当前位置: 仪器信息网 > 行业主题 > >

灭多威残留分析

仪器信息网灭多威残留分析专题为您整合灭多威残留分析相关的最新文章,在灭多威残留分析专题,您不仅可以免费浏览灭多威残留分析的资讯, 同时您还可以浏览灭多威残留分析的相关资料、解决方案,参与社区灭多威残留分析话题讨论。

灭多威残留分析相关的论坛

  • 【求助】请教三唑锡、克菌丹、多菌灵、抗蚜威的液相色谱的多残留分析方法?

    [求助]请教三唑锡、克菌丹、多菌灵、抗蚜威的液相色谱的多残留分析方法?? 我用反相柱做的,各种梯度、流速都试过了,但都在同一时间出峰左右,混标就是一个大峰,那位大虾有高招帮助解决以下 我用的zobax C18柱和AQ C18,各种条件梯度流速,醋酸缓冲液都试过了,就是分不开谁能帮助解决这个问题,或好的可行的建议或有北京的同行帮助做两针

  • 制药设备微生物残留的解决方法及清洗灭菌的重要性

    [align=center][/align][b]简介[/b]由于人们对自然科学知识的了解和掌握有一个漫长过程,加之一些药品研制生产中疏于严格管理,20世纪世界范围内发生了许多十分惨痛的“药害”事件,使2万多人死于药物的不良反应,伤残者不计其数。20世纪末,国际上已把药物不良反应和药源性疾病当作一种流行病学即药物流行病学加以研究和控制。药源性疾病发生率呈上升趋势,已成为继心血管疾病、癌症、感染性疾病之后的第四类疾病。[b]食药安全[/b]近日,河北省政府办公厅印发《河北省2018年食品药品安全重点工作安排》,提出以最严谨的标准、最严格的监管、最严厉的处罚、最严肃的问责,全面加强食品药品安全工作,切实保障人民群众饮食用药安全。[b]制药设备微生物残留[/b]在高速发展的今天,制药行业的发展也是逐步改进的,在生产过程中许多问题也比较突出。如制药企业在生产药品的时候都会出现一些原辅料和微生物的残留。这些微生物在一定合适温度下就会利用设备中残留的辅料作为有机物营养并进行大量繁殖,再留下代谢产物,这些物质的参合将会直接产生较大的毒副作用,使得设备在生产其他药品或者一定时间之后就会使其物品出现质量方面的问题。[b]制药设备清洗灭菌的重要性[/b]发达国家GMP一般明确要求控制生产各步的微生物污染水平,尤其对无菌制剂,产品最终灭菌或除菌过滤前的微生物污染水平必须严格控制。如果设备清洗后立即投入下批生产,则设备中的微生物污染水平必须足够低,以免产品配制完成后微生物项目超标。微生物的特点是在一定环境条件下会迅速繁殖,数量急剧增加。在制药设备表面、容器内外等都可以是微生物寄生存的地方。由于空气中的湿度,所有表面都包上一层含水的薄膜。这层薄膜由于静电吸引而饱含尘埃微粒,有很多时候,表面还覆盖一层油状物质,此层油膜易受到尘粒污染。表面因尘埃微粒和微生物由空气传播的回降而受到污染。空气中存在的微生物能通过各种途径污染已清洗的设备。设备清洗后存放的时间越长,被微生物污染的几率越大。请记住:一个表面看起来很干净,而实际上已经被千百万个微生物所污染,除非已经做了正确的消毒灭菌。因此,及时、有效的对生产过程结束后的设备进行灭菌显得尤为关键,特别是在无菌制剂的生产过程中则更是重中之重。[b]制药设备如何清洗灭菌[/b]随着制药行业的发展以及日益严重的药品安全问题,人们已经逐步懂得了清洗灭菌的重要性。在生产中使用清洗灭菌剂进行清洗消毒,已经成为消毒的主要方式。但在实践生产中,实际情况比较复杂,对灭菌剂的要求很高。单一消毒剂都存在着一些固有的缺陷,穿透有机物能力弱,受环境温度影响大,使用浓度高。当微生物存在空间,环境、容器、管道等,病原微生物数量大、种类多,温、湿度变化大,被消毒物品表面结构各 异,水质(硬度、酸碱度等)差异大时,复合消毒剂是理想选择。只有复合型消毒剂才能聚众家之所长,达到综合生物安全计划的要求。[b]奥克泰士[/b][color=#222222]奥克泰士制药设备[/color][color=#222222]清洗[/color][color=#222222]消毒剂是由[/color][color=#222222]德国[/color]BUDICH国际有限公司[color=#222222]集中高精尖的科研力量研发多年,以其先进技术和卓越工艺生产的纯生态、可完全生物降解的环保型[/color][color=#222222]清洗消毒[/color][color=#222222]剂,在全球具有领先地位,该产品已荣获世界专利。[/color][color=#222222]奥克泰士[/color][color=#222222]拥有强效的广谱杀菌效果,在杀灭病原体细菌,生物膜,藻类,酵母,真菌和病毒等物质时效果显著,[/color][color=#222222]奥克泰士[/color][color=#222222]的功效是经过近200种细菌学,生物学,病毒学和毒物学的测试和验证过的[/color][color=#222222],[/color]能在制药厂洁净区空间消毒中迅速杀灭空间内的的微生物(包括芽孢)或者抑制微生物繁殖的高效广谱的食品级进口高效杀菌剂。[color=#222222]产品无色、无色、无毒、无残留、无腐蚀性,[/color][color=#222222]完全融于水,[/color]不造成重复污染、[color=#222222]对人体无害,不受水的[/color][color=#222222]PH[/color][color=#222222]值、温度的改变而改变,工作温度为0摄氏度到95摄氏度,具有非常大的应用弹性空间。[/color][color=#222222]产品通过[/color]IFS国际食品标准认证,欧盟EMAS检测认证,ISO9001、ISO14001环境管理体系认证等。经过了欧盟及众多国外研究机构组织检测,在被欧洲大多数国家广泛应用的同时,在澳大利亚、北美也被作为最新一代的杀菌、消毒剂而被认可。是一款高效广谱的食品级清洗消毒剂。[color=#222222]同时杀菌范围远远超过同类产品,能够快速、彻底的杀死[/color][color=#222222]200[/color][color=#222222]种细菌、微生物[/color][color=#222222]。奥克泰士[/color][color=#222222]的操作成本低,能够快速、简便的被应用于[/color][color=#222222]制药[/color][color=#222222]企业[/color][color=#222222]设备消毒清洗[/color][color=#222222]。与一些其他的消毒方法不同,[/color][color=#222222]奥克泰士[/color][color=#222222]只需要控制其稀释浓度,简单的喷洒,清洗,浸泡,就可以完成整个消毒过程。同时由于其没有残留的特性,可以将[/color][color=#222222]制药企业[/color][color=#222222]中的[/color][color=#222222]设备[/color][color=#222222]清洁、消毒过程大大的简化。[/color][b]奥克泰士产品特点[/b]一、奥克泰士不会产生抗药性,制药厂可以长期稳定使用。作为德国原装进口的消毒产品,奥克泰士食品级的无残留高效消毒产品。产品在使用时的特点 1、能够满足制药企业GMP所有消毒需求,能够杀灭细菌,霉菌,芽孢,病毒等。2、无色,无味,对人体无任何危害,保护皮肤,无刺激气味,对表面无腐蚀性。3、无需冲洗,自然风干。4、可用于任何物体表面的消毒和灭菌。5、可用于手部消毒,手套消毒,外套消毒。二、高效广谱的杀菌能力:奥克泰士属于广谱消毒剂,能够杀灭细菌、真菌、霉菌、病毒等目前所知的所有类型微生物,且能够杀灭芽孢、霉菌等传统方式难以杀灭的微生物。三、具有良好稳定性:奥克泰士是多组份复合溶液,具有良好的稳定性。在高温度下仍能保持稳定,甚至在高温下,其效用还会有所增强。不受温度、光照、PH值影响。制药企业生产车间加工工艺较复杂,生产过程中温度、PH值变化频繁,因此,奥克泰士的高稳定性、高适应性特点特别适合GMP,而且奥克泰士不会改变产品的PH值等各种参数,因此不需要添加其它辅助类产品。四、不会产生耐药性:不同于氯类、季铵盐等产品,奥克泰士独特的杀菌原理,不会产生耐药性,因此可以长期、稳定的应用于制药生产设备消毒过程中。五、无任何毒性残留,真正意义上的食品级产品:奥克泰士主要成分为过氧化氢,作用后分解为氧气和水,不会对产品产生任何有害残留。奥克泰士已经在世界范围内证明,除了制药行业,还可以应用于食品加工、饮用水处理、饮料、乳品加工等行业。六、不产生重复污染:奥克泰士无残留,所以使用后无需再次冲洗,避免了重复污染的可能性。七、持久抑菌:奥克泰士中痕量存在的银离子具有持久功效,具有抑菌功能,能保证产品较长的保质期。

  • 【求助】-农药多残留分析

    我想查阅有关[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]农药多残留分析的外文资料,但不知最佳途径.请各位帮忙.[em23] 谢谢.

