当前位置: 仪器信息网 > 行业主题 > >

模板法电化学共沉积

仪器信息网模板法电化学共沉积专题为您整合模板法电化学共沉积相关的最新文章,在模板法电化学共沉积专题,您不仅可以免费浏览模板法电化学共沉积的资讯, 同时您还可以浏览模板法电化学共沉积的相关资料、解决方案,参与社区模板法电化学共沉积话题讨论。

模板法电化学共沉积相关的方案

  • 天津兰力科:模板法电化学共沉积Ni2Mo 合金纳米线的研究
    使用多孔阳极氧化铝模板, 电沉积制备了Ni2Mo 合金纳米线。用扫描电镜(SEM) 和表面能谱(XPS) 表征沉积物形貌和组成, 用伏安法研究了Ni2Mo 合金纳米线的沉积条件及催化性能。结果表明, Ni2Mo 合金纳米线的直径在20~30 nm 之间。Ni2Mo 共沉积的伏安图上在- 1. 4 V(vs AgPAgCl) 左右出现一个扩散电流平台。光电子能谱(XPS) 表明, Ni2Mo 合金纳米线的共沉积电位出现在- 1. 4 V 以后, 大于这个电位钼以低价氧化物存在。Mo2Ni 离子浓度比大于2 时扩散电流平台消失。柠檬酸盐浓度达到2~3 倍镍盐浓度时, 扩散电流平台趋于稳定。在较优条件下电沉积的Ni2Mo 合金纳米线显示较高的析氢催化活性。
  • 天津兰力科:氧化铝模板中直流电沉积镍纳米线
    提出了一种在多孔阳极氧化铝PAA (porous anodic alumina)模板中直流电沉积镍纳米线的新方法。以PAA模板为阴极,在氯化钾溶液中通过电解腐蚀阻挡层,利用极化曲线研究了PAA模板中氢离子和镍离子的电化学行为。用扫描电镜表征了PAA、镍纳米线的形貌 用X射线衍射表征了纳米线的结构。结果表明,腐蚀阻挡层后的PAA伏安图上出现1个阳极氧化峰,镍离子在PAA模板中于- 110 V发生电沉积。扫描电镜显示镍纳米线直径为70~80 nm,与PAA的孔径相符。XRD表征证明了所制得的纳米线阵列为(111)取向的面心立方结构镍。通过电解腐蚀阻挡层后,能够直接在PAA中使用直流电沉积镍纳米材料。
  • 天津兰力科:油酸囊泡层状液晶作为模板电化学合成银纳米颗粒
    在油酸囊泡的层状液晶中利用电化学沉积法成功地制备了银纳米颗粒。并用扫描隧道显微镜(STM)和透射电子显微镜( TEM)对银纳米颗粒进行了表征 ,发现银纳米颗粒能够均匀地分散在油酸囊泡中 ,并且油酸囊泡能够有效地阻止产生的银纳米颗粒发生聚集反应。此外 ,我们还提出了银纳米颗粒形成的机理。关键词:油酸囊泡 层状液晶 银纳米颗粒 电化学沉积中图分类号:O655. 4 O646 TN16      文献标识码:A
  • 天津兰力科:铜纳米线阵列的模板组装
    采用电解法溶解多孔阳极氧化铝( PAA) 模板的阻挡层,用直流电沉积的方法在模板中组装了铜纳米线阵列。分别用扫描电镜和X 射线衍射表征铜纳米线阵列的形貌和晶体结构,用电化学法表征了铜纳米线阵列的电催化性能。结果表明,PAA 去阻挡层后,伏安图上出现一个阳极氧化峰。恒电位沉积的铜纳米线直径为22nm ,沿(111) 晶面择优取向。铜纳米线阵列电极能催化亚硝酸根的还原,其催化电流比本体铜电极上大2 倍,峰电位正移80mV 。纳米铜阵列电极可用于亚硝酸盐的电化学检测。
  • 电化学原子力显微镜(EC-AFM)实时监测铜在金表面的电沉积
