tr][tr][td]干燥减量,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]pH(50g/L 水溶液)[/td][td][/td][td]5.7~6.7[/td][/tr][tr][td]砷(As)/(mg/kg)[/td][td]≤[/td][td]1[/td][/tr][tr][td]重金属(以Pb计)/(mg/kg)[/td][td]≤[/td][td]10[/td][/tr][tr][td]灼烧残渣,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]比旋光度 α[font='等线'][size=13px]m[/size][/font](20℃,D)/[(o)dm2 kg[font='等线'][size=13px]-1[/size][/font]][/td][td][/td][td]+13.5~+15.5[/td][/tr][/table]6.2 测定方法6.2.1 鉴别实验6.2.1.1 茚满三酮试验称取约1g样品,精确至0.1g,溶于1000mL水中,取此溶液5mL,加1mL 20g/L茚满三酮溶液,加热至沸,约3min后显紫色。6.2.1.2 氧化试验称取约0.2g实验室样品,溶于10mL (1+30) 硫酸溶液,加入0.1g高锰酸钾,煮沸,有强烈的刺激臭味乙醛产生。6.2.2 L-丙氨酸含量测定称取约0.2g干燥样品,精确至0.0001g,置于250mL干燥的锥形瓶中,加3mL无水甲酸溶解,加50mL冰乙酸,加2滴2g/L结晶紫指示液,用0.1 mol/L高氯酸标准滴定溶液滴定至溶液由蓝色变成蓝绿色为终点。按照相同的步骤,除不加入样品外其它条件不变,进行空白实验。L-丙氨酸的质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]1[/size][/font]表示L-丙氨酸的质量分数,以百分比形式表示;V[font='等线'][size=13px]1[/size][/font]表示样品消耗高氯酸标准滴定溶液的体积(mL);V[font='等线'][size=13px]2[/size][/font]表示空白消耗高氯酸标准滴定溶液的体积(mL);c表示高氯酸标准滴定溶液浓度(molL[font='等线'][size=13px]-1[/size][/font]);m表示样品质量(g);M表示L-丙氨酸的摩尔质量(gmol[font='等线'][size=13px]-1[/size][/font]),M=89.09。6.2.3 干燥减量的测定将电热恒温干燥箱调节至(105±2)℃,之后将称量瓶置于电热恒温干燥箱中干燥,取出后在干燥器中冷却,称量,精确至0.0001g,重复操作至恒重。之后用已恒重的称量瓶称取1g~2g样品,精确至0.0001g。将装有样品的称量瓶和盖子放入电热恒温干燥箱同时干燥2h~4h,之后将称量瓶和盖子迅速移至干燥器中冷却。冷却后盖上盖子进行称量,精确至0.0001g,重复操作至恒重,重复干燥时间为1h。水分质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]2[/size][/font]表示水分的质量分数,以百分比形式表示;m[font='等线'][size=13px]0[/size][/font]表示称量瓶的质量(g);m[font='等线'][size=13px]1[/size][/font]表示称量瓶和干燥前样品质量(g);m[font='等线'][size=13px]2[/size][/font]表示称量瓶和干燥后样品质量(g)。[font='等线'][size=13px][6][/size][/font]6.2.4 pH的测定称取约5g样品,精确至0.01g,加入约20mL无二氧化碳的水溶解并稀释至100mL。将校准后的酸度计的电极用水冲洗一次,之后用样品溶液冲洗一次。调节样品溶液的温度至(25±1)℃,并将酸度计的温度补偿旋钮调至25℃,读取pH值。样品应分为2份进行平行测定,测得的pH值读数稳定1min以上,测得的pH值允许误差绝对值小于等于0.02。[font='等线'][size=13px][7][/size][/font]6.2.5 砷的测定称取0.25g二乙氨基二硫代甲酸银,研碎后用适量三氯甲烷溶解,加入1.0mL三乙醇胺,再用三氯甲烷稀释至100mL,作为吸收液。称取约1g样品,精确至0.01g。