  • 蔬菜中敌百虫、丙溴磷、灭多威、克百威、 敌敌畏残留的快速检测

    蔬菜中敌百虫、丙溴磷、灭多威、克百威、  敌敌畏残留的快速检测

    [align=center]蔬菜中敌百虫、丙溴磷、灭多威、克百威、[/align][align=center]敌敌畏残留的快速检测[/align][align=center]1 范围[/align]本方法规定了蔬菜中敌百虫、丙溴磷、灭多威、克百威、敌敌畏残留的快速检测方法。本方法适用于油菜、菠菜、芹菜、韭菜等蔬菜中敌百虫、丙溴磷、灭多威、克百威、敌敌畏残留的快速测定。[align=center]酶抑制(率)法(分光光度法)[/align]2 原理在一定条件下,有机磷和氨基甲酸酯类农药对胆碱酯酶正常功能有抑制作用,其抑制率与农药的浓度呈正相关。正常情况下,酶催化神经传导代谢产物(乙酰胆碱)水解,其水解产物与显色剂反应,产生黄色物质,用分光光度计在412nm处测定吸光度随时间的变化值,计算出抑制率。3 试剂和材料除另有规定外,本方法所用试剂均为分析纯,水为GB/T 6682规定的二级水。3.1 试剂3.1.1 丙酮(CH[sub]3[/sub]COCH[sub]3[/sub])。3.1.2 磷酸氢二钾(K[sub]2[/sub]HPO[sub]4[/sub])。3.1.3 磷酸二氢钾(KH[sub]2[/sub]PO[sub]4[/sub])。3.1.4 5,5-二硫代双(2-硝基苯甲酸)(C[sub]14[/sub]H[sub]8[/sub]N[sub]2[/sub]O[sub]8[/sub]S[sub]2[/sub])。3.1.5 碳酸氢钠(NaHCO[sub]3[/sub])。3.1.6 碘化乙酰硫代胆碱( C[sub]7[/sub]H[sub]16[/sub]INOS)。3.1.7 pH8.0缓冲溶液:分别称取11.9 g无水磷酸氢二钾及3.2 g磷酸二氢钾,溶解于1000 mL水中,混匀。3.1.8 显色剂:分别取160 mg 5,5-二硫代双(2-硝基苯甲酸)(DTNB)和15.6 mg碳酸氢钠,用20 mL缓冲溶液溶解,4 ℃冰箱中保存。3.1.9 底物:取125 mg碘化乙酰硫代胆碱,加15 mL蒸馏水溶解,摇匀后置于4 ℃冰箱中保存备用。保存期不超过两周。3.1.10 乙酰胆碱酯酶:4 ℃冰箱中保存备用。3.2 参考物质3种有机磷和2种氨基甲酸酯类农药参考物质的中文名称、英文名称、CAS登录号、分子式、相对分子质量见表1,纯度均≥98%。[align=center]表1 有机磷和氨基甲酸酯类参考物质中文名称、英文名称、[/align][align=center]CAS登录号、分子式、相对分子质量[/align] [table][tr][td] [align=center]序号[/align] [/td][td] [align=center]中文名称[/align] [/td][td] [align=center]英文名称[/align] [/td][td] [align=center]CAS登录号[/align] [/td][td] [align=center]分子式[/align] [/td][td] [align=center]相对分子质量[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]克百威[/align] [/td][td] [align=center]Carbofuran[/align] [/td][td] [align=center]1563-66-2[/align] [/td][td] [align=center]C[sub]12[/sub]H[sub]15[/sub]NO[sub]3[/sub][/align] [/td][td] [align=center]221.25[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]灭多威[/align] [/td][td] [align=center]Methomyl[/align] [/td][td] [align=center]59669-26-0[/align] [/td][td] [align=center]C[sub]5[/sub]H[sub]10[/sub]N[sub]2[/sub]O[sub]2[/sub]S[/align] [/td][td] [align=center]162.23[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]丙溴磷[/align] [/td][td] [align=center]profenofos[/align] [/td][td] [align=center] 41198-08-7[/align] [/td][td] [align=center]C[sub]11[/sub]H[sub]15[/sub]BrClO[sub]3[/sub]PS[/align] [/td][td] [align=center]373.63[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]敌敌畏[/align] [/td][td] [align=center]Dichlorvos[/align] [/td][td] [align=center]62-73-7[/align] [/td][td] [align=center] C[sub]4[/sub]H[sub]7[/sub]Cl[sub]2[/sub]O[sub]4[/sub]P [/align] [/td][td] [align=center]220.98[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]敌百虫[/align] [/td][td] [align=center]Dipterex[/align] [/td][td] [align=center]52-68-6 [/align] [/td][td] [align=center]C[sub]4[/sub]H[sub]8[/sub]Cl[sub]3[/sub]O[sub]4[/sub]P[/align] [/td][td] [align=center]257.44[/align] [/td][/tr][/table]3.3 标准溶液的配制3.3.1 克百威、灭多威、敌敌畏、敌百虫标准储备液(1000 μg/mL):冷藏、避光、干燥条件下保存。3.3.2 丙溴磷标准储备液(100 μg/mL):冷藏、避光、干燥条件下保存。3.3.3 克百威、灭多威、敌敌畏、敌百虫标准中间液A(100 μg/mL):精密移取上述标准储备液(1000 μg/mL)(3.3.1)各1mL,分别置于10mL容量瓶中,用丙酮(3.1.1)稀释至刻度,摇匀,制成浓度为100μg/mL的标准液A。3.3.4 克百威、灭多威、敌敌畏、敌百虫、丙溴磷标准中间液B(1 μg/mL):精密移取标准中间液A(100 μg/mL)(3.3.3)及丙溴磷标准储备液(100μg/mL)(3.3.2)各1 mL,分别置于100 mL容量瓶中,用缓冲溶液(3.1.7)稀释至刻度,摇匀,制成浓度为1μg/mL的标准中间液B。4 仪器和设备4.1 恒温水浴锅。4.2 天平:感量为0.1g。4.3 分光光度计或相应商品化测定仪。4.4 环境条件:温度15℃~35 ℃,湿度≤80%。5 分析步骤5.1 试样的提取5.1.1 整株提取法选取韭菜、芹菜有代表性的样品,擦去表面泥土,称取试样3 g(精确至0.1g)置于表面皿中,加入10 mL缓冲液(3.1.7),残缺面不得接触缓冲液,轻轻振摇50 次,静置2 min以上,取上清液备用。5.1.2 整体测定法选取油菜、菠菜有代表性的样品,擦去表面泥土,剪成1 cm左右见方碎片,称取3 g(精确至0.1 g)放入离心管中,加入10 mL缓冲溶液(3.1.7),振摇50 次,静置2min以上,倒出提取液,静置3 min~5 min,待用。5.2 测定步骤5.2.1 对照液的测定先于反应管中加入3 mL缓冲溶液(3.1.7),再加入适量酶液、0.1 mL显色剂,摇匀后于37 ℃水浴锅中放置15 min。加入0.1 mL底物摇匀,立即测定吸光度,3min后再测定一次,记录反应3min的吸光度值的变化∆ A[sub]0[/sub]。5.2.2 样品液的测定先于反应管中加入3 mL提取液,其他操作与对照液操作(5.2.1)相同,记录反应3 min的吸光度值的变化∆ A[sub]t[/sub]。5.3 质控试验每次测定应同时进行空白试验和加标质控试验。5.3.1 空白试验称取空白试样,按照5.1和5.2步骤与样品同法操作。5.3.2 加标质控试验5.3.2.1 韭菜、芹菜加标实验取空白试样,擦去表面泥土,称取5份试样各3g(精确至0.1 g)置于表面皿中,分别加入检出限水平的有机磷和氨基甲酸酯类标准中间液B(1μg/mL)(3.3.4),加入10mL缓冲液(3.1.7),残缺面不得接触缓冲液,轻轻振摇50 次,静置2min以上,取上清液备用。其余操作按照5.2步骤同法操作。5.3.2.2 油菜、菠菜加标实验取空白试样,擦去表面泥土,剪成1 cm左右见方碎片,称取5 份试样各3 g(精确至0.1g)放入小离心管中,分别加入检出限水平的有机磷和氨基甲酸酯类标准中间液 B(1μg/mL)(3.3.4),加入10mL缓冲溶液(3.1.7),振摇50 次,静置2min以上,倒出提取液,静置3 min~5 min,待用。其余操作按照5.2步骤同法操作。6 结果的表述6.1 结果计算抑制率(%)=[(∆ A[sub]0[/sub]-∆ A[sub]t[/sub])/∆ A[sub]0[/sub]]×100式中:∆ A[sub]0[/sub][sub]───[/sub]对照溶液反应3 min吸光度的变化值;∆ A[sub]t[/sub][sub]───[/sub]样品溶液反应3 min吸光度的变化值;6.2 结果判定结果以酶被抑制的程度(抑制率)表示。当抑制率≥50%时,表示蔬菜中有机磷和氨基甲酸酯类农药残留高于检测限,判定为阳性,阳性结果的样品需要重复检验2 次以上。6.3 质控试验要求空白试验测定结果应为阴性,加标质控试验测定结果应均为阳性。7 结论当检测结果为阳性时,应采用其他分析方法进行确证,进一步确定农药品种和含量。8 性能指标8.1 检测限:敌百虫0.1mg/kg,丙溴磷0.5 mg/kg,灭多威0.2 mg/kg,克百威0.02 mg/kg,敌敌畏0.2 mg/kg。8.2 灵敏度:灵敏度应≥95%8.3 特异性:特异性应≥85%。8.4 假阴性率:假阴性率应≤5%。8.5 假阳性率:假阳性率应≤15%。注:1.性能指标计算方法见附录A。 2.吸光度变化∆ A[sub]0[/sub]值应控制在0.2~0.3之间。具体的酶量,应根据产品说明书上标识的使用量,测定∆ A[sub]0[/sub]值。根据测定值,增加或减少酶量,使∆ A[sub]0[/sub]值控制在0.2~0.3之间。[align=center]检测卡法[/align]9 原理样品中的有机磷和氨基甲酸酯类农药残留经缓冲液提取,有机磷和氨基甲酸酯类农药对胆碱酯酶(白色药片)有抑制作用,抑制胆碱酯酶催化靛酚乙酸酯(红色药片)水解为乙酸与靛酚(蓝色),从而导致速测卡颜色深浅的变化。通过空白颜色比较,对样品中有机磷和氨基甲酸酯类农药进行定性判定。10 试剂和材料除另有规定外,本方法所用试剂均为分析纯,水为GB/T 6682规定的二级水。10.1 试剂10.1.1 丙酮(CH[sub]3[/sub]COCH[sub]3[/sub])。10.1.2 磷酸氢二钾(K[sub]2[/sub]HPO[sub]4[/sub])。10.1.3 磷酸二氢钾(KH[sub]2[/sub]PO[sub]4[/sub])。10.1.4 pH8.0缓冲溶液:分别称取11.9 g无水磷酸氢二钾及3.2 g磷酸二氢钾,溶解于1000 mL水中,混匀。10.2 参考物质同3.2。10.3 标准溶液的配制同3.3。10.4 固化有胆碱酯酶和靛酚乙酸酯试剂的纸片(检测卡)。11 仪器和设备11.1 恒温水浴锅。11.2 天平:感量为0.1 g。11.3 环境条件:温度15℃~35 ℃,湿度≤80%。12 分析步骤12.1 试样的提取12.1.1 整株提取法选取韭菜、芹菜有代表性的样品,擦去表面泥土,称取试样3 g(精确至0.1g)置于表面皿中,加入10mL缓冲液(10.1.4),残缺面不得接触缓冲液,轻轻振摇50 次,静置2min以上。12.1.2 整体测定法选取油菜、菠菜有代表性的样品,擦去表面泥土,剪成1 cm左右见方碎片,称取3 g(精确至0.1 g)放入小离心管中,加入10 mL缓冲溶液(10.1.4),振摇50 次,静置2min以上。12.2 测定步骤吸取2 滴左右待测液于白色药片反应区域,在37 ℃恒温装置中放置15 min进行预反应,预反应后的药片表面必须保持湿润。将速测卡对折,手捏3 min或置于37 ℃恒温装置3min,保证红色药片反应区域与白色药片反应区域完全叠合发生反应。每次测定需有一个缓冲溶液的空白对照。12.3 质控试验每次测定应同时进行空白试验和加标质控试验。12.3.1 空白试验称取空白试样,按照 12.1 和 12.2 步骤与样品同法操作。12.3.2 加标质控试验12.3.2.1 韭菜、芹菜取空白试样,擦去表面泥土,称取5份试样各3g (精确至0.1g)置于表面皿中,分别加入检出限水平的有机磷和氨基甲酸酯类标准中间液B(1μg/mL)(3.3.4),按照12.1和12.2步骤与样品同法操作。12.3.2.2 油菜、菠菜选取空白试样,擦去表面泥土,剪成1 cm左右见方碎片,称取5份试样各3 g(精确至0.1g)放入小离心管中,分别加入检出限水平的有机磷和氨基甲酸酯类标准中间液 B(1μg/mL)(3.3.4),按照12.1和12.2步骤与样品同法操作。13 结果判定白色药片区域不变色或略有浅蓝色为阳性结果;白色药片区域变为天蓝色或与空白对照卡相同,为阴性结果。通过对比空白和样品白色药片区域的颜色变化进行结果判定。目视判定示意图见图1。[img=,524,323]https://ng1.17img.cn/bbsfiles/images/2019/04/201904161528477750_5223_2166779_3.png!w524x323.jpg[/img]13.1 无效白色药片区域干燥,表明取样量偏少,检测结果无效。13.2 阴性样品白色药片区域颜色比空白对照卡颜色颜色相当或为天蓝色,表明样品中有机磷和氨基甲酸酯类农药残留低于方法检测限,判定为阴性。13.3 阳性样品白色药片区域不变色或略有浅蓝色,表明样品中有机磷和氨基甲酸酯类农残高于检测限,判定为阳性。1.1 质控试验要求空白试验测定结果应为阴性,加标质控试验测定结果应均为阳性。2 结论当检测结果为阳性时,应采用其他分析方法进行确证,进一步确定农药品种和含量。3 性能指标3.1 检测限:敌百虫0.1mg/kg,丙溴磷0.5 mg/kg,灭多威0.2 mg/kg,克百威0.02 mg/kg,敌敌畏0.2 mg/kg。3.2 灵敏度:灵敏度应≥95%3.3 特异性:特异性应≥85%。3.4 假阴性率:假阴性率应≤5%。3.5 假阳性率:假阳性率应≤15%。注:性能指标计算方法见附录A。4 其他葱、蒜、萝卜、韭菜、芹菜、香菜、茭白、蘑菇及番茄汁液中,含有对酶有影响的植物次生物质,容易产生假阳性。处理这类样品时,采取整株蔬菜浸提。对一些含叶绿素较高的蔬菜,也可采取整株蔬菜浸提的方法,减少色素的干扰。本方法所述试剂、试剂盒信息及操作步骤是为给方法使用者提供方便,在使用本方法时不做限定。方法使用者在使用替代试剂、试剂盒或操作步骤前,须对其进行考察,应满足本方法规定的各项性能指标。本方法参比标准为 NY/T 761—2008 《蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定》。