    近年来,对电化学过程的理解如电沉积(也称电镀)在各种科学技术中的作用变得非常凸显,包括括微电子、纳米生物系统、太阳能电池、化学等其他广泛应用。〔1,2〕电沉积是一种传统方法,利用电流通过一种称为电解质的溶液来改变表面特性,无论是化学的还是物理的,使得材料可适合于某些应用。基于电解原理,它是将直流电流施加到电解质溶液中,用来减少所需材料的阳离子,并将颗粒沉积到材料的导电衬底表面上的过程[3 ]。此项技术会普遍增强导电性,提高耐腐蚀性和耐热性,使产品更美观。良好的沉积主要取决于衬底表面形貌〔4〕。因此,一项可以在纳米等级上测量,表征和监测电沉积过程的技术是非常必要的。有几种方法被应用到了这种表面表征。例如像扫描电子显微镜(SEM)和扫描隧道显微镜(STM)。这些技术可以进行纳米级结构的测量,但是,其中一些为非实时下的,一些通常需要高真空,而另一些则由于其耗时的图像采集而不适用于监测不断变化的过程。[2,5] 为了克服这些缺点,电化学结合原子力显微镜(通常称为EC-AFM)被引入进来。 这种技术允许用户进行实时成像和样品表面形貌变化的观测,并可以在纳米级的特定的电化学环境下实现。[ 6 ]在此次研究中,成功地验证了铜颗粒在金表面的沉积和溶解。利用Park NX10 AFM在反应过程中观察铜颗粒的形态变化,并在实验过程中使用恒电位仪同时获得电流-电压(CV)曲线。
  • 【PalmSens4电化学应用】电沉积氧化对乙酰氨基酚,用于尼古丁和乙基香兰素β-D-葡萄糖苷的智能便携式比率检测
    对乙酰氨基酚氧化物(PA ox)的电沉积,用于尼古丁(NIC)和乙基香兰素β-D-葡萄糖苷(EVG)的智能便携式比率检测。在丝网印刷碳电极(SPCE)上电沉积PA氧作为新的固定状态比率参考探针。将便携式电化学工作站与智能手机相结合,作为智能便携式电化学传感平台。
  • 天津兰力科:铝基体上电沉积聚苯胺膜及其耐蚀性
    探讨了电化学方法在Al 基体上沉积聚苯胺膜的控制工艺, 研究了聚苯胺膜的耐蚀性。结果表明, Al 基体上沉积一层Ni 后, 可用电化学方法沉积聚苯胺膜。循环伏安法的扫描电位上限、恒电流法的电流密度、恒电位法的电位范围和电解质的酸度均影响苯胺的聚合速度和聚苯胺膜的物理性能。动电位极化曲线表明, 在0.5 mol/LNaCl 溶液中, 用各种电化学方法沉积聚苯胺膜的Al 样品, 其点腐蚀电位比无膜时有所升高。Al 基体表面覆盖导电聚苯胺膜以后, 其耐蚀性能得到提高。
  • 天津兰力科:PbSe 纳米棒的模板合成及其性质
    在表面活性剂十六烷基三甲基溴化铵(CTAB) 存在下,利用N2H4 H2O 还原H2SeO3 合成出单质硒纳米管,然后以硒纳米管为模板,与Pb(NO3 ) 2 和N2H4 H2O 在常压低温下反应,制备了PbSe 纳米棒。采用电子透射电镜、X射线衍射等方法对产物进行了表征。探讨了PbSe 纳米棒的形成机理和制备反应的影响因素。测定了产物的荧光性质,并利用电位扫描伏安法研究了所得PbSe 纳米棒的电化学性质。结果表明,所得产物在碱性介质中电化学活性较高,在循环伏安曲线上出现明显的氧化峰和还原峰。
  • 天津兰力科:Ti基纳米TiO_2_CNT_Pt复合电极制备、表征及电化学性能
    以电合成前驱体直接水解法和电化学扫描电沉积制备复合电极。复合电极具有高活性表面,对甲醇的电化学氧化具有高催化活性和稳定性。
  • 超级电容器用纳米二氧化锰的合成及其电化学性能
    采样低温气相法和化学沉积法制备4种用于电化学电容器的纳米级二氧化锰!由XRD、SEM和循环伏安法表征和测试其物化性能及电容特性! 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • 【EmStat3Blue电化学应用】基于氮化石墨和聚苯胺复合材料改性的新型电化学传感器,检测水中的镉(II)离子