吸取一定量的样品溶液和1mL含砷0.001mg的砷标准使用溶液,置于砷发生瓶中,补加硫酸至总量为5mL,加水至50mL。在各瓶中加入3mL 150g/L碘化钾溶液,混匀,放置5min。分别加入1mL 400g/L氯化亚锡溶液,混匀,放置15min。加入5g无砷金属锌,立即塞上装有乙酸铅棉花的导气管,并使管的尖端插入盛有5.0mL吸收液的吸收管中,室温反应1h。取下吸收管,用三氯甲烷将吸收液体积定容至5.0mL。经目视比色或用1cm比色杯,于515nm波长下测定吸收液的吸光度。样品液的色度或吸光度不得超过砷标准吸收液的色度或吸光度。[font='等线'][size=13px][9][/size][/font]6.2.6 重金属的测定准备以下溶液:1. 硫代乙酰胺溶液:称取硫代乙酰胺约4g,精确至0.1g,溶于100mL水中,置于冰箱保存。临用前取此液1.0mL加入预先由15mL 40g/L氢氧化钠溶液、5mL水和20mL甘油组成的混合液5mL,置于水浴上加热20s,冷却后立即使用。2. 乙酸铵缓冲溶液(pH=3.5):称取25.0g乙酸铵,溶于25mL水中,加入45mL 6mol/L盐酸,用稀盐酸或稀氨水调节至pH=3.5,之后用水稀释至100mL。3. 1μg/mL铅标准溶液。临用前配制。称取约10 g样品,精确至0.01g,溶于约60mL无二氧化碳水,之后转移至100mL容量瓶并使用无二氧化碳水定容,摇匀。吸取样品溶液12mL,置于25mL具塞比色管中,即为A 管。吸取10mL铅标准溶液和2mL样品溶液置于25mL具塞比色管中,摇匀,即为B管(标准)。吸取10mL无二氧化碳水和2mL样品溶液置25mL具塞比色管中,摇匀,即为C管(空白)。在 A、B、C 管中,各加入2mL乙酸铵缓冲溶液,摇匀,分别滴加1.2mL硫代乙酰铵溶液,迅速搅拌混合。相对于C管,B管显现了淡棕色。2min后,A管的颜色不应深于B管。6.2.7 灼烧残渣的测定称取约2g~3g样品,精确至0.0001g,置于在800℃±25℃灼烧至恒重的瓷坩埚中,加入适量的(1+8)硫酸溶液将样品完全浸湿,用温火加热,至样品完全炭化,冷却。加入约0.5mL硫酸将残渣完全浸湿,使用相同的方法加热直至硫酸蒸气全部逸散。在(800±25)℃下灼烧45min,之后放入干燥器中冷却至室温,称量残渣的质量。灼烧残渣的质量分数可通过以下公式计算:式中:w3表示灼烧残渣的质量分数,以百分比形式表示;m表示样品质量(g);m1表示残渣质量(g)。6.2.8 比旋光度称取10g样品,精确至0.0001g,加入(1+1)盐酸溶液溶解,转移至100mL容量瓶并使用(1+1)盐酸溶液定容,摇匀。按照仪器的使用说明调整旋光仪,用(1+1)盐酸溶液校正零点。将样品溶液充满洁净、干燥的旋光管,排出气泡,将盖旋紧后放入旋光仪内。调节样品溶液的温度至(20±0.5)℃,按照仪器的使用说明操作并读取旋光角,精确至0.01°。比旋光度可通过以下公式计算:式中:α[font='等线'][size=13px]m[/size][/font](20℃, D)表示20℃钠灯照射下的比旋光度[(°)dm[font='等线'][size=13px]2[/size][/font]kg[font='等线'][size=13px]-1[/size][/font]];α表示旋光角(°);l表示旋光管长度(dm);ρ[font='等线'][size=13px]α[/size][/font]表示溶液中L-丙氨酸的质量浓度(g/mL)。[font='等线'][size=13px][8][/size][/font]参考文献[1] L-丙氨酸的生产及应用. 王雪根, 朱建良, 欧阳平凯. 南京化工大学学报(自然科学版). 1998, 20, 01.[2] 游离细胞法与固定化细胞法生产L-丙氨酸的比较. 徐虹, 王雪根, 范伟平, 欧阳平凯. 工业微生物. 1988, 28, 38-39.[3][font='宋体'][size=24px][color=#333333] [/color][/size][/font]L-丙氨酸在食品工业中的应用潜力. 郭媛, 王丽娟等. 中国调味品[font='宋体'][size=12px][color=#666666]. [/color][/size][/font]2017, 42, 07.[4] GB 2760 - 2014[5] GB 25543 - 2010[6] GB/T 6284 - 2006[7] GB/T 9274 – 2007[8] GB/T 613[9] GB 5009.76 - 2014