  • 【原创大赛】蔬菜、水果及其制品中吡虫啉、多菌灵、甲基硫菌灵、霜霉威、灭多威、霜脲氰残留量的检测方法-超高效液相色谱-质谱/质谱法

    蔬菜、水果及其制品中吡虫啉、多菌灵、甲基硫菌灵、霜霉威、灭多威、霜脲氰残留量的检测方法-超高效液相色谱-质谱/质谱法 唐玉萍1 范围本非标方法规定了蔬菜、水果及其制品中吡虫啉、多菌灵、甲基硫菌灵、霜霉威、霜脲氰和灭多威残留量的超高效液相色谱-质谱/质谱检测方法。本非标方法适用于蔬菜、水果及其制品中吡虫啉、多菌灵、甲基硫菌灵、霜霉威、霜脲氰和灭多威残留量的检测,该方法在番茄、番茄酱、梨、脱水洋葱等样品中经过验证。2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB/T 6682 分析实验室用水规格和试验方法3 原理样品用乙酸-甲醇-水溶液提取,C18色谱柱进行分离,用超高效液相色谱-质谱/质谱检测,内标或外标法定量。4 试剂及材料除另有规定外,所用试剂均为分析纯,水为GB/T 6682 规定的一级水。4.1 甲醇:色谱纯。4.2 乙酸铵。4.3 10mmol/L乙酸铵:准确称取1.926g乙酸铵,定容至500mL容量瓶中,配制成50mmol/L乙酸铵。用溶剂过滤装置过0.2µm水相滤膜,0~4℃保存,有效期15天。临用时用水稀释成10mmol/L。4.4 冰乙酸。4.5 甲醇-水溶液(30+70,V/V)。4.6 提取液Ⅰ:乙酸-甲醇-水溶液(0.1+50+50,V/V/V)。4.7 提取液Ⅱ:乙酸-甲醇-水溶液(0.1+80+20,V/V/V)。4.8 吡虫啉、多菌灵、甲基硫菌灵、霜霉威、霜脲氰、灭多威和D4-吡虫啉标准品:均为德国Dr.公司,纯度≥98.0%。4.9 6种农残标准储备液:分别准确称取吡虫啉、多菌灵、甲基硫菌灵、霜霉威、霜脲氰、灭多威标准品10mg~15mg(精确到0.1mg)于50mL容量瓶中,用甲醇溶解并定容至刻度,配制成浓度约为200~300µg/mL的标准储备液,于-18℃避光保存,有效期18个月。4.10 中间浓度混合标准溶液:根据需要,取适量6种农残标准储备液,用甲醇-水溶液(4.5)稀释配制成2µg/mL的混合标准中间液,0~4℃保存,有效期6个月。4.11 内标标准储备液:准确称取D4-吡虫啉标准品约10mg(精确到0.1mg)于50mL容量瓶中,用甲醇溶解并定容至刻度,配制成浓度约为200µg/mL的内标标准储备液,于-18℃避光保存,有效期18个月。4.12 中间浓度内标溶液:取D4-吡虫啉标准储备液,用甲醇-水溶液(4.5)逐级稀释配制成4µg /mL和200ng/mL,0~4℃保存,有效期6个月。4.13 混合标准工作溶液:准确吸取一定量的中间浓度混合标准溶液(4.10)和中间浓度内标溶液(200 ng/mL),用甲醇-水溶液(4.5)配制成10,20,50,100,200 ng/mL系列浓度的混合标准工作溶液,内标浓度均为20 ng/mL,0~4℃保存,有效期3个月。4.14 微孔滤膜:0.2µm,有机相。4.15 流动相过滤滤膜:0.2µm,水相。5 仪器和设备5.1 高效液相色谱-串联质谱仪(LC-MS/MS):配有电喷雾离子源(ESI)。5.2 电子分析天平:感量分别为0.1 mg和0.01 g。5.3 超声波水浴。5.4 漩涡混合器:3000r/min。5.5 离心机:9000r/min。5.6 离心管:聚四氟乙烯,50mL。5.7 溶剂过滤装置。6 试样的制备和保存6.1 试样的制备与保存取番茄、梨等果蔬样品约500g,将其可食用部分切碎后,用粉碎机粉碎成浆状,混匀,均分成两份作为试样,分装入洁净的容器中,密封。将试样于-18℃以下冷冻保存。取番茄酱样品约500g,混匀,均分成两份作为试样,分装入洁净的容器中,密封。将试样于-18℃以下冷冻保存。取脱水洋葱样品约200g,混匀,均分成两份作为试样,分装入洁净的容器中,密封。将试样于0~4℃保存。注:在制样过程中,应防止样品受到污染或发生农药残留量的变化。7 测定步骤[

  • 【资料】杀菌剂多残留分析方法(扫盲篇)

    杀菌剂多残留分析方法 检测农产品中农药残留量是评价其是否超过MRL值的前提,因此农药残留分析方法得到各国的重视。无论是多残留分析(MRMs)还是单残留分析(SRMs),均基于相似的检测步骤,多残留分析由于可同时检测多种农药残留的存在,因此通常是首选方法。公职分析化学家协会(AOAC)的方法是国际公认的多残留分析方法,可用于多种农药残留的检测。该方法通常用水溶性的溶剂提取,紧接着的净化用不溶于水的溶剂进行分配,再用硅胶或弗罗里硅土净化,净化后的提取物用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、高效液相色谱检测。尽管AOAC方法可以检测多达325种农药及相关化合物,但也存在一些不足之处,如效率低,不适于进行筛选分析;有些试剂有毒且用量大;不能分析一些新农药等。针对上述缺陷,一些新的提取、净化方法得到重视和发展,如固相萃取(solid-phase extraction,SPE)、固相净化(solid-phase cleanup,SPC)、基质固相分散萃取(matrix solid-phase dispersion,MSPD)、超临界流体萃取(supercritical fluid extraction,SFE)等。这些技术的突出特点是简便、样量小型化、萃取的广泛性。检测技术上,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]及高效液相色谱仍然是主要的技术手段。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方面,采用微波诱导等离子(microwave induced plasma,MIP)-原子发射检测器(atomic emission detector,AED)及多级质谱的检测技术取得了快速的发展;离子及离子对色谱以及柱后衍生技术的应用是高效液相色谱检测的研究热点,激光诱导荧光检测器也已开始应用。超临界流体色谱(Supercritical fluid chromatography, SFC)在农药残留检测中的成功应用,实现了样品中农药残留的提取、净化、检测一步完成,是当前联用技术的典型代表。2.1 提取从样品中提取残留农药的效果,很大程度上决定于农药的极性及样品基质的类型。提取过程通常将样品置于匀浆瓶中,添加溶剂,利用匀浆器(homogeniser)、搅拌机(blender)或超声波发生器(sonicator)匀浆。常用的有机溶剂有丙酮、乙腈、甲醇、乙酸乙脂等,根据样品类型、含水量及目标农药,有时需要添加适量的水或调整pH值。多数情况下样品能均匀的分散在有机溶剂中,从而可提高被测残留物的回收率,减少共提的干扰物比率。经均化作用后,以过滤或离心的方法将溶剂和固体分开。2.1.1乙腈提取法乙腈提取法可应用于大多数农药和其它一些化合物的提取,然而在该方法中,许多水溶性(极性)化合物在石油醚从乙腈水中提取农药以及在弗罗里硅土柱层析或氧化镁/硅藻土柱进行层析净化时,水溶性化合物或部分或全部损失。尽管如此这种提取方法仍适用于许多杀菌剂的分析。在Liao等人的方法中采用乙腈进行提取,通过添加氯化钠使乙腈与水分离,上层部分(乙腈)浓缩至小体积后用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]检测。AOAC早期的方法及美国加州食品和农业部 (California Department of Food and Agriculture,CDFA)的MRSM (Multiresidue Screen Method) 方法多采用乙腈作为溶剂。2.1.2丙酮提取法由于丙酮具有无毒、易于纯化、与乙腈和其它一些溶剂相比挥发性好而且价格低廉等优点,因此也是一种常用的提取溶剂,许多方法采用它。此外,在样品中含糖时,丙酮不会象乙腈那样与水形成两相,故可用于高含糖量的样品。实验表明,丙酮具有广泛的化合物和样品基质适用性,已有的回收率数据包括400余种化合物,其中含杀菌剂40余种。理论上,丙酮可用于提取任何样品中除了带有永久离子之外的残留农药。因此,许多国家农药残留标准方法均采用丙酮作为主要溶剂,如德国的DFG S19方法,美国FDA MRMs方法等。在这些方法中,丙酮提取液用氯化钠或硫酸钠饱和之后,分配至二氯甲烷、己烷或石油醚中,从而可得到对不同化合物有利的分配特性和有机相的快速分离。2.1.3乙酸乙酯提取法乙酸乙酯极性相对丙酮、乙腈要弱,因此其对弱极性农药的提取回收率一般较好些,并且其共提物尤其是色素要显著少于丙酮,从而减少了净化时的压力。采用乙酸乙酯作提取溶剂的方法最早由Ross等提出,提取液采用凝胶渗透层析(GPC)净化(SX-3柱),杀菌剂的回收率超过90%。1989年,瑞典国家食品管理局将其列为国家多残留分析方法,替代了原来由Anderson和Ohlin建议的方法。现在该方法已能检测约160种农药、异构体及降解代谢产物。在荷兰的国家方法中,乙酸乙酯也作为主要的提取溶剂。由于省去净化步骤,乙酸乙酯提取方法也被称为在线提取法(on-line extraction methods),其理论基础是Gibbs三角,可用于在线提取的有机溶剂对还有正己烷/丙酮(8∶2)、乙酸乙酯/二甲苯、丙酮或乙腈/二氯甲烷或石油醚等。2.1.4其它提取方法固相萃取是近年发展较快的一种提取、净化方法,作为一种提取技术,主要应用于液体样品中农药的提取,用于农产品及土壤等固体或半固体样品中农药的提取,实质上是一种净化、富集过程。商品化的固相萃取装置很多,主要是固相萃取小柱、固相萃取盘等,其发展主要体现在填料方面,如石墨化炭黑、键合硅胶、弗罗里硅土、活性炭、硅胶等。基质固相分散萃取是类似于固相萃取的一种提取、净化、富集技术,其是将吸附剂或填料与样品一起研磨分散,然后装柱,用有机溶剂淋洗,使农药淋洗出来,淋洗液一般无需进一步净化,可直接进[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]或高效液相色谱检测。MSPD实际上将包括样品匀浆、细胞裂解、完全提取、分馏及纯化过程集于一个简单的过程。有些淋出杂质较多的样品,也可进行净化、分析。Kadenski等采用MSPD技术,研究了多种农药在一些蔬菜、水果中的回收。与传统方法相比,MSPD具有显著的优点,主要表现在,缩短了样品分析周期;减少了样品量,从而极大的降低了溶剂的用量,降低了环境污染的可能性并提高了操作安全性;适用于自动化操作等。