    基于对聚苯胺(PANI)和石墨相氮化碳(g-C3N4)复合材料的改性,构建了一种新型电化学传感器。利用差分脉冲阳极剥离伏安法(DPASV)技术检测水环境中的镉(II)离子。扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、电化学阻抗能谱(EIS)、接触角(CA)和Tafel曲线分析用于表征电极的物理和电化学特性。我们根据两种物质各自的优缺点,将它们巧妙地结合在一起,制备出了一种新型PANI@g-C3N4复合材料。该复合材料首次应用于电极检测,显著增强了电极表面自由电子的转移,提高了电极的灵敏度,增加了对镉离子的吸附能力,明显改善了电极的检测效果。我们对PANI@g-C3N4的修饰量、沉积电位、沉积时间和溶液pH值等参数进行了优化,以确定检测Cd(II)离子的最佳条件。在最佳条件下,我们的传感器在-0.78 V(相对于Ag/Agcl电极)时获得最佳信号,并在0.1 - 140 μg/L的宽线性浓度范围内表现出较低的检测限(0.05 μg/L)。该传感器成功地对真实水样进行了鉴定,回收率在91%至106%之间。相对标准偏差(RSD)小于4.31%。此外,该传感器还具有出色的抗干扰性、可重复性和稳定性。该传感器的成功应用为高效检测水生环境中的镉(II)离子提供了新思路。
  • 铜样品电化学腐蚀原子力形貌像的实时观测
    AFM型号:Easyscan 2 FlexAFM LS测量模式:Dynamic轻敲式悬臂探针: NCLR附件仪器:CH Instruments电化学分析仪制作好的铜片样品(工作电极)用鳄鱼夹夹好,鳄鱼夹应远离溶液避免可能的腐蚀。样品与Ag/AgCl参比电极,对电极组成电化学体系。所有电极均浸泡在100mM NaCl水溶液中。图1为测试前铜片的形貌像,使用的是动态轻敲模式。开路电位(OCP)为-0.347V,做Tafel曲线和点蚀测量以确定点蚀电位。加一个0.6V阳极电位1分钟在体系上后,测量铜片的形貌像,如图2所示,可以看到铜片表面发生了一些变化。再过1分钟后,可以看到溶液中产生了一些气泡,图3为此时的铜片形貌像,可以看到在铜片表面有相当多的变化,由于铜的电化学腐蚀导致材料表面产生了一些物质,在铜样品周围有一些小颗粒。颗粒沉积的痕迹能在形貌像中看到。再过1分钟后,着这个阶段已经不可能看到形貌像,因为腐蚀物质形成的混浊液体的干扰遮挡住了激光光束。在这个阶段铜样品被取出彻底冲洗后,放入新的液体中,再一次进行AFM测量,形貌像显示出表面的凹点(如图4)。通过软件可得到凹点的平均深度和直径。用不锈钢做相同的试验,电位为+1V,甚至10分钟后形貌像仍没有发生改变(图5和6),抗腐蚀能力没有发生变化。
  • 模版法合成金银壳核纳米线及电化学表征
    采用氧化铝模版由交流电沉积法制备纯银纳米线,然后采用氧化还原法,在纳米线表面包裹金壳层,得到具有壳核结构的银金复合纳米线! 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • 天津兰力科:金电极上放线菌素D的电化学行为及分析测定
    应用方波溶出伏安法研究了放线菌素D在KH2PO4-2Na2HPO4缓冲溶液中于金电极上的电化学行为以及酸度、预富集沉积电位、预富集沉积时间、方波频率、方波幅度、电位增量等的影响,优化测定参数,建立一种直接测定放线菌素D的电分析测定方法. 在0. 1~10. 0μmol/L浓度范围内,放线菌素D与其方波溶出伏安氧化峰电流呈良好的线性关系,相关系数0. 9991,检测限0.00000001mol/L.