  • 蛋白胨水培养基(色氨酸肉汤)

    蛋白胨水培养基( l )成分 蛋白胨 10g 水 l000ml 氯化钠 5g ( 2 )制法 取上述成分混合,微温使溶解,调pH 值使灭菌后为7.3 士0.1 ,分装于小试管,121 ℃ 灭菌15 分钟。( 3 )用途 用于鉴别细菌能否分解色氨酸而产生靛基质的生化反应。 ① 靛基质试验取可疑菌落或斜面培养物,接种于蛋白胨水培养基中,置35 ℃ 培养24~48 小时,必要时培养4~5 天,沿管壁加人靛基质试液数滴,液面呈玫瑰红色为阳性,呈试剂本色为阴性。 ② 靛基质试液 称取对二甲氨基苯甲醛5g ,加入戊醇(或异戊醇)75ml ,充分振摇,使完全溶解后,再取盐酸25ml 徐徐滴入,边加边振摇,以免骤热导致溶液色泽变深.或称取对二甲氨基苯甲醛1g ,加人95 %乙醇95ml ,充分振摇,使完全溶解后,再取盐酸20ml 徐徐滴入。

  • 半胱氨酸的红外光谱的分析

    半胱氨酸的红外光谱的分析

    [color=#444444]这是有关半胱氨酸的红外谱文献,有关2100 cm-1处的峰的解释成N-H的振动,真是无语了...那一般半胱氨酸中有关2100处的峰解释有小伙伴们见过合理的解释吗???大概有没有可能是C-N的振动,文献真是说啥都有的,还有的干脆不解释[/color][color=#444444][img=,262,244]https://ng1.17img.cn/bbsfiles/images/2019/07/201907121412313999_9049_1843534_3.png!w262x244.jpg[/img][img=,529,428]https://ng1.17img.cn/bbsfiles/images/2019/07/201907121412307942_8280_1843534_3.png!w529x428.jpg[/img][/color]

  • 分离氨基酸-脯氨酸和异亮氨酸重叠的峰

    我用GC MS 测20种氨基酸,MSTFA衍生,不加溶剂,HP 5-MS柱,70度,1min到5度/min,300度,得到的脯氨酸和异亮氨酸是一个峰,降低浓度也分不开,做SIM也分不开,请问谁遇到过这种情况?如何解决?