  • 【转帖】欧盟拟修订涕灭威等13种农药的最大残留限量

    欧盟委员会2010年4月15日发布G/SPS/N/EEC/374号通报:委员会法规草案附件—修订欧盟议会和委员会法规 No 396/2005附件II 和 III中关于涕灭威(Aldicarb)、溴螨酯(Bromopropylate)、毒虫畏(Chlorfenvinphos)、硫丹(Endosulfan)、菌达灭(EPTC)、乙硫磷(Ethion)、倍硫磷(Fenthion)、氟磺胺草醚(Fomesafen)、甲基苯噻隆(Methabenzthiazuron)、杀扑磷(Methidathion,)、西玛津(Simazine,)、三氯杀螨砜(Tetradifon)和嗪氨灵(Triforine)等13种农药的最大残留限量(MRLs)。[font=Arial]  通报内容如下:欧盟不再认可某物质的最大残留限量时,法规草案就进行相应的改变。当物质不会给欧盟消费者带来任何无法接受的风险时,就保留其与Codex最大残留限量或进口容许值一致的现行最大残留限量。其它任何情况下的最大残留限量与检测低限(LOD)一致。对于那些Codex没有规定最大残留限量的物质,其最大残留限量就设定为其检测低限。[/font]

  • 【资料】-农药残留的现代仪器分析方法

    农药残留的现代仪器分析方法张静 寇登民(南开大学化学学院催化材料研究所 天津300071)  摘要:本文结合农药残留分析的重要性,综述农残检测的现代分析方法,包括[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、液相色谱、薄层色谱、超临界流体色谱、毛细血管电泳技术、生物检测技术等分析方法,并着重阐述质谱检测器在各种分析方法中的应用。  关键词:农药残留分析方法  质谱检测器药是现代农业生产中不可缺少的生产资料,其广泛应用大大提高农作物的产量,但对生态环境、人类生命安全也造成威胁之随着农药的大量和不合理的使用,农药所造成的环境毒性问题,已引起人们的高度重视,尤其是残留农药对人体健康和环境所造成的影响越来越受到各国政府和公众的关注。农药残留量检测是微量或超微量分析,必须采用高灵敏度的检测器才能实现。由于农药品种多、化学结构和性质各异、待测组分复杂,有的还要检测其有毒代谢物、降解物、转化物等,尤其是近几年来,高效农药品种不断出现,在农产品和环境中的残留量很低,国际上对农药最高残留限量要求也越来越严格,给农药残留检测技术提出更高的要求。  1、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(GC)近些年来,由于毛细管柱的高分离性能,在农药残留分析领域几乎取代填充柱;并且高灵敏度和高选择性能的检测器的出现使得残留限量大大降低,农药残留中最常用的检测器为电子捕获检测器(ECD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、质谱检测器(MSD)等。ECD、NPD、FPD在GC中是最广泛使用的选择性检测器,这方面已有很多报道和综述。质谱检测器与传统检测器相比,在定性和定量方面都有很大的优点,并且可以得到被测物的分子结构信息,而其它检测器只能通过流出物的保留时间来定性,对多残留分析来说既浪费时间又有一定的难度,因此有的作者用质谱(MSD)检测器对被测物进行确证。质谱检测器在使用全扫描(fullscan)时,对很低浓度的样品要求预富集,选择离子监测(SIM)可以使灵敏度大幅度提高,但降低被测物的定性信息,串联质谱的出现在不降低定性信息的前提下使得选择性和灵敏度都有很大的提高,如C.Goncalves等利用GC-MS-MS测定水样中的农残,灵敏度要比SIM提高1.3~20倍。在MS-MS中,先驱离子在离子阱中被分离,随后被碎裂,得到特征质谱图,基质离子由阱中被排出,这样就提高信噪比。MS-MS可以同时使用不同的离子源进行监测,M.D.Hemondo等使用GC-CI-MS-MS测定防污剂中的灭杀剂,在分析过程中不断改变离子源从PCI到NCI,使其绝对检出限低于ppt级;F.J.Arrebola等一次进样测定食品中的80种农残,设定质谱仪程序在EI和CI两种离子源之间切换,以最佳离子源状态检测每种农药.取得很好的结果。二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是由Liu和Phillips在1991年最先使用的,它是由两根不同性能的色谱柱通过一个调制装置串联,第一根柱子的流出物聚焦后再进入第二根色谱柱,使用计算机程序得到一张二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]图。由于其突出的分离性能而受到广泛关注,它与质谱的联用技术更大为开阔二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用前景。在对农药残留的痕量分析时使用二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]飞行时间质谱(GC×GC—TOF--MS)方法,标准曲线的线性、峰面积的再现性及在二维色谱上的保留时间都取得很好的结果,并用于婴儿食品中的农药残留检测,其检测限可达0.01mg/kg。

  • 【资料】-食品中农药多残留分析

    对农药残留进行分析,就要先了解待测农药的性质特点,再选择适当的方法,这样才能做到事半功倍。常用的提取方法有以下几种,可根据农药的性质,样品种类和实验室条件选择适当的方法:1.1匀浆、捣碎法:此法尤其适用于叶类及果实样品(如蔬菜和水果),提取效果好,简便、快速,如对苹果、山楂中溴螨酯的提取[8]。苹果中的农药用丙酮匀浆提取[9]1.2浸渍、漂洗法:此法对于附着在样本表面的农药有很好的提取效果。测定叶类样品中非内吸性农药的效果也较好。如小麦中的杀螟硫磷可采用浸渍法提取[10]。1.3振荡法:往盛有样本的容器中加提取剂,振荡数小时。此法简便且提取效果好,较普遍采用。1.4索氏提取法(Soxhelt):此法为经典提取法,提取效果好,但需较长时间,干扰物质较多。可在套筒中加吸附剂(与样本混合),能起到净化或减少干扰物的效果。此法比较适合对土壤及籽类样品的提取。1.5消化法:样本中加消化液,加热使样本消化,再用溶剂将待测农药提取出来。此法多用于不宜匀浆、捣碎法的动物组织。1.6固相微萃取法(SPME):固相微萃取法是在固相萃取基础上发展起来的,保留了其所有的优点。摒弃了其需要柱填充物和使用溶剂进行解吸的弊病,它只要一支类似进样器的固相微萃取装置即可完成全部前处理和进样工作,具有简单、费用少、易于自动化等一系列优点[11]。Morzycka[12]用阵列固相扩散[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定了蜂蜜中痕量的农药残留;Valcarcel等[13]用半自动SPE/GC法测定了蔬菜中有机氯和拟除虫菊酯的多残留。1.7微波辅助萃取法(MAE):将样本粉碎后置于微波仪提取器中,加溶剂,选择合适的提取功率和时间。此法提取效果与振荡法相媲美,但所需时间大大减少。冯秀琼,汤庆勇采用微波辅助萃取法对金银花、枸杞、三七几种药材的14种有机农药进行提取,并与振荡法比较,提取效果基本相当,消耗溶剂量相同,但微波提取时间(5min)仅为振荡提取(3h)的1/36[14],所以,微波提取的优势是显而易见的。

  • [资料]农药多残留分析中的样品净化

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=22769]农药多残留分析中的样品净化[/url]自己搜集整理的东西,word文档

  • 【转帖】-农业多残留分析(农业部资料)

    无公害食品 蔬菜和水果中有机磷、有机氯、拟除虫菊酯 和氨基甲酸酯类农药多残留检测方法发布时间:2004 年1月7 日 实施时间:2004 年3 月1 日发布单位:中华人民共和国农业部 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16980]农业多残留分析(农业部资料)[/url]

  • GC-MS-MS进行食品中农药多残留分析(一)