  • 【PalmSens4电化学应用】电化学发光法检测吉西他滨
    电化学发光(ECL)是一种值得研究的电化学技术。此前,作者已经确定无法通过传统的基于钌的ECL可靠地检测癌症治疗吉西他滨。本文中,展示了在ECL膜中添加金纳米颗粒如何通过增强的电催化氧化来促进GMB检测,从而产生所需的ECL自由基。通过这种方法,已经能够将ECL信号强度提高60倍,并在6.25–50µM的线性范围内实现低至6.25µM的检测。
  • 天津兰力科:综合电化学工作站硬件设计与实现
    随着电池行业的迅猛发展,人们对电池检测技术提出了更高的要求,迫切需要一种高效,能测量体现电池反应过程参数的检测设备。本课题目的在于研发一种综合电化学工作站满足上述需求。综合电化学工作站是一套完整的、数字化的、电化学体系的检测分析设备。它把恒电位仪,恒电流仪和电化学交流阻抗分析仪有机地结合到一起,既可以做常规的基本测试如动电位扫描、动电流扫描试验和电化学交流阻抗测量,也可以做基于这三种基本试验的程式化试验,如恒电流充电-电化学交流阻抗测量,电池寿命循环试验-电化学交流阻抗测量试验,从而完成多种状态下电化学体系的参数跟踪和分析。它可以快捷、精确的检测电池的容量、测量体现电池反应机理的交流阻抗参数。本文以交流阻抗谱为理论依据,在既定电位范围、精度、分辨率和响应速度等性能指标的要求下构建出上下位机多层次硬件体系结构,有针对性地设计了下位机的接口电路板和测量电路板,并在此设计方案下进行了大量的硬件功能调试,达到了预期的性能指标。本文的主要内容可概括为以下三点:(1)电化学工作站的功能原理研究与硬件系统设计。介绍了电化学工作站的三种基本功能和性能指标,电化学交流阻抗测量的原理,并进而提出了电化学工作站的硬件系统结构,构建了电化学工作站的硬件结构设计;(2)下位机的接口电路板和测量电路板设计,在设计中力图提高系统精度、灵活性。实现对电池电压和电流的测量和控制功能,使工作站测量和控制功能达到了功能多样化精确化,为电化学交流阻抗测量等功能实现打下基础;(3)实验及误差分析。对电化学工作站的硬件测量和控制功能进行了实验验证,分析了误差产生得原因,对固有误差进行了补偿,对不同幅值直流信号和不同幅值、频率的交流信号进行测量,达到了精确测量的性能指标。
  • 使用双氧水处理过的蒸汽生长碳纤维对锂离子电池阴极进行水处理-用于改善电化学性能
    水相过程处理锂钴氧化物(LiCoO2)阴极的电化学行为,使用过氧化氢(H2O2)处理的蒸汽生长碳纤维(VGCFs)作为锂离子导电剂电池已经被研究和改进。沉积实验表明,H2O2处理VGCFs在水中具有更好的分散性,性能优于KS-6(片状石墨)或原始的VGCFs。这个改进是由于H2O2处理的VGCFs的表面化学性质变得更加亲水,可以通过其等电点(I.E.P)从pH 6.7显著转变为5.0来证明。
  • MA-3000直接燃烧法在环保行业测定沉积物中总汞的应用
    MA-3000直接燃烧法在环保行业测定沉积物中总汞的应用沉积物中的汞是嵌入水生生态系统底层的汞。汞通过火山活动和岩石随时间的矿物风化以及工业和城市资源(如燃煤发电厂或危险废物焚烧)自然进入水体。释放到空气中的汞最终可能会沉入水中或被冲入水中,在那里它沉积在湖底、河床、湿地和潮间带上,并与底部基质融为一体。沉积物汞可被微生物转化为甲基汞,这是一种剧毒化学物质,会在鱼类、贝类和吃鱼的动物体内积聚。汞对自然生态系统和人类都是危险的,因为它具有剧毒,特别是因为它能够破坏中枢神经系统。汞对子宫内和儿童早期的人类发展构成特别威胁。因此,为了防止汞中毒或评估污染问题的可能性,有必要准确量化沉积物中的总汞。NIC公司 MA-3000是一款专用的直接汞分析仪,通过热分解、金汞齐化和冷原子吸收光谱有选择地测量几乎任何样品基质(固体、液体和气体)的总汞。MA-3000提供快速测试的结果,没有任何繁琐、耗时和复杂的样品制备过程。这是一个理想的解决方案,以满足当今实验室对简单,快速和准确的汞测量的需求.