  • 新食品原料之“茶氨酸”

    文/刘志军 华测检测[align=left]一泓清可沁诗脾,鲜爽茶感缘何来。优质的绿茶会有一种“鲜爽”的风味,喝茶的人对茶叶的鲜爽感应该不会陌生。那么,究竟是哪类成分物质让人有如此沁人心脾的感觉呢?[/align][align=left][color=black]不同品种茶叶泡出来的茶口感会有差异,例如绿茶的清香爽口、红茶的醇厚浓烈、黑茶的陈味香醇。导致不同品种的茶口味差异的主要原因是各类茶叶中的主要成分含量有所不同,[/color]茶叶的成分中主要包括有水、蛋白质、氨基酸、咖啡因、多元酚类、碳水化合物、脂质、矿物质、植物色素、维生素、挥发性成分、有机酸等。各成分含量多少与茶的口感息息相关,如:[color=black][/color]鲜味:主要成分为氨基酸,鲜中带甜,细嫩的茶叶中含量高。涩味:主要成分为多酚类物质。甜味:主要成分为可溶性糖及部分氨基酸。苦味:主要成分为咖啡碱、花青素、茶叶皂素。[/align][align=left] [/align][align=left][b]了解茶氨酸[/b][/align][align=left]上面我们讲到茶叶中各成分与茶口感的关系,原来茶的鲜爽感主要是因为茶叶中的氨基酸。氨基酸有很多种,绿茶中的鲜爽口感主要是一种叫“茶氨酸”的成分在发挥重要作用。茶氨酸是茶叶中特有的游离氨基酸,纯的茶氨酸为白色针状体,易溶于水,具有甜味和鲜爽味,是茶叶滋味的组分。茶氨酸在化学构造上与脑内活性物质谷酰胺、谷氨酸相似,是茶叶中生津润甜的主要成份。茶氨酸含量因茶的品种、部位而变动,干茶中茶氨酸含量约为新茶的1~2%左右,其含量随发酵过程减少,这就是为什么陈茶或者发酵茶的口感更偏醇厚浓烈,而绿茶的口感更清新鲜爽。[/align][align=left]1950 年,日本学者酒户弥二郎从绿茶中分离出了产生这种风味的主要物质——一种非蛋白质氨基酸,命名为茶氨酸。茶中的茶氨酸是左旋的,按照命名法记为“L-茶氨酸”。此后的研究发现,茶氨酸不仅为茶带来鲜爽风味,它本身还具有许多生理功能。比如它能突破血脑屏障直接影响大脑活动,从而对人的情绪产生影响。有研究表明茶氨酸对大脑各部位单胺类代谢影响时发现,茶氨酸可以促进脑中枢多巴胺释放,提高脑内多巴胺生理活性。多巴胺是一种活化脑神经细胞的中枢神经递质,其生理活性与人的情感状态密切相关。尽管人们对茶氨酸在大脑中枢神经系统的作用机制并不是十分清楚,但茶氨酸对精神和情感的影响无疑有部分是来自于对中枢神经递质多巴胺生理活性的作用,当然饮茶抗疲劳作用也被认为在一定程度上可能来自这一效果。[/align][align=left][/align][align=left][b]什么样的茶富含茶氨酸?[/b][/align][align=left]作为饮料,“好茶”的根本标准还得是“好喝”,而茶氨酸以及游离氨基酸的含量与茶的风味呈正相关,也就是说茶氨酸和游离氨基酸含量高的茶,往往会更好喝。[/align][align=left]茶氨酸的合成跟茶树的光合作用、生长环境温度密切相关。如果光照不足、或者温度较低,那么茶氨酸的分解就会受到抑制,茶的芽和叶中就会积累比较多茶氨酸。春天茶叶发育期间温度较低,所以茶氨酸的分解以及儿茶素的合成受到抑制。这样春茶中茶氨酸含量高而茶多酚含量相对低。而夏茶和秋茶生长采摘时温度较高,光合作用旺盛,相对而言茶氨酸含量低而茶多酚含量高,口感也就与春茶不同。[/align][align=left]茶叶中的茶氨酸含量一般为1%~4%左右,富含茶氨酸的茶叶主要有三类。