    多残留分析方法检测农药残留效率高、成本低。由于方法适用范围广,通常会采用一些通用的样品制备步骤,这种方法的固有问题是样品提取物只能在一定程度上得到纯化,当使用这种方法分析如婴儿食品、中药、香料、烟草等复杂基质时,就需要检测方法具有高选择性以弥补样品制备的低选择性。[b]面临的挑战[img]http://img.vogel.com.cn/2011/20110801/0923141987.jpg[/img][/b]氯硝胺在EI 电离模式下全扫描质谱图目前农药残留分析中面临的分析挑战是需要最大限度地增加农药种类、尽量减少分析方法的变化、缩短运行时间、获得相当于或低于欧盟设定的农药最大残留限量(MRL)水平的检出限(LOD)。鉴于欧盟法律规定的农药残留都有非常低的MRL值,目前面临的最新挑战是对复杂基质中数百种农药都要实现ppb浓度水平的检测。因此,就需要更灵敏和更高效的农药筛查手段。由于基质的多样化,导致痕量化合物的定量和鉴定更加复杂,经常出现定性离子超出检测范围或目标离子淹没在高化学基线噪音中的情况。在单四极杆质谱中,经常采用选择离子检测模式(SIM)来改善检测限及定量的重现性。在SIM模式下,只监测在保留时间范围内流经色谱柱的每种目标物的少数几个离子,但是对于基质中痕量物质的分析,SIM 模式下和全扫描模式下有相同的杂质干扰,此时,SIM 模式就不适用了。[img]http://img.vogel.com.cn/2011/20110801/0924528121.jpg[/img]氯硝铵母离子(206m/z)在不同裂解电压下(5~40V)的碎片离子质谱图[b]完整解决方案[/b]三重串联四极杆质谱可以大幅度降低甚至消除影响SIM方法准确度和检测限的基质干扰,这个被称为多反应监测模式(MRM)的过程与SIM相比有两个基本的优势,首先,检测基于次级“碎片离子”,碎片离子是由分析物的“母离子”在第一个四极杆Q1中由一个SIM装置碰撞解离产生,与SIM有同样的选择性,但能很大程度上保证产生的碎片离子中至少有一个是母离子特有的而非干扰物产生的离子。MRM选择性的提高与SIM相比基线漂移明显减少。其次,在Q1的质谱过滤过程中,样品中所有低质荷比的离子都被过滤掉,从碰撞解离过程中产生的唯一的碎片离子就能在“零噪声”色谱范围进行检测。将特定碎片离子(高选择性)与背景噪声的消除结合,使得MRM即使检测复杂基质时仍能保证很低的检测限。[img]http://img.vogel.com.cn/2011/20110801/0925589313.jpg[/img]氯硝胺多反应监测(MRM) 色谱图(10ppb)这篇应用简要介绍了蔬菜和水果中农药残留的分析方法,方法采用了Agilent7000 系列[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/三重串联四极杆质谱系统,使用MRM模式,结合了保留时间锁定技术以及安捷伦毛细管流高沸点基质反吹技术。由于食品提取液等复杂样品中存在固有的高沸点化合物,在分析时有必要设置一个柱反吹程序。因为经过几次进样测定,这些高沸点物质就会附着到柱头上,导致峰拖尾、保留时间漂移、化学噪声增加等问题,时间一长还会从色谱柱污染到离子源,最终必须清洗离子源。而安捷伦独有的毛细管流技术使得柱反吹程序常规化,设置简单,无需专业人员。该方法的稳定性大大提高,分析周期显著缩短。总体来说,系统可保持更长的运行时间,显著提高了分析效率。在进样之间能保持色谱系统和质谱离子源更加清洁,减少了维修需求。[b]实验部分[/b]样品制备采用QuEChERS方法进行。QuEChERS是一种快速、简便、价廉、高效、耐用、安全的多类别农药多残留分析制备方法。[img]http://img.vogel.com.cn/2011/20110801/0843222352.jpg[/img]Agilent7890A/7000A 三重串联四极杆GC/MS系统,配有新型7693大体积自动液体进样器[img]http://img.vogel.com.cn/2011/20110801/0843345983.jpg[/img]表1及图1显示了本实验所用的三重串联四极杆GC/MS系统

  • 【分享】兽药残留分析技术研究进展

    随着兽药的种类和应用规模剧增,人们对兽药残留问题的日益关注以及国际间贸易等原因,使兽药残留分析对象、样本数量和测定难度大大增加,迫切需要发展简便、快速、灵敏,并能同时处理测定大批量样品的兽药残留分析技术。 传统的波谱、色谱等理化分析手段难以适应兽药残留分析的要求。 近年来在兽药残留分析领域所取得的重要进展或发展趋势主要有以下方面: ①样品分离纯化技术(提取和净化方法)的简单化、微型化和自动化,提高了提取或净化效率及自动化水平。如固相萃取法(SPE)、固相微萃取(SPME),超临界流体萃取(SFE)、微波萃取法(MAE)、免疫亲和色谱(IAC)技术、基质固相分散(MSPD)技术,凝胶渗透色谱(GPC)净化,分子印迹技术等。②在定量分析上的新技术包括毛细管电泳、超临界流体色谱、液相色谱-质谱联用技术、免疫分析技术和生物传感器等。下面将这些研究进展作一综述。一、样品分离纯化技术 动物性食品中兽药残留的特点是样品中残留物水平很低,样品基质复杂,干扰物质多,不易从样品中分离、纯化残留物。因此兽药残留分析是复杂生物样品基质中痕量组分的分析技术,样品的分离纯化是兽药残留分析中最费时和劳动强度最大的步骤。传统的样品制备技术如液- 液分配等仍在广泛使用,同时一些新的样品分离纯化技术也不断被引入到兽药残留分析中。免疫亲和色谱技术、分子印迹技术、基质固相分散技术、超临界流体萃取(SFE)等是残留分析中最有效的分离纯化方法,目前是兽药残留分析领域中的研究热点。

  • 【资料】—农药残留分析的质量控制

    [b]农药残留分析的质量控制[/b]农药残留分析属于痕量分析范畴,分析的农药及样品基质种类多,成份复杂,分析中投入的成本高。分析的结果经常用于政府管理部门作为贸易、生产等活动的决定性依据,具有极大的责任和权威性。如果没有严格、科学的质量保证和质量控制程序,难免出现分析结果不准确而造成决策失误和花费大量投入建设的残留分析实验室不能合格有效运行的浪费等现象。因此,做好残留分析的质量控制是产生准确、可靠的残留分析数据的重要前提和保证。农药残留分析质量控制的目的是使分析结果达到预定的准确和精密程度。为了达到这一预定目的所应采取的措施和工作步骤都是事先规划好的,通过一系列的规约加以确定,并要求有关分析人员按照规约操作,由此使分析过程处于受检状态。[color=red]详细内容见附件:[/color][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=49077]农药残留分析的质量控制[/url]

  • 食品中农药残留分析讨论

    SFE 及其在食品农残分析中的应用所谓超临界流体(supercritical fluid 9SCF ) 是指处于临界温度和临界压力的非凝缩性的高密度流定性和定量分析G 因存在农药的同系物\异构体\降解产物或代谢产物的影响9且由于环境的迁移作用9通过根茎吸收\传导等途径9农药进入农作物组织内部9从而加大了检测的难度G 近年来9新的分析方法9特别是多种类型农药的多残留分析方法\同种类农药的多残留分析方法等都取得了可喜的进展G本文将对食品中农药残留分析的样品制备技术9特别是近年来在农药残留分析领域中发展很快的超临界流体萃取(supercritical fluid extraction 9SFE ) 处理方法进行评述9同时对其他相关技术如固相萃取(solid -phase extraction 9SPE ) \固相微萃取(solid -phase microextraction 9SPME ) \微波辅助萃取(microwave aided extraction 9MAE ) \凝胶渗透色谱(gel permeation chromatography 9GPC ) 也进行了总结G

  • 【转帖】农药残留毒性及分析的特点和要求

    农药的代谢物与残留毒性   上世纪60年代以来的研究进一步发现,除了农药本身以外,它的代谢产物也会出现残留毒性问题,一系列的事件发生引起了对这个问题的重视。美国的Rode L.(1969)报道,在美国加州农场工人进入喷施过对硫磷几天后的柑橘园发生了中毒事件,研究发现是对硫磷的代谢产物对氧磷引起的,这说明有时农药母体化合物的毒性还不如其代谢产物。这一发现不仅促使加强了对农药残留降解的研究,还引发了对农药降解过程中代谢产物毒性的研究。其后,又陆续发现了一些农药的代谢产物具有比母体化合物毒性更大的情况。如乙酰甲胺磷是一种急性毒性不大的农药 (对大鼠的口服半致死剂量LD50为605~1100mg/kg),因此将它列为相对低毒的农药类别。但喷施到植物上后,乙酰甲胺磷会在植物体内代谢成甲胺磷(对大鼠的口服LD50为20~30mg/kg),其毒性提高了20~50倍。茶叶生产上曾对这个问题展开过讨论,即乙酰甲胺磷究竟适不适合在茶树上使用。现在证明尽管乙酰甲胺磷毒性不高,但喷后几天,会出现一个甲胺磷残留的高峰,甲胺磷又是一种高水溶性的化合物,因此存在很高的风险性,不宜在茶叶生产中使用。乐果也是一种相对低毒的有机磷农药(对大鼠的口服LD50为500~600mg/kg),但当喷施到植物上1~2天后,会氧化成为氧乐果(对大鼠的口服LD50为30~50mg/kg),其急性毒性提高 10倍以上。相类似的有涕灭威农药及其在代谢过程中形成的砜和亚砜代谢物,三唑酮代谢形成的烃基三唑酮,杀虫脒代谢形成的4-氯邻甲苯胺,这些代谢物的形成都明显提高了农药的急性毒性或慢性毒性。这就使得在喷施农药后,除了要进行农药母体化合物的残留测定外,还要对其主要的代谢产物,特别是毒性有提高的化合物进行残留测定。 农药杂质与残留毒性   除了农药母体化合物和主要代谢物外,有时农药中含有的杂质也会产生毒性问题。1976年联合国卫生组织和美国援助巴基斯坦时用马拉硫磷杀蚊治疟疾,由于马拉硫磷中含有的杂质马拉氧磷和异马拉硫磷使得数百人中毒,8人死亡。这一事件促使了对农药杂质毒性的研究。上世纪80年代以来我国已经停止生产、销售和使用滴滴涕农药,但在茶叶中还可以检测到滴滴涕农药的残留。经研究发现,这种滴滴涕的残留主要来自三氯杀螨醇农药。由于三氯杀螨醇的化学结构和滴滴涕非常相似,只相差一个氯原子、一个氢原子,因此在三氯杀螨醇加工工艺中,一些环境条件的变化会使产品中出现滴滴涕成分。据对我国三氯杀螨醇产品的成分分析发现,产品中滴滴涕的含量为3%~13%,因此在喷施三氯杀螨醇防治螨类时会出现滴滴涕的残留。正因为如此,1999年农业部颁布了在茶叶生产中禁止使用三氯杀螨醇的决定。此外许多有机磷农药中的氧化物,二硫代氨基甲酸酯类农药(代森锌等)中的乙撑硫脲都是这个问题的实例。 农药残留分析的特点和要求  农药残留分析是应用现代分析技术对各种食品和环境中的微量和痕量的农药母体化合物和代谢物进行定性、定量分析和测定。农药残留分析属于难度较大的分析类别。 1. 农药残留分析属于微量至超微量分析范畴。在上世纪60年代,农药残留分析一般为ppm级,即从1g样品中需要测出微克级的农药物质。但随着科学的发展和对残留测定要求的提高,检测的要求也相应地提高到ppb级(μg/kg,即十亿分之一),甚至ppt级(ng/kg,即一万亿分之一),如果以1g样品计算,最小检出量就需要相应达到纳克(ng,10-9g)级或皮克(pg,l0-12g)级。这就对检测工作提出很高的要求,既要求测定的仪器有非常高的灵敏度,同时还要求检测方法有非常高的精确度。 2. 对样品的前处理要求极高。正因为农药残留分析是一种微量至超微量的分析范畴,所以对前处理的要求就非常高。所谓前处理就是要将样品中的目标物(农药)尽可能完全地提取出来。由于样品中必然含有各种成分,这些成分会对检测过程有很大的干扰,因此要尽最大可能将样品中的其他成分通过纯化而去除,而将提取样品中的目标物质尽可能完全保留,回收率的高低直接关系分析结果的准确度。 3. 由于分析样品都为未知成分样,也就是说样品中含有几种农药及其浓度均为未知,因此对样品的分析就显得非常复杂。