  • 【EmStat3Blue电化学应用】功能化黑磷纳米复合材料,用于芦丁超灵敏检测的便携式无线智能电化学传感器
    摘要:为了建立一种便携、灵敏的黄酮类化合物浓度监测方法,本文建立了一种新的电化学传感方法。通过使用氮掺杂碳化聚合物点(N- CPDs)锚定少层黑磷烯0D-2D异质结构(N-CPDs@FLBP)和金纳米颗粒(AuNPs)作为修饰剂,以碳离子液体电极和丝网印刷电极(SPE)作为基板电极,分别构建了传统的电化学传感器和便携式无线智能电化学传感器。详细地研究了芦丁在所制备的电化学传感器上的电化学行为与分析性能。由于芦丁的电活性基团,纳米复合材料与芦丁之间的π-π堆积和阳离子-π相互作用,芦丁在AuNPs/N-CPDs@FLBP修饰电极上的电化学反应明显增强。在最佳条件下,可实现芦丁的超灵敏检测AuNPs/N-CPDs@FLBP/SPE的检测范围为1.0 nmol L−1 至220.0 μmol L−1检测限为0.33 nmol L−1(S/N = 3)。最后,用两种传感器进行了实时性测试样品并得到了满意的结果。
  • 电化学工作站EIS教程 – 新手入门
    电化学阻抗谱(EIS)是一个强大的技术,它使用一个小振幅交流电信号去探测电解池的阻抗特征。交流信号在大频率范围扫描以产生一个测试中电化学电解池的阻抗谱。EIS与直流电技术的区别在于它可以对发生在电化学电解池的电容性,电感性和扩散过程进行研究。EIS背后的理论比直流技术更加复杂,所以建议您在入门前先对基本原理有一个基础的了解。EIS有深远的应用包括涂层,电池,燃料电池,光伏,传感器和生物化学。这个指南将集中于EIS技术在涂覆铝面板腐蚀性能分析方面的应用。先知道一些关于被调查的电化学系统的知识也是很有帮助的。有了对系统的基本了解,就可以知道电化学工作站是否能够收集所需的信息且收集到的数据是否满足精度要求。
  • 在ITO玻璃上采用纳秒激光器处理薄金薄膜研制电化学传感器
    采用立陶宛Ekspla公司生产的纳秒短脉冲半导体泵浦的固体激光器-NL220.波长532nm.脉冲宽度35纳秒,重复频率500Hz.处理ITO玻璃上3-30nm厚的镀金薄膜。生成纳米颗粒,具有独特的电化学特性,可以用来制作电化学传感器。
  • 海能仪器:电化学中电极的分类及应用概述(电化学)
    电化学仪器在我们的生活及实际生产中发挥着重要的作用,在电化学分析中只有选择合适的电极,才能保证实验的精确度与准确性。
  • 天津兰力科:添加钙对氢氧化镍结构和电化学性能的影响
    通过XRD 和循环伏安法研究了添加钙对氢氧化镍结构和电化学性能的影响。其中钙是以离子的形式对氢氧化镍掺杂。结果表明:添加了钙的氢氧化镍的晶粒尺寸变小,比表面积增加,晶体缺陷和畸变增多,提高了质子的传递能力和活性物质的利用率,其中以共沉淀方式添加1%钙的氢氧化镍电极的电化学性能最佳。
  • 【EmStat3Blue电化学应用】检测植物调节剂吲哚-3-乙酸的无线电化学传感器
    基于金纳米粒子和三维还原氧化石墨烯改性丝网印刷碳电极检测植物调节剂吲哚-3-乙酸的无线电化学传感器植物激素是作物生长和生产中重要的调节物质。在这项工作中,利用金纳米粒子和三维还原氧化石墨烯(AuNPs-3DGR)修饰的丝网印刷碳电极(SPCE)成功建立了一种无线电化学传感器,用于检测植物调节剂吲哚-3-乙酸(IAA)。植物。超声辅助液相分散氧化石墨烯(GO)和Au 3+还原制备AuNPs-3DGR纳米复合材料采用水热法混合。复合材料在SPCE上滴涂改性,通过智能手机控制的无线便携式电化学工作站检测IAA,线性范围更宽(0.25~120.0 μmol/L和135.0~500.0 μmol/L),下限为检测(0.15 μmol/L,3σ/S)。之后,将该传感器应用于绿豆芽不同组织中IAA含量的检测,结果令人满意。改进的SPCE与小型蓝牙工作站和智能手机的结合对于构建便携式、低成本、简单、快速的电化学传感平台非常有用。
  • 低阻抗锂离子电池的电化学阻抗谱测试