[/align][align=left]第一类来自于品种优势,例如安吉白茶和福鼎白茶,都有明显的品种优势。安吉白茶的游离氨基酸含量测定显示最高可达8%,说明其富含茶氨酸。[/align][align=left]第二类来自于环境优势,比如高山茶中的庐山云雾茶、阿里山乌龙茶、杉林溪乌龙茶、奇莱山乌龙茶都具有“高茶氨酸”的特征。高山茶在生长的过程中经常处于云雾中,阳光受到较多遮挡,且高海拔区域的气温低于低海拔的区域,这类茶中的茶氨酸含量也就相对较高。[/align][align=left]第三类来自于工艺优势,日本人常用遮荫的方法来提高茶叶中茶氨酸的含量,以增进茶叶的鲜爽味。日本抹茶在生产时采用人工遮阴的方法,目的就是减弱茶叶生长过程光合作用而使得茶氨酸含量大大提升。当年酒户弥二郎分离茶氨酸,用的玉露茶就是通过人工干预茶叶生长过程中的光合作用而得来的。[/align][align=center][b] [/b][/align][align=left][b]怎样才能得到可以作为“食品原料”的茶氨酸呢?[/b][/align][align=left]不管是作为食品添加剂、膳食补充剂,还是食品原料,都需要相对纯度较高的茶氨酸。中国批准作为新食品原料的茶氨酸对纯度的要求为≥20%。这大大高于茶中茶氨酸的含量——也就是说,把茶氨酸分离提纯,是它实现这些用途的前提。目前,可采用的分离方法有:沉淀法、离子交换树脂法、膜分离法、化学合成法、生物发酵法、酶转化法以及植物细胞培养法等。[/align][align=left]前面说到茶氨酸易溶于水,那是不是只需要用水浸泡就可以提取出来呢?事情并没那么简单。茶氨酸溶于水的同时,茶多酚、咖啡因等各种其它成分同样会溶于水中。要分离出高纯度的茶氨酸,还需要除去其它我们不想要的成分。目前,工业上可采用的分离方法有三种:沉淀法、离子交换树脂法和膜分离法。[/align][align=left]沉淀法:是最传统的提取方法,就是通过改变提取时的温度、酸碱环境把混合物中的一种或几种成分充分地沉淀下来再进行过滤去除,从而把我们期望留下的茶氨酸和其他成分进行分离。这种手段优点是操作简单,缺点是流程比较长,步骤较多,在提取的过程中容易引人其他的有害物质。[/align][align=left]离子交换树脂法:大致原理是通过离子交换树脂,把茶氨酸吸附到树脂上,而让其他成分流过。再用溶液把茶氨酸从树脂上“洗脱”下来,就得到了茶氨酸含量大大提高的“粗品”。当然这类粗品可能含有的有害物质残留还比较多,所以需要再纯化之后得到高含量和安全性兼顾的茶氨酸成品。此方法的优点是提取的茶氨酸纯度高,缺点是成本相对传统提纯方法高。[/align][align=left]膜分离法:是现代天然产物分离中的新兴技术,在生产加工饮用水领域应用广泛,原理就是利用通过半透膜孔径把不想要的有害物质过滤掉。选择合适的过滤膜孔径是关键,可以把分子比茶氨酸大的和小的成分都去除,而只留下茶氨酸和分子大小与它接近的成分。膜分离法的优势在于不引入其他的物质,劣势是与目标分子大小相当的物质很难去除,单纯利用此方法提纯也很难获得高纯度的产品,而且此方法目前很难实现量产提纯茶氨酸。[/align][align=left]除此之外,生产茶氨酸还有化学合成法、微生物发酵法、细胞培养法,但是这些方法都各有其优势和局限性。[/align][align=left]茶叶中的茶氨酸含量本来就不高,受技术限制,目前要量产茶氨酸就会面临提取成本高的问题,再加上如果从茶叶中只是提取茶氨酸的话,经济效益就很低。