  • 医疗器械环氧乙烷灭菌残留快速检测

    医疗器械环氧乙烷灭菌残留快速检测

    [align=center][b][size=24px]医疗器械环氧乙烷灭菌残留快速检测[/size][/b][/align][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2020/02/202002162131118294_7217_1871535_3.jpg!w690x460.jpg[/img]新型冠状病毒(2019-nCoV)肺炎疫情牵动着祖国亿万人民的心。面对此次突如其来的疫 情,南京科捷分析仪器有限公司利用在医疗用品灭菌残留快检方面的优势,开展医疗卫生用 品环氧乙烷灭菌残留快速检测相关工作,整理出检测方案,为需要的厂家和单位提供充足的 设备和技术支持,全力抗击疫情。 一.环氧乙烷的危害和限量 环氧乙烷是一种可刺激体表并引起强烈反应的易燃性气体。在很多情况下,环氧乙烷具有 致突变 性、胎儿毒性和致畸特性,对睾丸功能具有不良作用,并能对体内的多个器官系统产生 损害。在动物致 癌研究中,吸入 EO 可产生几种致瘤性变化,包括白血病、脑肿瘤和乳房肿瘤, 而食入或皮下注射 EO 仅 在接触部位形成肿瘤。1994 年,国际癌症研究机构( IARC)依据 EO 的作用机理,重新将其划分为人类致癌物质(一类)。[img=,690,595]https://ng1.17img.cn/bbsfiles/images/2020/02/202002162131520854_8773_1871535_3.png!w690x595.jpg[/img]国标 GB/T16886.7-2015 医疗器械生物学评价 第 7 部分和 ISO 10993-7 对于环氧乙烷 (EO)残留限量提出如下要求: [img=,690,277]https://ng1.17img.cn/bbsfiles/images/2020/02/202002162132206083_6393_1871535_3.png!w690x277.jpg[/img]二.检测适用范围 南京科捷环氧乙烷残留快速测定仪主要用于快速检测一次性医用口罩、手套、防护服、医疗 用品包装材料等医疗用品。产品操作简单、结果可靠,已经市场销售多年,客户反馈口碑良 好。适合用户:各种医疗器械、药厂、药检、商检及质检等。 三. 检测指标:环氧乙烷(EO) 四. 试剂:环氧乙烷(EO)标准溶液 五、医疗设备中残留环氧乙烷分析[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分析流程图示: 样品制备――顶空进样器进样――[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 分析――色谱工作站――数据输出 六、医疗设备中残氧乙烷残留分析[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]配置:[img=,690,437]https://ng1.17img.cn/bbsfiles/images/2020/02/202002162133000122_4620_1871535_3.png!w690x437.jpg[/img]七、医疗器械中环氧乙烷测定条件(极限浸提法) 色谱柱: 30m*0.32mm*0.25μm 色谱仪柱温:60℃ 汽化室:150℃ FID:200℃ 顶空进样器:样品加热 60℃,阀箱 80℃,管路 120℃。 附 1 标准曲线溶液浓度:1 至 10 ug/mL, 附 2 样品处理:取产品上与人体接触的 EO 相对残留含量最高的部件进行试验。截为 5mm 厂碎片,称取 1.0g 放入 20mL 萃取容器中,精密加入 5mL 水,密封,60℃温度下平衡 40mi 八. 仪器外观:[img=,690,250]https://ng1.17img.cn/bbsfiles/images/2020/02/202002162133446337_3354_1871535_3.jpg!w690x250.jpg[/img]九.图谱及其线性: [img=,690,371]https://ng1.17img.cn/bbsfiles/images/2020/02/202002162134150457_4745_1871535_3.jpg!w690x371.jpg[/img][img=,690,420]https://ng1.17img.cn/bbsfiles/images/2020/02/202002162134159748_3281_1871535_3.jpg!w690x420.jpg[/img]十. 参考依据:GBT 16886.7-2015 医疗器械生物学评价 第 7 部分:环氧乙烷灭菌残留量.

  • 【资料】关于农药残留分析中基质效应的几篇中文文献

    [B]蔬菜有机磷农药多残留检测中的样品基质干扰及检测方法的适宜性[/B][I]吴成等;[/I]摘 要: 为研究NY/T 761- 2004 (农业行业标准) 用于蔬菜有机磷农药多残留检测中的样品基质干扰问题, 根据NY/T 761- 2004 分析众多蔬菜样品, 结合[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]技术, 评估蔬菜样品基质对有机磷农药多残留分析的干扰。结果表明, 用NY/T 761- 2004 检测蔬菜有机磷农药多残留时, 绿叶菜类、白菜类、瓜类、茄果类、豆类、薯芋类和根菜类蔬菜几乎没有样品杂质峰, 有机磷农药测定不受干扰 甘蓝类蔬菜(如紫甘蓝、甘蓝和西兰花等) 有显著的样品杂质峰, 敌敌畏、甲胺磷、甲拌磷和甲基毒死蜱等测定常受干扰 葱蒜类蔬菜(如蒜、葱和韭菜等) 有较强的样品杂质峰, 有机磷农药多残留测定无法进行。关键词: 蔬菜 有机磷农药 残留检测 基质干扰[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=80102]蔬菜有机磷农药多残留检测中的样品基质干扰及检测方法的适宜性[/url]

  • 【资料】-蔬菜、水果中农药多残留快速分析方法

    在农业生产中, 为了提高病虫害防治效果和抑制病虫害的抗药性, 常常交替使用不同种类的农药, 或使用多类农药混配的复合农药, 从而引起农产品中的多农药残留。这些残留农药对农产品造成严重污染, 也给人体健康带来极大危害。因此, 对农产品特别是新鲜蔬菜、水果实施农药残留检测, 已成为社会各界的共同要求。传统的单一农药残留测试方法已不能适应新的检测要求, 果蔬样品的测定随着质谱技术的发展, 质谱法已逐渐成为农药残留分析的有效手段。本文采用固相萃取- 毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]- 质谱连用法对果蔬中有机氯及拟除虫菊酯类农药残留量的检测及样品处理方法进行了研究。1 实验部分1.1 仪器Agilent6890[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/5973N [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]- MS 连用仪、HP- 5MS 毛细管色谱柱及质谱工作站(美国Agilent 仪器有限公司);氮吹仪(Pierce 公司);旋转蒸发仪(RE252A, 上海亚荣生化仪器厂);超声清洗器(SBS5200, 必能信超声上海有限公司);Florisil 固相萃取柱(6ml,1000mg,Agilent公司) 。1.2 试剂与材料已腈、丙酮、石油醚(60~90摄氏度)、正己烷(均为分析纯, 均用全玻璃蒸馏装置重蒸馏);无水硫酸钠(650摄氏度 灼烧5h);氯化钠(120摄氏度 烘4h)。六六六的4 种异构体(a- BHC、B- BHC、r- BHC、-BHC)、滴滴涕体(PP-DDE、PP-DDD、op-DDT、PP-DDT)、艾试剂(aldrin) 、狄试剂(dieldrin)、氰戊菊酯(Fenvalerate) 、氯氰菊酯(Cypermethrin)、百菌清(Chlorothalonil) 、溴氰菊酯(Deltamethrin)、三氯杀螨醇(Dicofol)、七氯(Heptachlor)、甲氰菊酯(Fenpropathrin)、氯菊酯(Permethrin) (由中国标准物质中心提供) , 质量浓度均为0.10g/l, 纯度均为百分之99。农药标准品用正己烷稀释成适当浓度的标准储备液, 于室温下密闭保存。 1.3 实验条件色谱柱HP-5 毛细管柱(30m×0.25mm×0.25μm), 载气: 为氦气, 流速1.0ml/min, 进样方式为不分流进样, 进样量1μl;进样口温度240摄氏度,升温程序:初温80摄氏度以10摄氏度/min升至160摄氏度保持5min;再以15摄氏度/min 升温至260摄氏度保持15min。质谱条件EI 离子源;电子能量70eV;发射电流0.2mA;光电倍增器电压350V;离子源温度200摄氏度;接口温度250摄氏度;扫描质量范围50~450amu 扫描速度1sec/scan 溶剂延迟4min。以各农药的保留时间和特征的质量离子进行定性。以峰面积为定量指标, 采用外标法计算样品中农药残留量。1.4 试验步骤将样品放入食品粉碎机中充分粉碎,称取20g 置于100ml 具塞锥形瓶中, 加入50ml 已腈, 超声提取30min。再加入5g 氯化钠, 振荡, 静止分层, 转移上层有机相, 并使其通过无水硫酸钠玻璃小柱, 并用石油醚少量多次洗涤脱水小柱, 合并洗出液, 于40摄氏度水浴中旋转蒸发至近干, 加入正己烷溶解后再加入到已用5ml 正己烷活化的Florisil 固相萃取柱净化, 用洗脱液9(百分之20丙酮正己烷溶液)洗脱, 收集洗脱液15ml 于离心试管中, 在45摄氏度氮吹仪上用氮气将其浓缩并用正己烷定容至2ml 上机测定。2 结果与讨论2.1 固相萃取操作条件的选择Florisil 固相萃取小柱是正相固相萃取, Florisil 填料对样品中的色素等极性杂质有很强的吸附能力, 而对非极性和弱极性的待测组分不易吸附, 且待测组分的极性与固定相极性差别越大, 净化效果越好。同时还试验了多种洗脱剂的洗脱效果, 结果发现, 以百分之20丙酮正己烷溶液为洗脱剂既能保证有高的回收率, 又能保证一些更强保留的杂质组分不被洗出。 2.2 定性及定量离子的选择由于[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS是利用化合物的保留时间、特征离子及其之比进行定性、定量分析, 所以和只要目标化合物的特征离子不一样, 即使没有被很好地分离也能进行准确的定性及定量。本实验采用选择离子模式采集数据, 根据每个农药全扫描得到的质谱图, 选择2~3个适合的离子作为其特征离子(见下表 略), 其中一个离子用于定量。定量离子的选择应考虑以下几点: ①选择特征性高的离子 ②选择质量数高的离子 ③选择对称性高且重现性好的离子 ④选择与柱流失碎片离子不同的离子(如不宜选择73、147、149、207、221、281、327、355 等作为定量和定性离子) 。2.3 标准曲线、线性范围与最小检测量配制18种标准使用液, 浓度在1~1000μg/l,即相当于检测样品中0.001~1.0mg/kg, 以峰面积对浓度作线性回归分析, 计算线性范围及相关系数。检出限是衡量仪器或方法灵敏度的指标, 最低检出限是在色谱图上可清楚确认的分析目的物色谱峰的下限。通常为噪音的3 倍(SIG/N 等于 3)。下表即为18种农药的保留时间、定性及定量离子、最低检出限及线性方程和相关系数。2.4 回收试验在样品基质中,添加已知目标物进行回收试验, 是验证分析方法可靠性的重要手段。本研究采用在黄瓜的匀浆中,定量添加浓度1.0×10- 8~1.0×10- 6mg/l有机氯农药的混合标准溶液, 按照黄瓜的农药残留测定过程, 制备加标样品的提取液, 进行[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS分析。经9次平行测定, 计算回收率, 结果见表。从表中可以看出, 黄瓜中加标的回收率及相对标准偏差、平均回收率在百分之80~110之间, 相对标准偏差百分之10,符合农残分析要求。3 结论气-质联用快速检测蔬菜水果中农药多残留的分析方法已用于多种蔬菜和水果样品的测定。实验结果表明: 此方法检出限、回收率、精密度均能满足农残分析要求, 且具有时间短、检测准确的特点, 非常适用于大量样品的常规实验室日常分析。