    电化学阻抗谱(EIS)是获取电化学系统信息的一种强有力的测试方法。它常常被应用在测试新型的能源转换和存储类电化学器件(ECS),包括电池,燃料电池和超级电容器。EIS可以被用到新设备发展的各个阶段,一直从半电解池反应的机理和动力学初始评估到电池包的质量控制。
  • 天津兰力科:综合电化学工作站系统结构的设计
    电池行业的发展对电池检测技术提出了更高的要求,迫切需要高效智能的检测设备。本课题目的是设计一种满足功能和精度要求的综合电化学工作站。综合电化学工作站在电池检测中占有重要地位,它将恒电位仪、恒电流仪和电化学交流阻抗分析仪有机地结合,既可以做三种基本功能的常规试验,也可以做基于这三种基本功能的程式化试验。在试验中,既能检测电池电压、电流、容量等基本参数,又能检测体现电池反应机理的交流阻抗参数,从而完成对多种状态下电池参数的跟踪和分析。本文从结构设计的角度,对综合电化学工作站进行了研究。根据恒电位测量、恒电流测量、交流阻抗测量三种功能的工作原理和相应的性能指标,提出以DSP处理器为控制核心的硬件结构体系。在该设计方案下,进行了大量的硬件设计调试工作和软件设计调试工作。本文的内容包括以下三点:(1)电化学工作站的系统分析。详细分析了电化学工作站三种基本功能的工作原理和性能指标,确定了电化学工作站的硬件系统结构—以DSP处理器为整个系统的控制核心,实现对六个通道的电池测量和控制,以及将数据送往PC机进行储存和处理。(2)系统硬件设计。硬件设计主要集中在DSP电路板、接口电路板、测量控制电路板的设计上。DSP电路负责发出控制信号和处理测量信号;测量电路直接与被测对象相连接,实现具体测量、控制;接口电路是DSP电路板与测量控制电路板之间的桥梁。从电路结构、芯片选型到最后布局,将各个功能电路进行细化,分步骤设计。(3)系统软件设计。结合系统工作特点和硬件结构,确定了软件总体架构。重点研究了过采样滤波软件算法和快速傅立叶变换(FFT)测算交流阻抗软件算法。
  • 天津兰力科:电化学氧化对碳纤维表面电化学性质的影响
    碳纤维表面呈现化学惰性,缺乏活性官能团,限制了碳纤维作为电化学分析电极的应用。目前,许多手段被用于碳纤维的表面改性处理。采用电化学氧化方法,在磷酸溶液中对碳纤维进行了处理,并进行了红外光谱和循环伏安试验。结果发现:处理后碳纤维的表面接上了活性官能团,大量活性碳原子被剥离出来。在K4 Fe (CN) 6 加KCl、FeSO4 加HClO4 两组混合溶液体系中的电化学响应明显改善,适合作为电化学分析电极。
  • 电化学法快速检测微生物的发展现状及趋势
    自1898 年 Stewart 提出利用电化学法检测微生物, 电化学法已发展成为一种微生物快速检测的方法 根据检测的参数不同, 电化学微生物检测法可以分为阻抗微生物法和介电常数法 阻抗法主要用于食品工业中微生物的快速检测), 尤其用于易腐食品的微生物快速检测, 以期实现在其发生明显腐败之前得到检测结果 而介电常数则用于生物发酵过程中的微生物数量的快速测定, 可以实现在线监测微生物数量及生物发酵过程的实时控制 电化学法由于其检测迅速 可以实现自动化检测, 在工业化生产中具有广阔的应用前景。
  • 粉末原子层沉积的应用
    粉末技术经过多年的发展,已经形成多样化的制备及加工技术。其中,表面包覆技术作为提升粉末物理化学性能的重要手段,长期以来一直缺乏有效的精密手段。与传统的表面改性不同,粉末原子层沉积技术PALD 是真正可以实现原子级/分子层级控制精度的粉末涂层技术,并保持良好的共形性。
  • 光谱电化学测量
    光谱电化学是一种将电化学测量与原位光谱测量相结合的实验方法。光谱测量可以透射或反射进行。光谱测量在电化学测量过程中提供有用的补充信息。它可用于在电化学测量过程中识别反应中间体或产物结构。本文着重介绍电化学工作站与光谱仪的联用,并进行了实例分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制