春季茶树鲜叶茶多酚含量较高,做出的优质春茶往往能卖出更好的价格,也就不会用来提取茶氨酸了。不过,茶中有经济价值的成分并不止茶氨酸,比如茶多酚、咖啡因含量高,也更有提取价值。可以在提取茶多酚时产生的废液中合理利用其中含有的茶氨酸,作为一举多得的附加值产品,由此得到的茶氨酸的成本自然就跟着降低了。[/align][align=left][b][/b][/align][align=left][b]茶氨酸的安全性及法规管控[/b][/align][align=left]有科研人员对茶氨酸进行安全性实验,结果表明茶氨酸的大鼠急性毒性在5g/kg以上。他们对大鼠每天服用2g/kg茶氨酸在连续28天的亚急性毒性实验中没有观察到任何毒性反应。此外,在突然变异的实验中也没有发现茶氨酸的任何诱变作用。[/align][align=left]在日本,对茶氨酸的摄入量没有限制。1964年,日本批准了L-茶氨酸作为食品添加剂使用。而美国FDA也在1985年给予了L-茶氨酸GRAS的分类,意味着可以根据需要用于各种食品中。中国在2014年7月18日,原国家卫计委批准了它作为新食品原料。原国家卫计委关于批准茶叶茶氨酸作为新食品原料的公告(2014年第15号)做了如下规定:[/align][align=left](1)必须以茶叶为原料,经提取、过滤、浓缩等工艺制成;----这意味着化学合成法和生物发酵法制成的茶氨酸不能用作新食品原料;[/align][align=left](2)每日食用量≤0.4 克/天;[/align][align=left](3)对产品质量的要求,性状为黄色粉末、茶氨酸含量≥20g/100g、水分≤8g/100g,也就是作为新食品原料的茶氨酸含量(纯度)必须≥20g/100g;[/align][align=left](4)使用范围不包括婴幼儿食品,卫生安全指标应符合国家相关标准规定。[/align][align=left]我国现行有效的茶氨酸产品标准《QB/T 4263-2011 L-茶氨酸》中对采用生物发酵法、酶法转化或提取精制而得的L-茶氨酸的感官、理化、含量、重金属、微生物等十几个指标制定了限量要求。茶氨酸相关指标的检测方法有《QB/T 4263-2011 L-茶氨酸》中的附录B和《GB/T 23193-2017 茶叶中茶氨酸的测定高效液相色谱法》。[/align][align=center][color=black] [/color][/align][align=left][b]茶氨酸在食品加工中的应用[/b][/align][align=left]茶氨酸在日本、美国可作为食品添加剂,目前在我国可用作新食品原料使用(需要注意每日食用量和适宜人群)。茶氨酸具有优良的加工特性和稳定性,可以广泛应用于各类点心、糖果及果冻、饮料、口香糖等食品中。总的来说,茶氨酸主要应用在如下领域:[/align][align=left]1)作为茶饮料的品质改良剂,在茶饮料生产过程中添加一定量的茶氨酸,能明显改善茶饮料的品质和风味;[/align][align=left]2)作为改善食品风味的原料,研究表明,茶氨酸可改善咖啡、可可、果蔬饮料、啤酒等的苦味,减轻葡萄酒的涩味,因此,可作为这些食品的风味改良剂。[/align][align=left]茶氨酸在常规的食品加工条件下(如杀菌、pH和加热等)比较稳定,应用范围广。目前日本已开发出添加茶氨酸的巧克力、果冻、布丁、口香糖、保健茶和各种清凉饮料。茶氨酸功能作用这么好,但在食品生产加工过程中同样要注意茶氨酸原料是否达到食品级要求以及其他安全指标是否达标国家管控要求。[/align]