  • 生物样品分析中的色/质谱残留与污染

    在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]仪器使用过程中,我们经常会看见高浓度质控样品(HQC)后面的0h未知样品中有待测物的色谱峰或者在多个空白样品中发现待测物的色谱峰的现象,造成这种现象的原因,有可能是化合物的残留或者是化合物的污染,这些现象在一定程度上会影响实验结果的准度和精度。那如何在方法开发中,解决残留/污染问题?让我们一起来看看下面的文章。1、残留与污染的定义残留:是指前一个样品残留在分析仪器上的残留物质而引起的测定浓度的变化或者是由被测物在进样系统中吸附而造成的现象。任何形式上的残留都可被视为污染。污染:是指为分析监控样品(如空白基质)及实验对照组,给药前及安慰组样品中出现待测物的峰,也可能由和待测物在保留时间及质谱特性上极其相似的不明来源的其他物质产生的“峰”造成。相对于残留,污染具有更多的随机性和多源性,这使它更难以被诊断和纠正。残留和污染会影响方法的精密度和准确度,因此二者都必须被仔细监视和控制。2、药典9012中残留与污染的要求残留的要求应该在方法建立中考察残留并使之最小。残留可能不影响准确度和精密度。应通过在注射高浓度样品或校正标样后,注射空白样品来估计残留。高浓度样品之后在空白样品中的残留应不超过定量下限的20%,并且不超过内标的5%。如果残留不可避免,应考虑特殊措施,在方法验证时检验并在试验样品分析时应用这些措施,以确保不影响准确度和精密度。这可能包括在高浓度样品后注射空白样品,然后分析下一个试验样品。选择性(污染/干扰的要求)该分析方法应该能够区分目标分析物和内标与基质的内源性组分或样品中其他组分。应该使用至少6个受试者的适宜的空白基质来证明选择性(动物空白基质可以不同批次混合),它们被分别分析并评价干扰。当干扰组分的响应低于分析物定量下限响应的20%,并低于内标响应的5%时,通常即可以接受。应该考察药物代谢物、经样品预处理生成的分解产物以及可能的同服药物引起干扰的程度。在适当情况下,也应该评价代谢物在分析过程中回复转化为母体分析物的可能性。3、残留与污染的区别连续进空白多针,如果干扰峰的响应有逐渐降低的趋势,可判断为系统残留;如果干扰峰响应基本保持不变,则可能是系统污染。残留[img=图片]https://file.jgvogel.cn/134/upload/resources/image/356498.png?x-oss-process=image/resize,w_700,h_700[/img]污染[img=图片]https://file.jgvogel.cn/134/upload/resources/image/356499.png?x-oss-process=image/resize,w_700,h_700[/img]4、残留与污染的控制与消除污染可能来源[list=1][*]采样到储存的样品处理过程中的污染。[*]在实验室的样品制备中出现的污染。[*]非实验物质干扰待测物而造成的污染。[/list]例如:空气中的污染:样品制备过程的溶剂挥发会产生进溅及气溶胶,或者分析实验室旁边刚好是制剂试验室又恰巧在做同一药物。流动相或样品污染:实验中,我们也常用进空气针的方法来判断污染和残留是来自进样板还是来自仪器管路中,通过选择适当的排除法去寻找原因可以有效的加快排查的速度。给药、样品采集的污染:待测药物给了对照组的动物或安慰剂组的人,或者对照组的药剂被待测药物污染或高剂量被当低剂量使用。环境因素也会导致污染,如喂食在不同笼中小鼠时产生失误。同样地,对照组和给药组的动物接触时由于互相舐黏有食物的皮毛而污染。样品存储过程的污染:冻存前不正确放置血浆样品造成交叉污染(例如,由水平而不是垂直放置造成的样品管泄漏)。特别是尿液。仪器或试剂的污染:[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]吸过高浓度的样品,容器未清洗干净。污染解决的解决方法:加强人员培训,加强人员培训,加强人员培训。。。使分析员理解和识别残留和污染及其对生物分析数据的影响的重要性。残留可能来源[list=1][*]系统中的死体积所产生。[*]由于吸附(耗材,管路)导致的残留。[*]在色谱中不完全的洗脱形成的残留。[/list]残留若无法消除,可以合理的安排样品顺序:如参考血药代谢曲线浓度,将低浓度样品安排在前,高浓度样品靠后的方式,或在高浓度样品后增加空白样品来减少残留残留解决方法,还是需要了解化合物的性质合理配置洗针液,减少[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]管路中的死体积等。具体方法可联系作者哦,欢迎来撩,欢迎来撩,欢迎来撩。。。一般多肽化合物或logP值比较高的小分子化合物在方法开发的时候就需要重点考察残留了。5、残留和污染对实验结果的评估如果残留空白中分析物峰面积大于LLOQ峰面积的20.0%,那么残留可能会影响到分析的结果,需要进行残留评估。具体评估方法如下:[img=图片]https://file.jgvogel.cn/134/upload/resources/image/356500.png?x-oss-process=image/resize,w_700,h_700[/img]当样品的残留影响百分比(ECI%)小于5%时,可以认为该样品不受影响,相反则需要对该样品进行重分析或重进样。综上所述,残留可以既是真实或经典的分析物残留,又可以是由吸附或污染引起的残留。前者在很大程度上取决于进样系统的硬性设计。后者通常需要不断监测。

  • 【转帖】残留农药的气相色谱分析

    1.前言随着中国加入世界贸易组织,农产品市场的全球化以及消费者对农产品关注程度的提高,农产品中农药残留问题越来越受到人们的关注.由于蔬菜、水果使用要保证新鲜,尤其是叶菜类,从其收割到上市到市民食用期间只有较短时间,发展快速、可靠和灵敏、实用的农残分析技术是控制农药残留,保证食用安全的基础。各国政府制定了数量越来越多、要求日益严格的农残限量标准.例如,欧盟对于进口水果提出有最高残留限量要求的农药为124种,美国对于农产品提出有最高残留限量要求的农药多达300余种,其目的都在于最大限度控制滥用农药,维护本国人民的利益。因此,研究农药多残留快速检测方法,对于保障食品安全具有重要意义.有机磷,有机氯,菊酯农药是使用比较广泛的农药,主要应用于水果、蔬菜、棉花和粮食作物,农药残留对人们的健康造成了很大的危害.本文将对绿叶蔬菜中的农药残留测定方法进行探讨.

  • 【求助】准备用液质做200种农药多残留分析 请教高手给一些指点 新手!

    准备用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]做200种农药多残留分析 请教高手给一些指点:1、如何能快速的优化各个农药的质谱扫描参数2、有没有比较成熟的标准方法?3、一般情况下大家在做这种多残留的时候优化的步骤是怎样的?时间比较紧,不知道 两个星期够不够?

  • 常见农药残留检测方法及技术分析

    给大家分享一篇不错的文章,常见农药残留检测方法及技术分析,是绿尚的一个客座专家写的。常见农药残留检测方法及技术分析毋庸置疑,国内各类果蔬的农药残毒含量是想当高的。各类“茶叶风波”“毒韭菜事件”“毒生姜”层出不穷,不仅让我国农产品、食品进出口贸易正面临严重的农残困扰,国内群众也对此事人心惶惶。因此对农残的检测方法的了解,深入,开发以及重视构建食品安全的保障体系,健全相关的法规和标准,完善人员、装备力量,并形成了一套科学有效的模式迫在眉睫。本文主要针对国内国外农残的管理体系和农药残留检测方法、检测技术进展进行了论述。农业生产中农药的应用地位农业的可持续发展关系到国家经济建设和社会稳定的全局。农作物病、虫、草害等是农业生产的重要生物灾害。据资料记载中国有害生物为2,300多种,这些有害生物不仅种类多、分布广泛,而且成灾条件复杂,发生频繁。如不进行防治,每年将损失粮食总产量15%、棉花20%-25%、蔬菜25%以上。我国农药每年实际产量约40万吨,仅次于美国据世界第二位,年用量约27万吨,居世界前列。据统计,九十年代我国农业平均每年发生病虫草鼠44亿亩次,防治面积为49亿亩次,仅以防治有害生物计算,每年挽回的粮食损失即达6,500多万吨,相当于3.25亿人的口粮(按每人每年200千克计算)。在生物灾害的综合治理中,根据目前植物保护学科发展的水平,化学防治仍然是最方便、最稳定、最有效、最可靠、最廉价的防治手段。尤其是当遇到突发性、侵入型生物灾害发生时,尚无任何防治方法能够代替化学农药,唯有化学防治方能奏效。在可预见的未来,农业生产离不开农药。农药残留检测的必要性随着农业产业化的发展,农产品的生产越来越依赖于农药、抗生素和激素等外源物质。我国农药在粮食、蔬菜、水果、茶叶上的用量居高不下,而这些物质的不合理使用必将导致农产品中的农药残留超标,影响消费者食用安全,严重时会造成消费者致病、发育不正常,甚至直接导致中毒死亡。农药残留超标也会影响农产品的贸易。国外管理情况   农产品、食品中农药残留限量标准和检验方法标准是判定产品是否符合食品安全要求的重要依据。日益降低的限量值既保护公民健康又是发达国家设置技术性贸易壁垒的重要手段,准确、可靠的检验结果是保证食品安全和国际贸易公平交易的科学依据。因此各国纷纷构建食品安全保障体系,不断制订、修订食品中农药最大残留允许限量(MRLs)。截止2005年初,联合国已规定农药残留MRLs标准3574项,食品法典委员会(CAC)2572项,欧盟2289项,美国8669项,日本9052项,而我国国家标准和行业标准总共只有484项。  在美国,国家环保署(EPA)负责制定食品中农残最大允许标准,国家食品和药品监督管理局(FDA)负责标准的具体执行,并出版了农药残留分析手册,FDA采集和分析食品样品以判断其农药残留是否满足EPA规定的范围。美国农业部为落实收集食品中农药残留数据规划,委托农业市场管理部门(AMS)组建和实施农药数据规划(PDP),每年出版调查结果。在欧盟,设置了相应的仲裁委员会、协会和专业委员会,负责制订、修改相应的法规和标准,包括建议性标准和强制性标准,并且在监控、检测和管理体系方面建立了三级实验室(欧盟标准化实验室、国家级实验室、州级实验室)。欧盟所有成员国一般都遵循欧盟制定和发布的限量要求,不过在经过验证后,成员国也可以设定更低的检出限,其他成员国随后也遵循这一限量,欧盟已经对133种农药设定了17000个限量,对于某些没有具体限量要求的农药,各成员国还可设定不同的“一律标准”。在日本,国家农林水产省和厚生劳动省分别制订农药的销售和使用的“农药管理法”和食品中农残的“食品卫生法”,对农药建立登记制度,限制农药的销售和使用。2003年5月日本就通过了《食品安全基本法》,7月正式成立“食品安全委员会”,加大对食品安全的管理力度,日本对进口食品实行监测检查制度和强制检查制度,并由31个厚生劳动省检疫所实施。 国内外标准化技术一览中国  农药残留标准是农产品质量安全农药残留检测数据判定的依据。目前, 我国已制定79 种农药在32 种农副产品中的197 项农药最高残留限量标准(MRL 值) 的强制性国家标准农药最高残留限量(MRIs) 、160 种农药在19 种作物上的351 项推荐性最高残留限量标准。WHO/ FAO :  WHO/ FAO 制定的残留限量标准有3000 多项,针对不同种类及单项蔬菜上分别使用的农药作出最高残留限量标准, 总计7 大类及单种蔬菜42 种上对不同使用的79 种农药作出了723 个最高农药残留限量指标。日本  日本在蔬菜产品中农药残留限量标准共有1743 项。其中对十字花科、菊科、伞形科、茄科、百合科、食用菌、薯芋类、瓜类等蔬菜制定了1712 个农药残留限量标准, 其它蔬菜作出31 个限量标准。欧盟  欧盟蔬菜中农药最高残留限量是按蔬菜分类制定的。①对根和根茎类蔬菜使用的96 种农药给出了最高残留限量。②对果菜类蔬菜给出了47 种农药残留最高限量。③对芸薹类蔬菜给出了44 种农药残留最高限量值。④对叶菜类蔬菜给出了46 种农药残留最高限量值。⑤对鲜豆类蔬菜给出了95 种农药残留最高限量值。⑥对真菌类蔬菜给出了47 种农药残留最高限量值。美国  美国对58 种农药在叶类蔬菜、球茎蔬菜、葫芦类蔬菜、果类蔬菜及番茄、黄瓜、甘蓝、花椰菜、洋葱、茄子、甜瓜、佛手瓜、蘑菇、黄秋葵等单项蔬菜共制定出677 项农药残留限量标准, 农产品方面的农药残留最高限量多达9635 项。农药分类 要了解农药残留检测方法,首先要了解农药的分类。 农药用于防止、破坏、引诱、排拒、控制昆虫、病菌及有毒的动植物,或控制动物的外寄生虫,其种类繁多,迄今为止,在世界各国注册的农药大约1500种,其中常用的就有300多种。根据用途、来源、化学结构等不同有多种分类方式,常用的按用途不同可分为4种:(1)杀虫剂,主要有有机氯类、有机磷类、拟除虫菊酯类、氨基甲酸酯类、杀蚕毒素类等;(2)杀菌剂,主要有有机汞类、苯并咪唑类、有机氯类等;(3)除草剂,主要有麦田除草剂、玉米除草剂、豆除草剂、棉田除草剂等; (4)熏蒸剂,主要有磷化氢、溴甲烷、二硫化碳等。GC/MS确证技术  当今世界农残的检测分析向多残留、快速分析发展,要保证高通量的检测方法的准确性,需要有严格的农药残留确证技术。GC/MS是农药残留分析最广泛使用的方法,使用GC/MS进行农残分析,为了追求更高灵敏度和准确度,往往使用选择离子模式(SIM),依据保留时间和特征离子及离子比例关系对目标物进行确证。在美国,一般要求样品中目标物保留时间和标准品相比偏差小于0.05分钟;每个目标物至少有3个特征离子, 其相对离子比例与标准品相比绝对值在10%以内;同时还要考虑基质对目标物带来的其他影响;