  • 【求助】DL-脯氨酸的价格

    昨天老大叫我找一点DL-脯氨酸回来做个小试验。我找了一家问价格1G分析纯的DL-脯氨酸竟然要160块钱http://simg.instrument.com.cn/bbs/images/brow/em09501.gif不知道哪位朋友有用过这种试剂为什么那么贵啊

  • 组氨酸有关物质研究

    现在手上有一组氨酸原料药,几乎相当于纯品。老板要我做组氨酸的有关物质,除了其他的氨基酸,其他杂质是什么无从下手。DAD,CAD检测几乎没有杂质,进样量40ul才有点杂质峰出来。手上有一台q-e,不知道能否先直接分析组氨酸原料药里的组分,然后再寻找合适的液相条件开发有关物质的分析方法。由于原料药杂质含量太低了,但是的确有,实在不知道怎么进行了,哎

  • 用PITC衍生化测定甘氨酸、谷氨酸、谷氨酰胺的含量

    用PITC衍生化测定甘氨酸、谷氨酸、谷氨酰胺的含量测定步骤:1. 用纯水配制甘氨酸、谷氨酸、谷氨酰胺的混合液,其浓度都大约为0.05mg/mL,得到甘氨酸、谷氨酸、谷氨酰胺的混合标准溶液。2. 配制1.2%PITC乙腈溶液和14%TEA乙腈溶液。3. 衍生化过程:取200uL氨基酸混合标准溶液于1.5mL离心管中,然后加入100uL1.2%PITC乙腈溶液和100uL14%TEA乙腈溶液,摇震使其混合均匀,然后于水浴锅中水浴加热1小时,然后加入500uL正己烷萃取两次,最后取下层液200uL于HPLC瓶中,然后再加入400uL水稀释,用HPLC分析。 色谱条件:柱子:Agilent SB-Aq 250mm*4.6mm, 5um流动相A:50mM NaAC (pH=6.5)流动相B:50mM NaAC (pH=6.5):ACN=1:1Time:0-10-25-40minB%:5%-5%-95%-95%进样量10uL 出现问题:1. 甘氨酸和谷氨酰胺衍生化峰会分叉。2. 会出现很多杂峰,尤其是在强洗脱部分。

  • 求助苯丙氨酸和缬氨酸二级质谱图

    本人正在做氨基酸的同位素示踪分析,想求助苯丙氨酸和缬氨酸标准质谱图,分析其是怎么断裂的。本人用的是三重四级杆液质做的二级扫描,得到好多准分子离子但是想和谱库对比一下。谢谢谢谢

  • 肌氨酸的红外图谱。

    百度:中文名称:肌氨酸中文别名:N-甲基甘氨酸;肉氨基酸;肌氨酸;N-甲基甘氨酸;肌氨酸;N-甲基甘氨酸英文名称:Sarcosine英文别名:N-Methylglycine; Sarcosine, 99%; H-Sar-OH; Sarcosine,(Methylaminoacetic acid; N-Methylglycine); Methylaminoacetic acidCAS:107-97-1EINECS:203-538-6分子式:C3H7NO2分子量:89.0932

  • ε-聚赖氨酸

    ε-聚赖氨酸是一种具有抑菌功效的多肽,是目前天然防腐剂中具有优良防腐性能的微生物类食品防腐剂。它由25~35赖氨酸残基聚合而成,是一种营养型防腐剂,安全性高于其他防腐剂。ε-多聚赖氨酸产品特点1) 抑菌谱广 ε-聚赖氨酸对革兰氏阳性菌、革兰氏阴性菌、酵母菌、霉菌均有很好的抑菌效果,并且对一些耐热性芽孢杆菌和病毒也有一定抑制作用。 2) 安全性能高 当人体食用后,可降解为L-赖氨酸这一人体必需氨基酸,无任何毒性,并于2003年通过了美国食品和医药管理(FDA)的许可。3) 热稳定性好 ε-聚赖氨酸在高温条件下很稳定,80℃ 60min及120℃ 40min加热,均保持其抑菌能力,它能承受一般食品加工过程的热处理,可随原料一同进行灭菌处理。 4) 水溶性极强 ε-聚赖氨酸的水溶性好,有利于在食品中的添加使用。  多聚赖氨酸作为抑菌剂在食品中使用时,通常与其他物质配合使用,以达到增效和经济的目的。常用的配合物质可分为五类:1.酒精,使用量为30%~70%,主要应用于各种蛋制品;2.有机酸,常常使用的有机酸一般有醋酸、苹果酸、马来酸、柠檬酸、琥珀酸等,使用量在0.5%~50%之间,主要应用于米饭、饮料、色拉、酱类等食品;3.甘油酯,甘油酯多为低级脂肪酸酯,用量在0.01%~5%之间,主要用于动物性蛋白、乳蛋白较多的食品;4.甘氨酸,用量为0.01%~10%,主要应用于牛奶防腐;5.其他天然抑菌剂,如鱼精蛋白、茶多酚等。

  • 【每日一贴】蛋氨酸

    【中文名称】蛋氨酸;甲硫基丁氨酸;甲硫氨酸;α-氨基-γ-甲巯基丁酸;2-氨基-4-甲巯基丁酸;DL-蛋氨酸;DL-2-氨基-4-甲硫基丁酸【英文名称】methionine;2-amino-4-methylmercaptobutyricacid;Met;DL-methionine【结构或分子式】 【相对分子量或原子量】149.21【密度】1.340(消旋体)【熔点(℃)】280~281(分解)(L体);281(消旋体)【性状】 白色片状晶体或结晶性粉末。【溶解情况】 (L体):溶于水和湿稀乙醇,不溶于无水乙醇、乙醚、石油醚、苯、丙酮。(消旋体):溶于水、烯酸和稀碱溶液,易溶于95%乙醇,不溶于乙醚。【用途】 能维持机体生长发育和氮平衡。适用于防治肝脏疾病和砷或苯等中毒。也可用于治疗痢疾和慢性传染病后因蛋白质不足而引起的营养不良症。可作饲料营养强化剂,在动物代谢过程中对肾上腺素合成胆碱和肝脂肪的磷脂起一定作用,蛋氨酸在体内可形成胱氨酸,本品与甘氨酸有拮抗作用,禽兽缺乏蛋氨酸会引起发育不良、体重减轻、肝肾机能减弱、肌肉萎缩、皮毛变质等。饲料中添加1kg蛋氨酸,相当于鱼粉50kg的营养价值,在饲料中添加量一般为0.05%~0.2%。【制备或来源】 可用酪蛋白经水解、精制而得。也可由甲硫醇与丙烯醛经斯特雷克合成反应制备。【包装及贮运】【生产单位】 天津河北制药厂;天津化工厂;吉林龙井制药厂;广东何济公制药厂;南宁第二制药厂;四川西南制药厂;吉林和龙县制药厂;江苏镇江制药厂;河北张家口东风制药厂等

  • 【求助】液相检测氨基酸-组氨酸和甘氨酸分不开

    【求助】液相检测氨基酸-组氨酸和甘氨酸分不开

    最近做氨基酸检测,用OPA-MPA衍生后,液相色谱荧光检测,c18的柱子其他氨基酸都分得挺好,就是组氨酸和甘氨酸完全分不开,就看到一篇中文文献里也是这个情况。我估摸着是哪个细小环节没处理好,有经验的大虾指点下缓冲盐试过磷酸盐和乙酸盐的,各自都加了四氢呋喃,乙腈,以及3乙胺等试过,走梯度,都是一样的,2个分不开。附图,大家看看,红圈的地方就是甘氨酸和组氨酸的出峰时间http://ng1.17img.cn/bbsfiles/images/2011/06/201106251547_301445_1642776_3.jpg谢谢

  • C18柱分离天冬氨酸

    大家好!我们实验室正试着用C18柱分离天冬氨酸(其紫外最大吸收处是波长230nm)我们的柱长型4.6*150mm,紫外检测器,流动相是90:10水和乙腈,做不出东东来。请问各位高手,有没有什么好办法

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制