  • 【转帖】兽药残留分析技术研究进展(很全哦)

    [color=#333333][font=宋体][size=3] 随着兽药的种类和应用规模剧增,人们对 [b]兽药残留问题的日益关注以及国际间贸易等原因,使兽药残留分析对象、样本数量和测定难度大大增加,迫切需要发展简便、快速、灵敏,并能同时处理测定大批量样品的兽药残留 分析技术。 [/b][/size][/font][/color][color=#333333][font=宋体][size=3]  传统的波谱、色谱等理化分析手段难以适应兽药残留分析的要求。[/size][/font][/color][color=#333333][font=宋体][size=3]  近年来在兽药残留分析领域所取得的重要进展或 [b]发展趋势主要有以下方面:[/b] [/size][/font][/color][color=#333333][font=宋体][size=3]  ①样品 [b]分离纯化技术(提取和净化方法)的简单化、微型化和 自动化,提高了提取或净化效率及自动化水平。如 固相萃取法(SPE)、 固相微萃取, 超临界流体萃取(SFE)、微波萃取法(MAE)、免疫亲和色谱(IAC)技术、基质固相分散(MSPD)技术,凝胶渗透色谱(GPC)净化, 分子印迹技术等。②在 定量分析上的 新技术包括 毛细管电泳、超临界流体色谱、 液相色谱技术、免疫分析技术和生物 传感器等。下面将这些 研究进展作一综述。 - 质谱联用 (SPME) [/b] [/size][/font][/color][color=#333333][font=宋体][size=3]  一、样品分离纯化技术[/size][/font][/color][color=#333333][font=宋体][size=3]  动物性食品中兽药残留的特点是样品中残留物水平很低,样品基质复杂,干扰物质多,不易从样品中分离、纯化残留物。因此兽药残留分析是复杂 [b]生物样品基质中痕量组分的分析技术,样品的分离纯化是兽药残留分析中最费时和劳动强度最大的步骤。传统的 样品制备技术如液- 液分配等仍在广泛使用,同时一些新的样品分离纯化技术也不断被引入到兽药残留分析中。免疫亲和 色谱技术、分子印迹技术、基质固相分散技术、超临界流体萃取 (SFE)等是残留分析中最有效的分离纯化方法,目前是兽药残留分析领域中的研究热点。 [/b] [/size][/font][/color][color=#333333][font=宋体][size=3]  (一)免疫亲和色谱技术[/size][/font][/color][color=#333333][font=宋体]  免疫亲和色谱技术(IAC)是用 [b]色谱柱技术,把抗体固定在适当的支持物上,制备出用于 药物残留检测的样品分离纯化IAC柱。利用抗体与抗原或半抗原可逆的生物专一性 相互作用来净化和富集分析物。它的特点是具有高度的选择性和特异性,特别适用于复杂样品基质中痕量组分的分离。该技术的关键是选择合适的支持物、合适的抗体和合适的淋洗 缓冲液。该技术的 发展方向是使生物样品中多个药物同时得到高效分离纯化。将IAC作为理化测定技术的样本净化手段,避免了免疫分析直接测定样本的诸多不足,IAC 的高选择性和高效性无疑使样本 前处理大大简化,通常一次层析即可使待测物得到高度净化和富集,并提供了待测物的定性信息 使用多种抗体制备的I A C 柱(MIAC)使免疫分析实际具备了处理多残留组分的能力。这种 联用技术无论在理论上还是实践上都是相当完善的 分析方法,如组织中 氯霉素、 阿维菌素伊维菌素的测定。MIAC 是兽药残留免疫净化方法的重要发展方向。 / [/b][/font][/color]

  • 【资料】-关于农药残留分析前处理设备的新进展

    农药残留的问题日益受到人们的关注,各种监督抽查的结果不断见诸于报,这不仅体现了我国政府部门对食品安全的重视程度,而且也成为分析行业生存和发展的一个重要机遇!在农药残留的分析检测中,相关的分析检测方法千差万别,比较权威的分析方法有DFG S19、FDA 2905A、EPA SW-846-3640A、EN12393、EN1528、AOAC No.984.21等等。为了适应农药残留检测项目不断增多的需求,满足食品贸易和食品安全的要求,多农药残留分析已经成为一种非常重要的趋势。在实际分析工作中,越来越多的分析工作者发现,在对水果、蔬菜、肉类、粮食、奶类、茶叶、烟草、中药等样品的农药残留分析中,样品的提取物中往往含有大量的高分子量物质,如油脂、糖类、植物腊质、蛋白质、色素等,这些物质会随着进样被带入到色谱进样系统中。由于这些物质沸点较高,因此会在进样口大量聚集,并会随着进样或者分解而缓慢地进入色谱柱,甚至检测器中,造成背景值增高,检测器污染;日积月累会严重影响汽化效率和分离效果。同时这些物质还会吸附目标化合物,导致目标化合物的色谱峰变形,变小,保留时间漂移,甚至不出峰,这些都会给目标化合物的定性和定量工作造成很大的困难。那么样品提取后选用何种方法来净化样品,以减少基质干扰物对目标化合物色谱柱行为的影响,降低噪音水平,减少检测器的污染,提高灵敏度和分析结果的重现性,是每个分析工作者在农药残留分析中所要考虑的一个重要问题。 常见净化方法有吸附色谱、液液萃取、冷冻、酸碱破坏除脂、凝胶色谱等等。其中,液液萃取、冷冻、酸碱破坏除脂等净化方法,多为手工操作,为了保证良好的重现性,对手工操作的要求很高,很多经典的方法均有提及。吸附色谱通常利用不同粒径、不同活性、不同柱径的氧化铝、硅胶、氟罗里硅土、活性炭等柱或几种不同混合柱来净化样品,已有成熟的自动化仪器,但由于受到技术条件的限制,常见的自动化仪器,样品容量有限,现主要应用在进样前的最后一步净化工作上。凝胶渗透色谱(GPC)也被称为空间排阻色谱(SEC)。该方法基于尺寸排阻的分离原理,利用样品中各组分分子大小不同,从而在凝胶中滞留时间不同而达到分离目的。因此,凝胶渗透色谱(GPC)不仅可以用于分离和测定小分子物质,而且还可以用于分析具有相同化学性质但分子大小不同的高分子量物质。针对上述提出的问题,可以预见凝胶渗透色谱(GPC)在多农药残留分析检测中对于样品提取液中高分子量干扰物的去除具有很好的效果。用凝胶渗透色谱(GPC)对样品进行净化分离时,油脂(通常分子量大于600)等大分子物质首先流出,随后是小分子物质(农药,多氯联苯等),而且淋洗溶剂的极性对分离的影响并不起决定作用,特别适合净化含脂和色素的样品。同时,该方法已完全实现自动化,操作过程简单:样品被转移到小瓶中,注入到凝胶渗透色谱(GPC)柱中进行分离。高分子量物质从柱中洗脱出来,被导入废液瓶中;目标化合物被收集在收集盘的样品瓶中以备后续的处理(通常体积较大,50-150ml左右)。随后系统进行自动清洗,为下一个样品做准备。整个过程全密闭控制,如果结合全自动样品浓缩装置,就可以实现最终浓缩定容,可用于直接进样。并且可以配置不同大小的柱子以满足不同样品量的要求,也同样适用于未知目标化合物的净化。凝胶渗透色谱(GPC)作为样品净化的手段之一,在国外已经得到较为广泛的应用,并且已被证明是一种使用最为方便的样品净化技术。该技术可高效地从有机物样品中除去高分子量的干扰化合物如油脂、糖、聚合物、色素和蛋白质等,降低终端分析仪器的维护频率,减少故障的发生,并可以相对延长分析柱的寿命,直接提高工作效率。凝胶渗透色谱(GPC)在我国应用的还不十分普遍,但是随着农药残留分析技术的发展和对农药残留分析检测工作要求的不断提高,可以相信凝胶渗透色谱(GPC)在我国农药残留样品前处理的分离、净化方面将有更广阔的前景。以上介绍的是最新的样品净化技术,有关样品提取、自动定容和转移等新技术限于篇幅没有介绍。如感兴趣者,请登陆www.gzchemart.com

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制